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A B S T R A C T 
The International Pulsar Timing Array (IPTA)’s second data release (IPTA DR2) combines decades of observations of 65 
millisecond pulsars from 7 radio telescopes. IPTA data sets should be the most sensitive data sets to nanohertz gravitational 
waves (GWs), but take years to assemble, often excluding valuable recent data. To address this, we introduce the IPTA ‘Lite’ 
analysis, where a Figure of Merit is used to select an optimal PTA data set to analyse for each pulsar, enabling immediate 
access to new data and preliminary results prior to full combination. We test the capabilities of the Lite analysis using IPTA 
DR2, finding that ‘DR2 Lite’ can be used to detect the common red noise process with an amplitude of A = 4 . 8+ 1 . 8 

−1 . 8 × 10−15 at 
γ = 13 / 3. This amplitude is slightly large in comparison to the combined analysis, and likely biased high as DR2 Lite is more 
sensitive to systematic errors from individual pulsars than the full data set. Furthermore, although there is no strong evidence for 
Hellings-Downs correlations in IPTA DR2, we still find the full data set is better at resolving Hellings-Downs correlations than 
DR2 Lite. Alongside the Lite analysis, we also find that analysing a subset of pulsars from IPTA DR2, available at a hypothetical 
‘early’ stage of combination (EDR2), yields equally competitive results as the full data set. Looking ahead, the Lite method will 
enable rapid synthesis of the latest PTA data, offering preliminary GW constraints before the superior full data set combinations 
are available. 
Key words: gravitational waves – methods: data analysis – pulsars: general. 
1  I N T RO D U C T I O N  
Pulsar Timing Arrays (PTAs) are experiments for detecting low- 
frequency gravitational waves (GWs), offering unprecedented access 
to nanohertz GWs (Sazhin 1978 ; Detweiler 1979 ; Hellings & Downs 
1983 ). By monitoring the ultra-stable arrival times of radio pulses 
from millisecond pulsars (MSPs) – nature’s most precise clocks 
– we can build a galaxy-scale GW detector. PTAs use deviations 
in the time of arrivals (TOAs) induced by GWs to infer their 
presence, enabling the detection of signals from supermassive black 
hole binaries (SMBHBs; Begelman, Blandford & Rees 1980 ), the 
stochastic gravitational wave background (GWB) that should arise 
from their cosmic merger history (Rajagopal & Romani 1995 ; 
Volonteri, Haardt & Madau 2003 ), and potentially new physics 
(Lasky et al. 2016 ; Caprini & Figueroa 2018 ; Afzal et al. 2023 ). 

Currently, PTA collaborations around the globe, including the 
European PTA (EPTA; Desvignes et al. 2016 ), the North Amer- 
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ican Nanohertz Observatory for Gravitational Waves (NANOGrav; 
Ransom et al. 2019 ), the Parkes PTA (PPTA; Manchester et al. 2013 ), 
the Chinese PTA (CPTA; Lee 2016 ), the Indian PTA (InPTA; Joshi 
et al. 2018 ), the MeerKAT PTA (MPTA; Miles et al. 2023 ), and the 
Fermi γ -ray PTA ( γ PTA; FERMI-LAT Collaboration 2022 ) provide 
PTA data sets of varying sensitivity and duration. The International 
Pulsar Timing Array (IPTA) is a consortium of PTA collaborations, 
with the first and second data releases, IPTA DR1 (Verbiest et al. 
2016 ) and IPTA DR2 (Perera et al. 2019 ), each combining pulsar 
observations from EPTA, NANOGrav, and PPTA into one coherent 
data set. A third IPTA data release, IPTA DR3, is currently in 
development, with the potential to include data from all current PTAs. 

Data combination improves a PTA’s sensitivity to GWs by in- 
creasing the pulsars’ effective observation timespan, cadence, and 
radio frequency coverage, as well as the PTA’s overall number of 
pulsars and sky coverage. This was expected by Siemens et al. 
( 2013 ) and verified in the IPTA DR2 GWB search (Antoniadis et al. 
2022 ), which found evidence for a common red noise (CRN; also 
known as CURN, Chen et al. 2021a ; Agazie et al. 2024 ) process, 
a signature of an emerging GWB signal, with greater significance 
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Table 1. Names and short descriptions of the three data sets we analyse in this work. Section 2 provides further details on each of the data sets. 
Name Short description 
Full DR2 The fully-combined IPTA DR2 from Perera et al. ( 2019 ), with Tobs > 3 yr filter from Antoniadis et al. ( 2022 ) for 53 pulsars in total. 
DR2 Lite The Lite data set presented in this work, with a total of 53 pulsars selected using the FoM from single-PTA data subsets of Full DR2. 
EDR2 An ‘early’ subset of Full DR2 which includes fully-combined data for only 22 pulsars corresponding to the highest FoM in DR2 Lite. 

than the individual constituent data sets comprising IPTA DR2. This 
provided a robust confirmation of the CRN first found by the regional 
PTA collaborations (Arzoumanian et al. 2020b ; Chen et al. 2021b ; 
Goncharov et al. 2021b ). 

While it did not produce the first published measurement of a 
CRN process, we point out that IPTA DR2 could have presented 
the earliest opportunity to detect the CRN, as regional PTAs needed 
to collect approximately ∼2 more years of data than was used for 
IPTA DR2 in order to sufficiently resolve the signal. The delay in 
the IPTA DR2 analysis largely resulted from the resource-intensive 
process of data combination, which requires meticulous handling 
of different kinds of data, alignment of timing models, fitting for 
instrumental offsets, and iterative noise modelling across data sets 
(Verbiest et al. 2016 ; Perera et al. 2019 ). This effort typically takes 
several years to complete, meaning by the time a combined data set 
is released, portions of the underlying data are already outdated. To 
illustrate the time-scales, IPTA DR2 contains the NANOGrav 9-yr 
data set (Arzoumanian et al. 2016 ), but IPTA DR2 was not published 
until 3 yr later (Perera et al. 2019 ). By the time the IPTA DR2 GWB 
search was carried out (Antoniadis et al. 2022 ), the NANOGrav 12.5- 
yr data set was already used to detect the CRN (Arzoumanian et al. 
2020a ). Thus, the CRN could theoretically have been measured 3 yr in 
advance of Arzoumanian et al. ( 2020a ) if IPTA DR2 was constructed 
immediately. Given the long time-scales required for new GW signals 
to emerge in PTA data sets, this motivates the need to either improve 
the speed of data combination or explore alternative methods for 
analysing joint-PTA data sets, supplementing the eventual results of 
a fully-combined data set. 

To address this, we introduce a novel, resource-efficient approach 
we call the ‘Lite’ method. Instead of immediately performing full 
data combination, we evaluate pulsar data sets which have already 
been produced by individual PTAs, and select the most informative 
data set for each pulsar using a Figure of Merit (FoM), which 
quantifies sensitivity to a GW signal based on the data set properties 
using the theoretical scaling laws for the signal-to-noise ratio (S/N). 
For example, the GWB S/N from Siemens et al. ( 2013 ) suggests a 
FoM which increases as total observing time increases, as observation 
cadence increases, and as RMS white noise residual decreases. By 
selecting each pulsar’s data based on the FoM, the Lite data set 
achieves the maximum theoretical sensitivity to GW signals possible 
among all available data prior to performing data combination. As 
such, a Lite data set analysis may provide an early look into what 
may result from a fully-combined analysis. A Lite data set will also 
be less computationally intensive to analyse than its fully-combined 
counterpart due to the reduced data volume. 

Data combination is a slow, intensive process, with combined data 
sets built up one pulsar at a time. It is tempting then to also consider 
the result of analysing an early or intermediate combined data set, 
which includes just the first set of pulsars which have had their 
data combined. The FoM suggests which pulsars to combine first: 
combining pulsars in order, starting from highest FoM to lowest, will 
maximize the GWB sensitivity of any intermediate combined data 
set. This practice already has precedent within PTA analyses (Babak 
et al. 2016 ; Speri et al. 2023 ). For example, the creation of EPTA 

DR2 with 25 pulsars (EPTA Collaboration 2023a ) was preceded by 
a version of EPTA DR2 using 6 pulsars (Chen et al. 2021c ), which 
were originally selected based on their expected S/N for continuous 
GWs (Babak et al. 2016 ). The 25 pulsars used for the EPTA DR2 
GWB search (EPTA Collaboration 2023a , c ) were then selected to 
optimize the theoretical S/N of the Hellings-Downs curve, following 
the method from Speri et al. ( 2023 ). 

Here, we use IPTA DR2 as a test case to assess the benefits of 
performing GW searches using a Lite data set, an early-combined 
data set, and a fully-combined data set, reflecting the stages in which 
future combined data may be analysed. Table 1 provides short names 
and descriptions of each of these data sets for ease of reference. 
Specifically, we test how the detection statistics and upper limits for 
a GWB evolve as more data are combined. This analysis framework 
thus quantifies the benefits and drawbacks of a rapid, on-the-fly Lite 
analysis, as well as the superior sensitivity offered by the full data 
combination. 

The information from this analysis will also be valuable for the 
interpretation of present-day data sets. Agazie et al. ( 2024 ) performed 
comparisons and joint-analyses of the NANOGrav 15 yr data set 
(Agazie et al. 2023a , b ), EPTA + InPTA DR2 (EPTA Collaboration 
2023a , c ), and PPTA DR3 (Reardon et al. 2023a ; Zic et al. 2023a ). The 
factorized likelihood cross-PTA analyses in Agazie et al. ( 2024 ) are 
similar in spirit to the Lite analysis method we present here, and the 
results suggest that IPTA DR3 will place the most decisive detection 
to date of the Hellings-Downs curve, which is the definitive signature 
of an isotropic GWB imprinted in the cross-correlations between 
pulsar timing residuals (Hellings & Downs 1983 ). Our Lite analysis 
of IPTA DR2 will therefore be useful to calibrate expectations for 
IPTA DR3. 

Our paper is laid out as follows: In Section 2 , we detail IPTA DR2, 
the FoM, and our method of creating DR2 Lite from IPTA DR2 
as a starting point. In Section 3 , we describe the PTA likelihood, 
models, and parameters used in our Bayesian analysis of each data 
set. In Section 4 , we assess how the statistics for both a CRN and an 
Hellings-Downs cross-correlated GWB evolve throughout each stage 
of data combination, as well as the impact of data combination on 
single pulsar noise characterization and ensemble noise properties. 
In Section 5 , we discuss our results and future directions for the Lite 
method. 
2  IPTA  D R 2  A N D  T H E  LITE  DATA  SET  
IPTA DR2 is the most recent IPTA-combined data set, fully detailed 
in Perera et al. ( 2019 ). Steps required to create the combined data 
set include standardization of TOA flags (metadata), fitting for 
instrumental offsets, implementation of comprehensive timing and 
noise models, and simultaneous/iterative fits to the pulsar timing 
and noise model parameters (Verbiest et al. 2016 ; Perera et al. 
2019 ). IPTA DR2 includes TOAs from the NANOGrav 9-yr data 
set (Arzoumanian et al. 2016 ), EPTA DR1 (Desvignes et al. 2016 ), 
and PPTA DR1 (Manchester et al. 2013 ; Reardon et al. 2016 ), 
as well as legacy NANOGrav timing data for PSRs J1713 + 0747, 
J1857 + 0943, and J1939 + 2134 (Kaspi, Taylor & Ryba 1994 ; Zhu 
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et al. 2015 ) and extended PPTA data for PSRs J0437–4715, J1744–
1134, J1713 + 0747, and J1909–3744 (Shannon et al. 2015 ). In total, 
IPTA DR2 includes a total of 65 millisecond pulsars, with data sets 
spanning 0.5–30 yr, measured across 7 different telescopes. IPTA 
DR2 also features two versions, designated VersionA and VersionB, 
which were each created using different noise models. Throughout 
this work we use only VersionB. A few pulsars in IPTA DR2 are 
known by their Besselian names in NANOGrav data sets, though in 
this work we use their the Julian names: J1857 + 0943 (B1855 + 09), 
J1939 + 2134 (B1937 + 21), and J1955 + 2908 (B1953 + 29). 

Antoniadis et al. ( 2022 ) carried out a GWB search on a subset 
of 53 pulsars from IPTA DR2 with > 3 yr of data. Pulsars with 
shorter timespans do not resolve the GWB at low frequencies, 
and their timing models may not yet be converged (Andrews, 
Lam & Dolch 2020 ). This data set, designated here as Full DR2, 
is our benchmark against which to compare the results of the Lite 
analysis. The search from Antoniadis et al. ( 2022 ) yielded a strong 
detection of a CRN process (the autocorrelated component of a 
GWB). Detection statistics for Hellings-Downs correlations (the 
cross-correlated component of a GWB) were also computed, but 
the values were considered insufficient for a detection. 

