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Abstract 

Ants exhibit many complex social organization strategies. One particularly elaborate strategy is supercoloniality, in which a colony consists of 
many interconnected nests (= polydomy) with many queens (= polygyny). In many species of Formica ants, an ancient queen number super-
gene determines whether a colony is monogyne (= headed by single queen) or polygyne. The presence of the rearranged P haplotype typically 
leads colonies to be polygyne. However, the presence and function of this supergene polymorphism have not been examined in supercolonial 
populations. Here, we use genomic data from species in the Formica rufa group to determine whether the P haplotype leads to supercolonial-
ity. In a Formica paralugubris population, we find that nests are polygyne despite the absence of the P haplotype in workers. We find spatial 
genetic ancestry patterns in nests consistent with supercolonial organization. Additionally, we find that the P haplotype is also absent in workers 
from supercolonial Formica aquilonia and Formica aquilonia × polyctena hybrid populations but is present in some Formica polyctena workers. 
We conclude that the P haplotype is not necessary for supercoloniality in the Formica rufa group, despite its long-standing association with  
non-supercolonial polygyny across the Formica genus.
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Introduction

The undeniable success of ants is in part ascribable to their 
variety and complexity of social organization (Bourke and 
Franks 1995; Hölldobler and Wilson 1990; Wilson 1971). 
Some colonies consist of a single nest (= monodomy), while 
others consist of several interconnected nests (= polydomy; 
Hölldobler and Wilson 1977). Colony queen number can also 
vary: colonies can be headed by a single queen (= monogyne) 
or many queens (= polygyne) (Hölldobler and Wilson 1977). 
Ants have evolved many social strategies multiple times 
(Borowiec et al. 2021; Dahan and Rabeling 2022; Hölldobler 
and Wilson 1990) leading to questions as to how such 
diverse social strategies coevolve (e.g., Favreau et al. 2018; 
Rubenstein et al. 2019). Linkage of traits as part of supergenes 
may promote coevolution: supergenes are genomic regions 
containing multiple functional mutations contributing to a 
discrete phenotypic polymorphism, with low recombination 
between them (Darlington and Mather 1949; Thompson and 
Jiggins 2014). Theory predicts that beneficial alleles should 
cluster together in regions of reduced recombination, such 
as rearrangements, to prevent maladaptive recombinants 
(Kirkpatrick and Barton 2006; Yeaman 2013). Additionally, 
modelling work shows that social polymorphisms can result 
from genetic linkage between dispersal ability and social 
traits (Mullon et al. 2018).

Recent genetic work revealed that alternative social orga-
nization strategies have evolved convergent supergenes in as 
many as five ant lineages (Kay et al. 2022). A comparison of 
the two best-studied ant supergenes in the genera Formica 
and Solenopsis found that they occupy non-homologous 
regions of the genome (Purcell et al. 2014). Additionally, the 
Solenopsis and Formica supergenes have different estimated 
ages, both much more recent than the divergence time between 
the two genera—the Formica supergene is ancient (approxi-
mately 30 million years old; Purcell et al. 2021) and evolved 
once in the common ancestor of extant Formica, while the 
Solenopsis supergene is relatively young (approximately 1.25 
million years old; Helleu et al. 2022; Yan et al. 2020).

In Formica ants, workers in polygyne colonies generally 
have at least one P haplotype, while workers in monogyne 
colonies are almost exclusively homozygous for the M haplo-
type (e.g., Purcell et al. 2014; Brelsford et al. 2020; Lagunas-
Robles et al. 2021; Pierce et al. 2022; Scarparo et al. 2023; 
but see McGuire et al. 2022). Intriguingly, Formica trunco-
rum and Formica exsecta have the queen number supergene 
(Brelsford et al. 2020) but can also exhibit a social strategy 
known as supercoloniality (Elias et al. 2005; Rosengren et al. 
1985; Seppä et al. 2012). This derived strategy has evolved 
independently in several ant lineages (Helanterä 2022), 
including Formica ants (Seifert 2018). Supercoloniality is 
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an exaggerated form of polydomous, polygynous social 
organization with genetic connectivity and resource sharing 
between neighbouring nests (Debout et al. 2007; Gordon 
and Heller 2012; Helanterä 2022). This allows for a colony 
to be interconnected over a broad geographic distribution. 
Supercolonial species exhibit a similar suite of traits classi-
fied under polygyne syndrome (Keller 1993, 1995), such as 
dispersal by budding, local mating, and local queen recruit-
ment. While it is important to note that not all polydomous 
colonies are polygynous (Debout et al. 2007; Hölldobler and 
Wilson 1977), it has been suggested that stable polygyne 
nests have the potential to become “incipient supercolonies” 
given favourable ecological conditions (Helanterä et al. 2009; 
Huszár et al. 2014; Pedersen et al. 2006).

