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Abstract. Chess endgame tables encode unapproximated game-

theoretic values of endgame positions. The speed at which informa-

tion is retrieved from these tables and their representation size are

major limiting factors in their effective use. We explore and make

novel extensions to three alternatives (decision trees, decision dia-

grams, and logic minimization) to the currently preferred implemen-

tation (Syzygy) for representing such tables. Syzygy is most com-

pact, but also slowest at handling queries. Two-level logic minimiza-

tion works well, though performing the compression takes significant

time. Decision DAGs and multiterminal binary decision diagrams are

both comparable and offer the best querying times, with decision di-

agrams providing better compression.

1 Introduction

Endgame tables (EGTs) support increased skill in play by storing

precomputed exact (non-heuristic) information about game positions

for convergent games, which are games where the size of the state

space decreases as the game approaches its end. An EGT serves as

a map from game state to relevant information. EGTs are typically

calculated via retrograde analysis [15]. For Checkers, the precompu-

tation of EGTs combined with forward search allowed the determi-

nation of the game-theoretic result of its initial position [12].

We focus on Chess EGTs, the first of which were computed by

Ströhlein [14]. Currently, the largest full sets of EGTs are for endings

with seven pieces or fewer [16]. The full set of such Syzygy EGTs

consumes 17 TiB. We study lossless compression methods for Chess

EGTs, quantifying their compression and probing speeds.

1.1 State-of-the-art

Syzygy [5] is currently the predominant Chess EGT storage imple-

mentation: its representation is more compact than widely available

alternatives, it is acceptably efficient to query, and its data files and

source code are freely available for download and use.

Syzygy, and virtually all of its predecessor Chess EGT implemen-

tations, provide a separate table for each material balance: the set of

pieces remaining for each player. There is a table for positions where

White has a king, pawn, and rook, and Black has a king and queen,

there is another table for positions where White has a king and two

rooks and Black has a king and pawn, and so on. For each mate-

rial balance, there is both a win/cursed win/draw/blessed loss/loss

(WCDBL) table and a distance to zeroing (DTZ) table.
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Cursed wins and blessed losses are positions where the official

over-the-board rules of Chess allow a player to claim a draw when

100 consecutive ply occur without a zeroing ply, but would otherwise

lead to a decisive result with perfect play.

In this paper, we focus on WCDBL, which provides the game-

theoretic value of positions: the use of sufficiently large WCDBL

tables alone during lookahead would be sufficient to avoid reaching a

game-theoretically suboptimal position. DTZ tables store additional

information to permit optimal play once an EGT position has been

reached.

1.2 Problem definition

We encode the coordinate of any location on the chessboard using

three bits for the file and three bits for the rank. One additional bit

is used to encode the side to move. A pawn that may be captured

en passant is encoded as being on the first or eighth rank instead of

the fourth or fifth rank where it is actually located. Syzygy EGTs do

not include game-theoretic values for positions where either side has

not already permanently lost their right to castle. Therefore, when

probing some particular five-piece material balance, we express the

input as a bit vector of length (3 + 3)× 5 + 1 = 31.

The mapping from the input to one of five outcomes is partial: not

all inputs are possible. For instance, two pieces cannot occupy the

same location. We also exploit symmetry to reduce further the num-

ber of stored positions. For example, when no pawns are present (and

castling is not possible), all board rotations are equivalent. Flipping

the player to move along with the colour of all pieces is also sym-

metric. We only store and query one canonical position for each set

of symmetric positions. Consequently, over 90% of possible inputs

are not associated with any particular output.

The goal is to produce a data structure, and suitable querying code,

that returns the proper game-theoretic value for any canonical encod-

ing of a Chess position. While it is not strictly necessary to do so, we

continue the historic practice of building separate data structures for

each material balance. We build our alternative compressed repre-

sentations from a list of each canonical Chess position of the relevant

material balance, paired with its associated game-theoretic outcome.

1.3 Research Goal

We aim to explore alternatives to the Syzygy Chess EGT format.

Syzygy is a complex system that by design exploits Chess-specific

properties. Importantly, it uses a capture-based minimaxing search,
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which allows it to often store something other than the actual game-

theoretic value for positions where captures are possible, thus per-

mitting smaller data files.

