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Abstract—This paper aims to design and implement a radio
device capable of detecting a person’s handwriting through a
wall. Although there is extensive research on radio frequency
(RF) based human activity recognition, this task is particularly
challenging due to the through-wall requirement and the tiny-
scale handwriting movements. To address these challenges, we
present RadSee—a 6 GHz frequency modulated continuous
wave (FMCW) radar system designed for detecting handwriting
content behind a wall. RadSee is realized through a joint
hardware and software design. On the hardware side, RadSee
features a 6 GHz FMCW radar device equipped with two custom-
designed, high-gain patch antennas. These two antennas provide
a sufficient link power budget, allowing RadSee to ‘“see” through
most walls with a small transmission power. On the software
side, RadSee extracts effective phase features corresponding
to the writer’s hand movements and employs a bidirectional
LSTM (BiLSTM) model with an attention mechanism to classify
handwriting letters. As a result, RadSee can detect millimeter-
level handwriting movements and recognize most letters based
on their unique phase patterns. Additionally, it is resilient
to interference from other moving objects and in-band radio
devices. We have built a prototype of RadSee and evaluated
its performance in various scenarios. Extensive experimental
results demonstrate that RadSee achieves 75% letter recognition
accuracy when victims write 62 random letters, and 87% word
recognition accuracy when they write articles.

I. INTRODUCTION

Handwriting on physical papers and electronic devices (e.g.,
iPad) is one of the most common human activities to keep and
transfer information. Even in today’s digital world, people tend
to write more than they might think [3]. In some scenarios, the
confidentiality of written content is of paramount importance.
A natural question to ask is: if one is writing important docu-
ments on a desk in a private room, is it possible for an attacker
outside the room to detect the letters being written through the
wall? Understanding the capability and performance limits of
such an attacker would inform the public of not only potential
threats but also possible countermeasures, thereby preventing
information leakage and enhancing human activity privacy.

Recent years have witnessed significant progress in remote
human activity recognition (HAR) using different sensing
technologies such as cameras [11], [22], [33], ultrasound [36],

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230322
www.ndss-symposium.org

Wall

Software

Hardware

Power amp

TX,
(30dB)
RX coupler Chirp
generator

00 o

Two-stage Mixer
LNA (38dB)

Custom-designed and optimized
6GHz FMCW radar circuit on PCB

Custom-designed
and optimized
patch antennas

Fig. 1: RadSee is a joint hardware (radar) and software (deep
learning) design to detect the letters being written by a victim
behind a wall.

[56], Wi-Fi [13], [21], [27], [28], [38], [45], RFID [51], [59],
and millimeter-wave (mmWave) radar [4], [19], [31], [32],
[43], [53], [57], [62]. In contrast to existing work, the task
of detecting handwriting content through a wall is unique yet
challenging in the following three aspects.

(a) Through-wall detection. This requirement significantly
limits the viable sensing techniques for this task. Camera-
based computer vision (CV) can be used for human activity
recognition by analyzing video data to identify and classify
different human actions and movements [22], [33]. Powered
by advanced deep neural network (DNN) techniques, a camera
system can easily recognize the handwriting characters from
a distance [14], [40]. However, camera-based HAR systems
are limited by occlusions and thus not applicable to through-
wall detection. Ultrasound sensors have also been widely used
for HAR. They emit high-frequency sound waves that bounce
off objects and produce echoes, which can be analyzed to
determine the patterns of human activities [12], [36], [56].
Unlike camera sensors, ultrasound can work even in low
light conditions and does not require a line-of-sight path. But
ultrasound has a very limited ability of passing through walls
due to its short wavelength, making it unsuitable for this task.
Radio frequency (RF) has emerged as a popular technology
for HAR such as gesture recognition [13], [16], [23], [27],
[38], [47], [61], keystroke detection [5], [58], and vital signal
detection [15], [48]. Among existing RF technologies, high-
frequency signals (e.g., mmWave) have very limited ability to
pass through a wall. Therefore, radio signals on sub-10 GHz
bands appear to be the plausible carrier for HAR behind walls.

(b) Millimeter-level hand movement for writing. Hand-



writing features very small movements compared to other
human activities. Typically, the movement of a pen-holding
hand is smaller than 1 cm for both paper and iPad writings.
When using an RF system for handwriting detection, its
detection resolution is determined by its signal wavelength.
On one hand, high-frequency mmWave (e.g., 60 GHz and
77 GHz) signals are capable of detecting sub-mm movement
of an object but cannot pass through a wall. On the other hand,
low-frequency (e.g., 915 MHz) microwave signals can easily
pass through a wall but cannot detect the mm-level movement
of an object. On the middle-frequency spectrum bands such as
2.4 GHz and 5 GHz, channel state information (CSI) in Wi-
Fi networks has been extensively used for HAR [13], [21],
[27], [28], [45], [50]; and its application on 5 GHz frequency
bands seems a possible solution to achieve the desired trade-off
between wall penetration and detection resolution. However,
Wi-Fi CSI-based HAR is a non-coherent detection approach
that suffers from phase, frequency and timing misalignments
in hardware. As such, it is incapable of detecting mm-level
movement in time. Recently, 6 GHz FMCW radar, which is
a coherent detection system, has been used for HAR such as
human body skeleton construction [1], [29], [63]-[65]. This
approach uses custom-designed hardware and promises high
accuracy and stability. However, so far, its applications are
limited to the detection of large-scale movements such as
people walking and interaction.

(c) Interference resilience. The detection of handwriting
may suffer from interference from other moving objects such
as a walking person around the writer. It may also suffer from
interference from indirect paths between the writer and the
detection equipment. Actually, such interference is a notorious
issue with RF sensing [25], [37], [55]. This issue is particularly
acute in sub-6 GHz RF sensing systems. If not addressed, the
interference may appear dominant and place a fundamental
limit on the detection performance. Moreover, since differ-
ent scenarios have different multi-path effects and different
moving objects/people, addressing the interference is critical
to extract environment-independent features for handwriting
recognition and ultimately develop a radio detector that can
work in new environments.

In this paper, we present RadSee, a 6 GHz FMCW radar
system for detecting the handwriting activities behind a wall,
as shown in Fig. 1. RadSee is realized through a joint hardware
and software design. In terms of hardware, RadSee builds a
6 GHz FMCW radar with highly optimized patch antennas. In
terms of software, RadSee first extracts the phase information
of demodulated FMCW signals and employs a deep neural
network (DNN) model for letter classification. Combining
the hardware and software innovations, RadSee is capable of
continuously detecting mm-level handwriting movement over
time and recognizing most letters based on their unique phase
patterns.

RadSee addresses Challenge (a) with its FMCW modula-
tion, its high-gain patch antenna, and its optimized baseband
analog filter. RadSee has co-located Tx and Rx RF chains,
making it possible to perform coherent signal demodulation

for handwriting recognition. In addition, the optimized patch
antennas have a total 36 dBi gain for wall penetration. RadSee
addresses Challenge (b) by using the phase information of
demodulated FMCW signals to extract the features of hand-
writing movements. FMCW radar has been widely used for
ranging. Its range resolution is 5%, where c is light speed and
B is signal bandwidth. Achieving the range resolution of 1 mm
requires B = 23;1%0,83 = 150 GHz signal bandwidth, which is
impossible in practice. However, the phase of demodulated
FMCW signals is much more sensitive to the movement of
an object. In theory, 1 mm hand movement corresponds to
14° phase change of the demodulated signal, which is easy
to detect. Therefore, RadSee uses the phase of demodulated
FMCW signals as the features of letter recognition. RadSee
addresses Challenge (c) by demodulating the reflective signals
only from the handwriting movement. This is achieved by
its FMCW modulation and high-directional patch antennas.
The FMCW modulation allows it to focus on the Range-
FFT bin that corresponds to the distance of interest; the
patch antennas allow it to focus on the reflective signal from
the direction of interest. Combining FMCW modulation and
antenna directivity, RadSee is capable of detecting a clear
phase pattern corresponding to the handwriting movements
behind a wall using a small transmission power (20 dBm).

