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ABSTRACT: The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a tracking algorithm called
Ocetrac that provides the objective characterization of MHW spatiotemporal evolution. Candidate MHW grid points are
defined in detrended gridded sea temperature data using a seasonally varying temperature threshold. Identified MHW
points are collected into spatially distinct objects using edge detection with weak sensitivity to edge detection and size per-
centile threshold criteria at each time step. Ocetrac then uses 3D connectivity to determine if these objects are part of the
same event, but Ocetrac only defines the full MHW event after all time steps have been processed, limiting its use in pre-
dictability studies. Here, Ocetrac is applied to monthly satellite sea surface temperature data from September 1981 through
January 2021. The resulting MHWs are characterized by their intensity, duration, and total area covered. The global analy-
sis shows that MHWs in the Gulf of Maine and Mediterranean Sea are spatially isolated, while major MHWs in the Pacific
and Indian Oceans are connected in space and time. The largest and most long-lasting MHW using this method lasts for
60 months from November 2013 to October 2018, encompassing previously identified MHW events including those in the
northeast Pacific (2014-15), the Tasman Sea (2015-16, 2017-18), and the Great Barrier Reef (2016).

SIGNIFICANCE STATEMENT: This study introduces Ocetrac, a method to track the spatiotemporal evolution of
marine heatwaves (MHWs). It is applied to satellite sea surface temperature data from 1981 to 2021. The method objec-
tively identifies and tracks MHWs in space and time while allowing for splitting and merging. The resulting MHWs are
characterized by intensity, duration, and total area covered. Marine heatwaves can have significant ecological conse-
quences, including biodiversity loss and mortality, geographical shifts, and range reductions in marine species and com-
munity structure changes when physiological thresholds are exceeded. This results in both ecological and economic
impacts. Ocetrac provides a method of tracking the space and time evolution of MHW:s that can provide a visualization
that demonstrates the global impact of these events.
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1. Introduction extremes (Smale et al. 2019). MHWs have led to mass mor-
tality in marine invertebrates (Oliver et al. 2017, Garrabou
et al. 2009), species range shifts (Mills et al. 2013), habitat de-
struction including coral bleaching (Hughes et al. 2017), and
harmful algal blooms (McCabe et al. 2016). Failure to antici-
pate the destructive impacts of MHWs leads to fishery man-
agement challenges, including changes to the supply chain
and loss in value of commercially harvested species (Mills
et al. 2013; Pershing et al. 2019; Cheung and Frolicher 2020).
MHWs can also impact regional atmospheric circulation that
perturbs weather patterns over land. Such events have been

Marine heatwaves (MHWs) are defined as periods when
the local sea surface temperature (SST) is significantly higher
than typical for the time of year at a specified location.
MHWs have occurred throughout the global ocean (Hobday
et al. 2016; Holbrook et al. 2019). Typically, MHWs are exam-
ined through a local lens. Even when the drivers of marine
heatwaves are well known for a particular region (e.g., persis-
tent anticyclonic atmospheric circulation over the North Pa-
cific), the evolution of individual MHWs in these regions has
varied considerably (Amaya et al. 2020; Bond et al. 2015;

Fewings and Brown 2019).
The motivation to understand the evolution of MHWs is owed
to the vulnerability of marine ecosystems to temperature
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associated with extreme drought, leading to impacts on agri-
culture (Williams et al. 2015; Rodriguez 2021) and terrestrial
heat extremes (McKinnon and Deser 2018).

By definition, MHWs represent the extremely warm end of
the distribution of local sea surface temperature anomalies.
Previous studies have used the 90th (Oliver et al. 2018; Hobday
et al. 2016) or the 99th (Darmaraki et al. 2019; Frolicher et al.
2018) percentile of the SST distribution to define extremes,
where a MHW event is identified when SST exceeds this
threshold relative to a long-term seasonal climatology for at
least a certain period of time, e.g., 5 days (Hobday et al. 2016).
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The distribution of MHWs is influenced by the mean state, natu-
ral variability, and long-term anthropogenic change (Frolicher
et al. 2018; Oliver et al. 2018). Regions with a large SST vari-
ance, for example, in the vicinity of western boundary currents
and their extensions, as well as in the equatorial Pacific cold
tongue, have the highest MHW intensities globally (Oliver et al.
2018). In addition, extremely long duration MHWs have been
linked to modes of interannual to decadal variability in the
climate system (Holbrook et al. 2019; Scannell et al. 2016).

Natural variability such as El Nifio-Southern Oscillation
(ENSO) can impact the presence and persistence of MHWs
in the midlatitudes through atmospheric teleconnections from
the tropics. For example, anomalies in atmospheric deep con-
vection over the tropics can initiate atmospheric planetary-
scale waves that propagate to the midlatitudes where they
generate MHWs through changes in local atmospheric condi-
tions, e.g., cloud cover (Hartmann 2015). Large-scale modes
of decadal SST variability linked to tropical climate variabil-
ity, such as the interdecadal Pacific oscillation (Power et al.
1999), can suppress or enhance the likelihood of MHW oc-
currences depending on the phase and amplitude of the
mode (Holbrook et al. 2019; Scannell et al. 2016). They can
influence the severity and duration of MHWs by altering the
mean strength, direction, and location of ocean currents and
heat transport, as well as modulate air-sea heat flux (Perkins-
Kirkpatrick et al. 2019; Di Lorenzo and Mantua 2016; Feng et al.
2013).

Interannual and decadal variability within the climate sys-
tem can be explored using an empirical orthogonal function
(EOF) decomposition of climate anomalies. The first few
EOF modes have been used to help characterize the spatial
structure of some MHWs and their time scales (Di Lorenzo
and Mantua 2016). EOFs have also been used to explain the
spatial patterns and the long-lived persistence of prominent
MHWs (Amaya et al. 2020; Fewings and Brown 2019; Oliver
et al. 2018; Di Lorenzo and Mantua 2016). However, EOFs
are statistical descriptions of the variability and do not necessar-
ily encapsulate dynamical information. In addition, using a lim-
ited number of EOFs to describe the spatiotemporal evolution
of MHWs can give an incomplete picture of the evolution of
short-lived and smaller-scale MHWs that may not be easily
linked to the most dominant modes of climate variability.

Retrospective and contemporaneous studies have generally
relied on pointwise metrics (Sen Gupta et al. 2020; Hobday
et al. 2018; Oliver et al. 2018), fixed region heat budget analy-
ses (Xu et al. 2018; Oliver et al. 2017; Bond et al. 2015; Chen
et al. 2014), or EOFs (Di Lorenzo and Mantua 2016) to char-
acterize the drivers of specific MHW events and to describe
their characteristics. These approaches have been successful
in explaining the local processes and remote drivers responsi-
ble for specific MHWs (Sun et al. 2023a). Here, we expand
this view by characterizing the spatiotemporal evolution of
MHWs. This description of MHW evolution takes advantage
of the 3D evolving field of global SST by detecting and track-
ing MHWs and characterizing their shape, size, location, dura-
tion, and intensity, which may help to identify new patterns in
how MHWs evolve and facilitate investigations of MHW dy-
namics. The 3D here refers to the space and time dimensions
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(x, y, f) and not spatial dimensions (x, y, z). To do this, we pre-
sent an object-tracking algorithm called Ocetrac and use it to
explore the large-scale spatial connectivity of MHWs as they
evolve in time.