Supercoloniality was inferred to have multiple origins in 
Formica ants (e.g., Formica rufa group, Formica exsecta 
group, Formica uralensis group, Formica integra group, 
Formica fusca group; Borowiec et al. 2021). The species in 
the F. rufa group serve as an excellent model to examine the 
evolution of supercoloniality as the clade is socially polymor-
phic with several species that can form supercolonies (Seifert 
2016, 2021). Of particular interest within the F. rufa group 
is the F. lugubris species complex (Seifert 2021). This species 
complex includes Formica paralugubris (Seifert 1996) which 
is characterized by its polygynous and supercolonial nature. 
Prior work in the Swiss Alps showed that F. paralugubris 
forms small neighbouring supercolonies (Chapuisat et al. 
1997; Holzer et al. 2009), with a notable lack of aggression 
between workers from the neighbouring nests (Chapuisat et 
al. 2005; Holzer et al. 2006). While many large supercolonies 
typically exhibit near zero relatedness and show aggression 
to members of neighbouring supercolonies (e.g., Elias et al. 
2005; Pamilo et al. 2005; Pedersen et al. 2006; Thomas et 
al. 2006), F. paralugubris is tolerant of non-nestmates and 
does not show behavioural supercolony boundaries (Holzer 
et al. 2006). Despite numerous studies on supercolonies in 
both invasive (e.g., Giraud et al. 2002; Lenoir et al. 2016; 
Sorger et al. 2017; Sunamura et al. 2009; Van Wilgenburg et 
al. 2010) and native contexts (e.g., Elias et al. 2005; Hakala 
et al. 2020; Holzer et al. 2009; Wiezik et al. 2017), the genetic 
mechanism by which supercoloniality is determined remains 
elusive (Helanterä 2022).

In this study, we examine the potential link between an 
ancient queen number supergene and supercoloniality in 
three species from the F. rufa group (Figure 1). We hypoth-
esize that if supercoloniality is an extension of polygyny, as 
has been shown in some species (e.g., Huszár et al. 2014; 
Pedersen et al. 2006), then the polygyne-associated P hap-
lotype should be found in supercolonial populations of 
Formica ants. We assess the potential for a supercolonial 
F. paralugubris population by examining the spatial distri-
bution of genetic ancestry within nests. If multiple super-
colonies are present in the population, we would expect to 
find spatially restricted ancestry groups each spanning mul-
tiple nearby nests within a supercolony, and little admixture 
between supercolonies. We then assess the generality of our 
findings by reanalyzing published genomic data from two 
additional species in the F. rufa group (F. aquilonia and F. 
polyctena) from various supercolonial populations. If there 
is a similar genetic underpinning to supercoloniality in 
the Formica rufa group, we would expect our findings in 
F. paraluguburis to extend to F. aquilonia and F. polyctena 
workers from different supercolonies.

Materials and methods

Nest sample collection and library preparation

In August 2018 and 2021, we collected worker ants from 41 
total F. rufa group nests in the valley adjacent to Bosco Gurin, 
Ticino, Switzerland (46.3164° N, 8.4927° E). One nest was 
sampled in both 2018 and 2021. We recorded nest locations 
using a Garmin eTrex GPS unit.

We extracted DNA from up to five workers from each of 
five nests collected in 2018. The DNA was extracted with the 
following steps: we manually ground the head and thorax of 
each ant in liquid nitrogen, then followed the Qiagen DNEasy 
insect tissue protocol for genomic DNA extraction. We eluted 
in 30 μl of AE buffer. The samples were then prepared for 
double-digest restriction-site-associated DNA (ddRAD) 
sequencing using the Brelsford et al. (2016) protocol, which 
incorporates elements proposed by Parchman et al. (2012) 
and Peterson et al. (2012), with restriction enzymes EcoRI and 
MseI. We sent the pooled library to Novogene for sequencing 
on a partial HiSeq X Ten lane with 150bp paired-ended reads.

