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Abstract. Neural Architecture Search (NAS) for Federated Learning
(FL) is an emerging field. It automates the design and training of Deep
Neural Networks (DNNs) when data cannot be centralized due to pri-
vacy, communication costs, or regulatory restrictions. Recent federated
NAS methods not only reduce manual effort but also help achieve higher
accuracy than traditional FL methods like FedAvg. Despite the success,
existing federated NAS methods still fall short in satisfying diverse deploy-
ment targets common in on-device inference including hardware, latency
budgets, or variable battery levels. Most federated NAS methods search
for only a limited range of neuro-architectural patterns, repeat them
in a DNN, thereby restricting achievable performance. Moreover, these
methods incur prohibitive training costs to satisfy deployment targets.
They perform the training and search of DNN architectures repeatedly
for each case. SuperFedNAS addresses these challenges by decoupling
the training and search in federated NAS. SuperFedNAS co-trains a
large number of diverse DNN architectures contained inside one supernet
in the FL setting. Post-training, clients perform NAS locally to find
specialized DNNs by extracting different parts of the trained supernet
with no additional training. SuperFedNAS takes O(1) (instead of O(N))
cost to find specialized DNN architectures in FL for any N deployment
targets. As part of SuperFedNAS, we introduce MaxNet—a novel FL
training algorithm that performs multi-objective federated optimization
of DNN architectures (⇡ 5 ⇤ 108) under different client data distributions.
SuperFedNAS achieves upto 37.7% higher accuracy or upto 8.13x reduc-
tion in MACs than existing federated NAS methods. Code is released at
https://github.com/gatech-sysml/superfednas.
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1 Introduction

Federated Learning (FL) is increasingly used in numerous applications [1, 3,
11, 15, 21, 31]. In FL, a large number of clients collaboratively participate in a
distributed training of a deep neural network (DNN) while keeping their data
private [10,22,23,28,35]. FL offers three key benefits: a) smaller communication
costs, b) massive parallelism, and c) privacy preservation. Despite achieving
notable success, the majority of FL works [2,25,28,35] rely on manually designed
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predefined DNN architectures, a practice that can often be sub-optimal. These
predefined architectures often struggle to adapt to the nuances present in diverse
data distributions across clients [16], leading to sub-optimal accuracy. When these
DNN architectures get optimal accuracy, it comes at the expense of increased
model complexity [37], as larger models are primarily designed to increase accuracy.
This makes manually designed DNNs unfit for clients’ on-device inference: they
don’t provide optimal accuracy under different deployment targets such as battery
conditions, hardware, latency/MACs, memory constraints prevalent in on-device
inference [14,38,39,41]. To perform efficient inference, there is a need to automate
the design and training of DNN architectures in FL.

Recent FL works partially address these limitations by proposing neural
architecture search (NAS) methods [16,18]. These methods automatically find
the most accurate DNN. By adapting the DNN architecture to different clients’
data distributions, these methods improve accuracy over traditional FL methods
like FedAvg [28]. However, when it comes to providing optimal DNN architectures
for efficient inference, these methods face the following challenges:

(C1) Existing federated NAS methods are prohibitively expensive to
satisfy multiple deployment targets in on-device inference.
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Fig. 1: SuperFedNAS vs Existing Federated
NAS methods [16,18]

The existing federated NAS methods
[16,18] only satisfy one deployment tar-
get at a time (Fig. 1). These methods
perform the search and training proce-
dures simultaneously [16]. In the end,
the output is a single best-performing
architecture subject to a deployment
target. Therefore, for N deployment
targets, they need to repeat the entire
process of search and training N times.
Hence, their communication and com-
putational cost in training becomes O(N). These methods are simply not scalable
to satisfy increasingly diverse deployment targets. This motivates the need to
make federated NAS methods scalable. Indeed, diverse deployment targets at
inference are increasingly common [14, 38, 39, 41]. For instance, the GBoard
application [15] that uses the FL-trained DNNs for next-word prediction runs
on a range of hardware from Apple’s M-series chips with a dedicated neural
engine [4] to old hardware like Pixel XL (gen1) [36]. Even on the same hardware,
variable resource availability (e.g., battery levels) at inference makes optimal
DNN architectures significantly different.

(C2) Existing federated NAS methods struggle to produce optimal DNN
architectures under inference deployment targets.

Federated NAS methods like FedNAS [16] tend to sub-optimally increase la-
tency/MACs or memory to achieve better accuracy. Specifically, these methods
only search for a building block in the DNN architecture and then repeatedly
stack the most performing block to create the final DNN. Repeated stacking
not only restricts the block diversity but also sub-optimally inflates latency
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or memory. Instead, to find optimal DNNs under deployment constraints, the
federated NAS methods need to support rich diversity in DNN architectures and
operate on a larger search space.

To solve the aforementioned challenges (C1, C2), we propose SuperFedNAS:
a federated method that performs NAS over a rich diversity of DNN architectures
for efficient on-device inference (Fig. 1). Taking inspiration from centralized
NAS techniques [6], SuperFedNAS addresses C1 by decoupling the training and
search of DNN architectures in FL. SuperFedNAS has one FL training stage that
co-trains a large number of DNNs simultaneously. It achieves this by performing
FL-training of the supernet [6]: a DNN that contains multiple smaller DNNs (sub-
nets) with varied shapes and sizes within it. These subnets partially share their
weights. After the FL training stage, a client performs NAS locally without any
additional training, thereby incurring negligible cost. Given a deployment target,
local NAS finds specialized DNNs (subnets) using predictor-guided search [27].
Overall, SuperFedNAS reduces the cost to find specialized DNNs in FL for N

deployment targets to O(1). SuperFedNAS solves C2 as its DNN architecture
search space includes variable depth and blocks with variable width. In fact,
SuperFedNAS performs federated NAS over ⇡ 5 ⇤ 108 diverse DNN architectures.

