
D✏pS: Delayed ✏-Shrinking for Faster

Once-For-All Training

Aditya Annavajjala⇤1, Alind Khare⇤1, Animesh Agrawal1, Igor Fedorov3, Hugo
Latapie2, Myungjin Lee2, and Alexey Tumanov1

1 Georgia Institute of Technology, Atlanta, USA
2 Cisco Research, USA

3 Meta, USA

Abstract. CNNs are increasingly deployed across different hardware,
dynamic environments, and low-power embedded devices. This has led to
the design and training of CNN architectures with the goal of maximizing
accuracy subject to such variable deployment constraints. As the number
of deployment scenarios grows, there is a need to find scalable solutions
to design and train specialized CNNs. Once-for-all training has emerged
as a scalable approach that jointly co-trains many models (subnets) at
once with a constant training cost and finds specialized CNNs later. The
scalability is achieved by training the full model and simultaneously re-
ducing it to smaller subnets that share model weights (weight-shared
shrinking). However, existing once-for-all training approaches incur huge
training costs reaching 1200 GPU hours. We argue this is because they
either start the process of shrinking the full model too early or too late.
Hence, we propose Delayed ✏-Shrinking (D✏pS) that starts the process of
shrinking the full model when it is partially trained (⇠ 50%), which leads
to training cost improvement and better in-place knowledge distillation
to smaller models. The proposed approach also consists of novel heuristics
that dynamically adjust subnet learning rates incrementally (✏), leading
to improved weight-shared knowledge distillation from larger to smaller
subnets as well. As a result, D✏pS outperforms state-of-the-art once-for-
all training techniques across different datasets including CIFAR10/100,
ImageNet-100, and ImageNet-1k on accuracy and cost. It achieves 1.83%
higher ImageNet-1k top1 accuracy or the same accuracy with 1.3x re-
duction in FLOPs and 2.5x drop in training cost (GPU*hrs).
Code is released at https://github.com/gatech-sysml/deps.

Keywords: Scalable vision · NAS · Efficient Inference

1 Introduction

CNNs are pervasive in numerous applications including smart cameras [2], smart
surveillance [6], self-driving cars [26], search engines [12], and social media [1].
As a result, they are increasingly deployed across diverse hardware ranging from
server-grade GPUs like V100 [19] to edge-GPUs like Nvidia Jetson [18] and
⇤ Authors contributed equally to this research.

https://github.com/gatech-sysml/deps

2 Annavajjala et al.

dynamic environments like Autonomous Vehicles [8] that operate under strict
latency or power budget constraints. As the diversity in deployment scenarios
grows, efficient deployment of CNNs under a myriad of deployment constraints
becomes challenging. It calls for developing techniques that find appropriate
CNNs suited for different deployment conditions.

Neural Architecture Search (NAS) [4, 32] has emerged as a successful tech-
nique that finds CNN architectures specialized for a deployment target. It searches
for an appropriate CNN architecture and trains it with the goal of maximizing
accuracy subject to the target deployment constraints. However, state-of-the-
art NAS techniques remain prohibitively expensive, requiring many GPU hours
due to the costly operation of the combined search and training of specialized
CNNs. The problem is exacerbated when NAS is employed to satisfy multiple
deployment targets, as it must be run repeatedly for each deployment target.
This makes the cost of NAS linear in the number of deployment targets consid-
ered (O(k)), which is prohibitively expensive and doesn’t scale with the growing
number of deployment targets. Therefore, there is a need to develop scalable
NAS solutions able to satisfy multiple deployment targets efficiently.
One such technique is Once-for-all training [3, 29, 40]—a step towards making
NAS computationally feasible to satisfy multiple deployment targets by decou-
pling training from search. It achieves this decoupling by co-training a family of
models (weight-shared subnets with varied shapes and sizes) embedded inside a
supernet once, incurring a constant training cost. After the supernet is trained,
NAS can then be performed for any specific deployment target by simply ex-
tracting a specialized subnet from the supernet without retraining (once-for-all).

Train Full Model

Epochs

T sec/epoch ~2T sec/epoch ~3T sec/epoch

~3T sec/epoch

~3T
sec/epochT sec/epoch

D
 p

S
B

ig
N

A
S

O
FA

Train Full
model

Partially

Distillation Full model
Child Models

(Subnets)

n 2n 5n

Total
Time

3n

(2Tn + 2Tn + 6Tn) = 10Tn

(3T*2n) = 6Tn

(T*n + 3T*n) = 4Tn

Fig. 1: D✏pS reduces training time compared to ex-
isting approaches like OFA [3] & BigNAS [40].

This achieves O(1) training
cost w.r.t. the number of de-
ployment targets and, there-
fore, makes NAS scalable.
However, the efficiency of this
once-for-all training remains
limited as it incurs a signif-
icant training cost (⇠ 1200
GPU hours in [3]). This is pri-
marily due to (a) the large
number of training epochs re-
quired to overcome training
interference (OFA [3] in Fig.
1), and (b) the high aver-
age time per-epoch caused
by shrinking—defined as sam-
pling and adding smaller subnets to the training schedule— per minibatch (Big-
NAS [40] in Fig. 1). Thus, in order to make once-for-all training more efficient,
we must reduce its training time without sacrificing state-of-the-art accuracy
across the whole operating latency/FLOP range of the supernet.