IPTA DR2’s very long observation timespan of 30.2 yr results 
from the inclusion of legacy data no longer used in some more 
recent PTA data releases (EPTA Collaboration 2023a ; Agazie et al. 
2023b ; Zic et al. 2023b ). Among these legacy data include TOAs 
which have been observed only at single radio frequencies, which are 
suboptimal for accurately characterizing DM variations (Shannon & 
Cordes 2017 ; Lam et al. 2018a ; Sosa Fiscella et al. 2024 ). It has 
since been shown empirically with EPTA DR2 (EPTA Collaboration 
2023b , c ) and simulations (Ferranti et al. 2025 ) that including these 
types of single-frequency data can reduce the sensitivity of the PTA 
to cross-correlations between pulsar pairs, which must be used to 
resolve the Hellings-Downs curve. For simplicity and consistency 
with Antoniadis et al. ( 2022 ), we include these TOAs in all versions 
of our analysis, but highlight that their presence should be considered 
during the interpretation of our results. We reserve an analysis 
assessing the impacts of legacy data in IPTA data sets for future 
work. 
2.1 Selecting pre-combined pulsar data using a Figure of Merit 
We next detail the methods of creating an IPTA Lite data set 
composed of pre -combined data from individual PTA data sets. In the 
presence of multiple data sets for a given pulsar, we select whichever 
data maximizes a FoM. The FoM encodes the theoretical sensitivity 
of a pulsar to a particular GW signal, based solely on the properties 
of the pulsar’s TOAs. For this work, we define our FoM according 
to the scaling laws for a GWB with spectral index γ = 13 / 3 in the 
intermediate regime where the lowest frequencies of the GWB have 
risen above the white noise level (Siemens et al. 2013 ), 
FoM GWB =

( 
Tobs 

(
〈σTOA 〉2 〈 $t〉

)3 / 13 
) 1 / 2 

, (1) 
where Tobs is the pulsar’s total observation timespan, 〈σTOA 〉 is 
the average (harmonic mean) TOA error, and 〈 $t〉 is the average 
(geometric mean) time between observations. Intuitively, equation 
( 1 ) rewards data sets with high data quantity, i.e. long timespans Tobs 
and high data cadence c = 1 /$t , as well as data sets with high data 
quality, i.e. smaller errors σTOA . The factor of 3 / 13 results from the 
predicted spectral index of the emerging GWB. The intermediate 
regime GWB S/N is also proportional to the number of pulsars, but 

this is not included in the FoM to select which data to use for a single 
pulsar. Different Lite data sets can be also curated for different nHz 
GW searches as the theoretical S/N for each type of GW signal will 
follow a different scaling law. We additionally present the FoM for 
continuous GWs and for GW bursts with memory in Appendix A , 
but we do not explore these in further in this work. 

To create a Lite data set, first decide which GW signal to search 
for and select the FoM. Next, iterate through all pulsars of interest. 
Pulsars timed by a single PTA require no extra work to include them 
in the Lite data set, aside from ensuring terrestrial clock references 
and Solar system ephemeris versions are consistent and up to date 
among all pulsars. If a pulsar is timed by multiple PTAs, compute the 
FoM from each PTA’s data for that pulsar, then take whichever FoM 
is largest and add the corresponding PTA’s data to the Lite data set. 
The Lite data set is therefore the bespoke composition of uncombined 
pulsar data sets across different PTAs, which may be used from there 
to perform a joint GW search. The FoM-based selection approach 
has the advantage that it is purely based on the statistical properties 
of the data set itself and is agnostic to which PTA timed it. Lite data 
sets may be created immediately from the latest PTA data releases. 
2.2 Creating intermediate data sets from IPTA DR2 
We next detail the specifics behind the curation of our IPTA DR2- 
based data subsets, which together with Full DR2 are summarized 
Table 1 . IPTA DR2 is the most recent fully-combined IPTA data set 
and is therefore an excellent data set to test the performance of the Lite 
analysis. Here, we choose to create DR2 Lite starting from the IPTA 
DR2 release. This choice ensures the timing models are identical and 
thus any difference in GW sensitivity between DR2 Lite and Full DR2 
results purely from the difference in data volume. In principle, one 
should also refit the timing models after reducing the data volume, 
or at least check to ensure the remaining timing residuals are within 
the regime of the linear timing model used during GW analyses. We 
empirically found the latter assumption to hold for the Lite version 
of IPTA DR2. Additionally, a maximally sensitive ‘early’ version 
of a fully-combined data set will start with a subset of pulsars that 
maximize the FoM. We use IPTA DR2 to create this hypothetical 
‘early’ data set, which we call EDR2, drawing inspiration from the 
Gaia data releases (Gaia Collaboration 2021 ). 

To create DR2 Lite starting in IPTA DR2, we first isolate each 
PTA’s TOAs in each pulsar and compute the FoM from equation ( 1 ). 
Each pulsar in DR2 Lite then keeps only the PTA data with the largest 
FoM. Fig. 1 visualizes the results of this process, by comparing the 
FoM computed for each PTA and each pulsar. DR2 Lite in total uses 
EPTA data for 33 pulsars, NANOGrav data for 8 pulsars, and PPTA 
data for 12 pulsars. Fig. 1 also shows each pulsar’s FoM computed 
from the fully-combined data set–in nearly all cases the combined 
data result in a higher FoM, as expected from equation ( 1 ). The FoM 
is slightly lower only for PSRs J1012 + 5307 and J1909–3744 using 
the combined data. Following equation ( 1 ), this results if the newly 
combined TOAs have much larger errors on average than the TOAs 
included in the Lite data set and the timespan and data cadence do 
not appreciably increase in contrast. 

We also use the FoM distribution in Fig. 1 to select which pulsars 
to include in EDR2. Specifically, we rank the pulsars in order of 
highest to lowest FoM, as computed from DR2 Lite. This ranking 
represents an optimal order for combining the data to maximize the 
sensitivity of the early-combined data set to a GWB. For EDR2, we 
choose the 22 highest ranked pulsars, represented by all pulsars to 
the right of the vertical line in Fig. 1 . We choose to use a 22 pulsar 
cut-off for this analysis for a number of reasons, though the exact 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/542/4/3028/8244155 by Yale Library user on 29 D
ecem

ber 2025



The Lite method 3031

MNRAS 542, 3028–3048 (2025)

Figure 1. Figures of Merit (FoMs; equation 1 ) computed for each pulsar in IPTA DR2. The different markers indicate whether the FoM is computed either 
using the EPTA (blue circles), NANOGrav (orange squares), or PPTA (green triangles) TOAs, while the open black circles indicate the pulsar’s FoM computed 
using all TOAs together. The PTA data with the largest FoM for each pulsar is used in DR2 Lite. From left to right, the pulsars are ranked in order from lowest 
to highest FoM using whichever PTA’s data are included in the Lite data set. All pulsars to the right of the dashed vertical line are included in EDR2. 
number is ultimately arbitrary. Namely, this number should be large 
enough to avoid bias in GWB statistics due to a finite number of 
pulsars (Johnson et al. 2022 ), but still represents less than half of the 
total pulsars intended for the full analysis. This also cleanly cuts off 
the data set at PSR J2317 + 1439, which sees a large boost in the FoM 
post-combination based on Fig. 1 . Finally, this was also selected as 
a rough match for the number of pulsars with data combined for the 
upcoming IPTA DR3 at the time of performing this analysis (Good & 
International Pulsar Timing Array Team 2023 ). 

Fig. 2 further visualizes each data set by displaying the observation 
times and radio frequencies of each TOA. Coloured markers repre- 
sent the single-PTA data used in DR2 Lite, while coloured + black 
markers represent all data used in Full DR2. EDR2 pulsars are 
highlighted in gold. Several pulsars (e.g. PSR J0437 −4715) are 
timed only by a single PTA; therefore, their Lite and combined 
data sets are identical. Other pulsar’s combined data (e.g. PSR 
J1713 + 0747) present a clear advantage in total radio band coverage 
and observation cadence, especially in the latter half of the data set. 
For reproducibility, code for creating Lite data sets from IPTA DR2 
can be found in the public IPTA github repository. 1 
3  ANA LYSIS  M E T H O D S  
We closely follow the methods and conventions in Antoniadis et al. 
( 2022 ) for the Bayesian analysis of IPTA DR2 and its corresponding 
Lite data set. This will be review for readers familiar with the prior 
work, although in Section 3.2 we also update the pulsar noise models 
over those used in Antoniadis et al. ( 2022 ). We use a multivariate 
Gaussian likelihood to represent our timing residual vector δ t under 
the full signal model M , expressed compactly as 
L (δ t |η, M ) = exp (− 1 

2 ( δ t − s ) T C−1 ( δ t − s ) )
√ 

det (2 πC ) , (2) 

1 https://github.com/ipta/IPTA DR2 analysis/blob/master/gen FoM data set. 
ipynb 

where η is a vector of GW signal and noise model (hyper)parameters, 
s is the mean model accounting for any signals we choose to model 
deterministically, and C is the NTOA × NTOA covariance matrix (van 
Haasteren & Vallisneri 2014 ). The covariance matrix is expressed 
C = N + TBT T , where N is a block diagonal matrix accounting for 
TOA errors and additional white noise parameters. All remaining 
signals are modelled as rank-reduced Gaussian processes in TBT T , 
where T is the concatenation of several NTOA × Nb design matrices of 
Nb basis functions, and B = 〈b b T 〉 encodes the variance over weights 
b . Subvectors of b belong to the weight space W and submatrices of 
T belong to the space of design matrices T . The posterior distribution 
over η under M is expressed using Bayes theorem, 
P(η|δ t , M ) = L (δ t |η, M ) π (η| M ) 

Z(δ t | M ) , (3) 
where π (η| M ) is our prior probability over η and Z(δ t | M ) is the 
model evidence (or marginal likelihood). Equation ( 3 ) is evaluated 
numerically using Markov chain Monte Carlo (MCMC) or nested 
sampling. Given two different models M1 and M0 , the ratio of 
model evidences is the Bayes factor, 
BM1 

M0 = Z(δ t | M1 ) 
Z(δ t | M0 ) , (4) 

interpreted as the probability ratio for the data δ t under M1 versus 
M0 , or equivalently an odds ratio for M1 versus M0 given the data 
δ t (assuming equal prior odds for both models). BM1 

M0 may be used 
as a detection statistic for a signal represented by M1 if M0 is the 
signal’s null hypothesis. For nested models, equation ( 4 ) is easily 
approximated using the Savage-Dickey density ratio (Dickey 1971 ). 

We construct the likelihood and priors using enterprise (Ellis 
et al. 2020 ) and enterprise extensions (Taylor et al. 2021 ). 
We perform parameter estimation using PTMCMCSampler (MCMC 
with parallel tempering; Ellis & van Haasteren 2017 ) as well as 
nautilus (nested sampling; Lange 2023 ). We next describe the 
models used to construct the likelihood and their parameters. 
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Figure 2. All TOAs in DR2 Lite (coloured), compared against all TOAs in Full DR2 (black; Perera et al. 2019 ), plotted in terms of observation frequency 
in GHz versus time in MJD for each pulsar. The DR2 Lite TOAs from different PTAs are distinguished as follows: EPTA (blue circles), NANOGrav (orange 
squares), PPTA (green triangles). Vertical lines show the start and end times of each pulsar’s Lite data set (dashed black), and each pulsar’s combined data set 
(dashed grey). The 22 pulsar data sets used in EDR2 are highlighted with a gold background. IPTA DR2 contains an additional 44 pulsars not shown, 32 of 
which with > 3 yr of data were used in the Antoniadis et al. ( 2022 ) GWB search. 
3.1 Timing model 
We start with the best-fitting timing model for each pulsar from 
Perera et al. ( 2019 ). The timing model accounts for deterministic 
delays to a given pulsars TOAs accounting for effects such as 
pulsar spindown, astrometry, binary orbits, dispersion, frequency- 
dependent pulse profile evolution, and instrumental offsets. However, 
the presence of time-correlated noise will introduce perturbations to 
the best-fitting values of the timing model parameters. As such, 
each pulsar’s timing model is varied using an approximate linearized 
timing model design matrix M ∈ T , with elements defined 
Mij = − ∂ ti 

∂ βj ∣∣∣β0 ,j , (5) 
where ti is the ith TOA, βj is the j th timing model parameter, 
and β0 ,j is the best-fit value of the j th timing model parameter 
(van Haasteren & Levin 2013 ; Taylor 2021 ). The timing model 
coefficients ε = β − β0 ∈ W are then assigned improper uniform 
priors, which are implemented numerically as Gaussian priors with 
(near-)infinite variance, and then marginalized over when computing 
the likelihood following Johnson et al. ( 2024 ). 