However, it is not our goal to exhaustively assess historic Chess

EGT formats that are no longer in common use today. One promi-

nent earlier approach is the Nalimov EGTs[9], which did provide

compelling benefits versus the then-available alternatives in its hey-

day. It is no longer popular because it does not provide full WCDBL

information, yet requires seven times the space that Syzygy does to

represent up to and including all six-piece EGTs.

Rather, this paper aims to quantify what is possible using non-

Chess-specific compression techniques. While we do modify some

standard compression methods, these modifications target general

properties of EGTs. We explore three alternatives that, while exploit-

ing basic symmetries of Chess, are nonetheless general-purpose com-

pression and query techniques. They have simple querying code and

straightforward interpretations. We believe these alternatives could

also be helpful in other convergent games in which symmetries exist,

such as Xiangqi and International Draughts.

1.4 Contributions

We consider and compare three alternative methods to Syzygy for

storing a WCDBL EGT: decision directed acyclic graphs (DAGs),

two-level logic minimization (TLLM), and multiterminal reduced or-

dered binary decision diagrams (MTBDDs). All methods construct a

tree or DAG whose leaves indicate either individual outcomes or a

small set of cube-outcome pairs to scan linearly. Each of these meth-

ods uses different heuristics to form a compact representation of the

EGT data.

We provide necessary improvements to each method for efficient

use on this application. For decision trees, the modification is minor:

we build a decision DAG instead of a tree. For decision diagrams, we

extend the concretization methods for fully-reduced binary decision

diagrams (BDDs) to MTBDDs. For two-level logic minimization, we

not only significantly rework the main operations of the ESPRESSO

algorithm, but also introduce both a new operation, distance-n merg-

ing, and an indexing scheme. Together, these logic minimization im-

provements enable effective minimization even when the input ON-

cover contains several hundreds of millions of minimum product

terms. These decision diagram and logic minimization modifications

are novel contributions.

Each method approaches the compression problem differently. We

outline each method, draw connections amongst them, and compare

them empirically with each other and with Syzygy on three-, four-,

and five-piece EGTs.

2 Decision DAGs

We use a standard binary decision tree learning algorithm [11] to

compress each EGT. The set of canonical positions of each table are

used as the training examples, each viewed as an input of binary fea-

tures and an output as one of five classes reflecting the game-theoretic

value of the position. When building, we employ greedily the stan-

dard information gain metric [10]. Decisions at internal nodes corre-

spond to checking a single bit of the input.

Our method differs only slightly from typical machine learning

decision tree construction. Because we seek only compression, not

generalization (our training set for each EGT already includes every

position of interest), we exhaustively build the tree and perform no

pruning. Second, to save space, we construct a DAG rather than a

tree by merging common subtrees during the construction process.

3 Two-level logic minimization

We also compare with the recent endgame compression method of

Gomboc and Shelton [7], which leveraged the ESPRESSO [1] two-

level logic minimizer to perform minimization on three- and four-

piece tables. ESPRESSO represents functions as pairs of input and

output vectors. The input vector may be represented using the al-

phabet {0, 1, ∗}, respectively meaning that the corresponding input

must be 0, must be 1, or may be either 0 or 1. The output vector may

be represented using the alphabet {f, r, d,∼}, respectively meaning

that the corresponding output must be 1, must be 0, may be either 0

or 1, or is unconstrained by the paired input vector.

ESPRESSO repeatedly iterates through three major operations.

EXPAND attempts to replace 0s and 1s in each input vector with

*s (known as “raising”) such that as many other input vector are

subsumed and eliminated as possible, while ensuring that no out-

put vector specification conflicts occur. IRREDUNDANT identifies

and removes input vectors whose output constraints may be deduced

from combinations of other remaining input vectors without adjust-

ing the values of any input vectors. REDUCE attempts to replace *s

in each input vector with 0s and 1s without newly permitting any out-

put bit to take on any value that was previously precluded by some

combination of mapping constraints.

3.1 Representation simplification

As discussed in Section 1.2, lookups for the vast majority of input

vectors will never be performed. Nonetheless, ESPRESSO explicitly

represents D, the multiset of input vectors that map any output to d,

because its implementation of both IRREDUNDANT and REDUCE

depend upon D’s availability. When attempting to process five-piece

EGTs using ESPRESSO, representing D causes main memory (256

GiB) exhaustion. To address this problem, we devised alternative al-

gorithms for performing these two operations that do not require D

to be provided as an input.