D✏pS: Delayed ✏-Shrinking 3

We propose D✏pS, a technique that increases the scalability of once-for-all
training. It consists of three key components designed to meet their respective
goals — Full Model warmup (FM-Warmup) provides better supernet initial-
ization, ✏-Shrinking keeps the accuracy of the full model (largest subnet that
contains all the supernet parameters) on par with OFA and BigNAS, and IKD-
Warmup boosts the accuracy of small subnets with effective knowledge distilla-
tion in once-for-all training. Particularly, with better supernet initialization, FM-
Warmup (D✏pS in Fig. 1) reduces both the total number of epochs (compared
to OFA) and average time per-epoch (compared to BigNAS). In FM-Warmup,
the supernet is initialized with the partially trained full model (⇠50%) and then
subnet sampling (shrinking) is started to train the model family. The partial full
model training ensures a lower time per epoch initially. Then, ✏-Shrinking ensures
smooth optimization of the full model. It incrementally warms up the learning
rate of subnets using parameter ✏ when the shrinking starts, while keeping the
learning rate of the full model higher. Lastly, IKD-Warmup enables knowledge
distillation from multiple partially trained full models (that are progressively
better) to smaller subnets. The three components, when combined, reduce the
training time of once-for-all training and outperform state-of-the-art w.r.t. ac-
curacy of subnets across different datasets and neural network architectures. We
summarize the contributions of our work as follows:

• FM-Warmup provides better initialization to the weight shared supernet by
training the full model only partially and delaying model shrinking. This leads
to reduced time per epoch and lower training cost.
• ✏-Shrinking ensures smooth and fast optimization of the full model by warm-
ing up the learning rate of smaller subnets. This enables it to reach optimal
accuracy quickly.
• IKD-Warmup provides rich knowledge transfer to subnets, enabling them to
quickly learn good representations.

We extensively evaluate D✏pS against existing once-for-all training base-
lines [3, 29, 40] on CIFAR10/100 [21], ImageNet-100 [34], and ImageNet-1k [7]
datasets. D✏pS outperforms all baselines across all the datasets both w.r.t. accu-
racy (of subnets) and training cost. It achieves 1.83% ImageNet-1k top1 accuracy
improvement or the same accuracy with 1.3x FLOPs reduction while reducing
training cost by upto 1.8x w.r.t. OFA and 2.5x w.r.t. BigNAS (in dollars or GPU
hours). We also provide a detailed ablation study to demonstrate the benefits of
D✏pS components in isolation.

2 Background

Formulation. Let Wo denote the supernet’s weights, the objective of once-for-
all training is given by —

min
Wo

X

a2A
L(S(Wo, a)) (1)

4 Annavajjala et al.

where S(Wo, a) denotes weights of subnet a selected from the supernet’s weight
Wo and A represents the set of all possible neural architectures (subnets). The
goal of once-for-all training is to find optimal supernet weights that minimize
the loss (L) of all the neural architectures in A on a given dataset.
Challenges. However, optimizing (1) is non-trivial. On one hand, enumerating
gradients of all subnets to optimize the overall objective is computationally infea-
sible. This is due to the large number of subnets optimized in once-for-all training
(|A| ⇡ 22B subnets in our case⇤). On the other hand, a naive approximation of
objective (1) to make it computationally feasible leads to interference (sampling
a few subnets in each update step). Interference occurs when smaller subnets
affect the performance of the larger subnets [3, 40]. Hence, interference causes
sub-optimal accuracy of the larger subnets. Existing once-for-all training tech-
niques mitigate interference by increasing the training time significantly (Fig.
1). For instance, OFA [3] mitigates interference by first training the full model
(largest subnet) and then progressively increasing the size of |A|. This leads to a
large number of training epochs and ⇡ 1200 GPU hours to perform once-for-all
training. Therefore, the following challenges remain in once-for-all training —
(C1) training supernet at a lesser training cost than SOTA, and (C2) mitigat-
ing interference. We divide challenge C2 into two sub-challenges — matching
existing once-for-all training techniques [3, 40] w.r.t. accuracy of (C2a) the full
model (largest subnet), and (C2b) child models (smaller subnets).

3 Related Work

Efficient NN-Architectures in Deep Learning. Efficient deep neural net-
works (NNs) achieve high accuracy at low FLOPs. These neural nets are easy to
deploy as they increase hardware efficiency by operating at low FLOPs. Devel-
oping such networks is an active research area. Several efficient neural networks
include MobileNets [15], SqueezeNets [17], EfficientNets [33], and TinyNets [10].
Neural network compression. Neural network compression reduces the size
and computation of neural networks for efficient deployment. The compression
occurs after the network is trained. Hence, the performance of compression meth-
ods is bounded by the accuracy of the trained neural network. Neural network
compression can be broadly divided into two categories — network pruning
and quantization. Network pruning removes unimportant units [11, 25, 30] or
channels [22,23,31]. Network quantization converts the representation of neural
weights and activations to low bits [16,20,37].
Hardware aware NAS. Neural architecture search (NAS) automates the de-
sign of efficient NN architectures. NAS typically involves searching for and train-
ing NN architectures that are more accurate than manually designed NNs [27,42].
Recently, NAS methods are becoming hardware-aware [4, 32, 38] i.e. they find
NN architectures suited for deployment at target hardware. These methods in-
corporate deployment constraints of hardware or latency in their search. Then,

⇤ 5 stages, 3 depths (2, 3, 4), 3 expands = (32 + 33 + 34)5 ⇡ 22B subnets

D✏pS: Delayed ✏-Shrinking 5

�� �� �� ��� ��� ��� ��� ���
)/23V��0�

��

��

��

��

��
7R
S�
��
$F
FX
UD
F\

'wp6�LQLWLDOL]DWLRQ������
2)$�LQLWLDOL]DWLRQ

(a) CIFAR-10

�� �� �� ��� ��� ��� ��� ���
)/23V��0�

��

��

��

��

��

��

��

7R
S�
��
$F
FX
UD
F\

'wp6�LQLWLDOL]DWLRQ������
2)$�LQLWLDOL]DWLRQ

(b) CIFAR-100

��� ��� ��� ���
)/23V��0�

�

��

��

��

��

��

��

��

��

7R
S�
��
$F
FX
UD
F\

'wp6�LQLWLDOL]DWLRQ������
'wp6�LQLWLDOL]DWLRQ������
'wp6�LQLWLDOL]DWLRQ������
2)$�LQLWLDOL]DWLRQ

(c) ImageNet-1k

Fig. 2: Supernetwork initialization. D✏pS provides better initialization for the su-
pernetwork for smaller subnets compared to OFA due to FM-Warmup. This validates
the hypothesis that the supernet weights become specialized if the full model is trained
to completion (OFA), resulting in poorer accuracy of subnetworks with increased train-
ing of the full model.

