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Abstract—A proper orthogonal decomposition (POD) order
reduction method was implemented to reduce the full high
dimensional dynamical system associated with a wound
healing cell migration assay to a low-dimensional approxi-
mation that identified the prevailing cell trajectories. The
POD analysis generated POD modes that were representative
of the prevalent cell trajectories. The shapes of the POD
modes depended on the location of the cells with respect to
the wound and exposure to disturbed (DF) or undisturbed
(UF) fluid flow where the net flow was in the antegrade
direction with a retrograde component or fully antegrade,
respectively. For DF and UF, the POD modes of the
downstream cells identified trajectories that moved upstream
against the flow, while upstream POD modes exhibited
sideways cell migrations. In the absence of flow, no major
shape differences were observed in the POD modes on either
side of the wound. The POD modes also served to recon-
struct the cell migration of individual cells. With as few as
three modes, the predominant cell migration trajectories were
reconstructed, while the level of accuracy increased with the
inclusion of more POD modes. The POD order reduction
method successfully identified the predominant cell migra-
tory trajectories under static and varying pulsatile fluid flow
conditions serving as a first step in the development of
artificial intelligence models of cell migration in disease and
development.
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INTRODUCTION

Cell migration in wound healing is a highly complex
process that is not only regulated by the extracellular
matrix composition, and paracrine and autocrine sig-
naling, but also by local mechanical forces that are
converted into biochemical signals.®!'%'**! Mechanical
forces due to fluid flow are a major determinant of cell
phenotype in blood and lymphatic vessels, especially in
development and disease, and have been shown to
influence cell migration both in vitro and
in vivo. 181214163233 Nyeveloping models that can de-
scribe cell migration under different mechanical forces
is critical for understanding the role of fluid flow on
wound healing. Some mathematical models of cell
migration have primarily focused on highly simplified
cases describing the displacement of few individual
cells or the edge of a cell monolayer using scratch-
wound-like assays.”?! Fisher’s population growth and
wave propagation equation have been used to model
the displacement of the cell wound edge.'"*' However,
this method treated the wound edge as a constant-
speed traveling wave and failed to capture the cell
wound edge transient accelerating and decelerating
phases,'® which are characteristics of cell migration
when cells are exposed to fluid flow.'* The migration of
individual cells in homogeneous environments can be
described using modified random walk models,® how-
ever introduction of the interaction with neighboring
cells and external stimuli, such as fluid flow, makes
modeling the migration of many cells very challenging
without additional biological data. Some single cell
migration dynamics models are insufficient to describe
the migration of large numbers of cells,'” while other
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detailed single cell models become computationally
expensive when expanded to larger cell popula-
tions.>>7** Although many different models, such as
phase-field, polygonal, cellular Potts, and spherical
cells have elucidated biological mechanisms of cell
migration, few cell migration models exist that con-
sider molecular mechanisms of individual cells and
relate it to the tissue dynamics and collective cell
migration given that the assumptions at one level affect
the next level and the complexity of the models make
the operational realm difficult to define.* Model effi-
cacy can strongly depend on the distribution of cells.
Cell migration where varying levels of cell confluency
exist after a multifocal injury are better suited for
cellular Potts and center-based models, while inap-
propriate for vertex based models where neighboring
cells share edges and nodes and these would need to be
replicated to properly model breakaway cells.

To address some of the challenges described above,
proper orthogonal decomposition (POD) was imple-
mented to characterize and reconstruct cell displace-
ments in a wound healing assay, where levels of cell
confluence varied temporally, under different fluid flow
conditions. POD is not a mathematical model that can
consider the biochemical reactions and biophysical
interactions of a migrating cell. Instead, POD is a
principal component analysis technique that enables
analysis of complex multi-dimensional data sets and
provides optimal-ordered, orthogonal bases to repre-
sent the data in a least-square sense.”>"*® Cell
migration trajectories are characterized by sudden
changes in direction and persistent displacements,
which can be spectrally represented by a range of fre-
quencies. This attribute of cell migration is exploited to
decompose the different cell motions into a set of
deterministic functions that describe cell migration of
large numbers of cells using simpler functions.