Object tracking has been used to describe both atmospheric
and oceanic phenomena. For instance, an enhanced water-
shed method was used to identify hailstorm objects applied to
observed gridded radar reflectivity and column-integrated
graupel mass estimates from a numerical weather prediction
(NWP) model (Gagne et al. 2017). The enhanced watershed
method (Lakshmanan et al. 2009) reduces the volume of data
that needs to be processed by optimally searching for the local
maxima in the storm field and growing the storm object until
both area and intensity criteria are met. As with Ocetrac, the
watershed object-identification method is parameter sensitive.
TempestExtremes, another software package for feature de-
tection, tracking, and analysis of extreme events, uses the al-
gorithmic framework “MapReduce” to first detect candidate
extreme events like tropical and extratropical cyclones and at-
mospheric rivers based on thresholds and other metrics. It
also connects these events in time.

We use the following definitions in our analysis and descrip-
tion of the spatiotemporal evolution of MHWs (Table 1). Fea-
tures are individual points where SST is above the locally
defined threshold for 1 month. A MHW object is a spatially
coherent collection of features. A MHW event is composed
of tracked and linked objects. We apply Ocetrac to monthly
SST data from 1981 through 2021 to track the evolution of all
MHWs globally and examine the distribution of three key
MHW metrics (size, intensity, and duration). Four MHWs are
used as case studies to describe new insight available with this
framework.

2. Methods
a. Data, preprocessing, and anomaly detection

We analyze the monthly global maps of SST from the
0.25° longitude X 0.25° latitude gridded Optimum Interpola-
tion SST, version 2.1 (OISSTv2.1), dataset that extends from
September 1981 through January 2021. The OISSTv2.1 com-
bines satellite Advanced Very High Resolution Radiometer
(AVHRR-only) with observations from ship, buoy, and in
situ measurements (including Argo floats and drifters), while
accounting for platform differences and using interpolations
to fill gaps in the satellite data (Reynolds et al. 2002, 2007).
We create a mask over the Arctic (>65°N) and Antarctic
(>70°S) Oceans to remove data in these regions and to avoid
influence from seasonal sea ice and locations where the
OISSTv2.1 data are less reliable (Fig. 1).

Using the global maps of SST, we remove the mean, lin-
ear trend, and seasonal cycle from September 1981 through
January 2021 to compute anomalies (Fig. 2). The total de-
composition of the climatological SST is represented as

SST, = SST,, + SST, + SST,, (1)

where the fit SSTy, is the linear combination of the mean
SST,, (Fig. 1a), linear trend SST,, and annual and semiannual
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TABLE 1. Glossary of terms used in image processing and set theory.

Term

Definition

Binary image

A 2D map (x, y) with ones corresponding to candidate MHW grid points and zeros corresponding

to either non-MHW grid points or land points.

Features
candidate points).
Objects

Within binary images, features refer to grid points with values of one (also referred to as MHW

Objects are clusters of features (i.e., a region with a relative high density of MHW candidate

pixels) that are connected in space and/or time. Within a binary image, a 2D object is
connected in space (x, y). A 3D object is connected in space and time (x, y, f).

Structuring element

A 2D binary image with user-defined shape and size that controls the nature of the morphological

operation. The structuring element dilates or erodes an image to produce a new, cleaner binary

image.
Connectivity element

Erosion
Dilation
Opening

islands and sharp peaks.
Closing

eliminates small holes.
Centroid

merge or split.
Sub ID

Centrosymmetric 3D binary array to track MHWs in space and time (x, y, f).

Contracts the boundary of a binary image and removes small-scale details.

Expands the boundary of a binary image by adding a layer of pixels.

Erosion followed by dilation. Smooths contours by breaking narrow isthmuses: eliminates small
Dilation followed by erosion. Smooths contours by fusing narrow breaks and long thin gulfs:

The geographic center of each object. A MHW can have multiple centroids if connected objects

An additional ID given to MHWSs with more than one centroid per month. For example, the 50th

MHW with three centroids would be labeled as 50.1, 50.2, and 50.3, respectively.

harmonics SST; at each grid point. The coefficients of SSTg,
are found using the least squares regression fit to monthly
SST computed over the time period September 1981-
August 2021 (473 months). We define SST anomalies SST, as
the difference between monthly SST and SSTy;, such that

SST, = SST — SSTj;. @)

We remove the trend from SST,, so that it has roughly station-
ary statistics and reflects the common internal ocean and cli-
mate dynamics from the beginning to the end of the record. If
the long-term trend is not removed, the likelihood of MHWSs

Climatology (°C)

Seasonal Amplitude (°C)

will increase with time almost everywhere due to the positive
SST trend associated with global warming. The trend is the
largest in midlatitudes in the subtropical gyres, especially in
the northwest Atlantic, western North Pacific, and western
South Pacific. We also remove the climatological seasonal cy-
cle from SST, so that we can track MHW events that evolve
across multiple seasons or regions with different seasonal
cycles. The seasonal cycle of SST is the largest in the subtrop-
ics and midlatitudes and weaker in the subpolar and polar re-
gions and the weakest in the deep tropics (Fig. 1c).

Since there are strong spatial variations (Fig. 1b) as well as
seasonal cycles in SST, variance, we standardize SST, by

rend (°C/30 years)

I
-
©
T

e

FI1G. 1. Global distribution of (a) mean SST SST,,,, (b) standard deviation of the anomalies detrended SST,, (c) am-
plitude of the seasonal cycle SST; as the peak minus the trough, and (d) 30-yr trend SST, from 1990 through 2020.
Maps in (a)—(c) have means computed with respect to September 1981-January 2021. Hatching over the polar oceans

represents the regions that are excluded from this analysis.
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FIG. 2. Monthly time series of (a) SST and (b) SST, from January 2010 through January 2021 at 46.625°N,
148.875°W (star in Fig. 1b). The mean, seasonal cycle, and trend in SST are shown in (a) as SSTg,. The SST, in (b) is
defined as SST minus SSTy,. The standardized SST), is shown in red and has been divided by its monthly standard de-
viation. In this example, the monthly standard deviations are similar to 1°C (Fig. 1b), so the unitless SSTa" is fairly
similar to but not identical to SST, in degrees Celsius. The red circles indicate when SST,, exceeded the 90th percen-
tile of SST;, (shown by the dashed line) computed over the entire period from September 1981 through January 2021.

VOLUME 41

dividing by the respective local monthly standard deviation of
SST, over the entire period. The resulting standardized anom-
aly fields SST}, have uniform variance across the globe and in
each month. High standard deviations of SST, occur in the
eastern equatorial Pacific, western boundary currents, the re-
gion connecting the Indian Ocean to the South Atlantic, and
in frontal zones with large SST gradients. The subtropics,
southern midlatitudes, equatorial Atlantic Ocean, equatorial
Indian Ocean, and western tropical Pacific have low standard
deviations (Fig. 1b). There is a significant seasonal cycle in
SST, variance over most of the global oceans. For example, a
stronger SST, variance is observed during springtime near the
Gulf Stream, in boreal wintertime in the Pacific cold tongue,
in the late summer and early autumn in the subpolar north-
east Pacific and northwest Atlantic, and generally during the
summertime at polar latitudes (in the online supplemental
material 1).