they find and train efficient NNs that meet the constraints. However, these NAS
methods only satisfy a single deployment target. They need to run repeatedly
for each deployment target that doesn’t scale well.
Once-For-All Training. Once-for-all training is a scalable NAS method that
satisfies multiple deployment targets. It co-trains models (subnets) that vary in
shape and size embedded inside a single weight-shared supernet. NAS is per-
formed later by extracting specialized subnets from the trained supernet for
target hardware. OFA [3], BigNAS [40], and CompOFA [29] exemplify once-for-
all training methods. OFA proposes Progressive Shrinking (PS) for once-for-all
training that trains the full model first and then progressively introduces smaller
subnets into training by dividing the training procedure into multiple training
jobs (phases). Compared to OFA, D✏pS performs once-for-all training as a single
training job and starts shrinking from a partially trained full model to reduce the
training cost. BigNAS starts the process of shrinking early and samples multiple
subnets at every minibatch. In contrast, D✏pS initially only trains the full model
and delays the shrinking. Finally, CompOFA changes the architecture search
space of OFA and performs Progressive Shrinking with reduced phases. D✏pS
algorithmically changes the shrinking procedure in once-for-all training and is
complementary to architecture space changes proposed in CompOFA.

4 Proposed Approach

We present D✏pS, a once-for-all training technique that trains supernets in less
training time. D✏pS consists of three key components that meet the challenges
C1 and C2. We describe each component in detail and highlight the core con-
tributions of our work.

6 Annavajjala et al.

4.1 Full-Model Warmup Period (P fm
warmup): When to Shrink the Full

Model?

Shrinking the full model at an appropriate time is vital for reducing training cost
(meet C1). Both early or late shrinking isn’t sufficient to meet the challenges
in once-for-all training. Early shrinking (BigNAS [40] in Fig. 1) doesn’t meet
the challenge C1. It increases the overall training time as multiple subnets are
sampled in each update (increasing per-epoch time) to optimize objective (1).
Early shrinking also requires a lot of hyper-parameter tuning to meet challenge
C2. It becomes sensitive to training hyper-parameters due to interference. For
instance, training the full model with early shrinking becomes unstable with the
standard initialization of the full model [40].

On the other hand, if shrinking happens late after the full model is completely
trained (OFA [3] in Fig. 1), the supernet weights become too specialized for the
full model architecture and require a large number of training epochs to reduce
interference. Hence, late shrinking meets challenge C2 but not C1.
We argue that shrinking should occur after the full model is partially trained
(warmed up, trained at least 50%, proposed approach in Fig. 1).

Delayed Shrinking has numerous advantages. It reduces the overall training
time to meet challenge C1. The initial updates in D✏pS are cheap compared to
early shrinking as only the full model gets trained and no subnets are sampled.
Moreover, since supernet weights are not specialized for the full model, D✏pS
can meet challenge C2 in less number of epochs. To validate our hypothesis, we
ask whether a partially trained full model serves as a good initialization for the
supernet. To do this, we compare the accuracy of small subnets (shrinking) on
multiple datasets (CIFAR-10, CIFAR-100, ImageNet-1k) in a mobilenet-based
supernet [3] when initialized with a partially trained (50%), and completely
trained full model (⇠600 MFLOPs) in Fig. 2.
The takeaway from the experiment in Fig. 2 is that a partially-trained full model-
based initialization performs better for smaller subnets than the initialization
with the full model completely trained. This validates our hypothesis that su-
pernet weights become too specialized if the full model is trained to completion.
Hence, warming up the full model helps in meeting challenge C1. D✏pS intro-
duces a hyperparameter P

fm
warmup denoting the fraction of total epochs used to

warm up the full model. P fm
warmup is usually kept � 50% in D✏pS.

4.2 ✏-Shrinking: Learning Rates for Subnets

In addition to the full model warmup, we propose ✏-Shrinking that enables the
full model to reach comparable accuracy with SOTA and meet challenge C2a.
✏-Shrinking ensures that the full model’s accuracy doesn’t get affected when
shrinking is introduced in between its training. When the shrinking starts, the
learning rate of subnets is gradually ramped to reach the full model’s learning
rate (✏-Shrinking) as the full model gets sampled with other subnets in each
update step.

D✏pS: Delayed ✏-Shrinking 7

Without the gradual warmup, the full model becomes prone to an accuracy
drop as the supernet weights change rapidly at the start of shrinking. To under-
stand this change, we compare the updates in the supernet with and without
shrinking for a minibatch B. Consider supernet weights Wt at iteration t. With-
out shrinking, the update is given by -

W noShrink
t+1 = Wt � ⌘t rlB(S(Wt, afull)| {z }

=GB,t
noShrink

) (2)

where lB(S(Wt, afull) denotes the loss of the full model on minibatch B and
equals 1

|B|
P
x2B

l(x, S(Wt, afull)); x denotes the samples in B. ⌘t denotes the learn-

ing rate at iteration t used to update the weights. Whereas introducing shrinking
for the same supernet weights Wt yields the following update -

W Shrink
t+1 = Wt � ⌘t

0

BB@

shrinking
z }| {X

a2Uk(A)

rlB (S(Wt, a))

1

CCA

| {z }
=GB,t

Shrink

(3)

where Uk(A) denotes uniformly sampling k subnets from the architecture space
A. This update step is the approximation of the objective (1). Clearly, the up-
dates differ, it is improbable that W Shrink

t+1 = W
NoShrink
t+1 . This difference in updates

causes the supernet weights to change rapidly when shrinking is introduced. The
rapid change in supernet weights causes degradation in the full model’s accu-
racy. To avoid rapid changes in weights, a widely adopted technique is to use
less aggressive learning rates via learning rate warmup schedules [9, 13].