Based on the demodulated FMCW signals, RadSee employs
a bidirectional long short-term memory (BiLSTM) model
to classify the handwriting characters (a-z, A-Z, and 0-9).
Different from other human activities such as keystroke [5],
[58], handwriting is a smooth and continuous movement of
the pen-holding hand. As such, handwriting tends to generate
a unique temporal phase pattern for each letter. That is the
reason why RadSee uses BiLSTM to classify a phase data
sequence. Of a phase data sequence, some parts may be very
important for letter recognition (e.g., those turning points),
while some parts may not carry useful information (e.g.,
horizontal strokes). Therefore, RadSee adds an attention layer
to the BiILSTM model so that the model can automatically
focus on those important parts of a phase data sequence
for letter classification. Powered by the BiLSTM model and
its attention mechanism, RadSee is capable of recognizing
handwriting letters based on their unique movement patterns.

We have built a prototype of RadSee (through PCB fab-
rication) and evaluated its performance in various scenarios.
Experimental results show that, when placed behind office in-
terior drywalls and external wood/vinyl walls, RadSee achieves
75% letter recognition accuracy when victims randomly write
62 different letters and 87% word recognition accuracy when
victims write articles. Notably, RadSee demonstrates its re-
silience to the interference from walking persons around the
victim writer and the interference from other radio devices.

Table I shows the comparison of RadSee and its related
work. It advances the state-of-the-art in the following aspects.

o It designs and implements a 6 GHz FMCW radar device
that can detect mm-level movements of an object behind a
wall using a small transmission power.



TABLE I: Related work on human activity recognition. W =
“See through wall?”, M = “Mm-level movement detection?”,
R = “Resilient to multipath?”’, Z = “Resilient to interference
from other moving objects?”, S = “Classification size”.
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« RadSee is capable of detecting the letters that one is writing
behind a wall. Furthermore, it is resilient to the interference
from other mobile objects and other radio devices.
Extensive experimental results show that RadSee can
achieve over 75% accuracy when detecting 62 random
letters and 87% word recognition accuracy behind walls.

II. ATTACK MODEL

Attack Scenarios. We consider a scenario as shown in
Fig. 1, where one is writing a confidential document on a
paper or an electronic device (e.g., iPad and Kindle Scribe) in
a private room (e.g., government office, business office, hotel
room, and apartment). Inside the room there may be other
static objects (e.g., furniture) and people performing daily
activities. Outside the room there is a malicious attacker who
aims to detect the content (English letters and Arabic numbers)
being written by the victim.

Attacker’s Assumptions. We assume that the attacker has
physical access to the space behind the wall which the victim
is facing toward. As such, the radio signals for detecting the
victim’s handwriting movements would not be blocked by the
victim’s torso. We also assume that the attacker knows the
layout of the room and the approximate location of the victim.
However, the accurate location of victim’s writing hand will
be estimated by the attacker using radar signal. We know that
it is not improbable to obtain the knowledge about the location
of a desk in a room, as many public spaces such as hotels have
standard layouts that are consistent across rooms. Furthermore,
we assume that there are no RF-shielding materials inside the
wall between victim and the attacker.

Challenges. As we stated before, there are three grand
challenges that must be addressed for the design of such
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III. RADSEE: DESIGN ANALYSIS
A. A Primer on FMCW Radar

FMCW radar is an active radio device that uses frequency
modulation to generate a continuous wave signal with a linear
frequency sweep. This signal is transmitted from the radar
antenna toward a target, and the reflection from the target
is received by the radar antenna. The frequency difference
between the transmitted and received signals, known as the
beat frequency, is proportional to the range of the target. By
analyzing the beat frequency over time, FMCW radar can
determine the distance and velocity of the target.

Fig. 2 shows the diagram of an FMCW radar device. It
transmits frequency-modulated continuous-wave signals and
receives the reflective signals from the surrounding objects.
Denote sr(t) as the transmitting signal and sg(t) as the
received echo from an object. Mathematically, we have

s7(t) = exp (j(2m fot + TKt?)), (1)

and
sgr(t) = asr(t —2d/c), (2)

where fj is the starting frequency, K is the frequency ramp
rate, « is the path attenuation, d is the distance from the radar
to the object of interest, and c is light speed.

The received signal and the transmitted signal are mixed
together, generating the intermediate frequency (IF) signal.
The IF signal can be written as:

) d , d . d?
sr(t)=sr(t)sr(t)” :exp(]47rKEt +]47TfOE - j47rKC—2 )
——— —— N——

frequency phase  negligible
3)
As we can see from (3), the observed frequency and phase

both contain the distance information. Typically, the frequency



term in (3) is used to estimate the range of an object, while
the phase term is used to estimate the velocity of the object.
Specifically, the range and velocity of the object are estimated
as follows.

« Range. As illustrated in Fig. 2, the IF signal from each
chirp is digitized and converted to the frequency domain
through FFT operation. Suppose that the FFT size is N
and a peak is identified at the ith FFT bin (0<i< N —1).
Then, the distance of the corresponding object is d = 551,
where B is the FMCW signal bandwidth. Accordingly, the
range resolution is Ad = 5%, which is determined solely
by the FMCW signal bandwidth.

« Velocity. Grouping an array of chirps together, the velocity
of the object can be accurately estimated by performing the
second FFT operation on the ith Range-FFT bins. Suppose
that the time duration of one chirp is 7" and that the FFT
size is M. In this case, a peak is identified at the kth FFT
bin, which allows us to calculate the velocity of the object
v = 21\/}“7}1% Accordingly, the velocity resolution is Av =
W, which is determined by three parameters: the initial
frequency, the time duration of a chirp, and the number of
used chirps.

B. Feasibility Analysis

To detect fine-grained movements, the first option that came
to our mind is mmWave FMCW radar, which is widely
available on market at a low price. Particularly, existing
work (e.g., [19], [31], [43]) has demonstrated the ability of
mmWave radars to “see” through walls made of cotton and
glass. A key question to ask is whether a mmWave radar can
“see” through typical walls in our daily lives. To answer this
question, we conducted experiments using IWR1642BOOST
77 GHz mmWave FMCW radar from Texas Instruments (TI)
with a bandwidth of 1.1 GHz. We placed the mmWave radar
behind an office drywall to detect the handwriting in a room.
Fig. 3 shows our writing content. Fig. 4(a) shows experimental
setting and the corresponding FFT-bin’s amplitude and phase
over time. We did not observe any amplitude or phase changes
over time caused by the handwriting. This indicates that
mmWave signals cannot go through the drywall under test.

Another possible approach to this task is to use Wi-Fi-based
channel state information (CSI). Since Wi-Fi uses 2.4 GHz
and 5 GHz frequency bands, its signal is able to penetrate
walls for movement detection. To examine this approach, we
conducted experiments in the same scenario as the previous
case. Fig. 4(b) shows the measured CSI at a receiver when
using Wi-Fi channel #3 (2412 MHz-2432 MHz). We observed
random CSI changes over time, and did not find any patterns
on the CSI's amplitude and phase that are related to the
handwriting movement. Similar results are observed for the
CSI measured on Wi-Fi channel #36 (5170 MHz-5190 MHz).
This can be attributed to the non-coherent detection of a Wi-
Fi receiver. Since Wi-Fi transmitter and receiver are driven
by different clocks, the measured CSI suffers from carrier
frequency and sampling time offsets, making it unreliable to
extract the pattern of tiny-scale movements.

