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Abstract—This paper aims to design and implement a radio
device capable of detecting a person’s handwriting through a
wall. Although there is extensive research on radio frequency
(RF) based human activity recognition, this task is particularly
challenging due to the through-wall requirement and the tiny-
scale handwriting movements. To address these challenges, we
present RadSee—a 6 GHz frequency modulated continuous
wave (FMCW) radar system designed for detecting handwriting
content behind a wall. RadSee is realized through a joint
hardware and software design. On the hardware side, RadSee
features a 6 GHz FMCW radar device equipped with two custom-
designed, high-gain patch antennas. These two antennas provide
a sufficient link power budget, allowing RadSee to “see” through
most walls with a small transmission power. On the software
side, RadSee extracts effective phase features corresponding
to the writer’s hand movements and employs a bidirectional
LSTM (BiLSTM) model with an attention mechanism to classify
handwriting letters. As a result, RadSee can detect millimeter-
level handwriting movements and recognize most letters based
on their unique phase patterns. Additionally, it is resilient
to interference from other moving objects and in-band radio
devices. We have built a prototype of RadSee and evaluated
its performance in various scenarios. Extensive experimental
results demonstrate that RadSee achieves 75% letter recognition
accuracy when victims write 62 random letters, and 87% word
recognition accuracy when they write articles.

I. INTRODUCTION

Handwriting on physical papers and electronic devices (e.g.,

iPad) is one of the most common human activities to keep and

transfer information. Even in today’s digital world, people tend

to write more than they might think [3]. In some scenarios, the

confidentiality of written content is of paramount importance.

A natural question to ask is: if one is writing important docu-

ments on a desk in a private room, is it possible for an attacker

outside the room to detect the letters being written through the

wall? Understanding the capability and performance limits of

such an attacker would inform the public of not only potential

threats but also possible countermeasures, thereby preventing

information leakage and enhancing human activity privacy.
Recent years have witnessed significant progress in remote

human activity recognition (HAR) using different sensing

technologies such as cameras [11], [22], [33], ultrasound [36],

Fig. 1: RadSee is a joint hardware (radar) and software (deep

learning) design to detect the letters being written by a victim

behind a wall.

[56], Wi-Fi [13], [21], [27], [28], [38], [45], RFID [51], [59],

and millimeter-wave (mmWave) radar [4], [19], [31], [32],

[43], [53], [57], [62]. In contrast to existing work, the task

of detecting handwriting content through a wall is unique yet

challenging in the following three aspects.

(a) Through-wall detection. This requirement significantly

limits the viable sensing techniques for this task. Camera-

based computer vision (CV) can be used for human activity

recognition by analyzing video data to identify and classify

different human actions and movements [22], [33]. Powered

by advanced deep neural network (DNN) techniques, a camera

system can easily recognize the handwriting characters from

a distance [14], [40]. However, camera-based HAR systems

are limited by occlusions and thus not applicable to through-

wall detection. Ultrasound sensors have also been widely used

for HAR. They emit high-frequency sound waves that bounce

off objects and produce echoes, which can be analyzed to

determine the patterns of human activities [12], [36], [56].

Unlike camera sensors, ultrasound can work even in low

light conditions and does not require a line-of-sight path. But

ultrasound has a very limited ability of passing through walls

due to its short wavelength, making it unsuitable for this task.

Radio frequency (RF) has emerged as a popular technology

for HAR such as gesture recognition [13], [16], [23], [27],

[38], [47], [61], keystroke detection [5], [58], and vital signal

detection [15], [48]. Among existing RF technologies, high-

frequency signals (e.g., mmWave) have very limited ability to

pass through a wall. Therefore, radio signals on sub-10 GHz

bands appear to be the plausible carrier for HAR behind walls.

(b) Millimeter-level hand movement for writing. Hand-
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writing features very small movements compared to other

human activities. Typically, the movement of a pen-holding

hand is smaller than 1 cm for both paper and iPad writings.

When using an RF system for handwriting detection, its

detection resolution is determined by its signal wavelength.

On one hand, high-frequency mmWave (e.g., 60 GHz and

77 GHz) signals are capable of detecting sub-mm movement

of an object but cannot pass through a wall. On the other hand,

low-frequency (e.g., 915 MHz) microwave signals can easily

pass through a wall but cannot detect the mm-level movement

of an object. On the middle-frequency spectrum bands such as

2.4 GHz and 5 GHz, channel state information (CSI) in Wi-

Fi networks has been extensively used for HAR [13], [21],

[27], [28], [45], [50]; and its application on 5 GHz frequency

bands seems a possible solution to achieve the desired trade-off

between wall penetration and detection resolution. However,

Wi-Fi CSI-based HAR is a non-coherent detection approach

that suffers from phase, frequency and timing misalignments

in hardware. As such, it is incapable of detecting mm-level

movement in time. Recently, 6 GHz FMCW radar, which is

a coherent detection system, has been used for HAR such as

human body skeleton construction [1], [29], [63]–[65]. This

approach uses custom-designed hardware and promises high

accuracy and stability. However, so far, its applications are

limited to the detection of large-scale movements such as

people walking and interaction.

(c) Interference resilience. The detection of handwriting

may suffer from interference from other moving objects such

as a walking person around the writer. It may also suffer from

interference from indirect paths between the writer and the

detection equipment. Actually, such interference is a notorious

issue with RF sensing [25], [37], [55]. This issue is particularly

acute in sub-6 GHz RF sensing systems. If not addressed, the

interference may appear dominant and place a fundamental

limit on the detection performance. Moreover, since differ-

ent scenarios have different multi-path effects and different

moving objects/people, addressing the interference is critical

to extract environment-independent features for handwriting

recognition and ultimately develop a radio detector that can

work in new environments.

In this paper, we present RadSee, a 6 GHz FMCW radar

system for detecting the handwriting activities behind a wall,

as shown in Fig. 1. RadSee is realized through a joint hardware

and software design. In terms of hardware, RadSee builds a

6 GHz FMCW radar with highly optimized patch antennas. In

terms of software, RadSee first extracts the phase information

of demodulated FMCW signals and employs a deep neural

network (DNN) model for letter classification. Combining

the hardware and software innovations, RadSee is capable of

continuously detecting mm-level handwriting movement over

time and recognizing most letters based on their unique phase

patterns.

RadSee addresses Challenge (a) with its FMCW modula-

tion, its high-gain patch antenna, and its optimized baseband

analog filter. RadSee has co-located Tx and Rx RF chains,

making it possible to perform coherent signal demodulation

for handwriting recognition. In addition, the optimized patch

antennas have a total 36 dBi gain for wall penetration. RadSee

addresses Challenge (b) by using the phase information of

demodulated FMCW signals to extract the features of hand-

writing movements. FMCW radar has been widely used for

ranging. Its range resolution is c
2B

, where c is light speed and

B is signal bandwidth. Achieving the range resolution of 1 mm

requires B = 3×10
8

2×10−3 = 150 GHz signal bandwidth, which is

impossible in practice. However, the phase of demodulated

FMCW signals is much more sensitive to the movement of

an object. In theory, 1 mm hand movement corresponds to

14◦ phase change of the demodulated signal, which is easy

to detect. Therefore, RadSee uses the phase of demodulated

FMCW signals as the features of letter recognition. RadSee

addresses Challenge (c) by demodulating the reflective signals

only from the handwriting movement. This is achieved by

its FMCW modulation and high-directional patch antennas.

The FMCW modulation allows it to focus on the Range-

FFT bin that corresponds to the distance of interest; the

patch antennas allow it to focus on the reflective signal from

the direction of interest. Combining FMCW modulation and

antenna directivity, RadSee is capable of detecting a clear

phase pattern corresponding to the handwriting movements

behind a wall using a small transmission power (20 dBm).

Based on the demodulated FMCW signals, RadSee employs

a bidirectional long short-term memory (BiLSTM) model

to classify the handwriting characters (a-z, A-Z, and 0-9).