MATERIALS AND METHODS

POD analyses were conducted on previously pub-
lished cell migration data that focused on the effects of
fluid flow characteristics on cell migration.”> A thor-
ough analysis of cell velocity, mean square displace-
ment, and other important parameters are thoroughly
covered in*? along with an extensive description of the
experiments.

Cell Culture

Human umbilical vein endothelial cells (passage 3—
10; Lonza, Basel, Switzerland) were kept at 37 °C in
5% CO; humidified air. HUVECs were grown in
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EGM-2 cell medium supplemented with 2% FBS
(Lonza, Basel, Switzerland).

Wound Healing Experiments

HUVECs were seeded on 0.1 mg/mL fibronectin
(BD Biosciences, Bedford, MA) coated PDMS (Syl-
gard 184, Dow, Midland, MI) membranes. Forty-eight
hours after reaching 100% confluence, the PDMS
block was removed and the HUVECs were incubated
in Hoechst 33342 (Fisher Scientific, Pittsburgh, PA) at
a 1.0 pg/mL concentration in EGM-2 serum-free cell
medium for 30 min at 37°C, 5% CO, humidified air
(Fig. 1a). After washing with phosphate-buffered sal-
ine solution (PBS) at 37°C, 25mM HEPES buffer
concentration EGM-2 cell medium was added and the
cells were placed in either a Petri dish for the static
condition or a parallel plate flow chamber (PPFC) for
the pulsatile flow conditions as previously
described.'”** The test section of the PPFC where the
cells were located had a height of 1 mm and a width of
57 mm yielding an aspect ratio of 1:57 to promote a
uniform flow field away from the side walls where the
cells were located. Cells were exposed to either static
conditions or one of two pulsatile waveforms gener-
ated with a 520U Watson Marlow peristaltic pump
(Cornwall, UK) and a data acquisition card (USB-
6229, National Instruments) (Fig. 1b). The pulsatile
flow rate was varied temporally by varying the angular
velocity of the pump head. The fluid flow rate was
measured (Transonic Systems, Inc., Ithaca, NY, USA)
at the inlet of the PPFC and the wall shear stress
(WSS) was approximated to range between —0.11 Pa
and 0.19 Pa with a mean of 0.04 Pa for disturbed flow
(DF), while ranging between 0.23 and 0.54 Pa with a
mean of 0.39 Pa for undisturbed flow (UF) (Fig. 1b).
The waveforms were classified as undisturbed or dis-
turbed if the oscillatory shear index (OSI) was zero or
nonzero, respectively. The oscillatory shear index was
determined as follows

T

WSS dt

osI =+ 17”;)—' , (1)
2 fo |WSS| dt

where 7 is the period of integration and WSS is the
tangential stress experienced by the endothelial cells.
OSI equals 0 when the fluid flow is moving in the
antegrade direction throughout the period, while a
nonzero OSI value corresponds to the condition where
flow reverses for a portion of the time period 7. Epi-
fluorescence microscopy images were captured every
30 min up to 60 h. The experiments were conducted
inside a constant temperature environmental chamber
at 37°C (In Vivo Scientific, St Louis, MO). The initial
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FIGURE 1. (a) A block generated a gap between upstream and downstream HUVECSs. The cells were classified as upstream or
downstream with regard to their location at the start of the experiment. The PDMS block is not drawn to scale. Flow is from right to
left. (b) Once the block was removed, HUVECs were exposed to static (S), disturbed flow (DF), or undisturbed flow (UF) conditions
with varying levels of wall shear stress (WSS) values for every period during a wound healing assay.

cell tracking was conducted using Imaris software and
edited manually with Image]J software.

Proper Orthogonal Decomposition Analysis of Cell
Migration

The proper orthogonal decomposition method was
used to obtain the dominant mode set related to
endothelial cell displacement.?**”*® POD methods re-
duce the dimensions of a system by projecting the
original system onto a subspace consisting of a set of
bases, called POD modes, such that the first few modes
contain most of the energy of the original system.