In our application of TLLM, we never map any output bit to ∼, and

furthermore, either every element or no element of each individual

output vector is mapped to d. Thus, in addition to not representing

D, we also need not represent R, the multiset of input vectors that

map any output to r, separately from F , the multiset of input vectors

that map any output to f , which results in further memory savings.

In this paper, we refer to just the input vector associated with an

output as a cube. We initialize the EGTs prior to minimization by

specifying the output value for each minimum product term (a.k.a.

minterm, or unit cube) about which we care.

As arguments to Algorithms 1 and 2, we provide two cube sets,

which we denote as B (for baseline) and E (for expanded). B rep-

resents an earlier representation of F prior to expansion: it can, but

does not have to, be the original definition of F prior to any mini-

mization. E represents some expansion of B. In both, we use indices

(see Section 3.3), priority queues, and caching to make them more

efficient than a direct implementation of the pseudo-code would be.

3.1.1 Efficient D-less irredundancy

Algorithm 1 computes an irredundant cover E
′

from B and E. We

add cubes from E, starting with all cubes that uniquely cover some

cube in B, then greedily select additional cubes which cover the most

additional not-yet-covered cubes of B.
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Algorithm 1 IRREDUNDANT

Require: B: Baseline cubes (modifies copy)

Require: E: Expanded cubes that covers B (modifies copy)

Ensure: E
′
: Irredundant subset of E that covers B

1 E
′ = {e | ∃ b ∈ B, ∀ e′ �= e,¬contains(e′, b)}

2 B = B − {b ∈ B | ∃ e ∈ E
′
, contains(e′, b)}

3 E = E − E
′

4 while E �= {}

5 e = argmax
e∈E

∑

b∈B|contains(e,b′)

1

6 E
′ = E

′ ∪ {e}
7 B = B − {b ∈ B | contains(e, b)}
8 E = E − {e} − {e′ ∈ E | ∄ b ∈ B, contains(e′, b)}
9 return E

′

3.1.2 Efficient D-less reduction

Algorithm 2 computes a reduced cover E
′

from B and E. The func-

tion supercube returns the smallest cube that contains all of the

inputs. We repeatedly select expanded cubes uniformly at random

without replacement, shrinking them as much as possible while en-

suring that B remains covered.

Algorithm 2 REDUCE

Require: B: Baseline cubes (modifies copy)

Require: E: Expanded cubes that cover B (modifies copy)

Ensure: E
′
: Cover of B, each cube is a subcube of some cube in E

1 E
′ = {}

2 foreach e ∈ E (random order)

3 E = E − {e}
4 B

′ = {b ∈ B | contains(e, b)}
5 B

′′ = {b ∈ B
′ | ∄e′ ∈ E, contains(e′, b)}

6 if B
′′ �= {}

7 E
′ = E

′ ∪ {supercube(B′′)}
8 B = B −B

′′

9 return E
′

3.2 Accelerating expansion

Application of Algorithms 1 and 2 permit us to no longer immedi-

ately exhaust main memory, yet we can still only completely pro-

cess several of the simplest five-piece EGTs. The performance of

ESPRESSO, both before and after the above changes, is dominated

by the 99% time spent in EXPAND.

Though the time complexity of a single EXPAND operation is re-

ferred to as quadratic in the size of its input within ESPRESSO’s

source code, we found that it actually scales less well. As is, EX-

PAND could not be applied even a single time to the vast majority of

five-piece EGTs, even when given weeks of running time. We were

able to address this problem by introducing two innovations.

3.2.1 Distance-n merging (for n > 1)

Both ESPRESSO and its predecessor MINI [8] support distance-one

merging: merging of two cubes that disagree on only a single vari-

able. Such merges are always useful for maximal compression.

We introduce a generalization, distance-n merging, that can be

used to merge cubes that disagree on multiple variables simultane-

ously. Unlike the distance-one case, the blocking cover must now be

consulted. Given v input variables, Algorithm 3 sweeps over all v-

choose-n combinations of input variables and attempts to merge any

set of cubes that differ only in these variables. Distance-n merging is

not intended to be a replacement for the more general EXPAND op-

eration of MINI and ESPRESSO. Rather, it is particularly effective

when n ≪ v and there may be many small cubes present within a

cover that is to undergo expansion. By sorting the cubes based on all

other variables, we can quickly find groups of cubes to be merged.