Different from other human activities such as keystroke [5],

[58], handwriting is a smooth and continuous movement of

the pen-holding hand. As such, handwriting tends to generate

a unique temporal phase pattern for each letter. That is the

reason why RadSee uses BiLSTM to classify a phase data

sequence. Of a phase data sequence, some parts may be very

important for letter recognition (e.g., those turning points),

while some parts may not carry useful information (e.g.,

horizontal strokes). Therefore, RadSee adds an attention layer

to the BiLSTM model so that the model can automatically

focus on those important parts of a phase data sequence

for letter classification. Powered by the BiLSTM model and

its attention mechanism, RadSee is capable of recognizing

handwriting letters based on their unique movement patterns.

We have built a prototype of RadSee (through PCB fab-

rication) and evaluated its performance in various scenarios.

Experimental results show that, when placed behind office in-

terior drywalls and external wood/vinyl walls, RadSee achieves

75% letter recognition accuracy when victims randomly write

62 different letters and 87% word recognition accuracy when

victims write articles. Notably, RadSee demonstrates its re-

silience to the interference from walking persons around the

victim writer and the interference from other radio devices.

Table I shows the comparison of RadSee and its related

work. It advances the state-of-the-art in the following aspects.

• It designs and implements a 6 GHz FMCW radar device

that can detect mm-level movements of an object behind a

wall using a small transmission power.
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TABLE I: Related work on human activity recognition. W =

“See through wall?”, M = “Mm-level movement detection?”,

R = “Resilient to multipath?”, I = “Resilient to interference

from other moving objects?”, S = “Classification size”.

References Objective Technique W M R I S

RF-Capture [1],
RF-Avatar [64],
RF-Pose [63],
RF-Pose3D [65],
RF-Action [29]

Human
body
skeleton

6GHz
FMCW
radar

✓ ✗ ✓ ✓ N/A

WiSIA [28],
WiPose [21],
F. Wang [45]

Radio
imaging

Wi-Fi ✗ ✗ ✗ ✗ N/A

Tadar [59],
RF-HMS [51]

Human
tracking

RFID ✓ ✗ ✗ ✗ N/A

mtrack [53]
Hand
writing

mmWave ✗ ✓ ✗ ✓ N/A

WiKey [5]
Key
stroke

Wi-Fi ✗ ✗ ✗ ✗ 37

WiHF [27],
WriFi [13],
WiSee [38]

Gesture
recognition

Wi-Fi ✗ ✗ ✗ ✗ 26

Soli [32] mmWave ✗ ✓ ✗ ✓ 4
PhaseBeat [48]

Vital sign
Wi-Fi ✓ ✗ ✗ ✗ N/A

RF-SCG [15] mmWave ✗ ✓ ✗ ✓ N/A

RadSee (ours)
Hand

writing

FMCW

radar
✓ ✓ ✓ ✓ 62

• RadSee is capable of detecting the letters that one is writing

behind a wall. Furthermore, it is resilient to the interference

from other mobile objects and other radio devices.

• Extensive experimental results show that RadSee can

achieve over 75% accuracy when detecting 62 random

letters and 87% word recognition accuracy behind walls.

II. ATTACK MODEL

Attack Scenarios. We consider a scenario as shown in

Fig. 1, where one is writing a confidential document on a

paper or an electronic device (e.g., iPad and Kindle Scribe) in

a private room (e.g., government office, business office, hotel

room, and apartment). Inside the room there may be other

static objects (e.g., furniture) and people performing daily

activities. Outside the room there is a malicious attacker who

aims to detect the content (English letters and Arabic numbers)

being written by the victim.

Attacker’s Assumptions. We assume that the attacker has

physical access to the space behind the wall which the victim

is facing toward. As such, the radio signals for detecting the

victim’s handwriting movements would not be blocked by the

victim’s torso. We also assume that the attacker knows the

layout of the room and the approximate location of the victim.

However, the accurate location of victim’s writing hand will

be estimated by the attacker using radar signal. We know that

it is not improbable to obtain the knowledge about the location

of a desk in a room, as many public spaces such as hotels have

standard layouts that are consistent across rooms. Furthermore,

we assume that there are no RF-shielding materials inside the

wall between victim and the attacker.

Challenges. As we stated before, there are three grand

challenges that must be addressed for the design of such

Fig. 2: Illustration of radar device.

an adversarial device, namely, through-wall detection, mm-

level recognition, and interference resilience. In addition,

handwriting recognition has 62 character candidates (26 low-

case letters, 26 upper-case letters, and 10 Arabic numbers) for

classification. Such a large character set adds another level of

challenge to the task. To address these challenges, it calls for a

joint hardware and software design for such an attack device.

III. RADSEE: DESIGN ANALYSIS

A. A Primer on FMCW Radar

FMCW radar is an active radio device that uses frequency

modulation to generate a continuous wave signal with a linear

frequency sweep. This signal is transmitted from the radar

antenna toward a target, and the reflection from the target

is received by the radar antenna. The frequency difference

between the transmitted and received signals, known as the

beat frequency, is proportional to the range of the target. By

analyzing the beat frequency over time, FMCW radar can

determine the distance and velocity of the target.

Fig. 2 shows the diagram of an FMCW radar device. It

transmits frequency-modulated continuous-wave signals and

receives the reflective signals from the surrounding objects.

Denote sT (t) as the transmitting signal and sR(t) as the

received echo from an object. Mathematically, we have

sT (t) = exp
(
j(2πf0t+ πKt2)

)
, (1)

and

sR(t) = αsT (t− 2d/c), (2)

where f0 is the starting frequency, K is the frequency ramp

rate, α is the path attenuation, d is the distance from the radar

to the object of interest, and c is light speed.

The received signal and the transmitted signal are mixed

together, generating the intermediate frequency (IF) signal.

The IF signal can be written as:

sIF (t)=sT (t)sR(t)
∗=exp

(

j4πK
d

c
t

︸ ︷︷ ︸

frequency

+ j4πf0
d

c
︸ ︷︷ ︸

phase

− j4πK
d2

c2
︸ ︷︷ ︸

negligible

)

.

(3)

As we can see from (3), the observed frequency and phase

both contain the distance information. Typically, the frequency
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term in (3) is used to estimate the range of an object, while

the phase term is used to estimate the velocity of the object.

Specifically, the range and velocity of the object are estimated

as follows.

• Range. As illustrated in Fig. 2, the IF signal from each

chirp is digitized and converted to the frequency domain

through FFT operation. Suppose that the FFT size is N
and a peak is identified at the ith FFT bin (0≤ i≤N−1).

Then, the distance of the corresponding object is d = c
2B

i,
where B is the FMCW signal bandwidth. Accordingly, the

range resolution is ∆d = c
2B

, which is determined solely

by the FMCW signal bandwidth.

• Velocity. Grouping an array of chirps together, the velocity

of the object can be accurately estimated by performing the

second FFT operation on the ith Range-FFT bins. Suppose

that the time duration of one chirp is T and that the FFT

size is M . In this case, a peak is identified at the kth FFT

bin, which allows us to calculate the velocity of the object

v = kc
2MTf0

. Accordingly, the velocity resolution is ∆v =
c

2MTf0
, which is determined by three parameters: the initial

frequency, the time duration of a chirp, and the number of

used chirps.

B. Feasibility Analysis

To detect fine-grained movements, the first option that came

to our mind is mmWave FMCW radar, which is widely

available on market at a low price. Particularly, existing

work (e.g., [19], [31], [43]) has demonstrated the ability of

mmWave radars to “see” through walls made of cotton and

glass. A key question to ask is whether a mmWave radar can

“see” through typical walls in our daily lives. To answer this

question, we conducted experiments using IWR1642BOOST

77 GHz mmWave FMCW radar from Texas Instruments (TI)

with a bandwidth of 1.1 GHz. We placed the mmWave radar

behind an office drywall to detect the handwriting in a room.

Fig. 3 shows our writing content. Fig. 4(a) shows experimental

setting and the corresponding FFT-bin’s amplitude and phase

over time. We did not observe any amplitude or phase changes

over time caused by the handwriting. This indicates that

mmWave signals cannot go through the drywall under test.

