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Abstract
This paper investigates a class of stochastic bilevel optimization problems where
the upper-level function is nonconvex with potentially unbounded smoothness
and the lower-level problem is strongly convex. These problems have significant
applications in sequential data learning, such as text classification using recurrent
neural networks. The unbounded smoothness is characterized by the smoothness
constant of the upper-level function scaling linearly with the gradient norm, lack-
ing a uniform upper bound. Existing state-of-the-art algorithms require Õ(ϵ−4)
oracle calls of stochastic gradient or Hessian/Jacobian-vector product to find an
ϵ-stationary point. However, it remains unclear if we can further improve the
convergence rate when the assumptions for the function in the population level
also hold for each random realization almost surely (e.g., Lipschitzness of each
realization of the stochastic gradient). To address this issue, we propose a new
Accelerated Bilevel Optimization algorithm named AccBO. The algorithm updates
the upper-level variable by normalized stochastic gradient descent with recursive
momentum and the lower-level variable by the stochastic Nesterov accelerated
gradient descent algorithm with averaging. We prove that our algorithm achieves
an oracle complexity of Õ(ϵ−3) to find an ϵ-stationary point, when the lower-level
stochastic gradient has a small variance O(ϵ). Our proof relies on a novel lemma
characterizing the dynamics of stochastic Nesterov accelerated gradient descent
algorithm under distribution drift with high probability for the lower-level variable,
which is of independent interest and also plays a crucial role in analyzing the hyper-
gradient estimation error over time. Experimental results on various tasks confirm
that our proposed algorithm achieves the predicted theoretical acceleration and
significantly outperforms baselines in bilevel optimization. The code is available
here.

1 Introduction

Bilevel optimization receives tremendous attention recently in the machine learning community,
due to its applications in meta-learning [27, 59], hyperparameter optimization [27, 25], data hyper-
cleaning [44], continual learning [7, 37], and reinforcement learning [47]. The bilevel optimization
problem has the following formulation:

min
x∈Rdx

Φ(x) := f(x, y∗(x)), s.t., y∗(x) ∈ argmin
y∈Rdy

g(x, y), (1)

where f and g are upper-level and lower-level functions respectively. For example, in meta-
learning [26, 27], x denotes the layers of neural networks for shared representation learning, y
denotes the task-specific head encoded in the last layer, and the formulation (1) aims to learn the a
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common representation learning encoder x such that it can be quickly adapted to downstream tasks
by only updating the task-specific head y. In machine learning, people typically consider stochas-
tic optimization setting such that f(x, y) = Eξ∼Df

[F (x, y; ξ)] and g(x, y) = Eζ∼Dg [G(x, y; ζ)],
where Df and Dg are the underlying unknown data distributions for f and g respectively, and one
can access noisy observations of f and g based on sampling from Df and Dg .

There emerges a wave of studies for algorithmic design and analysis for solving the bilevel opti-
mization problem (1) under different assumptions of f and g. Most theoretical work assumes the
upper-level function is smooth (i.e., gradient is Lipschitz) and nonconvex, and the lower-level function
is strongly convex [30, 44, 41, 33, 48]. However, as pointed out by [75, 15], certain neural networks
such as recurrent neural networks [22], long-short term memory networks [40] and transformers [65]
have smoothness constants that scale with gradient norm, potentially leading to unbounded smooth-
ness constants (i.e., gradient Lipschitz constant can be infinity). Motivated by this, Hao et al. [38]
designed the first bilevel optimization algorithm to handle the cases where f is nonconvex with
potentially unbounded smoothness and g is strongly convex. The algorithm in [38] achieves Õ(ϵ−4)
oracle complexity for finding an ϵ-stationary point (i.e., a point x such that ∥∇Φ(x)∥ ≤ ϵ). Gong et
al. [32] proposed an single-loop algorithm under the same setting as in [38] and also achieved Õ(ϵ−4)

oracle complexity. This complexity result is worse than the Õ(ϵ−3) oracle complexity under the
relatively easier setting where f has a Lipschitz gradient, and each realization of the stochastic oracle
calls is Lipschitz with respect to its argument (e.g., almost-sure Lipschitz oracle) [71, 46, 18, 34, 43].
This naturally motivates us to study the following question:

Is it possible to improve the Õ(ϵ−4) oracle complexity for bilevel optimization problems where
the upper-level function is nonconvex with unbounded smoothness and the lower-level function
is strongly convex, by assuming that the properties of the function at the population level also
hold almost surely for each random realization?