An ensemble of snapshots, u;(¢) = u(c;, 1), is selected
from the cell velocity data u(c, t), where ¢; refers to the
cell i, and i = 1, ..., M, where M is the total number of
cells. A set of proper orthogonal bases are defined as
® = {¢;(t)|i = 1,...,m}, such that it minimizes the least
square distance, || u — ITu ||, between the snapshots u =
{u;(t)}), and its reduced order solution, where IT =
S, $;¢] is the orthogonal projection. This mini-
mization problem, Q, is represented as

: 2
0= o [ w—TTu ||°. 2)
Mathematically, the solution of ® is equivalent to the
solution of the optimization problem H where

H= max ——=" 3
(IDGL%(XC) @2~ G)

and (., .) and ||.|| denote the L? inner product and L?
norm over the cell space, C, while <.> denotes a

statistical average operator. In these equations, Q and
H simply represent the minimization and maximization
problems that need to be solved to find the proper
orthogonal bases, ®@, for an optimal representation of
the cell velocity field, u.

If the snapshots are adequate to describe the system,
the above problem can be addressed by solving the
eigenvalue problem

CA; = MA;, 4)

where A; are the system’s eigenvectors with eigenvalues
of %;, and eigenvectors of C, which can be found as
C = uu". These eigenvectors are then called the POD
modes.

Instead of generating spatial modes, as is custom-
ary, temporal modes are generated to analyze the dis-
placement of individual cells. By generating the
temporal modes, the velocity time series for each cell is
considered as one snapshot, so that the POD subspace
contains the temporal information, and a combination
of these temporal modes represents the displacements
of the cells over time. By doing so, one point in the
POD temporal subspace represents the velocity of one
cell as it changes over time. Once the dominant modes
of the cell velocity are determined, the trajectory
modes can be constructed by integrating the velocity
modes over time. Because the first few POD modes
contain most of the kinetic energy of the original sys-
tem, the first few velocity or trajectory modes represent
the most energetic patterns of the cell motions.
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Data Processing and POD

An in-house Matlab program was written for data
processing and implementation of the POD analysis on
the cell migration data set. Several machine learning
and computer geometry concepts were implemented.
First, the raw data were processed for removal of
discontinuities and nonuniformities from the data set.
Signal continuity was examined by building a matrix
containing all the tracking information for all data
points. The data points properly tracked were marked
as 1 and the points not properly tracked as 0, and the
points that were not tracked continuously were
removed. The data were re-sampled to smooth out any
nonuniformities in the tracking time steps. Then, the
machine learning technique called clustering was used
to identify cells as belonging to either downstream or
upstream cell groups. After identification of the cell
clusters, an edge finder technique was used to deter-
mine the wound edge for each time step. In this step, a
bounding box was generated for the cell cluster iden-
tified in the previous step, and the front edge of the
wound was defined as the inner edge of two neigh-
boring bounding boxes. To find the leading-edge, an-
other computer geometry concept called meshing was
used to calculate the distance from the cell to the actual
wound edge. Then, at every time step the locations of
the cells on the wound edge were used as the base
nodes for generating a new 2D hexahedral mesh. Every
cell occupies a hexahedral element and allows for cal-
culation of the distance between each cell and the
wound edge.

Once the cells were grouped into upstream or
downstream clusters, POD velocity modes were gen-
erated independently for each cluster. These velocity
modes were integrated to yield the displacement
modes. After determining the trajectory modes, the
cells were further grouped based on their distance from
the wound edge and the mode values of these cell sub-
groups were calculated. The contribution of modes for
different cell groups was obtained by organizing a
collection of mode amplitude distributions into his-
tograms.

RESULTS

Wound Healing

Wound healing experiments were conducted to as-
sess the role of pulsatile fluid flow with and without
flow reversal in cell migration (Fig. 1b). A poly-
dimethylsiloxane (PDMS) membrane was coated with
fibronectin overnight before seeding with human
umbilical vein endothelial cells (HUVECs). Traditional
scratch wound assays where cells, and consequently
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underlying extracellular matrix (ECM) proteins, are
removed when the monolayer reaches confluence can
potentially affect cell migration direction and velocity
due to ECM protein concentration gradients caused by
the mechanical scratch. To avoid the introduction of
ECM protein concentration gradients, a PDMS block
was used to restrict the growth of endothelial cells and
upon removal of the PDMS block, response to wound
healing could be assessed successfully (Fig. la).>**
Forty-eight hours after reaching confluence, the
PDMS block was removed and the cell-coated PDMS
membranes were placed in a Petri dish under static
(ST) conditions or in a parallel plate flow chamber
(PPFC) exposed to pulsatile disturbed (DF) or undis-
turbed (UF) flow to recreate fluid flow characteristics
present in arterial sites that are susceptible or resistant
to atherosclerosis, respectively.>> HUVECs migrated in
the direction of the wound at varying rates depending
on the side of the wound and the flow conditions. The
cell displacements were tracked for up to 60 h. Then,
the tracks for the upstream and downstream HUVECs
were decomposed using proper orthogonal decompo-
sition (POD).

