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✁

Abstract—k-means clustering is a fundamental problem in many scien-
tific and engineering domains. The optimization problem associated with
k-means clustering is nonconvex, for which standard algorithms are only
guaranteed to find a local optimum. Leveraging the hidden structure of
local solutions, we propose a general algorithmic framework for escap-
ing undesirable local solutions and recovering the global solution or the
ground truth clustering. This framework consists of iteratively alternating
between two steps: (i) detect mis-specified clusters in a local solution,
and (ii) improve the local solution by non-local operations. We discuss
specific implementation of these steps, and elucidate how the proposed
framework unifies many existing variants of k-means algorithms through
a geometric perspective. We also present two natural variants of the
proposed framework, where the initial number of clusters may be over-
or under-specified. We provide theoretical justifications and extensive
experiments to demonstrate the efficacy of the proposed approach.

Index Terms—k-means clustering, nonconvex optimization, local opti-
mum, Fission and Fusion k-means

1 INTRODUCTION

Clustering is a fundamental problem across machine learn-
ing, computer vision, statistics and beyond. The general
goal of clustering is to group a large number of (potentially
high dimensional) data points into a few clusters, each
containing similar data points. Many clustering criteria have
been proposed. One of the most widely used criteria is
the k-means formulation, where one aims to find k cluster
centers such that the sum of squared distances between each
data point and its nearest cluster center is minimized. The
most popular algorithm for k-means is Lloyd’s algorithm
[1], which is often referred to as the k-means algorithm. This
algorithm iteratively updates the location of cluster centers
and the cluster assignment for each data point. Minimizing
the k-means criterion is a nonconvex optimization problem.
Consequently, Lloyd’s and other local search algorithms are
sensitive to choice of the initial clustering and in general
only guaranteed to find a local solution.

With decades of extensive research and application, var-
ious improved algorithms have been proposed for k-means
to address the sub-optimality of local solutions. One line of
algorithms are based on careful initialization of the clusters.
For example, the celebrated k-means++ initialization [2]
employs a probabilistic initialization scheme such that the
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initial cluster centers are spread out. See [3] for a compre-
hensive review of different initialization methods. Another
line of work focuses on fine-tuning a local solution to
produce a better solution, using various heuristics based on
empirical observations of the properties of local solutions
[4–10]. However, in the absence of a precise characterization
of these properties, little can be guaranteed for the perfor-
mance of these heuristics.

On the theory side, recent years have witnessed exciting
progress on demystifying the structure of local solutions in
certain nonconvex problems [11–18], including k-means and
related clustering problems. It is known that when the data
are sampled from two identical spherical Gaussians, the
Expectation-Maximization (EM) algorithm with random ini-
tialization recovers the ground truth solution [19–21]. Sim-
ilar results hold for Lloyd’s algorithm when the two Gaus-
sians satisfy certain separation conditions [22]. However,
as soon as the number of Gaussian components exceeds
two, additional local solutions emerge, whose quality can be
arbitrarily worse than the global optimum [23]. Recent work
has established an interesting positive result: under some
separation conditions, all local solutions share the same
geometric structure that provides partial information for the
ground-truth, under both the k-means formulation [24] and
the maximum likelihood formulation [25].

In this paper, we exploit the algorithmic implications
of the above structural results on the geometry of local
k-means solutions. We propose a general algorithmic frame-
work for recovering the global minimizer (or ground truth
clusters) from a local minimizer. Our framework consists of
iterating two steps: (i) detect mis-specified clusters in a local
solution obtained by Lloyd’s algorithm, and (ii) improve
this local solution by non-local operations. This geometry-
inspired framework is non-probabilistic and does not rely
on a good initialization. Under certain mixture models with
k clusters, we prove that this method recovers the ground
truth in Opkq iterations, whereas standard Lloyd’s algorithm
would require e

!pkq random initializations to achieve the
same. Our framework is flexible and provides justifications
for many existing heuristics. It can be naturally extended to
settings where the initial number of clusters is mis-specified.
Extensive experiments demonstrate that our approaches
perform robustly on challenging benchmark datasets.

2 STRUCTURE OF LOCAL SOLUTIONS

We consider the k-means problem under a mixture model
with k

˚ components: each data point x is sampled i.i.d.



2

Fig. 1. The one-fit-many and many-fit-one association relationships in a
local minimizer of the k-means problem.

from a true density f
˚ :“ 1

k˚
!k˚

s“1 f
˚
s , where f

˚
s is the

density of the s-th component with mean ω˚
s P Rd. Under

this generative model, the population k-means objective
function is

Gpωq :“ Ex„f˚ min
jPrks

}x ´ ωj}
2
, (1)

where ω “ pω1, . . . ,ωkq denotes k fitted cluster centers,
with k potentially different from k

˚, and rks :“ t1, 2, . . . , ku.
The objective function G is non-convex, and standard algo-
rithms like Lloyd’s only guarantee finding a local minimizer.

Despite non-convexity, a recent work [24] shows that
all local minima have the same geometric structure. In
particular, under some separation condition, for every local
minimizer ω, there exists an association map A between
a partition of the fitted centers tωsusPrks and a partition
of the true centers tω‹

susPrk˚s, such that each center must
participate in exactly one of three types of association:

1) One-fit-many association: A fitted center ωi is close to
the average of several true cluster centers

"
ω‹
j

(
jPS for

some S ! rk
˚

s. That is, Aptωiuq “ tω‹
j ujPS .

2) Many-fit-one association: Several fitted centers tωiuiPT
are simultaneously close to a true center ω‹

j and thus
split the corresponding true cluster, for some T ! rks

and j P rk
˚

s. That is, AptωiuiPT q “ tω‹
j u.

3) Almost empty association: A fitted center ωi is not
associated with any true cluster, and the correspond-
ing fitted cluster has almost no data points. That is,
Aptωiuq “ H.

Figure 1 illustrates these associations between the fitted
centers in a local minimizer and the ground truth clusters.

With the above characterization, we can deduce some
geometric properties for each type of association within a
local minimizer, particularly when the true clusters are sep-
arated and have identical shapes. For simple exposition, we
start with the Stochastic Ball Model (see Section 2.1 of [24]),
in which the mixture component f˚

s satisfies

f
˚
s pxq “

1

VolpBsprqq
1Bsprqpxq, s P rk

˚
s, (2)

where Bs denotes a ball with radius r centered at ωs. In this
case, we make the following observations.

Properties of one-fit-many association. A fitted center
with a one-fit-many association is approximately at the
average center of multiple balls, thus the mean in-cluster
ω2 distance to this fitted center is lower bounded by the
minimum separation of the balls. On the other hand, for a

fitted center with a many-fit-one association, the associated
fitted cluster is contained in a ball, thus the mean in-cluster
ω2 distance to that fitted center is upper bounded by the
radius of the ball. When the balls are well-separated from
each other, we infer that a fitted cluster with one-fit-many
association has higher mean in-cluster ω2 distance.

Properties of many-fit-one association. Since a fitted
center with a many-fit-one association is contained in a ball,
the pairwise distance between two such fitted centers that
are associated with the same ball, is lower bounded by the
radius of the ball. On the other hand, the distance between
these fitted centers and any other fitted center not associated
with the same ball, is lower bounded by the separation of
the balls. We infer that the fitted centers associated to the
same ball is characterized by a small pairwise distance.