Various methods exist to define SST anomalies and temper-
ature thresholds. Here, we define a given pixel and month to
be an MHW candidate if it exceeds the 90th percentile of
SST; in that pixel (Hobday et al. 2016). The results are influ-
enced by the choice of the 90th percentile and the length of
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the record. With only 40 years of monthly data, our ability to
accurately quantify extremes defined by a higher percentile
(like the 99th percentile) record is limited by the record
length. In this study, we did not assess the sensitivity of our
findings to the choice of percentile threshold.

To identify MHWs from the monthly maps of SST,, we
search for candidate MHW points where SST, exceeds the
90th percentile at each grid point. It may be noted that most
of the steps of the detection of MHW candidate points in-
volve choices and that these choices will certainly have a
quantitative if not qualitative impact on the results. Not all of
the sensitivities associated with these choices are exhaustively
documented in this paper, but we discuss some of them at the
end of the paper. The purpose here and in the rest of this
methods section is to present choices of parameters that yield
reasonable results and set the stage for further work.

b. Multiple object tracking

The binary maps highlighting the MHW candidate points
produced by the anomaly detection algorithm in section 2a
exhibit some small-scale patchiness near the grid scale, which
contributes to image noise. To identify the coherent patches
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(b) 2D Structuring Element (R=8)
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FIG. 3. Illustrations of terminology used in Ocetrac. (a) The binary image contains features [dashed red boxes
in (a)] and connected features called objects. The centroid of an object is defined by its geometric center [star in (a)].
(b) A 2D structuring element is used in morphological operations with R = 8 and (c) a 3D connectivity element is

used in multiple object tracking.

of anomalies and to simplify processing, these maps are en-
hanced and cleaned to reduce complexity and remove
smaller-scale details and then extracted for features. Smooth-
ing techniques are used to reduce noise and enhance the SST,
map quality for object detection. This enhances object fea-
tures and improves the accuracy of edge detection, making it
easier for the object detection algorithm to identify the key
patterns and evolution.

The broad overview of how the tracking algorithm works is
that features, which are output of the anomaly detection algo-
rithm, are first selected within an image before applying mor-
phological operations. A structuring element, which is a shape
used to differentiate objects from others based on their shape
or spatial orientation, is then chosen to capture relevant spa-
tial relationships within the image. Morphological operations
are applied to the input image using the structuring element,
modifying the shape and structure of objects in the image
based on the interaction between the image pixels and the
structuring element. This is applied iteratively with each itera-
tion refining the image structure.

The standardized anomaly SST,, maps with the MHW can-
didate points produced by the anomaly detection algorithm in
sections 2a and 2b are transformed into a binary image where
ones correspond to candidate MHW grid points and zeros
correspond to background grid points. Each monthly map is
treated as a separate image. Our goal is to identify the group-
ings of ones that define a MHW object, which meet the de-
fined spatial characteristics in terms of structure and size.
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Image processing terminology is defined in Table 1 and illus-
trated in Fig. 3.

We use mathematical morphology operations from the
SciPy multidimensional image processing Python package to
remove small, isolated features and to fill small holes within
feature clusters. The structuring element S is defined by a
quadratic surface with a morphological radius R, which is
measured in the number of grid cells, where

S=x*+y* <R 3)
Here, x and y define the points within a circle of radius R,
where R is defined by the number of grid cells in the map of
SST (supplemental material 2). The matrix S is transformed
into a two-dimensional binary image with origin at the center
of a box with sides of length R. Elements located where
S < R? have value 1 and elsewhere a value of 0 (Fig. 3). The
units of S are in degrees per unit resolution of the grid (e.g.,
an R of 8 on a 1/4° grid is equal to 2° latitude or longitude).
The term R is chosen to be approximately the same size and
shape of the desired objects. The term R is a user-defined param-
eter and is measured in gridcell units. The other user-defined pa-
rameter is P, which is the value of the percentile of object area in
square kilometers (km?). The term P gives the minimum size of
objects based on a size percentile threshold and is used to filter
out objects smaller than the threshold.

The structuring element is used to scan over the entire binary
image when conducting morphological operations (Gonzalez



1252

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 41

(a) Dilation | (b) Erosion | () Erosion Il (d) Dilation Il
. 7 . R4 y v 7

e ctaeti—— | e ot | e ottt |

(f) Dilation | (9) Erosion | (h) Erosion Il
. “ 7 . 7 . “ 7

e it | e ottt | e otatetieinne... |

FIG. 4. Sequence of morphological operations for closing (dilation I followed by erosion I) and then opening (erosion II followed by di-
lation IT) using a structuring element with (a)—(e) a radius of four grid cells and (f)—(j) a radius of eight grid cells. Orange shading repre-
sents the feature area that the morphological operations are performed on. Red stippling in (e) and (j) shows the grid cells identified as po-
tential MHWs before the morphological operations. Green contours outline the final shape of the identified MHW objects. Data shown
here are from February 2011. Note again that the first row shows the sequence of morphological operations using R = 4 grid cells, while

the bottom row shows the sequence using R = 8 grid cells.

and Woods 2002). Dilation and erosion are the two most com-
mon morphological operations, and both are used here. Ero-
sion eliminates isolated and small features by shrinking
features, or in terms of pixels, it removes pixels near the
boundaries of the MHWs. Dilation is the opposite of ero-
sion and fills small holes within features or in terms of pix-
els; dilation adds pixels near the boundaries of features. The
precise effect of dilation and erosion, or the number and lo-
cation of added or removed pixels, depends on the size and
shape of the structuring element and thus depends on the
radius R.

Erosion and dilation are often performed in succession
(Fig. 4). Morphological opening is erosion followed by dila-
tion. Opening is used to eliminate small features while pre-
serving the shape and size of larger features in the image.
Alternatively, morphological closing is dilation followed by
erosion. Closing fills small holes within features while also
preserving the shape and size of other features in the image.
Both opening and closing are used to remove small features
and smooth the borders of larger features. Generally, these
operations can be combined in different sequences to trans-
form an image to isolate specific features. The order and num-
ber of morphological operations will lead to different results.
Here, we implement a sequence of morphological closing fol-
lowed by opening, as we found this to effectively clean the
feature images and isolate coherent clusters of features, which
are now called objects that can be tracked in space and time
(Fig. 4; supplemental material 3).