Proper Orthogonal Decomposition of Cell Trajectories

The cell displacements and time delay between each
image yielded a velocity value for each cell that served
as an input for the POD analysis to generate the POD
velocity modes. The POD trajectory modes were then
generated by integration of the velocity modes. Once
the POD modes are determined, the total trajectory of
all cells, D, can be written as

N
D= Zaiwiv (5)
i=1

in which ; are the POD trajectory modes, a; are the
coefficients with the corresponding mode amplitude,
and N is the total number of POD modes used in
constructing the cell trajectory. The contribution of
each mode in the total trajectory of a cell is propor-
tional to the amplitude of the coefficient ;. The length
of the POD trajectory modes, ¢;, is dimensionless,
while the coefficient @; has the unit of length.

As is customary for POD modes, the modes are
organized in a descending order with mode 1 being the
most energetic mode as shown in Fig. 2a for the
downstream HUVECs of the DF condition. The first
six modes accounted for 51.3, 7.3, 6.2, 4.9, 4.1, and
3.5% of the energy content, respectively. Summing the
energy content due to these first six modes equals
77.4%. By organizing the modes in descending order,
the dominant migratory trajectories can be identified.
Figure 2b shows the first 6 dominant POD trajectory
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FIGURE 2. HUVECSs trajectories in a wound healing assay under pulsatile DF on the downstream side of the wound were analyzed
using proper orthogonal decomposition. (a) The kinetic energy distribution decreases rapidly for the 30 most energetic modes. The
POD modes highlight the six most energetic (b) cell trajectory shapes and (c) the histogram of the corresponding mode amplitude
coefficients with respect to the distance from the leading edge of the wound. The product of the POD mode shape and mode
amplitude coefficients defines the trajectory and contribution of a particular population of cells within the wound. In (b) an
abscissa and ordinate correspond to a normalized horizontal and vertical displacement, respectively.

modes for the downstream HUVECs of the DF con-
dition. The dominant trajectory mode, mode 1, dis-
plays persistent migratory trajectories of HUVECs
against the flow from left to right or downstream to
upstream per the experimental coordinates. The sec-
ond most energetic mode, mode 2, represents a tra-
jectory of HUVECs moving directly sideways
perpendicular to the bulk fluid flow direction. Modes 3
to 6 represent more complicated cell displacement
paths where HUVECs move in one direction and then
turn to another direction along with circular-type dis-
placements.

To assess the effect of distance from the wound
edge, the viewing window was divided into a series of
100 um wide by 2.25 mm long sub-regions, starting and
moving away from each wound edge in 100 pm
increments. Figure 2c shows histograms of the per-
centage of cells that have coefficients ¢; with a mode
amplitude between — 189 pum and + 189 pm. The mode

amplitude histograms are determined by projecting the
original cell migration displacements onto the POD
modes. Each cell contributes to the histogram and
different cells can have different mode amplitude val-
ues for each corresponding mode. A larger mode
amplitude corresponds to a greater contribution of
that mode toward the total cell displacement.

The POD modes can play an important role in
assessing if a wound is closing or opening by consid-
ering both the shape of the POD trajectory mode and
the sign of the mode amplitude. For this reason, the
POD trajectory mode shapes in Fig. 2b are plotted
such that a positive mode amplitude in Fig. 2c repre-
sents a cell displacement toward the wound and a
negative mode amplitude corresponds to a cell dis-
placement away from the wound.