3.2 Noise models 
Pulsar noise models account at minimum for white noise, low- 
frequency red noise, and low-frequency chromatic noise. Here, 
we update the pulsar noise models for IPTA DR2 from those 
used in Antoniadis et al. ( 2022 ) to reflect recent advances in 
pulsar noise modelling. In particular, Falxa et al. ( 2023 ) recently 
performed a search for continuous GWs from individual SMBHBs 
in IPTA DR2 and found that the detailed noise models from 
Chalumeau et al. ( 2022 ), which account for higher frequency 
sources of noise, were required to mitigate a spurious detection of a 
continuous GW. 

An optimal treatment of pulsar noise would necessitate the creation 
of fully customized pulsar noise models tailored to IPTA DR2 (e.g. 
Lentati et al. 2016 ), but this is beyond the scope of this work. 
Instead, we use effective pulsar noise models informed by published 
analyses from individual PTA data sets (Goncharov et al. 2021a ; 
Chalumeau et al. 2022 ; EPTA Collaboration 2023b ; Reardon et al. 
2023b ; Agazie et al. 2023c ; Larsen et al. 2024 ). We always use log 10 - 
uniform priors on the amplitude parameters of each noise process. 
These have been shown to be equivalent to spike and slab priors 
which enable noise model averaging (van Haasteren 2025 ). For each 
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version of the data set, we perform one round of noise analysis 
in each pulsar for parameter estimation and model validation prior 
to full-PTA analyses, using the same noise models for each data 
set. Furthermore, it is also possible to improve these priors by 
using hierarchical modelling to create a ‘population prior’, which 
represents the ensemble noise properties of millisecond pulsars 
(van Haasteren 2024 ; Goncharov & Sardana 2025 ). In particular, 
hierarchical priors have been shown (Goncharov et al. 2024 ; van 
Haasteren 2024 ) to reduce bias in GWB parameter estimation under 
a scenario where pulsars with similar intrinsic red noise properties 
become misattributed to the autocorrelations of the GWB (see 
Goncharov et al. 2022 ; Zic et al. 2022 for discussions). While this 
scenario could be relevant for the analysis of IPTA DR2, we do not 
consider a GWB analysis using hierarchical priors, as the ensemble 
noise properties obtained from two data sets (i.e. DR2 Lite and Full 
DR2) will not be equivalent, and comparing results obtained under 
two different data sets with different priors is not straightforward 
(best left for future work). None the less, it is useful to compare 
the ensemble noise properties obtained under different data sets with 
hierarchical modelling. These results are isolated to Section 4.4 , 
while the remainder of this work uses the standard uninformative 
priors. 
3.2.1 Achromatic red noise 
Each pulsar’s red noise is modelled as a rank-reduced Gaussian 
process using a NTOA × 2 Nf sine-cosine Fourier design matrix F ∈ 
T with elements 
Fij =

{ 
cos (2 πfj/ 2 ti ) for even j, 
sin (2 πf( j−1) / 2 ti ) for odd j, (6) 

where we use a linearly spaced frequency basis f , and Nf is the 
number of frequencies used (Lentati et al. 2013 ). We place a power- 
law prior on the variance of the Fourier coefficients a ∈ W at each 
frequency, parametrized in terms of the power spectral density 
S( f ) = A2 

RN 
12 π2 ( f 

yr −1 )−γRN 
yr 3 , (7) 

with uniform priors on the log 10 spectral amplitude at f = 1 / yr 
log 10 ARN ∼ U( −20 , −11) and spectral index γRN ∼ U(0 , 7), while 
the Fourier coefficients a are marginalized over (van Haasteren & 
Levin 2013 ). Red noise processes may be reconstructed in the time 
domain as δ t RN = Fa by repeated draws from the posterior distribu- 
tion over a (Meyers et al. 2023 ). During a full-PTA analysis, the fre- 
quency basis for intrinsic pulsar red noise is defined to be equivalent 
to the CRN basis, f = ( 1 /TDR2 , . . . , 30 /TDR2 ) , where TDR2 ∼= 30 
yr is the timespan of IPTA DR2, and the number of frequencies 
are spaced in integer steps of 1 /TDR2 . During single pulsar noise 
analyses, the frequency basis is tailored to the pulsar’s timespan, 
Tobs , such that f = ( 1 /Tobs , . . . , 30 /TDR2 ) . This is chosen because 
any noise below 1 /Tobs in a given pulsar will be degenerate with 
pulsar spindown parameters. Meanwhile, the truncation frequency 
30 /TDR2 is chosen to make sure each pulsar’s white noise properties 
(which could depend on the cutoff if the spectrum is shallow) are 
consistent across both phases of the analysis. This red noise model 
is left consistent across all pulsars. However, PSR J1012 + 5307 
also exhibits red noise up to very high Fourier modes (Chalumeau 
et al. 2022 ; Falxa et al. 2023 ; EPTA Collaboration 2023b ). As such, 
we add an additional high-frequency power-law red noise process 
for PSR J1012 + 5307 with f = ( 1 /Tobs , . . . , 150 /TDR2 ) during all 
stages of analysis. 

3.2.2 Chromatic noise 
Any time-correlated noise processes depending on the radio- 
frequency of the pulsar, ν, are chromatic. The primary type of 
chromatic noise is DM noise, varying as δtDM ∝ ν−2 . Similarly 
to achromatic red noise, we use a Fourier-basis Gaussian process 
with a power-law prior to model DM noise using hyperparameters 
log 10 ADM ∼ U( −20 , −11) and γDM ∼ U(0 , 7), with an additional 
scaling ( ν/1400 MHz )−2 applied to the Fourier design matrix (equa- 
tion ( 6 )). Following Falxa et al. ( 2023 ), we allow the power law 
frequencies to extend to higher frequencies than achromatic red 
noise, here using f = ( 1 /Tobs , . . . , 150 /TDR2 ) . An additional fit for 
linear and quadratic variations in DM( t) are included in all timing 
models by default. 

The solar wind also induces annual quasi-periodic DM variations 
which we model separately from the Fourier-basis DM Gaussian 
process. Assuming a spherically-symmetric, r−2 density profile 
surrounding the Sun, the DM induced by the solar wind is 
DM solar ( t) = 4 . 85 × 10−6 (nEarth ( t) 

cm −3 
)

π − θ ( t) 
sin θ ( t) pc cm −3 , (8) 

where θ ( t) is the angle between the Earth-Sun and Earth-pulsar 
lines of sight, and nEarth ( t) is the time-dependent solar wind electron 
density measured at 1 AU from the Sun (You et al. 2007 ; Hazboun 
et al. 2022 ; Nit ¸u et al. 2024 ). The mean, time-independent component 
of the electron density is included as a timing model parameter for 
every pulsar and marginalized over. We additionally fit for time- 
dependent density perturbations %n Earth ∈ W along each pulsar’s 
line-of-sight as a Gaussian process using the model from Nit ¸u et al. 
( 2024 ), with Nb equal to the number of pulsar-Sun conjunctions in 
the pulsar’s data set, and a separate variance parameter sampled for 
each pulsar using the prior log 10 σnEarth ∼ U( −4 , 2) electrons cm−3 . 
Since θ ( t) is bounded by the ecliptic latitude ( ELAT ) of each pulsar, 
many pulsars with large ELAT will be less sensitive to the solar 
wind, though there may be exceptions depending on radio-frequency 
coverage and TOA precision (Susarla et al. 2024 ). We only include 
the time-dependent model in pulsars for which ELAT < 35◦ and 
the model is favoured with Savage-Dickey Bayes factor BSW ( t) 

0 > 1 
using IPTA DR2. 

Pulsars may also experience non-dispersive chromatic noise due 
to effects such as interstellar scattering or pulse profile variability. 
Scattering results from pulse propagation through an inhomoge- 
neous refractive medium (Cordes & Rickett 1998 ; Hemberger & 
Stinebring 2008 ). A simple model for time-delays introduced by 
scattering is that δt ∝ ν−χ with χ = 4 . 4. However, this makes several 
assumptions, including that the refractive medium is described by 
Kolmogorov turbulence, the medium is isolated to a thin screen, the 
pulse is Gaussian, and the pulse broadening function is exponential 
(Geiger et al. 2025 ). Violations of these assumptions can and do 
result in alternative values for χ in millisecond pulsars (Turner et al. 
2021 ), especially once transforming from estimates of the scattering 
delay to the timing residual (Geiger et al. 2025 ). 

Here we account for some of this excess chromatic noise using 
the same Fourier-basis Gaussian process model as DM noise, 
except the radio-frequency scaling of the Fourier basis follows 
( ν/1400 MHz )−χ , with χ as a fit parameter. We incorporate the 
uncertainty on χ in our priors by using a truncated normal distribu- 
tion, χ ∼ N (4 , 0 . 5) × U(2 . 5 , 10), where the lower-bound at χ = 2 . 5 
prevents degeneracy with DM noise. We include this model for PSRs 
J0437-4715, J0613-0200, J1600-3053, J1643-1224, J1713 + 0747, 
J1903 + 0327, J1939 + 2134 based on the likely influence of 
scattering variations in these pulsars’ timing residuals from prior 
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work (Alam et al. 2021 ; Srivastava et al. 2023 ; Reardon et al. 2023b ; 
Agazie et al. 2023d ). We also model a chromatic event in PSR 
J1713 + 0747 using the following deterministic signal (Lam et al. 
2018b ), 
sd ( ti ) = −Ad + ( ti − t0 ) exp (− ti − t0 

,d 
)( νi 

1400 MHz 
)−χd 

, (9) 
with uniform priors log 10 Ad ∼ U( −10 , −2) s, log 10 ,d ∼
U (0 . 7 , 2 . 7) d, t0 ∼ U (54742 , 54768) MJD, χd ∼ U(1 , 6) (Gon- 
charov et al. 2021a ; Antoniadis et al. 2022 ). To improve compu- 
tational efficiency, all chromatic parameters χ , χd are varied during 
single pulsar noise analyses, but held fixed to their maximum a 
posteriori (MAP) values during subsequent full-PTA analyses. 
3.2.3 White noise 
Many white noise parameters are included in IPTA-combined data 
sets to account for different systematic errors which may be unique 
to particular observing systems. We apply the same prescription 
as Antoniadis et al. ( 2022 ) for fitting white noise. Two parameter 
types are diagonal in the N matrix: EFAC, which applies a net 
scaling to the estimated TOA uncertainties, and EQUAD, which 
adds an additional net uncertainty in quadrature. We also apply 
ECORR parameters to NANOGrav TOAs, which are intended to 
model pulse jitter in sub-banded TOAs measured during the same 
observation epoch using uniform blocks along the diagonal band of 
the N matrix. Separate white noise parameters are applied to TOAs 
from different receiver and backend combinations in each pulsar, 
where these combinations are specified by each TOA’s -group 
flag. All white noise parameters are varied during single pulsar noise 
analyses, and then held fixed to their MAP values during subsequent 
full-PTA analyses. 
3.3 Common signals 
In full-PTA analyses, we search for an additional common red noise 
(CRN) process on top of all components in each pulsar’s noise model. 
The CRN is modelled with the same power-law spectral density as 
the individual red noise models, equation ( 7 ), using new parameters 
ACRN and γCRN which are fit for simultaneously in all pulsars at once. 
In a single pulsar analysis, the achromatic red noise includes contri- 
butions from both common and intrinsic pulsar noise. Switching from 
the single pulsar to full-PTA analysis decouples the total achromatic 
red noise into the separate intrinsic and common channels. The CRN 
also uses the same frequency basis f for all pulsars. To be consistent 
with Antoniadis et al. ( 2022 ), we use Nfreqs = 13 components for a 
frequency grid f = ( 1 /TDR2 , . . . , 13 /TDR2 ) for each analysis. 