In this paper, we give a positive answer to this question by designing a new algorithm named AccBO
with an improved oracle complexity of Õ(ϵ−3), when the lower-level stochastic gradient has a small
variance O(ϵ). Our algorithm is inspired by momentum-based variance reduction techniques used
in nonconvex smooth optimization [18] under the almost-sure Lipschitz stochastic gradient oracle
framework. The innovation of AccBO lies in its update rules: it employs normalized stochastic
gradient descent with recursive momentum for the upper-level variable and stochastic Nesterov
accelerated gradient descent with averaging for the lower-level variable. Our approach differs
from existing accelerated bilevel optimization algorithms, such as those proposed by [71, 46] in
two key ways: (i) while these algorithms use recursive momentum for the upper-level variable
update, AccBO utilizes normalized recursive momentum to address the unbounded smoothness of the
upper-level function; (ii) for the lower-level variable update, we use stochastic Nesterov accelerated
gradient descent with averaging, in contrast to the recursive momentum method used by the other
algorithms. The primary challenge in analyzing the convergence rate of AccBO arises from the need
to simultaneously control errors from both upper-level and lower-level variables, given the unbounded
smoothness, large learning rate, and recursive momentum in the upper-level problem. Our main
contributions are summarized as follows.

• We design a new algorithm named AccBO for solving bilevel optimization problems where
the upper-level function is nonconvex with unbounded smoothness and the lower-level
function is strongly convex. AccBO leverages normalized recursive momentum for the upper-
level variable and Nesterov momentum for the lower-level variable under the stochastic
setting to achieve acceleration. To the best of our knowledge, the simultaneous usage of
these two techniques in stochastic bilevel optimization is novel and has not been previously
explored in the bilevel optimization literature.

• We prove that the AccBO algorithm requires Õ(ϵ−3) oracle calls for finding an ϵ-stationary
point, when the variance of the lower-level stochastic gradient is O(ϵ). This complexity
strictly improves the state-of-the-art oracle complexity for unbounded smooth nonconvex
upper-level problem and strongly-convex lower-level problem as described in [38, 32] 2.
To achieve this result, we introduce novel proof techniques for analyzing the dynamics of
stochastic Nesterov accelerated gradient descent under distribution drift with high probability

2Note that even if the lower-level stochastic gradient variance is O(ϵ), the oracle complexity required
in [38, 32] is still Õ(ϵ−4) since the oracle complexity required for their upper-level problem is already Õ(ϵ−4).
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for the lower-level variable, which are crucial for analyzing the hypergradient error and also
of independent interest.

• We empirically verify the effectiveness of our proposed algorithm on various tasks, in-
cluding deep AUC maximization and data hypercleaning. Our algorithm indeed achieves
the predicted theoretical acceleration and significantly outperforms baselines in bilevel
optimization.

2 Related Work

Relaxed Smoothness. The concept of relaxed smoothness was initially introduced by [75], inspired
by the loss landscapes observed in recurrent neural networks and long-short term memory networks.
They show that techniques such as gradient clipping and normalization could improve the performance
compared with gradient descent in these scenarios. It inspired further investigations that concentrate
on various aspects, including improved analysis on gradient clipping and normalization [74, 45],
adaptive algorithms [15, 51, 68, 24], federated algorithms [54, 16, 17], generalized assumptions [15,
14], and recursive momentum based methods with faster rates [60, 56]. The work of [38, 32]
considered a relaxed smoothness condition for the upper-level problem in the bilevel optimization
setting.

Bilevel Optimization. Bilevel optimization refers to a special kind of optimization where one
problem is embedded within another. It was first introduced by [9]. Early works developed specific
bilevel optimization algorithms with asymptotic convergence analysis [67, 1, 69]. Ghadimi and
Wang [30] initiated the study of non-asymptotic convergence for gradient-based methods in bilevel
optimization where the upper-level problem is smooth and the lower-level problem is strongly convex.
This field saw further advancements with improved complexity results [41, 44, 11, 21, 12] and fully
first-order algorithms [48, 52]. There is a line of work which leverages almost-sure Lipschitz oracle
(e.g., stochastic gradient) to obtain improved convergence rates of bilevel optimization algorithms [71,
46]. When the lower-level function is not strongly convex, several algorithmic framework and
approximation schemes were proposed [61, 63, 49, 62, 55, 10]. The setting considered in this paper
is very close to [38, 32], where the upper-level function is nonconvex and unbounded smooth, and
the lower-level function is strongly convex. However, the work of [38, 32] do not have an accelerated
rate Õ(ϵ−3) for finding an ϵ-stationary point as established in this paper.