After morphological operations, there are two rounds of
object identification and labeling. First, 2D (spatial) objects
are detected by labeling connected 2D objects from binary
images using Scikit-image’s measure module in Python. Zero-
valued pixels are background pixels. We define objects when
two or more neighboring features with the same value are
connected either adjacent or diagonal from each other (e.g.,
orange pixels in Fig. 3a). The resulting 2D objects are as-
signed a unique label. This process is repeated for each time
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step, with each time step as a separate instance of 2D object
identification. For each 2D unique object, we use the latitude
and longitude coordinates from the Scikit-image’s region-
props module to calculate the total object area. Using the dis-
tribution of all object areas from September 1981 through
January 2021, we calculate the minimum area. Each object’s
area is then compared to the minimum area value. If an ob-
ject’s area is smaller than the minimum area value, the object
is discarded. If an object’s area is larger than the minimum
area value, the object is retained. The accepted area is the
area of the object that has not been discarded. For our pur-
poses, we use the 75th percentile of object area (km?) for the
default value of P (Fig. 4). We discuss the sensitivity of MHW
characteristics to P in section 3. This first round of object
identification eliminates objects smaller than the size percen-
tile threshold. The output of the first round of object identifi-
cation results in an image that is no longer binary. It also
contains the labels for the identified objects.

We next convert an identified object to a binary image.
This new binary image does not contain smaller-than-the-
size-threshold objects and is less noisy than the original field.
Next, using a 3D (x, y, f) centrosymmetric connectivity ele-
ment, a second set of objects are identified and labeled such
that the object label is the same for any two features with sim-
ilar values that are either adjacent or diagonal to each other
and that overlap in space or time. This results in a set of ob-
jects with a unique set of IDs that have been tracked sequen-
tially through time. No temporal gaps are allowed. These are
3D objects that are connected in space and time (x, y, ).
No minimum percent overlap is enforced. We allow multiple
objects that merge to have the same ID and a single object
that splits into multiple objects to retain the ID of the initial
object. As a result, any objects that have connectivity at
some time in their evolution share an ID. This allows
MHWs that are connected through time by the second
round of object identification to contain spatially disjoint
multiple objects with different labels under the first round
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FIG. 5. Sensitivity of MHW characteristics globally with varying smoothing radius R and minimum size percentile P, including the
(a) number the MHWs detected from September 1981 through April 2020, (b) average monthly duration of MHWs, (c¢) minimum MHW
area, (d) percent of MHWs with multiple centroids, (e) percent of MHWs longer than 3 months, and (f) percent of MHW area retained.
Recall that R is measured in gridcell units, so R = 3 grid cells is equivalent to 0.75° longitude X 0.75° latitude. The value R = 10 grid cells

is equivalent to 2.5° longitude X 2.5° latitude.

of object identification. The connectivity established by Ocetrac
is not mechanistic; it is entirely diagnostic and based on the
existence of overlap in space and time. Hence, MHWs diag-
nosed by Ocetrac as a single object can result from a complex
combination of mechanisms, which may or may not be coupled
(supplemental material 4).

In summary, we describe a new tracking algorithm to detect
and follow the evolution of MHWSs. A sequence of morpho-
logical closing then opening is performed to create smoother
and connected images. The results of this tracking algorithm
will vary depending on the spatial and temporal resolution of
the SST data as well as the choice of morphological radius R
and minimum size percentile threshold P. In section 3, we dis-
cuss the sensitivities of these choices of R and P, along with
useful metrics, including the number of MHW events de-
tected, the average monthly duration of MHW events, the
percentage of MHW events composed of multiple objects,
and the percentage of the MHW area retained, for character-
izing the global spatiotemporal evolution of MHWs. The per-
centage of the total MHW area retained is the sum of the
accepted areas of all retained objects divided by the sum of
areas initially identified as regions with MHW conditions. An
area value is calculated for each object. The minimum area is
calculated using the entire initial set of objects and the mini-
mum size percentile threshold P.

3. Sensitivity analysis

The representation of MHWs is dependent on the criteria
used to define their intensity, size, duration, and shape. This
can be influenced by the horizontal and temporal resolution
of the SST data, and whether or not the long-term trend in
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SST is removed. Here, we investigate the sensitivity of MHW
metrics to the morphological radius R and minimum size per-
centile threshold P criteria implemented in Ocetrac. The term
P is the percentile used to define the threshold of the smallest
area object that is not discarded during object identification.
The minimum area is calculated using the entire initial set of
identified objects and the minimum size percentile threshold
P. The minimum area value corresponds to the percentile of
the area based on P. We quantify the effect of these criteria
on the number of MHW events detected, average MHW du-
ration, minimum MHW area, and the percent of MHWs with
multiple centroids.

As R and P increase, fewer MHWs are detected (Fig. 5a).
Large values of R increase the connectedness of features in
the binary images, which results in larger objects. A MHW
event is composed of one or more objects. Larger R values thus
result in fewer but larger MHW events. These well-connected
MHWs are also likely to persist for longer than 3 months
(Fig. 5e). Each object has a centroid. As such, the number
of centroids is also the number of objects making up a
MHW. The percentage of MHWs with multiple centroids
(in other words, multiple objects making up the MHW) de-
creases with increasing R (Fig. 5d). Fewer MHWs have mul-
tiple centroids when R is larger as a result of increased
connectivity among features.

The average monthly duration of MHWs initially increases
with R and P for values of P < 70% (Fig. 5b); however, for
large R, the average monthly duration peaks for P near 75%.
This nonlinear behavior is the result of the decline in the
number of MHWs detected as the minimum size percentile in-
creases. A smaller population size decreases the average dura-
tion at larger R values (Figs. 5b,e). Duration is most sensitive
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FIG. 6. Sensitivity of objects detected from the morphological operations in February 2011. Each panel represents a unique combination
of radius and minimum size percentile threshold from 4 to 10 grid cells and 65th-90th percentiles, respectively. Detected objects are
outlined in green, brown stippling indicates the grid points where the SST exceeds the 90th percentile, and orange shading represents
the filled-in MHW regions to create closed contour objects outlined in green. The OISST grid cell is 0.25° longitude X 0.25° latitude.
Note that R = 4 gridcell units is equivalent to 1.0° longitude X 1.0° latitude. The value R = 8 gridcell units is equivalent to 2.0° longitude X
2.0° latitude, and R = 10 gridcell units is equivalent to 2.5° longitude X 2.5° latitude.

to smoothing radius R, where large radii increase connectivity
between neighboring features allowing MHWs to persist for
longer periods of time.

Large minimum size percentile thresholds P reduce the
percentage of the total MHW area retained (Fig. 5f).
Smaller values of P result in a greater percent of the original
MHW area retained that results in more MHWs of smaller
size (Figs. 5a,c,f). As the size percentile threshold increases,
the percent of total MHW area retained quickly declines to
less than 50% (Fig. 5f). As P increases, the number of
MHWs detected declines with the smallest size events in-
creasing in size (Figs. 5a,c). If P is held constant, the percent
of the total MHW area retained (Fig. 5f) decreases and the
minimum MHW area (Fig. 5c) increases with increasing
smoothing radius R. The larger smoothing radii act to join
neighboring features and fill holes within feature clusters.
Thus, a large smoothing radii creates larger MHWs, while
also decreasing the total number of MHWs detected.
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For a demonstration of the sensitivity of an example MHW
to the smoothing radius and size percentile threshold, we ex-
amine the sensitivity of the 2011 MHW off Western Australia
(Fig. 6). The shape and size of the detected objects are notice-
ably different between radii of 4 and 8 gridcell units, and the
results are independent of area threshold P. A smoothing ra-
dius of 4 gridcell units produces objects with sharp and jagged
edges and interior holes (Figs. 6a,d,g). The object shape dif-
ference between an R of 8 and 10 grid cell units is nearly neg-
ligible, with the exception of small features disappearing
(e.g., Fig. 6b versus Fig. 6¢). For example, for an R of 4 grid-
cell units and an area size percentile threshold P of 65, 5 ob-
jects are detected (Fig. 6a). For the same radius but with an
area size percentile threshold of 75, 5 objects are still detected
(Fig. 6b). For the same radius but with an area size percentile
threshold of 90, however, only 3 objects are detected (Fig. 6c¢).
For a radius of 8 grid cell units and area size percentile thresh-
olds of 65, 75, and 90, 4, 3, and 3 objects are detected,
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TABLE 2. Description of measures used to characterize individual MHW events.