Fig. 3: Tllustration of handwriting pattern.
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Fig. 4: (a) The amplitude and phase of the corresponding FFT-
bin from IWR1642BOOST mmWave FMCW radar. (b) The
amplitude and phase of a subcarrier from a Wi-Fi receiver. (c)
The amplitude and phase of the corresponding FFT-bin from
RadSee.

In comparison, we replaced the mmWave/Wi-Fi device with
RadSee—our custom-designed 6 GHz FMCW radar. Fig. 4(c)
shows the corresponding FFT-bin’s amplitude and phase over
time. It can be seen that the phase pattern is significant and that
the phase pattern is consistent with the handwriting trajectory
on the paper (see Fig. 3). This demonstrates the ability of
RadSee to “see” through the wall under test.

Why Use 6 GHz FMCW Radar? Some may inquire about
the suitability of other frequencies for through-wall and fine-
grained movement detection. Low-frequency (0—3 GHz) radio
signals have large wavelengths, rendering them incapable of
detecting movements at the millimeter level. High-frequency
(20-300 GHz) radio signals, on the other hand, have a large
path loss and a significant penetration loss; thus they cannot
travel through walls with normal transmission power. Radio
signals in the range from 3 GHz to 20 GHz, however, should
be suitable for this task. We opted for 6 GHz due to the avail-
ability and cost-effectiveness of electronic chips for FMCW
radar implementation, including phase-locked loop (PLL),
voltage-controlled oscillator (VCO), power amplifier (PA),
low-noise amplifier (LNA), etc. On the market, only 6 GHz
chips are available for individual customers at a reasonable
price, thanks to the widespread production of 5 GHz Wi-Fi
industry. The cost of our prototype is approximately $500.

Millimeter-level Movement Detection. If an FMCW radar
wants to achieve 1 mm range resolution, it will need 150 GHz
spectrum bandwidth, which is impossible in practice. There-
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continuously writing back-and-forth on a paper within 1.5 cm.

(a) phase data before DC component removal. (b) phase data

after DC component removal. (c) phase data after partial DC

component removal.

fore, RadSee uses the phase information of its demodulated
FMCW signal to infer the movement pattern of handwriting.
Based on Eqn. (3), when the object moves 1 mm, RadSee
will observe %50277 = (.25 radian (about 14°) phase change
on the corresponding Range-FFT bin. Typically, handwriting
movement is larger than 5 mm, which will generate 70°
phase change on the Range-FFT bin. Therefore, the radar will
measure the phase pattern over time when a victim is writing,
and use the temporal phase pattern to classify the letters being
written.

Fig. 5 shows the observed phase change of a Range-FFT bin
when one is writing back and forth on a paper behind a thick
office drywall. The distance between the writing hand and the
wall is about 2 m. The radar was placed on the other side of
the wall, with a distance of 0.5 m. The person wrote back and
forward within a vertical range of 1.5 cm. It can be observed
from Fig. 5(a) that the phase changes as the pen-holding hand
moves. However, the phase dynamic range is small. The small
dynamic range is attributed to a DC voltage component of the
received signal. The DC component, which can be modeled
as a constant complex number, is the reflective signals from
static objects (e.g., furniture and human body) of the same
distance. Fortunately, the DC component is static over time
and thus can be easily removed. Ideally, we should completely
remove the DC component to maximize the phase sensitivity.
However, when we completely remove the DC component,
the time period of no-movement will have an irregular phase
pattern as illustrated in Fig. 5(b), making it hard for RadSee
to detect the gap between two consecutive letters. Therefore,
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Fig. 6: The gain pattern of the patch antenna (left). The
custom-designed directional antenna (right).

we partially remove the DC component to strike a balance
between movement detection sensitivity and the phase stability
of non-movement periods. Fig. 5(c) shows the observed phase
of a Range-FFT bin over time.

Interference Resilience to Other Mobile Objects. In the
proximity of a target writer, there may be many static objects
such as desks, chairs, books, and lamps. Fortunately, the static
objects will not generate interference for the detection of
RadSee as their reflective signals appear to be a constant
complex number (DC component) over time. Such a constant
can be easily removed or adjusted to extract the useful
phase information. As stated before, RadSee may suffer from
interference from two sources: (i) channel multi-path, and (ii)
movement of other objects (e.g., a walking person). Actually,
RadSee is resilient to the interference from these two sources,
thanks to its FMCW modulation and antenna directivity. We
explain the reasons below.

o FMCW Modulation (Distance Filter). If two moving objects
have different distances to the radar and their range differ-
ence is larger than the radar’s range resolution, their phase-
change patterns will appear on different Range-FFT bins
and will not interfere with each other. Therefore, increasing
the range resolution of RadSee is critical for reducing the
interference from mobile objects. RadSee uses 1.1 GHz
(5.4-6.5 GHz) bandwidth and thus has a range resolution
of 14 cm. This means that, if separated by 14 cm, a mobile
object (e.g., writer’s chest movement of breathing) will not
generate interference to RadSee’s handwriting detection.

o Patch-array Antenna (Directional Filter). In addition to
offering high link gain, the patch-array antenna also serves
as a directional filter to suppress the interference from
undesired azimuth/elevation angles. We designed and op-
timized the patch-array antenna using CST Studio Suite [9]
and fabricated the path-array antenna as shown in Fig. 6.
The main lobe of the antenna has an angular width of
21° (3 dB), which means that this antenna can effectively
mitigate interference from mobile objects when they are
positioned 21° or more away from the writer.

Combining its FMCW modulation and patch-array antenna,
RadSee is capable of extracting the phase information cor-
responding to the movement within a small spot of interest,
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while being resilient to interference from other moving objects.
Interference Resilience to In-band Wi-Fi Devices. Al-
though RadSee operates on a frequency band that overlaps
with 5 GHz Wi-Fi, it differs significantly from Wi-Fi in two
key aspects. First, RadSee has a bandwidth of 1.1 GHz, while
Wi-Fi devices typically operate within a bandwidth of 20
or 40 MHz. Second, RadSee utilizes an FMCW waveform,
whereas Wi-Fi devices use an Orthogonal Frequency-Division
Multiplexing (OFDM) waveform. OFDM waveforms are char-
acterized by pseudo-noise-like signals. When an OFDM signal
is correlated with an FMCW signal over time, the correlation
result is nearly zero. Therefore, in theory, RadSee is resilient
to radio interference from the Wi-Fi devices in its proximity.
To validate the above theory, we conducted experiments by
observing RadSee’s IF signals in two cases: with and without
radio interference from a Wi-Fi device, as shown in Fig. 7. To
better control the experiments, we use a Universal Software
Radio Peripheral (USRP) device for continuous Wi-Fi signal
generation at two frequencies: 5.480 GHz and 5.805 GHz. The
bandwidth of Wi-Fi signals is 20 MHz. The scene is static
during the experiments. Fig. 7 presents RadSee’s IF signals
(i.e., the input of DNN) in three cases: i) no radio interference
from the Wi-Fi device, ii) radio interference from 5.480 GHz
Wi-Fi device, and iii) radio interference from 5.805 GHz Wi-Fi
device. It can be seen that the IF signals generated by RadSee
are almost the same in these three cases. This indicates that
RadSee is resilient to radio interference from Wi-Fi devices.