Properties of almost empty association. A fitted cluster
with an almost empty association has a negligible measure
by Theorems 1 and 2 in [24]. This means this cluster usually
contains very few data points. For example, in an extreme
case, some ωj can be far away from all the data points and
has an empty association with the data. We usually consider
a non-degenerate local minimum solution, in which almost
empty associations do not occur.

The above properties of the fitted clusters with one-fit-
many and many-fit-one associations are derived under the
ball models. In general, they may depend on the structure of
the underlying data. As the properties for one-fit-many and
many-fit-one associations are distinct, they can be leveraged
to identify the exact type of association. Consequently, vari-
ous methods can be designed to eliminate these associations
and refine the fitted clusters. Since these associations are
the only hurdles to recovering a global solution, eliminating
them helps escaping a local minimum solution. We pursue
this idea in the next section.

3 FROM STRUCTURE TO ALGORITHMS

Motivated by the above geometric structure1—namely, the
presence of one-fit-many and many-fit-one associations—
in the local minimum solutions of k-means, we propose
a general algorithmic framework that aims to escape local
minimum solutions by detecting and correcting these unde-
sirable associations.2

The proposed framework is based on (a) detecting one-
fit-many and many-fit-one associations in the current solu-
tion, and (b) splitting a cluster with an one-fit-many associa-
tion while merging clusters with a many-fit-one association.
We call this general framework Fission-Fusion k-means. After
describing the framework (Section 3.1), we discuss several
concrete methods for detecting one-fit-many and many-fit-
one associations (Section 3.2). Viewing one-fit-many and
many-fit-one association as local model mis-specification,
we further consider natural extensions of the framework,
which allows one to start with any number k of fitted clus-
ters with k ‰ k

˚ (Section 3.3). In addition, we discuss other

1. While the geometric structure is established for the population
k-means formulation in [24], it can be shown that they are also present
in the finite sample case.

2. For simplicity, we assume the local minimum is non-degenerate.
In practice, degenerate local minima can usually be eliminated easily
by examining the number of data points contained in a fitted cluster.
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Fig. 2. Illustration of the Fission-Fusion k-means algorithm.

related algorithmic approaches in literature and connect
them to our framework (Section 4).

3.1 Fission-Fusion k-means

The proposed framework, Fission-Fusion k-means (FFkm),
is presented in Algorithm 1. FFkm aims to iteratively im-
prove the k-means solution. Each iteration of FFkm consists
of four operations:
Step 1 Detects a fitted cluster of one-fit-many association.
Step 2a Replaces the fitted center with two centers from the

2-means solution (the Fission step);
Step 2b Detects a pair of fitted clusters with a many-fit-

one association and then merges these two fitted centers
into one center (the Fusion step);

Step 3 A Lloyd’s k-means step is used to update the modi-
fied solution.

Figure 2 illustrates the above procedure. This procedure is
iterated until the k-means objective no longer decreases. A
visualization of each step of Algorithm 1 (FFkm) is provided
in Appendix F.

Algorithm 1 Fission-Fusion k-means (FFkm)
Input: data D, number of fitted clusters k, initial solu-

tion ωp 1
2 q

P Rdˆk, maximum number of iterations L.
Output: ωpLq

1: Using ωp 1
2 q as an initial solution, run Lloyd’s algorithm

to obtain a local minimum ωp1q with k-means objective
value G

p1q. Set Gp0q
“ 8 and ω “ 1.

2: while ω " L do

3: Step 1: Detect a cluster with tentative one-fit-many
association, whose center is εpωq

p1q.
4: Step 2: Compute ωpω` 1

2 q from ωpωq using the follow-
ing procedure:

5: - Step 2a: Split the center εpωq
p1q into two centers;

6: - Step 2b: Detect two clusters with tentative many-
fit-one association with the same true cluster, whose
centers are ε

pωq
p2q and ε

pωq
p3q. Merge ε

pωq
p2q and ε

pωq
p3q into one

center.
7: Step 3: Using ωpω` 1

2 q as an initial solution, run
Lloyd’s algorithm to obtain a local minimum ωpω`1q

with k-means objective value G
pω`1q.

8: If Gpω`1q
# G

pωq, set ωpLq :“ ωpωq, terminate.
9: ω $ ω ` 1

10: end while

Each iteration of FFkm maintains an invariance of the
total number of fitted number of clusters: in Step 2a, the total
number of fitted clusters is increased to k`1; in Step 2b, the
total number of fitted clusters is decreased to k. Moreover,
Step 3 guarantees that the output solution has a k-means
objective value no worse than the input solution. FFKm is
a general framework and works as long as the one-fit-many
association and many-fit-one association can be correctly
identified. One has the flexibility to adopt various methods
for detecting one-fit-many association in Step 1 and many-
fit-one association in Step 2b, and the best choices of these
methods may be dependent on the data. In Section 3.2 we
discuss several such methods, which harness the geometric
properties of a local solution.

3.1.1 Theoretical Guarantees

We provide theoretical analysis for the proposed framework
under the stochastic ball model (2). These results illustrate
the working mechanism of Fission Fusion k-means.

For any current local minimum solution ωpωq, there are
two possibilities: either ωpωq is already a global optimal
solution, or it is a local minimum with suboptimal objective
value. In the first case, the algorithm simply returns a global
optimal solution. In the second case, the current local solu-
tion ωpωq must contain at least one one-fit-many association,
as shown in Theorem 1 of [24]. The Fission step (Step 2a)
ensures that in the new solution ωpω`1q, two (split) centers
fit multiple (at least two) true clusters, which are contained
in the cluster with one-fit-many association detected in Step
1. In particular, restricting to these true clusters, the k-means
objective value at ωpω`1q strictly decreases. On the other
hand, the Fusion step (Step 2b) reduces the number of
centers to fit that single true cluster with which at least two
fitted clusters are associated in ωpωq. Restricting to this true
cluster, the k-means objective value at ωpω`1q may increase
compared with that evaluated at ωpωq. One crucial obser-
vation here is that the decrement of the k-means objective
value from the Fission step must exceed the increase of
that from the Fusion step, by at least a constant. Therefore,
Fission Fusion k-means must terminate at global optimal
solution in a finite number of steps.

The above argument is made precise in Theorem 3.1.
Theorem 3.1 (Main Theorem). Let tω‹

i uiPrk˚s be k˚ unknown
centers in Rd, with maximum and minimum separations

!max :“ max
i,jPrk˚s

››ω‹
i ´ ω‹

j

›› ,

!min :“ min
i‰jPrk˚s

››ω‹
i ´ ω‹

j

›› .

Suppose the data x1, . . . ,xn P Rd is generated indepen-
dently from the stochastic ball model (2). Assume that
”min

r # 30. With probability at least 1´2k˚ exp
`
´

n
2k˚2

˘
,

Algorithm 1 with k “ k
˚ terminates in O

´
k

˚
¨
”2

max

”2
min

¯

iterations and outputs the global minimizer ω‹.