Another possible approach to this task is to use Wi-Fi-based

channel state information (CSI). Since Wi-Fi uses 2.4 GHz

and 5 GHz frequency bands, its signal is able to penetrate

walls for movement detection. To examine this approach, we

conducted experiments in the same scenario as the previous

case. Fig. 4(b) shows the measured CSI at a receiver when

using Wi-Fi channel #3 (2412 MHz–2432 MHz). We observed

random CSI changes over time, and did not find any patterns

on the CSI’s amplitude and phase that are related to the

handwriting movement. Similar results are observed for the

CSI measured on Wi-Fi channel #36 (5170 MHz–5190 MHz).

This can be attributed to the non-coherent detection of a Wi-

Fi receiver. Since Wi-Fi transmitter and receiver are driven

by different clocks, the measured CSI suffers from carrier

frequency and sampling time offsets, making it unreliable to

extract the pattern of tiny-scale movements.

Fig. 3: Illustration of handwriting pattern.

Fig. 4: (a) The amplitude and phase of the corresponding FFT-

bin from IWR1642BOOST mmWave FMCW radar. (b) The

amplitude and phase of a subcarrier from a Wi-Fi receiver. (c)

The amplitude and phase of the corresponding FFT-bin from

RadSee.

In comparison, we replaced the mmWave/Wi-Fi device with

RadSee—our custom-designed 6 GHz FMCW radar. Fig. 4(c)

shows the corresponding FFT-bin’s amplitude and phase over

time. It can be seen that the phase pattern is significant and that

the phase pattern is consistent with the handwriting trajectory

on the paper (see Fig. 3). This demonstrates the ability of

RadSee to “see” through the wall under test.

Why Use 6 GHz FMCW Radar? Some may inquire about

the suitability of other frequencies for through-wall and fine-

grained movement detection. Low-frequency (0–3 GHz) radio

signals have large wavelengths, rendering them incapable of

detecting movements at the millimeter level. High-frequency

(20–300 GHz) radio signals, on the other hand, have a large

path loss and a significant penetration loss; thus they cannot

travel through walls with normal transmission power. Radio

signals in the range from 3 GHz to 20 GHz, however, should

be suitable for this task. We opted for 6 GHz due to the avail-

ability and cost-effectiveness of electronic chips for FMCW

radar implementation, including phase-locked loop (PLL),

voltage-controlled oscillator (VCO), power amplifier (PA),

low-noise amplifier (LNA), etc. On the market, only 6 GHz

chips are available for individual customers at a reasonable

price, thanks to the widespread production of 5 GHz Wi-Fi

industry. The cost of our prototype is approximately $500.

Millimeter-level Movement Detection. If an FMCW radar

wants to achieve 1 mm range resolution, it will need 150 GHz

spectrum bandwidth, which is impossible in practice. There-
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Fig. 5: Phase observations at a behind-wall radar when one is

continuously writing back-and-forth on a paper within 1.5 cm.

(a) phase data before DC component removal. (b) phase data

after DC component removal. (c) phase data after partial DC

component removal.

fore, RadSee uses the phase information of its demodulated

FMCW signal to infer the movement pattern of handwriting.

Based on Eqn. (3), when the object moves 1 mm, RadSee

will observe 2df0
c

2π = 0.25 radian (about 14◦) phase change

on the corresponding Range-FFT bin. Typically, handwriting

movement is larger than 5 mm, which will generate 70◦

phase change on the Range-FFT bin. Therefore, the radar will

measure the phase pattern over time when a victim is writing,

and use the temporal phase pattern to classify the letters being

written.

Fig. 5 shows the observed phase change of a Range-FFT bin

when one is writing back and forth on a paper behind a thick

office drywall. The distance between the writing hand and the

wall is about 2 m. The radar was placed on the other side of

the wall, with a distance of 0.5 m. The person wrote back and

forward within a vertical range of 1.5 cm. It can be observed

from Fig. 5(a) that the phase changes as the pen-holding hand

moves. However, the phase dynamic range is small. The small

dynamic range is attributed to a DC voltage component of the

received signal. The DC component, which can be modeled

as a constant complex number, is the reflective signals from

static objects (e.g., furniture and human body) of the same

distance. Fortunately, the DC component is static over time

and thus can be easily removed. Ideally, we should completely

remove the DC component to maximize the phase sensitivity.

However, when we completely remove the DC component,

the time period of no-movement will have an irregular phase

pattern as illustrated in Fig. 5(b), making it hard for RadSee

to detect the gap between two consecutive letters. Therefore,

Fig. 6: The gain pattern of the patch antenna (left). The

custom-designed directional antenna (right).

we partially remove the DC component to strike a balance

between movement detection sensitivity and the phase stability

of non-movement periods. Fig. 5(c) shows the observed phase

of a Range-FFT bin over time.

Interference Resilience to Other Mobile Objects. In the

proximity of a target writer, there may be many static objects

such as desks, chairs, books, and lamps. Fortunately, the static

objects will not generate interference for the detection of

RadSee as their reflective signals appear to be a constant

complex number (DC component) over time. Such a constant

can be easily removed or adjusted to extract the useful

phase information. As stated before, RadSee may suffer from

interference from two sources: (i) channel multi-path, and (ii)

movement of other objects (e.g., a walking person). Actually,

RadSee is resilient to the interference from these two sources,

thanks to its FMCW modulation and antenna directivity. We

explain the reasons below.

• FMCW Modulation (Distance Filter). If two moving objects

have different distances to the radar and their range differ-

ence is larger than the radar’s range resolution, their phase-

change patterns will appear on different Range-FFT bins

and will not interfere with each other. Therefore, increasing

the range resolution of RadSee is critical for reducing the

interference from mobile objects. RadSee uses 1.1 GHz

(5.4-6.5 GHz) bandwidth and thus has a range resolution

of 14 cm. This means that, if separated by 14 cm, a mobile

object (e.g., writer’s chest movement of breathing) will not

generate interference to RadSee’s handwriting detection.

• Patch-array Antenna (Directional Filter). In addition to

offering high link gain, the patch-array antenna also serves

as a directional filter to suppress the interference from

undesired azimuth/elevation angles. We designed and op-

timized the patch-array antenna using CST Studio Suite [9]

and fabricated the path-array antenna as shown in Fig. 6.

The main lobe of the antenna has an angular width of

21◦ (3 dB), which means that this antenna can effectively

mitigate interference from mobile objects when they are

positioned 21◦ or more away from the writer.

Combining its FMCW modulation and patch-array antenna,

RadSee is capable of extracting the phase information cor-

responding to the movement within a small spot of interest,
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Fig. 7: Study an FMCW radar’s resilience to radio interference

from Wi-Fi devices: experimental setup (left) and experimental

results (right).

Fig. 8: RadSee process overview.

while being resilient to interference from other moving objects.

Interference Resilience to In-band Wi-Fi Devices. Al-

though RadSee operates on a frequency band that overlaps

with 5 GHz Wi-Fi, it differs significantly from Wi-Fi in two

key aspects. First, RadSee has a bandwidth of 1.1 GHz, while

Wi-Fi devices typically operate within a bandwidth of 20

or 40 MHz. Second, RadSee utilizes an FMCW waveform,

whereas Wi-Fi devices use an Orthogonal Frequency-Division

Multiplexing (OFDM) waveform. OFDM waveforms are char-

acterized by pseudo-noise-like signals. When an OFDM signal

is correlated with an FMCW signal over time, the correlation

result is nearly zero. Therefore, in theory, RadSee is resilient

to radio interference from the Wi-Fi devices in its proximity.