However, decoupling the training and search of DNN architectures in feder-
ated NAS is non-trivial. It involves federated co-training of a large number of
subnets in the supernet across multiple clients. Such training needs to perform
multi-objective federated optimization of the shared weights in the supernet and
optimize the accuracy of each subnet. Minimizing naive proxy objectives for the
multi-objective federated optimization doesn’t address challenges C1, C2. For
instance, a straightforward proxy objective to train the supernet in FL is a linear
combination of subnets’ losses across all the data partitions. However, minimizing
this objective leads to interference: a phenomenon where smaller subnets harm
the accuracy of larger subnets, resulting in sub-optimal accuracy that doesn’t
solve C2. Moreover, the interference also leads to slow convergence increasing
the training cost (doesn’t solve C1).

To efficiently perform multi-objective federated optimization of a large number
of subnets, we propose MaxNet: an FL training algorithm in SuperFedNAS that
trains supernets with reduced interference for better accuracy (for C2) in a single
FL training stage with lower communication/computation costs (for C1). The
key idea in MaxNet is to optimize a novel objective that explicitly minimizes the
loss of worst-performing subnets on each data partition. Optimizing this objective
enables MaxNet to adapt DNN architectures to different client data distribu-
tions. Moreover, improving the worst-performing subnets on each data partition
improves performance of best-performing subnets on every data partition due
to weight-sharing and leads to reduced interference. To effectively optimize this
novel objective, MaxNet innovates on subnet sampling and supernet’s parameter
aggregation. In summary, our contributions are as follows:
• SuperFedNAS: A one-stage federated NAS method that trains a rich diversity
of DNN architectures for efficient on-device inference.
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• SuperFedNAS produces specialized DNN architectures for N deployment
(hardware/latency/MAC) targets with O(1) cost. Post the training stage of
SuperFedNAS, the search doesn’t require any additional training.
• MaxNet: An FL training algorithm that optimizes a novel objective to train
supernets in FL and reduce interference.

SuperFedNAS outperforms existing federated NAS methods across multiple
image (CIFAR10/100, CINIC-10) and text datasets (Shakespeare derived from
LEAF [8]), degrees of non-iidness, and client participation. It achieves upto 37.7%
higher accuracy for the same MACs or upto 8.13x MACs reduction for the same
accuracy than existing federated NAS methods with 11x training cost reduction
to satisfy 20 deployment targets.

2 Related Work

Tab. 1 compares SuperFedNAS with existing FL approaches.
NAS in FL. Existing federated NAS [16,18, 43] methods simultaneously search
and train DNN architectures, which becomes prohibitively expensive to satisfy
multiple inference deployment targets (Fig. 1). SuperFedNAS decouples the
training from search. It only performs training once and enables training-free
search to scale to multiple deployment targets. Apart from this key difference,
existing federated NAS approaches also differ w.r.t. DNN architectures. The
architecture search space of FedNAS [16] remains considerably restricted: its
architecture space does not include DNNs that differ per layer or in depth due
to repeated stacking (§1). FedNASMobile [43] uses DNN pruning. Its DNN
architectures only differ in width and not depth. FedPNas [18] keeps the base
architecture the same among all clients, but supports the DNNs that differ in
local layers appended to the base architecture. The common base architecture
shared by all DNNs restricts architecture diversity. In contrast, SuperFedNAS’s
architecture space allows DNNs to differ at layer granularity by supporting
different width per layer and varied number of layers per stage. This diverse
architecture space is essential to produce MACs/latency-efficient DNNs (C2).
NAS in Centralized Setting. Recent centralized NAS methods [6, 7, 29, 33,
37] produce DNNs suited for inference. They find the most accurate DNN
architectures under latency/FLOPs targets on different hardware. Among these
methods, Once-for-all NAS methods like OFA [6] and CompOFA [29] reduce
the training cost to find optimal DNNs by decoupling the training and search
stages. In the training stage, OFA jointly optimizes many DNN architectures
(subnets) contained inside the supernet with a multi-staged training algorithm.
Once the supernet is trained, OFA performs a search with no additional training
to find specialized DNN architectures for target latency/FLOPs. However, all
these NAS methods are designed to work in centralized data settings, where
there are no communication cost restrictions, affording techniques like OFA
[6] to have expensive multi-staged training (doesn’t target C1). In contrast,
SuperFedNAS performs NAS in a single-stage FL-training setting, which helps
reduce communication cost.
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Feature FedNAS [16] FedPNAS [18] FedNASMo. [43] ScaleFL [42] InCo [9] SuperFedNAS
Weight Sharing �

Utilizing NAS � � � �

Training Cost for N Deployment O(N) O(N) O(N) O(N) O(N) O(1)
Satisfying Diverse Deployment at Inference �

Table 1: Comparing existing FL approaches with SuperFedNAS
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Fig. 2: Supernet and its Naive FL-Training Methods. (a) Supernet consists
of subnets within it that differ in depth/width. (b) Multi-Stage method sends entire
supernet to clients. (c) Single-Stage Supernet FL-Training sends subnets to clients.