To model cross-correlations in a full-PTA analysis we define the 
cross-power spectral density, 
Sab ( f ) = -ab S( f ) , (10) 
where -ab is the overlap reduction function (ORF) encoding the 
geometric cross-correlation between pulsars a and b as a function of 
their sky-separation angle, and S( f ) is the power spectral density in 
each pulsar, given by the form of equation ( 7 ) if assuming a power 
law spectrum. One can specify different signals by the form of the 
ORF: -ab = δab represents a purely autocorrelated CRN process 
(uncorrelated between pulsars), whereas -ab given by the Hellings- 
Downs curve is the signature of an isotropic GWB under general 
relativity. Alternative ORFs given by monopolar and dipolar forms 
in pulsar sky separation angle would result from errors in terrestrial 

Figure 3. Comparison of the posterior PDF for log 10 ACRN at fixed γCRN = 
13 / 3 from Full DR2 (blue, middle distribution), DR2 Lite (orange, rightmost 
distribution), and EDR2 (green, leftmost distribution). While the posteriors 
from all three data sets show evidence of a CRN, the amplitude distributed 
measured using DR2 Lite is shifted to larger values than the posteriors from 
the combined data sets. 
time standards (Hobbs et al. 2012 ) and conversion to the Solar system 
barycenter (Champion et al. 2010 ), respectively. 
4  IPTA  D R 2  LITE  VERSUS  C O M B I N E D  
ANALYSI S  RESULTS  
Here we present the results of our common signal search and analysis 
of DR2 Lite (Table 1 , row 2), in comparison with the same analysis of 
Full DR2, which was originally carried out in Antoniadis et al. 2022 
(Table 1 , row 1). We also perform an analysis on the fully-combined 
data set with only 22 pulsars, designated here as EDR2, that could 
reflect an intermediate stage of the data combination process (Table 1 , 
row 3). 
4.1 Common red noise 
We first compare our inferences on the CRN parameters using each 
data set to see how much information we can learn about the common 
signal using the Lite method, and how much our inferences improve 
using the combined data. 
4.1.1 Full-PTA parameter estimation 
First we perform a simultaneous analysis of all pulsars in each data 
set to estimate the CRN parameters assuming a fixed spectral index 
γCRN = 13 / 3. Fig. 3 compares the posterior PDFs for log 10 ACRN , 13 / 3 
from each data set. We also perform the same comparison using a 
varied γCRN model, for which we show the CRN posteriors in Fig. 4 . 
The median and 95 per cent credible intervals on CRN parameters 
from both models are reported in Table 2 . We further report in 
Table 2 the upper limit A95 per cent 

CRN , 13 / 3 for each data set, estimated as 
the 95 per cent one-sided Bayesian credible interval after replacing 
the log 10 -uniform priors on ACRN , 13 / 3 with uniform priors. 

We find that all three data sets, including DR2 Lite, are able to 
detect a CRN, however, there are differences in spectral character- 
ization. In particular, the amplitude measured using DR2 Lite is 
very large–systematically higher than amplitude measured from the 
combined data sets, with an median amplitude ACRN , 13 / 3 measured 
23 per cent larger using DR2 Lite than it is using Full DR2. This 
implies that DR2 Lite is allowing excess noise intrinsic to the pulsars 
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Figure 4. Comparison of posteriors for the CRN parameters log 10 ACRN 
and γCRN from Full DR2 (blue, narrowest distribution), DR2 Lite (orange, 
widest distribution), and EDR2 (green, aligned with Full DR2). Adding more 
data in the combination results in tighter constraints on the CRN parameters. 
Contours enclose 68 per cent and 95 per cent of the posterior from each data 
set (with samples outside the 95 per cent credible region shown only for DR2 
Lite). 
to leak into the common channel (Zic et al. 2022 ). The upside then 
is that performing data combination apparently helps to mitigate this 
effect. We explore this discrepancy further in Section 4.1.4 . 

Additionally, Fig. 4 shows that the CRN parameter constraints 
become more precise as more data are added. To quantify the 
improvement in precision, we estimate the area A of the 2D region in 
log 10 ACRN , γCRN enclosed within 95 per cent of the posterior from 
each data set. We find the ratio of areas with respect to Full DR2 
to be ALite / AFull = 2 . 25 and AEDR2 / AFull = 1 . 23, i.e. Full DR2 is 
2.25 times more precise at spectral characterization than DR2 Lite, 
and 1.23 times more precise than EDR2. 

Fig. 5 further compares each data set using a more generic ‘free- 
spectral’ model for the CRN, where we drop the assumption of 
a power-law spectrum and sample the timing residual power at 
each discrete frequency fi as independent parameters with prior 
log 10 .i ∼ U( −10 , −4) in units of seconds (Lentati et al. 2013 ). The 
top panel shows the posteriors on each log 10 .i from each data set, 
which plotted versus frequency represent the amplitude spectrum of 

the CRN. Here, it is valid to compare amplitude spectra from the 
different data sets as they share the same baseline TDR2 , otherwise 
the amplitude spectral density would be the relevant quantity to 
compare. Overplotted lines depict median power law spectra from 
each data set, for comparison. The bottom panel of Fig. 5 shows the 
log 10 Bayes factors, log 10 BCRN 

CRN −.i , for the free spectral CRN model 
versus the same model without the inclusion of common power in the 
frequency bin at frequency fi , as measured using the Savage-Dickey 
density ratio. These quantify the detection significance of the CRN 
at each frequency bin, where log 10 BCRN 

CRN −.i > 0 indicates the data do 
favour the inclusion of additional common power at frequency fi . 

EDR2’s amplitude spectrum is comparable to Full DR2, with small 
deviations in the posteriors at higher frequencies. Both spectra are 
consistent with a power law form and display strongest detections 
of power in the 2 − 3 nHz range. Meanwhile, the posterior power in 
DR2 Lite’s amplitude spectrum exceeds that from the combined data 
sets at several frequencies, which is consistent with the higher power- 
law amplitude measured using DR2 Lite. We focus on the 1 and 4 
nHz frequencies (corresponding to periods of ∼ 30 and ∼ 7 . 5 yr, 
respectively) where power is detected more significantly using DR2 
Lite than the combined data sets. Relatively few pulsars in IPTA 
DR2 have sufficiently long timespans to contribute meaningfully to 
constraining the posterior at 1 nHz. The Fig. 5 cumulative histogram 
of pulsars over their observation timespan 1 /Tobs illustrates this ef- 
fect: Only 3 pulsars (PSRs J1713 + 0747, J1857 + 0943, J1939 + 2134) 
have Tobs > 21 yr, 2 of which (PSRs J1857 + 0943 and J1939 + 2134) 
have very large data gaps spanning ∼ 10 yr in DR2 Lite, as shown 
in Fig. 2 . Unconstrained noise in even 1 of these pulsars using DR2 
Lite could feasibly cause changes in timing residual power at 1 
nHz. As for the 4 nHz posterior, it visibly deviates from the median 
power law fit obtained from Full DR2 and EDR2, likely producing 
the large amplitude measured in the power law analysis. While 41 
pulsars have sufficient timespan to resolve this frequency, details in 
the noise characterization of a minority of especially sensitive pulsars 
may still produce such features in the common spectrum (Hazboun 
et al. 2020 ; Larsen et al. 2024 ). 
4.1.2 Factorized likelihood analysis 
We gain additional information about the significance of an autocor- 
related common process using the Factorized Likelihood (Taylor 
et al. 2022 ). Using the factorized likelihood, the likelihood and 
common noise posteriors are estimated as a product of these statistics 
as measured from analyses of individual pulsars. The factorized 
likelihood not only enables rapid PTA analyses but also allows the 
analysis of different Lite data sets at no additional computational cost, 
as demonstrated in Agazie et al. ( 2024 ). Using the factorized likeli- 
hood, we assign the CRN model a fixed spectral index γCRN = 13 / 3 

Table 2. CRN parameters and statistics as a function of data set. Using the fixed γCRN = 13 / 3 model, we report median and 95 per cent credible 
intervals on ACRN , 13 / 3 (using log 10 -uniform priors), 95 per cent upper limits A95 per cent 

CRN , 13 / 3 (using uniform priors), and Bayes factors on the CRN BCRN , 13 / 3 
0 

estimated using the Savage-Dickey density ratio from a factorized likelihood analysis. Using the varied γCRN model, we report median and 95 per cent 
credible intervals on ACRN and γCRN . As data are progressively added from Lite to full, CRN detection statistics become more significant and parameter 
estimates become more precise, while the upper limit decreases with combined data. 

Fixed γCRN = 13 / 3 Varied γCRN 
IPTA DR2 subset ACRN , 13 / 3 A

95 per cent 
CRN , 13 / 3 log 10 BCRN , 13 / 3 

0 ACRN γCRN 
DR2 Lite 4 . 8+ 1 . 8 

−1 . 8 × 10−15 6 . 4 × 10−15 3 . 0 ± 0 . 2 10 . 0+ 15 . 6 
−6 . 5 × 10−15 3 . 6+ 0 . 9 

−1 . 0 
EDR2 3 . 6+ 1 . 0 

−1 . 2 × 10−15 4 . 5 × 10−15 6 . 4 ± 0 . 2 6 . 9+ 7 . 3 
−3 . 9 × 10−15 3 . 7+ 0 . 8 

−0 . 8 
Full DR2 3 . 9+ 1 . 0 

−1 . 0 × 10−15 4 . 7 × 10−15 9 . 1 ± 0 . 3 7 . 2+ 7 . 0 
−3 . 8 × 10−15 3 . 7+ 0 . 7 

−0 . 7 
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Figure 5. Comparison of the inferred CRN amplitude spectrum, .( f ) = √ 
S( f ) /TDR2 , using Full DR2 (blue, outlined, shaded), DR2 Lite (orange, shaded, no 

outlines), and EDR2 (green, outlined, hollow). The violins in the top panel display posteriors on the log 10 amplitude of common timing residual power .i at 
each discrete frequency fi , and the solid lines indicate power law spectra corresponding to the median values of the CRN parameters from Fig. 4 . To understand 
the number of pulsars contributing at each frequency, the violins are shown over a cumulative histogram of the pulsars in IPTA DR2 based on their observation 
timespans f = 1 /Tobs . The bottom panel quantifies the detection significance of common power at each bin via the log 10 Bayes factor for a model containing 
the full CRN amplitude spectrum versus the same model with a single free spectral bin removed at the corresponding frequency. Using DR2 Lite, log 10 .i is 
measured most significantly at f ∼ 1 and f ∼ 4 nHz. 

Figure 6. Inferences of the CRN amplitude at γ = 13 / 3 using the factorized 
likelihood with each data set: Full DR2 (blue, smallest tail), DR2 Lite (orange, 
largest tail), EDR2 (green). The factorized likelihood allows inference of the 
low-amplitude of each distribution, which corresponds to a null-detection. 
The probability of a null-detection is highest with DR2 Lite and lowest with 
Full DR2, as expected when using more data in the analysis. EDR2 achieves 
greater detection significance than DR2 Lite despite including fewer pulsars. 
in each pulsar, while the intrinsic red noise model’s spectral index is 
allowed to vary (otherwise, the intrinsic red noise and CRN signals 
are completely degenerate). Since the CRN may always be assigned 
to the intrinsic RN model during each single-pulsar analysis, the 
CRN amplitude in each pulsar is always finite at ACRN , 13 / 3 < 10−17 , 
therefore the Savage-Dickey density ratio can always be used to 
estimate the CRN Bayes factor from the product. 

Fig. 6 displays the posteriors over log 10 ACRN , 13 / 3 obtained from 
the factorized likelihood analysis, and Column 5 of Table 2 reports 
the Bayes factors for a model containing a CRN with γCRN = 13 / 3 
versus a model with no CRN. We estimate the Bayes factor means 
and uncertainties based on the distributions of probabilities within 

log 10 ACRN , 13 / 3 < −16 shown in Fig. 6 . All three data sets’ Bayes 
factors are of O(103 ) or greater, signifying strong preference for a 
CRN, in agreement with the full-PTA analysis. However, the results 
show progressively more support for a CRN as the data combination 
process continues, with the odds of a CRN increasing by a factor 
of ∼ 103 . 4 going from DR2 Lite to EDR2, and again by a factor of 
∼ 102 . 7 going from EDR2 to Full DR2. This result is unsurprising 
as we add more data into the analysis, but none the less underscores 
the effectiveness of data combination for improving our detections 
of common signals. 
4.1.3 Dropout analysis 
The factorized likelihood can be also used to rapidly compute dropout 
factors (DFs), which are Bayes factors for a model with the CRN 
in N pulsars versus a model with the CRN in N − 1 pulsars, 
while the excluded pulsar p is modelled with intrinsic noise only 
(Arzoumanian et al. 2020b ; Antoniadis et al. 2022 ; Taylor et al. 
2022 ). If pulsar p’s DF > 1, then pulsar p’s data support the CRN 
measurement (i.e. the CRN Bayes factor would decrease by the 
DF upon removing pulsar p from the array), whereas if pulsar p’s 
DF < 1 then pulsar p’s data are in tension with the CRN (i.e. the 
CRN Bayes factor would increase by the DF upon removing pulsar 
p from the array). Comparing the DFs across pulsars is a useful 
way to diagnose which pulsars most heavily favour or disfavour the 
inclusion of a CRN. To see how individual pulsars affect parameter 
estimation on ACRN , 13 / 3 , see Section 4.1.4 . 