However, applying such principles in the context of weight-sharing is non-
trivial but at the same time important. Our key idea is two-fold to a) always
sample the full model with other subnets while shrinking, and b) use less ag-
gressive learning rates for subnets at the start of shrinking. Particularly, it is
important to ensure G

B,t
noShrink ⇡ G

B,t
Shrink to make W

Shrink
t+1 ⇡ W

NoShrink
t+1 initially

when the shrinking starts. To do this, we introduce a parameter ✏ that con-
trols the effective learning rate of subnets and makes G

B,t
noShrink ⇡ G

B,t
Shrink . The

gradient in ✏-Shrinking is given as follows -

GB,t
Shrink(✏t) = GB,t

noShrink +

✏�shrinking
z }| {
✏t ⇤

X

a2Uk�1(A\{afull})
rlB (S(Wt, a)) (4)

where ✏t 2 (0, 1]. Note that the effective learning rate becomes ⌘t ⇤ ✏t for sub-
nets and remains ⌘t for the full model in ✏-Shrinking. Hence, slowly increas-
ing ✏t warms up the effective learning of subnets. We start with a small value
of ✏t (=10�4) and increment it by a constant amount to reach 1. Once ✏t

reaches 1, it stays constant for the rest of the training. We empirically verify
if GB,t

noShrink , GB,t
Shrink differ in magnitude (l2-norm) and direction (cosine similar-

ity) and whether ✏-Shrinking is able to reduce the differences with G
B,t
noShrink(✏t).

8 Annavajjala et al.

� � �� ��
��/D\HU

��
ಜ
�

��
ಜ
�

__�
__ �

*QR6KULQN
*6KULQN
*6KULQN�w�

(a) Magnitude (||.||2)

� � �� ��
��/D\HU

�

���

���

���

���

���

FR
V�
Z
UW
�*
QR
6K
ULQ
N

*6KULQN *6KULQN�w�

(b) Direction (cos. sim.)

Fig. 3: Gradients w/ & w/o Shrinking on Mobilenet-Based Supernet. Delayed
Shrinking causes gradients (GShrink) to differ from the full model gradient (GnoShrink)
leading to rapid changes in the supernet’s weights. ✏-Shrinking’s gradient (GShrink (E))
reduces such differences and avoids rapid weight changes.

Fig. 3 compares the magnitude and direction of the gradients of the full model
(GnoShrink), shrinking (GShrink) and ✏-Shrinking (GnoShrink(✏)) (✏ = 0.001) on
the weights of a mobilenet-based supernet [3] for the ImageNet-1k dataset [28].
GnoShrink and GShrink differ both in magnitude and direction across supernet lay-
ers.

Fig. 4: Gradient Magnitude Over

Time. Gradient magnitude with
(Gshrink(E , t)) and without (Gshrink(t)) E-
shrinking is compared w.r.t the initial full
model gradient (GNoshrink) over shrinking
steps. E-shrinking avoids sudden changes
in the supernet parameters by lowering the
gradient magnitude.

The magnitude of GShrink is an order
of magnitude higher than GnoShrink
for early layers. ✏-Shrinking main-
tains the low magnitude of gradient
throughout the training as shown in
Fig. 4. The magnitude of GShrink is
consistently higher than GShrink (✏t)
when normalized with the magni-
tude of GnoShrink . Such differences
cause poor convergence at the start of
shrinking and often lead to accuracy
drops. Whereas, GnoShrink(✏) has min-
imal differences w.r.t. GnoShrink en-
abling healthy convergence and no po-
tential accuracy drops.

4.3 IKD-Warmup: In-Place
Knowledge Distillation (KD)
from Warmed-up Full Model

We now discuss IKD-Warmup that distills knowledge from the full model to
subnets and meets challenge C2b. Effectively distilling the knowledge from the
full model becomes non-trivial due to weight-sharing. On one hand, KD requires
the supernet weights biased to the full model to offer meaningful knowledge
transfer to subnets. On the other hand, having a large bias in the supernet

D✏pS: Delayed ✏-Shrinking 9

weights toward the full model may result in subnets’ sub-optimal performance
since the weights are shared. To tackle this trade-off, OFA [3] biases the supernet
weights to a trained full model and then uses it to perform vanilla-KD [14].
However, this results in a long training time during shrinking as the supernet
weights are trained to fit subnets’ architectures. Another approach like BigNAS
[40] doesn’t bias the shared weights to the full model by using inplace-KD [39]
but lacks in providing rich knowledge transfer to subnets (initially).
This is because inplace-KD distills the knowledge "on the fly" to other subnets
as the full model gets trained from randomly initialized weights. Precisely, the
full model predictions become ground truth for other subnets. Hence, when the
full model is under-trained initially, it doesn’t offer rich knowledge transfer.
We believe that the proposed delayed shrinking has an added advantage w.r.t.
KD for once-for-all training — the partially trained full model (50/60% trained)
is rich enough to provide meaningful knowledge transfer to the subnets and
doesn’t bias the supernet weights to the full model. It has been shown that for
vanilla-KD [14], partially trained (intermediate) models provide a comparable
or at times better knowledge transfer than the completely trained models [5,36].
This is because they provide more information about non-target classes than the
trained models [5]. We use this insight in D✏pS that performs inplace-KD from
a partially trained full model (IKD-Warmup).
IKD-Warmup offers two advantages, it — a) distills knowledge from multiple
progressively better partially trained models as the full model gets trained (unlike
a single partially/fully trained model used in vanilla-KD [36]), and b) provides
rich knowledge transfer to the subnets at all times (unlike inplace-KD [39] that
distills from an under-trained full model initially).