Term Definition Definition

Intensity

Mean °C Average SST,

Max °C Max SST,

Cumulative °C km? months Sum of SST, over the total area for the duration of the event
Duration months Persistence of MHWs in time
Area

Mean km? Average MHW grid area over the duration of the event

Max km? Largest MHW grid area over the duration of the event

Total km? Sum of unique grid area over the duration of the event
Centroid (° 1at, ° lon) Geometric center of each object for each MHW defined at each

time step

respectively (Figs. 6b,e,h). For a radius of 10 gridcell units and
area size percentile thresholds of 65, 75, and 90, the number
of objects detected is 3, 3, and 2 (Figs. 6¢,f,i). As the minimum
size percentile threshold P increases, objects disappear when
the areas fall below the threshold. The sensitivities to the ra-
dius R and size parameters P give insight into how the set of
detected MHW events can be impacted by choices made in
the application of Ocetrac. Here, we use a radius of 8 as it
provides enough detail of the original objects while creating
smooth edges. We also choose the 75th percentile for the min-
imum size percentile threshold as it isolates the well-known
MHWs that have occurred in the twenty-first century, includ-
ing the event of Western Australia in 2011 (Fig. 6¢). Different
choices of radius and size parameters can be made and may
be more suited for tracking specific events.

The sensitivity analysis reveals that the choice of parame-
ters R and P influences the basic characteristics of MHWs
such as the number, duration, and size. Our choices of radius
and minimum area size percentile threshold used in this study
were determined by our aim to have approximately 20 MHWs
per year (approx. 800 from 1982 to 2020), a minimum area
roughly the size of Alaska (approximately 2 X 10° km?), and
lasting on average 3 months, allowing us to focus on the more
extensive and long-lasting MHWs (Holbrook et al. 2019).

4. Metrics

Ocetrac allows for the characterization of discrete MHWs
in time and space. We define a set of measures that are com-
puted over the lifetime of each event at monthly increments
(Table 2). To describe the intensity within the MHW, we use
the entire SST, field within the object contour (green outlines
in Fig. 6) to calculate the mean, maximum, and cumulative in-
tensity. The MHW anomalies are summed over the area and
duration of the event to calculate the cumulative intensity.
Degree heating weeks (°C weeks) are commonly used to
study the impacts of coral bleaching in tropical reef ecosys-
tems (Kayanne 2017; Eakin et al. 2010). The cumulative in-
tensity (°C km* months) provides a measure of accumulated
heating over the lifetime of the MHW and can be informative
when assessing the time, space, and temperature dependence
of ecological impacts related to MHWs.
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Area is an important descriptor of MHWSs. The total area is
defined as the sum of gridbox areas contained within each object
and takes into consideration grid resolution and latitude. Since
the MHW with multiple objects can contain several centroids, we
also compute the area for each object within the MHW. Given
that MHWs evolve in space over their lifetime, it is informative
to find the total MHW area as the sum of unique grid points con-
tained within the MHW over its duration. The mean and maxi-
mum areas over time are also computed for each MHW.

The distributions of MHW duration and area are heavy-
tailed, meaning that short-lived or small-area events occur more
frequently than long-lasting or large area events (Fig. 7). The
largest MHW encompassed the 2013-17 northeast (NE) Pacific
“The Blob,” impacting a total area of 1.94 X 10° km* and per-
sisting for 60 months. The MHW off Western Australia has a
total area and duration covering 1.53 X 10% km? for 47 months
(Table 3). The Gulf of Maine and Mediterranean Sea MHWs
were closer to the global average duration (2.99 months) and
average total area (5.74 X 10° km?) of all 813 MHWs detected
from September 1981 through January 2021.

The maximum MHW intensity has a positively skewed dis-
tribution with a mean of 2.6°C, maximum of 9.1°C, and mini-
mum of 0.2°C (Fig. 7). The 2013-17 northeast Pacific The
Blob had a maximum SST,, of 7.13°C, which is larger than the
2009-11 Western Australia (6.0°C), 2012 Gulf of Maine
(5.8°C), and 2003 Mediterranean Sea (3.6°C) MHWs, al-
though the maximum intensities of all four MHWs were
above average (Fig. 7a, Table 3).

The measures presented in Table 2 are useful to describe
MHWs and characterize their evolutions in both time and
space. In the following section, we use Ocetrac to detect and
follow four well-known MHWs occurring during the twenty-
first century, including the 2013-17 northeast Pacific (Bond
et al. 2015; Di Lorenzo and Mantua 2016), 2009-11 Western
Australia (Pearce and Feng 2013), 2012 Gulf of Maine (Mills
et al. 2013), and 2003 Mediterranean Sea MHWs (Black et al.
2004; Sparnocchia et al. 2006).

5. Case studies

Ocetrac provides a global dataset of MHW spatiotemporal
metrics that can be used to explore how past events evolved
(Table 3). We provide a summary of how Ocetrac defines a
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FIG. 7. Distribution of (a) maximum intensity (mean = 2.6°C, minimum = 0.2°C, maximum = 9.1°C), (b) duration (mean = 2.99
months, minimum = 1 month, maximum = 60 months), and (c) total area (mean = 5.74 X 10° km?, minimum = 6.87 X 10° km?, maxi-
mum = 1.94 X 10% km?) for 813 MHWs detected between September 1981 and January 2021. Named MHWs are indicated by the colored

dots using definitions in Table 3.

MHW event. Ocetrac first identifies grid cells that are in MHW
conditions at each time step and groups nearby cells into spa-
tially distinct objects, each assigned a unique ID. However, at
this stage, the algorithm does not recognize whether these ob-
jects represent a single, continuous MHW event across multi-
ple time steps. In the next step, a 3D connectivity element is
used to determine if these objects are part of the same event.
This method can result in discontiguous objects that are linked
together as being part of a single MHW event. This highlights
a limitation of using Ocetrac for predictive studies, as the full
MHW event is only identified retrospectively.