Fig. 7 compares each pulsar’s DF from DR2 Lite and Full DR2, as 
computed using the factorized likelihood. We follow the procedure 
from Antoniadis et al. ( 2022 ) to compute uncertainties on the DFs: 
first we vary the analysis over 25 combinations of metaparameters 
and then for each combination, we generate 1000 bootstrap realiza- 
tions by re-sampling the chain with replacement. The Full DR2 DFs 
are consistent with those reported in Antoniadis et al. ( 2022 ), with 
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Figure 7. Comparison of CRN dropout factors (DFs) computed using the factorized likelihood for each pulsar, as computed using DR2 Lite (orange) and Full 
DR2 (blue). DFs help diagnose which pulsars are most responsible for the results of a CRN search, where pulsars with DF > 1 support the presence of a CRN 
and pulsars with DFs < 1 are in tension with a CRN. Pulsars are ranked from highest to lowest DF using Full DR2, and errors are estimated as the 95 per cent 
confidence interval of 25 000 bootstrap realizations, following Antoniadis et al. ( 2022 ). PSR J1909 −3744’s especially low DF signifies its total measured noise 
has a lower amplitude than the CRN, as further shown in Fig. 11 . 
several pulsars’ DFs > 1. Using DR2 Lite, fewer DFs are found to 
be larger than 1, which is unsurprising as the Bayes factor for the 
CRN is lower. PSR J1909–3744’s value of DF = 6+ 24 

−6 × 10−4 using 
DR2 Lite is extremely small (even within bootstrapping errors), 
as such this pulsar seems to be in major tension with the CRN 
process when using DR2 Lite. This is highly unusual, but may be 
explained if PSR J1909 −3744 has a much lower upper limit on 
the CRN than the remaining pulsars, as discussed in Section 4.1.4 . 
Using Full DR2, PSR J1909–3744’s DF is DF = 0 . 49+ 0 . 91 

−0 . 08 , indicating 
PSR J1909–3744 is now more in line with the CRN and with the 
other combined pulsars. We follow up further with PSR J1909–
3744 in Section 4.3 . PSR J1713 + 0747 is also an interesting case, 
switching from disfavouring to supporting the CRN, going from 
DF = 0 . 18+ 0 . 73 

−0 . 14 using DR2 Lite to DF = 4 . 93+ 13 . 34 
−0 . 72 using Full DR2. 

Overall, five pulsars experience significant (i.e. > 2 σ ) boosts to their 
DF after data combination, while only PSR J2317 + 1439’s DF is 
significantly higher using DR2 Lite. 

4.1.4 Assessing the large common amplitude in DR2 Lite 
While the dropout analysis in Section 4.1.3 shows that the detection 
significance of the CRN may be skewed by individual outlier pulsars 
using DR2 Lite, it still leaves open the question why the CRN 
amplitude is systematically larger when using DR2 Lite as opposed 
to Full DR2. To investigate further, we apply a modified version 
of the dropout analysis which compares how the discrepancy in 
the measured amplitude depends on which pulsars are dropped. To 
quantify this discrepancy, we compute a distribution over the shift 
or difference between the values for ACRN , 13 / 3 from each data set, 
$A = ALite − AFull , the mean of which is defined 
〈 $A 〉 = ∫ d ALite ∫ d AFull ( ALite − AFull ) 

×P ( ALite |δ t Lite ) P ( AFull |δ t Full ) (11) 
≈ 1 

Nsamples 
∑ 
i,j ( ALite )i − ( AFull )j . (12) 

For brevity we have omitted the previously used subscripts so that 
A + ACRN , 13 / 3 , and line 12 makes explicit that we compute this 
difference simply by drawing Monte Carlo pairs of samples from 
the original factorized likelihood posteriors from each data set. This 
quantity is related to the tension metric from Agazie et al. ( 2024 ). 
When including all pulsars, the median of this difference comes out 
to $A = 0 . 8+ 1 . 2 

−1 . 0 × 10−15 , where the quantiles enclose 68 per cent 
of the distribution about the median. The value $A = 0 is only just 
within the 68 per cent credible region, indicating a marginal tension 
on the level of 0 . 81 σ . 

To test the dependence of this discrepancy on individual pulsar 
data sets, we recompute the CRN amplitude at γCRN = 13 / 3 via the 
factorized likelihood method (equation 5 from Taylor et al. 2022 ) but 
with pulsar j removed from the data set, i.e. 
p−j (log 10 A |{δ t }−j ) + p

 
 log 10 A | Npsr ∏ 

i ,= j δ t i 
 
 

∝ Npsr ∏ 
i ,= j p

(
(log 10 A )i |δ t i ) , (13) 

where i indexes each pulsar’s data set δ t i , and the −j subscripts 
are a shorthand to denote pulsar j has been dropped. We compute 
p−j (log 10 A |{δ t }−j ) for every pulsar j using both DR2 Lite and Full 
DR2, at which points combining with equation ( 12 ) yields a new 
measure of the discrepancy, $A−j , with the j th pulsar removed 
from both data sets. 

The bottom panel of Fig. 8 shows our estimates of $A−j for each 
pulsar j individually removed by themselves. Shaded regions show 
the corresponding estimates $A with no pulsars removed. To better 
understand what is causing any measured differences in $A−j , we 
also show the estimates on A−j using each data set in the top panel 
of Fig. 8 (and corresponding shaded regions for A with no pulsars 
removed). If A−j > A , then pulsar j is driving down the amplitude 
estimate, whereas if A−j < A , then pulsar j is adding power to the 
common amplitude. 
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Figure 8. Parameter estimation on ACRN , 13 / 3 using the factorized likelihood posteriors with each pulsar j dropped out one at a time by themselves. The top 
panel shows medians and 68 per cent credible intervals over A−j (equation 13 ) using each data set, while the bottom panel shows the corresponding difference 
$A−j between DR2 Lite and Full DR2 (equation 12 ). For comparison, the solid lines and shaded regions show the corresponding estimates A and $A with 
no pulsars removed. Pulsars are ranked from the lowest to highest median values of $A−j . Several individual pulsars, when removed by themselves, skew the 
estimates of $A , showing the overall discrepancy is sensitive to systematic errors in the individual pulsars. 

There are several pulsars, when excluded from the analysis, that 
reduce the discrepancy in $A . The most impactful pulsars on this 
end are PSRs J2145 −0750, J1744 −1134, and J0437 −4715; their 
individual removal reduces the discrepancy to a 0 . 26 σ , 0 . 32 σ , 
and 0 . 30 σ level, respectively. Interestingly, each pulsar skews the 
distributions A−j in a different way. PSR J2145 −0750 displays 
very loud red noise with a steep power law index γ > 4 in IPTA 
DR2 (Caballero et al. 2016 ; Perera et al. 2019 ); in Full DR2, this is 
decoupled from the CRN, whereas in DR2 Lite, the red noise is not 
sufficiently resolved from DM variations (see Table 4 ; Section 4.3 ) 
nor is it resolved from the CRN, causing the red noise to pollute the 
CRN process. PSR J1744 −1134, among the best timers in the data 
set, affects the discrepancy simply by reducing ACRN , 13 / 3 using Full 
DR2, whereas there is less constraint on its noise using DR2 Lite 
(Table 4 ). Finally, PSR J0437 −4715, which only has TOAs from the 
PPTA in IPTA DR2, strongly drives up the CRN amplitude for both 
data sets. Notably, PSR J0437 −4715 has the highest FoM behind 
PSR J1939 + 2134 and therefore has a disproportionately strong effect 
on the analysis, on top of very challenging noise properties to model 
due to its brightness, which may well contribute additional systematic 
error in this analysis (see e.g. Lentati et al. 2016 ; Goncharov et al. 
2021a ; Reardon et al. 2023b , 2024 ). In summary, we consider the 
discrepancy in the CRN amplitude between DR2 Lite and Full DR2 
to be statistically insignificant as it is not robust to outliers among 
the individual pulsars. 

Finally, there are a few pulsars on the opposite end where the 
discrepancy widens with their removal. This is unsurprising if an 
equal number of pulsars also narrow the discrepancy. However, 
this analysis sheds insight into the nature of PSR J1909 −3744’s 
extremely low DF from Section 4.1.3 . We see on the far right-hand 
side of Fig. 8 that removing PSR J1909 −3744 from the analysis 
results in a much larger CRN amplitude of A−j = 6 . 1+ 1 . 4 

−1 . 5 × 10−15 

Table 3. Detection statistics for Hellings-Downs correlations as a function 
of the data set. The middle column reports Bayes factors for an Hellings- 
Downs cross-correlated model versus an autocorrelated CRN model, as 
estimated using both likelihood reweighting and the HyperModel . The 
last column reports the Bayesian S/N for Hellings-Downs correlations from 
a noise marginalized multiple component optimal statistic (OS) analysis. 

BHD , 13 / 3 
CRN , 13 / 3 S/NBayes 

IPTA DR2 subset Reweighting HyperModel OS 
DR2 Lite 0 . 662 ± 0 . 005 0 . 57 ± 0 . 03 0.00 
EDR2 2 . 841 ± 0 . 006 3 . 0 ± 0 . 2 0.92 
Full DR2 1 . 39 ± 0 . 04 1 . 45 ± 0 . 07 0.79 
(with errors enclosing 95 per cent quantiles). This shows PSR 
J1909 −3744’s DF is so low because it is uniquely suppressing a 
higher-amplitude mode of the CRN posterior, which is more likely 
to be dominated by intrinsic pulsar noise. Meanwhile, the Full DR2 
amplitude A−j when dropping PSR J1909 −3744 is shifted by much 
less using Full DR2, reflective of the fact that several more pulsars 
contribute constraints on the CRN measurement after performing 
data combination. 
4.2 Cross-correlations 
In order for the data to signify evidence of a GWB, they ought 
to favour a cross-correlated common signal following the Hellings- 
Downs curve, as opposed to a purely autocorrelated common signal. 
We assume that data combination will ultimately improve our ability 
to resolve a cross-correlated GWB over the use of uncombined 
data. IPTA DR2 has limited value to test this assumption, since 
the statistics for cross-correlations in IPTA DR2 obtained first by 
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Table 4. Bayes factors for different processes computed from single pulsar analyses. The 24 pulsars featured here are those from IPTA DR2 with data 
from 2 or more PTAs. BPLRN 

0 is the Bayes factor for a model with power-law red noise included versus the same model without, BPLDM 
0 for power-law 

DM noise, BPLChr 
0 for higher-order chromatic noise, and BSWGP 

0 for Gaussian perturbations to the solar wind electron density along the Earth-pulsar 
line of sight. These Bayes factors were computed as the Savage-Dickey density ratio using each signal’s relevant amplitude parameter; where there 
were a lack of samples in the tail of each parameter’s posterior, we place a lower bound of B > 103 . Bold values mark cases where B > 10, indicating 
strong evidence for the noise process. The total number of bolded entries are tallied at the bottom of each column. Entries with asterisks (∗) indicate 
cases of severe covariance within the noise model parameter space, such that either, but not both, marked signals are favoured by the data (i.e. the data 
cannot distinguish the chromaticity of the process). The daggered († ) entries for PSR J1012 + 5307 indicate that the high-frequency achromatic red 
noise process was used to compute the Bayes factor, rather than the 30 frequency red noise process. 

DR2 Lite single pulsar Bayes factors Full DR2 single pulsar Bayes factors 
Pulsar BPLRN 

0 BPLDM 
0 BPLChr 

0 BSWGP 
0 BPLRN 

0 BPLDM 
0 BPLChr 

0 BSWGP 
0 

J0030 + 0451 2.1 1.0 − − > 103 3.6 − −
J0613–0200 3 . 2∗ 2 . 0∗ 1 . 2∗ − > 103 9.0 19 . 8 −
J1012 + 5307 1 . 1† 0.6 − − > 103 † > 103 − −
J1022 + 1001 1 . 2∗ 3 . 0∗ − 0.8 1.4 56 . 8 − 386 . 0 
J1024–0719 1 . 7∗ 1 . 3∗ − − > 103 > 103 − −
J1455–3330 1.4 1.4 − − 0.8 0.7 − −
J1600–3053 0.8 1 . 2∗ 1 . 6∗ 1.7 15 . 7 3.0 > 103 292 . 7 
J1640 + 2224 0.7 0.7 − − 1.1 > 103 − −
J1643–1224 0.7 2 . 9∗ 1 . 0∗ − > 103 > 103 > 103 −
J1713 + 0747 67 . 6 1.0 0.9 − > 103 > 103 > 103 −
J1730–2304 0.8 1.1 − − 0.8 0.7 − −
J1738 + 0333 0.9 0.8 − − 1 . 2∗ 1 . 8∗ − −
J1744–1134 1 . 5∗ 1 . 1∗ − − > 103 50 . 0 − −
J1853 + 1303 0.8 0.8 − − 1.4 1.1 − −
J1857 + 0943 9.6 > 103 − − 1087 . 1 > 103 − −
J1909–3744 0.5 > 103 − − > 103 > 103 − −
J1910 + 1256 0.8 30 . 9 − − 0.8 13 . 7 − −
J1918–0642 1 . 2∗ 1 . 9∗ − 4.1 2.3 > 103 − 4.0 
J1939 + 2134 > 103 > 103 > 103 − > 103 > 103 > 103 −
J1955 + 2908 0.8 24 . 6 − − 0.9 169 . 4 − −
J2010–1323 1.5 1.0 − − 1.4 > 103 − −
J2124–3358 0.9 0.8 − 3.7 0.9 0.9 − 1.0 
J2145–0750 2 . 2∗ 3 . 5∗ − 0.8 > 103 158 . 0 − 7.0 
J2317 + 1439 0.7 0.7 − − 0.6 > 103 − −