For mode 1, the vast majority of cells within 0 and
100 um from the edge of the wound display a nonzero
mode amplitude, which decreases as the distance
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increases away from the wound edge, highlighting the
spatial dependence of this mode (Fig. 2¢). For modes 2
to 6, the magnitudes of the mode amplitude coefficients
are close to zero for the majority of the cells, empha-
sizing the minimum influence of these modes on the
cell trajectories.

Figure 3a shows the first three dominant trajectory
modes for the upstream and downstream cells for the
ST, DF, and UF conditions. The modes are sorted in a
manner where the first mode captures most of the en-
ergy. When exposed to static conditions, the most
energetic trajectory modes on the downstream and
upstream sides represent cell displacements predomi-
nantly in the direction of closing the wound with
smaller superposed motions, as shown by the positive
values of the mode amplitude coefficients in Fig. 3b.
Exposure of HUVECs to DF, where the flow reverses
for a short interval, causes greater changes in the
motion of the upstream cells. On the downstream side,
the most energetic trajectory mode, mode 1, is directed
upstream, while the second and third modes indicate
spanwise and turning cell movements. In contrast, the
trajectory modes 1 to 3 for the HUVECs on the up-
stream side of the wound indicate primarily sideways
movements, highlighting that the closure of the wound

() (b)

Downstream  Upstream
Mode 1

Downstream
Mode 2

is predominantly completed by the downstream cells
migrating against the flow. A similar observation is
made for the UF case where the flow is also pulsatile,
while fully antegrade. The trajectory of the down-
stream cells, as indicated by the three most energetic
modes, is described by an upstream migration that is
closing the wound, although less direct than the DF
trajectory mode 1, with turns and reversals in the
migration direction. In contrast to downstream modes
1 to 3, the most energetic modes for the upstream
HUVECs suggest a predominant sideways migration
that plays a less important role in closing the wound.

The mode amplitude histograms of Fig. 3b show the
distribution of the mode amplitude coefficients a; for
the ST, DF, and UF conditions. For the static case, the
mode amplitudes for modes 1, 2, and 3 are scattered
between -189 and 189 um with a larger number of cells
displaying positive mode amplitudes suggestive of a
closing wound. When HUVECs are exposed to DF,
the mode 1 amplitude histogram for downstream
HUVECs assumes a narrower distribution with about
35.2% of the cells represented by a mode amplitude of
81 um near the wound edge. As the distance increases
away from the wound edge, the histogram peak goes
toward zero, suggesting that the trajectory represented
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FIGURE 3. (a) POD trajectory modes and (b) histograms of the corresponding mode amplitude coefficients as a function of
distance away from the wound for the downstream and upstream cells in a wound healing assay exposed to ST, DF, and UF. The
POD modes are generated using the trajectories of upstream or downstream cell clusters and sorted in an energy-intensity
descending order. The three most energetic trajectory modes: mode 1 (blue), mode 2 (green), and mode 3 (red) are displayed with
dimensionless axes. An abscissa and ordinate correspond to a normalized horizontal and vertical displacement, respectively. The
histograms show the mode amplitude coefficient distributions for all cells as a function of distance away from the wound edge.
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by mode 1 is more dominant for cells near the edge
than for those farther away from the edge. The mode 1
amplitude histogram for the upstream cells displays a
broader distribution with a peak around 45 pum near
the wound edge that decreases in cell percentage as the
distance increases from the edge. Mode amplitude
histograms for modes 2 and 3 on the downstream and
upstream sides for the DF case are broader and cen-
tered about a mode amplitude of approximately 0 um,
suggesting a smaller contribution by these modes. The
mode 1 amplitude distribution for the downstream
cells exposed to UF shows the greatest percentage of
cells at around 117 pm near the wound edge and the
percentage decreases as the distance increases from the
wound edge, while the peak amplitude remains rela-
tively high at about 81 pm. Mode amplitude distribu-
tions for modes 2 and 3 for the downstream HUVECs
are relatively similar, with histogram distributions
closely centered about 0 um, which suggests a minimal
influence by trajectory modes 2 and 3 on the down-
stream cells. The shape of POD trajectory mode 1 for
the upstream HUVECs exposed to UF suggests that
the cells are initially moving toward closing the wound
and then turning. However, the product of the POD
trajectory mode and the mode amplitude coefficient for
each cell per Eq. (5) shows that the upstream HUVECs
are initially moving upstream against the flow and
further increasing the size of the wound and eventually
turning to close the wound. It is important to note that
the majority of the mode 1 amplitude coefficients for
upstream HUVECs exposed to UF have a negative
sign and when multiplied by POD trajectory mode 1, a
right moving trajectory becomes a left moving trajec-
tory, while an up moving trajectory becomes a down
moving trajectory. For modes 2 and 3 of the upstream
cells exposed to UF, the mode amplitude peaks at the
edge of the wound shift toward -27 um as the distance
from the edge of the wound increases, emphasizing
how cells close and away from the wound edge react
differently to UF conditions. The mode amplitude
coefficient in combination with the POD trajectory
mode shape data clearly demonstrate that the cell
migration and trajectory are influenced by both the
flow condition and the distance from the wound edge.