Here, we explore these recent events and determine 1) if
their representation using Ocetrac is consistent with the past
literature and 2) if there is anything new that can be learned
about MHWs by taking into consideration their spatial and

temporal connectivity. We focus on four events that had major
impacts on both socioeconomic and ecological systems and
that sample from unique geographic regions in both the tropics
and midlatitudes. The way these case study MHW events were
identified was first by using Ocetrac to track MHW events us-
ing the entire data period. We looked for previously identified
MHWs in the Ocetrac set of MHWs. For instance, Ocetrac
identifies the Gulf of Maine MHW and the Mediterranean Sea
events, which are regionally confined. We also examined the
Ocetrac results for the 2010/11 event off the west coast of Aus-
tralia as defined in the literature and found that event in Oce-
trac. However, we found the Ocetrac-defined MHW event to
be longer and larger. Similarly, using the set of Ocetrac-defined
events, we found The Blob to be part of a larger and longer
MHW event.

TABLE 3. Spatiotemporal metrics using Ocetrac to describe four well-known and highly impactful twenty-first century MHWs.
Intensity maximum and mean values are in degrees Celsius. Cumulative intensity units are degrees Celsius months. Total, mean, and
maximum area values are in square kilometers. The “No. of objects” column is the total number of objects contained in the event
and max per month in parentheses.

Duration
Region Start date End date (months) Intensity Area (km?) No. of objects
Northeast Pacific  November 2013  October 2018 60 Mean: 1.0 Mean: 2.25 X 107 195 (7)
Max: 7.1 Max: 7.03 x 10’
Cumulative: Total: 1.94 X 108
2.82 x 10°
Gulf of Maine April 2012 December 2012 9 Mean: 1.4 Mean: 2.57 X 10° 9(1)
Max: 5.8 Max: 4.80 x 10°
Cumulative: Total: 7.91 X 10°
8.91 x 10*
West coast of December 2008 October 2012 47 Mean: 0.8 Mean: 1.62 X 107 151 (7)
Australia Max: 6.0 Max: 3.27 X 107
Cumulative: Total: 1.53 X 108
1.38 x 10°
Mediterranean June 2003 August 2003 3 Mean: 1.6 Mean: 1.54 X 10° 3(1)
Sea Max: 3.6 Max: 1.76 x 10°

Cumulative: 1.59 X 10*  Total: 1.78 X 10°
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FIG. 8. Spatiotemporal evolution of the cumulative intensity (°C months) over the entire footprint of (a) the
northeast Pacific “Blob” (event 692, November 2012-October 2018), (b) the Gulf of Maine (event 651, April 2012
December 2012), (c) Western Australia (event 606, December 2008-October 2012), and (d) the Mediterranean Sea
(event 464, June 2003-August 2003). Cumulative intensity maps considers all the months that Ocetrac detects the

MHW and sums their intensity over time at each grid point.

a. Northeast Pacific

A MHW, colloquially referred to as The Blob, in the north-
east Pacific was notorious for its unusually large scale, its per-
sistence, and the magnitude of its temperature anomaly
(Bond et al. 2015). In the literature, the MHW anomalies that
developed in late 2013 were connected to the warm SSTs in the
western tropical Pacific months prior through the excitement of
atmospheric Rossby waves that weakened the mean state of at-
mospheric circulation over the North Pacific (Capotondi et al.
2019; Hartmann 2015; Shi et al. 2019). This resulted in an excep-
tionally high ridge of atmospheric pressure through the winter
of 2014 that weakened surface wind speeds, lowered the rates of
turbulent heat loss from the ocean to the atmosphere, and re-
duced the normal Ekman transport of cold water from the north
(Bond et al. 2015). Offshore SST anomalies formed during the
boreal winter of 2013/14. The NE Pacific phase of the event was
initiated during atmospheric conditions resembling the North
Pacific Oscillation (NPO), which were linked to the develop-
ment of warm conditions in the western—central equatorial
Pacific, in turn resulting in atmospheric teleconnections that
produced a deepened Aleutian low. A deepened Aleutian low
is associated with more southerly winds along the U.S. West
Coast, reducing the strength of the northerly climatological
winds. This resulted in weakened offshore Ekman transport
and warmer temperatures along the coast, as suggested by Di
Lorenzo and Mantua (2016). In addition, atmospheric anoma-
lies in the northeast Pacific in 2013-15 were likely dynamically
linked through atmospheric variability and thermodynamic
coupling in addition to North Pacific decadal SST variability
(Tseng et al. 2017; Di Lorenzo and Mantua 2016; Lee et al.
2015). The link between the initial NPO-like sea level pressure
anomalies in the North Pacific and ENSO development in
the equatorial Pacific has also been recently examined by
Capotondi et al. (2022) who discuss a decadal dynamical
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mode of variability, termed the North Pacific-central Pacific
(“NP-CP”) mode, which is a component of the Pacific de-
cadal oscillation (PDO) according to Newman et al. (2016).
This mode of variability, which is associated with SST pre-
cursors of Blob-type events in the northeast Pacific, includes
the development of ENSO precursors like the North Pacific
meridional mode, favoring the initiation of central equato-
rial Pacific warming, which in turn increases the persistence
of northeast Pacific MHWs.

We use Ocetrac to explore the spatiotemporal connectivity
of anomalies during 2013-18 that contains The Blob (Fig. 8a,
supplemental material 5). The first signature of the 2013-18
event occurs just south of the Gulf of Alaska as described by
Bond et al. (2015) in late 2013. The SST anomaly was con-
fined to the western and northeast Pacific through late 2014.
At the same time, SST anomalies in the Indian Ocean were
above average for most of 2014, which was a factor in the
failed development of a major El Nifio event in 2014/15
(Dong and McPhaden 2018; McPhaden 2015). The warm
background SSTs likely enabled the MHW to grow in the In-
dian Ocean and persist through 2015. As defined by Ocetrac,
in this MHW event, SST, in the Indian Ocean is linked with
SST, in the North Pacific. The North Pacific portion of this
mega MHW resembled the spatial pattern of the positive
PDO in winter 2015 that extended from the Gulf of Alaska to
the central/eastern tropical Pacific. Di Lorenzo and Mantua
(2016) showed that the weak El Nifio of 2014/15 provided the
Aleutian low with enough variability to drive this PDO-like
expression of SST anomalies. This variability, along with in-
creased heat content in the tropical Pacific, was an impor-
tant precursor to the development of one of the most
powerful El Nifio events on record in 2015/16. Individual
snapshots of the monthly evolution of the objects contained
within this event demonstrate its global reach (supplemental
material 6).
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FIG. 9. Spatiotemporal evolution of the SST, (°C) over the entire footprint of the Gulf of Maine (event 651).

b. Gulf of Maine

The Gulf of Maine MHW in 2012 covered the ocean from
Cape Hatteras, North Carolina, to Iceland and in the Labrador
Sea (Fig. 8b; Mills et al. 2013). A northward meridional shift in
the atmospheric jet stream over North America during the late
autumn and early winters of 2011/12 stabilized atmospheric high
pressure over the western North Atlantic (Chen et al. 2014).
This led to an overall reduction in surface wind speeds and
higher than normal air humidity and temperature, which acted
to inhibit turbulent heat loss from the ocean to the atmosphere
and increase water column stratification (Chen et al. 2014). As a
result, SSTs systematically warmed over the continental shelf
from November 2011 through at least June 2012 (Chen et al.
2014). Anomalous warming in the spring of 2012 was attributed
to large-scale atmospheric variability during the winter of
2011/12, whereas local advective heat flux played a secondary
role to cool SSTs (Chen et al. 2014, 2015).