Total B > 10: 2 5 1 0 12 16 5 2 
Antoniadis et al. ( 2022 ) are well below the thresholds required for 
GW detection (Allen et al. 2023 ). Thus, the following comparisons 
of cross-correlation statistics obtained from the three data sets are 
merely exploratory, but still presented for completeness. 
4.2.1 Optimal statistic 
We first assess the significance of Hellings-Downs cross-correlations 
with the optimal statistic (OS; Anholm et al. 2009 ; Chamberlin 
et al. 2015 ) using the defiant tool. 2 We specifically use the 
multiple component OS to measure all three ORFs (Monopole, 
Dipole, Hellings-Downs) simultaneously, which reduces any bias 
incurred while measuring one ORF due to the presence of another 
(Sardesai et al. 2023 ). To account for CRN and intrinsic pulsar noise 
parameter uncertainties, we apply noise marginalization to obtain a 
distribution of the OS (i.e. the NMOS; Vigeland et al. 2018 ) over 
3000 draws from our Bayesian posteriors. For each data set, we then 
follow Vallisneri et al. ( 2023 ) to obtain a Bayesian S/N (S/NBayes ), 
which can be interpreted as a probability-weighted mean over noise 
marginalized S/N distribution. For our purposes we assume the GWB 
S/N null distribution is Gaussian (noting an accurate measure of GW 
significance mandates use of a GX2 null distribution; see Hazboun 
2 https://github.com/GersbachKa/defiant/tree/main 

et al. 2023 ). Our analysis also neglects to account for covariance 
between pulsar pairs, which naturally arises in pulsar pairs with 
pulsars in common (Allen & Romano 2023 ; Johnson et al. 2024 ). 
However, this assumption is justified here as we are in the weak S/N 
regime of the GWB cross-correlations (Sardesai et al. 2023 ). 

We report the S/NBayes values we obtain for Hellings-Downs ORF 
on the right-most column of Table 3 . Using DR2 Lite, We are 
completely unable to resolve HD correlations from noise, as given by 
S/NBayes = 0. The combined data sets yield higher, but still relatively 
low values of S/NBayes = 0 . 79 from Full DR2 and S/NBayes = 0 . 92 
from EDR2, with EDR2 yielding slightly higher significance despite 
including fewer pulsars than Full DR2. These results appear to be 
consistent with expectations from Agazie et al. ( 2025 ), which found 
that the 30 noisiest pulsars can be dropped from the NANOGrav 15-yr 
data set before the Hellings-Downs S/N experiences any appreciable 
drop (here EDR2 is effectively Full DR2 with the 31 noisiest pulsars 
dropped). In this case, a slight increase in S/N with EDR2 may imply 
either excess noise from a set of the 31 remaining pulsars, or it is 
simply a statistical fluctuation given the low values of S/NBayes . 

Fig. 9 further shows the full distributions of the squared amplitude 
ˆ A2 of each correlation signature, computed using the multiple 

component NMOS from each data set with uncertainty sampling 
(Gersbach et al. 2025 ). The Hellings-Downs GWB amplitudes are 
consistent with each other and the reported values of S/NBayes , with 
the combined data sets reducing the uncertainty from DR2 Lite. The 
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presence of monopolar or dipolar correlations indicates additional 
systematic correlated noise (see Section 3.3 ). Most notable is that 
DR2 Lite produces a larger monopole than Full DR2, suggesting 
the presence of additional unmodelled noise in the uncombined 
data, which is then mitigated via data combination. The monopole 
amplitude is further reduced in EDR2 from Full DR2, implying a 
set of the 31 remaining pulsars may be partially responsible for the 
noise contributing to this monopole. The DR2 Lite and Full DR2 
monopoles both correspond to S / N ∼ 2 (Antoniadis et al. 2022 ). 
This S/N level is not particularly significant, as it was shown in 
Agazie et al. ( 2023a ) that monopolar cross-correlations with higher 
corresponding S/N may arise frequently in simulations containing 
solely HD-correlated GWs and intrinsic pulsar noise. As such, it is 
possible these monopole measurements are statistical fluctuations, 
as opposed to the result of a real systematic such as a clock error. 
We leave a deeper analysis to understand the emergence and nature 
of monopolar cross-correlations in PTA data sets for future work. 
The dipole amplitude is highly consistent with zero in each case, 
which makes sense as the Solar system ephemeris version (DE436) 
used in this analysis is fixed, independently of how many TOAs are 
combined. However, the constraints on the amplitude of the dipolar 
correlations improve as data is combined. 
4.2.2 Bayes factors for Hellings-Downs correlations over common 
noise 
IPTA DR2 does not contain enough data to detect the Hellings-Downs 
curve: Antoniadis et al. ( 2022 ) reports a Bayes factor log 10 BHD 

CRN ∼
0 . 3 ( BHD 

CRN ∼ 2) for an Hellings-Downs-correlated model versus the 
autocorrelated CRN model. Nevertheless, this value still indicates 
a modest preference for an Hellings-Downs cross-correlated model 
in IPTA DR2. As such, it is valuable to compare the Bayes factors 
for Hellings-Downs correlations obtained from each data set to find 
out if DR2 Lite can resolve Hellings-Downs correlations at the same 
level as the Full DR2. 

We report the Bayes factors we measure using each data set 
in the middle column of Table 3 . To check consistency, we re- 
port the Bayes factors and sampling uncertainties measured using 
likelihood reweighting (Hourihane et al. 2023 ) and using product- 
space sampling, also known as the HyperModel in enter- 
prise extensions (Hee et al. 2016 ; Johnson et al. 2024 ). We 
estimate the uncertainties on the Bayes factors using the effective 
sample size for reweighting (Hourihane et al. 2023 ), and using boot- 
strapping methods for the HyperModel . The two methods agree on 
the Bayes factor estimates within sampling uncertainties in all cases 
except for DR2 Lite. However, it is likely that the uncertainty using 
the HyperModel is underestimated, as the model switch parameter 
usually has a large autocorrelation length. In comparison to Full DR2 
( B ∼ 1 . 4), the cross-correlated model is less favoured using DR2 
Lite ( B ∼ 0 . 6) and slightly more favoured using EDR2 ( B ∼ 2 . 8; 
Table 3 ). Although it is unexpected and interesting that EDR2 should 
return the highest Bayes factor, this appears to be consistent with the 
OS analysis, especially given we are not considering the presence of a 
monopole. Overall, even though the Bayes factors are all O(1), these 
results are a promising sign regarding the potential for combined 
data sets to improve measurements of cross-correlations over Lite 
data sets. 
4.3 Single pulsar noise 
We next compare how the characterization of pulsar noise changes 
whether we use Full DR2 or DR2 Lite. Out of the 53 pulsars in IPTA 

DR2, 24 have timing data from 2 or more PTAs, while the remaining 
pulsars’ data are the same in Full DR2 and DR2 Lite. Therefore, we 
focus on how the noise properties, primarily red noise and chromatic 
noise, compare across these 24 pulsars. We do not assess the changes 
to the white noise or timing model parameters, but we acknowledge 
these parameters also play a large role in the total characterization of 
the pulsar. 

First, we examine how many new noise processes are detected 
using Full DR2 versus DR2 Lite. Table 4 shows the Bayes factors 
measured for each noise process and pulsar using DR2 Lite and Full 
DR2. These are estimated using the Savage-Dickey density ratio 
applied to the amplitude parameter of each noise process, e.g. BPLRN 

0 
in PSR J0030 + 0451 is the Bayes factor for a model with DM noise 
and red noise versus a model with DM noise only. We compare the 
Bayes factors for red noise, DM noise, higher-order chromatic noise, 
and time-dependent perturbations to the solar wind density. Bold 
parameters indicate the noise process is measured with B > 10, and 
where there are no posterior samples in the tail, we place a lower 
limit of B > 1000. Dashes indicate the process was not included in 
that pulsar’s noise model. While these Bayes factors all depend on 
our choice for how to construct the prior, we are applying the same 
model and priors to each data set; therefore, the prior-bias becomes 
less important for the purpose of performing a comparison. 

Using the threshold B > 10 to indicate a probable detection of 
the noise process, we find using Table 4 that using DR2 Lite, 
2/24 pulsars detect achromatic red noise, 5/24 detect DM noise, 
1/24 pulsars detect higher-order chromatic noise, and 0/24 detect 
solar wind density variations. Meanwhile, using Full DR2 we find 
12/24 pulsars detect achromatic red noise, 16/24 detect DM noise, 
and 5/24 pulsars detect higher-order chromatic noise, indicating 10 
new detections of red noise, 11 new detections of DM noise, and 
4 new detections of chromatic noise in the combined data. 2/17 
pulsars newly detect solar wind density variations. Overall, 16/24 
pulsars newly detect a noise process that was not detected using DR2 
Lite. 

Additionally, we find some of these noise processes are not 
detected in the Lite data set specifically because of source confusion. 
Bayes factors marked with asterisks in Table 4 signify that there 
is a strong case of parameter covariance between two or more 
processes in the model, such that the removal of one process from 
the model increases the detection significance of the other, and 
vice versa. In other words, one or more processes are favoured by 
the data, but the data cannot distinguish which one it is (Lentati 
et al. 2016 ; EPTA Collaboration 2023b ; Ferranti et al. 2025 each 
discuss this effect in more depth). We observed this behaviour in 
8 pulsars using DR2 Lite. For PSRs J1600–3053 and J1643–1224 
the source confusion is between DM and chromatic noise. For PSRs 
J1022 + 1001, J1024–0719, J1744–1134, J1918–0642, and J2145–
0750, the source confusion is between DM and achromatic red noise. 
For PSR J0613–0200, the data prefer either to include only DM 
noise, or to include both achromatic and higher-order chromatic 
noise. This behaviour is detailed more clearly for PSR J0613–0200 
in Fig. 10 . In all of these cases, using Full DR2 results in strong 
measurement of 1 or more of these noise processes, resolving the 
source confusion. Additionally, for PSR J1738 + 0333 there is no 
evidence of achromatic red noise or DM noise in DR2 Lite, but using 
Full DR2 it has entered into the source confusion regime of the two 
signals. 

We further find from comparing the chromatic, DM, and achro- 
matic red noise parameters from the single-pulsar noise analyses of 
all 24 pulsars that the changes in the noise parameters going from 
DR2 Lite to Full DR2 fall under three general categories: 
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Figure 9. Full distribution of ˆ A2 of Hellings-Downs, monopolar, and dipolar 
correlations, computed from the noise marginalized multiple component 
optimal statistic with uncertainty sampling for Full DR2 (blue), DR2 Lite 
(orange), and EDR2 (green). 

Figure 10. Comparison of noise parameter posteriors for chromatic, DM, 
and red noise from the single pulsar noise analysis of PSR J0613–0200 using 
DR2 Lite (orange) and using Full DR2 (blue). Panels show the amplitude 
and spectral index parameters for each noise process. Overplotted in the 
achromatic red noise panels are the CRN parameters from the analysis of 
Full DR2, as this noise is a subset of the total achromatic red noise in each 
pulsar. Contours enclose 68 per cent and 95 per cent 2D Bayesian credible 
intervals. 

(i) Consistency and improved constraints : In this case, the noise 
parameter posteriors measured using Full DR2 are more constrained 
than the posteriors measured using DR2 Lite, but both sets of 
posteriors are consistent with one another. This demonstrates the 
expected effect that adding more data results in more constrained 
posteriors. The majority of pulsars (15 out of 24) best-fitting 
into this category: PSRs J0030 + 0451, J0613–0200, J1012 + 5307, 
J1022 + 1001, J1024–0719, J1455–3330, J1600–3053, J1640 + 2224, 
J1738 + 0333, J1744–1134, J1857 + 0943, J1918–0642, J2010–1323, 
J2145–0750, J2317 + 1439. 

(ii) Inconsistency and improved constraints In this case, using 
the combined data changes the noise parameter posteriors such that 
there is noticeable tension between DR2 Lite and Full DR2 in the 
posteriors for one or more parameters. This could possibly arise if we 
have model misspecification, or if additional unmitigated chromatic 
noise enters into the data combination. Otherwise, there may be more 
complicated interactions between the different model components 
than expected. Three out of twenty-four pulsars most cleanly fit into 
this category: PSRs J1643–1224, J1713 + 0747, and J1909–3744. 

(iii) Consistency and similar constraints : In this case, the 
posterior distributions are very similar and consistent with one 
another. This indicates the full data combination is not significantly 
improving noise characterization at the single pulsar level. Six out 
of twenty-four pulsars best-fitting into this category: PSRs J1730–
2304, J1853 + 1303, J1910 + 1256, J1939 + 2134, J1955 + 2908, and 
J2124–3358. 