Nesterov Accelerated Gradient and Variants. Nesterov Accelerated Gradient (NAG) method was
introduced by [58] for deterministic convex optimization problems. The stochastic version of NAG
(SNAG) was extensively studied in the literature [3, 5, 66, 13]. To the best of our knowledge, none
of them provide a high probability analysis for SNAG. In the online learning setting, there is a line
of work focusing on the perspective of sequential stochastic/online optimization with distributional
drift [6, 70, 57, 20]. While these studies provide valuable insights into adaptive techniques and
performance bounds under distributional drift, they do not explore the potential integration of such
methods with bilevel optimization problems, nor do they consider the application of SNAG within
this framework.

3 Problem Setup and Preliminaries

Define ⟨·, ·⟩ and ∥ · ∥ as the inner product and the Euclidean norm. Throughout the paper, we use
asymptotic notation Õ(·), Θ̃(·), Ω̃(·) to hide polylog factors in ϵ−1 and 1/δ. Denote f : Rdx ×Rdy →
R as the upper-level function, and g: Rdx ×Rdy → R as the lower-level function. The hypergradient
∇Φ(x) has the following form [30]:

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

[
∇2

yyg(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)). (2)

To avoid the Hessian inverse computation, we typically use the following Neumann series to approxi-
mate the hypergradient [30, 46, 41]. In particular, for the stochastic setting, define

∇̄f(x, y; ξ̄) = ∇xF (x, y; ξ)− Q

lg,1
∇2

xyG(x, y; ζ(0))

q(Q)∏
i=1

(
I −

∇2
yyG(x, y; ζ(i))

lg,1

)
∇yF (x, y; ξ),

where q(Q) ∼ Uniform{0, . . . , Q− 1}, ξ̄ := {ξ, ζ(0), . . . , ζ(q(Q))} and we use the convention that∏j
i=1 Ai = I if j = 0. Then Eξ̄[∇̄f(x, y; ξ̄)] is a good approximation of ∇Φ(x) if y and y∗(x) are

close [30].
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Throughout the paper, we make the following assumptions.
Assumption 3.1 ((Lx,0, Lx,1, Ly,0, Ly,1)-smoothness [38]). Let z = (x, y) and z′ = (x′, y′), there

exists Lx,0, Lx,1, Ly,0, Ly,1 > 0 such that for all z, z′, if ∥z − z′∥ ≤ 1/
√
2(L2

x,1 + L2
y,1), then

∥∇xf(z) − ∇xf(z
′)∥ ≤ (Lx,0 + Lx,1∥∇xf(z)∥)∥z − z′∥ and ∥∇yf(z) − ∇yf(z

′)∥ ≤ (Ly,0 +
Ly,1∥∇yf(z)∥)∥z − z′∥.

Remark: Assumption 3.1 is introduced by [38] for describing the bilevel optimization problems with
recurrent neural networks. This assumption can be regarded as a block-wise relaxed smoothness
assumptions for two blocks x and y, which is a variant of the relaxed smoothness assumption [75]
and the coordinate-wise relaxed smooth assumption [15].
Assumption 3.2. Suppose the followings hold for objective functions f and g: (i) f is continuously
differentiable and (Lx,0, Lx,1, Ly,0, Ly,1)-smooth in (x, y); (ii) For every x, ∥∇yf(x, y)∥ ≤ lf,0 for
all y; (iii) For every x, g(x, y) is µ-strongly-convex in y for µ > 0; (iv) g is lg,1-smooth jointly in
(x, y); (v) g is twice continuously differentiable, and ∇2

xyg,∇2
yyg are lg,2-Lipschitz jointly in (x, y).

