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LOWER RATE BOUNDS FOR HERMITIAN-LIFTED CODES FOR ODD
PRIME CHARACTERISTIC

BETH MALMSKOG AND NA’AMA NEVO

ABSTRACT. Locally recoverable codes are error correcting codes with the additional prop-
erty that every symbol of any codeword can be recovered from a small set of other sym-
bols. This property is particularly desirable in cloud storage applications. A locally
recoverable code is said to have availability ¢ if each position has t disjoint recovery sets.
Hermitian-lifted codes are locally recoverable codes with high availability first described
by Lopez, Malmskog, Matthews, Pifiero-Gonzales, and Wootters. The codes are based
on the well-known Hermitian curve and incorporate the novel technique of lifting to in-
crease the rate of the code. Lopez et al. lower bounded the rate of the codes defined
over fields with characteristic 2. This paper generalizes their work to show that the rate
of Hermitian-lifted codes is bounded below by a positive constant depending on p when
q = p' for any odd prime p.

1. INTRODUCTION

Error-correcting codes are methods to cleverly encode redundancy into information so
that errors or erasures occurring during transmission or storage can be repaired. These
algorithms are ubiquitous, enabling processes as varied and important as telescopes trans-
mitting images of the universe back to earth, safe storage of photos on personal laptops,
and reliable cloud storage and computing.

This paper focuses particularly on locally recoverable codes, a class of codes motivated by
cloud storage applications. Intuitively, locally recoverable codes have the additional property
that any erasure can be recovered with access to only a small number of other symbols from
the encoded information, called the recovery set for the erased symbol. In cloud storage
applications, individual servers will not infrequently fail or become unavailable. To make
sure that storage is reliable, one piece of information (or codeword) may be spread across
many servers so that if a single server is not available, the information of this server can be
retrieved from other servers in the cluster. This eliminates the need for simple backups of
each server, which would be necessary if the entire codeword were stored on a single server.
In a situation of high demand or high number of failures, it would be nice to have multiple
ways to recover the information from a single server. A locally recoverable code is said to
have availability ¢ if for each server there are ¢ mutually disjoint sets of servers that can
each be used to recover the information of the original server.

This work builds on that of Lopez, Malmskog, Matthews, Pinero-Gonzales, and Wootters[6]
constructing locally recoverable codes with high availability called Hermitian-lifted codes.
These are evaluation codes on the affine points of the Hermitian curve y9+! = 29+« defined
over the finite field Fg2, where ¢ = p' for any prime p and any positive integer . The rate of
a code is a measure if its efficiency, the ratio of the number of symbols in the raw data to the
number of symbols in the encoded information, so codes with larger rate are more efficient.
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Their paper proves that when ¢ = 2!, the rate of the Hermitian-lifted code is bounded below
by a positive constant independent of [. This work uses the same methods to show that
when ¢ = p! for any prime p, the rate of the Hermitian-lifted code is still bounded below by
a positive constant depending on p but independent of [. Although we find a lower bound
that is fairly small, this result is important because it shows that the rate of this code is
significantly better than the rate of the corresponding Hermitian one-point code C, which
tends to 0 for ¢ = p' as [ increases. This is further evidence that applying the lifting tech-
niques pioneered by Guo et al. [4] to evaluation codes on curves can be effective for odd
primes as well. These ideas have promise for other curves, as illustrated by the recent work
of Matthews et al. applying similar lifting techniques to Norm-Trace curves in [8] and [7].
We note that the lower bound found here is not a tight bound. The bound calculated in
the theorem is based on finding enough “good” functions to yield a positive rate bound, but
does not aim to find all the “good” functions or the actual dimension of the code. In fact,
recent work of Allen et al. [I] (completed after this work) improves upon our bound using
different techniques. However, an important aspect of our work is that it illustrates that
the techniques of [6], which could be potentially useful for other curves, can be extended
to general primes, and proves some elegant but technical number theoretic identities for all
primes p.

Section [2] will cover the necessary background on codes and algebraic geometry codes,
and then introduce the construction for Hermitian-lifted Codes described in [6]. In Section
[4, we will prove the generalized version of the theorem proved in [6] by following a very
similar proof structure to the one used to prove the ¢ = 2! case. Finally, we will show an
example of the proof in the p = 3 case and an example of a good monomial.

2. IMPORTANT BACKGROUND AND NOTATION

In the following, we include standard definitions and facts from coding theory and al-
gebraic geometry codes. For more information and a full development of this background
material, a good reference is Judy Walker’s Codes and Curves [11].

2.1. Error Correcting and Detecting Codes. Let p be an integer prime, [ a natural
number, and g = p'. Let F, denote the field with ¢ elements. For two natural numbers n, k
with n > k, a linear code C of length n and dimension k is a k-dimensional linear subspace
of (Fq)™. Information is encoded as vectors of length n with coordinates in F,. Elements of
C are called codewords. The code C has ¢* codewords, i.e. there are ¢* different messages
or words that can be transmitted or stored using C.

For any two vectors in (Fy)", & = (z1,22,...,2,) and ¥ = (y1,¥2, - .., Yn), the Hamming
Distance between any # and ¢ is defined as d(¥,¥) = #{i|z; # vi} , which is the number
of positions in which # and ¥ have differing symbols. Every code has a minimum distance
usually denoted d, which is the smallest Hamming Distance between any two distinct code-
words in the code. The minimum weight of a code is the smallest distance between a nonzero
codeword and the zero codeword. It is not hard to see that for a linear code C', the minimum
weight is equal to the minimum distance. The minimum distance of a code determines how
many errors in a message the code can correct. Say that codeword ¢ is transmitted and
stored, but some number e of positions are corrupted. If e < d, the resulting message is
not a codeword, because it would take at least d changes to get from ¢ to the nearest other
codeword. Thus up to d — 1 errors can be detected. If e < %, the message will be closer
to ¢ than to any other codeword, so up to % errors can be corrected by replacing the
corrupted message with the closest codeword.
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The information rate of a code is given by R = k/n. Intuitively, out of the n symbols in
a codeword, only k£ symbols provide are necessary to convey the message, while the other
n —k symbols are transmitted to assist with error detection. Therefore, maximizing the rate
of a code minimizes the number of extraneous symbols that need to be transmitted, which
increases the efficiency of transmission. A rate as close as possible to 1 is ideal.