Algorithm 3 DISTANCE-N-MERGE

Require: M : Cover to which merging should be applied

Require: B: Baseline cubes

Require: n: number of variables to merge

Ensure: M
′
: Cover equivalent to M , where |M ′| ≤ |M |

1 M
′ = M

2 foreach subset, V , of variables of size n

3 G = groupby(M,V )
4 (groups where all variables except V are the same)

5 foreach G ∈ G:

6 if output, o, same for cubes in G

7 c = supercube(G)
8 c[V ] = ∗
9 D = {b ∈ B | contains(c, b) ∧ output(b) �= o}

10 if D = {} (check not necessary if n = 1)

11 M
′ = (M ′ −G) ∪ {c}

12 return M
′

3.2.2 Random expansion

ESPRESSO’s [1] implementation of the EXPAND algorithm [8]

tracks which cubes cover which other cubes in order to attempt to

grow cubes in ways that encompass as many other cubes as possi-

ble. While highly effective at small problem sizes, this tracking is

also the root cause of its performance bottleneck when applied to the

much larger minimization problems we consider, which render the

algorithm infeasible for our use.

Instead, we propose the RANDOM-EXPAND algorithm (Algo-

rithm 4). Each time RANDOM-EXPAND attempts to expand any

cube, it randomly selects an input variable ordering, then attempts

to raise each input variable (replace the specific 0 or 1 for this vari-

able with ∗) one after the other in that chosen order. Every raise that

does not result in a conflict is accepted. Consequently, unlike with

EXPAND as used by ESPRESSO, RANDOM-EXPAND discards no

cubes whatsoever. Instead, we exclusively rely on IRREDUNDANT

for cube elimination.

3.3 Cube list indexing

Naïve lookup of a position in the resulting cube list would require

scanning all cubes to find the one(s) that match the input position’s

bit vector, and then returning the associated output. This is too slow,

so we build an index tree over the cube list to accelerate lookup.

Our algorithm for building the cube index is similar to that of

building a decision DAG: The index is a tree with internal nodes
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Algorithm 4 RANDOM-EXPAND

Require: B: Baseline cubes

Require: L: Input dimension count of B

Require: F : Cover of B, where |F | ≤ |B|
Ensure: E: Cover of B, where |E| = |F |, such that each cube in F

is a subcube of some cube in E

1 E = F

2 foreach c ∈ E (random order)

3 e = c D = 1 . . . L
4 foreach d ∈ D (random order)

5 e
′ = raise(e, d)

6 if (e
′

does not contradict B)

7 e = e
′

8 E = E − {c} ∪ {e}
9 return E

corresponding to checking one bit of the input. It is built greedily

and recursively. However, there are a few differences.

Because the cubes to be indexed are not bit vectors, but rather

{0, 1, ∗}-vectors, constructing a binary tree would require the dupli-

cation of cubes: If an internal node tests bit i, for any cube for which

bit i is ∗, it would need to be duplicated on the 0 and 1 subtrees.

This would negate the advantages of the two-level logic minimiza-

tion that produced the cubes. Instead, we build a ternary tree with

three branches at each internal node. Any cube so indexed belongs to

only one of the 0, 1, or ∗ branches.

We use a modified Gini impurity score to score a potential inter-

nal node. If n0, n1, and n∗ are the number of cubes that would be

sorted into the 0, 1, and ∗ branches, respectively, we use the score of

n0(n0 + n∗) + n1(n1 + n∗) + 2n2
∗. The first two terms represent

the number of items to be scanned (n0 + n∗ and n1 + n∗) times the

relative frequency with which they would be scanned. The last term

penalizes large number of examples in the common subtree.

We do not build the index structure all the way to single leaves.

Rather, empirical tests indicate that performing a linear scan of 10 to

20 cubes is faster than refining the index further, so we stop when the

number of remaining cubes is 16 or fewer. A lookup consists of re-

cursively descending the tree, checking either the 0 or 1 branch first,

followed by the ∗ branch if necessary. Whenever a leaf is reached,

the cubes associated with that leaf are scanned linearly. Because each

leaf is unique, the index cannot be made into a DAG.