5 Experiments

We establish that D✏pS a) reduces training cost w.r.t. SOTA in once-for-all train-
ing [3,29,40], b) performs at-par or better than SOTA’s accuracy across subnets
(covering the entire range of architectural space), c) generalizes across datasets,
d) generalizes to different deep neural network (DNN) architecture spaces, and
e) produces specialized subnets for target hardware without retraining (once-
for-all property). We also aim to demonstrate attribution of benefits in D✏pS
by providing detailed ablation on a) a full model warmup period: empirically
demonstrating a sweet spot, b) ✏-Shrinking: showing healthy convergence, and c)
IKD-Warmup: distilling knowledge better than existing distillation approaches
in weight-sharing.

5.1 Setup

Baselines. We first compare D✏pS with the other NAS methods or efficient
DNNs [4, 15, 33, 35] w.r.t. accuracy. Then, we compare D✏pS with once-for-all
training techniques — OFA [3], BigNAS [40], CompOFA [29] w.r.t. both training
cost and accuracy of subnets spanned across supernet’s FLOP range. Training

10 Annavajjala et al.

Group Approach MACs (M) Top-1 Test Acc (%)

0-100 (M) OFA [3] 67 70.5
D✏pS 67 72.3

100-200 (M) OFA [3] 141 71.6
D✏pS 141 73.7

200-300 (M)

FBNetv2 [35] 238 76.0
BigNAS [40] 242 76.5

OFA [3] 230 76
D✏pS 230 77.3

300-400 (M)

MNasnet [32] 315 75.2
ProxylessNAS [4] 320 74.6

FBNetv2 [35] 325 77.2
MobileNetV3 [15] 356 76.6
EfficientNetB0 [33] 390 77.3

Table 1: Comparison of D✏pS with state of the art neural architecture search ap-
proaches on ImageNet-1k. D✏pS consistently outperforms the baselines.

time of all the techniques is measured on NVIDIA A40 GPUs. Accuracy of
subnets is evaluated without additional finetuning. As once-for-all training trains
multiple subnets, the comparison is done by uniformly dividing the entire FLOP
range into 6 buckets and picking the most accurate subnet from each bucket for
every baseline. All methods are evaluated on the same architecture space.
Success Metrics. D✏pS is compared against the baselines on the following
success metrics — a) Training cost measured in GPU hours or dollars (lower is
better), b) Pareto-frontier : Accuracy of best-performing subnets as a function of
FLOPs/latency. To compare Pareto-frontiers obtained from different baselines,
we use a metric called mean pareto accuracy that is defined as the area under
the curve (AUC) of accuracy and normalized FLOPs/latency. The higher the
mean pareto accuracy the better.
Datasets. We evaluate all methods on CIFAR10/100 [21], ImageNet-100 [34]
and ImageNet-1k [7] datasets. The complexity of datasets progressively increases
from CIFAR10 to ImageNet-1k. The datasets vary in the number of classes,
image resolution, and number of train/test samples.
DNN Architecture Space. All methods are trained on the supernets derived
from two different DNN architecture spaces — MobilenetV3 [15] and Proxyless-
NAS [4] (same as OFA [3]). The base architecture of ProxylessNAS is derived
from ProxylessNAS run for the GPU as a target device. To avoid confounding,
we evaluate all baselines on the same DNN architecture space.
Training Hyper-parameters. The training hyper-parameters of D✏pS are sim-
ilar to the hyper-parameters of the full model training. The hyper-parameters
for MobilenetV3, and ProxylessNAS training are borrowed from [15] and [4] re-
spectively. Specifically, we use SGD with Nesterov momentum 0.9, a CosineAn-
nealing LR [24] schedule, and weight decay 3e�5. Unless specified, the shrinking
is introduced in D✏pS after the full model gets ⇡ 50% trained (P fm

warmup ⇡ 50%).

D✏pS: Delayed ✏-Shrinking 11

Approach
Smallest Subnet Largest Subnet

mean pareto acc.
Training Cost

Acc(%) MACs (M) Acc (%) MACs (M) # Epochs Avg.

GPU

min. /

epoch

Total

Time

(GPU

hours.)

Dollar Cost ($)

OFA [3] 71.8 150 77.2 230 75.77 605 125 1256 2675

CompOFA [29] -
⇤

150 -
⇤

230 -
⇤

330 142 782 1665

BigNAS [40] 70.6 150 74 230 72.51 400 266 1778 3787

D✏pS 73.8 150 77.3 230 75.81 270 155 700 1491

Table 2: Comparison of D✏pS vs SOTA on ImageNet-1k. Accuracy and Training
Cost comparison of D✏pS against SOTA approaches are shown for MobilenetV3-based
architecture space. D✏pS outperforms SOTA and achieves 2% better accuracy for the
smallest subnet and is at-par with the largest subnet (full model) respectively at 1.8x
training cost reduction (in $) compared to OFA. Dollar-cost is calculated based on the
on-demand prices for A40 GPUs from exoscale.com