Although maximizing both the minimum distance and the dimension of a code is ideal,
when the two values are maximized there must be trade-offs between them. This is captured
in the Singleton bound.

Theorem 1. For a linear code with minimum distance d, dimension k, and length n, we
haved <n—k+ 1.

A linear code with length n and dimension k can be represented by a k X n generator
matrix, where each row of the matrix is one of the k£ basis elements of the code’s vector
space.

Example 1. Consider the linear code C over the alphabet A = Fo = {0,1} with the
following generator matrix.
10 01 11
01 00 11
101 0 01

It is easy to see that the code C has length n = 6 and dimension k& = 3. Note that the
minimum distance of the set of basis vectors is not equal to the minimum distance of the
entire code, which often makes it very difficult to calculate the minimum distance of large
codes. Since this example is small and only has 8 codewords, we can use brute force to find
the minimum distance. Writing out and comparing all the elements of the code shows that
the minimum distance of C is 3.

Now consider that the message (1,1,0,1,0, 1) is received. Since this vector is not a linear
combination of any of the rows of the generator matrix, then the message cannot be a
codeword in C. Therefore, an error must have occurred in the transmission.

A minimum distance of 3 means this code can correct at most % = 1 error in a codeword.
Thus, in order to correct the error, we must find a codeword in C that has a Hamming
Distance of 1 from the received message. The codeword (1,1,0,1,0,0) is generated by
adding the first two rows of the matrix, and has a Hamming Distance of 1 from the received
message. Then this codeword is the closest to the message, so the code algorithm would
assume that the intended message was (1,1,0,1,0,0).

We say that C is a locally recoverable code (LRC) with locality r if for each i € {1,...,n}
there exists a set of r indices 4; C {1,...,n}\ {i} with #A4; = r so that, for any codeword
¢=(c1,...,¢n) € C the value ¢; can be recovered using the values in the positions of A;.
The set A; is called the recovery set for the i-th position. One of the first recovery schemes
of this nature appeared in [5]. A locally recoverable code C has availability t with locality
(r1,...,m) if for each i € {1,...,n} there exist ¢ disjoint recovery sets for position ;. When
ri=r; =rforalli, je {1,2,...,t}, we say that the code has uniform locality r, or simply
locality 7.

2.2. Evaluation Codes. Let S = {Py, P,,..., P,} be a finite set and L an F,-linear space
of functions defined on S with values in Fy. An evaluation code C(S,L) is defined by
evaluating the functions in L on the points of S:

C(SaL):{(f(Pl)vf(PQ)v7f(Pn))f€L}
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If the evaluation map of L on S is injective, then C(S, L) is isomorphic to L as a vector
space, so has the same dimension as L. If S is a subset of the points on an algebraic variety
X, the geometric and algebraic structure of X can often give valuable information about the
parameters of C(S, L). This underlying structure can also naturally give rise to locality and
availability. Important examples of evaluation codes are Reed-Solomon codes, Reed-Muller
codes, and one-point codes on curves.

Example 2. Let S ={Py, P»,...,P;} be the set of all values in Fy, and let L = Ly_; for
some k < q be the set of all polynomials in Fy[x] of degree at most k —1. Then C(S,L)
is called a Reed-Solomon code of dimension k over F,, denoted RS(q,k). It is not hard to
check that this code has length q, dimension k, and minimum distance d = q —k + 1. Thus
Reed-Solomon codes meet the Singleton bound, and are in that sense as good as possible!

Reed-Solomon codes are excellent codes that have been used in many settings, including
encoding music on compact discs and encoding information for transmission to Earth from
the Voyager space probe. We can think of these codes geometrically by seeing the evaluation
set as the points on a “number line” over F,. In one very influential construction, Tamo
and Barg [10] devised local recovery methods for certain subcodes of Reed-Solomon codes.

However, the dimension and length of Reed-Solomon codes are by the size of the field F,,.
Because arithmetic becomes more time consuming as the field size grows, we may wish for
longer codes over a fixed size field, while keeping the benefits of geometric constructions.
Reed-Muller codes generalize Reed-Solomon codes by growing the evaluation set from a line
to an r-dimensional space.

Example 3. Let m be a natural number. Let S = {P1,P,,..., Pym} be the set of points
in the m-dimensional space (Fq)™. For r a non-negative integer, let L = L, ,, be the set
of m-variate polynomials in Fylz1,x2,...,2m] of total degree at most r, where the degree
in x; is at most ¢ — 1. Then C(S,L) is called a (q-ary) Reed-Muller code of degree r in
m variables and denoted RMy(r,m). The code RM(r,m) has length n = ¢™, dimension

k= (T;m), and minimum distance d = (¢ —r)q"~* when r < q— 1.

Reed-Muller codes with < g—2 are locally recoverable with locality r+1 and availability
q;n:ll. The idea behind local recovery is the following. If f € L has total degree < ¢—2, then
the function f restricted to any line in (F;)™ will be a univariate polynomial f of degree
< g — 2. If position ¢ in a codeword is erased, we need to recover the value of f(F;) where
P; € S. By choosing any line through P;, we can say that f(P;) = f(t;) for some t; € F,
where the values of f (t) are known for the other ¢ — 1 points on the line, corresponding to
q — 1 distinct values of ¢. Using Lagrange interpolation, we can determine the coefficients
of a degree ¢ — 2 polynomial with these ¢ — 1 data points. Thus every line passing through
the point P; gives a recovery set for position i. Reed-Muller codes are also widely studied,
and have applications beyond cloud storage, including private information retrieval.