Under the above setting, Algorithm 1 recovers the
ground truth clusters with a linear (in k

˚) number of exe-
cutions of the Lloyd’s algorithm.3 In sharp contrast, execut-
ing the Lloyd’s algorithm alone from random initialization

3. Lloyd’s algorithm itself takes polynomially many steps to termi-
nate at a local solution under data generative models [26].
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converges to the ground truth ω‹ with an exponentially
small probability, hence it requires an exponential number of
executions to find ω‹. This is shown in Theorem 3.2 below.
Theorem 3.2 (Lloyd’s Converges to Bad Locals). Consider

the stochastic ball model setting. Let ωptq be the t-the
iterate of the Lloyd’s algorithm starting from k random
initial centers uniformly sampled from the data. There
exists a universal constant c, for any k # 3 and any
constant Cgap % 0, such that there is a well-separated
stochastic ball model with k true centers satisfying

P
„

@t # 0 :
Gpωptq

q ´ Gpω‹
q

Gpω‹q
# Cgap

#
# 1 ´ e

´ck
,

where G is the k-means objective defined in Eq.(1).

We defer the proofs of above theorems to the Appendix.

3.2 Detection Subroutines
We propose several subroutines to detect one-fit-many asso-
ciation and many-fit-one association utilizing the geometric
properties of the local solutions described in Section 2.

3.2.1 Detect one-fit-many: Standard Deviation (SD)

For each i-th fitted cluster with center ωi, we compute the
mean squared ω2 distance to its center:

ϑ
2
i :“

1

|Ci|

ÿ

j:xjPCi

}xj ´ ωi}
2
, where (3)

Ci “
"
xj P D : }xj ´ ωi} " }xj ´ ωi1 } @ i

1
‰ i

(
.

The subroutine outputs i
˚-th cluster that attains the maxi-

mal mean squared distance i
˚ :“ argmaxiPrksϑ

2
i .

As discussed in Section 2, when the true clusters are
identical in size, a fitted cluster with a one-fit-many as-
sociation contains multiple true clusters, thus having a
larger mean squared distance. When the true clusters have
varying sizes, we can adapt the above process accordingly.
For example, before computing the mean squared distance
for each cluster, we can normalize each cluster such that
the radius (the maximal distance between a data in the
cluster to the cluster center) of each fitted cluster is the
same. For a fitted cluster with a one-fit-many association, the
mass of the data points will concentrate near the boundary
after normalization, and will have a larger mean squared
distance.

3.2.2 Detect one-fit-many: ϖ-Radius (RD)

Fix ϖ % 0. For each fitted cluster i, we compute the percent-
age of points contained in Bεpωiq, which denotes the ball
centered at ωi with radius ϖ, among all the data contained
in the fitted cluster i:

pi :“
|Bi|

|Ci|
, Bi “ txj : }xj ´ ωi} " ϖ, xj P Ciu . (4)

The subroutine outputs the i
˚-th cluster that attains the

smallest Bi such that i˚ :“ argminiPrksBi.
For a fitted cluster with one-fit-many association, its

center ωi is in the middle of several true clusters. There
are two possibilities, either there is no true cluster near the
fitted center, or the fitted center coincides with a true cluster
center. In the previous case, the set Bi is almost empty as

ωi is not close to any true cluster when there are sufficient
separation among the true clusters. In the latter case, the set
Bi has a small cardinality. However, |Ci| is big as it contains
multiple true clusters. In both cases, the ratio will be smaller
for a cluster with a one-fit-many association (compared with
a cluster with a many-fit-one association).

3.2.3 Detect one-fit-many: Total Deviation (TD)

For each i-th fitted cluster with center ωi, we compute the
summation of ω2 distance to its center:

v
2
i :“

ÿ

j:xjPCi

}xj ´ ωi}
2
, where (5)

Ci “
"
xj P D : }xj ´ ωi} " }xj ´ ωi1 } @ i

1
‰ i

(
.

The subroutine outputs i
˚-th cluster that attains the maxi-

mal mean squared distance i
˚ :“ argmaxiPrksv

2
i .

Compared with the standard deviation detection
method, the total deviation is an unnormalized version
of standard deviation. Indeed, the total deviation approx-
imates the improvement in the k-means objective value
when a single fitted cluster is fitted with two centers; see
section 3.1 of [10]. This coincides with the observation that
the k-means objective function decreases more when a fitted
component with one-fit-many association is split into two
centers in the stochastic ball model.

3.2.4 Detect many-fit-one: Pairwise Distance (PD)

For each pair of fitted cluster pi, jq, i ‰ j, we compute the
pairwise ω2 distance between fitted cluster center ωi and ωj :
di,j :“ }ωi ´ ωj}. The subroutine outputs i˚-th and j˚-th
clusters whose pairwise distance attains the minimal:

pi˚, j˚q :“ argminpi,jq,i‰jdi,j . (6)

The method is also based on the inferred geometric proper-
ties in Section 2: when true clusters have similar shape or
size, the pairwise distance between the fitted clusters with
many-fit-one association is smaller.

3.2.5 Detect many-fit-one: Objective Increment (OI)

For each i-th fitted center, let us consider a modified
k-means clustering solution pωpiq

“ pω1, . . . ,
pωi, . . . ,ωkq by

removing the i-th center. Denote the corresponding k-means
objective function as Gi, in which we fit k ´ 1 centers to
the data compared with the original clustering solution. Let
pi

˚
, j

˚
q be such that

i
˚

“ argminiGi, j
˚

“ argminj,j‰i˚ }ωj ´ ω˚
i }.

This method coincides with the observation that the
k-means objective function increases the least when two
fitted centers that have many-fit-one association with the
same true center are merged in the stochastic ball model.

3.2.6 Other Detection Procedures

The idea of using split and merge type operations in cluster-
ing problems can be traced back to as early as the 1960s [27].
This idea has been used to determine the correct number of
fitted clusters when k is unknown [4, 5, 7], or to escape local
solutions when k is known [6, 28]. Several criteria for split
and merge steps have been proposed in the literature; see
Table 1 for a summary and Appendix C for more details.
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TABLE 1
Related Split and Merge criteria (details in Appendix C)

Algorithm Split Criteria Merge Criteria

[4, 5] Reduction in BIC score BIC score
[7] Max & Min in-cluster distance Pairwise distance
[6] Ratio of objective value with k Pairwise distance

These existing criteria can be adapted and incorporated
into our proposed framework, as we describe below.

The work [4, 5] studies the X-means algorithm, which
uses the Bayesian Information Criterion (BIC) score with
respect to the current solution. A fitted cluster is to be split
into two clusters, and a pair of clusters are to be merged, if
doing so decreases the BIC score. To adapt the split criterion
for detecting one-fit-many association in our framework, we
can output the cluster that attains the maximal reduction
in BIC score if it is split into two clusters. To adapt the
merge criterion for detecting many-fit-one association, we
can output the pair of clusters that attain the maximal
reduction in BIC if they are to be merged.

The algorithm in [7] evaluates the intra-cluster and inter-
cluster dissimilarity. A fitted cluster is to be split if the
intra-cluster dissimilarity exceeds some threshold; a pair of
clusters are to be merged if the inter-cluster dissimilarity
falls below some threshold. The dissimilarities are measured
in Euclidean distance. In particular, the intra-cluster dissim-
ilarity for a fitted cluster is defined as the sum of maximal
and minimal distance to that cluster center; the inter-cluster
dissimilarity is the pairwise cluster center distance. Note
that the merge criterion coincides with the pairwise distance
described in Section 3.2.4. To adapt the split criterion for
detecting one-fit-many association, we output the cluster
with maximal intra-cluster dissimilarity; to detecting many-
fit-one association, we output the pair of clusters with
minimal inter-cluster dissimilarity.