These categories summarize the effects we observe here of 
data combination of noise parameter characterization, though some 
pulsars also toe the line between these categories. 

We next follow up with closer examinations of three pulsars, PSRs 
J0613–0200, J1909–3744, and J1910 + 1256, which each serve as 
an illustrative case from each category. Figs 10 –12 compare their 
noise parameter distributions obtained using DR2 Lite (orange) and 
using Full DR2 (blue). We also show the CRN parameters from Full 
DR2 overplotted over the total achromatic red noise parameters in 
each figure. 
4.3.1 PSR J0613–0200 | Consistency and improved constraints 
Fig. 10 shows that the Lite data set for PSR J0613–0200 is not 
sufficient to distinguish the different sources of noise from each 
other. The 1D posteriors over the DM and red noise amplitudes each 
have long tails, with posterior support near log 10 ARN = −20 and 
log 10 ADM = −20, indicating the signals are not detected. However, 
the 2D posterior over both parameters shows has a deficiency of 
samples where both log 10 ARN = −20 and log 10 ADM = −20; i.e. 
the data does favour inclusion of at least one signal with high 
significance, but they cannot distinguish which. PSR J0613–0200 
also includes higher-order chromatic noise in its model, and this same 
effect also occurs between log 10 ADM and log 10 AChr . This means 
in this case, a side effect of including the higher-order chromatic 
noise is to slightly increase the detection significance for achromatic 
red noise, rather than to decrease it. This source confusion effect 
does not occur directly between log 10 AChr and log 10 ARN , as there 
are still samples in the 2D region where log 10 ARN = −20 and 
log 10 ADM = −20 (instead the L-shape of the 2D 95 per cent credible 
interval in Fig. 10 is just a product of their 1D posteriors). In contrast, 
using Full DR2 allows much more precise measurements of each of 
these processes, and they are better distinguished from one another. 
These improvements likely result from the improved data cadence 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/542/4/3028/8244155 by Yale Library user on 29 D
ecem

ber 2025



3042 B. Larsen et al.

MNRAS 542, 3028–3048 (2025)

Figure 11. Comparison of noise parameter posteriors for DM and red noise 
from the single pulsar noise analysis of PSR J1909–3744 using DR2 Lite 
(orange) and using Full DR2 (blue). See Fig. 10 caption for more details. 

Figure 12. Comparison of noise parameter posteriors for DM and red noise 
from the single pulsar noise analysis of PSR J1910 + 1256 using DR2 Lite 
(orange) and using Full DR2 (blue). See Fig. 10 caption for more details. 
and radio frequency bandwidth achieved by data combination for 
this pulsar. 

PSR J0613–0200 also shows the strongest preference for the CRN 
out of the pulsars in EDR2 based on the DFs from Section 4.1.3 , 
as well as the original IPTA DR2 analysis (Antoniadis et al. 2022 ). 
This is demonstrated in Fig. 10 by the excellent overlap between 
the achromatic red noise parameters from the single-pulsar analysis 
and the CRN parameters from the full-PTA analysis using Full DR2. 
Meanwhile, the red noise parameters measured using DR2 Lite are 

much less constrained, indicating weaker evidence for a detection 
of red noise as well as a much higher upper limit on red noise. In 
total, the improved characterization of pulsar noise resulting from the 
data combination directly translate here to improved measurement 
of the CRN. We can infer a similar story is at play for several of the 
other pulsars with improved constraints, particularly those pulsars in 
Table 4 with covariances recorded between noise parameters, as well 
as those that show improvements to their DFs in Fig. 7 . For other 
pulsars, such as PSR J2317 + 1439, the data combination improves 
their characterization of DM noise but not achromatic red noise. 
4.3.2 PSR J1909–3744 | Inconsistency & improved constraints 
Unlike the case for PSR J0613–0200, Fig. 11 shows that the 
achromatic red noise distributions obtained using DR2 Lite and Full 
DR2 are in tension with each other. Using DR2 Lite, no red noise is 
detected in PSR J1909–3744; however, the red noise detected using 
Full DR2 lies above the expected region using DR2 Lite (i.e. the 
68 per cent 2D credible regions do not overlap). This makes it appear 
that a red noise process has emerged in the combined data where 
there was none previously in DR2 Lite. There is no difference in 
observation timespan between DR2 Lite and Full DR2 for this pulsar, 
so non-stationary noise is unlikely to cause this. Furthermore, Fig. 11 
shows both data sets detect DM variations with similar characteristics 
in PSR J1909–3744, which makes the possibility of new chromatic 
noise entering into the combined data set seem unlikely. However, 
the DM noise parameters are measured more precisely using the 
fully-combined data. Improving the precision on DM variations as 
a result of improved cadence and radio frequency coverage (shown 
in Fig. 2 ) may have the effect of helping to uncover the red noise 
present in the fully-combined data. This effect only makes sense in 
tandem with the log 10 -uniform priors used on ARN , which heavily 
downweight the presence of noise in the data set. Another possibility 
is that some level of model misspecification is at play and resulting 
in inconsistent noise properties across the two data sets. 

PSR J1909–3744 is the pulsar in the most tension with the CRN 
using DR2 Lite, with the lowest DF out of all pulsars (Fig. 7 ). The 
CRN parameters from Full DR2 overplotted in Fig. 11 help explain 
this – they are well above the 95 per cent Bayesian credible interval of 
the total achromatic red noise measured using the Lite data set under 
the log 10 -uniform prior. Meanwhile, using EDR2, PSR J1909–3744 
is more agnostic to the CRN measurement, indicated in Fig. 11 by 
the modest overlap between the achromatic red noise using Full DR2 
and the CRN. These effects are also evident in the corner plots for 
PSRs J1713 + 747 and J1744–1134 (not shown): the achromatic red 
noise measured using DR2 Lite lies below the level of the red noise 
measured using Full DR2. 
4.3.3 PSR J1910 + 1256 | Consistency & similar constraints 
PSR J1910 + 1256 is the last unique case we cover here. Unlike 
the previous cases, Fig. 12 shows the posteriors measured for PSR 
J1910 + 1256 using DR2 Lite are similar to the posteriors measured 
using Full DR2, with nearly identical red noise and very similar DM 
noise. Thus, there apparently exist cases where data combination 
does not improve noise characterization at the single-pulsar level. 
The largest factor playing into this may simply be that not enough 
new data are added into the combination. Indeed, PSR J1910 + 1256 
has one of the lowest FoMs out of the mutli-PTA pulsars (Fig. 1 ), 
also has a DF ∼ 1 (Fig. 7 ), indicating its combined data set is not yet 
advanced enough to measure the CRN. While a future combination 
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may likely yield the emergence of a red noise process in this and 
similar pulsars, it is also important to consider that pulsar sensitivity 
may eventually saturate, and therefore reduce the effect of combined 
data. For example, even with increasing telescope sensitivity, some 
pulsar’s will eventually become jitter-noise limited. However, it does 
not seem we have reached this regime for the majority of pulsars 
(Lam et al. 2019 ). Other pulsars, such as PSR J1939 + 2134, may be 
dominated by very strong intrinsic red noise processes, explaining 
why PSR J1939 + 2134’s noise is well-measured in both DR2 Lite 
and Full DR2. 
4.4 Ensemble noise properties 
For our final analysis, we use the framework of hierarchical Bayesian 
modelling (Loredo & Hendry 2019 ; Thrane & Talbot 2019 ; van 
Haasteren 2024 ) to estimate the ensemble noise properties of in- 
trinsic red noise and DM variations from each data set (DR2 Lite, 
EDR2, and Full DR2), following closely the procedures described in 
Goncharov & Sardana ( 2025 ). The ensemble properties are encoded 
in the distribution p(θ | M/ ), where we define θ as our noise 
parameters θ = {log 10 ARN , γRN , log 10 ADM , γDM } . M/ designates 
the hierarchical model with hyperparameters ' , which are learned 
from the data δ t , while M. designates the original model using 
uninformative priors. For the current analysis, the ensemble noise 
distribution p(θ | M/ ) is neither a prior nor a posterior on pulsar 
noise parameters. Rather, it is a posterior predictive distribution for 
noise parameters, as it is informed by the population of millisecond 
pulsars in the current data set. For an independent analysis, p(θ | M/ ) 
could be used as a population-informed prior distribution on the noise 
parameters. 

We estimate the ensemble properties following Goncharov & 
Sardana ( 2025 ) by first inferring the hyperparameters ' from single 
pulsar analyses using the marginalized likelihood obtained from 
importance sampling (Thrane & Talbot 2019 ): 
L (δ t |' , M/ ) = Npsr ∏ 

i Z(δ t i | M.)
∫ 

π (θ i |' , M/ ) 
π (θ i | M.) 

× P(θ i |δ t i , M.) dθ i (14) 
∼= Npsr ∏ 

i 
Z(δ t i | M.) 

ni 
ni ∑ 
k 

π (θ k 
i |' , M/ ) 

π (θ k 
i | M.) , (15) 

where Npsr is the number of pulsars, ni is the number of posterior 
samples obtained from the single pulsar i’s noise analysis, and 
Z(δ t i | M.) is the evidence from the single pulsar i’s noise analysis 
(the evidences may be treated as an unknown normalization for the 
purpose of parameter estimation). In equation ( 15 ), each pulsar’s 
integral is estimated by iterating over the ni posterior samples (i.e. 
θ k 

i is the kth posterior sample for the ith pulsar). As suggested 
by Goncharov & Sardana ( 2025 ), we attempt to separate intrinsic 
red noise contributions from the GWB by drawing red and DM 
noise samples from the single pulsar posteriors obtained from our 
factorized likelihood analyses, which each contained an additional 
red noise term in each pulsar at fixed γ = 13 / 3 which provides a 
channel to separate the GWB from intrinsic noise. After defining 
a suitable hyperprior π (' | M/ ), we can obtain samples over the 
posterior P(' |δ t , M/ ) from stochastic sampling, and numerically 
marginalize over ' to obtain the ensemble noise distribution (Gon- 
charov & Sardana 2025 ) 
p(θ | M/ ) = ∫ 

π (θ |' , M/ ) P(' |δ t , M/ ) d' (16) 

∼= 1 
np 

np ∑ 
k π (θ |' k , M/ ) , (17) 

where the second line suggests we concatenate samples from the 
prior π (θ |' k , M/ ) over np ' samples drawn from the posterior 
P(' |δ t , M/ ). Equation ( 16 ) shows how p(θ | M/ ) implicitly de- 
pends on the data δ t , and as such it should be interpreted as a 
posterior predictive distribution for pulsar noise parameters rather 
than a true prior on θ . 

We are left with some freedom to define the hyperparameters ' , 
the functional form of π (θ |' , M/ ), and the hyperprior π (' | M/ ). 
We choose to keep the uniform priors on θ and infer the min and 
max ranges of the prior as our hyperparameters ' , such that 

π ( θj | /max ,j , /min ,j ) 
=

{ 
1 

/max ,j −/min ,j if /min ,j < θj < /max ,j , 
0 elsewhere , (18) 

for each of our four noise parameters denoted by j . This choice 
is based on Goncharov & Sardana ( 2025 ), who found using EPTA 
DR2 that this uniform distribution model was preferred with a higher 
Bayes factor than alternative models using a normal distribution 
or a mixture of normal and uniform distributions. We enforce the 
constraint /min ,j < /max ,j by defining our hyperpriors to draw from 
the distributions 
p( /min ,j ) = 2( uj − /min ,j ) 

uj − lj { lj < /min ,j < uj } , (19) 
p( /max ,j | /min ,j ) = 1 

uj − /min ,j { /min ,j < /max ,j < uj } , (20) 
where uj and lj are the original upper and lower bounds on the 
red/DM noise parameters (Section 3.2 ). 