To validate the above theory, we conducted experiments by

observing RadSee’s IF signals in two cases: with and without

radio interference from a Wi-Fi device, as shown in Fig. 7. To

better control the experiments, we use a Universal Software

Radio Peripheral (USRP) device for continuous Wi-Fi signal

generation at two frequencies: 5.480 GHz and 5.805 GHz. The

bandwidth of Wi-Fi signals is 20 MHz. The scene is static

during the experiments. Fig. 7 presents RadSee’s IF signals

(i.e., the input of DNN) in three cases: i) no radio interference

from the Wi-Fi device, ii) radio interference from 5.480 GHz

Wi-Fi device, and iii) radio interference from 5.805 GHz Wi-Fi

device. It can be seen that the IF signals generated by RadSee

are almost the same in these three cases. This indicates that

RadSee is resilient to radio interference from Wi-Fi devices.

IV. RADSEE: DATA PROCESSING

In this section, we present the signal processing pipeline of

RadSee, as outlined in Fig. 8. We first elaborate on the signal

processing modules for phase feature extraction and then use

k-nearest neighbor (kNN) to validate the extracted features.

Fig. 9: Illustration of the received signals at the radar.

Fig. 10: Illustration of the IF signal. (a) the IF signal in time

domain. (b) the IF signal after FFT operation.

A. Signal Processing

Analog Signal Filtering. The received signal at RadSee

may have different components, including RF leakage on PCB,

desired echo from handwriting, and undesired echo from other

moving objects, as shown in Fig. 9. Since the RF leakage

signal is very close to zero frequency, RadSee uses a high-pass

filter with 5 kHz cutoff frequency to suppress the RF signal

leakage. Meanwhile, the undesired high-frequency signal from

other moving objects may generate interference to the desired

signal if not suppressed in the analog domain. To do so,

RadSee employs a first-order low-pass filter with a bandwidth

of 100 kHz for the suppression of high-frequency echoes from

undesired moving objects. Combining the high-pass and low-

pass filters, RadSee has a band-pass filter from 5 kHz to

100 kHz, corresponding to a target range from 0.4 m to 8 m

for handwriting detection.

Range-FFT. RadSee sets its chirp cycle time to 1 ms. For

each chirp cycle, RadSee sets its transmission time to 0.6 ms

and idle/delay time to 0.4 ms as shown in Fig. 10(a). As the

PLL and VCO are typically not very stable at the beginning

and end of their frequency ramping, RadSee discards 0.05 ms

at the beginning and at the end of its transmission period,

resulting in only 0.5 ms for useful signal reception. To best

observe this useful signal in the digital domain, RadSee

samples its received signal at 5 MSps. As a result, it obtains

2,500 complex samples from each chirp cycle. To further

improve the range resolution, RadSee adds zeros behind the

2,500 samples to perform 8,192-point Range-FFT operation.

The resultant Range-FFT bins are shown in Fig. 10(b). Of the

resulting 8,192 bins, only the first 256 are under examination.

Filtering for Range-FFT Bins. For each Range-FFT bin of

interest, RadSee first adjusts its DC component to the dynamic

range of its real and imaginary parts, and then applies a low-

pass filter to remove the high-frequency component. As per

[42], RadSee sets the low-pass filter’s bandwidth to 5 Hz.

6



Fig. 11: (a) The original signal of one Range-FFT bin (one

sample per chirp cycle); (b) the Range-FFT bin after DC

adjustment and low-pass filter; (c) phase of the signal in (b).

Fig. 12: Phase sequence of six Range-FFT bins.

Fig. 11 compares the data sequences of one Range-FFT bin

before and after the DC adjustment and low-pass filter. It can

be observed that the process can manifest the phase pattern of

handwriting effectively.

FFT Bin Selection. Experiments show that handwriting

will cause multiple bins to fluctuate. This can be attributed

to the high range resolution and the multi-path effect within

antenna’s aperture. Instead of using a single Range-FFT bin,

RadSee uses multiple consecutive Range-FFT bins to extract

their phase patterns. The questions need to be answered: (i)

how many Range-FFT bins should be selected, and (ii) which

Range-FFT bins should be used. For the first question, RadSee

empirically selects five consecutive Range-FFT bins and uses

their phase information for letter classification. For the second

question, RadSee selects the Range-FFT bins of the smallest

index but with its phase variance larger than a predefined

threshold. RadSee’s bin selection algorithm is provided in

Alg. 1. Its core idea is to identify five consecutive FFT-Range

bins based on their phase variances, so that the handwriting

movement pattern can be captured along the line-of-sight

(shortest) through-wall path. These five bins are then fed into

Fig. 13: Illustrating the rapid phase change of a target Range-

FFT bin during the transition of writing letters.

our DNN for letter recognition. Fig. 12 shows a sample of

our observed Range-FFT bins in handwriting detection. In this

case, RadSee selects bins 66 to 70 as the input of its DNN

model for letter classification.

Algorithm 1 RadSee’s bin selection algorithm.

Input: Range-FFT phase matrix [S(i, t) ∈ R]N×T , where i
is bin index (0 ≤ i < N ), t is time index (0 ≤ t < T ),

window size W , predefined lower bound of variance θlw,

predefined upper bound of variance θup. ▷ In our

experiments, W = 500, N = 256, T = 5000, θlw = 0.03,

θup = 0.18.

Output: The smallest bin index i where the phase variance

exceeds θlw but is lower than θup.

1: for t = 0 to T −W do

2: for i = 0 to N do

3:

Calculate window-slided variance as follows:

v(i, t) = 1

W
Σt+W−1

j=t |S(i, j)− µ|2,

where µ = 1

W
Σt+W−1

j=t S(i, j).
4: if v(i, t) > θlw & v(i, t) < θup then

5: return i
6: end if

7: end for

8: end for

9: return −1 ▷ Indicate no writing activity is detected.

Data Segmentation. RadSee performs data segmentation

on the phase stream of the selected Range-FFT bins to

extract the meaningful features that correspond to individual

letters. RadSee employs different methods for phase data

segmentation at the training and test phases. We elaborate

them as follows. (i) During Training Phase: Since we have

full control of the training data collection, we ask every

participant to stop and be still for one second after writing

each letter. By doing so, RadSee can easily segment phase

sequence and extract meaningful phase data for individual

letters. (ii) During Test Phase: In this phase, RadSee has no

control over the writing style of a victim. Likely, the victim

writes in a continuous manner without a stop in the middle.

Interestingly, we always observed a rapid phase change during

the transition from writing one letter to another. Fig. 13 shows

an example of our observations. This is caused by the pen-

holding hand’s quick movement during the transition period.

RadSee leverages this signature to segment the phase data

7



Fig. 14: The observed phase sequences when three users are

writing letters ‘A’, ‘B’, and ‘C’.

streams. Since the time duration of writing different letters

may be different, the data sequences corresponding to different

letters are of heterogeneous length.

Extracted Phase Features. Based on the above process,

RadSee will obtain the phase data segments corresponding to

individual letters being written. Fig. 14 shows some samples

of its obtained phase segments from different users. From

the figure we have the following observations. First, for the

same user, the phase patterns of different letters are different.

This is an encouraging observation as the uniqueness of phase

patterns is the foundation of letter classification. Second, for

the same letter (e.g., letter ‘A’ in Fig. 14), the phase patterns

from different users look different. So far, it is not clear if those

phase patterns will be classified to the same letter through an

advanced transformation. To better understand this question,

we conduct feature validation using kNN.

B. kNN-based Feature Validation

We use the kNN model [8] to validate the effectiveness

of the extracted features. kNN is a simple data classification

method that estimates the belonging of a new data sample

based on a set of labeled data samples. When a new data

sample comes, the distance between this new sample and all

labeled samples is calculated. Then, the k closest neighbors are

selected. The selected k closest neighbors cast weighted votes

(using their distance) to make the final classification decision

for the new data sample. One issue with kNN in this case

is that the length of data samples (phase sequences) is not

fixed, i.e., different phase sequences have different lengths. To

address this issue, we employ Dynamic Time Warping (DTW),

which has been widely used in speech recognition [10] and

data mining [24]. DTW can find an optimal alignment between

the two sequences by warping the time axis non-linearly.