The algorithm in [6] aims to split a cluster into 2, . . . ,M
clusters and compute the ratio of successive k-means ob-
jectives. The cluster will be split if the minimum of these
ratios is smaller than a threshold. In the merge step, it
retains the split cluster that is furthest from the neighboring
regions and then merges the rest of the split clusters to the
neighboring Voronoi regions. We can also adapt the split
criterion for detecting one-fit-many association here — we
can split a cluster into 2 clusters and compute the ratio
between the local k-means objective with 2 clusters and the
local k-means objective with only 1 cluster. Afterwards, we
output the cluster that attains the smallest ratio.

3.3 Mis-specification of Initial Number of Clusters and
Ablation Study

We consider two variants of the proposed FFkm algorithm,
where only the fission step or the fusion step is used. Recall
the fission/fusion step only increases/decreases the number
of clusters. To ensure our algorithm outputs k

˚ clusters at
the end, we under-specify the initial number of clusters (k &

k
˚) for Fission-only k-means or over-specify (k % k

˚) for
Fusion-only k-means. Considering these two variants also
serve as an ablation study on the roles of the fission and
fusion steps in the proposed algorithm.

Note that the structural result in Section 2 holds even
when k ‰ k

˚, i.e., the numbers of fitted and true clusters are
not equal [24]. An interpretation of one-fit-many association
is that an insufficient number of parameters (in this case
only one parameter, corresponding to one fitted cluster
center) are used to fit multiple true components, resulting
in local underfitting. On the other hand, many-fit-one asso-
ciation happens when too many parameters are used to fit
a single component, resulting in local overfitting. When the
fitted parameter k is much smaller than the ground truth
k

˚, the local solutions are more likely to contain one-fit-
many association. When the fitted parameter k is larger than
the ground truth k

˚, the local solutions are more likely to
contain many-fit-one association.

Fission-only k-means in Under-specified Setting. For
Fission-only k-means, we initially fit less clusters than the
true number of clusters, i.e., k & k

˚ and iteratively apply a
one-fit-many detection subroutine and split the correspond-
ing cluster. See Algorithm 2.

Algorithm 2 Fission-only k-means

Input: data points x1, ...,xn P Rd, number of fitted
clusters k, number of true clusters k˚

Output: ω

1: Run Lloyd’s algorithm initialized from k randomly se-
lected cluster centers.

2: while k % k
˚

do

3: Step 1: Detect a cluster with one-fit-many associa-
tion, whose center is ωp1q.

4: Step 2: Split ωp1q into two centers ωp1q and ωp1q1 ,
k $ k ` 1

5: Step 3: Run Lloyd’s algorithm on k cluster centers
initialized at the updated solution.

6: end while

Fusion-only k-means in Over-specified Setting. For
Fusion-only k-means, we initially fit more clusters than the
true number of clusters, i.e., k % k

˚ and only apply the
many-fit-one detection subroutine to merge close clusters.
See Algorithm 3. We defer the experiment results on these
two algorithms to Section 5.

Algorithm 3 Fusion-only k-means
Input: data D, number of fitted clusters k, the number

of true clusters k˚

Output: ω

1: Run Lloyd’s algorithm initialized from k randomly se-
lected cluster centers.

2: while k % k
˚

do

3: Step 1: Detect two clusters with many-fit-one associ-
ation, whose centers are ωp1q and ωp2q.

4: Step 2: Merge ωp1q and ωp2q into one center ωp1,2q by
averaging, k $ k ´ 1.

5: Step 3: Run Lloyd’s algorithm on k cluster centers
initialized at the updated solution.

6: end while

4 RELATED WORK AND CONNECTION
Fission Fusion k-means (FFkm) is a general framework
which iteratively eliminates one-fit-many and many-fit-one
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Fig. 3. Illustration of the Swap operation.

associations and decreases the k-means objective value. This
framework allows us to unify many existing algorithmic
designs for k-means, from the perspective of the structural
properties of local solutions. Below, we discuss other vari-
ants of k-means algorithms in literature; we elucidate their
connection to our framework and to the structures of local
solutions, and highlight the differences.

4.1 Swap Operation
One variant of our framework is to use a Swap operation,
which moves the center of one cluster in many-fit-one
association to the neighborhood of the center with one-fit-
many association; see Figure 4.1 for an illustration, which
can be compared with Figure 2. The Swap operation can
also be viewed as performing the Fusion step before the
Fission step in the FFkm framework. Using Swap, a cluster
with many-fit-one association and a cluster with one-fit-
many association need to be identified simultaneously. One
such randomized procedure is considered in [8], in which
a random center and a random cluster are swapped. Other
deterministic procedures have been proposed [9, 10, 29–31].
To select a center to be swapped, an objective value based
criterion is considered in [9, 10]; a merge based criterion
is used in [29, 30]. To select a cluster to which a center is
moved, an objective value based criterion is considered in
[10]; other heuristic criteria are proposed, e.g., selecting a
cluster with the largest variance [31, 32].

4.1.1 Geometry-based versus Objective-based Algorithms

The proposed FFkm approach is geometry-based, which es-
capes local minima by harnessing their geometric proper-
ties. In particular, this is the case when FFkm employs the
Standard Deviation (SD) and ϖ-Radius (RD) subroutines to
detect one-fit-many, and the Pairwise Distance (PD) sub-
routine to detect many-fit-one. In contrast, objective-based
algorithms focus solely on the k-means objective value when
trying to improve the clustering solution [9, 10, 33]. FFkm
with the Total Deviation (TD) subroutine for one-fit-many
detection and the Objective Increment (OI) subroutine for
many-fit-one detection, can be classified into this category.

A representative objective-based algorithm in the liter-
ature is I-k-means´` [10], which identifies a cluster to be
removed (minus) and a cluster to be divided (plus) with the
goal of improving the k-means objective value. In particu-
lar, I-k-means´` finds the “min-cost” cluster whose total
objective value minus the cluster’s partial objective value
is minimal, as well as the “max-gain” cluster whose new

partial objective value after adding one center is maximum.
These criteria are similar to those described in Sections 3.2.3
and 3.2.5. One can also view I-k-means´` as a variant of
FFkm using the Swap operation discussed above.

In general, one can expect that objective-based algo-
rithms like I-k-means´` perform well for datasets that are
balanced, where different clusters have similar numbers of
data points. However, real-world datasets often have highly
unbalanced clusters. In this case, even when the clusters
have well-defined boundaries, objective-based algorithms
often overly focus on large clusters (those with many data
points) while ignore small clusters. In particular, these al-
gorithms may incorrectly split a large cluster as doing so
leads to a local improvement of the objective value, resulting
in a local minimum. We corroborate these observations
with experiment results on unbalanced datasets in Section
5.3.1, where we find that geometry-based FFkm outperforms
objective-based methods like I-k-means´`.