One of the advantages of the POD analysis for cell
migration characterization is the capacity of recon-
structing the trajectories with a fraction of the original
information (Fig. 4). The POD-reconstructed cell
migration trajectories can be calculated using Eq. (5).
The original data set encompassed up to 60 h of cell
tracking every 30 min for thousands of cells. Being able
to extract the information of interest here, which is to
identify the predominant cell trajectories that con-
tribute to wound healing without the superposed ran-
dom-like displacements that can characterize cell

movements, minimizes the amount of data to post-
process and can aid in the reconstructions of the cell
trajectories. Figure 4 shows the reconstruction of the
cell migration for the ST, DF, and UF conditions. For
the DF and UF cases, information from only 3 modes
shows the migration of downstream cells against the
flow to close the wound, and the migration of up-
stream cells in a direction perpendicular to the flow.
For the ST case, the upstream and downstream
migration is more homogeneous although less evident
given that less cells are present on the downstream side.
The number of modes is increased from 3 to 6 to 12 to
24 and for the DF and UF cases the contribution of
the downstream cells in closing the wound is evident,
while a smaller contribution from the upstream cells is
also observed. For the ST case, although both sides
contribute to closing the wound, the apparent domi-
nance of upstream cells is due to the larger number of
cells on the upstream side. When the number of modes
is increased to 192 for the ST, DF and UF cases, more
complicated cell paths become evident due to the
addition of lower-energy modes. Two identical
endothelial cell (EC) displacement paths emerge when
data from 192 modes are compared with the original
data set.

DISCUSSION

The directionality of cell migration is a fundamental
response to tissue injury and can be affected by the
type of injury, chemoattractant gradients, interruption
of the contact inhibition homeostasis, sudden opening
in tissue due to cell removal, cell proliferation,
mechanical signals, endogenous electrical fields, and
fluid flow.>° For endothelial cells, which are exposed
to fluid flow, the migration rate and directionality are
dependent on the characteristics of the flow field.?
Although challenging, modelling the individual dis-
placement of large numbers of cells can be instru-
mental in understanding the healing process of an
injury that is exposed to fluid flow. In contrast to
modeling, here we use experimental cell migration data
to show that the complex migratory response of
thousands of cells to different fluid flow waveforms can
be represented as a summation of a series of POD
modes, and important information about the direc-
tionality of cell migrations can be extracted from only
a few of these POD modes.

The key finding of this study is that the individual
trajectories of large numbers of cells can be recreated
using the POD order reduction method to reduce the
full high-dimensional dynamical system to a low
dimensional approximation. The results showed that
inclusion of only a few of the most energetic modes can

BIOMEDICAL
ENGINEERING
SOCIETY



HaAN et al.