Data Set. We collected the phase data samples for 62 letters

(a-z, A-Z, and 0-9) from 12 users. Each user was asked to write

in print writing style on a desk that is one meter away from the

wall. Our radar was placed just behind the wall to collect the

phase data. Each letter has 10 samples from a user and a total

of 120 samples from those 12 users. In total, 7,440 samples

were collected for all 62 letters, all of which were labeled

during the data collection. The data samples are divided into

two groups: those from the first 6 users are used for training,

while those from the second 6 users are used for test.

Validation Results. We perform kNN on the collected data

set. As an example, Fig. 15 shows the search results of kNN

when the new data sample is the phase sequence of letter ‘A’.
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Fig. 15: Results of using kNN to search 5 closest neighbors

for a new data sample. The top-left figure shows the phase

sequence of the new data sample. The remaining 5 figures

show the found 5 closest data samples (and their corresponding

letters) in our training data set.

It can be seen that, of the five closest data samples in the

training data set, four are correct (labeled with ‘A’) and one is

incorrect (labeled with ‘k’). The five closest data samples cast

votes to make the final decision. The weighted vote for ‘A’ is

10.54, while the weighted vote for ‘k’ is 2.32. Based on the

voting result, this new data sample is classified to letter ‘A’,

which is correct.

Fig. 16 shows kNN’s classification accuracy when the test

data samples are from 6 different users. We note that the test

data samples and the training data samples are from different

users. As we can observe, the classification accuracy is from

53% (user 4) to 77% (user 3). This could be attributed to two

factors: i) most of training data are from Asian participants;

and ii) User 4 is an American participant while other five users

are Asian participants.
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Fig. 16: kNN’s classification

accuracy when test and training

data are from different users.
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Fig. 17: kNN’s classification

accuracy when radar is at dif-

ferent distances.

We then evaluate kNN’s classification accuracy using the

data samples from User 6 when the radar was placed at

different distances (1 m, 2 m, and 3 m). The training data

samples were collected from six different users when the radar

was placed at 1 m distance. Fig. 17 presents the classification

results. It shows that the classification accuracy is 68% when

the test was conducted at the same distance. However, when

RadSee has a different distance from the victim, its detection

accuracy decreases to 58%.

Limitations of kNN. The kNN-based classification re-

sults indeed manifest the effectiveness of phase features in
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Fig. 18: The structure of an attention-based BiLSTM model

for letter recognition. The input is the phases of selected 5

Range-FFT bins over T = 3000 ms, and the output is the

classified one from the 62 characters.

handwriting letter classification. But this approach has two

limitations. First, it has a very high computational complexity

and thus limits the size of the labeled (training) data set.

Second, it uses the phase sequence from only one Range-

FFT bin for classification. Using those five Range-FFT bins

together may improve the classification accuracy. In what

follows, we design a DNN-based approach for handwriting

recognition, with the aim of overcoming the above limitations

and improving the classification accuracy.

V. RADSEE: DNN-BASED RECOGNITION

In this section, we focus on designing a DNN model for

through-wall handwriting recognition using the phase features

extracted in the previous section. Compared to kNN, DNN is

much more efficient in computation and is more appealing for

practical use.

A. DNN Model

In essence, this letter recognition problem is a classifica-

tion problem with its input being multi-dimensional phase

sequences and its output being the probability of each letter

in the candidate set (a-z, A-Z, and 0-9). We found that this

task is similar to many classification tasks in natural language

processing (NLP), such as information status classification

[18] and stress detection [54]. Following the state-of-the-art

classification techniques in NLP, we employ an attention-

based Bidirectional LSTM (BiLSTM) model for RadSee’s

letter classification.

Fig. 18 shows the high-level structure of our attention-based

BiLSTM model. The BiLSTM component is used to extract

the temporal features in the time-series phase sequence. The

attention layer is used to capture the key movement informa-

tion of handwriting. This is critical as the key information of

handwriting movement likely lies in some turning points. This

attention layer will allow the model to focus on specific parts

σ σ σ 

ft = σ(Wf [ht−1,xt] + bf )

it = σ(Wi[ht−1,xt] + bi)

ot = σ(Wo[ht−1,xt] + bo)

c̃t = tanh(Wc[ht−1,xt] + bc)

ct = fj ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct),

Fig. 19: The structure and operation of an LSTM cell (ht ∈
R

128×1, ct ∈ R
128×1, and Wf ,Wi,Wc,Wo ∈ R

128×133).

(e.g., those turning points) of the phase sequences, thereby

improving the accuracy and efficiency of classification.

B. BiLSTM

BiLSTM is a variant of the LSTM network [17] and has

demonstrated its effectiveness for a wide range of NLP tasks

such as machine translation [41], part-of-speech tagging [30],

and sentiment analysis [49], [66]. In a BiLSTM, the input

sequence is processed in both forward and backward directions

using two separate LSTM layers. This allows the model to

capture both past and future context for each input element.

This is crucial for handwriting recognition, because the turning

points of handwriting movement carry the key information for

letter classification but the turning points may appear at the

beginning, in the middle, and at the end of a phase sequence.

The use of BiLSTM allows the model to capture those turning

points at any pace of the input phase sequence.

Input Data. We set the input data shape to be 3000 × 5,

where 3,000 is the number of chirps and 5 is the number of

selected Range-FFT bins. Recall that each chirp is 1 ms. This

means that the maximum time of writing a letter is 3 seconds.

In most cases, one can finish the writing of a letter less than

3 seconds. If the phase sequence is less than 3,000 points, we

simply pad zero behind the phase sequence as the input of

BiLSTM. If the phase sequence is greater than 3,000, we trim

the head and tail of the phase sequence, retaining only 3,000

points in the middle as input for the BiLSTM.

LSTM Cell. LSTM has been used in a wide range of

learning tasks. It is the key component of the BiLSTM model

as shown in Fig. 18. It allows the model to selectively retain

or forget information at each time step. The cell structure

includes three gates: an input gate, a forget gate, and an output

gate. The input gate determines which information should be

stored in the cell, the forget gate determines which information

should be discarded, and the output gate determines which

information should be used for the current output. Fig. 19

shows the structure and parameters of each LSTM cell.

BiLSTM Structure. As shown in Fig. 18, BiLSTM has

two LSTM cells: one is for forward information flow, and

the other is for backward information flow. In each iteration

t, it combines the hidden states of forward and backward

LSTMs through concatenation: ht = [h⃗t, ⃗ht], where h⃗t is

the hidden state from the forward LSTM, ⃗ht is the hidden
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Fig. 20: Radar PCB (left) and a picture of RadSee (right).

state from the backward LSTM, and ht is the hidden state

of the BiLSTM. Since each LSTM has 128 hidden layers,

we have ht ∈ R
256×1, with t = 1, 2, . . . , 3000. Then, the

combined hidden states are fed to the attention layer for further

processing.

C. Attention Layer

The attention mechanism is probably one of the most

important inventions for deep learning and it has been used

for many applications such as GPT [6], [39], [49], [60].

With the attention layer, the model learns to focus on some

key parts of the data sequence. During the handwriting of a

letter, some turning points may carry critical information for

letter classification. The attention layer attempts to learn the

importance of each part of the phase sequence and then assigns

them with proper weights. To calculate the corresponding

weights, it first feeds ht to a one-layer Multilayer Perceptron

(MLP) to learn a hidden representation ut, and then normalizes

the weights to generate αt. Mathematically, it can be written

as follows:

ut = tanh(W⊤

h ht + bh), (5a)

αt =
exp(ut)

∑T

k=1
exp(uk)

, (5b)

s =

T∑

t=1

αtht, (5c)

where Wh ∈ R
256×1 is the training weights, bh ∈ R is

a training bias, and s ∈ R
256×1 is the weighted vector for

the fully-connected neural network in Fig. 18. The fully-

connected network is of 256 × 64 × 128 × 62 size. The last

layer is a SoftMax layer to calculate the possibility of each

letter candidate (a-z, A-Z, and 0-9). The letter of the highest

possibility is selected as the output y.