4.2 Additional Related Work
A different direction for improving the quality of the
k-means solution is to design better initialization schemes.
The work by Celebi et al [3] provides a comprehensive
review of initialization methods. Many of these methods
coincide with the intuition of reducing the one-fit-many
association and many-fit-one association. We discuss a few
illustrating examples below; an exhaustive comparison is
beyond the scope of the current work. One approach is to
sequentially choose the initial centers so that they are spread
out, which avoids the many-fit-one association. To this end,
k-means`` [2] uses a probabilistic procedure, and maxmin
method [34] and Hartigan method [35] use a deterministic
procedure. Astrahan’s method [36, 37] selects centers such
that the data near each center has a relative high density and
successive centers are far apart from each other.

The proposed FFkm framework can be viewed as going
beyond the initialization step to further improve the cluster-
ing solution. In particular, the above existing initialization
schemes aim to reduce the one-fit-many and many-fit-one
associations at the start of the algorithm; our framework
reduces them continuously throughout the iterations. Im-
portantly, our framework can be applied on top of any
existing initialization schemes.

5 EXPERIMENTS

We implement Algorithm 1, Fission-Fusion k-means, which
incorporates the one-fit-many and many-fit-one association
detection methods described in Section 3.2. For one-fit-
many detection, we consider the standard deviation (SD),
total deviation (TD), and ϖ-radius (RD) methods. For many-
fit-one detection, we include the pairwise distance (PD)
method and the objective increment (OI) method. There
are six combinations of these subroutines. The resulting
FFkm implementations are called FFkm (SD+PD), FFkm
(SD+OI), FFkm (TD+PD), FFkm (TD+OI), FFkm (RD+PD),
and FFkm (RD+OI), respectively. Our experiments employ
the benchmark datasets used in [38]. In Section 5.4, we
consider additional real-world datasets.

For the ϖ-radius (RD) method, the radius of the ball
is determined adaptively as follows. We first compute the
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TABLE 2
Characteristics of the Benchmark Datasets.

Dataset Varying Size Clusters Per cluster

A-sets #Clusters 3000–7500 20–50 150
S-sets Overlap 5000 15 333
Dim032 Dimensions 1024 ˆ 100 16 64
Birch1 Structure 100,000 100 1000
Unbalance Balance 6500 8 100, 2000

minimum median ω2 distance to the cluster centers among
all fitted clusters. This distance serves as the base radius r.
Subsequently, we set the radius to ϱ ¨ r, where ϱ is chosen
from t0.01, 0.1, 1, 5u, with ϱ “ 0.1 as the default value.

5.1 Benchmark Datasets
We use the synthetic benchmark datasets from [38], which
are widely employed for assessing clustering algorithms.
These datasets have several categories with varying cluster
numbers (A-sets), degrees of separation (S-sets), dimension-
alities (DIM032), and levels of unbalance (Unbalance). For
an overview of these datasets’ properties, see Table 2. For a
visual representation, see Appendix D.

Below we offer a brief description of these datasets.
1) A-sets consist of three sets, A1, A2, and A3 (A1 ’ A2 ’

A3), corresponding to 20, 35 and 50 spherical clusters
in R2 respectively, all with 20% overlap.

2) S-sets contain four sets, S1, S2, S3 and S4, which
correspond to 15 Gaussian clusters in R2 with varying
overlap percentages of 9%, 22%, 41% and 44%. While
most clusters are spherical, a few have been truncated
and become non-spherical.

3) Unbalance includes a single set with eight clusters in
R2, divided into two well-separated groups (left and
right). The left group consists of three dense clusters
with 2000 vectors each, while the right group comprises
five sparse clusters with 100 vectors each.

4) DIM032 features a single set with 16 well-separated
Gaussian clusters in R32. 4

5) Birch1 includes a single set with 100 Gaussian clusters
in R2, with centers arranged in a regular 10 ˆ 10 grid.

5.2 Evaluation Metrics
Three metrics are used for evaluating the clustering quality.

The first two metrics are based on a modified version of
the centroid index (CI) [39]. CI allows one to compare two
clustering solutions with different numbers of clusters, as
some algorithms like [4, 5] do not necessarily return a solu-
tion with k

˚ clusters. To compute the CI, we first identify the
index of the closest ground truth center to each fitted cluster
center. Then, we count the total number of ground truth
centers whose indices are not mapped to any fitted cluster
center in the first step. This count yields the CI, which
approximately measures the total number of true centers
contained in one-fit-many associations. It does not penalize

4. To prevent artifacts (e.g., a center fitting a single data point) due
to small sample sizes, we increased the number of data points from
1024 to 102400. Specifically, random sampling was performed from
Gaussian distributions with means at the ground truth centers and
uniform standard deviations.

many-fit-one associations since the true center associated
with that many-fit-one association has been identified. A
zero CI indicates successful clustering in the sense that all
ground truth centers have been identified.

Based on CI, we consider two more fine-grained metrics.
1) Success rate (SR): defined as the percentage of trials

in which an algorithm succeeds in returning a zero-CI
solution [38]. Different trials differ by random initializa-
tion and other internal randomness of the algorithm.

2) Average missing rate (AMR): defined as the mean
CI (normalized by the number of true clusters) over
multiple trials of an algorithm. Compared to SR, AMR
accounts for the quality of the solution when the suc-
cess rate is not 100%. A higher AMR indicates a lower
solution quality.

When an algorithm assumes knowledge of the number of
true clusters k

˚, we further use the relative k-means objec-
tive value, described below, as a third evaluation metric:

3) ε-ratio: defined as the ratio between the objective value
of the solution returned by an algorithm and the opti-
mal k-means objective value.

5.3 Results for Benchmark Datasets
In Section 5.3.1, we investigate the differences between
geometry-based algorithms and objective-based algorithms
(cf. Section 4.1.1). In Section 5.3.2, we conduct an ablation
study and examine the performance of Fission-only k-means
and Fusion-only k-means (cf. Section 3.3). In Section 5.3.3,
we compare FFkm against other algorithms, including
Lloyd’s algorithm using both random and k-means`` ini-
tializations, as well as more recent algorithms from [4–7, 10].

In Section 5.4 to follow, we validate the effectiveness of
FFkm on real-world datasets.

5.3.1 A Challenging Unbalanced Dataset

We use a challenging synthetic dataset (based on Unbal-

ance) to demonstrate the difference between geometry-
based algorithms (including variants of FFkm) and
objective-based algorithms (including I-k-means´`). The
dataset is visualized in Figure 11 (see Appendix H).

The following algorithms are considered: the standard
Lloyd’s k-means algorithm, the objective-based algorithm
I-k-means´` [10], and FFkm with the aforementioned six
combinations of subroutines. The original paper [10] dis-
cusses six versions of I-k-means´` with different initial-
ization schemes and different values of a hyperparameter
ς. For a fair and consistent comparison, we use a re-
implemented version 5 of I-k-means´` with ς “ 3{4 and
random initialization, which aligns with how we initialize
FFkm; we refer to this implementation as I-k-means´`

‹.
Among the six variants of FFkm, we consider FFkm
(SD+PD) and FFkm (RD+PD) as geometry-based, FFkm
(TD+OI) as objective-based, and FFkm (TD+PD), FFkm
(SD+OI), and FFkm (RD+OI) as hybrid combining the
geometry- and objective-based approaches.