4 Multiterminal reduced ordered binary decision
diagrams

A fully-reduced, ordered BDD (FBDD) [2], the most common type

of BDD, encodes a Boolean-valued function in a DAG with the two

terminal nodes 0 and 1. The fixed order in which variables are en-

countered on all paths from the root to any terminal node (unlike

the decision DAGs of Section 2) allows for both efficient opera-

tions combining BDD-encoded functions (not used in this work) and

greater opportunity to merge common subDAGs.

We could encode partial function f described by an m-piece

EGT using five FBDDs encoding fi : B6n+1 → B, for i ∈
{W, C, D, B, L}, where fi(x) = 1 iff f(x) = i, so that the don’t

care set D = {x : f(x) = ⊥} would be implicitly given by

{x : ∀i, fi(x) = 0}. Instead, we use a single multiterminal reduced

ordered binary decision diagram (MTBDD) [3], a generalization of

FBDDs that allows an arbitrary set of terminal nodes. MTBDDs en-

Level 0

Level 1

Level 2

Level 3

Level 4

W ⊥ L W D ⊥

u v

p q

g h

f

W D L

v

r

f
′

Figure 1. MTBDD encoding f (left), and a concretization f ′ of f (right).

code total, rather than partial, functions, so we treat f as a total func-

tion of the form f : B6n+1 → {W, C, D, B, L, ⊥}. Probing an

MTBDD once is both simpler than probing multiple FBDDs in par-

allel and, in expectation, faster than probing multiple FBDDs serially.

Formally, a K-variable MTBDD is an edge-labelled DAG where

the terminal nodes belong to an arbitrary finite set R, and are at

level 0, while each nonterminal node p is at a level p.level =
k ∈ {1, . . . ,K} and has a 0-child, p[0], and a 1-child, p[1], sat-

isfying k > max{p[0].level , p[1].level} and p[0] �= p[1] (i.e.,

there are no redundant nodes). MTBDD node p at level k encodes

function fp : Bk → R, defined recursively as fp(i1, . . . , ik) =
fp[ik](i1, . . . , ik−1) if k > 0, otherwise fp = p. Figure 1

shows two example MTBDDs, encoding functions f, f
′ : B4 →

{W, D, L, ⊥}. In the figure, dashed directed edges point to the 0-

child, while solid directed edges point to the 1-child.

An advantage of the BDD approaches we discuss is that we can

naturally store multiple BDDs of the same type in a single forest

with shared nodes, especially at lower levels. Thus, the node count

of the forest storing all m-piece EGTs together cannot exceed, and is

in practice less than, the sum of the node counts needed to store each

m-piece EGT individually.

4.1 Concretization

In our application, we never evaluate f(x) for x ∈ D. Thus, the

MTBDD size may be reduced by concretizing f , that is, chang-

ing some of the values of f from ⊥ to (appropriate) values i ∈
{W, C, D, B, L}.

Finding a concretization f
′

of f with minimal size (which can be

shown to be full, i.e., f
′(x) �= ⊥ for all x ∈ BK

) is NP-hard, so

we limit ourselves to greedy (suboptimal) heuristics. We use three

increasingly expensive and increasingly general heuristics originally

proposed for FBDDs [13], but with notable differences: In Shiple et

al. [13], a partial Boolean-valued function f is encoded using two

FBDDs: one to encode f , and one to encode “don’t care” set D
(or, equivalently, the “care set” which is the complement of D). The

heuristics must then consider the two FBDDs simultaneously to per-

form the concretization. Our versions of the heuristics, instead, use a

single MTBDD where the “don’t cares” are encoded as terminal node

⊥. The heuristics proceed top-down in the MTBDD and attempt to

remove each nonterminal node p by making it redundant as follows

(let p
′

and p
′′

be the two children of p, in either order):

• Restrict: If p
′ = ⊥, change p

′
to p

′′
. When applied to function f

in Figure. 1, restrict eliminates nodes u (replaced by W ) and q

(replaced by v).
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method disk space used (MiB) data structure memory used (MiB) query mean query time (µs)
subset 3 pc 4 pc 5 pc all 3 pc 4 pc 5 pc all memory 3 pc 4 pc 5 pc all