System Heterogeneity in FL. Many works in FL support system heterogene-
ity [9,13,26,42]. These works perform federated optimization under training time
constraints like low bandwidth. This goal is complementary to SuperFedNAS’s
goal that targets satisfying deployment targets at inference time (i.e., post train-
ing). Fundamentally, these works don’t perform NAS (as done in SuperFedNAS):
they don’t search for optimal DNN architectures based on clients’ data distri-
butions and latency/MAC deployment inference targets. Incorporating training
time constraints in SuperFedNAS is orthogonal and left as future work.

3 Method

SuperFedNAS consists of an FL training stage that co-trains many subnets
contained inside the supernet cost efficiently (for C1). Once the supernet is
globally FL-trained, the clients perform NAS locally to extract optimal subnets
(DNN architectures) subject to their diverse deployment targets (for C2) with
no additional training. Since the local NAS does not require any training and
is decoupled, SuperFedNAS’s search is significantly faster than prior federated
NAS methods. We describe SuperFedNAS’s training stage including its problem
formulation. We then explain MaxNet: a training technique that co-trains subnets
in SuperFedNAS with reduced interference and compare it with other naive
training approaches. Later, we dive deeper into SuperFedNAS’s local NAS stage.

3.1 Problem Formulation

SuperFedNAS’s DNN Architecture Space. In SuperFedNAS, DNN archi-
tectures differ in depth and width and share their weights as part of a single
supernet. These DNN architectures are formally defined by the elastic dimensions
of the supernet, namely elastic depth and width. Following the common practice
of many DNN models [17, 19, 20, 32], the supernet consists of multiple stages and
each stage consists of multiple blocks. Fig. 2a illustrates a stage in the supernet.
Elastic depth decides the number of blocks selected in each stage for a specific
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DNN architecture. Elastic width decides the width (e.g., number of convolution
channels) selected in each block. In our experiments, the supernet has four stages,
the depth in each stage is chosen from {1, 2, 3}, the width expand ratio is chosen
from {0.1, 0.14, 0.18, 0.22, 0.25} that roughly equals (51 + 52 + 53)4 ⇡ 5 ⇤ 108

diverse DNN architectures. A denotes the ordered set of M DNN architectures
(M ⇡ 5 ⇤ 108 ) w.r.t. MACs. These subnets share the same weights (W )3.
Prior NAS (Supernet Training) Formulation. With the SuperFedNAS’s
architecture space defined, we first elaborate on the prior formulation used in
centralized NAS techniques [6, 29] that train supernets in non-federated settings.
The objective of centralized NAS techniques [6] is formalized as follows:

min
W

E
↵i2A

[L(G(W,↵i))] s.t. P(↵i 2 A) =
1

M
, |A| = M (1)

where G(W,↵i) denotes a selection (subset) of ↵i’s parameters from shared weights
W . L(G(W,↵i)) denotes the loss of subnet ↵i on a central dataset. Centralized
NAS techniques minimize the expected loss of all DNN architectures.
FL Notation. Each of the K clients has their own data partition Pk. The size of
the partition is denoted by nk ( where n =

PK
k=1 nk is the total number of data

points). Lk(w) =
P

i2Pk
li(w) denotes the loss for data points in partition Pk.

SuperFedNAS’s Training Stage Naive Formulation. SuperFedNAS’s train-
ing stage performs the federated optimization of the shared weights (W ) of the
architecture space A. Thus, the objective function of such training is:

min
W

E
↵i2A

"
KX

k=1

nk

n
⇤ Lk(G(W,↵i))

#
s.t. P(↵i 2 A) =

1

M
(2)

Obj. 2 finds the weights of the supernet (W ) that minimize the expected loss of
all the DNN architectures in A on all data partitions {P1, P2, ..., PK}. Clearly,
Obj. 2 differs from Obj. 1, and can be viewed as a multi-objective federated
optimization with the sub-objective as loss minimization of a subnet on every
data partition. Obj. 2 is different from the objective of personalized FL [30] that
doesn’t train DNN architectures globally on all the data partitions.

3.2 Naive Supernet FL-Training Algorithms

The training algorithms that train the supernet in FL need to optimize Obj. 2.
However, optimizing Obj. 2 is non-trivial due to the expensive expectation over
all the DNN architectures’ losses on all data partitions. Aggregating gradients of
all architectures from all clients is prohibitively expensive and doesn’t solve C1,
especially for the large architecture space considered in SuperFedNAS (⇡ 1018).
We first propose two distinct and naive methods that reformulate Obj. 2 to make
it tractable. Their training algorithms are described in supplementary material.
Multi-Staged Supernet FL-Training (PS + FL). This method optimizes
the following objective:

min
W

KX

k=1

nk

n
⇤ E

↵i2A
[Lk(G(W,↵i)])

| {z }
Approx. using PS [6]

s.t. P(↵i 2 A) =
1
M

(3)