3 Modes 6 Modes

12 Modes

24 Modes 192 Modes Original

ST 1 m
0.5

y(mm)

-0.5

—_

DF
0.5

y(mm)
()

-0.5
-1

L

UF 1
0.5
0
-0.5
-1

y(mm)

o a2 i)

LR i i i

-1-050 05 1-1-050 05 1-1-050 05
x(mm)

x(mm) x(mm)

1-1-050 05 1-1-050051-1-050 051
x(mm) x(mm) x(mm)

FIGURE 4. Comparison of cell trajectories reconstructed using 3, 6, 12, 24, and 192 POD modes versus the original cell
trajectories for the three different experimental conditions: ST, DF, and UF. The wound edge at time equal zero is plotted in black.

recreate the cell trajectories. The less common trajec-
tories were absent from the most energetic modes, and
the reconstructed trajectories accurately recreated the
predominant cell movements (Fig. 4). In comparison
with traveling wave, continuum cell population, and
leading edge tracking models where the invading cell
front is modelled without details of the individual cell
displacements near and far from the cell
front, 820212934 the POD order reduction analysis
included the predominant cell movements for all cells
throughout the monolayer. The most energetic mode
for the downstream side represented cells predomi-
nantly migrating upstream regardless of the presence
or absence of flow, while the most energetic mode for
the upstream side exhibited similar trends only under
static conditions where upstream cells move primarily
downstream to close the wound. These results high-
light the importance of understanding how the pres-
ence of fluid flow can affect wound healing in a blood
vessel after vascular intervention. Wound healing, as
defined by reendothelialization of an artery after vas-
cular intervention, is one of the primary clinical
markers of success and understanding how blood flow
can affect cell migration is of upmost importance.'” In
contrast to the work by'* where cells tended to migrate
in the direction of the steady flow field, the POD re-
sults herein show that endothelial cells under pulsatile
fluid flow tend to migrate against the net flow direc-
tion. This difference highlights the possibility that
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migrating endothelial cells react to steady and pulsatile
flow differently.?

Another advantage of the POD order reduction
method is that the amplitude of the mode coefficients is
proportional to the trajectory of the cells, so that the
influence of each POD trajectory mode can be ascer-
tained by close observation of the value of the mode
amplitude coefficient per Eq. (5) (Fig. 3b). Figure 2c
clearly shows that the cell displacement described by
mode 1 was more representative of cell trajectories
closer to the edge of the wound than cells further away,
which is a type of analysis often inaccessible with other
methods, such as cell front models.'®?! In contrast,
single cell models capture the temporal displacement of
cells, while missing the intercellular influence that can
affect migration.” The POD method easily adapted to
changes in migratory patterns due to the different fluid
flow waveforms resulting in the changes of the shape
and amplitude of the POD trajectory modes and
coefficients, respectively, while models such as the
Fisher equation can adequately describe cell migration
in some instances, but fail in others.*’

A major distinction between different models of cell
migration, such as the phase-field, polygonal, cellular
Potts, and spherical cells is that these models represent
biochemical and biophysical reactions mathematically
and the accuracy of the results strongly depends on the
assumptions made, and they tend to be more compu-
tationally expensive.* In contrast, POD does not model
biophysical interactions and biochemical reactions, but
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extracts information from the cell motions. Since the
POD modes are dependent on the information ex-
tracted from the cell motions, the POD trajectory
mode shapes will change when the cell motions change
due to different stimuli as observed herein with respect
to different fluid flow waveforms. The dependence of
the POD method on experimental data is a major
distinction from mathematical models, yet sufficient
data from POD analyses could be used to construct
artificial intelligence models based on cell migration
data from experiments.

In the results discussed here, the centroid of
endothelial cell nuclei, instead of the cell centroid, were
tracked. Given that endothelial cells tend to display
either a cobblestone or spindle-like symmetric shape, it
was assumed that cell centroid coincided with the nu-
cleus centroid. Instances where the nucleus center did
not coincide with the cell centroid may affect the
accuracy of the tracked location.

Although the experiments herein assessed cell
migration under different fluid flow conditions using a
two-dimensional wound healing assay, this approach is
certainly amenable for simplification of three dimen-
sional cell migration trajectories to lower order data
sets. The potential for using POD order reduction
methods to develop artificial intelligence approaches to
model cell migration under different stimuli is invalu-
able. Analogous to the significant role that computa-
tional fluid dynamics and finite element methods have
contributed in the solving of equations that are derived
based on first principles, POD-based analyses have the
potential of playing a similar role in dealing with
analysis of big data that are collected experimentally.
POD-based artificial intelligence models could serve a
role in in silico testing of different therapeutic treat-
ments and strategies.
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