VI. IMPLEMENTATION

A. Hardware

Fig. 20 shows the hardware components of RadSee. We

fabricated a radar PCB board as shown in this figure. The

electronic components of this board include VCO, LNA,

PA, Tx/Rx 16 dB RF coupler, RF quadrature mixer, and

baseband filter. This PCB was made by OSH Park using

FR408 substrate. We designed, simulated, and optimized 4×4
patch-array antennas using HFSS for radio signal transmission

Fig. 21: Evaluation setting: (a) Laboratory scenario. (b) Office

scenario. (c) Apartment scenario. (d) RadSee attacks from

outside of the apartment.

and reception. These antennas offer 18 dBi antenna gain for

both transmission and reception. In total, it offers 36 dBi

gain for the link path, making it possible to compensate the

signal penetration loss of a wall. The total cost of RadSee is

approximately $500, including $50 for PCB fabrication, $50

for antennas, and $400 for chips. We use USRP N210 with

LFRX daughterboard to convert the analog signal to digital

I/Q samples, which were then sent to a computer for data

process. Transmission power is set to 20 dBm. The FMCW

radar sweeps from 5.4 GHz to 6.5 GHz. The time duration

of one chirp period is 1 ms, including 600 µs for frequency

sweeping and 400 µs for idle.

B. Algorithms

Digital Signal Processing. We implemented the data pro-

cessing algorithms on a laptop in C++ using GNU Radio

Out-of-Tree (OOT) module. The laptop receives a continuous

data stream from the radar. It needs to synchronize the chirp

signal and extract the useful data samples of each chirp.

Fortunately, due to the presence of 400 µs idle period of each

chirp, it is easy to identify the useful data samples from the

data stream. Specifically, we use the high peaks as shown in

Fig. 10 to extract the useful data samples. One fundamental

issue with the current hardware design is the lack of clock

synchronization between ADC and FMCW chirps. To address

this issue, we use a high sampling rate 5 MSps and perform

fine-grained synchronization to identify the first data sample

corresponding to the starting moment of each chirp.

Data Collection for DNN Training.1 We collected training

data in a laboratory. The radar was placed behind an interior

1The experiments do not require IRB approval based on the determination
results from the authors’ institution. The experiments were conducted under
FCC experimental spectrum license with Call Sign # WM2XWQ and File #
0954-EX-CN-2022.
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TABLE II: Participants for training and test data collection.

Participants for training Participants for test
Handedness Right-handed Left-handed Right-handed Left-handed

Writing style Print Cursive Print Cursive Print Cursive Print Cursive
# of participants 11 5 1 1 7 3 1 1

Fig. 22: Writing samples from participants for training.

drywall at a distance of 0.5 m. A writing desk was placed in

front of the wall at a distance of 1 m, as shown in Fig. 21(a).

Eighteen participants (4 American, 3 Indian, 4 Middle East, 7

Chinese) were asked to write 62 characters (a-z, A-Z, and 0-9)

on the desk. Each participant wrote every character 60 times.

In total, we collected 18 × 62 × 60 = 66, 960 data samples.

Of the eighteen participants, twelve were asked to write in the

print style, while six were asked to write in the cursive style.

Regarding handedness, two of them were left-handed writers

while the rest were right-handed writers. The handedness and

writing styles of the participants are summarized in Table II.

Some writing samples from the participants are provided in

Fig. 22.

DNN Training. The DNN model was implemented using

TensorFlow’s Keras library. We used cross entropy as loss

function. During the training process, we set the batch size to

2,000 and trained the model for 500 epochs. We used Adam

optimizer with a learning rate of 7e−4 to train the model.

VII. EXPERIMENTAL EVALUATION

A. Letter Recognition Accuracy

Write on A4 Papers. Recall that our training data was col-

lected in a laboratory from eighteen participants. To evaluate

the recognition accuracy of RadSee, we completely separate

the training and test datasets. We invited twelve new par-

ticipants (4 American, 4 Chinese, 2 Indian, 2 Middle East)

to write letters in the same setting (i.e., sitting 1 m away

from the wall and facing to the radar). None of these twelve

people participated in the training data collection. Each of

them wrote 300 random letters on A4 papers. During the

test, eight participants were asked to write in the print style,

and four were asked to write in the cursive style. Both print

and cursive writing letters are within the size of 5 mm to 10

mm. Regarding handedness, ten participants were right-handed

writers, while two were left-handed writers. The handedness

and writing style are summarized in Table II.

Fig. 23 shows the confusion matrix of RadSee’s letter

recognition results. It is evident that RadSee can recognize

most of the letters. RadSee is prone to making mistakes for

some letters. For instance, it can easily confuse ‘O’ with ‘o’,

ABCDE FGH I J K LMNOPQR S T UVWX Y Z a b c d e f g h i j k l mn o p q r s t u vwx y z 0 1 2 3 4 5 6 7 8 9

Predicted

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

Tr
ue

Confusion matrix

10

20
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40
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Fig. 23: Confusion matrix of RadSee’s letter recognition

results.

Fig. 24: RadSee’s letter recognition accuracy when participants

wrote on A4 papers. Users 1-4 are Americans, users 5-8 are

Chinese, users 9-10 are Indians, and users 11-12 are from

Middle East.

‘C’ with ‘O’, and ‘I’ with ‘1’. Other errors can arise from

cursive writing, such as confusing ‘S’ with ‘8’ and ‘Z’ with

‘3’. This is understandable, as their handwriting patterns are

similar to each other. Overall, RadSee achieves 75% letter

recognition accuracy.

Print vs. Cursive. Fig. 24 presents RadSee’s letter recogni-

tion accuracy for the 12 individual participants. As observed,

RadSee has a lower recognition accuracy for the participants

who wrote in cursive style compared to those who wrote in

print style. This observation can be attributed to two factors.

First, cursive writing is more individualized and diverse, mak-

ing it challenging for the model to extract consistent features

across different participants, despite having cursive-style data

in the training dataset. Second, our segmentation method relies

on detecting signal transitions between letters, which becomes

more difficult when people write in cursive style.

Writing Handedness. Besides writing style, handedness

is another factor that may affect RadSee’s letter recognition
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Fig. 25: Writing on different media. (a) Writing on papers,

iPad, and Post-it notes. (b) The recognition accuracy of

RadSee when writing on different media.

accuracy. However, experimental results show that handedness

affects RadSee very slightly. As shown in Fig. 24, RadSee

has a very similar performance for both left-handed and right-

handed users. This can be attributed to the fact that most left-

handed individuals have the same writing movement pattern

as right-handed individuals, i.e., write from left to right and

from top to bottom.

Write on iPad and Post-it Notes. Tablets, such as Apple

iPad, have become increasingly popular for writing activities,

with many individuals opting to use them for important

documents instead of traditional pen and paper. To evaluate

the performance of writing on an iPad, we repeated our mea-

surements by asking twelve participants to write 300 random

letters using an Apple Pencil. The experimental results are

shown in Fig. 25(b). RadSee achieves 74% letter recognition

accuracy. In the same setting, RadSee achieves 75% letter

recognition accuracy when participants write on A4 papers.

This indicates that RadSee has almost the same performance

for A4 paper and iPad writing recognition. Another commonly

used medium for writing is Post-it notes. Given their smaller

size, we asked participants to write 20 random letters on Post-it

notes. RadSee’s letter recognition accuracy for Post-it notes is

71%, as presented in Fig. 25(b). As shown in Fig. 25(a), these

three writing media have different horizontal writing ranges.

Since RadSee has similar performance for them, it suggests

that RadSee effectively accommodates the horizontal range for

writing on A4 papers, iPad, or Post-it notes.

B. Impact of Letter Size

We conducted experiments to better understand RadSee’s

ability of detecting small-size letters. Fig. 26 presents Rad-

See’s signal changes when a participant wrote letter ‘N’ of

different sizes. Evidently, RadSee is capable of detecting as

small as 3 mm handwriting movement. We further asked one

participant to write on A4 papers with grid boxes of different

sizes: 3 mm × 3 mm, 4 mm × 4 mm, 5 mm × 5 mm, and

10 mm × 10 mm. The participant was instructed to write

letters within the boundaries of the grid boxes. However,

for the 3 mm × 3 mm grids, since the boxes were too

small, a considerable portion of the written letters exceeded

the boundaries. Fig. 27 presents RadSee’s letter recognition

accuracy in these four cases. It is evident that RadSee’s

accuracy decreases with the letter size. But notably, RadSee

achieves 68% recognition accuracy even in the case where the

letter size is confined within 3 mm.