IV. RADSEE: DATA PROCESSING

In this section, we present the signal processing pipeline of
RadSee, as outlined in Fig. 8. We first elaborate on the signal
processing modules for phase feature extraction and then use
k-nearest neighbor (kNN) to validate the extracted features.
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Fig. 9: Illustration of the received signals at the radar.
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domain. (b) the IF signal after FFT operation.

A. Signal Processing

Analog Signal Filtering. The received signal at RadSee
may have different components, including RF leakage on PCB,
desired echo from handwriting, and undesired echo from other
moving objects, as shown in Fig. 9. Since the RF leakage
signal is very close to zero frequency, RadSee uses a high-pass
filter with 5 kHz cutoff frequency to suppress the RF signal
leakage. Meanwhile, the undesired high-frequency signal from
other moving objects may generate interference to the desired
signal if not suppressed in the analog domain. To do so,
RadSee employs a first-order low-pass filter with a bandwidth
of 100 kHz for the suppression of high-frequency echoes from
undesired moving objects. Combining the high-pass and low-
pass filters, RadSee has a band-pass filter from 5 kHz to
100 kHz, corresponding to a target range from 0.4 m to 8§ m
for handwriting detection.

Range-FFT. RadSee sets its chirp cycle time to 1 ms. For
each chirp cycle, RadSee sets its transmission time to 0.6 ms
and idle/delay time to 0.4 ms as shown in Fig. 10(a). As the
PLL and VCO are typically not very stable at the beginning
and end of their frequency ramping, RadSee discards 0.05 ms
at the beginning and at the end of its transmission period,
resulting in only 0.5 ms for useful signal reception. To best
observe this useful signal in the digital domain, RadSee
samples its received signal at 5 MSps. As a result, it obtains
2,500 complex samples from each chirp cycle. To further
improve the range resolution, RadSee adds zeros behind the
2,500 samples to perform 8,192-point Range-FFT operation.
The resultant Range-FFT bins are shown in Fig. 10(b). Of the
resulting 8,192 bins, only the first 256 are under examination.

Filtering for Range-FFT Bins. For each Range-FFT bin of
interest, RadSee first adjusts its DC component to the dynamic
range of its real and imaginary parts, and then applies a low-
pass filter to remove the high-frequency component. As per
[42], RadSee sets the low-pass filter’s bandwidth to 5 Hz.
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Fig. 11: (a) The original signal of one Range-FFT bin (one
sample per chirp cycle); (b) the Range-FFT bin after DC
adjustment and low-pass filter; (c) phase of the signal in (b).
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Fig. 12: Phase sequence of six Range-FFT bins.

Fig. 11 compares the data sequences of one Range-FFT bin
before and after the DC adjustment and low-pass filter. It can
be observed that the process can manifest the phase pattern of
handwriting effectively.

FFT Bin Selection. Experiments show that handwriting
will cause multiple bins to fluctuate. This can be attributed
to the high range resolution and the multi-path effect within
antenna’s aperture. Instead of using a single Range-FFT bin,
RadSee uses multiple consecutive Range-FFT bins to extract
their phase patterns. The questions need to be answered: (i)
how many Range-FFT bins should be selected, and (ii) which
Range-FFT bins should be used. For the first question, RadSee
empirically selects five consecutive Range-FFT bins and uses
their phase information for letter classification. For the second
question, RadSee selects the Range-FFT bins of the smallest
index but with its phase variance larger than a predefined
threshold. RadSee’s bin selection algorithm is provided in
Alg. 1. Its core idea is to identify five consecutive FFT-Range
bins based on their phase variances, so that the handwriting
movement pattern can be captured along the line-of-sight
(shortest) through-wall path. These five bins are then fed into

Phase (rad)

0 0.5 1 1.5 2 2.5 3 3.5
Time (second)
Fig. 13: Illustrating the rapid phase change of a target Range-
FFT bin during the transition of writing letters.

our DNN for letter recognition. Fig. 12 shows a sample of
our observed Range-FFT bins in handwriting detection. In this
case, RadSee selects bins 66 to 70 as the input of its DNN
model for letter classification.

Algorithm 1 RadSee’s bin selection algorithm.

Input: Range-FFT phase matrix [S(i,t) € R]yxr, where 4
is bin index (0 < 7 < N), t is time index (0 <t < T),
window size W, predefined lower bound of variance 6;,,,
predefined upper bound of variance 0,,,. > In our
experiments, W = 500, N = 256, T' = 5000, 6;,, = 0.03,
0up = 0.18.

Output: The smallest bin index 7 where the phase variance
exceeds 6, but is lower than 6,,),.

1. fort=0to T — W do

2: for i =0to N do
Calculate window-slided variance as follows:

3 v(iyt) = w2 NS 3L ) — ul,
where 1 = %2;3"*15(@',3‘).

4 if v(i,t) > 01 & v(i,t) < 0y, then

5: return ¢

6: end if

7 end for

8: end for

9: return —1 > Indicate no writing activity is detected.

Data Segmentation. RadSee performs data segmentation
on the phase stream of the selected Range-FFT bins to
extract the meaningful features that correspond to individual
letters. RadSee employs different methods for phase data
segmentation at the training and test phases. We elaborate
them as follows. (i) During Training Phase: Since we have
full control of the training data collection, we ask every
participant to stop and be still for one second after writing
each letter. By doing so, RadSee can easily segment phase
sequence and extract meaningful phase data for individual
letters. (ii) During Test Phase: In this phase, RadSee has no
control over the writing style of a victim. Likely, the victim
writes in a continuous manner without a stop in the middle.
Interestingly, we always observed a rapid phase change during
the transition from writing one letter to another. Fig. 13 shows
an example of our observations. This is caused by the pen-
holding hand’s quick movement during the transition period.
RadSee leverages this signature to segment the phase data
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streams. Since the time duration of writing different letters
may be different, the data sequences corresponding to different
letters are of heterogeneous length.

Extracted Phase Features. Based on the above process,
RadSee will obtain the phase data segments corresponding to
individual letters being written. Fig. 14 shows some samples
of its obtained phase segments from different users. From
the figure we have the following observations. First, for the
same user, the phase patterns of different letters are different.
This is an encouraging observation as the uniqueness of phase
patterns is the foundation of letter classification. Second, for
the same letter (e.g., letter ‘A’ in Fig. 14), the phase patterns
from different users look different. So far, it is not clear if those
phase patterns will be classified to the same letter through an
advanced transformation. To better understand this question,
we conduct feature validation using kINN.

B. kNN-based Feature Validation

We use the kNN model [8] to validate the effectiveness
of the extracted features. kNN is a simple data classification
method that estimates the belonging of a new data sample
based on a set of labeled data samples. When a new data
sample comes, the distance between this new sample and all
labeled samples is calculated. Then, the k closest neighbors are
selected. The selected & closest neighbors cast weighted votes
(using their distance) to make the final classification decision
for the new data sample. One issue with kNN in this case
is that the length of data samples (phase sequences) is not
fixed, i.e., different phase sequences have different lengths. To
address this issue, we employ Dynamic Time Warping (DTW),
which has been widely used in speech recognition [10] and
data mining [24]. DTW can find an optimal alignment between
the two sequences by warping the time axis non-linearly.

Data Set. We collected the phase data samples for 62 letters
(a-z, A-Z, and 0-9) from 12 users. Each user was asked to write
in print writing style on a desk that is one meter away from the
wall. Our radar was placed just behind the wall to collect the
phase data. Each letter has 10 samples from a user and a total
of 120 samples from those 12 users. In total, 7,440 samples
were collected for all 62 letters, all of which were labeled
during the data collection. The data samples are divided into
two groups: those from the first 6 users are used for training,
while those from the second 6 users are used for test.