Another way of generalizing the Reed-Solomon code to increase the length is to use the
points on a curve in the plane as the evaluation set, instead of line. A plane curve can be
a defined as the set of solutions to a non-trivial polynomial equation in two variables. The
Hermitian curve Hq can be defined by the equation 2 4 x + y9tt = 0, and we often search
for points over the field F,2. Note that the Hermitian curve is defined given by an equation
of the form x? + z — y?t! = 0, but these are equivalent under the change of variables
(x,y) — (—z,y), and the given form simplifies the algebra in our proof. The Hermitian
curve has many beautiful properties, including an exceptional number of symmetries and as
many points as possible for a curve of its complexity over a F 2. Goppa introduced algebraic
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geometry (AG) codes using Riemann-Roch spaces in [3]. We do not use the full generality
here, but remark that these AG codes have provided remarkable examples of long codes
with desirable parameters. See [11] for a discussion. We also note that Tamo, Barg, and
Vladut also defined locally recoverable codes and codes with availability on the curves more
generally using ideas from covering maps [2], but the construction here is instead based on
intersections. We will describe the most relevant example for our work, a Hermitian one-
point code. The term “one-point” refers to the fact that this is an evaluation code where
the evaluated functions are only allowed to have poles at the single “point at infinity” on
the curve. Hermitian-lifted codes are closely related to Hermitian one-point codes.

Example 4. Let S = {Py, Ps,..., Py} be the set of pairs (z,y) € (F2)? satisfying x7+x+
y9t1 = 0. For future reference, we will use Mq(Fg2) to denote this set. Using the properties
of the field norm and trace maps Fg2 — Fg, it is not hard to see that there are ¢ such pairs.
For a non-negative integer m, let L = Ly, be the F2-linear space of functions generated by
the set

{7 :0<j<q—1,ig+j(g+1) <r}.

We then define the Hermitian one-point code to be C(S,L), and denote this code by Cq .
The Hermitian one-point code has length n = ¢>. If ¢> —q—2 < r < ¢>, the code has
dimension k =r + 1 — @.

Proposition 8.3.3].

The minimum distance satisfies d > n —r when r < ¢ [9,

Using the same idea as in Reed-Muller codes, Hermitian one-point codes are also locally
recoverable with high availability. To see why, we note that an exceptional property of the
Hermitian curve is that if you work in projective space and include a point at infinity on the
curve, then every non-tangent line to the curve in projective space intersects in exactly ¢+ 1
points, where as tangent lines intersect the curve in exactly 1 point. Since we do not wish
to include a full discussion of projective space here (again, see [11] for more discussion), we
will make use of this custom version.

Fact 1. [6] Every non-horizontal line in the plane intersects Hy in either 1 or ¢+ 1 points.

In the Hermitian one-point code, similar to the Reed-Muller case, the recovery sets arise
from the intersections of lines with the curve, where the value of a function at any point on
a line can be recovered by the values of the function at the remaining points on the line.

Theorem 2. [6] Hermitian one-point code Cy 42_1 has locality q and availability > —1.

Proof. Let each index ¢ correspond to a point P; in S = Hy(F,2). For any a, 3 € Fg, let
Log:Fp — (Fp2)? sothat Lo g(t) = (at + S3,t). Let L, p be the image of this map. For
any line passing through P; that is not tangent, then let R; o = H,(F2 NLa,s \ {F;}). Note
that |R; | = ¢ and there are ¢* — 1 disjoint sets for each i.

Any codeword ¢y in Cj 421 arises from the evaluation of a polynomial f that is a linear
combination of z%" satisfying b < ¢—1 and aq+b(g+1) < ¢®> — 1. Using these inequalities
and the fact that a and b are integers, this implies that

a+b<qg—1.

Since the total degree of f is at most ¢—1, we have that f restricted to L, g is a univariate
polynomial f of degree at most ¢ — 1. Given ¢ values of f from the other ¢ points on L, g,
we can interpolate the value of f at P;. O
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3. THE HERMITIAN-LIFTED CODE

The high availability and long length relative to field size make the Hermitian one-point
code appealing to study. However, the rate of the Hermitian one-point code C ;2_; is

(-1 +1-4D 95
¢ 22
which approaches 0 as g grows. The Hermitian-lifted code shares many properties with the
Hermitian one-point code, but we will prove that it has the advantage of a higher rate. The
Hermitian-lifted code has the same evaluation points the Hermitian one-point code, but it
extends the set of functions that can be used to form codewords. The idea comes from
lifted Reed-Solomon codes, first introduced by Guo, Kopparty, and Sudan [4]. Their lifted
Reed-Solomon codes can be thought of as Reed-Muller codes with additional functions.
Instead of only using functions with low total degree, lifted Reed-Solomon codes include
higher degree polynomials with the special property that, when restricted to each line in
space, the restricted function has low enough degree that missing values can be interpolated
from remaining values corresponding to other points on the line. The surprising insight of
[4] is that there are many such polynomials, enough to greatly increase the rate of the lifted
Reed-Solomon code over the standard Reed-Muller code.
The definitions in this section come directly or are modified from [6], where the Hermitian-
lifted code was first described.

Definition 1. For Lo s = (at + 3,t) a,B € Fp2, f € Fp2[x,y] and g € F2|t], we say that
[ agrees with g on the intersection of Hy(Fy2) and Lo.g if f(La,p(t)) = g(t) for allt € F e
with Lo g(t) € He(Fg2).

Definition 2. Given a prime power q, let L = {Lag : o, 8 € Fp2} is the set of all lines
of the form Lo g(t) = (at + ,t). Let F be the set of all f € Fp2[x,y] such that for each
L € L there exists g € F2[t] so that deg(g) < ¢ — 1 and f agrees with g on the intersection
of He(Fy2) and L.