The results from Ocetrac show that the Gulf of Maine
MHW was a regional event that was confined to the north-
west Atlantic (Fig. 9; supplemental material 6). The center of
action was centered offshore of Newfoundland with maxi-
mum cumulative intensities occurring in the Gulf of Maine,
Gulf of St. Lawrence, and part of the Labrador Sea (Fig. 7b).
The MHW, which began in April 2012, persisted for 9 months
and covered a total ocean area of 7.91 X 10° km* with a maxi-
mum intensity of 5.82°C (Table 3). Scannell et al. (2016) also
tracked the 2012 Gulf of Maine MHW using 2° latitude X
2° longitude resolution monthly detrended SST for 3 months,
between June and August 2012, and found its area to be 7.60 X
10° km? with a maximum intensity exceeding 3°C. Scannell et al.
(2016) used the same detrending method, and warming events
were detected by mapping contours of a particular anomaly
level, with the default threshold being 1 standard deviation above
the regional mean. They also defined the threshold in terms of
standard deviation units. Scannell et al. (2016) defined MHWs
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based on their probability of occurrence. Here, we define a mini-
mum size criterion, which they did not enforce. Scannell et al.
(2016) also showed that the likelihood of a MHW of this size is
enhanced during the negative phase of the North Atlantic Oscil-
lation (NAO) and positive phase of the Atlantic multidecadal os-
cillation (AMO), with the AMO being more dominant. The
AMO had been positive since the early 1990s, and the NAO
took a negative excursion in 2012. The resulting relationship be-
tween natural modes of SST variability and MHW size may have
favored the large-scale nature of the 2012 warm anomalies.

c. West coast of Australia

A major, unprecedented MHW occurred in late February
2011 off the coast of Western Australia (Pearce and Feng 2013).
An important driver of this MHW was the fast phase transition
from central Pacific El Nifio in 2009/10 to La Nifia in 2010/11
that was in part driven by strong easterly wind stress over Indo-
nesia and the western end of the Pacific caused by warm SSTs in
the Indian Ocean (Kim et al. 2011). Easterly wind anomalies in
the western Tropical Pacific and over Indonesia excited an east-
ward upwelling oceanic equatorial Kelvin wave that quickly ter-
minated warming associated with El Nifio in 2009/10 (Kim et al.
2011; Kug and Kang 2006; Yoo et al. 2010). An extraordinary
La Nifla quickly ensued, which increased SSTs and sea level in
the western tropical Pacific and off the northwest coast of Aus-
tralia. High steric height anomalies forced a stronger than nor-
mal poleward flowing Leeuwin Current (Feng et al. 2013). In
addition, northerly wind anomalies associated with low sea level
pressure anomalies off of the coast of Western Australia helped
to intensify the Leeuwin Current and reduce turbulent heat loss
from the ocean (Feng et al. 2013). The poleward advection of
warm water contributed to two-thirds of the warming, while pos-
itive air-sea heat flux anomalies into the ocean accounted for ap-
proximately the other one-third of the warming (Benthuysen
et al. 2020). The anomalous air—sea heat flux in February
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2011 acted to reinforce the MHW rather than damp the
warming effects from La Nifia (Feng et al. 2013). The excep-
tional MHW that resulted along Australia’s western coast was
dubbed “Ningaloo Nifio” for its resemblance to other coupled
ocean-atmosphere phenomena in the Pacific (El Nifio) and
Atlantic (Benguela Nifio) (Feng et al. 2013). After the peak
warming in March 2011 along the coast, positive sea level
and SST anomalies propagated offshore following the prop-
agation of mesoscale eddies (Benthuysen et al. 2014).

Indian Ocean SSTs during the following summers of 2012
and 2013 remained anomalously warm off Western Australia
(Caputi et al. 2014) The persistence of anomalies was part of
an increasing trend of Ningaloo Nifio conditions since the late
1990s, where the shift to a negative PDO phase occurred with
the strong La Nifia that followed the 1997/98 El Nifio (Feng
et al. 2013; Sen Gupta and McNeil 2012). The trend was
driven in part by a change to the negative phase of the inter-
decadal Pacific oscillation (IPO) and enhanced ENSO vari-
ance, and the former sustains positive heat content anomalies
off Western Australia and favors cyclonic wind anomalies
that reduce the prevailing alongshore southerly winds and en-
hance poleward heat transport by the Leeuwin Current (Feng
et al. 2013). Further coupling between the alongshore winds
and coastal SST has been shown to amplify Ningaloo Nifio
events (Kataoka et al. 2014).

Ocetrac identifies the initiation of a MHW off the west coast
of Australia in 2008. It was detected later near the east coast of
Australia in April 2010 and then off the west coast of Australia
in October 2010 (supplemental materials 8 and 9). This earlier
and large spatial footprint results from the connectivity estab-
lished by Ocetrac via a physical overlap of warm SSTa" in space
and time. Again, the connectivity between different components
of this MHW, as detected by Ocetrac, is not necessarily mecha-
nistic, although it may be worth exploring, in future studies, pos-
sible common causes.

d. Mediterranean Sea

During the summer of 2003, Western Europe experienced
its worst heatwave in over 500 years, which caused excessive
morbidity throughout the region, especially in hard hit France
(Luterbacher et al. 2004; Valleron and Boumendil 2004). The
extremely hot conditions over land from May through August
stemmed from a persistent anticyclonic circulation centered
over northern France that reduced cloud cover and precipita-
tion (Black et al. 2004; Grazzini and Viterbo 2003). Although
short-lived, the anomalous atmospheric anomalies quickly
warmed SSTs in the central Mediterranean Sea in May before
affecting the entire basin by July, with the exception of the
Aecgean Sea (Grazzini and Viterbo 2003). The Mediterranean
Sea MHW warmed passively as a result of increased surface
air temperatures, reduced surface wind speeds, and a reduc-
tion of all components of the upward heat flux (evaporation,
longwave radiation, and sensible heat) (Olita et al. 2006). Up-
ward heat fluxes increased in the winter and spring of 2003
and decreased in summer 2003. The MHW dissipated abruptly
in late August to early September when strong westerly winds
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cooled surface air temperatures and induced wind-driven tur-
bulent mixing that cooled SSTs (Sparnocchia et al. 2006).

Remote forcing from the northward shift and intensifica-
tion of the intertropical convergence zone over West Africa,
as well as Rossby waves emanating from tropical America
that intensified the Azores anticyclone, contributed to the un-
usual atmospheric conditions driving the 2003 Mediterranean
Sea MHW (Black et al. 2004). Decadal fluctuations in North
Atlantic SSTs and the thermohaline circulation are known to
influence European weather over long time scales. During
2003, the AMO index was positive and associated with ele-
vated air temperatures and reduced wind stress over western
Europe (Sutton and Hodson 2005).