Validation Results. We perform kNN on the collected data
set. As an example, Fig. 15 shows the search results of kNN
when the new data sample is the phase sequence of letter ‘A’.
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Fig. 15: Results of using kNN to search 5 closest neighbors
for a new data sample. The top-left figure shows the phase
sequence of the new data sample. The remaining 5 figures
show the found 5 closest data samples (and their corresponding
letters) in our training data set.

It can be seen that, of the five closest data samples in the
training data set, four are correct (labeled with ‘A’) and one is
incorrect (labeled with ‘k’). The five closest data samples cast
votes to make the final decision. The weighted vote for ‘A’ is
10.54, while the weighted vote for ‘k’ is 2.32. Based on the
voting result, this new data sample is classified to letter ‘A’,
which is correct.

Fig. 16 shows kNN’s classification accuracy when the test
data samples are from 6 different users. We note that the test
data samples and the training data samples are from different
users. As we can observe, the classification accuracy is from
53% (user 4) to 77% (user 3). This could be attributed to two
factors: i) most of training data are from Asian participants;
and ii) User 4 is an American participant while other five users
are Asian participants.
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Fig. 16: kNN’s classification Fig. 17: kNN’s classification
accuracy when test and training accuracy when radar is at dif-
data are from different users. ferent distances.

We then evaluate kNN’s classification accuracy using the
data samples from User 6 when the radar was placed at
different distances (1 m, 2 m, and 3 m). The training data
samples were collected from six different users when the radar
was placed at 1 m distance. Fig. 17 presents the classification
results. It shows that the classification accuracy is 68% when
the test was conducted at the same distance. However, when
RadSee has a different distance from the victim, its detection
accuracy decreases to 58%.

Limitations of kNN. The kNN-based classification re-
sults indeed manifest the effectiveness of phase features in
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handwriting letter classification. But this approach has two
limitations. First, it has a very high computational complexity
and thus limits the size of the labeled (training) data set.
Second, it uses the phase sequence from only one Range-
FFT bin for classification. Using those five Range-FFT bins
together may improve the classification accuracy. In what
follows, we design a DNN-based approach for handwriting
recognition, with the aim of overcoming the above limitations
and improving the classification accuracy.

V. RADSEE: DNN-BASED RECOGNITION

In this section, we focus on designing a DNN model for
through-wall handwriting recognition using the phase features
extracted in the previous section. Compared to kNN, DNN is
much more efficient in computation and is more appealing for
practical use.

A. DNN Model

In essence, this letter recognition problem is a classifica-
tion problem with its input being multi-dimensional phase
sequences and its output being the probability of each letter
in the candidate set (a-z, A-Z, and 0-9). We found that this
task is similar to many classification tasks in natural language
processing (NLP), such as information status classification
[18] and stress detection [54]. Following the state-of-the-art
classification techniques in NLP, we employ an attention-
based Bidirectional LSTM (BiLSTM) model for RadSee’s
letter classification.

Fig. 18 shows the high-level structure of our attention-based
BiLSTM model. The BiLSTM component is used to extract
the temporal features in the time-series phase sequence. The
attention layer is used to capture the key movement informa-
tion of handwriting. This is critical as the key information of
handwriting movement likely lies in some turning points. This
attention layer will allow the model to focus on specific parts
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Fig. 19: The structure and operation of an LSTM cell (h; €
R128X1, c € R128X1, and Wf;WiaWwWo c R128X133).

(e.g., those turning points) of the phase sequences, thereby
improving the accuracy and efficiency of classification.

B. BiLSTM

BiLSTM is a variant of the LSTM network [17] and has
demonstrated its effectiveness for a wide range of NLP tasks
such as machine translation [41], part-of-speech tagging [30],
and sentiment analysis [49], [66]. In a BiLSTM, the input
sequence is processed in both forward and backward directions
using two separate LSTM layers. This allows the model to
capture both past and future context for each input element.
This is crucial for handwriting recognition, because the turning
points of handwriting movement carry the key information for
letter classification but the turning points may appear at the
beginning, in the middle, and at the end of a phase sequence.
The use of BiLSTM allows the model to capture those turning
points at any pace of the input phase sequence.

Input Data. We set the input data shape to be 3000 x 5,
where 3,000 is the number of chirps and 5 is the number of
selected Range-FFT bins. Recall that each chirp is 1 ms. This
means that the maximum time of writing a letter is 3 seconds.
In most cases, one can finish the writing of a letter less than
3 seconds. If the phase sequence is less than 3,000 points, we
simply pad zero behind the phase sequence as the input of
BiLSTM. If the phase sequence is greater than 3,000, we trim
the head and tail of the phase sequence, retaining only 3,000
points in the middle as input for the BiLSTM.

LSTM Cell. LSTM has been used in a wide range of
learning tasks. It is the key component of the BILSTM model
as shown in Fig. 18. It allows the model to selectively retain
or forget information at each time step. The cell structure
includes three gates: an input gate, a forget gate, and an output
gate. The input gate determines which information should be
stored in the cell, the forget gate determines which information
should be discarded, and the output gate determines which
information should be used for the current output. Fig. 19
shows the structure and parameters of each LSTM cell.

BiLSTM Structure. As shown in Fig. 18, BiLSTM has
two LSTM cells: one is for forward information flow, and
the other is for backward information flow. In each iteration
t, it combines the hidden states of forward and backward
LSTMs through concatenation: h; = [ﬁt,flt}, where ﬁt is
the hidden state from the forward LSTM, Bt is the hidden
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state from the backward LSTM, and h; is the hidden state
of the BiLSTM. Since each LSTM has 128 hidden layers,
we have h; € R?%6*1 with t = 1,2,...,3000. Then, the
combined hidden states are fed to the attention layer for further
processing.

C. Attention Layer

The attention mechanism is probably one of the most
important inventions for deep learning and it has been used
for many applications such as GPT [6], [39], [49], [60].
With the attention layer, the model learns to focus on some
key parts of the data sequence. During the handwriting of a
letter, some turning points may carry critical information for
letter classification. The attention layer attempts to learn the
importance of each part of the phase sequence and then assigns
them with proper weights. To calculate the corresponding
weights, it first feeds h; to a one-layer Multilayer Perceptron
(MLP) to learn a hidden representation u;, and then normalizes
the weights to generate «;. Mathematically, it can be written
as follows:

uy = tanh(W, hy + by), (5a)
a = 7;"“3(“'5) , (5b)
> k=1 ¢xp(ur)
T
s= ahy, (5¢)
t=1

where W;, € R256%1 g the training weights, b, € R is
a training bias, and s € R?%6%! ig the weighted vector for
the fully-connected neural network in Fig. 18. The fully-
connected network is of 256 x 64 x 128 x 62 size. The last
layer is a SoftMax layer to calculate the possibility of each
letter candidate (a-z, A-Z, and 0-9). The letter of the highest
possibility is selected as the output y.

VI. IMPLEMENTATION
A. Hardware

Fig. 20 shows the hardware components of RadSee. We
fabricated a radar PCB board as shown in this figure. The
electronic components of this board include VCO, LNA,
PA, Tx/Rx 16 dB RF coupler, RF quadrature mixer, and
baseband filter. This PCB was made by OSH Park using
FR408 substrate. We designed, simulated, and optimized 4 x 4
patch-array antennas using HFSS for radio signal transmission
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(d)
Fig. 21: Evaluation setting: (a) Laboratory scenario. (b) Office

scenario. (c) Apartment scenario. (d) RadSee attacks from
outside of the apartment.