5.2 Evaluation

Comparison with NAS methods/Efficient Nets on ImageNet-1k. We
compare D✏pS with MobilenetV3 [15], FBNet [35], ProxylessNAS [4], BigNAS
[40] and efficient nets [33] on the ImageNet-1k dataset.
Takeaway. Tab. 1 compares accuracy vs MACs of the baselines. D✏pS consis-
tently surpasses the baselines over multiple MAC ranges. Especially in the lower
MAC region (0-100M), D✏pS is 1.8% more accurate. In the larger MAC region
(200-300M), D✏pS achieves 77.3% accuracy with upto 1.69x MACs improvement
compared to the baselines (efficientNet-B0). D✏pS benefits from supernet initial-
ization and effective knowledge distillation to get superior performance.
Comparison with Once-for-all training methods on ImageNet-1k We
now demonstrate the accuracy and training cost benefits of D✏pS on ImageNet-
1k dataset [28]. Tab. 2 compares D✏pS with the baselines ⇤ on a) the upper-bound
(largest subnet) and lower-bound (smallest subnet) top1 accuracy, and b) GPU
hours and dollar costs.
Takeaway. D✏pS is atleast 2% more accurate at 150 MACs (smallest subnet)
than baselines and at-par w.r.t. accuracy at 230 MACs (largest subnet). D✏pS
matches the Pareto-optimality of baselines (with highest mean pareto accuracy)
at a reduced training cost (least among all the baselines). It takes 1.8x and 2.5x
less dollar cost (or GPU hours) than OFA and BigNAS respectively.
The training cost improvement of D✏pS comes due to FM-Warmup. FM-Warmup
allows D✏pS to train subnets in less number of total epochs (lowest among the
baselines) and a lower average time per epoch than BigNAS (Tab. 2). The full
model’s accuracy (largest subnet in Tab. 2) is improved as ✏-Shrinking enables
its smooth convergence. Finally, D✏pS improves accuracy at lower FLOPs (150
MACs) as IKD-Warmup distills knowledge effectively in once-for-all training.
Generalization across datasets. We establish that the accuracy improve-
ments of D✏pS generalize to other vision datasets.

⇤ Since CompOFA reports matching OFA accuracy, we achieve comparison to both by
reporting Pareto frontier results for OFA.

12 Annavajjala et al.

�� �� ������������
)/23V��0�

����
����
����
����
����
����
����
����
����

7H
VW
�$
FF
XU
DF
\

�����

���[

'wS6 %LJ1$6 2)$�&RPS2)$

(a) CIFAR-10
�� �� ������������

)/23V��0�

��

��

��

��

7H
VW
�$
FF
XU
DF
\

����

���[

'wS6 %LJ1$6 2)$�&RPS2)$

(b) CIFAR-100
��� ��� ��� ���

)/23V��0�

����
����
����
����
����
����
����
����
����

7H
VW
�$
FF
XU
DF
\

�����

���[

'wS6 %LJ1$6 2)$�&RPS2)$

(c) ImageNet-100
��� ��� ��� ���

)/23V��0�

��
��
��
��
��
��
��

7H
VW
�$
FF
XU
DF
\

�����

���[

'wS6 %LJ1$6 2)$�&RPS2)$

(d) ImageNet-1k

Fig. 5: D✏pS’s Accuracy Improvement across Datasets. The comparison of D✏pS
with the baselines is shown w.r.t. accuracy (of subnets) for CIFAR10/100, ImageNet-
100, and ImageNet-1k datasets. D✏pS consistently outperforms the baselines across all
the datasets and achieves upto 2.1% better accuracy for the same FLOPs or upto 2.3x
FLOP reduction at same accuracy.

Training Details. D✏pS uses the standard hyper-parameters of the MobileNetV3
for all the datasets using SGD with cosine learning rate decay and nestrov mo-
mentum, and shrinking is introduced when the full model is 50% trained. For
OFA, we first train the largest network independently. Shrinking occurs after
the full model is completely trained and vanilla KD is used for distillation. The
depth and expand phases are run for 100 epochs each. The initial learning rate of
different phases is set as per OFA [3]. BigNAS uses RMSProp optimizer with its
proposed hyper-parameters for ImageNet-1k. However, we use SGD optimizer
in BigNAS for CIFAR10/100 and ImageNet-100 datasets as we empirically find
that SGD performs better than RMSProp on these datasets. Fig. 5 compares the
Pareto-frontiers of top1 test accuracy and FLOPs obtained from each baseline
across various datasets. The subnets are present in six different FLOP buckets
that uniformly divide the supernet’s FLOP range. The comparison includes the
performance of the smallest and largest subnets to measure the lower-bound and
upper-bound test accuracy reached by the baselines.
Takeaway. D✏pS outperforms baselines w.r.t. accuracy of smaller subnets (
300 MFLOPs) on all the datasets. It achieves slightly better or at-par accu-
racy for larger subnets (� 300 MFLOPs) than OFA/CompOFA. D✏pS outper-
forms BigNAS and achieves a better Pareto-Frontier across all the datasets.

'wp6 2)$�

���

���

���

����

����

*
38
��K
RX
UV
� ����[

���

���

���

)/23V��0�

��

��

��

��

��

7H
VW
�$
FF
XU
DF
\

'wp6
2)$

Fig. 6: D✏pS on ProxyLessNAS archi-

tecture space: superior Pareto-Frontier
with a 1.8% improvement in ImageNet-1k
test accuracy on the smallest subnet.

Generalization across DNN-
Architecture Spaces. We demon-
strate that D✏pS generalizes to other
DNN-architecture spaces. We train
D✏pS on ImageNet-1k dataset using
ProxylessNAS-based supernet (DNN-
architecture space) with training-
hyperparameters borrowed from [4].
Fig. 6 compares Pareto-frontiers ob-
tained from D✏pS and OFA on
ImageNet-1k dataset. We reiterate
that we don’t conduct an additional
exhaustive hyperparameter search and instead use training-hyperparameters
from [4] and a P

fm
warmup ⇡ 50%.