The Mediterranean Sea MHW in Ocetrac during the sum-
mer of 2003 started in June and persisted through August
(supplemental materials 10 and 11). Owing to the nature of
the semienclosed region, MHW anomalies in the Mediterra-
nean Sea did not connect with those in the Atlantic and had
only one centroid per month. This meant that the MHW was
highly localized with maximum anomalies over 4°C and a total
surface area of 1.78 X 10° km?, where the maximum cumula-
tive anomalies occurred in the central and western regions of
the basin (Table 3, Fig. 8d). The 2003 Mediterranean Sea
MHW was the smallest size event of the four case studies ex-
amined here and however was intense enough to decimate
rocky benthic macroinvertebrate species (Table 3; Garrabou
et al. 2009).

6. Conclusions

Here, we discuss a MHW tracking algorithm called Ocetrac
that can be used to characterize the spatiotemporal evolution
of MHWs globally. This software tool Ocetrac highlights the
spatial connectivity and temporal behavior of MHWs. Using
Ocetrac, we characterize the spatial patterns and evolution of
some of the most dangerous MHWs of the twenty-first century
together with other MHWs identified from global monthly SST
observations. A summary of our approach in this study is as
follows:

1) Preprocess global SSTs to exclude the long-term warming
trend and define anomalies SST, with respect to the local
climatology. Anomalies are then standardized by the local
monthly standard deviation of SST, over the entire clima-
tological period. The climatological period is defined by a
40-yr period. The long-term warming trend is removed to
examine MHW as consistently rare extreme events driven
by internal climate variability while excluding the effects
of global warming.

2) Extract the binary image of candidate MHW points, called
features, where the standardized anomaly SST;, exceeds the
90th percentile. We then define the minimum radius R and
minimum area size threshold P. Using morphological
operations, opening and closing, the spatial structure is
simplified giving SST; features. We then identify MHW
objects as features that are larger than the minimum
area size threshold P.
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3) Track MHWs in space and time using a 3D (x, y, f) centro-
symmetric connectivity element, keeping track of multiple
objects of a given MHW as the MHW splits and merges.

Other MHW tracking schemes exist, including the tracking
scheme presented in Sun et al. (2023a), which was later ex-
tended to track MHW volumes (Sun et al. 2023b). The track-
ing scheme presented in Sun et al. (2023a) constructs MHW
snapshots and tracks MHWs in the time domain, where candi-
date MHW points are detected using the Hobday et al. (2016)
method. Sun et al. (2023a) used daily SST and found the raw
MHWs to be spatially incoherent and addresses this by apply-
ing a K-nearest neighbor (KNN) algorithm, using a great cir-
cle distance to identify the K-nearest grid cells and filtering
out grid cells where less than half of its K-nearest grid cells
are identified as MHWs. This smoothing procedure has a sim-
ilar impact as the Ocetrac tracking algorithm procedure of us-
ing morphological operations and a structuring element.
There are several ways to treat the splitting and merging of
MHW events in the time domain. The time domain linkage is
where the method presented in Sun et al. (2023a) and Ocetrac
diverge. In Sun et al. (2023a), the time domain linkage is deter-
mined by the fraction of overlapped domain between MHW
units at two consecutive time steps, which is a user-defined pa-
rameter «. The results of this tracking algorithm depend on
their K-parameter and to a smaller extent « (Sun et al. 2023a).
In Ocetrac, no minimum overlap in the time domain is en-
forced. The labels of the objects in each MHW during the first
stage of object identification, which is in the spatial domain,
can be extracted.

We demonstrate the usefulness of Ocetrac in following the
evolutions of four well-known MHWs in the Pacific, Indian,
and Atlantic Oceans and Mediterranean Sea. The advantage
of using Ocetrac globally, rather than within a specified re-
gion, is that it captures the large-scale and dynamically linked
connections between remote SST anomalies that connect
seemingly disconnected MHWs. In combination with dynami-
cal studies, Ocetrac can provide a tool to better understand
the origin of MHWs and their evolution. However, it is im-
portant to note again that the results of the tracking algorithm
are sensitive to the choice of the radius R and minimum size
percentile threshold P, which are currently user-defined pa-
rameters. In the case of the Ocetrac-tracked NE Pacific heat-
wave, the globally distributed objects outside of the North
Pacific are identified as linked to the NE Pacific heatwave. In
this example, the user could consider changing P and R and
the structure of the connectivity element, which is currently
user-defined. This flexibility could be addressed in a future
version of the tracking software package. A future version of
the tracking software package will also incorporate a submod-
ule to calculate the measures of the characteristics of MHWs,
such as the 90th percentile intensity and 90th percentile area.
Other measures that will be published in the next stage of the
package include the center of mass and centroid displace-
ment, ratio of convex hull area and area of heatwaves, and de-
formation among others could be developed as measures to
understand the compactness of the shape and dispersion and
the change of these characteristics over time.
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To a large extent, our interpretation of extreme events is
dependent on how thresholds are defined. In many circum-
stances, extreme events are determined based on the space
and time scales of their impacts and associated risks. For ex-
ample, extreme flooding events are often classified by their
extent and frequency in terms of their potential for damage
(ten Veldhuis 2011). It is therefore useful to consider MHWs
as temperature variance outside the normal range of thermal
tolerance to native species. However, here, we remove the
long-term 40-yr warming trend in order to better isolate the
behavior of SST variance above the trend to be able to de-
scribe the spatiotemporal connectedness of MHWSs and be-
cause we define MHWs as consistently rare extreme events
that are driven by atmospheric variability. The 40-yr trend
also removes some multidecadal variability. There are other
applications where the inclusion of the trend would be appro-
priate as well as different ways to define the warming trend,
such as a linear trend. However, global warming is nonlinear,
so removing a linear trend may not be the best way to remove
the forced response to global warming. When we retain the
long-term warming trend, a greater proportion of ocean sur-
face area experiences a MHW, which would increase the
MHW intensity, duration, and size. If we were to use this
tracking algorithm without detrending, we would identify and
track only a few long-lasting and spatially expansive MHWs
toward the end of the record. This is because this tracking al-
gorithm relies on the binary maps that indicate candidate
MHW points defined by the user-defined baseline and user-
defined threshold. The use of this tracking algorithm can then
be generalized to any baseline and any threshold that produce
binary maps that indicate the candidate points of MHWs. The
use case of this tracking algorithm is also not limited to just
tracking MHWs but can also be extended to track other phe-
nomena that could have coherent spatial structure, for in-
stance, extremes in local sea level.

We also explore the sensitivity of Ocetrac to the resolution
of gridded observational data, ranging from eddy-permitting
(0.25°) to very coarse (2°). The overall large-scale spatial pat-
terns agree well among the different resolutions. We expect
this by manipulating R and P as demonstrated in Figs. 4a—d
that the tracking algorithm could be implemented for daily
(and even finer temporal scale) data. Morphological smooth-
ing removes the artifacts of image noise and is completed by
two grayscale morphological operations: grayscale erosion
and dilation. In the case of daily MHWs, we anticipate that
the morphological operations would need to be applied multi-
ple times to be able to track the objects. However, visualizing
and quantifying the spatiotemporal connectivity of MHWs in
sea surface temperature forecasts using Ocetrac could en-
hance the usability of sea surface temperature forecasts.
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