We extracted DNA from workers from 37 nests collected in 
2021, for up to 5 workers per colony, by manually grinding 
the head and thorax in liquid nitrogen and digesting the tissue 
overnight at 56 °C in 180 μl ATL buffer and 20 μl protein-
ase K. We transferred the supernatant into deep-well plates 
and completed the DNA extraction with the QIAcube HT 
extraction robot following the manufacturer’s protocol for the 
QiaAmp 96 DNA kit. We eluted in 100 μl of elution buffer (10 
mM Tris, pH 8.0). We prepared the genomic DNA for ddRAD 

F. aquilonia M,P,S1,2 M,P2

F. paralugubris S3 M2

F. polyctena S1 M,P2

F. truncorum M,P,S4 M,P10

F. exsecta M,P,S5 M,P10

F. podzolica M,P6 MA,MD
7

F. glacialis M,P7 MA,MD,PS
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F. neoclara M,P8 M,P8

F. francoeuri M,P9 M,P9

F. selysi M,P12 M,P12
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10,11
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10

Social 
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Figure 1. A phylogeny of Formica species with known supergene 

haplotypes and social forms. The tree is based on phylogenetic 

relationships established in Borowiec et al. (2021), Purcell et al. (2021), 

and Sigeman et al. (2024). The known social forms for each species are 

provided. Social forms are denoted as monogynous (M), polygynous 

(P), and supercolonial (S). Supergene haplotypes described in various 

studies are denoted as follows: monogyne-associated (M, M
A
, M

D
) and 

polygyne-associated (P, P
1
, P

2
, P

S
). References cited: 1: Helanterä (2022); 

2: this study; 3: Seifert (1996); 4: Elias et al. (2005); 5: Seppä et al. (2012); 

6: Deslippe and Savolainen (1995); 7: Lagunas-Robles et al. (2021); 8: 

McGuire et al. (2022); 9: Pierce et al. (2022); 10: Brelsford et al. (2020); 

11: Scarparo et al. (2023); 12: Purcell et al. (2014).
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sequencing as described above for the 2018 colonies. We sent 
the pooled library to University of California San Diego’s 
Institute for Genomic Medicine for sequencing on a partial 
NovaSeq 6000 sequencing lane with 150 bp paired-end reads.

Variant calling and filtering

We demultiplexed the raw ddRAD sequence data using pro-
cess_radtags in Stacks version 2.60 (Catchen et al. 2013). 
We merged overlapping pair-end reads with PEAR version 
0.9.11 (Zhang et al. 2014) and then aligned the reads to a 
reference genome of a hybrid F. aquilonia × polyctena male 
(Nouhaud et al. 2022a, GenBank GCA_907163055.1) with 
bwa-mem2 version 2.2.1 (Vasimuddin et al. 2019), using 
Samtools version 1.16 (Li et al. 2009) to sort and merge bam 
files. Separately, we retrieved whole-genome sequence data 
from NCBI for two Formica truncorum males to leverage the 
known supergene genotypes for these samples for our analy-
ses (Brelsford et al. 2020, Table S1). For these whole-genome 
samples, we used PEAR version 0.9.11 with the flag -k to 
retain read orientation and aligned the reads to the Formica 
aquilonia × polyctena reference genome (Nouhaud et al. 
2022a, GenBank GCA_907163055.1) using bwa-mem2 ver-
sion 2.2.1. Then, for the whole-genome bam files, we used fix-
mate to fill mate coordinates and marked and removed PCR 
duplicates using markdup in Samtools version 1.16. We used 
Samtools version 1.16 (Li et al. 2009) to sort and merge the 
whole-genome bam files. We called genomic variants for the 
whole-genome and ddRAD samples together with reads that 
had mapping quality greater than 20 (--min-MQ 20) with 
mpileup and call in bcftools version 1.16 (Li 2011).

We filtered for high-quality SNPs to create a multi- 
species VCF file using the following parameters in VCFtools 
version 0.1.17 (Danecek et al. 2011). We removed indels 
(--remove-indels) and retained bi-allelic SNPs (--max-alleles 2) 
with a minimum depth of 8 (--minDP 8), minor allele count of 
at least 2 (--mac 2) and retained SNPs with greater than 75% 
presence among individuals (--max-missing 0.75). After filter-
ing the genome-wide multi-species VCF file for high-quality 
SNPs, we retained any individuals that had a genome-wide SNP 
average depth greater 8 as calculated by --depth in VCFtools 
version 0.1.17 (Danecek et al. 2011). We used the same filter-
ing parameters to create species-specific VCF files. Hereafter, 
scaffolds will be referred to as chromosomes since the reference 
assembly is anchored to the Formica selysi chromosome-level 
assembly (Brelsford et al. 2020, GCA_009859135.1).