For each algorithm, we conducted 100 independent tri-
als. The results are summarized in Table 3, which present
the performance metrics as well as the sum of squared
errors (SSE) averaged across trials, the SSE of the ground
truth clustering, and the execution time averaged across
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TABLE 3
Experiment results on the challenging synthetic dataset

Algorithms Strategy SR (%) AMR ω-ratio (%) Average SSE Ground Truth SSE Time (s)

Lloyd k-means objective 0 0.26 2.3 ˘ 2.84 2284151.16 991139.25 0.0425
FFkm (SD+PD) geometry 100 0.00 1.00 ˘ 0.00 991139.25 991139.25 0.0686
FFkm (RD+PD) geometry 100 0.00 1.00 ˘ 0.00 991139.25 991139.25 0.0852
FFkm (TD+PD) hybrid 2 0.12 1.11 ˘ 0.02 1099421.01 991139.25 0.1780
FFkm (SD+OI) hybrid 100 0.00 1.00 ˘ 0.00 991139.25 991139.25 0.0948
FFkm (RD+OI) hybrid 100 0.00 1.00 ˘ 0.00 991139.25 991139.25 0.1152
FFkm (TD+OI) objective 2 0.12 1.12 ˘ 0.02 1106059.38 991139.25 0.0769
I-k-means´`‹ objective 0 0.13 1.17 ˘ 0.05 1155022.97 991139.25 0.1872

TABLE 4
Fission-only k-means (Algorithm 2) with Under-specified k

Dataset k “ k‹ k “ 2 k “ r k
˚
4 s k “ r k

˚
2 s

SR(%) AMR ω-ratio SR(%) AMR ω-ratio SR(%) AMR ω-ratio SR(%) AMR ω-ratio

A1 1 0.13 1.67 ˘ 0.31 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 99 0.00 1.00 ˘ 0.02
A2 0 0.13 1.69 ˘ 0.24 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 97 0.00 1.00 ˘ 0.02
A3 0 0.13 1.73 ˘ 0.25 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 92 0.00 1.01 ˘ 0.02
S1 1 0.14 2.23 ˘ 0.55 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S2 3 0.11 1.56 ˘ 0.39 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S3 8 0.09 1.18 ˘ 0.10 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S4 20 0.07 1.10 ˘ 0.08 0 0.13 1.15 ˘ 0.00 0 0.13 1.15 ˘ 0.00 0 0.07 1.08 ˘ 0.02

Unbalance 0 0.48 9.62 ˘ 1.62 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 61 0.05 4.33 ˘ 4.25
Dim032 1 0.21 51.99 ˘ 19.56 100 0.00 1.00 ˘ 0.00 99 0.00 1.12 ˘ 1.17 68 0.02 5.25 ˘ 6.75
Birch1 0 0.07 1.20 ˘ 0.04 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00

trials.5 The best results in each column (excluding Lloyd’s
algorithm) are marked in bold. As observed, the geometry-
based algorithms, FFkm (SD+PD) and FFkm (RD+PD),
recover the ground truth clustering and achieve a 100%
success rate, with FFkm (SD+PD) using fewer iterations
and hence the fastest execution time. Two of the FFkm
variants with combined strategies and the geometry-based
subroutines SD and RD, also achieve a 100% success rate. In
comparison, the objective-based algorithms, FFkm (TD+OI)
and I-k-means´`

‹, failed to recover the ground truth, with
success rates of only 2% and 0%, respectively. Overall,
these results demonstrate that FFkm (SD+PD) achieves su-
perior performance in clustering complex and unbalanced
datasets, effectively avoiding bad local minima that arise
due to the heterogeneity of the data.

5.3.2 Ablation Study and Model Mis-specification

We evaluate two variants of our framework: Fission-only
k-means (Algorithm 2) with an under-specified initial num-
ber of clusters, and Fusion-only k-means (Algorithm 3) with
over-specification. This experiment serves as an ablation
study on the roles of the fusion operation and the fission
operation. We execute these two algorithms for 100 trials
on each benchmark dataset discussed in Section 5.1. For
the under-parameterized Fission-only k-means, we consider
2, rk

˚
4 s, and rk

˚
2 s as the initial value of k. The standard

deviation (SD) method is used to detect one-fit-many asso-
ciations. For the over-parameterized Fusion-only k-means,
the initial k is 2k˚, 3k˚, and 4k˚. The pairwise distance (PD)
is used to detect many-fit-one associations. Both algorithms
terminate with k

˚ fitted clusters, and we use φ-ratio as the
performance metric. The experiment results are summarized
in Table 4 and Table 5.

One observes that both algorithms returned near-
optimal solutions for most datasets, with the exceptions of

5. The execution time was recorded on the same machine.

S4, Unbalance, and DIM032. For Fission-only k-means, set-
ting k “ 2 achieves the best performance, with all datasets
except S4 having a 100% success rate; the performance is
slightly worse with k “ rk

˚
2 s. For Fusion-only k-means,

all choices of k lead to worse performance on S4 and
Unbalance. We attribute this performance to the lack of the
fission step as well as the use of the pairwise distance (PD)
subroutine for the fusion step, which face challenges when
the data has overlapping or unbalanced clusters.

5.3.3 Comparison with Related Algorithms

In Tables 6 and 7, we compare the Success Rates (SR) and
φ-ratios, respectively of Algorithm 1 (FFkm), Lloyd’s algo-
rithm, I-k-means´`

‹, and other related algorithms [4, 6, 7],
using 100 independent trials on the benchmark datasets.
When the success rate is less than 100%, the Average Miss-
ing Rate (AMR) is given in parentheses (cf. Section 5.2).
We present results for three combinations of subroutines
for FFkm in Tables 6 and 7. Results for all combinations of
subroutines are available in Appendix E. In Tables 6 and 7,
only SR and AMR are reported for the algorithms in [7]
and [4], because they may use a different initial number of
clusters than the ground truth clustering.

As seen from Tables 6 and 7, FFkm with subroutines
(SD+OI), (TD+OI), (RD+PD) reliably recovers the ground
truth on all benchmark datasets except S3 and S4. Given that
these datasets vary in the number, shapes and separation
of clusters, this performance demonstrates the robustness
and effectiveness of FFkm. The S3 and S4 datasets have
highly overlapping clusters. As demonstrated in Section
5.3.2, in these scenarios the geometry-based subroutines—
Standard Deviation (SD), ϖ-Radius (RD), and Pairwise Dis-
tance (PD)—may not be effective. Instead, using the sub-
routines Total Deviation (TD) and Objective Increment
(OI), one can improve the success rate of 41% for the
geometry-based FFkm (RD+PD) to 90% for the objective-
based FFkm (TD+OI). Among other k-means algorithms,
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TABLE 5
Fusion-only k-means (Algorithm 3) with Over-specified k

Dataset k “ k‹ k “ 2k‹ k “ 3k‹ k “ 4k‹
SR(%) AMR ω-ratio SR(%) AMR ω-ratio SR(%) AMR ω-ratio SR(%) AMR ω-ratio

A1 1 0.13 1.67 ˘ 0.31 96 0.00 1.01 ˘ 0.05 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
A2 0 0.13 1.69 ˘ 0.24 88 0.00 1.01 ˘ 0.04 99 0.00 1.00 ˘ 0.01 100 0.00 1.00 ˘ 0.00
A3 0 0.13 1.73 ˘ 0.25 89 0.00 1.01 ˘ 0.03 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S1 1 0.14 2.23 ˘ 0.55 97 0.00 1.02 ˘ 0.10 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S2 3 0.11 1.56 ˘ 0.39 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S3 8 0.09 1.18 ˘ 0.10 97 0.00 1.00 ˘ 0.02 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00
S4 20 0.07 1.10 ˘ 0.08 85 0.01 1.01 ˘ 0.03 50 0.03 1.04 ˘ 0.04 25 0.05 1.06 ˘ 0.03