D✏pS: Delayed ✏-Shrinking 13

��� ��� ��� ���
)/23V��0�

��

��

��

��

��
7H
VW
�$
FF
XU
DF
\

'wp6������ 'wp6������ 'wp6������

(a) P fm
warmup (b) ✏-Shrinking

��� ��� ��� ���
)/23V��0�

��

��

��

��

��

��

��

7H
VW
�$
FF
XU
DF
\

,.'�:DUPXS ,QSODFH�.'

(c) Distillation

Fig. 7: D✏pS Ablations. Three ablations are shown for D✏pS— Full model warmup
period (P fm

warmup), ✏-Shrinking, and Distillation. a) There exists a sweet spot w.r.t.
accuracy (of subnets) in P fm

warmup (=50%), b) ✏-Shrinking improves the entire pareto
front (left) and prevents drop in accuracy of the full model (right), c) IKD-Warmup
performs better than Inplace KD as it uses more information from non-target classes
(further details are provided in supplementary material).

Takeaway. D✏pS outperforms OFA w.r.t. ImageNet-1k test accuracy (with 0.5%
better mean pareto accuracy). It improves the accuracy of the smallest subnet
by 1.8%. The accuracy improvements come with 1.8x training cost reduction
compared to OFA.

5.3 Ablation Study

We provide detailed ablation on D✏pS components — FM-Warmup, ✏-Shrinking,
and IKD-Warmup to attribute their benefits.
Full Model Warmup Period (P fm

warmup). In this ablation, we establish the
benefits of delayed shrinking as opposed to early or late shrinking. To do this, we
configure D✏pS to run with different full model warmup periods (P fm

warmup) – the
time at which shrinking starts in D✏pS. Our goal is to empirically demonstrate
the existence of a sweet spot in P

fm
warmup w.r.t. accuracy (of subnets). Fig. 7a

compares the accuracy of best-performing subnets in six different FLOP buckets
of three P

fm
warmup periods {25%, 50%, 75%} on ImageNet-1k dataset. P

fm
warmup

=25%, 75% represents early and late shrinking respectively.
Takeaway. D✏pS with P

fm
warmup = 50% achieves the best test accuracy across

subnets compared to D✏pS configured to run with P
fm
warmup = 25%, 75%. Hence,

a sweet spot exists in P
fm
warmup. The existence of a sweet spot demonstrates that

both early (25%) or late (75%) shrinking is sub-optimal in training the model
family (discussed in §4.1). Early shrinking results in sub-optimal accuracy of
the larger subnets as training interference occurs very early in the training.
While late shrinking causes the specialization of supernet weights to the full
model architecture that results in sub-optimal accuracy of smaller subnets (⇡
1% accuracy degradation around 200 MFLOPs for P

fm
warmup =75% compared to

P
fm
warmup =50%).

E-Shrinking. We investigate whether an accuracy drop occurs in the full model’s
accuracy when shrinking is introduced in D✏pS and if E-Shrinking prevents it. In
this ablation, we run D✏pS with and without E-Shrinking and introduce shrink-
ing at 150th epoch while keeping all other training-hyperparameters constant.

14 Annavajjala et al.

Fig. 7b (right) compares D✏pS with and without E-Shrinking on ImageNet-1k
top1 test accuracy of the full model over training epochs. Fig. 7b (left) compares
subnets for six different FLOP buckets with and without ✏-Shrinking.
Takeaway. D✏pS without E-Shrinking observes a 2% drop in full model’s ac-
curacy at 150th epoch when the shrinking starts. And, D✏pS with E-Shrinking
prevents this huge accuracy drop at the start of shrinking that leads to better
full model accuracy overall. The prevention of the drop in full model’s accuracy
demonstrates that E-Shrinking leads to smooth optimization of the full model.
E-Shrinking achieves this by incrementally warming up subnets’ learning rate at
the start of shrinking to avoid sudden changes in the supernet weight (Fig. 7b,
right). E-Shrinking also achieves superior accuracy across the entire FLOP range
when compared to the supernet trained without E-Shrinking (Fig. 7b, left).
IKD-Warmup. We assess the benefits of IKD-Warmup in this ablation. IKD-
Warmup performs inplace knowledge distillation from a partially trained full
model instead of a randomly initialized full model (inplace KD) as proposed
in [41]. Hence, to show benefits of IKD-Warmup, we run D✏pS with inplace KD
and our proposed IKD-Warmup. Fig. 7c compares D✏pS run with IKD-Warmup
(blue) and inplace KD (orange) on the ImageNet-1k top1 test accuracy of best-
performing subnets in seven different FLOP buckets.
Takeaway. IKD-Warmup outperforms inplace KD across all the subnets that
cover the supernet’s FLOP range on the ImageNet-1k dataset. It is 3.5% and
2% more accurate at 560 MFLOPs and 150 MFLOPs respectively. This shows
that IKD-Warmup distills knowledge effectively in once-for-all training as mul-
tiple progressively better partially trained full model transfer their knowledge to
smaller subnets (§4.3). Inplace KD is not able to provide meaningful knowledge
transfer as the full model is under-trained initially.