Species identification

We performed a principal component analysis (PCA) in PLINK 
version 1.90b6.25 (Purcell et al. 2007), excluding chromosome 
3 (--not-chr Scaffold03) since recombination is reduced on the 
social supergene and would create genetic structure indepen-
dent of species. This analysis resulted in three distinct clusters. 
We sent raw reads from three representatives of each cluster to 
Guillaume Lavanchy, who conducted a cluster analysis com-
bining these samples with additional ddRAD data from seven 
morphologically identified F. rufa group species (G. Lavanchy 
and T. Schwander, unpublished data). The inferred species iden-
tities for our three genetic clusters were Formica paralugubris, 
Formica aquilonia, and Formica truncorum (Figure 2A). In 
total, including the whole-genome resequencing data, we had 
genomic data for 23 F. aquilonia, 155 F. paralugubris, and 15 F. 
truncorum (Supplementary Table S1). Of the 41 nests we sam-
pled in the single locality, we found the overwhelming majority 

were F. paralugubris (n = 34), and a smaller number were F. 
aquilonia (n = 4) and F. truncorum (n = 3).

Supergene genotypes

With our filtered dataset, we conducted multiple PCAs in 
PLINK version 1.90b6.25 (Purcell et al. 2007) to identify the 
presence of supergene genotypes in our dataset. We first con-
ducted single-species PCAs on each chromosome for F. paralu-
gubris using the species-specific VCFs. We then conducted a 
PCA on chromosome 3 for all species together and included 
two F. truncorum males with known supergene haplotypes to 
serve as positive controls in the PCA (Brelsford et al. 2020).

We also performed PCAs in PLINK version 1.90b6.25 
(Purcell et al. 2007) in 750 kb windows on each chromosome 
to scan for supergene polymorphism on other chromosomes. 
For each individual, we plotted PC1 against the midpoint 
of each window. To have the PC1 axis oriented in the same 
direction for all windows, we transformed PC1 values when 
the mean PC1 value for an F. truncorum window was greater 
than the mean PC1 for the corresponding F. paralugubris win-
dow. We multiplied all PC1 values by −1 for windows that 
met these criteria.

To identify supergene heterozygotes, we calculated hetero-
zygosity (--het) for chromosome 3 in VCFtools version 0.1.17 
(Danecek et al. 2011). To measure the genetic distance from 
the reference genome, we extracted genotype calls with using 
“--012” in VCFtools version 0.1.17 (Danecek et al. 2011). In 
012 format, 0 matches the reference allele, 1 is heterozygous, 
and 2 is homozygous for the non-reference allele. We calcu-
lated the frequency of non-reference alleles averaged across 
chromosome 3 for each individual (excluding missing geno-
types, which are coded as −1 in this format) and converted the 
average to a proportion by dividing by 2.

Estimating relatedness to infer nest social form

In order to infer social form, we estimated intra-nest relat-
edness for each nest using COANCESTRY version 1.0.1.10 
(Wang 2011), after extracting genotype calls in 012 format 
using VCFtools version 0.1.17 (Danecek et al. 2011) for 
each species. We only included nests that had at least four 
sequenced workers for a total of 36 nests and excluded chro-
mosome 3 from the analysis. We excluded self-comparisons 
from all downstream analyses. We classified nest social form 
using intra-nest pairwise relatedness comparisons as deter-
mined by the Wang estimator (Wang 2002) and evaluated the 
values against theoretical expectations. The theoretical relat-
edness for workers in monandrous monogyne colony is 0.75, 
where workers are full sisters; in a nest headed by a doubly 
or triply mated queen, some pairs of workers would be half 
sisters with expected relatedness of 0.25 (Hamilton 1964). 
We expect relatedness estimates to be downward biased but 
more precise in reduced representation datasets compared to 
microsatellite-based datasets (Attard et al. 2018). To account 
for this downward bias, we evaluated the distribution of 
the pairwise intra-nest relatedness to determine what val-
ues consistently differentiated full siblings (determined via 
monogyne colonies) from less related pairs (Figure 3). The 
lack of a bimodal distribution in all F. truncorum nests and 
a single F. aquilonia nest were consistent with relatedness 
expected in full-sibling relationships in a monandrous mono-
gyne nest. The bimodal distribution in two F. aquilonia nests 
were consistent with relatedness between pairs of half siblings 
and pairs of full siblings in polyandrous monogyne nests. To 
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account for a downward bias, we placed the lower bound-
ary of full sibling relationships at 0.55, which was slightly 
below our lowest inferred full sibling pairwise comparison. 
We placed the upper boundary of an unrelated pairwise com-
parison at 0.19 to account for high inbreeding expected in 
highly polygynous populations. We called nests with all pair-
wise relationships ≥0.55 as monogyne monandrous, nests 
with bimodal distribution of pairwise relationships with at 
least 20% ≥0.55, but none ≤0.19 as monogyne polyandrous. 
We called nests polygyne if they had at least one pairwise rela-
tionship ≤0.19, or if the nest did not fit the monogyne criteria. 
We classified pairwise comparisons between workers as full 
siblings (≥0.55), related (0.19–0.55) and unrelated (≤0.19).