3
W only requires 287.1 MB & 5 MB storage for image & text based supernets.
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Obj. 3 is equivalent to Obj. 2, however, it is easier to approximate the expectation
on a given partition using existing NAS methods. Therefore, this naive method
uses OFA’s training algorithm Progressive Shrinking (PS) [6] and locally runs it
in clients to optimize the inner term in Obj. 3 (Fig. 2b). It has been shown in prior
works [6] that PS effectively approximates the inner term in Obj. 3 by sampling
larger subnets initially and gradually sampling smaller subnets in multiple phases.
To adapt PS to the FL setting, we employ multi-stage FL training such that
the server provides the entire supernet to each client participating in an FL
round along with the PS training phase information (depth, width, etc.). The
client trains the supernet locally via PS on its data partition based on the phase
provided by the server, updates the supernet’s parameters, and sends the locally
trained supernet to the server. The server aggregates the supernet parameters
from participating clients using the FedAvg [28] algorithm. Overall, we call this
method PS+FL as this method adapts Progressive Shrinking to FL.
Single-Staged Supernet FL-Training. To achieve supernet’s FL-training in
a single stage, this method optimizes the following objective:

min
W

E
AK⇢A

2

4
X

↵k2AK

nk

n
⇤ Lk(G(W,↵k))

3

5 s.t. P(AK ⇢ A) =
1�

N
k

�
k!
,

AK = {↵i, ...,↵i+K}, 8↵i,↵j 2 AK ↵i 6= ↵j , |AK | = K

(4)

Obj. 4 minimizes the expected loss of any K ordered DNN architectures selected
from A (M DNN architectures) mapped to their specific data partition (ak is
uniquely mapped to Lk). Note that the probability of selecting K-ordered DNN
architectures is uniform w.r.t. all permutations (P(AK ⇢ A) = 1

(Nk)k!
). Therefore,

in this method, the server uniformly samples K
4 DNN architectures from the ar-

chitecture space A. Then, it randomly assigns the sampled architectures (subnets)
to each participating client and sends subnets’ partial parameters (G(W,↵k)),
illustrated in Fig. 2c. On receiving a specific subnet from the server, the client
trains the subnet locally on its data partition and sends it back to the server. The
server receives different subnets that vary in shape and size from different clients.
The subnets’ parameters partially overlap with each other due to weight-sharing.
Therefore, the server performs cardinal averaging: for each supernet parameter,
only the clients’ subnets that share that parameter are averaged.
Comparing Naive Supernet FL-Training Methods. We compare the two
naive federated supernet training methods. To understand the accuracy gaps,
the naive methods are also compared with FedAvg [28] which trains the smallest
and largest subnets (no weight-sharing). Tab. 2 describes the FL setting.
Training Costs Comparison. The takeaways w.r.t. training cost are as follows:
• The multi-stage naive method incurs more communication/computation cost
than the single-stage naive method (left, middle plot in Fig. 3). This is because
the multi-stage method sends the entire supernet (|W |) back and forth to each
participating client in each round, whereas, the single-stage method only sends

4 The method samples DNN archs < K (C ⇤K) if the client participation (C) is < 1.
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DNN Arch.2 A Method Test Accuracy (%)
non-iid=100 non-iid=1 non-iid=0.1

Smallest

FedAvg 85.25± 0.46 83.42± 0.19 77.15± 2.5
Single-Staged Supernet FL 84.6± 0.19 83.17± 0.12 76.28± 1.31
Multi-Staged Supernet FL 84.53± 0.58 82.82± 0.34 76.26± 2.35

MaxNet 89.42± 0.1189.42± 0.1189.42± 0.11 88.69± 0.288.69± 0.288.69± 0.2 81.81± 1.5981.81± 1.5981.81± 1.59

Largest

FedAvg 89.44± 0.67 87.88± 0.7 81.24± 1.99
Single-Staged Supernet FL 87.14± 0.2 86.03± 0.26 80.02± 2.07
Multi-Staged Supernet FL 86.45± 0.53 85.02± 0.32 78.57± 2.48

MaxNet 91.34± 0.391.34± 0.391.34± 0.3 90.91± 0.1590.91± 0.1590.91± 0.15 84.72± 1.7884.72± 1.7884.72± 1.78

Table 2: Naive Supernet FL-Training Accuracy Comparison. Test Accuracy
compared on CIFAR10 dataset paritioned with different levels of non-iidness among 20
clients, 40% client-participation. MaxNet outperforms the naive supernet FL-Training
methods (single/multi). The naive methods are inferior to FedAvg.
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Fig. 3: Naive Supernet FL-Training Cost/Convergence Comparison. Communi-
cation/Computational cost (left,middle) are compared for naive supernet FL approaches
with FedAvg training of largest/smallest subnet. The right plot compares convergence
over 1500 rounds. Naive-methods have slow convergence and high training cost.
partial weights of the supernet (in the form of subnets) to each client that leads
to communication cost savings (|G(W,↵i)|  |W |). The multi-stage method
has more computational cost as PS that runs locally samples more than one
architecture in each iteration (PS [6] samples 4 subnets in each minibatch),
while, single-stage method trains only one architecture locally (Fig. 2).
• Multi-stage method’s communication cost is the same as the cost of training
the largest network using FedAvg. This is because the largest subnet sub-
sumes all parameters of the supernet (max↵i |G(W,↵i)| = W ) and clients re-
ceive all parameters of the supernet in both the methods. Single-stage naive
method’s communication cost lies between the cost of FedAvg training of the
smallest/largest subnet as partial parameters are sent to clients in each round
(min↵i |G(W,↵i)| < 1/M ⇤

P
↵i

|G(W,↵i)| < max↵i |G(W,↵i)|).
Accuracy Comparison. As seen in Tab. 2, both the naive supernet FL-training
methods fail to match the test accuracy of the smallest or largest subnets trained
without weight sharing using FedAvg. Hence, the naive methods don’t provide
optimal DNN architectures (don’t solve C2). We attribute the following reasons
to the sub-optimal accuracy of naive supernet FL-training methods:
• Interference. The accuracy of the largest subnet in naive supernet FL-training
methods is sub-par accuracy compared to FedAvg. We argue this is because of
interference: phenomena also observed in centralized supernet training methods
[6, 40] where smaller subnets affect the accuracy of larger subnets.
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• Slow Convergence. Both the naive methods converge slowly compared to Fe-
dAvg as seen in Fig. 3 (right plot). The multi-stage method suffers from slow
convergence due to the multi-phase approach. It introduces smaller subnets
progressively which makes the convergence of smaller subnets slow. The naive
single-stage method suffers from slow convergence as all the supernet’s parame-
ters (W ) may not get updated in every FL round, leading to staleness. This is
because Obj. 4 randomly samples K architectures in each round, which may
not span the entire supernet parameters i.e. 9AK s.t.