Unbalance 0 0.48 9.62 ˘ 1.62 0 0.44 8.23 ˘ 2.46 4 0.38 6.89 ˘ 2.99 6 0.34 5.90 ˘ 2.93
Dim032 1 0.21 51.99 ˘ 19.56 62 0.03 6.88 ˘ 8.48 93 0.00 1.92 ˘ 3.40 99 0.00 1.10 ˘ 1.01
Birch1 0 0.07 1.20 ˘ 0.04 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00 100 0.00 1.00 ˘ 0.00

TABLE 6
Success rate (%) comparison (best results in boldface)

Dataset Lloyd k-means`` I-k-means´`‹
SD+OI TD+OI RD+PD [6] [7] [4]

A1 1 (0.13) 49 (0.03) 100 100 100 100 99 66 (0.02) 100

A2 0 (0.13) 6 (0.04) 100 100 100 100 96 5 (0.07) 100

A3 0 (0.13) 4 (0.03) 100 100 100 100 99 0 (0.14) 0 (0.92)
S1 1 (0.14) 71 (0.02) 100 100 100 100 100 100 100

S2 3 (0.11) 61 (0.03) 100 100 100 100 90 (0.01) 100 100

S3 8 (0.09) 48 (0.04) 100 89(0.00) 96(0.00) 89(0.01) 72 (0.02) 100 100

S4 20 (0.07) 52 (0.03) 93(0.00) 39(0.04) 90(0.01) 41(0.05 ) 29 (0.05) 100 98 (0.01)
Unbalance 0 (0.48) 97 100 100 100 100 17 (0.5) 99 50 (0.25)

Dim032 1 (0.21) 100 100 100 100 100 94 100 100

birch1 0 (0.07) 0 100 100 100 100 100 0 (0.08) 0 (0.96)

TABLE 7
ω-ratio comparison (best results in boldface)

Dataset Lloyd k-means`` I-k-means´`‹
SD+OI TD+OI RD+PD [6]

A1 1.67 ˘ 0.31 1.12 ˘ 0.14 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.02
A2 1.69 ˘ 0.24 1.14 ˘ 0.08 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.01 ˘ 0.03
A3 1.73 ˘ 0.25 1.13 ˘ 0.06 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.01
S1 2.23 ˘ 0.55 1.16 ˘ 0.25 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00
S2 1.56 ˘ 0.39 1.10 ˘ 0.13 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.02 ˘ 0.06
S3 1.18 ˘ 0.10 1.07 ˘ 0.07 1.01 ˘ 0.02 1.01 ˘ 0.04 1.00 ˘ 0.00 1.01 ˘ 0.04 1.03 ˘ 0.06
S4 1.10 ˘ 0.08 1.04 ˘ 0.05 1.01 ˘ 0.01 1.05 ˘ 0.05 1.01 ˘ 0.02 1.06 ˘ 0.07 1.06 ˘ 0.05

Unbalance 9.62 ˘ 1.62 1.03 ˘ 0.18 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 5.14 ˘ 1.92
Dim032 51.99 ˘ 19.56 1.10 ˘ 1.01 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.70 ˘ 2.76
birch1 1.20 ˘ 0.04 1.09 ˘ 0.02 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00

only I-k-means´`
‹ achieves a success rate and φ-ratio com-

parable to FFkm. Specifically, through an objective-based
strategy, both I-k-means´`

‹ and FFkm (TD+OI) achieve
over 90% SR for the dataset S4, with I-k-means´`

‹ some-
what higher than FFkm (TD+OI). For the dataset S3, FFkm
(TD+OI) achieves a better φ-ratio than I-k-means´`

‹.

In light of the observations above on I-k-means´`,
a more detailed comparison is given in Table 8 between
Lloyd’s, k-means``, I-k-means´` and FFkm. Following
the experimental setup in I-k-means´` paper [10], 50 in-
dependent trials were conducted and the sum of squared
errors (SSE) was calculated. (The dataset Unbalance and
DIM032 were not considered in [10].) We report the results
quoted from [10] (which reports two decimal places) as well
as those from our own re-implementation of I-k-means´`

‹

and FFkm (with four decimal places). The best SSE for each
dataset is highlighted in bold. As observed in Table 8, all
six FFkm subroutines significantly outperform both Lloyd’s
algorithm and k-means``. Except for datasets S3 and
S4, FFkm (SD+PD) performs better than or equally well
as I-k-means´`; similar performance can be seen from
FFkm subroutines with SD+OI, TD+PD, and TD+OI. For
the dataset S3, FFkm with the objective-based subroutines
TD+OI achieves the best SSE; for S4, I-k-means´`

‹ (our re-

implementation) has the best SSE. These two datasets have
highly overlapping clusters, which present challenges for
geometry-based algorithms, whereas the TD+OI subroutine
may mitigate these challenges. Finally, we note that FFkm
(RD+PD) did not achieve the ideal SSE, possibly due to the
radius settings discussed in Appendix H.

Combining with the findings from Section 5.3.1, we
observe that relying on a single strategy (geometry- or
objective-based) often leads to limited performance. FFkm
demonstrates effectiveness on a broad spectrum of datasets
as well as the flexibility to incorporate different strate-
gies/subroutines. The geometry-based FFkm (SD+PD) can
handle highly unbalanced datasets, while the objective-
based FFkm (TD+OI) is effective with overlapping datasets.
In general, the choice of detection routines in FFkm can
adapt to the specific characteristics of the dataset. Addi-
tional discussions and results are provided in Appendix H.

5.4 Experiments on Real-world data
Color Quantization. Color Quantization (CQ) is a funda-
mental image processing operation that reduces the number
of distinct colors in a true-color image. CQ has been used
to benchmark and visualize clustering algorithms [40]. For
k-means-based image segmentation applications, [41] has
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TABLE 8
Sum of squared errors (SSE) comparison between results taken from [10] the and FFkm (best results in boldface)

Dataset SSE of I-k-means´` in paper [10] SSE computed using the same machine

Lloyd k-means`` I-k-means´` I-k-means´`‹
SD+PD SD+OI TD+PD TD+OI RD+PD RD+OI

A1 2.08E+10 1.73E+10 1.22E+10 1.2146E+10 1.2146E+10 1.2146E+10 1.2146E+10 1.2149E+10 1.2186E+10 1.2225E+10
A2 3.47E+10 2.99E+10 2.03E+10 2.0311E+10 2.0287E+10 2.0287E+10 2.0287E+10 2.0287E+10 2.2053E+10 2.2389E+10
A3 5.23E+10 4.29E+10 2.90E+10 2.8943E+10 2.8938E+10 2.8938E+10 2.8938E+10 2.8938E+10 3.0684E+10 3.1048E+10
S1 1.85E+13 1.67E+13 8.92E+12 8.9177E+12 8.9177E+12 8.9177E+12 8.9177E+12 8.9176E+12 13.3627E+12 11.2245E+12
S2 2.01E+13 1.82E+13 1.33E+13 1.3290E+13 1.3279E+13 1.3279E+13 1.3279E+13 1.3279E+13 1.4659E+13 1.4810E+13
S3 1.94E+13 1.90E+13 1.69E+13 1.6893E+13 1.7641E+13 1.7146E+13 1.7365E+13 1.6889E+13 1.8280E+13 1.8447E+13
S4 1.70E+13 1.67E+13 1.57E+13 1.5740E+13 1.6330E+13 1.6330E+13 1.6332E+13 1.5748E+13 1.6866E+13 1.6327E+13