Fine-scale population structure in F. paralugubris

We analyzed the genetic ancestry of the F. paralugubris nests 
collected in 2021 (n = 32) in the population to evaluate poten-
tial presence of supercolonies. We created a bed file using the 
2021 F. paralugubris filtered variants from the species-specific 
VCF file, excluding chromosome 3, using the flag --make-bed 
in PLINK version 1.90b6.25 (Purcell et al. 2007). We used the 
bed file as input and calculated genetic ancestry (K = 1–10) 
for each worker in ADMIXTURE version 1.3.0 (Alexander 
et al. 2009). We identified the number of ancestry groups (K) 
for the population using cross-validation error scores. We 
then estimated the nest ancestry by averaging worker ancestry 
within a nest and mapped the nest according to colony GPS 
coordinates taken at the time of sampling.

Analysis of the supercolonial species F. aquilonia 
and F. polyctena

We examined supergene variation in supercolonial popula-
tions of F. aquilonia, F. polyctena, and their hybrids by lever-
aging publicly available filtered variants in VCF format from 
whole-genome resequencing data (Nouhaud et al. 2022b; 

Portinha et al. 2022; SpecIAnt 2022). Nouhaud et al. aligned 
their sequence data to the same reference genome (GenBank 
GCA_907163055.1), so we used the filtered variants to per-
form subsequent analyses. We first identified the supergene 
genotypes on chromosome 3 by performing a PCA and calcu-
lated heterozygosity on chromosome 3 using PLINK version 
1.90b6.25 (Purcell et al. 2007) and VCFtools version 0.1.17 
(Danecek et al. 2011), respectively. We then extracted geno-
type calls for chromosome 3 using the flag --012 in VCFtools 
version 0.1.17 (Danecek et al. 2011). We calculated the fre-
quency of non-reference alleles averaged across chromo-
some 3 to confirm the genotypes present in F. aquilonia, F. 
polyctena, and F. aquilonia × polyctena hybrids and omitted 
missing genotypes as described in the Supergene genotypes 
section.

Software for figures

All plots were produced in R version 4.2.3 (R Core Team 
2023) with the package ggplot2 (Wickham 2016). We mapped 
nests and their respective intra-nest average ancestry in the 
program QGIS version 3.30.0 RC (QGIS Development Team 
2009). We used the package cowplot (Wilke et al. 2024) in R 
version 4.2.3 to make Figures 2, 3, and 5, and Supplementary 
Figures S1–S6 and combined the plots in figure panel 4 
with Adobe Illustrator. We edited figure legends in Adobe 
Illustrator. We made Figure 1 in Microsoft PowerPoint.

Results

Absence of P haplotype in a F. paralugubris 
population

To identify supergene genotypes in the population, we exam-
ined SNPs on chromosome 3 using several analyses. A PCA 
for each chromosome in F. paralugubris (Supplementary 
Figure S1) showed weak clustering consistent with spatial 
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genetic structure on all chromosomes, including chromosome 
3, with no evidence for supergene polymorphism. We then 
used a PCA with all our species together with two F. trunco-
rum individuals with known M and P genotypes: because of 
the ancient origin of the queen number supergene in Formica 
(Purcell et al. 2021), we would expect individuals to cluster 
together on chromosome 3 based on their supergene geno-
types instead of species. Along principal component 1, we 
would expect homozygous individuals for either the M or P 
haplotype to group with the respective F. truncorum males 
that served as positive controls. Individuals with the heterozy-
gous M/P genotype would be expected to show intermediate 

PC1 values. We identified a uniform cluster for F. paralugu-
bris indicating a lack of supergene polymorphism on chro-
mosome 3 (Figure 2B). Two distinct clusters were present 
for F. aquilonia workers. The sampled F. truncorum workers 
formed one uniform cluster. The haploid M male grouped 
with all the sampled F. truncorum workers indicating they 
were M-like at the supergene (Figure 2B). The haploid P male 
did not group with any F. truncorum indicating we did not 
have any homozygous P-like workers (Figure 2B). The place-
ment of the haploid males indicated that PC1 distinguished 
the chromosome 3 haplotypes (M-like vs P-like), while PC2 
separated F. truncorum with the M haplotype from all other 
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Figure 3. Within-nest relatedness was used to infer whether a nest was monogyne or polygyne. Each point represents a pairwise comparison between 

workers from the same nest. Points represent full-sibling pairwise relationships (pairwise R ≥ 0.55), pairs of related individuals (pairwise R between 