In other words, F is the set of all functions f such that for every line L, plugging in
F(L(t)) yields a univariate polynomial that restricts to degree at most ¢ — 1 on the points
of intersection between the curve and the line.

Now we define Hermitian-lifted codes.

Definition 3. Let g be a prime power and let F be defined as above. Then the Hermitian-
lifted code C, is the evaluation code C(Hq(Fq2), F).

The length of C4 is ¢* because |Hq(F2)| = ¢*. BEach codeword is the vector created by
evaluating on all points of the Hermitian curve a function f that reduces to degree at most
q — 1 on every line intersected with the Hermitian curve.

The Hermitian one-point code C, ;21 and the Hermitian-lifted code C, are closely related,
so we restate that the difference between them is simply in the functions f that are used
in each. In the one-point code C, ;2_1, the functions f must satisfy f € L,2_;, which is a
subset of the two variable polynomials of total degree at most ¢ — 1. In the Hermitian-lifted
code, the functions must satisfy f € F, which is all functions of unbounded total degree but
having degree at most ¢ — 1 when restricted to the intersection of the curve and each non-
horizontal line. Although the distinction between these two codes is seemingly insignificant,
the main theorem proves that the slight difference in the set of functions F and Lgy2_; is
enough to bound the rate of the Hermitian-lifted code away from 0 as ¢ goes to infinity.
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4. MAIN THEOREM AND PROOF

The authors of [6] prove that the rate of the Hermitian-lifted code as ¢ — oo when ¢ = 2!
is bounded below by a positive constant.

Theorem 3. [6] Suppose q = 2! where | > 2 and C, be the Hermitian-lifted code. Then the
rate of Cq is at least 0.007.

The aim of this paper is to extend this result to show that the rate of the Hermitian-
lifted code is also bounded below by a positive constant when ¢ = p' when p is any odd
prime. Despite the fact that 0.007 is a very small lower bound, it demonstrates a significant
difference between the Hermitian-lifted code and the Hermitian one-point code, which has
a rate that converges to 0 as ¢ increases.

Finding that the rate of the Hermitian-lifted code is bounded below by a number greater
than 0 proves that the set of functions F \ L,2_; is large. The proof of Theorem [3 in [6]
follows the appoach of finding a large set of functions included in the lifted code but not in
the one-point code. We adopt the same techniques to prove the following main result.

Theorem. Suppose that ¢ = p' where p is an odd prime and | > 2. Then the rate of Cq is
at least

.469
pp— 1@ —p*+1)

Although the bound decreases as p increases, the bound always remains positive. The
remainder of this section will be the proof to the above Theorem, also referred to as The-
orem [Bl First, we will describe the set of functions that will provide a lower bound on the
dimension of the code, a set which we call good monomials. Then, we will count the mini-
mum number of functions that must be good monomials, which will lead to a lower bound
on a dimension. The final proof of the bound in Theorem [5l will conclude this section.

4.1. Good Monomials. We begin with a lemma from [6] giving a large set of functions on
‘H, leading to linearly independent evaluation vectors. Since this lemma is proven for all p
in [6], we omit a proof here.

Lemma 1. [6] Let ¢ = p' for p any prime, | a natural number. Let M, y(z,y) = x%°.
Then the set of vectors {(Ma,b(ﬂ))PiGHq(qu) :0<a<qg—1,0<b<q?—1} are linearly
independent.

Since these monomials give linearly independent evaluation vectors, any monomial in this
set that is also in F will contribute to the dimension of the code. Before we can determine
which monomials are fit this description, we will introduce another definition. Given a line
of the form L, g(t) = (at + S,t), we find a polynomial with zeros at exactly the points of
intersection between the Hermitian curve and the line. If M, ,(La,3(t)) has degree at most
g — 1 when reduced modulo this polynomial for all o, 3 € Fg2, then M, is good. The
folowing definition generalizes the corresponding statement in [6].

Definition 4. For any prime power g, let h(z,y) = y?* + 29 + . For any a, 3 € Fp,
define

Pa.p(t) = hlat + B,t) =t + 99 + at + (B + 1) = 7T + a9t + at + 7.

For g(t) € Fp2[t], g(t) is the remainder when g(t) is divided by pa,p(t). Let dega,p(g9) =
deg(Ja,5(t))-
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Note that deg, 5(g) < ¢ for all g € F2[t] because deg(pa,s(t)) = ¢ + 1.
For aline L, 5(t) = (at+ B,t), we have M, (Lo 5(t)) agrees with polynomial g of degree
strictly less than q on Hy(F,2) if and only if deg, 5(Mab(La,s(t)) < g. Write

Map(La,p(t) = h(t)pa,s(t) + g(t)

for deg(g) < g. The roots of p, g(t) are exactly the t-values in the parameterization of the
line L, s which intersect the Hermitian curve, and these roots satisfy 0 = t77! + (at + 8)7 +
at 4 (50 pa,g(t) = 0. Thus, M, ,(La,g(t)) agrees with g(t) on the intersection of H,(Fy2)
and the line L, g.

Definition 5. For a monomial M, (z,y), let gop(t) = Map(La,p(t)) = (at + B)2°. We
define a good monomial to be any My p(z,y) such that 0 < a<qg—1,0<b< ¢ -1, and
9ap(t) satisfies deg,, 5(gap) < q—1 for all a, B € Fp.

4.2. Conditions of Good Monomials. In what follows, we assume that the line L, 5(t) =
(at+ B,t) is a line that goes through ¢+ 1 points of the Hermitian curve, where o, f € F2.
We ignore tangent lines because all monomials agree with to constant functions on a single
point of intersection. Also, we let v = 8+ 7 € F,. For simplicity, we let p(t) = pa,s(t).