(©)

and reception. These antennas offer 18 dBi antenna gain for
both transmission and reception. In total, it offers 36 dBi
gain for the link path, making it possible to compensate the
signal penetration loss of a wall. The total cost of RadSee is
approximately $500, including $50 for PCB fabrication, $50
for antennas, and $400 for chips. We use USRP N210 with
LFRX daughterboard to convert the analog signal to digital
I/Q samples, which were then sent to a computer for data
process. Transmission power is set to 20 dBm. The FMCW
radar sweeps from 5.4 GHz to 6.5 GHz. The time duration
of one chirp period is 1 ms, including 600 us for frequency
sweeping and 400 us for idle.

B. Algorithms

Digital Signal Processing. We implemented the data pro-
cessing algorithms on a laptop in C++ using GNU Radio
Out-of-Tree (OOT) module. The laptop receives a continuous
data stream from the radar. It needs to synchronize the chirp
signal and extract the useful data samples of each chirp.
Fortunately, due to the presence of 400 us idle period of each
chirp, it is easy to identify the useful data samples from the
data stream. Specifically, we use the high peaks as shown in
Fig. 10 to extract the useful data samples. One fundamental
issue with the current hardware design is the lack of clock
synchronization between ADC and FMCW chirps. To address
this issue, we use a high sampling rate 5 MSps and perform
fine-grained synchronization to identify the first data sample
corresponding to the starting moment of each chirp.

Data Collection for DNN Training.! We collected training
data in a laboratory. The radar was placed behind an interior

I'The experiments do not require IRB approval based on the determination
results from the authors’ institution. The experiments were conducted under
FCC experimental spectrum license with Call Sign # WM2XWQ and File #
0954-EX-CN-2022.



TABLE II: Participants for training and test data collection.
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Handedness
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Fig. 22: Writing samples from participants for training.

drywall at a distance of 0.5 m. A writing desk was placed in
front of the wall at a distance of 1 m, as shown in Fig. 21(a).
Eighteen participants (4 American, 3 Indian, 4 Middle East, 7
Chinese) were asked to write 62 characters (a-z, A-Z, and 0-9)
on the desk. Each participant wrote every character 60 times.
In total, we collected 18 x 62 x 60 = 66,960 data samples.
Of the eighteen participants, twelve were asked to write in the
print style, while six were asked to write in the cursive style.
Regarding handedness, two of them were left-handed writers
while the rest were right-handed writers. The handedness and
writing styles of the participants are summarized in Table II.
Some writing samples from the participants are provided in
Fig. 22.

DNN Training. The DNN model was implemented using
TensorFlow’s Keras library. We used cross entropy as loss
function. During the training process, we set the batch size to
2,000 and trained the model for 500 epochs. We used Adam
optimizer with a learning rate of 7e™* to train the model.

VII. EXPERIMENTAL EVALUATION
A. Letter Recognition Accuracy

Write on A4 Papers. Recall that our training data was col-
lected in a laboratory from eighteen participants. To evaluate
the recognition accuracy of RadSee, we completely separate
the training and test datasets. We invited twelve new par-
ticipants (4 American, 4 Chinese, 2 Indian, 2 Middle East)
to write letters in the same setting (i.e., sitting 1 m away
from the wall and facing to the radar). None of these twelve
people participated in the training data collection. Each of
them wrote 300 random letters on A4 papers. During the
test, eight participants were asked to write in the print style,
and four were asked to write in the cursive style. Both print
and cursive writing letters are within the size of 5 mm to 10
mm. Regarding handedness, ten participants were right-handed
writers, while two were left-handed writers. The handedness
and writing style are summarized in Table II.

Fig. 23 shows the confusion matrix of RadSee’s letter
recognition results. It is evident that RadSee can recognize
most of the letters. RadSee is prone to making mistakes for
some letters. For instance, it can easily confuse ‘O’ with ‘o’,
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Fig. 23: Confusion matrix of RadSee’s letter recognition
results.
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Fig. 24: RadSee’s letter recognition accuracy when participants
wrote on A4 papers. Users 1-4 are Americans, users 5-8 are
Chinese, users 9-10 are Indians, and users 11-12 are from
Middle East.

‘C’ with ‘O’, and ‘I" with ‘1’. Other errors can arise from
cursive writing, such as confusing ‘S’ with ‘8’ and ‘Z’ with
‘3’. This is understandable, as their handwriting patterns are
similar to each other. Overall, RadSee achieves 75% letter
recognition accuracy.

Print vs. Cursive. Fig. 24 presents RadSee’s letter recogni-
tion accuracy for the 12 individual participants. As observed,
RadSee has a lower recognition accuracy for the participants
who wrote in cursive style compared to those who wrote in
print style. This observation can be attributed to two factors.
First, cursive writing is more individualized and diverse, mak-
ing it challenging for the model to extract consistent features
across different participants, despite having cursive-style data
in the training dataset. Second, our segmentation method relies
on detecting signal transitions between letters, which becomes
more difficult when people write in cursive style.

Writing Handedness. Besides writing style, handedness
is another factor that may affect RadSee’s letter recognition
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accuracy. However, experimental results show that handedness
affects RadSee very slightly. As shown in Fig. 24, RadSee
has a very similar performance for both left-handed and right-
handed users. This can be attributed to the fact that most left-
handed individuals have the same writing movement pattern
as right-handed individuals, i.e., write from left to right and
from top to bottom.

Write on iPad and Post-it Notes. Tablets, such as Apple
iPad, have become increasingly popular for writing activities,
with many individuals opting to use them for important
documents instead of traditional pen and paper. To evaluate
the performance of writing on an iPad, we repeated our mea-
surements by asking twelve participants to write 300 random
letters using an Apple Pencil. The experimental results are
shown in Fig. 25(b). RadSee achieves 74% letter recognition
accuracy. In the same setting, RadSee achieves 75% letter
recognition accuracy when participants write on A4 papers.
This indicates that RadSee has almost the same performance
for A4 paper and iPad writing recognition. Another commonly
used medium for writing is Post-it notes. Given their smaller
size, we asked participants to write 20 random letters on Post-it
notes. RadSee’s letter recognition accuracy for Post-it notes is
71%, as presented in Fig. 25(b). As shown in Fig. 25(a), these
three writing media have different horizontal writing ranges.
Since RadSee has similar performance for them, it suggests
that RadSee effectively accommodates the horizontal range for
writing on A4 papers, iPad, or Post-it notes.

B. Impact of Letter Size

We conducted experiments to better understand RadSee’s
ability of detecting small-size letters. Fig. 26 presents Rad-
See’s signal changes when a participant wrote letter ‘N’ of
different sizes. Evidently, RadSee is capable of detecting as
small as 3 mm handwriting movement. We further asked one
participant to write on A4 papers with grid boxes of different
sizes: 3 mm X 3 mm, 4 mm X 4 mm, 5 mm X 5 mm, and
10 mm x 10 mm. The participant was instructed to write
letters within the boundaries of the grid boxes. However,
for the 3 mm x 3 mm grids, since the boxes were too
small, a considerable portion of the written letters exceeded
the boundaries. Fig. 27 presents RadSee’s letter recognition
accuracy in these four cases. It is evident that RadSee’s
accuracy decreases with the letter size. But notably, RadSee
achieves 68% recognition accuracy even in the case where the
letter size is confined within 3 mm.
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Fig. 26: RadSee’s phase sig-
nal for different letter size.

Fig. 27: RadSee’s accuracy for
letters of different sizes.