0.19 and 0.55), and non-sibling pairwise relationships (pairwise R ≤ 0.19). Vertical lines at R = 0.19 and R = 0.55 show thresholds between inferred 

relationship types. Nests with a minimum of four sequenced workers were included in these analyses. (A) In F. paralugubris (n = 29), we inferred all 

nests as polygyne. All but three nests lacked full-sibling relationships; the three nests with inferred full-sibling pairs lacked the bimodal distribution of 

relatedness values expected in monogyne polyandrous colonies. (B) In F. aquilonia (n = 4), three nests with the M/M genotype were inferred to be 

monogyne (two with polyandry), and one colony with M/P workers was inferred to be polygyne. (C) In F. truncorum (n = 3), we found all nests to be 

monogyne with the M/M genotype.
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samples. One F. aquilonia cluster had PC1 values intermedi-
ate between the known F. truncorum P and M males on PC1 
(Figure 2B). All other workers in our analysis were M-like 
homozygotes, which was further supported by heterozygos-
ity estimates (Figures 2B; Supplementary Figure S2A). The 
F. aquilonia cluster intermediate on PC1 and with negative 
FIS suggested that these individuals were heterozygous at the 
supergene (Supplementary Figure S2A).

To further examine supergene variation, we calculated the 
average frequency of non-reference alleles on chromosome 
3 (Supplementary Figure S2B). The known F. truncorum M 
and P males had an average frequency of non-reference alleles 
across chromosome 3 of 0.152 and 0.339, respectively. The 
median across chromosome 3 for all M-like homozygous F. 
truncorum workers was 0.172. We found a similar median 
for all M-like homozygous F. aquilonia and F. paralugubris 
workers, 0.147 and 0.132, respectively. For the F. aquilonia 
colony with exclusively heterozygous workers, we found 
the median frequency of non-reference alleles to be 0.255. 
Through this analysis, we establish that the male sequenced 
for the reference genome (Nouhaud et al. 2022b) is haploid 
for the M haplotype as it is more genetically similar to the 
M-like workers than the heterozygous workers and known P 
male in our dataset. Hereafter, we will refer to the M-like and 
P-like haplotypes as M and P.

We also examined clustering patterns across the genome 
using chromosome-level and windowed PCAs to poten-
tially find an association between supercoloniality and other 
parts of the genome. We didn’t find any patterns suggesting 
other haplotypes were present with chromosome-level PCAs 
(Supplementary Figures S3–S5) or 750 kb windowed PCAs 
across the genome (Supplementary Figure S6). However, our 
reduced representation approach with ddRADs could miss 
smaller-scale polymorphisms that would otherwise be identi-
fied with whole-genome sequencing.

Relatedness and fine-scale population structure 
support supercoloniality in F. paralugubris

We estimated relatedness within each nest to infer nest queen 
number. We found support for all the F. paralugubris work-
ers belonging to polygyne nests with varying degrees of 
inbreeding (Figure 3A; Supplementary Table S2). A history 
of inbreeding can increase pairwise relatedness values and 
complicate the inference of queen number in a nest. In nests 
belonging to a supercolony with frequent within-nest mat-
ing, we would expect moderately high relatedness but not 
the bimodal distribution that is expected in monogyne poly-
androus nests. To further evaluate supercoloniality, we esti-
mated genetic ancestry and admixture in F. paralugubris. We 
found support for three genetic ancestry groups (K = 3) in the 
population (Figure 4; Supplementary Table S3). Each genetic 
group included multiple nests and occupied a distinct region 
of our study area (Figure 4A). The spatially distinct genetic 
groups and consistent polygynous status suggest that this F. 
paralugubris population consists of three supercolonies.

Supergene genotypes and social structure in F. 
aquilonia and F. truncorum

In our limited number of F. aquilonia nests (n = 4), nest aver-
age pairwise relatedness between workers ranged between 
0.288 and 0.670 (Figure 3B; Supplementary Table S4). The 
one nest with heterozygous M/P workers had the lowest 
mean relatedness (0.288) and a unimodal distribution of 

relatedness values (Figure 3B), suggesting that this colony 
was polygynous. We found the three M/M nests had intra-
nest pairwise relatedness ranges between 0.401 to 0.703, 
0.414 to 0.681, and 0.615 to 0.705. The pairwise relatedness 
in M/M nests suggested monogyne, monandrous social orga-
nization in one nest and monogyne, polyandrous in the other 
two (Figure 3B; Supplementary Table S4). All the F. trunco-
rum nests belonged to monogyne, monandrous social nests 
as pairwise relatedness between F. truncorum nestmate work-
ers ranged from 0.575 to 0.774 (Figure 3C; Supplementary 
Table S5).