S
↵k2AK

G(W,↵k) 6= W .

3.3 MaxNet: Proposed Supernet FL-Training Algorithm

MaxNet is SuperFedNAS’s training algorithm that produces optimal DNN archi-
tectures (for C2) and trains the supernet in a single stage in FL 5. The single-stage
training offers lower training cost (for C1) compared to multi-stage supernet
FL training methods (§3.2). MaxNet produces optimal DNN architectures as it
optimizes a fundamentally different objective to reduce interference:

min
W

max�!�
E

↵i2A

"
KX

k=1

�ik ⇤ nk

n
⇤ Lk(G(W,↵i))

#
s.t. P(↵i 2 A) =

|G(W,↵i)|PM
i=1 |G(W,↵i)|

,

8i 2 [1,M ], k 2 [1,K] : �ik 2 {0, 1},
MX

i=1

�ik = 1,
MX

i=1

KX

k=1

�ik = K

(5)

Obj. 5 minimizes the expected loss of worst-performing DNN architectures on
each data partition. �ik is an indicator that represents the DNN architecture ↵i

evaluated on data partition Pk. The maximum over �!
� picks worst-performing

DNN architectures (maximum loss) on each data partition. The constraintPM
i=1 �ik = 1 ensures that only one architecture gets assigned to k

th data
partition. Overall, Obj. 5 has two key features:
• Improving Worst-Performing DNN Architectures on each Data Partition. The
key insight of MaxNet is that improving accuracy (by minimizing loss) of
worst-performing DNN architectures on each data partition has a potential to
improve the accuracy of best performing DNN architectures across all the data
partitions as the weights are shared. This optimization is particularly helpful
in non-iid settings where each data partitions differs significantly. Due to the
data heterogeneity, arbitrarily different DNN architectures may perform worse
on different partition. Under such settings, Obj. 5 enables DNN architectures to
adapt to different data distributions by explicitly minimizing the loss of worst
performing DNN architectures on each data partition.
•Weight-Shared Based Sampling Probability. Instead of uniform sampling, Obj. 5
prioritizes sampling the DNN architectures that share their weights most with the
supernet (P(↵i 2 A) = |G(W,↵i)|PM

i=1 |G(W,↵i)|
). This ensures that most of the supernet’s

parameters get updated as part of the optimization, mitigating the staleness
observed in naive single-staged supernet FL-training method (§3.2).

5 MaxNet’s supernet FL training algorithm is described in supplementary material.
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However, optimizing Obj. 5 remains prohibitively expensive due to SuperFed-
NAS’s large architecture space (§3.1). To make the optimization tractable, MaxNet
innovates on DNN architecture sampling and parameter aggregation:
MaxNet’s Subnet Sampling. MaxNet approximates subnet selection (↵i)
in Obj. 5. While, max� enables selection of smaller subnets as smaller subnets
typically have high loss, the weight-shared based probability prioritizes the
sampling of larger subnets. To approximate this, MaxNet samples the largest,
smallest and random subnets (uniformly) in A in each FL round. The largest
and smallest subnets explicitly sampled in MaxNet act as lower/upper bounds of
accuracy. Optimizing both the bounds improves performance of other subnets due
to weight-sharing. To improve worst-performing DNN architectures on different
data partitions, MaxNet gives the smallest/largest subnets to the clients that
have received these subnets the least in each FL-round. MaxNet approximates
max� in Obj. 5 as the clients that receive largest/smallest subnets the least have
high loss w.r.t. these subnets on their data partitions.
MaxNet’s Parameter Aggregation. The parameter aggregation in MaxNet
is based on the optimization dynamics of Obj. 5. Initially, when the loss of all
the subnets in A is roughly equal, larger subnets get optimized due to weight-
shared based probability. As the optimization progresses, the smaller subnets
have higher loss and get optimized due to max� . To emulate this optimization
dynamics, MaxNet performs weighted parameter aggregation. It assigns a weight
of � 2 (0, 1) to largest subnet’s parameters and (1� �) to the parameters of rest
of the subnets. Initially, � is assigned a high value (�0 = 0.9) to prioritize updates
from the largest subnet. As FL-rounds progress, � is decayed to make smaller
subnets contribute more in the supernet FL training. We provide an extensive
evaluation on both the initial �-value and its decay function in §4. MaxNet’s
performance is shown in Tab. 2. MaxNet achieves superior performance compared
to the naive supernet FL training methods.