Let o0, ..., 04 be the roots of p(t). We know there are g + 1 roots because there are ¢+ 1
points in the intersection of the line and the Hermitian curve. Thus,

p(t) =t Lt fat +y = (t —0g) - (t —0g) = cot T 4+ et + -+ ¢yt + cgr1

where ¢, = ZSC{O VVVVV a}.|S|=k [l,cg01 for k= 0,...,q. This is just given by the expansion
of the product above.

For any k£ > 0 we define the element P, = :'1:0 af. These values will be used to find
a condition for good monomials. The statements and proofs of Lemmas [2] and B below are
very similar to Proposition 7 and Lemma 8 in [6], respectively, with variations resulting

from our focus on odd primes p instead of only p = 2.

Lemma 2. Let g be a power of p an odd prime, and let o, f € Fp2. Then Pry1 = —aPy if
and only if dega, (t*) < q.

Proof. Divide t* by p(t) to yield t* = gi.(t)p(t) + gi(t) for some polynomial gi(t) of degree
at most ¢q. We will show that deg(gx(t)) < q exactly when Py11 = —a?P.

We may attain ¢+ 1 values of gi(t) by noting that gi(c;) = oF for 0 < i < ¢. This is true
because each o; is a root of p(t). Since gi has degree less than ¢, Lagrange interpolation
yields

b t—o;
) a0 =3 ot [T (=2

i=0  j#i J

)= Zq:of]_[g_iaj £ 4 7 (t)

i=0  j#i °
where deg(r(t)) < ¢q. Since we are only concerned with checking when the degree of the
whole polynomial is less than ¢, it is enough to check which conditions ensure that the
coefficient of 7 is 0. We will use an identity arising from the derivative of p(t). Starting
with

p(t) =t it at +y = (t—00)--- (t —0y)

we can take the derivative of both sides and get

Pty =t'+a=>Y [[t-o0).

i=0 j#i
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Replacing t with o; yields

@) Plo)=of +a=]]0i -0y,

J#i
Because o; is a root of p(t) then Uf“ + a40? + ao; = —y. We add both sides to a?*! and
factor to get (o + )(0; + o) = a9*! — 5. Therefore

1
[Lei -0y = bl

a4+ o;
J#i toi

Using equation [[ we can calculate the coefficient of t7 in gi(t) to be

i Uf (a?+0;) 9P+ Piia

— anl‘l - aq+1 —

which is equal to zero exactly when Pyi1 = —a?P;. Thus, this is our condition for when
dega.5(9) < q- 0

Now that we have a sufficient condition that gives powers of ¢ that reduce sufficiently
modulo p(t), we need to find a condition on k that will yield Piy1 = —a9P,. We will find
a few patterns to assist.

Lemma 3. Let q be a power of an odd prime p. For 0 < k < q, P, = (—1)*a% and
qu = (—l)kak.

Proof. The fact that we are working in the finite field IF» implies Py = ¢+1 =1 ¢€ Fp2. Let
1 <k<q Weget P, = —a?P;_; from Lemmal2. By induction, we get that P, = (—1)*ad*.
Again, because we are working over F,2, we can use the rules of finite field arithmetic to

find
q q a
Prg = of" = (Z ﬁ) = ((=1)*a%)? = (=1)"a™.
=0 =0
Therefore, Py = (—1)Fa* and Py, = (—1)*a*. O

Using Lemmas [2] and B above, we can find a relationship between the elements of the
following matrix, which will be useful for the upcoming theorems.

Py Py T Plg-1)q
Pr Per o Py-nygn
qul P2q71 q>—1

For a root o of p(t) = t9"1 + a9t + at 4+, we have —09t! = a%0% + o +~. By multiplying
both sides of the equation by ¢~ 971 we get —o* = a%¢* ! + ac®"7 + yo#~971. Thus,
summing over 0 < i < ¢, we obtain that the values of Py satisfy the recurrence relation

(3) Pk = —quPk,1 - Osz,q — "yPk,qfl.

Based on this formula, the (7, j) entry of the matrix is determined by the (i —1, j), (i, — 1),
and (i — 1,j — 1) entries of the matrix. As a result, the entire matrix is determined by the
first row and first column of the matrix. Therefore, every 2 x 2 submatrix M must satisfy
the recurrence relation

4) May = —a'Mip — oMoy — v M.
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The next step of the proof will be to show that the above matrix can be written as a product
of a specific product of matrices, using the fact that it is sufficient to show that the first row
and column are equal and every submatrix satisfies the recurrence relation. The following
definitions will provide the tools for defining the product.

Definition 6. Let A = [a;j] be an v x s matriz and B = [b;;] an m1 X mg matriz. The
Kronecker product of A and B is the rmy X smo matriz that can be expressed in block form
as
anB  axB a1sB
an1B  a2B  ---axsB
A®B = . .

a1 B aoB . arsB

Next, we describe the matrices that make up the product. Consider a p X p matrix B
where every 2 x 2 submatrix satisfies the property in (4). Let the first row of the matrix
be {1, —a,a?,—a?,...,a?~1} and the first column be {1, —a'?, %9, —a37,... a?P~D}. We
can use this information to find every other element in the matrix.