Fig. 26: RadSee’s phase sig-

nal for different letter size.

Fig. 27: RadSee’s accuracy for

letters of different sizes.

C. Impacts of Distance and Angle

When an attacker attempts to detect the handwriting behind

a wall, it may not know the distance from itself to the

victim and the angular direction of the victim. The attacker

may use RadSee to do an exhaustive search to find the best

pointing direction for the radar’s antennas, but the radar-

antenna-pointing direction may not be accurate. To evaluate

RadSee’s robustness, we examine its accuracy in different

settings: (i) the writers are 1 m, 2 m, and 3 m behind the wall;

and (ii) RadSee’s antenna is pointing to different angles (0◦,

10◦, 20◦, and 30◦). The combination constitutes 12 different

cases. In each case, we instructed eight participants to write

300 letters using their normal handwriting habits.

Fig. 28 presents our measured accuracy and deviation. It

can be seen that RadSee is robust to the distance change.

This can be explained by its design. In nature, FMCW radar

is capable of precisely capturing the movement features at

different distances. When the distance between the writer and

the wall changes from 1 m to 3 m, RadSee will identify

another 5 Range-FFT bins for phase feature extraction. Since

the handwriting movement patterns are not related to the

wall distance, the extracted features will remain unchanged.

Therefore, RadSee is robust to distance changes.

Fig. 28 also presents our measurement results when Rad-

See’s antennas was pointing to different angles. Evidently,

RadSee’s accuracy decreases when its directional error in-

creases from 0◦ to 30◦. Specifically, when RadSee was point-

ing to 0◦, it achieved 77% recognition accuracy. When RadSee

was pointing to 30◦, it achieved 55% recognition accuracy.

In all cases, the standard deviation is almost the same, i.e.,

4%. This degradation can be attributed to the directivity

of the patch-array antennas, as shown in Fig. 6. When the

writer deviates from its central direction, the patch antenna’s

effective radiation power decreases, making noise and other

imperfections more significant and thus leading to a decreased

accuracy.

D. Impact of Interference from Other Moving Objects

Experimental results in Fig. 7 have confirmed that RadSee

is immune to radio interference from in-band (5 GHz) Wi-

Fi devices. All experiments in this work were conducted

in office and laboratory environments, which are rich with

interference from multiple Wi-Fi sources. Therefore, the exper-

imental results presented have already taken into account the
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Fig. 28: Letter recognition accuracy of RadSee when writers

are at different distances and different angles from the wall.

Fig. 29: Interference test. (a) Interferer is 2 meters from writer.

(b) RadSee’s resilience to interference from a walking person.

radio interference from multiple Wi-Fi sources. Additionally,

RadSee is not affected by static objects (e.g., desks and chairs)

around a writer as they appear to be a constant in the received

signal, which can be easily mitigated. Therefore, we focus

on studying RadSee’s performance in the presence of moving

objects (e.g., walking persons) in the proximity of the writer.

We emulated this scenario by asking another person to walk

around the writer as shown in Fig. 29(a). We measure the

recognition accuracy of RadSee in three cases, i.e., the distance

between a writer and a walking person is 1 m, 2 m, and 4 m.

We asked eight participants to write 300 random letters in each

case and measured RadSee’s letter recognition accuracy.

Fig. 29(b) depicts our measured results. We can see that

the performance degradation depends on the distance between

the writer and the interferer. The closer the interferer is,

the larger performance degradation RadSee has. For the case

where interferer is 1 m away, RadSee demonstrates 67% letter

recognition accuracy, with 11% accuracy degradation com-

pared to the case without interference. When the interferer is 2

m away, RadSee rapidly increases its accuracy to 76%, which

is close to its accuracy in the case without interference. We

note that the participants in all experiments maintained normal

physiological activities, such as breathing and respiration. The

experimental results reported above have already taken into

account those normal physiological activities of the writers.

E. Impact of Different Wall Materials

RF signals have varying penetration abilities depending on

the type of wall. We conducted experiments to evaluate the

performance of RadSee in detecting letters through different

wall materials. Specifically, we considered six wall materials

as shown in Fig. 30: drywall (12 cm), vinyl wall (20 cm), wood

wall (19 cm), brick wall (22 cm), concrete wall (23 cm), and

Fig. 30: Illustration of six different types of wall materials.

Fig. 31: RF signal’s power

attenuation for penetrating a

wall of different materials.

Fig. 32: RadSee’s recognition

accuracy when placed behind

six wall materials.

metal door (4 cm). We first measured their penetration loss,

which refers to the power attenuation of radio signals as they

pass through a wall. Fig. 31 presents our measurement results.

It is evident that drywall, vinyl and wood walls have similar

penetration loss for radio signal, which is about 10 dB. Brick

wall is more lossy for radio signal compared to wood wall. Its

penetration loss is about 21 dB. However, concrete walls and

metal doors completely block radio signals. Their attenuation

loss is greater than 42 dB.

We then conducted experiments to measure RadSee’s letter

recognition accuracy. Eight participants took part in the exper-

iments. They were seated 1 meter away from the wall, while

RadSee was positioned 0.5 meters away on the other side of

the wall as shown in Fig. 21. Each of the eight participants

wrote 300 random letters using his/her own writing style.

Fig. 32 presents the experimental results. It shows that RadSee

achieves similar performance when participants wrote behind

drywall, vinyl, and wood walls. This similarity is due to

the comparable electromagnetic properties of these materials.

In contrast, a brick wall significantly reduces recognition

accuracy, with RadSee achieving only 24% letter recognition

accuracy in this scenario. Furthermore, concrete walls and

metal doors completely obstruct letter detection.

F. Word Recognition Accuracy in Content

In addition to detecting individual letters, we evaluate

RadSee’s performance of recovering entire sentences. This is

important because an attacker’s interest may lies in the content

that a victim is writing, rather than individual letters. We

asked twelve participants to reproduce an CNN News article,

which is about 300 words. Some writing samples from the
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Fig. 33: Writing samples from participants as they transcribed

CNN news articles in both print and cursive styles.

TABLE III: A case study of RadSee detecting the sentences

written by a person behind a lab drywall.

Ground truth

Letters

recognized by

RadSee

Segmented by

Wordsegment [20]

Corrected by

TextBlob [34]

‘football is

popular in

the united

states’

‘ecctbollispo

pulaintheuni

tedstate’

‘ecc’, ‘t’, ‘boll’,
‘is’, ‘popula’,
‘in’, ‘the’,
‘united’, ‘state’

‘etc’, ‘t’, ‘ball’,
‘is’, ‘popular’,
‘in’, ‘the’,
‘united’, ‘state’

‘Bill is a

hardworking

student’

‘Billiislhar

dworkimg

studena’

‘bill’, ‘i’, ‘isl’,
‘hard’, ‘work’,
‘img’, ‘studena’

‘bill’, ‘is’,
‘hard’, ‘work’,
‘ing’, ‘student’

‘My favourite

fruit is

apple’

‘mgfavouri

teffruitl

qapple’

‘mg’, ‘favourite’,
‘f’, ‘fruit’, ‘lq’,
‘apple’

‘my’, ‘favourite’,
‘fruit’, ‘is’,
‘apple’

participants are provided in Fig. 33. The experimental setting

is the same as described above.

RadSee employs two open-source software tools to translate

its detected letters into word sentences: Wordsegment [20]

and TextBlob [34]. It first sends the detected letters to

Wordsegment for word segmentation. Then, it sends the seg-

mented text to TextBlob for automatic spelling correction.

Table III presents samples of the sentence recognition results.