3.4 SuperFedNAS’s Search Stage

Once the supernet is trained in FL using MaxNet, SuperFedNAS’s search stage
finds the optimal DNN architectures subject to client’s deployment targets (C2).
SuperFedNAS’s search stage is formulated as a constraint optimization problem:

min
↵2A

Lval(G(W ⇤
,↵i)) s.t. MACs(↵) = ✓ (6)

W
⇤ is supernet’s parameters trained using MaxNet and ✓ is the MAC (Multiply-

and-Add) constraint (or any other depl. target)6. Lval represents loss on either a
local or global (if available) validation dataset. Finding optimal DNN architecture
(↵⇤) doesn’t require any re-training. Optimizing Obj. 6 is fast as it simply involves
evaluating subnets for accuracy/FLOPs. Applying Obj. 6 to multiple deployment
targets (✓i’s) doesn’t add any training cost. This makes MaxNet O(1) w.r.t.
deployment targets. To speed-up the search, SuperFedNAS uses predictors (three
layer MLPs) for estimating accuracy and latency of subnets, similar to OFA [6].
SuperFedNAS uses predictor-guided evolutionary search [27] to optimize Obj. 6.
6 Interested clients ask for W

⇤ asynchronously from the server
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4 Experiments
We evaluate whether SuperFedNAS produces efficient DNN architectures (solves
C2, §1) and generalizes on various FL scenarios: (1) real-world text/image datasets
(2) non-iidness (3) client participation ratio (C) under multiple MAC targets. We
also analyze SuperFedNAS’s scalability to satisfy multiple deployment scenarios
by reporting its training cost (C1, §1). We perform a detailed ablation study on
MaxNet’s hyper-parameters and its ability to specialize DNN architectures on
different hardware/latency targets.

4.1 Setup

Baselines. We compare SuperFedNAS with FedAvg [28] and existing federated
NAS methods: FedNAS [16], FedPNAS [18]. The comparisons are done over four
deployment targets7 (Multiply-and-Additions (MACs) constraints). The baselines
are run repeatedly for each deployment target, SuperFedNAS is run only once.
Dataset and Models. Experiments are done on three images and one text
datasets: CIFAR10/100 [24], CINIC-10 [12], and Shakespeare derived from LEAF
benchmark8 [8]. For image datasets, SuperFedNAS’s supernet is a ResNet [17]
based architecture, containing ResNet-10/26 as the smallest/largest subnets
respectively. For the text dataset, the base supernetwork is a TCN [5] based
architecture. For FedAvg, the DNNs are manually chosen following the scaling rule
in [34]. The DNN-archs of FedNAS, FedPNAS are kept the same as described in
their method. The validation dataset is used for the search phase in all federated
NAS methods including SuperFedNAS, the setting is the same as FedNAS [16].
We provide more details in the supplementary material.

4.2 Comparison with Baselines

Comparison on Image Datasets. Tab. 3 compares SuperFedNAS with the
baselines on three image datasets. For this experiment, we keep the client par-
ticipation as C = 0.4 and non-iid degree=100. CINIC10/CIFAR10/100 are run
for R = 1000/1500/2000 communication rounds. CINIC10 is divided into K=100
partitions (#. clients) and CIFAR10/100 are divided into K=20 partitions.
Takeaway. SuperFedNAS achieves upto 13.1% more accuracy for target MACs.
It finds better DNN architectures across multiple MAC targets compared to the
baselines on different datasets. Specifically, SuperFedNAS outperforms the base-
lines at lower MACs and tougher dataset (CIFAR100). SuperFedNAS’s superior
performance comes from co-training a large number of diverse DNN architectures.
This enables the search for DNN architectures with arbitrary width and depth
to satisfy MAC targets. This DNN architecture diversity remains restrictive in
existing federated NAS methods and leads to sub-optimal performance.
Comparison on Text Dataset. We evaluate SuperFedNAS on a tough FL
setting: text dataset, non-iidness, large number of clients (data partitions) K=660,
7 FedPNAS could only satisfy two deployment targets at lower MACs
8 The data is partitioned based on each role in a play in non-IID setting
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Billion MACs Method Test Accuracy (%)
CIFAR10 CIFAR100 CINIC10

0.45-0.95

FedAvg 85.25± 0.46 43.19± 0.54 61.76± 0.78
FedNAS 77.33± 0.31 40.92± 2.21 58.15± 0.18

FedPNAS 88.83± 0.5 45.77± 0.68 64.3± 0.98
SuperFedNAS 89.42± 0.1189.42± 0.1189.42± 0.11 56.35± 0.356.35± 0.356.35± 0.3 73.12± 0.7773.12± 0.7773.12± 0.77

0.95-1.45
FedAvg 86.36± 0.22 43.92± 0.57 63± 0.17

FedPNAS 89.27± 0.51 47.8± 26 66.74± 0.32
SuperFedNAS 90.22± 0.3190.22± 0.3190.22± 0.31 57.16± 0.2357.16± 0.2357.16± 0.23 74.5± 0.7474.5± 0.7474.5± 0.74

1.45-2.45
FedAvg 87.59± 0.27 44.4± 0.56 64± 0.07
FedNAS 86.41± 0.1 55.82± 0.29 69.97± 0.27

SuperFedNAS 90.93± 0.2390.93± 0.2390.93± 0.23 57.85± 0.3157.85± 0.3157.85± 0.31 75.08± 0.775.08± 0.775.08± 0.7

2.45-3.75
FedAvg 89.44± 0.67 45± 0.27 66.02± 0.13
FedNAS 89.43± 0.36 58.39± 0.23 71.93± 0.13

SuperFedNAS 91.34± 0.391.34± 0.391.34± 0.3 58.25± 0.3958.25± 0.3958.25± 0.39 75.38± 0.7375.38± 0.7375.38± 0.73

Table 3: Image Datasets Comparison. Su-

perFedNAS compared with FedAvg, FL-NAS

methods on image datasets for different MAC

targets. SuperFedNAS consistently outperforms

the baselines.