C. Impacts of Distance and Angle

When an attacker attempts to detect the handwriting behind
a wall, it may not know the distance from itself to the
victim and the angular direction of the victim. The attacker
may use RadSee to do an exhaustive search to find the best
pointing direction for the radar’s antennas, but the radar-
antenna-pointing direction may not be accurate. To evaluate
RadSee’s robustness, we examine its accuracy in different
settings: (i) the writers are 1 m, 2 m, and 3 m behind the wall;
and (ii) RadSee’s antenna is pointing to different angles (0°,
10°, 20°, and 30°). The combination constitutes 12 different
cases. In each case, we instructed eight participants to write
300 letters using their normal handwriting habits.

Fig. 28 presents our measured accuracy and deviation. It
can be seen that RadSee is robust to the distance change.
This can be explained by its design. In nature, FMCW radar
is capable of precisely capturing the movement features at
different distances. When the distance between the writer and
the wall changes from 1 m to 3 m, RadSee will identify
another 5 Range-FFT bins for phase feature extraction. Since
the handwriting movement patterns are not related to the
wall distance, the extracted features will remain unchanged.
Therefore, RadSee is robust to distance changes.

Fig. 28 also presents our measurement results when Rad-
See’s antennas was pointing to different angles. Evidently,
RadSee’s accuracy decreases when its directional error in-
creases from 0° to 30°. Specifically, when RadSee was point-
ing to 0°, it achieved 77% recognition accuracy. When RadSee
was pointing to 30°, it achieved 55% recognition accuracy.
In all cases, the standard deviation is almost the same, i.e.,
4%. This degradation can be attributed to the directivity
of the patch-array antennas, as shown in Fig. 6. When the
writer deviates from its central direction, the patch antenna’s
effective radiation power decreases, making noise and other
imperfections more significant and thus leading to a decreased
accuracy.

D. Impact of Interference from Other Moving Objects

Experimental results in Fig. 7 have confirmed that RadSee
is immune to radio interference from in-band (5 GHz) Wi-
Fi devices. All experiments in this work were conducted
in office and laboratory environments, which are rich with
interference from multiple Wi-Fi sources. Therefore, the exper-
imental results presented have already taken into account the
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radio interference from multiple Wi-Fi sources. Additionally,
RadSee is not affected by static objects (e.g., desks and chairs)
around a writer as they appear to be a constant in the received
signal, which can be easily mitigated. Therefore, we focus
on studying RadSee’s performance in the presence of moving
objects (e.g., walking persons) in the proximity of the writer.
We emulated this scenario by asking another person to walk
around the writer as shown in Fig. 29(a). We measure the
recognition accuracy of RadSee in three cases, i.e., the distance
between a writer and a walking person is 1 m, 2 m, and 4 m.
We asked eight participants to write 300 random letters in each
case and measured RadSee’s letter recognition accuracy.

Fig. 29(b) depicts our measured results. We can see that
the performance degradation depends on the distance between
the writer and the interferer. The closer the interferer is,
the larger performance degradation RadSee has. For the case
where interferer is 1 m away, RadSee demonstrates 67% letter
recognition accuracy, with 11% accuracy degradation com-
pared to the case without interference. When the interferer is 2
m away, RadSee rapidly increases its accuracy to 76%, which
is close to its accuracy in the case without interference. We
note that the participants in all experiments maintained normal
physiological activities, such as breathing and respiration. The
experimental results reported above have already taken into
account those normal physiological activities of the writers.

E. Impact of Different Wall Materials

RF signals have varying penetration abilities depending on
the type of wall. We conducted experiments to evaluate the
performance of RadSee in detecting letters through different
wall materials. Specifically, we considered six wall materials
as shown in Fig. 30: drywall (12 cm), vinyl wall (20 cm), wood
wall (19 cm), brick wall (22 cm), concrete wall (23 cm), and
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Fig. 30: Illustration of six different types of wall materials.
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Fig. 31: RF signal’s power Fig. 32: RadSee’s recognition

accuracy when placed behind
six wall materials.

attenuation for penetrating a
wall of different materials.

metal door (4 cm). We first measured their penetration loss,
which refers to the power attenuation of radio signals as they
pass through a wall. Fig. 31 presents our measurement results.
It is evident that drywall, vinyl and wood walls have similar
penetration loss for radio signal, which is about 10 dB. Brick
wall is more lossy for radio signal compared to wood wall. Its
penetration loss is about 21 dB. However, concrete walls and
metal doors completely block radio signals. Their attenuation
loss is greater than 42 dB.

We then conducted experiments to measure RadSee’s letter
recognition accuracy. Eight participants took part in the exper-
iments. They were seated 1 meter away from the wall, while
RadSee was positioned 0.5 meters away on the other side of
the wall as shown in Fig. 21. Each of the eight participants
wrote 300 random letters using his/her own writing style.
Fig. 32 presents the experimental results. It shows that RadSee
achieves similar performance when participants wrote behind
drywall, vinyl, and wood walls. This similarity is due to
the comparable electromagnetic properties of these materials.
In contrast, a brick wall significantly reduces recognition
accuracy, with RadSee achieving only 24% letter recognition
accuracy in this scenario. Furthermore, concrete walls and
metal doors completely obstruct letter detection.

F. Word Recognition Accuracy in Content

In addition to detecting individual letters, we evaluate
RadSee’s performance of recovering entire sentences. This is
important because an attacker’s interest may lies in the content
that a victim is writing, rather than individual letters. We
asked twelve participants to reproduce an CNN News article,
which is about 300 words. Some writing samples from the



Fig. 33: Writing samples from participants as they transcribed

CNN news articles in both print and cursive styles.

TABLE III: A case study of RadSee detecting the sentences
written by a person behind a lab drywall.

Letters
~ . d by Corrected by
Ground truth :{adSee by Wordsegment [20] TextBlob [34]
‘football is . ‘ecc’, ‘t’, ‘boll’, ‘etc’, ‘t’, ‘ball’,
popular in ‘ecctbollispo ‘is’, ‘popula’, ‘is’, ‘popular’,
the united S:;:zgtz?unl ‘in’, ‘the’, ‘in’, ‘the’,
states’ ‘united’, ‘state’ ‘united’, ‘state’
‘Bill is a ‘Billiislhar ‘bill’, Mif, Misl’, ‘bill’, ‘is’,
hardworking dworkimg ‘hard’, ‘work’, ‘hard’, ‘work’,
student’ studena’ ‘img’, ‘studena’ ‘ing’, ‘student’
‘My favourite ‘mgfavouri ‘mg’, ‘favourite’, ‘my’, ‘favourite’,
fruit is teffruitl fr, Mruit’, ‘lgf, ‘fruit’, ‘is’,
apple’ gapple’ ‘apple’ ‘apple’

participants are provided in Fig. 33. The experimental setting
is the same as described above.

RadSee employs two open-source software tools to translate
its detected letters into word sentences: Wordsegment [20]
and TextBlob [34]. It first sends the detected letters to
Wordsegment for word segmentation. Then, it sends the seg-
mented text to TextBlob for automatic spelling correction.
Table III presents samples of the sentence recognition results.
Leveraging these two open-source tools, RadSee demonstrates
impressive performance in word and sentence recognition. It
nearly recognized the first sentence in the table and accurately
recovered both the second and third sentences.