Lemma 4. The entry of the matriz B in row i and column j has the form

min(4,j)—1 . . .
R it (P I (1T = =2\ 1 nygtio1onm
o me= oy co () () .

n=0

Proof. We will prove this formula by induction. First, we can easily verify that the first
row and first column satisfy this formula. Now, for some ¢, d integers with 1 < ¢ < p and
1 < d < p assume that entries B 4, Bet1,4, and Bc g4+1 satisfy the formula. We want to
show that these imply that B.yi 441 satisfies the formula. We can calculate the Bey1,d+1
entry by applying inductive hypothesis and the recurrence relation (4), yielding

min(c—1,d)

-1\ (c+d-—n—-1
B. — 4 —1 ctd+1-n(C (e=1—n)q+d—n.n
Fldl = —Q ; (=1) " o1 ol ¥
min(c,d—1)
+d-—n-1
_ —1 c+d+1—n € ¢ (c=n)g+d—1—n_n
a ; (=1) " . a gl

min(c—1,d—1)

eadenfCc—1\ (c+d—n—2 c—len en. n
(e

n=0
We reindex the third sum, yielding

min(c,d)
-1\ /c+d—n—-1
_ E -1 c+d—n+1[ € (c—n)g+d—n n—l'
7 — (=1) n—1 c—1 “ 7

We then simplify by combining the summations and bringing the negative signs into the
sum, increasing the power of (-1). Let

S G G B 9 G B [ )
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This can be simplified differently depending on whether ¢ > d, ¢ < d, or ¢ = d. First,
consider that ¢ > d. Then substituting the value of X we get

d—1
Bc+1,d+1 _ Z (_ 1)c+d7n+2Xna(cfn)q+d7n,yn

n=1

-1\ [(c+d-1 c\ (fc+d—1
_1c+d+2 c cq+d .0
(=D (( 0 c—1 ) o c “
-1\ /c—1
-1 ctr2 (€ (c—d)gn.,d
e () (et
-1 c—1
-1 cr2f € (e—d)gn.,d
+(=1 <d—1><c—1)a 7

c

n=0

Now assume that ¢ < d and use the same definition for X,,.

c—1
Bc+1,d+1 = Z(_1)c+d_n+2Xna(c_n)q+d_"/y”

n=1

e (L) ()
+ (—1)**2 (Z) (d ; 1) amye
T V) [ G Bt

c

_ Z (_ 1)c+d7n+2Xna(cfn)q+d7n,yn.
n=0

Both cases result in the simplification

min(c,d)

BCJrLdJrl = Z (_1)c+d7n+2Xna(cfn)q+d7n’_Yn.
n=0

Now that we have simplified the expression into one summation, we can simplify the value
of X,. Using known identities of binomial coeflicients, the binomial coeflicients can be

rewritten as follows:
c+d—1-mn\ c c+d—n
c—1 T c+d—n c ’
c+d—1—n B d—n c+d—n
c T ce+d—n c ’
c—1 _nfc
n—1) c¢\n)’
c—1 _c—nfc
n ¢ \n)’
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Now we will substitute these identities into the expression for X,,.
c—1\/c+d—1—-n c\(c+d—1—n c—1 c+d—1—n
n c—1 n c n—1 c—1

c\ /c+d—n c—n c d—n n c
n c c c+d—-n c¢c+d—-nmn ¢ c+d—n

_f(c\(fct+td—n c+d—n

“\n c c+d—n

_f(c\(fct+td—n

“\n c '

Plugging in the simplified value of X,, into the summation for Bey1,441 yields

d c\fc+d—n
Bc+1,d+l — Z(_l)c+d—n+2( ) ( )a(c—n)q-i-d—n,yn,

n C
n=0

which satisfies the formula. By induction, every entry in B satisfies Bl and the proof is
complete. 0

The formula for each term allows us to find the exact values of the last row and last
column.

Lemma 5. The last row of matriz B is By; = (—1)7"'aP=)44I=1 and the last column is
By = (— 1) tar =iy,
Proof. The last row of the matrix is given by

j—1 .
B -—JZ( ypin (p—1> <p+ﬂ—n—2) (p—1-matj—1-nm
P — - « v

n p—1

n=0

By binomial coefficient identities, (p ;1) = (—1)" mod p. Also by binomial coefficient iden-

tities,
pt+j—n—2\ p p+j—n—2
p—1 Cj-n—1 P '

This implies that (er; :’1172) =0 mod p except when n = j — 1. Therefore, the only terms

that are left in the last row are the terms with 49~!. Thus, B,; = (—1)/"taP=)eyi—1
proving the lemma for the last row.
The last column of the matrix is given by

1—1 . .
j—n i—1 itp—n—2 i—l—n —1-n.n
e Sy () (27 e

n=0

Since

p+i—-n—2\  (p+i—n-—2)
p—1 S (i—=Dp—-n-1)
then (er;:qu) is divisible by p as long as ¢ — n — 2 > 0. This is the case except when

n =1 — 1, because i — (i — 1) — 2 = —1. Therefore, all the terms of the entries in the last
column become 0 modulo p except when n = i — 1. Therefore, the formula for the last
column of the matrix is By, = (—1)P~taP~iy~1 completing the proof of the lemma. O

Now that we have defined one of the matrices, we can define the sequence of matrices
that will be in the Kronecker Product.
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Definition 7. Let p be an odd prime. For h any integer, 1 < h < I, define By to be the
p X p matriz where the (i,7) entry is

min(%,j)—1 . . 3
itj—n [t 1 ? -—n—2 i—1—n ji—1—n_n
§ ’ (—1) +j ( . ) ( j@'_ ) >o¢< 1-n)g+j—1 ~y

n=0

Lemma 6. Assume q = p' for p and odd prime and | a natural number. Then

P P - Pygoiyg

P Ppyr o Plgonygt

: ! @D B ©By®---® B,
Pq—l P2q—1 qufl

Proof. Denote the matrix on the left by I'; and the matrix on the right side by 1";. The
first row of I is (1, —a, o2, —a?,..., 971 and the first column is (1, —a?,a?9, ..., al4=19),
Using the definiton of the Kronecker product and Lemmas [2] and [3, the first rows and first
columns of I'; and I', are equal. Therefore, in order to show that I'y = T'y , it is sufficient to
show that every 2 x 2 matrix inside of T satisfies (4).