Million MACs Method Test Accuracy (%)

0-0.5 FedAvg 48.52± 0.11
SuperFedNAS 48.22± 0.27

0.5-1 FedAvg 49.17± 0.02
SuperFedNAS 49.81± 0.1649.81± 0.1649.81± 0.16

1-1.5 FedAvg 51.94± 0.03
SuperFedNAS 53.26± 0.0653.26± 0.0653.26± 0.06

1.5-2.75 FedAvg 53.48± 0.09
SuperFedNAS 54.59± 0.1554.59± 0.1554.59± 0.15

2.75-4.0 FedAvg 53.62± 0.1
SuperFedNAS 54.61± 0.1354.61± 0.1354.61± 0.13

Table 4: Text Dataset Comparison.
Comparison on tough FL setting: Shake-

speare dataset [8], C=4%, non-iidness,

K=660 partitions. SuperFedNAS finds effi-

cient DNN archs under tough FL setting.

Billion MACs Method Test Accuracy (%)
non-iid=100 non-iid=1 non-iid=0.1

0.45-0.95

FedAvg 85.25± 0.46 83.42± 0.19 77.15± 2.5
FedNAS 77.33± 0.31 71.38± 0.37 51.57± 3.32

FedPNAS 88.83± 0.5 85.7± 0.4 78.73± 0.45
SuperFedNAS 89.42± 0.1189.42± 0.1189.42± 0.11 88.69± 0.288.69± 0.288.69± 0.2 81.81± 1.5981.81± 1.5981.81± 1.59

0.95-1.45
FedAvg 86.36± 0.22 84.65± 0.11 77.99± 1.6

FedPNAS 89.27± 0.51 87.53± 0.32 81.13± 0.4
SuperFedNAS 90.22± 0.3190.22± 0.3190.22± 0.31 89.3± 0.3589.3± 0.3589.3± 0.35 83.27± 1.2883.27± 1.2883.27± 1.28

1.45-2.45
FedAvg 87.59± 0.27 86.14± 0.23 79.93± 1.34
FedNAS 86.41± 0.1 82.13± 0.65 65.03± 2.57

SuperFedNAS 90.93± 0.2390.93± 0.2390.93± 0.23 90.36± 0.2190.36± 0.2190.36± 0.21 84.1± 1.7184.1± 1.7184.1± 1.71

2.45-3.75
FedAvg 89.44± 0.67 87.88± 0.7 81.24± 1.99
FedNAS 89.43± 0.36 85.85± 0.35 68.13± 5.04

SuperFedNAS 91.34± 0.391.34± 0.391.34± 0.3 90.91± 0.1590.91± 0.1590.91± 0.15 84.72± 1.7884.72± 1.7884.72± 1.78

Table 5: Non-iidness Comparison. Compar-

ison across varying non-iidness on CIFAR10. Su-

perFedNAS outperforms baselines as it adapts

DNN archs to non-iidness due to optimization of

Obj. 5.

Billion MACs Method Test Accuracy (%)
C=0.2 C=0.4

0.45-0.95

FedAvg 85.59± 0.59 85.25± 0.46
FedNAS 76.23± 0.5 77.33± 0.31

FedPNAS 86.63± 0.51 88.83± 0.5
SuperFedNAS 89.58± 0.589.58± 0.589.58± 0.5 89.42± 0.1189.42± 0.1189.42± 0.11

0.95-1.45
FedAvg 87.01± 0.24 86.36± 0.22

FedPNAS 87.83± 0.21 89.27± 0.51
SuperFedNAS 89.95± 0.5789.95± 0.5789.95± 0.57 90.22± 0.3190.22± 0.3190.22± 0.31

1.45-2.45
FedAvg 88.04± 0.31 87.59± 0.27
FedNAS 84.65± 0.14 86.41± 0.1

SuperFedNAS 90.7± 0.4890.7± 0.4890.7± 0.48 90.93± 0.2390.93± 0.2390.93± 0.23

2.45-3.75
FedAvg 89.96± 0.65 89.44± 0.67
FedNAS 88± 0.38 89.43± 0.36

SuperFedNAS 91.16± 0.4591.16± 0.4591.16± 0.45 91.34± 0.391.34± 0.391.34± 0.3

Table 6: Client Participation. Com-

parison w.r.t. C=0.2,0.4 on CIFAR10

dataset. SuperFedNAS outperforms base-

lines. MaxNet’s subnet sampling effec-

tively optimizes Obj. 5 at low C.

and 4% client participation. Tab. 4 compares SuperFedNAS with FedAvg on
Shakespeare dataset derived from LEAF [8]9.
Takeaway. SuperFedNAS outperforms FedAvg on shakespeare dataset, is upto
1.29% more accurate. Even under tough FL settings, SuperFedNAS benefits
from automating the design and training of DNN architectures (§1).
Comparison on Non-iidness. We evaluate if SuperFedNAS adapts to different
data distributions in FL. Tab. 5 compares SuperFedNAS with the baselines on
different degrees of non-iidness (0.1, 1, 100). We use CIFAR10 dataset for this
experiment divided into K=20 partitions with 40% client participation.
Takeaway. SuperFedNAS outperforms the baselines on varied degrees of non-
iidness at multiple MAC targets. Particularly, the superiority of SuperFedNAS
w.r.t. accuracy is more at extreme non-iidness (0.1). This is because SuperFedNAS
benefits from adapting its DNN architectures to different data distributions by
optimizing Obj. 5 and explicitly improving the worst-performing subnets (§3.3).
Effect of Client Participation. We evaluate the efficacy of SuperFedNAS
under different client participation in FL (C=0.2,0.4) on CIFAR10 divided into