The P haplotype is absent in supercolonial F. 
aquilonia and F. aquilonia × polyctena hybrid 
populations, but present in F. polyctena

To assess the generality of our findings in F. paralugubris, we 
reanalyzed published whole-genome sequencing data from 
other supercolonial species to determine if the P haplotype 
was also absent in F. aquilonia, F. polyctena, and F. aquilo-
nia × polyctena hybrids. Of 59 total individuals, only four 
individuals had heterozygous genotypes on chromosome 3 
(Figure 5A). Upon examining supergene variation, we found 
that the four F. polyctena individuals were the only ones 
with a P haplotype, with the remaining 55 individuals being 
homozygous for the M haplotype (39 F. aquilonia × polyctena 
hybrids, 10 F. aquilonia, and 6 F. polyctena, Figure 5A). We 
further validated the genotypes for each individual by com-
parison to the M haplotype reference genome: the individ-
uals harbouring the M/P genotype consistently had a higher 
frequency of non-reference alleles compared to individuals 
harbouring the M/M genotype (Figure 5B). These results 
demonstrate that the P haplotype is not required for super-
coloniality in other F. rufa group species, but additional 
nest-level analyses are warranted to assess the effect of the P 
haplotype in F. polyctena.

Discussion

Contrary to our initial expectations, we found that the super-
gene haplotype associated with polygyny across the Formica 
genus is absent or rare in highly polygynous supercolonial 
populations of multiple species. In one population of F. 
paralugubris, nests were polygynous despite workers exclu-
sively having the M/M genotype (Figures 2B and 3A). This 
is an unexpected deviation; in other Formica species, colo-
nies composed entirely of M/M genotypes are almost always 
monogynous (e.g., Brelsford et al. 2020; Lagunas-Robles et 
al. 2021; McGuire et al. 2022; Pierce et al. 2022; Purcell et 
al. 2014; Scarparo et al. 2023). Secondly, as expected, we find 
signatures of the supercolonial social organization in the pop-
ulation of F. paralugubris (Figures 3A and 4). The average 
intra-nest ancestry suggests the presence of three supercolo-
nies with spatial boundaries. The spatial scale of these super-
colonies is consistent with studies in other populations of F. 
paralugubris (Holzer et al. 2009). Lastly, we show a lack of 
P haplotypes in additional supercolonial Formica rufa group 
species. We found this in F. aquilonia and F. aquilonia × polyc-
tena hybrids, but not F. polyctena (Figure 5). Interestingly, in 
our sampling population, we observed a polygyne F. aquilo-
nia nest with heterozygous M/P individuals (Figures 2B and 
3B). This suggests that the P haplotype may be present in 
some supercolonial species, but that it is not necessary for 
supercolonial social organization.
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Did supercoloniality originate from polygyny?

Supercoloniality is generally thought to be an extension of 
polygyny (Helanterä 2022; Helanterä et al. 2009). For exam-
ple, in the common red ant Myrmica rubra, there are no dif-
ferences in body size between individuals from polygynous 
and supercolony nests suggesting that morphological changes 
are not needed for supercoloniality (Huszár et al. 2014). 
However, morphological differences are observed when com-
pared to individuals from monogyne nests. Additionally, in 
the Argentine ant Linepithema humile, differences in colony 
size are likely associated with local ecological conditions and 
not any life history changes (Pedersen et al. 2006), suggesting 

that native polydomous polygyne colonies (Suarez et al. 2008) 
expand into supercolonies given favourable environments. In 
contrast to these examples outside the Formica genus, our 
finding that the supergene haplotype associated with polyg-
yny across Formica is absent in supercolonial populations of 
multiple species raises the possibility that supercoloniality can 
be a qualitatively different type of polygyny with a distinct 
origin and distinct genetic mechanism.

Some Formica species exhibit monogyne, polygyne, 
and supercolonial social strategies. In two of these spe-
cies, Formica truncorum and Formica exsecta, the pres-
ence or absence of the P haplotype is associated with social 

1

0

0.5

B.

A.