Flat file mmap 1.2 480.0 112640.0 113121.2 1147.0 1365.5 1178.8 1216.3
Decision DAGs 0.0 4.5 1372.5 1377.0 0.0 11.4 3038.5 3049.9 3292.0 1221.8 1449.7 1312.1 1337.5
MTBDD 0.0 2.7 782.9 785.6 0.0 7.1 1763.5 1770.6 2299.7 1198.1 1467.2 1513.4 1492.9
TLLM 0.0 2.0 634.8 636.8 0.1 13.2 4160.9 4174.2 4460.4 1335.5 1804.2 3935.4 3404.8
Syzygy WCDBL 0.0 1.2 376.6 377.8 1399.2 7271.5 12496.3 17160.8 15854.7

Table 1. Experiment results. Memory space includes the index for TLLM. Full distributions are shown in Figures 2 and 3.

• One-sided-match: If p
′

is a (not necessarily full) concretization

of p
′′

, change p
′′

to p
′
. When applied to function f in Figure 1,

one-sided-match eliminates nodes g (replaced by v), q, and u.

• Two-sided-match: If p
′

and p
′′

admit a common (least, thus not

necessarily full) concretization q, change p
′

and p
′′

to q, which

may be an existing node or a new node. When applied to func-

tion f in Figure 1, two-sided-match produces function f
′
: node r

concretizes both nodes p and q, produces while node v concretizes

node u; thus node h is eliminated and replaced by r, and node g

is eliminated and replaced by v.

As these are heuristics, none is guaranteed to be best. However,

experiments we performed using five-piece EGTs showed that re-

strict and one-sided-match tend to have similar node savings w.r.t.

no concretization, while two-sided-match was almost always best,

sometimes by a substantial factor. Five-piece EGTs concretized with

two-sided-match require only 44.2% of the nodes versus using no

concretization. When storing these EGTs in a forest, the node counts

are only 78.4% (with no concretization) and 91.1% (with two-sided-

match) of the total node counts for the individual EGTs. Thus, using

forests does not help as much in conjunction with concretization, but

the forest with two-sided-match still requires only 59.9% of the nodes

of the forest with no concretization.

Finally, while BDD implementations may vary widely in the way

they store edges (pointers vs. indices) and levels (the size of the

integer types), once the total count T of (terminal or nonterminal)

nodes in the forest is known, it is a simple matter to encode the entire

MTBDD forest using T · (2⌈log2 T �+ ⌈log2 K+1�) bits, where K

is the number of variables.

5 Experimentation

We measure and discuss data preparation, the size of the data of the

various methods, then measure and discuss their probing efficiency.

5.1 Methodology

We downloaded the Syzygy EGTs[4], and updated the code of

Fathom[6] to return an appropriate result whenever an invalid, ille-

gal, or already mated position is probed. We probed every input bit

vector for each of the three-, four-, and five-piece material balances,

and recorded the result returned by Fathom. As a coarse baseline rep-

resenting no compression, we memory-mapped these flat files and

queried them directly (“flat file mmap” in results).

Subsequently, we used this data for decision DAG, MTBDD, and

TLLM EGT construction. The total construction time for all five-

piece decision DAG and MTBDD EGTs, executed in parallel, was

just a few hours. However, the construction of many of the five-piece

TLLM EGTs required substantially more time.

For each TLLM EGT, we iterated through n = 1 . . . N . Within

each iteration, we performed a single distance-n merge sweep im-

mediately followed by an IRREDUNDANT pass. These early ap-

plications of IRREDUNDANT are a key part of reducing the cube

count of the working set as quickly as possible, which permits more

challenging functions to be minimized.

For three-piece TLLM EGTs, we set N = 11 (higher N intro-

duces no further changes). For four-piece and five-piece EGTs, we

used N = 9 and N = 5, respectively.

Once all these iterations completed, we performed a single RE-

DUCE pass, a single RANDOM-EXPAND pass, a single further IR-

REDUNDANT pass, and one final REDUCE pass (which, while not

reducing cube count, tends to improve the compressed size on disk).