6 Conclusion

D✏pS is a training technique that increases the scalability of once-for-all training.
D✏pS consists of three key components — FM-Warmup that decreases training
costs, ✏-Shrinking that maintains full model accuracy on par with existing works,
and IKD-Warmup that enables effective knowledge distillation in once-for-all
training. FM-Warmup’s key insight is to delay the process of shrinking (intro-
ducing smaller weight-shared subnets) until the full model is partially trained
(⇠50%) to reduce training cost. ✏-Shrinking averts accuracy degradation in the
full model by avoiding rapid changes in the supernet weights and, instead, en-
ables smooth optimization by progressively warming up subnets’ learning rates.
IKD-Warmup provides rich knowledge transfer to subnets from multiple partially
trained full models that are progressively better w.r.t. accuracy. D✏pS general-
izes to different datasets and DNN architecture spaces. It improves the accuracy
of smaller subnets, achieves on-par Pareto-optimality, and reduces training cost
by upto 2.5x when compared with existing once-for-all weight-shared training
techniques.

D✏pS: Delayed ✏-Shrinking 15

Acknowledgments

This material is based upon work partially supported by the National Science
Foundation under Grant Number CNS-2420977 as well as a sponsored research
award from Cisco Research. We would also like to express our sincere gratitude
to the reviewers and the AC panel for their insightful comments and thoughtful
consideration. We applaud their invaluable and unwavering dedication to the
pursuit of scientific truths. Disclaimer: Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

References

1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018),
http://arxiv.org/abs/1803.01271

2. Bonnard, J., Abdelouahab, K., Pelcat, M., Berry, F.: On building a cnn-based
multi-view smart camera for real-time object detection. Microprocessors and Mi-
crosystems 77, 103177 (2020)

3. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. In: International Conference on Learning
Representations (2020), https://openreview.net/forum?id=HylxE1HKwS

4. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332 (2018)

5. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceed-
ings of the IEEE/CVF international conference on computer vision. pp. 4794–4802
(2019)

6. Cob-Parro, A.C., Losada-Gutiérrez, C., Marrón-Romera, M., Gardel-Vicente, A.,
Bravo-Muñoz, I.: Smart video surveillance system based on edge computing. Sen-
sors 21(9), 2958 (2021)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

8. Gog, I., Kalra, S., Schafhalter, P., Wright, M.A., Gonzalez, J.E., Stoica, I.: Pylot: A
modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). pp.
8806–8813. IEEE (2021)

9. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

10. Han, K., Wang, Y., Zhang, Q., Zhang, W., Xu, C., Zhang, T.: Model rubik’s cube:
Twisting resolution, depth and width for tinynets. Advances in Neural Information
Processing Systems 33, 19353–19364 (2020)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

12. Hashemi, H.B., Asiaee, A., Kraft, R.: Query intent detection using convolutional
neural networks. In: International conference on web search and data mining, work-
shop on query understanding (2016)

http://arxiv.org/abs/1803.01271
https://openreview.net/forum?id=HylxE1HKwS

16 Annavajjala et al.

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

15. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 1314–1324 (2019)

16. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. Advances in neural information processing systems 29 (2016)

17. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

18. Inc., N.: Nvidia jetson. https://www.nvidia.com/en-in/autonomous-machines/
embedded-systems/, [Accessed 13-May-2023]

19. Inc, N.: Nvidia v100. https://www.nvidia.com/en-in/data-center/v100/, [Ac-
cessed 13-May-2023]

20. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2704–2713 (2018)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

22. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

23. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 1529–1538 (2020)

24. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

25. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE international conference on
computer vision. pp. 5058–5066 (2017)

26. Ouyang, Z., Niu, J., Liu, Y., Guizani, M.: Deep cnn-based real-time traffic light
detector for self-driving vehicles. IEEE transactions on Mobile Computing 19(2),
300–313 (2019)

27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the aaai conference on artificial intel-
ligence. vol. 33, pp. 4780–4789 (2019)

28. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

29. Sahni, M., Varshini, S., Khare, A., Tumanov, A.: Comp{ofa} – compound once-for-
all networks for faster multi-platform deployment. In: International Conference on
Learning Representations (2021), https://openreview.net/forum?id=IgIk8RRT-
Z

30. Sanh, V., Wolf, T., Rush, A.: Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems 33, 20378–20389 (2020)

https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-in/data-center/v100/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://openreview.net/forum?id=IgIk8RRT-Z
https://openreview.net/forum?id=IgIk8RRT-Z

D✏pS: Delayed ✏-Shrinking 17

31. Sun, W., Zhou, A., Stuijk, S., Wijnhoven, R., Nelson, A.O., Corporaal, H., et al.:
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neu-
ral networks. Advances in neural information processing systems 34, 20721–20732
(2021)

32. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 2820–
2828 (2019)

33. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

34. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16. pp. 776–794. Springer (2020)

35. Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T.,
Chen, K., et al.: Fbnetv2: Differentiable neural architecture search for spatial and
channel dimensions. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 12965–12974 (2020)

36. Wang, C., Yang, Q., Huang, R., Song, S., Huang, G.: Efficient knowledge dis-
tillation from model checkpoints. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho,
K. (eds.) Advances in Neural Information Processing Systems (2022), https:

//openreview.net/forum?id=0ltDq6SjrfW

37. Wang, L., Dong, X., Wang, Y., Liu, L., An, W., Guo, Y.: Learnable lookup table
for neural network quantization. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 12423–12433 (2022)

38. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y.,
Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable neu-
ral architecture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10734–10742 (2019)

39. Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 1803–1811 (2019)

40. Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.J., Tan, M., Huang, T., Song,
X., Pang, R., Le, Q.: Bignas: Scaling up neural architecture search with big single-
stage models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer
Vision – ECCV 2020. pp. 702–717. Springer International Publishing, Cham (2020)

41. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. arXiv
preprint arXiv:1812.08928 (2018)

42. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)

https://openreview.net/forum?id=0ltDq6SjrfW
https://openreview.net/forum?id=0ltDq6SjrfW

	DpS: Delayed -Shrinking for Faster Once-For-All Training