We then use word recognition accuracy as the metric to
evaluate the performance of RadSee. According to [35], word
recognition accuracy is defined as WRA = %, where
N is the number of words in the ground-truth text, S is
the number of word substitutions, DD is the number of word
deletions, and [ is the number of word insertions. Fig. 34
shows RadSee’s WRA with and without using TextBlob
for automatic spelling correction. It can be seen that without
automatic spelling correction, RadSee’s WRA ranges from
40% to 56% across the twelve participants. In contrast, when
automatic spelling correction is applied, RadSee’s WRA sig-
nificantly improves, ranging from 79% to 93%. On average,
RadSee’s WRA hovers around 87% with automatic spelling
correction. This level of word recognition accuracy is sufficient
for an attacker to comprehend the content written by a victim.
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Fig. 34: Word recognition accuracy of RadSee with and
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VIII. COUNTERMEASURES AND OTHER APPLICATIONS
A. Countermeasures

Handwriting Safety Tips. RadSee demonstrated a serious
threat to handwriting privacy. Based on the study, we have the
following tips for those who have concerns about their hand-
writing information leakage. Tip 1: Do not write important
documents in a room with drywall or vinyl wall. Instead, write
them in a room with thick concrete or any metal walls. These
walls can largely reduce the radio signal and thus reduce the
probability of information leakage. Tip 2: Do not face yourself
to a wall behind which a radar may be placed. Instead, face
against that wall. Your body/torso will significantly reduce the
radio signal strength and thus reduce the probability of your
content being detected by an attacker. Tip 3: If possible, write
important documents on a desk far from all walls rather than
a desk against a wall. This will increase the distance between
yourself and a radar, thereby reducing its recognition accuracy.

Protection Strategies. One natural approach to protecting
handwriting content is to install multi-layer RF shielding ma-
terials inside the walls of your room [26]. Common materials
used for RF shielding include metals such as aluminum,
copper, and steel, as well as conductive coatings or paints.
Another approach is to take advantage of recent advances
in reconfigurable intelligent surface (RIS), which has also
been studied under other names such as electromagnetic
metasurface or radio relay. RIS can be used to create virtual
multipath from radar’s Tx to its Rx. By manipulating its phase
shifting and beam steering, RIS is capable of generating fake
phase patterns for the radar, preventing it from recovering
the handwriting content. Unfortunately, neither of the above
approaches is easy or economical to deploy.

B. Other Applications

While RadSee was designed to better understand the radio
attacks related to handwriting privacy, it can also be used for
many other applications. For instance, RadSee can be installed
on a laptop as an input method. When an end user physically
writes something on paper in front of his/her laptop, the
content is automatically recognized by RadSee and digitally
recorded on his/her laptop. In this case, RadSee does not need
to use a 4 x 4 patch-array antennas since there is no need to
penetrate through walls. Rather, a small patch antenna should
be sufficient. RadSee can also be used as a human-computer
interface for smart TVs. End users can write using their bare



hands, and a TV equipped with RadSee can recognize the
letters being written.

IX. RELATED WORK

We surveyed the literature in two categories: through-wall
detection and fine-grained human activity recognition. Table 1
in Section I outlined RadSee’s uniqueness compared to prior
work.

A. See Through Wall using Radio

See Through Wall using FMCW Radar. Some pioneering
works have studied 6 GHz FMCW radar to detect and track
human activities behind walls using model-based or learning-
based methods [1], [29], [63]-[65]. For instance, [63]-[65]
focuses on using FMCW radar to generate the heatmap image
of human body skeleton through walls. [29] uses FMCW radar
to detect the interactions between two people behind walls.
However, all these works are based on the ranging detection of
FMCW radars. Since the range resolution of an FMCW radar
is fundamentally limited by its bandwidth, this method cannot
achieve mm-level accuracy for through-wall motion detection.
To address this issue, RadSee uses the phase information for
through-wall mm-level hand movement detection.

RF-capture [1] is probably the most related work of RadSee.
It also uses FMCW radar to recognize the “handwriting”
behind a wall. However, the letters that RF-capture aims to
recognize are of large size (e.g., 0.5 mx0.5 m). It is actually
a gesture recognition rather than normal-sized handwriting
detection. Its method is based on range- and angle-based track-
ing, and thus cannot achieve mm-level accuracy. Therefore,
RadSee is fundamentally different from RF-capture.

Through-Wall Detection using Wi-Fi. Wi-Fi signal is
ubiquitous and it has a strong ability of passing through a wall.
[2] utilizes Wi-Fi signals and multi-antenna techniques to track
the movement of people behind a wall. [52] uses Wi-Fi signals
to recover the audio sound from a speaker placed behind a
soundproof wall. However, due to the no-coherent detection at
a Wi-Fi receiver, it is impossible for a Wi-Fi receiver to detect
movement at the millimeter level. Therefore, Wi-Fi signals are
not suitable for through-wall handwriting detection.

Through-Wall Detection using RFID. Through-wall de-
tection is also possible by using RFID systems. Tadar [59]
and RF-HMS [51] demonstrated their capabilities of tracking
human moving directions through walls using an array of
RFID tags. However, the tracking error in these systems is
around 10 cm, indicating their incapability of tracking mm-
level hand movements. RFID tag can also be used to measure
the vibration pattern of a loudspeaker [44]. But, due to its long
wavelength (33 cm), it is not a good candidate for tracking
mm-level movements.

B. Fine-Grained HAR

Handwriting Recognition. Camera-based handwriting
recognition is a well-established field [7]. However, the camera
cannot see through walls. Recently, RF signals have been stud-
ied for handwriting recognition. RF-IDraw [46] attaches an
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RFID tag to a people’s finger and can reconstruct the trajectory
of that finger. A multi-resolution positioning technique was
designed, yielding a tracing accuracy at the centimeter level.
mTrack [53] developed a mmWave (60 GHz) tracking system
and achieved mm-level tracking accuracy. It also demonstrated
its capability of recognizing handwriting letters. However,
mmWave signals are vulnerable to blockage and cannot go
through walls. Therefore, it is not suitable for our purpose.

MmWave FMCW Radar Detection. In recent years,
mmWave (24 GHz, 60 GHz and 77 GHz) FMCW radars
become available on the market for autonomous driving appli-
cations. These radars have been widely used for human activity
recognition and vital sign detection [4], [15], [19], [31],
[32], [43], [53], [57], [62]. Given their large bandwidth and
small wavelength, they can easily achieve mm-level accuracy
when detecting object movements. However, mmWave signals
cannot pass through walls. Therefore, they cannot apply to
through-wall handwriting detection.

Gesture and Vital Sign Detection. CSI in Wi-Fi networks
has been used for a wide range of sensing applications such
as gesture recognition [13], [27], [38], vital sign detection
[48], and radio imaging [21], [28], [45]. However, Wi-Fi
is a non-coherent system due to the physical separation of
its transmitter and receiver. Therefore, its detection accuracy
is fundamentally limited by timing, frequency, and phase
misalignments. As a result, it is not competent for mm-level
handwriting detection.

X. CONCLUSION

While mmWave FMCW radar has been extensively studied
for autonomous driving and HAR, sub-10GHz FMCW radar
has not received as much attention. This is of particular
interest due to its see-through-wall capability, which may
pose significant threats to the privacy of human activities.
In this work, we presented RadSee, a 6 GHz FMCW radar
system designed for detecting handwriting content behind
walls. Through a combined hardware and software design,
RadSee is capable of detecting mm-level handwriting move-
ments and recognizing most letters based on their unique phase
patterns. Additionally, it is resilient to the interference from
other moving objects and coexisting radio sources. Extensive
experimental results show that RadSee achieves 75% letter
recognition accuracy when victims write 62 different letters
and 87% word recognition accuracy when they write articles.
In light of these realistic threats, we offered handwriting safety
tips and defense strategies to help the public protect their
handwriting information.
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