5.2 Data size

For the flat file and Syzygy EGT formats, we report the on-disk file

size as-is, because they must be memory mapped. The other formats

are amenable to being streamed into memory via the xz decompres-

sor, so we instead report the on-disk file size after xz compression
1
.

5.2.1 Disk space

Of the four methods, decision DAGs provide the least compact disk

representation (see Table 1 and Figure 2). Even when we take into

consideration the reduced size of the combined MTBDD forest, the

MTBDD method uses more space than the TLLM method. However,

Syzygy’s disk representation is clearly the most compact.

5.2.2 Memory usage

The decision DAG, MTBDD, and TLLM data structures all require

roughly a constant factor across tables more for memory versus disk

space. However, in the case of TLLM, that constant factor is rela-

tively higher, because indices of the cube lists are required to probe

the TLLM EGTs efficiently. (They are constructed rapidly at data

load time.) In contrast, the decision DAG and MTBDD structures do

not require additional augmentation after in-memory decompression

of the on-disk data. Of these three methods, the MTBDD method is

the most efficient from a memory usage perspective.

The memory usage of Syzygy substantially differs from the three

other methods we explore, and is difficult for us to characterize.

Syzygy EGTs are cleverly engineered to store blocks of compressed

data, so that it is not actually necessary to unpack the entirety of any

individual table into memory to perform any single probe. However,

because Syzygy’s data encoding requires that a minimax-based cap-

ture search be performed when any captures are available, it follows

1 The xz compression options used were -T1 -lzma2=preset=9e,

dict=1GiB,mf=bt4,mode=normal,nice=273,depth=1000.
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Figure 2. Pair plot of bytes required to store compressed WCDBL data on disk. Each point is one material balance. Orange points are pawnless material
balances; blue points are those with at least one pawn. Triangles are three-piece EGTs; squares are four-piece EGTs; pentagons are five-piece EGTs.

Off-diagonal plots are scatter plots comparing two methods. Diagonal plots are (kernel-smoothed) distributions over the space per table.

that compressed blocks from multiple such tables frequently need to

be probed to resolve the game-theoretic value of a particular position

under consideration.

To capture these tradeoffs, we also measured memory usage as

reported by Linux via /proc/meminfo on an independent run of

the probe timing code (to avoid altering the probe timing results:

see below). These measurements are shown in the “query memory”

column of Table 1.

5.3 Probe timing

For each of the 145 material balances, we sampled two million po-

sitions with replacement by drawing the location of each of the m

pieces uniformly at random, then drawing the side to move. All po-

sitions that are invalid or illegal are redrawn. Fathom provides the

capture search necessary to properly query the Syzygy EGTs.

For each of the three groups of m-piece positions, two probing

passes are performed. The correctness of the probe results returned

is verified on the first pass; probe timings are captured on the second

pass. We then compute the mean probe time for each material balance

within the group of m-piece positions. The probe timings reported

are from a system with only a solid-state drive.

As shown in Table 1 and Figure 3, decision DAG EGTs may be

probed almost as quickly as the flat files, and probing MTBDDs is

only marginally slower than those methods. In comparison, the mean

probing speeds of TLLM and especially Syzygy are poor.

6 Discussion

Syzygy is both the most space-efficient and the least runtime-efficient

method. It could be interesting to explore either removing its manda-

tory capture-based search, or augmenting the other methods to also
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Figure 3. Pair plot of mean nanoseconds required to probe previously-loaded WCDBL data. Symbol interpretation is the same as in Figure 2.

use one, so that we could discern with precision the effects of that

particular design decision.

Decision DAGs are the simplest to implement, and do provide the

lowest querying latency, but are not particularly space efficient. In

comparison, the use of MTBDDs increases latency only a little, but

results in far superior compression.

Other BDD-based techniques may also perform similarly well to

MTBDDs, and are thus worth exploration. In addition, while not con-

sidered in this paper, BDDs can also be used to efficiently perform

operations on sets of positions, which could enable generating the

Chess EGTs in compressed form without explicitly enumerating all

canonical positions.

TLLM exhibits high potential for both future result improvement

and future obsolescence, depending on whether or not further min-

imization breakthroughs are discovered. The challenge of handling

the exponential growth in data size as ever-larger m-piece EGTs are

processed currently seems the most daunting for this method.
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