We will proceed by induction. First, we know that the matrix B; satisfies property 4 by
construction and by Lemma 4. Now let ¢ > 1 and assume that every 2 x 2 block of the

pt~% x pt~% matrix

Ci=Bi+1®Bi12®---Q By

satisfies (4). To complete the inductive step, the goal is to show that every 2 x 2 block of
the matrix

C; (—a)?P' ' C O N an s Lo
B;®C; = (a9 "C; | att — )Gy |- | (—yer PG
(a1 C; | (—ya®PDap ;| - (v~ HP ¢

also satisfies (4). There are four cases for where a 2 x 2 block may lie in the matrix above.

(1) The block lies entirely in one of the p? cells.

(2) The block intersects four different cells of the matrix.
(3) The block intersects two horizontally adjacent cells.
(4) The block intersects two vertically adjacent cells.

Any 2 x 2 block in C; satisfies the relation by the induction hypothesis. Therefore, any 2 x 2
block M of B; ® C; in the first case will also satisfy the relation because multiplying by a
constant will maintain the relation.

Note that by Lemma [5 and the definition of the Kronecker product, the first and last
columns and rows of C; have the following structure:
(6) (Ci)ry =(—a)’™,
(7) (Ci)rg =(—a®)*,
(8) (Oi)pu—z'),j :(_aq)p(l*i),j’_yjfl
(9) (
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For case 2, let ( Z j ) be the 2 x 2 submatrix of B; corresponding to the four cells of

B; ® C; that the block M intersects. We know that w = w?" ", z = " ", Yy = ng(H),
(—i

)
and z = zP , where

Z=—-al% — ag — y0.
That means
(10) z = —(aq)p(lii)x - ap(lii)y - ’yp(lii)w

Then the 2 x 2 block of B; ® C; will be of the form

N ‘ (—a?)®' "1y
M= L | .
Y z

Applying equation ([10Q), we then have that

—aqM1)2 _ aM271 _ aMLl _ _aq(_aq)(p(lf’i)il)x _ a(_a)p(lfi)ily . ,7(,7;0(171')71)’“}
(1—1)

= (—a" e (g =7

_ —(oﬂ)p(lii)x _ apa—i)y B ’YP(H)
=2z = Msp.

Therefore the 2 x 2 block M satisfies ) in case 2.

Now consider case 3, when the block M intersects two horizontally adjacent cells. In this
case, the block will have the form

(=) _ — _
M= ( (o) Ry 2 | (—an)t2y )

T—7) _ _ _
()P EaElp | (—at)hly

for constants x and y and some 2 < k < p'~*. We see that
—afMy — aMyy — aMyy = —a%(=a®)F 2y — (=) TEyETl () LRy
= (—a)*y = My,
satisfying equation (4).
Finally, in case 4 of M intersecting vertically adjacent cells, we have
N ( (_aq)p(z—i),j+1,yj72x ‘ (—oﬂ)p(lﬂ.)fj”yj*lx )
(—a) %y | (—a) 1y

for some constants z,y and 2 < j < p'~*. We see that M satisfies (&) in this case because

—afMp — aMyy — aMy g = —af(—afP?" Iy — a(—a) "2y — y(—at)P It
= () ly = Map.
Therefore, every 2 x 2 block of B; ® C; satisfies (4). By induction, every 2 x 2 block in 1";

must also satisfy (4). Since the first rows and columns of I'; and FZI are equal, and both
satisfy the recurrence relation, then the matrices must be equal and I'y = I"q. g

The matrix identity in Lemma [6] can be used to find a sufficient condition for k that
satisfies dega, 5(tF) < g. The proof of this lemma is structurally identical to Theorem 10 in
[6], but uses the results proven here for odd primes.
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Lemma 7. Let ¢ = p' for p an odd prime. For an integer k, 0 < k < ¢*, write k = wq + 2
where for non-negative integers z,q with z < q. For o, 8 € Fg2, if w = 0 or there exists
1<i <1 such that w=0 mod p’ and z # —1 mod p’, then degaﬁ(tk) <q.

Proof. Suppose that k, g, and z satisfy the conditions stated in the lemma where k = wg+z.
By Lemmal2, we just need to show that Pyy1 = —a?Py in order to show that dega)g(tk) <q.
When w = 0, then & = z < ¢g. This automatically gives that degaﬁﬁ(tk) < q since
deg(t*) < q.
Then, say w > 0 and that there exists an i such that w = 0 mod p’ and z # —1 mod p’.
Let

Ai=B1®---®B; and Ci=DB_i11 ®---® By,

where By, is as in Definition [Z. By Lemma [6, we have

P, Pq - P(q—l)q a11C;  a12C; -+ a15C;
Ii)1 P 11 . P “1)g+1 CL21CZ' CLQQOi s a2sOi

. ! @bart ] _ . . . =Ai®C,
Pq—l P2q71 Ce Pq2_1 as1C;  as2C; -+ agsCh

where s = p!=*,

First assume that Py lies in block a.4C; for some ¢,d € {1,... ,pl_i}. Because w = 0
mod p?, then Py is in the first column of a.qC;. Also, since z # —1 mod p° then P is not
in the last row of a.qC;. Therefore, P41 must also be in the same block a.4C;. Since the
first column of C; is as given in (), we get that Pyy1 = —a?P;. Therefore by Lemma 2,

deg,5(t") < q. O

4.3. Counting the number of Good Monomials. So far, we have proved that monomi-
als of the form M, ,(z,y) = 2%y’ for a < ¢—1 and b < ¢*> — 1 give rise to a linearly indepen-
dent set of evaluation vectors, and have found a sufficient condition for when deg, g(t*) < q.
Now, we want to count the monomials that fit the condition. The coefficients of powers of
tin Mg (Lo g(t)) can be found by expanding:

Map(Lap(t)) = Map(at + B,t) = (at + B)*" = (j) Jga=ih+i,

Jj=0

If a + b < g, then it is clear the M, is good. If a + b > g, there are two ways that M,
can be good, as described in Section 3.2 of [6] and included here for completeness. The first
mechanism is that all the terms could reduce to degree less than ¢ modulo p, g(t) without
using finite field properties. Second, the coefficient in front of the term t? could reduce to 0
modulo p. Both of these contribute to good monomials.