Leveraging these two open-source tools, RadSee demonstrates

impressive performance in word and sentence recognition. It

nearly recognized the first sentence in the table and accurately

recovered both the second and third sentences.

We then use word recognition accuracy as the metric to

evaluate the performance of RadSee. According to [35], word

recognition accuracy is defined as WRA = N−S−D−I
N

, where

N is the number of words in the ground-truth text, S is

the number of word substitutions, D is the number of word

deletions, and I is the number of word insertions. Fig. 34

shows RadSee’s WRA with and without using TextBlob

for automatic spelling correction. It can be seen that without

automatic spelling correction, RadSee’s WRA ranges from

40% to 56% across the twelve participants. In contrast, when

automatic spelling correction is applied, RadSee’s WRA sig-

nificantly improves, ranging from 79% to 93%. On average,

RadSee’s WRA hovers around 87% with automatic spelling

correction. This level of word recognition accuracy is sufficient

for an attacker to comprehend the content written by a victim.

Fig. 34: Word recognition accuracy of RadSee with and

without correction for different users.

VIII. COUNTERMEASURES AND OTHER APPLICATIONS

A. Countermeasures

Handwriting Safety Tips. RadSee demonstrated a serious

threat to handwriting privacy. Based on the study, we have the

following tips for those who have concerns about their hand-

writing information leakage. Tip 1: Do not write important

documents in a room with drywall or vinyl wall. Instead, write

them in a room with thick concrete or any metal walls. These

walls can largely reduce the radio signal and thus reduce the

probability of information leakage. Tip 2: Do not face yourself

to a wall behind which a radar may be placed. Instead, face

against that wall. Your body/torso will significantly reduce the

radio signal strength and thus reduce the probability of your

content being detected by an attacker. Tip 3: If possible, write

important documents on a desk far from all walls rather than

a desk against a wall. This will increase the distance between

yourself and a radar, thereby reducing its recognition accuracy.

Protection Strategies. One natural approach to protecting

handwriting content is to install multi-layer RF shielding ma-

terials inside the walls of your room [26]. Common materials

used for RF shielding include metals such as aluminum,

copper, and steel, as well as conductive coatings or paints.

Another approach is to take advantage of recent advances

in reconfigurable intelligent surface (RIS), which has also

been studied under other names such as electromagnetic

metasurface or radio relay. RIS can be used to create virtual

multipath from radar’s Tx to its Rx. By manipulating its phase

shifting and beam steering, RIS is capable of generating fake

phase patterns for the radar, preventing it from recovering

the handwriting content. Unfortunately, neither of the above

approaches is easy or economical to deploy.

B. Other Applications

While RadSee was designed to better understand the radio

attacks related to handwriting privacy, it can also be used for

many other applications. For instance, RadSee can be installed

on a laptop as an input method. When an end user physically

writes something on paper in front of his/her laptop, the

content is automatically recognized by RadSee and digitally

recorded on his/her laptop. In this case, RadSee does not need

to use a 4× 4 patch-array antennas since there is no need to

penetrate through walls. Rather, a small patch antenna should

be sufficient. RadSee can also be used as a human-computer

interface for smart TVs. End users can write using their bare
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hands, and a TV equipped with RadSee can recognize the

letters being written.

IX. RELATED WORK

We surveyed the literature in two categories: through-wall

detection and fine-grained human activity recognition. Table I

in Section I outlined RadSee’s uniqueness compared to prior

work.

A. See Through Wall using Radio

See Through Wall using FMCW Radar. Some pioneering

works have studied 6 GHz FMCW radar to detect and track

human activities behind walls using model-based or learning-

based methods [1], [29], [63]–[65]. For instance, [63]–[65]

focuses on using FMCW radar to generate the heatmap image

of human body skeleton through walls. [29] uses FMCW radar

to detect the interactions between two people behind walls.

However, all these works are based on the ranging detection of

FMCW radars. Since the range resolution of an FMCW radar

is fundamentally limited by its bandwidth, this method cannot

achieve mm-level accuracy for through-wall motion detection.

To address this issue, RadSee uses the phase information for

through-wall mm-level hand movement detection.

RF-capture [1] is probably the most related work of RadSee.

It also uses FMCW radar to recognize the “handwriting”

behind a wall. However, the letters that RF-capture aims to

recognize are of large size (e.g., 0.5 m×0.5 m). It is actually

a gesture recognition rather than normal-sized handwriting

detection. Its method is based on range- and angle-based track-

ing, and thus cannot achieve mm-level accuracy. Therefore,

RadSee is fundamentally different from RF-capture.

Through-Wall Detection using Wi-Fi. Wi-Fi signal is

ubiquitous and it has a strong ability of passing through a wall.

[2] utilizes Wi-Fi signals and multi-antenna techniques to track

the movement of people behind a wall. [52] uses Wi-Fi signals

to recover the audio sound from a speaker placed behind a

soundproof wall. However, due to the no-coherent detection at

a Wi-Fi receiver, it is impossible for a Wi-Fi receiver to detect

movement at the millimeter level. Therefore, Wi-Fi signals are

not suitable for through-wall handwriting detection.

Through-Wall Detection using RFID. Through-wall de-

tection is also possible by using RFID systems. Tadar [59]

and RF-HMS [51] demonstrated their capabilities of tracking

human moving directions through walls using an array of

RFID tags. However, the tracking error in these systems is

around 10 cm, indicating their incapability of tracking mm-

level hand movements. RFID tag can also be used to measure

the vibration pattern of a loudspeaker [44]. But, due to its long

wavelength (33 cm), it is not a good candidate for tracking

mm-level movements.

B. Fine-Grained HAR

Handwriting Recognition. Camera-based handwriting

recognition is a well-established field [7]. However, the camera

cannot see through walls. Recently, RF signals have been stud-

ied for handwriting recognition. RF-IDraw [46] attaches an

RFID tag to a people’s finger and can reconstruct the trajectory

of that finger. A multi-resolution positioning technique was

designed, yielding a tracing accuracy at the centimeter level.

mTrack [53] developed a mmWave (60 GHz) tracking system

and achieved mm-level tracking accuracy. It also demonstrated

its capability of recognizing handwriting letters. However,

mmWave signals are vulnerable to blockage and cannot go

through walls. Therefore, it is not suitable for our purpose.

MmWave FMCW Radar Detection. In recent years,

mmWave (24 GHz, 60 GHz and 77 GHz) FMCW radars

become available on the market for autonomous driving appli-

cations. These radars have been widely used for human activity

recognition and vital sign detection [4], [15], [19], [31],

[32], [43], [53], [57], [62]. Given their large bandwidth and

small wavelength, they can easily achieve mm-level accuracy

when detecting object movements. However, mmWave signals

cannot pass through walls. Therefore, they cannot apply to

through-wall handwriting detection.

Gesture and Vital Sign Detection. CSI in Wi-Fi networks

has been used for a wide range of sensing applications such

as gesture recognition [13], [27], [38], vital sign detection

[48], and radio imaging [21], [28], [45]. However, Wi-Fi

is a non-coherent system due to the physical separation of

its transmitter and receiver. Therefore, its detection accuracy

is fundamentally limited by timing, frequency, and phase

misalignments. As a result, it is not competent for mm-level

handwriting detection.

X. CONCLUSION

While mmWave FMCW radar has been extensively studied

for autonomous driving and HAR, sub-10GHz FMCW radar

has not received as much attention. This is of particular

interest due to its see-through-wall capability, which may

pose significant threats to the privacy of human activities.

In this work, we presented RadSee, a 6 GHz FMCW radar

system designed for detecting handwriting content behind

walls. Through a combined hardware and software design,

RadSee is capable of detecting mm-level handwriting move-

ments and recognizing most letters based on their unique phase

patterns. Additionally, it is resilient to the interference from

other moving objects and coexisting radio sources. Extensive

experimental results show that RadSee achieves 75% letter

recognition accuracy when victims write 62 different letters

and 87% word recognition accuracy when they write articles.

In light of these realistic threats, we offered handwriting safety

tips and defense strategies to help the public protect their

handwriting information.
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