Ancestry

(K = 3)

Worker

Figure 4. Admixture results suggest the presence of three F. paralugubris genetic ancestry groups. Colours represent the proportion of ancestry for 

each nest or individual. (A) Each nest was plotted based on its physical location. Pie charts represent the average nest ancestry. We found three genetic 

groups that are spatially separated. (B) ADMIXTURE results for worker ancestry (K = 3). Individual worker ancestries are represented by each bar. The 

bars are ordered by increasing latitude. The boundaries between the three supercolonies are delineated by dashed vertical bars.
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organization in non-supercolonial populations (Brelsford et 
al. 2020). The same may be true of F. aquilonia (Figure 3B). 
These species present an excellent opportunity to identify the 
genetic basis of supercoloniality: a genome-wide association 
study for social organization in species exhibiting all three 
strategies could uncover variants that are specific to supercol-
onies, whether on the M haplotype or on other chromosomes. 
A recent study showed that two duplicated P-specific paralo-
gous genes were found on an M haplotype background in F. 
paralugubris and F. aquilonia, but supercolonial F. polyctena 
still had the P haplotype (Sigeman et al. 2024). These paralogs 
may be promising causal loci. Identifying causal loci would 
provide insight into whether this life history strategy emerged 
once or multiple times in this set of species. In the case of a 
single origin in the F. rufa group, identifying the causal locus 
would also determine whether supercoloniality emerged in 
the common ancestor of the species group, or emerged more 
recently and introgressed across species boundaries.

What is the role of the P haplotype in supercolonial 
Formica ants?

If the P haplotype is not necessary for supercoloniality, what 
role does the P haplotype play in supercolonial Formica 
species? One possibility is that some populations of facul-
tatively supercolonial species retain the ancestral supergene- 
determined social polymorphism, with single-nest colonies 
headed by either a single queen or multiple queens depend-
ing on the presence or absence of the P haplotype. Another 
possibility, not mutually exclusive, is that the P haplotype 
is retained in supercolonial populations due to its effects on 
traits other than queen number. Morphological, behavioural, 
and population genetic evidence suggests that dispersal is 
typically lower for individuals from polygyne vs monogyne 
colonies (De Gasperin et al. 2024; Hakala et al. 2019; Keller 
1993, 1995; Sundström et al. 2005). If supercolonial spe-
cies are subject to frequency-dependent or spatially variable 

selection on dispersal, this could account for the maintenance 
of supergene polymorphism in the absence of queen number 
polymorphism.

Conclusion

We find that supercoloniality is not determined by the P hap-
lotype. Despite F. paralugubris only having polygyne nests, all 
the workers were M/M at the queen number supergene. The 
striking deviation in F. paralugubris between a queen num-
ber supergene haplotype and nest phenotype contrasts with 
the long-standing association between the P haplotype and 
polygyny observed in previous studies of non-supercolonial 
Formica species. We observed a similar discordance in super-
colonial F. aquilonia and F. aquilonia × polyctena hybrids, 
where all individuals lacked the P haplotype. Additionally, 
supercolonial F. polyctena had the P haplotype despite its 
absence in F. aquilonia × polyctena hybrids. Our results 
show that the presence of the P haplotype is not necessary 
for supercolonial organization in some species in the F. rufa 
group, but that is it nevertheless retained in socially polymor-
phic populations of the same species. This suggests that the 
evolutionary origin and genetic mechanism of supercolonial-
ity may be qualitatively distinct from the origin and mecha-
nism of polygyny found in single-nest colonies.

Supplementary material

Supplementary material is available at Journal of Evolutionary 
Biology online.

Data availability

Worker and corresponding nest metadata and related-
ness estimates are included in the supplementary mate-
rial. Variant Call Format files and data files and scripts  
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Figure 5. Additional species in the F. rufa group, F. aquilonia (n = 10), F. polyctena (n = 10), and F. aquilonia × polyctena hybrids (n = 39), from hybridizing 

supercolonial populations show that the P haplotype is rare in supercolonial populations. Each point represents an individual. (A) Chromosome 3 PC1 

plotted against chromosome 3 F
IS
 supported the genotype assignments as positive F

IS
 values suggest the individual is homozygous on chromosome 3, 

while negative F
IS
 values suggest the individual is heterozygous on chromosome 3. All F. aquilonia (n = 10) and F. aquilonia × polyctena hybrids (n = 39) 

were M/M at the supergene, while four of 10 F. polyctena were M/P at the supergene. (B) The frequency of non-reference alleles on chromosome 3 

shows that four of 10 F. polyctena workers are substantially more divergent from the M reference genome than the rest of the workers in this dataset, 

suggesting that these four workers carry at least one copy of the P haplotype.
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necessary to reproduce the figures were deposited on 
Dryad (DOI 10.5061/dryad.4qrfj6qmm). Raw sequence 
reads were deposited on the Sequence Read Archive of the 
National Center for Biotechnology Information (Bioproject 
PRJNA1200681).
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