To understand when the binomial coefficients will vanish modulo p, we use Lucas’ Theo-
rem.

Definition 8. Let ¢ and d be integers between 0 and p* — 1 for prime p, with ¢ < d and let
p—ary(c) € {0,1,...,p — 1}¥ denote the p-ary expansion of ¢ (also for d). We say that c
lies in the p-shadow of d, denoted c <, d if every digit of p — ary(c) is less than or equal to
the corresponding digit in p — ary(d).

Theorem 4. (Lucas). Let 0 < ¢ < d be integers. Then (i) is nonzero mod p if and only if
¢ <p d, i.e. c lies in the p-shadow of d.
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With these tools, we now find some sufficient conditions on a and b for good M, ; and
count the number of monomials that satisfy those conditions to get a lower bound on the rate
of the Hermitian-lifted Code. Note that the properties in the following lemma do not cover
all possible good monomials, but are plentiful enough to provide a positive lower bound.
The following lemma and proof are identical to Claim 12 from [6], with a general prime p
replacing every 2 from the original version. We define z,. to be the digit corresponding to
p" of the p-ary expansion of x, or the digit r positions from the right. We include this here
for completeness.

Lemma 8. ([6]) Suppose that a < ¢ — 1 and b < ¢* — 1 satisfy the following:

-1

(1) b = wq + b for some w < ¢ and some b’ < p!~! so that w = 0 mod (p’) for some

1<i<l,
(2) a<p'™,
(3) there is some 0 < s <4 — 1 so that as = b, = 0.

Then M, is good.

Proof. If a,b satisfy the above, then

a

(11) Map(Lap(t) = (‘;) ol it = 37 (j) ol gri bt

Jj=0 J<pa

by Lucas’ theorem. For any term here where the binomial coefficient (‘;) did not vanish

modulo p, we have j < a < p'~! and by = j, = 0 for some s < i as in conditions 2 and 3
above. So each non-vanishing term involves t* where k = wq+b'+j and j <, a. By condition
1, we have w = 0 mod (p*), and we now consider b’ + j mod p’. Write b’ = b""ps*t1 + b
and j = j"p* Tt + 5" where b, j"" < p*. Let 2571 (b + ") = ¢ mod p* with 0 < ¢ < pi—1.
We then have ¢ < p* — p*t! because ¢ is equivalent to a multiple of p**!. So

bl—l—jEC—i-b”/—l—j”/ mod pi7
where
C+b///+j///<pi_ps+1+2ps <pi_ps+1_|_ps+1 _1:pi_1.
Thus ¥ + 5 # —1 mod p’. That means k = wq + z where w = 0 mod p’ and z % —1

mod p’. By Lemma [7, deg,, 5(t*) < ¢ for all o, 8. Therefore deg,, 5(Map(La,p(t))) < g, so
M, is good. O

We are now able to prove our main theorem:

Theorem 5. Suppose that ¢ = p' where p is an odd prime and 1 > 2. Then the rate of Cq
is at least

.469
pp—-D@*-p*+1)
Proof. We will count the number of pairs a,b that satisfy the sufficient conditions from
Lemma[8lfor M, ; to be good. We iterate over all s, where we take s to be the smallest index

so that a; = b/, = 0. For a given s, there are p?* — (p? —1)*® ways to assign the bits ag, ..., as_1
and b,...,b._;, since there are only (p?> — 1)® ways to never have a, = bl = 0 for any
0 <7 < s—1. Then there are p>(==2) ways to assign the bits as;1,...,a_2, biyqssb]_o

l—s—1

Finally, there are p ways to assign the bits wsy1,...,2;—1. We will choose wg = w; =
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. = ws = 0, ensuring that w = 0 mod p**t!, specifically w = 0 mod p* for some i > s.
Thus, the total number of monomials meeting the description in Lemma [8 when [ > 2 is
-1

-1
Z(pQS _ (p2 _ l)s)pQ(l7572)pl7571 _ Z(pQS _ (p2 _ 1)s)p2(l7572)+l7571
5=0

s=0

_ Z(p2s _ (p2 _ 1)s)p3l—3s—5
s=0

31 -1
= -
5=0
p3z -1 1% -1 s
G ZZ:O ( ( P’ )
[ 1 (;szgl)l

p 1 ! p3 p2—1 ! 1
ol B B il 3 -
p— p p?—p°+1 p p
1
- ps . ps p2—1
p3_p2+1 p3_p2+1 p3
p 1l+ p? p? :
p—1)P—p>+1) p—11\p pP—p2+1\p?—p*+1

s > ) s ()

(1P =P+ D)+ (0P - p?) (2R
pi(p —1)(p -p*+1)

. 1—.531
=4 (p4(p - 1)(p3 —p? + 1))

The last step comes from finding the lower bound on the numerator when p > 3 and [ > 2.
The rate of the code is 7 = k/n where n = ¢3. Therefore, we have that the rate when p is
an odd prime is bounded below by

p

I
@mr@g
A /—\/—\/—\/\
’B
N
Sl
~—

469
pp—1(@* —p*+1)’
which completes the proof. O

5. CONCLUSION

This paper proved an extension of the main theorem in [6] by following a similar proof
strategy to conclude that all Hermitian-lifted Codes have a rate bounded below by a positive
constant, regardless of the value of q.

There are remaining unanswered questions regarding Hermitian-lifted codes and also
lifted codes in general. In [1], the authors improve the lower bound given in [6] and, in work
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completed after this work, improve upon Theorem [0l by using a different proof strategy for
counting good monomials. However, this work still does not find the exact dimension of the
Hermitian-lifted code. Similar questions could also be studied for lifted codes on different
types of curves, in the direction of [8] and [7].

(10]

11]
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