We use NUMPYRO (Bingham et al. 2019 ; Phan, Pradhan & 
Jankowiak 2019 ) to define our hierarchical Bayesian model and 
JAXNS (Albert 2020 ) to infer the posterior distribution P(' |δ t , M/ ) 
using nested sampling. Fig. 13 shows the resulting ensem- 
ble distributions of the parameters of our two noise processes, 
p(log 10 ARN , γRN | M/ ) and p(log 10 ADM , γDM | M/ ) after numerical 
marginalization over the hyperparameters ' . The left hand side 
shows that DR2 Lite does not produce strong constraints on the 
intrinsic red noise properties of the ensemble, whereas EDR2 
produces equal constraints on the ensemble noise properties as Full 
DR2. This consistent in particular with the single pulsar results 
table 4 which shows only 2 pulsars out of a subset of 24 have 
strongly detected red noise using DR2 Lite (the list increases to 
5 out 53 once including PSRs J0437 −4715, J0621 + 1002, and 
J1824 −2452A), while Full DR2 is capable of constraining red noise 
in the majority of pulsars. Meanwhile, the right-hand side of Fig. 
13 shows that DR2 Lite can be used to place similar levels of 
constraints on the ensemble properties of DM variations as Full 
DR2, even despite detecting DM noise in fewer pulsars than Full 
DR2 (but still detecting more DM noise processes than red noise 
processes; Table 4 ). The distributions are centred near γDM ∼ 2, 
but display errors consistent with the value γDM = 8 / 3 expected 
for DM variations from Kolmogorov turbulence (Keith et al. 2013 ). 
EDR2 in the meantime displays a tighter distribution of DM noise 
properties, centred near lower amplitude and spectral index. This 
is most likely because EDR2 contains only 22 pulsars, and neither 
PSRs J1721 −2457 and J1903 + 0327, two high-DM pulsars with the 
highest DM noise amplitudes in IPTA DR2, are included among the 
22. 
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Figure 13. Distributions encoding the ensemble noise properties of the IPTA DR2 pulsars as compared whether using DR2 Lite (53 pulsars), EDR2 (22 pulsars), 
or Full DR2 (53 pulsars). Left: Intrinsic red noise properties of the ensemble (decoupled from a separate γ = 13 / 3 process in each pulsar) are substantially 
broader using DR2 Lite as opposed to EDR2 and Full DR2, which each place equally competitive constraints. Right: DM noise properties are tightly constrained 
using all three data sets, with the EDR2 analysis producing an overly-tight distribution due to the inclusion of fewer pulsars. 

Overall, this analysis complements and reinforces our results 
throughout the rest of this work that DR2 Lite is not as informative 
as the combined data sets, while the best subset of combined pulsars 
comprising EDR2 produce comparable results to a full-combination 
of all pulsars. 
5  SUMMARY  A N D  DISCUSSION  
5.1 Summary of the Lite method 
The ‘Lite’ method is a novel and computationally efficient approach 
to create joint-PTA data sets for GW searches. Full data combination, 
while essential for maximizing GW sensitivity, is a meticulous 
and resource-intensive process. The Lite method circumvents these 
challenges by focusing on individual pulsar data sets, enabling quick 
searches for different GW signals using the latest data. Since Lite 
data sets can be created on-the-fly using existing PTA data, they are 
particularly valuable in scenarios where timely results are required, 
such as when evaluating newly acquired data or gauging the potential 
of preliminary observations. 

By using a FoM to maximize GW sensitivity, Lite data sets 
represent the optimal combination of single-PTA pulsar data streams 
that can be achieved prior to the formal combination of all pulsars. 
The FoM used here comes from the analytic scaling law for the GWB 
S/N in the intermediate-signal regime, as presented in Siemens et al. 
( 2013 ). This serves as a PTA-agnostic and statistically robust metric 
for selecting the most sensitive pulsar data streams from each PTA, 
while ensuring that the initial analysis retains focus on pulsars that 
contribute the most to detecting the GW signal of interest, i.e. the 
GWB. Furthermore, the Lite method allows the flexibility to use 
different FoMs to construct Lite data sets optimized for different GW 
signals, such as continuous GWs. We emphasize, however, that the 
FoMs we use here also make unrealistic assumptions about the data, 
such as ignoring the effects of uneven data sampling, the presence of 
chromatic noise, or loud intrinsic red noise. Radio-frequency band 

coverage in particular should be an important factor for selecting 
maximally sensitive single-PTA data sets (Sosa Fiscella et al. 2024 ; 
Ferranti et al. 2025 ). One way to overcome these limitations and 
create more realistic FoMs in the future might be to numerically 
compute a FoM using sensitivity curves (Hazboun, Romano & Smith 
2019 ; Baier, Hazboun & Romano 2025 ). Future metrics might also 
take the narrow bandwidths into account by adjusting their errorbars 
using later measurements of DM in the pulsar (Sosa Fiscella et al. 
2024 ). An additional improvement would be to account for sky 
separation between pulsars pairs when computing the S/N for a 
GWB, as was done in Speri et al. ( 2023 ). 
5.2 Summary of results using IPTA DR2 
To test the Lite method, we create a Lite version of IPTA DR2 (Perera 
et al. 2019 ), which we call DR2 Lite. We first carry out a GWB search 
on DR2 Lite, next comparing the results with a truncated version of 
Full DR2 using the 22 most sensitive pulsars, which we call EDR2, 
and finally comparing with Full DR2 (first analysed in Antoniadis 
et al. 2022 ). Each version of the data set keeps all single-frequency 
and legacy data. 

We measure a significant CRN process in all versions of IPTA 
DR2, including DR2 Lite. This provides a proof of concept that a 
Lite data set may improve upon the individual data sets provided by 
the regional PTAs while also providing a sneak peek at the signals 
which may be detected in a fully-combined data set. However, 
the combined data sets still remain superior. Using the Factorized 
Likelihood, we show that the detection significance of the CRN 
improves by orders of magnitude progressing through each stage 
of the combination process. Data combination also improves the 
precision of CRN parameter inference. Although the evidence for 
Hellings-Downs correlations in IPTA DR2 is weak, we tenuously 
find using both a Bayesian and an OS analysis that the combined 
data contain more support for Hellings-Downs correlations than DR2 
Lite. Finally, across the board EDR2 produces nearly identical cross- 
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correlation statistics and spectral characterization results as Full 
DR2, demonstrating that indeed using the FoM or similar statistic 
to inform the order in which to combine pulsars may yield valuable 
combined data set at the intermediate stage of data combination, 
before all pulsars have been combined. 

Alongside the above results, we found the amplitude distribution 
of the CRN is shifted to higher values using DR2 Lite than using 
EDR2 or Full DR2, suggesting unmitigated intrinsic noise is present 
in some of the DR2 Lite pulsars and leaking into the common channel. 
This conclusion is reaffirmed using various ‘dropout’ analyses that 
show the CRN amplitude using DR2 Lite is strongly dependent 
on individual pulsars. The multiple component OS analysis also 
finds a larger amplitude of monopolar correlations in DR2 Lite. This 
monopole could be partially responsible or connected to the larger 
CRN amplitude, or it may just be a statistical fluctuation. By using 
combined data, the amplitude distributions of both the CRN and the 
monopole shift to lower values, which shows that data combination 
is capable of mitigating these systematic errors with no required 
knowledge of their source. 

While these results are encouraging, we have not fully stress- 
tested the Lite method or forecasted its potential for future data sets 
– this would require analyses of numerous detailed simulations of the 
data combination process, which is beyond the scope of this work. 
Another caveat is we do not omit or otherwise account for legacy or 
single-frequency data in IPTA DR2 from any version of the analysis. 
As shown by EPTA Collaboration ( 2023c ); Ferranti et al. ( 2025 ), 
including legacy data in the analysis helps to constrain the spectrum 
but is less useful for measuring the Hellings-Downs curve. 

Finally, the effects of data combination are also noticeable on 
the single pulsar level. After examining 24 pulsars in DR2 Lite 
which have multi-PTA data in Full DR2, we detect at least one 
new intrinsic noise process using Full DR2 that we could not detect 
using DR2 Lite in 16 out of 24 pulsars. These improvements in 
noise characterization appear to correlate with improvements in the 
effective radio frequency bandwidth and data cadence that result 
from data combination. Meanwhile, DR2 Lite resulted in similar 
constraints on pulsar noise for only 6 out of 24 pulsars. In most of 
these cases, it appears the data combination did not improve band 
coverage at low frequencies enough to improve constraints on DM 
variations, and/or the Lite data set already contained the majority of 
the TOAs in Full DR2, which likely dominated the statistics. These 
conditions are unlikely to hold true for many pulsars in the next IPTA 
data set, as numerous data at low radio frequencies from LOFAR 
(Stappers et al. 2011 ), NenuFAR (Zarka et al. 2012 ), the GMRT 
(Joshi et al. 2018 ), and CHIME (CHIME/Pulsar Collaboration 2021 ) 
are now becoming available for combination. We should therefore 
expect to see that the next data combinations will further improve 
pulsar noise characterization, and by extension, sensitivity to GWs. 
The reduced number of pulsars with significant detections of noise 
in DR2 Lite also translate to less informative ensemble distributions 
of pulsar red noise properties. 
5.3 Future directions 
Looking to the future, the Lite method has a clear role as an inter- 
mediate step in the analysis of PTA data sets. This was demonstrated 
recently in Agazie et al. ( 2024 ) where several pseudo-IPTA data sets 
were composed from the most recent EPTA, NANOGrav, and PPTA 
data sets using a factorized likelihood approach. While these data 
sets were not created using a FoM, they are similar in spirit to the 
Lite method we present here. Agazie et al. ( 2024 ) found that adding 
pulsars to each PTA’s data set using this method consistently results 

in a higher GWB S/N and more precise constraints on ACRN than what 
one obtains using each PTA’s individual data release. This further 
affirms the capability for the Lite method to improve measurements 
of GW signals. Extrapolating the results of our study comparing 
IPTA DR2 with its Lite version, we expect the upcoming IPTA data 
set, IPTA DR3, will further improve GWB spectral characterization 
and GW detection prospects (Good & International Pulsar Timing 
Array Team 2023 ). Furthermore, our analysis of EDR2 reinforces 
that we can capture a large amount of the information in a fully- 
combined data set using an intermediate version with fewer pulsars, 
as expected based on Speri et al. ( 2023 ). This suggests the creation 
and analysis of an IPTA ‘EDR3’ as a way to start reaping the rewards 
of a fully-combined IPTA DR3 at an earlier time. Though we do 
not explore this here, the creation of even more optimal joint-PTA 
data sets should also be possible with a hybrid approach by using 
combined data for the most sensitive pulsars and using uncombined 
data for the remaining pulsars. 

The Lite analysis may have further unquantified benefits if curating 
data sets for other nHz GW searches, such as continuous GWs 
from individual SMBHBs, as it may be used to rapidly improve the 
sky coverage of the PTA. Of the regional PTAs, three are northern 
hemisphere (CPTA, EPTA, and NANOGrav), one is quasi-equatorial 
(InPTA), and two are Southern hemisphere (MPTA and PPTA). The 
maximum sky coverage achieved by any PTA is approximately 
75 per cent due to telescope elevation limits, while for transit 
telescopes such as CHIME, the sky coverage is considerably less. 
This sky coverage is perhaps only a secondary concern for the 
initial studies of the isotropic stochastic GWB, but it is a major 
concern for efforts to detect and study individual GW sources, as 
well GWB anisotropy. These gains in sky coverage may be achieved 
immediately with the creation of Lite data sets. 

In conclusion, the Lite method does not replace the need for full 
data combination, but serves as a powerful exploratory tool for 
evaluating new data sets. By providing early indicators of GWB 
sensitivity, the Lite method may help motivate the creation of fully- 
combined data sets, while the FoM may guide the order in which to 
combine the pulsar’s data together. As future IPTA data releases 
incorporate larger and more complex data sets, the Lite method 
will become increasingly more useful for nHz GW searches as 
one balances the trade-off between computational efficiency and 
sensitivity. The Lite method may also complement other future 
avenues of analysing joint-PTA data sets, such as the Fourier-space 
combination of posteriors from single-PTA data sets (Valtolina & 
van Haasteren 2024 ; Laal et al. 2025 ), or the fully extended PTA 
analysis from Agazie et al. ( 2024 ) using the OS. 
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APPENDI X  A :  F I G U R E S  O F  MERI T  F O R  
OT H E R  G R AV I TAT I O NA L  WAV E  SEARCH ES  
We highlight here some Figures of Merit that could be used if creating 
a Lite data set optimized for other types of GW searches than a 
GWB. For example, a continuous GW from an isolated SMBHB in 
the white-noise–dominated regime will have the FoM (Arzoumanian 
et al. 2014 ; Mingarelli et al. 2017 ): 
FoM CGW = (

Tobs c 
〈 σTOA 〉2 

)1 / 2 
, (A1) 

where we have used c = 1 / 〈 $t〉 . Here, equation ( A1 ) ignores the 
contribution of the GW antenna beam pattern, as it may be not known 
a priori. However, for a targeted SMBHB search (e.g. Arzoumanian 
et al. 2020a ), the contribution of the antenna beam may be included. 
For a GW burst with memory, we have (van Haasteren & Levin 2010 ; 
Madison, Cordes & Chatterjee 2014 ) 
FoM BwM = (

T 3 
obs c 

〈 σTOA 〉2 
)1 / 2 

. (A2) 
FoM BwM and FoM CGW depend more strongly than FoM GWB on 
c/ 〈 σTOA 〉2 , and FoM BwM depends more strongly than FoM CGW on 
Tobs . This suggests different Lite data sets to be curated for different 
GW signals. Additional FoMs can be constructed for any type of 
signal affecting PTAs so long as a theoretical S/N can be defined. 
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