9 FedNAS, FedPNAS only release their DNN architectures for image datasets.
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(b) 18.2 ms lat. target on Nvidia RTX 2080 Ti

Fig. 5: SuperFedNAS’s DNN Arch. Specialization. Specialized DNNs found by
SuperFedNAS’s search stage on different hardware/latency targets. SuperFedNAS finds
a more accurate DNN for RTX 2080Ti GPU (91.56%) compared to AMD CPU (85.25%).
SuperFedNAS’s specialized DNNs are: shallow/thin for AMD CPU, wide/deep for GPU.

K=20 partitions. We intend to establish whether MaxNet can approximate Obj. 5
under low client participation. Tab. 6 compares SuperFedNAS with the baselines.
Takeaway. SuperFedNAS achieves better accuracy than the baselines for different
MAC targets even under low client participation (20%). This is because MaxNet’s
subnet sampling effectively approximates Obj. 5 under different client participa-
tion. It sends the smallest/largest subnets to the participating clients that have
received these subnets the least (§3.3).
Training Cost Comparison. We assess whether SuperFedNAS is scalable to
multiple deployment (solves C1, §1). We report the SuperFedNAS’s training cost
to satisfy multiple deployment targets. Fig. 4 compares SuperFedNAS’s training
cost with baselines w.r.t. #. computations required to satisfy 20 depl. targets.
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Fig. 4: Training Cost Compari-
son.

Takeaway. SuperFedNAS’s training cost re-
mains O(1) w.r.t. number of deployment tar-
gets and is upto 6x less than the baselines.
This is because SuperFedNAS decouples train-
ing from the search in federated NAS, enables
search without additional training (§3.4). In
contrast, both FedNAS and FedPNAS are run
repeatedly to satisfy multiple deployment tar-
gets as they train and search simultaneously.

4.3 Ablation Study

Specialized DNNs for Target Inference Deployments. We evaluate Su-
perFedNAS’s ability to specialize DNNs for diverse inference deployment targets.
We use the supernet trained on CIFAR10 dataset divided into k = 20 partitions
(an experiment in Tab. 3). We use SuperFedNAS’s search stage (§3.4) to find
specialized subnets on two different hardware/latency targets: 18.2 ms on RTX
2080Ti GPU and 112 ms on an AMD CPU. As the search doesn’t require re-
training, we create a dataset by sampling different subnets and getting their
accuracy and latency. We train two different 3-layer MLPs on this dataset that
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(b) �-decay function
Fig. 6: MaxNet’s hyperparameters. a) MaxNet approximates Obj. 5 with wt.
aggregation. � assigned to maximum subnet and (1� �) to the rest b) � is decayed
from 0.9 ! uniform. Higher � initially with cosine decay produces better accuracy.
predict accuracy/latency respectively for a given subnet. Using these predictors
the search time reduces to just 2 minutes.
Takeaway. Fig. 5 shows two different DNN architectures found by SuperFedNAS’s
search stage. For AMD CPU as the target hardware, SuperFedNAS finds a
shallow and thin DNN at 112 ms latency target. For RTX 2080Ti as the target
hardware, SuperFedNAS finds a deep and wide DNN at 18.2 ms latency target.
As RTX 2080Ti offers more floating point operations per second than AMD CPU,
SuperFedNAS finds a more accurate specialized DNN for RTX 2080Ti (91.56%)
compared to the specialized DNN for the AMD CPU (85.25%). SuperFedNAS
finds specialized DNNs as it supports both depth and block diversity.
MaxNet’s Hyperparameters. We provide ablation on MaxNet that emulates
optimization dynamics of Obj. 5. MaxNet introduces two hyperparameters: the
weight provided to maximum subnet’s parameter in aggregation (�) and the decay
function that decays � with FL-rounds (§3.3). Fig. 6 compares test accuracy
at multiple MAC targests for different intial � values and decay functions on
CIFAR10 dataset divided into K = 20 partitions with non-iid degree=100.
Takeaway. The initial value of � has a major effect on subnets’ test accuracy
(Fig. 6a). of subnets. Higher � (0.9) approximates the dynamics introduced via
weight-shared sampling probability in Obj. 5 better, resulting in better accuracy.
Moreover, decaying � using the cosine function outperforms other decay functions
(Fig. 6b). This is because the smaller subnets gradually get high loss, and therefore,
get optimized in Obj. 5 due to max� .

5 Conclusion
SuperFedNAS is a scalable federated NAS method that provides efficient DNN
architectures for inference deployment targets. It takes O(1) training cost to
satisfy N deployment targets. SuperFedNAS achieves this by decoupling the
training of DNN architectures from their search. SuperFedNAS’s training stage
uses MaxNet to co-train a large number of diverse DNN architectures (subnets)
as part of a supernet in FL. Once the supernet is FL trained, clients perform
NAS locally with no additional training. MaxNet optimizes a novel objective that
improves the performance of worst-performing subnets on each data partition.
SuperFedNAS is shown to surpass existing federated NAS methods. It provides
optimal DNN architectures for diverse MAC targets with less training cost.
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