Birch1 1.13E+14 1.06E+14 9.28E+13 9.2815E+13 9.2772E+13 9.2772E+13 9.2772E+13 9.2772E+13 9.5754E+13 9.5725E+13

Fig. 4. Results of unsupervised color quantization using different numbers of clusters (k values for colors). The images are organized in rows from
top to bottom: Palace (k “ 8), Boat (k “ 4), Traffic (k “ 8). Each column shows (a) The original image (k is provided in Table 9). (b) The result of
Lloyd k-means. (c) The result of FFkm (SD+PD). (d) The result of FFkm (TD+OI). (e) The result of I-k-means´`‹.

TABLE 9
Results of unsupervised color quantization using different numbers of clusters (k values for colors)

Image dimension # points # of clusters SSE

(colors) Lloyd FFkm (SD+PD) FFkm (TD+OI) I-k-means´` ‹
Palace (k=8) 3 273280 966154 2874.01 2660.61 2655.26 2685.48
Boat (k=4) 3 65536 5498 286.38 270.70 273.67 286.38

Traffic (k=8) 3 65536 29792 364.25 348.30 348.30 364.25
Flower (k=8) 3 65536 49178 801.34 796.99 789.26 801.34

Red Panda (k=8) 3 65536 52215 815.62 781.07 809.82 815.62
Babbon (k=10) 3 65536 59951 859.97 855.33 859.78 859.97
Peppers (k=10) 3 65536 53527 699.78 685.87 685.81 699.78

Earch (k=5) 3 65536 28917 896.44 756.08 755.80 758.37

considered Flower, Red Panda, and Traffic images from the
Bing Image Downloader library, and [42] has explored the
Berkeley Segmentation Data Set 500 (BSD500). The work
[40, 43] has considered applications of CQ using images
like Baboon, Parrots, Fruits, and Peppers. Here we consider
images of Palace, Boat, Traffic, Flower, Red Panda, Earth,
Baboon, and Peppers. The Palace image is from [44]; all
other images are from [45] and resized to 256 ˆ 256 with
quantized RGB color values.

In Figure 4, we show results for a subset of the images for
the objective-based algorithms Lloyd’s, FFkm (TD+OI), and
I-k-means´`

‹ and the geometry-based algorithm FFkm
(SD+PD). (For the rest of the images, the difference between
results produced by different algorithms are not discernible

by human eyes; these results are given in Appendix G). As
seen from Figure 4, both FFkm (SD+PD) and FFkm (TD+OI)
can clearly reveal a red roof in the image Palace, a boat in
image Boat, and an orange truck in image Traffic, demon-
strating the algorithms’ ability to avoid local minima and
finding a better solution than Lloyd’s and I-k-means´`

‹.
Table 9 summarizes the properties of the original image and
the objective values (SSE) of different algorithms. The best
SSEs, marked in bold, are achieved by the geometry-based
algorithm FFkm (SD+PD) for images Boat, Traffic, Red
Panda, and Baboon, and by the objective-based algorithm
FFkm (TD+OI) for images Palace, Traffic, Flower, Peppers,
and Earth. These results demonstrate the effectiveness of the
proposed FFkm framework in real-world scenarios.
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TABLE 10
Results of SSE and average execution time in seconds (Time (s)) (best results of SSE in boldface)

Dataset Data Size Lloyd FFkm (SD+PD) FFkm (TD+OI) I-k-means´`‹
ave. SSE Time(s) ave. SSE Time(s) ave. SSE Time(s) ave. SSE Time(s)

Iris (k˚ “ 3) 150 ˆ 3 9.308 ˆ 101 0.0021 7.885 ˆ 101 0.0053 7.885 ˆ 101 0.0048 7.885 ˆ 101 0.0032
HAR (k˚ “ 6) 10299 ˆ 561 1.851 ˆ 105 0.3021 1.851 ˆ 105 0.8207 1.825 ˆ 105 2.4546 1.823 ˆ 105 4.0628

ISOLET (k˚ “ 26) 7797 ˆ 617 4.465 ˆ 105 0.6423 4.454 ˆ 105 1.5728 4.406 ˆ 105 4.8862 4.414 ˆ 105 17.8700
LR (k˚ “ 26) 20000 ˆ 16 6.201 ˆ 105 0.0874 6.196 ˆ 105 0.2435 6.183 ˆ 105 0.9948 6.184 ˆ 105 0.9166

Musk (k˚ “ 2) 6598 ˆ 166 6.090 ˆ 109 0.0247 5.922 ˆ 109 0.1670 5.923 ˆ 109 0.1978 5.983 ˆ 109 0.3165

Other real-world datasets. For further comparison, we
consider five additional real-world datasets that are widely
used in the literature on k-means for evaluating alternatives
of Lloyd’s algorithms [10]. The IRIS dataset, which includes
three types of flowers (true k

˚
“ 3) with four features,

is used to study the classification accuracy of k-means
[46]. The Human Activity Recognition Using Smartphones
(HAR) dataset has six recorded activities (k˚

“ 6). In the
ISOLET dataset, one aims to predict which letter was spoken
(k˚

“ 26). The Letter Recognition (LR) dataset contains 26
capital letters from the English alphabet (k˚

“ 26). In the
Musk version 2 dataset, one seeks to predict whether new
molecules will be musks or non-musks (k˚

“ 2).
We compare the objective values (SSE) achieved by

Lloyd’s k-means, FFkm (SD+PD), FFkm (TD+OI), and
I-k-means´`

‹. With 50 independent trials, the average
SSEs and execution times are reported in Table 10. For
each dataset, the table also gives the number of ground
truth clusters k

˚ and data size (number of data points ˆ

number of features/dimensions). Note that although the
Musk dataset has 168 features, only 166 integer features are
utilized. As observed in Table 10, FFkm (SD+PD), FFkm
(TD+OI), and I-k-means´`

‹ all achieve better SSE than
Lloyd’s k-means; in particular, they avoid the local minima
that trap Lloyd’s k-means. Among them, the objective-based
algorithms FFkm (TD+OI) and I-k-means´`

‹ have the best
SSE in three and two datasets, respectively. FFkm (SD+PD),
which is geometry-based, achieves the best results in the
IRIS and Musk datasets. Moreover, FFkm (SD+PD) reports
the fastest execution time (excluding Lloyd’s k-means) in
the HAR, ISOLET, LR, and Musk datasets.

6 CONCLUSION

We propose a flexible framework for k-means problem by
harnessing the geometric structure of local solutions. It
provides a theoretical foundation for future work to design
detection routines for varying cluster distributions. Future
work includes analyzing the Fission-Fission k-means under
the more general setting with empirical success: (i) clusters
could be of different sizes and shapes; (ii) clusters have
moderate or heavy overlaps with each other.
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