Remark: Assumption 3.2 is standard in the bilevel optimization literature [48, 38, 30]. Assump-
tion 3.2 (i) characterizes the unbounded smoothness of the upper-level function and is empirically
observed in recurrent neural networks [38].
Assumption 3.3. The following stochastic estimators are unbiased and have the following properties:

Eξ∼Df [∥∇xF (x, y; ξ)−∇xf(x, y)∥2] ≤ σ2
f,1, Eξ∼Df [∥∇yF (x, y; ξ)−∇yf(x, y)∥2] ≤ σ2

f,1,

Pr(∥∇yG(x, y; ξ)−∇yg(x, y)∥ ≥ λ) ≤ 2 exp(−2λ2/σ2
g,1) ∀λ > 0,

Eζ∼Dg [∥∇
2
xyG(x, y; ζ)−∇2

xyg(x, y)∥2] ≤ σ2
g,2, Eζ∼Dg [∥∇

2
yyG(x, y; ζ)−∇2

yyg(x, y)∥2] ≤ σ2
g,2.

Remark: Assumption 3.3 assumes the stochastic oracle for the upper-level problem has bounded
variance, which is standard in nonconvex stochastic optimization [28–30]. It also assumes the
stochastic oracle for the lower-level problem is light-tailed, which is common for the high probability
analysis for the lower-level problem [50, 39]. Note that the same assumption is also made in [38, 32]
for the bilevel problems with a unbounded smooth upper-level function.
Assumption 3.4. F (x, y; ξ) and G(x, y; ζ) satisfy Assumption 3.2 for every ξ and ζ almost surely.

Remark: Assumption 3.4 assumes that each random realization of the upper- and lower-level
functions satisfies the same property as in the population level. Note that this condition is the key to
achieve an improved Õ(ϵ−3) oracle complexity under various settings, including both single-level
nonconvex smooth problems [23, 18, 64] and bilevel problems with nonconvex smooth upper-level
objectives [71, 46]. Furthermore, this assumption is shown to be necessary for achieving improved
oracle complexity in single-level problems [2].

4 Algorithm and Analysis

4.1 Main Challenges and Algorithm Design

Main Challenges. We begin by explaining why existing bilevel optimization algorithms and their
corresponding analysis techniques are insufficient in our setting. First, most algorithms developed
for bilevel optimization require the upper-level function is smooth (i.e., the gradient of the upper-
level function is Lipschitz) [30, 44, 41, 71, 46, 21, 48]. They characterize the estimation error
of the optimal solution for the lower-level problem, utilize an approximate hypergradient descent
approach and the descent lemma for L-smooth functions to prove the convergence. In particular,
they demonstrate that a potential function, incorporating both the function value and the bilevel error
from the lower-level problem, progressively decreases in expectation. However, when the upper-level
function is (Lx,0, Lx,1, Ly,0, Ly,1)-smooth as illustrated in Assumption 3.1, the previous algorithms
and analyses relying on L-smoothness do not work. The reason is that the hypergradient bias depends
on the approximation error of the lower-level variable as well as the hypergradient itself: these
elements are statistically dependent and the standard potential function argument with an expectation-
based analysis would not work. To address this issue, the work of [38, 32] requires a careful high
probability analysis in the unbounded smoothness setting and obtains Õ(ϵ−4) oracle complexity.
Such a requirement of high probability analysis prevents us from leveraging the momentum-based
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Algorithm 1 STOCHASTIC NESTEROV ACCELERATED GRADIENT METHOD (SNAG)
1: Input: x, ỹ−1, ỹ0, α̃, T0 # SNAG(x, ỹ0, α̃, T0)
2: for t = 0, 1, . . . , T0 − 1 do
3: Sample π̃t from distribution Dg

4: z̃t = ỹt + γ(ỹt − ỹt−1)
5: ỹt+1 = z̃t − α̃∇yG(x, z̃t; π̃t)
6: end for

variance reduction technique for updating the lower-level variable. For example, the work [46] which
has Õ(ϵ−3) oracle complexity in the smooth case leverages the momentum-based variance reduction
technique [18] for updating the lower-level variable with an expectation-based analysis, but it seems
difficult to establish a high probability analysis for the momentum-based variance reduction algorithm
in terms of the lower-level variable. Second, the recent work of Hao et al. [38] and Gong et al. [32]
considered that the upper-level function is unbounded smooth and addressed this issue by performing
normalized stochastic gradient with momentum for the upper-level variable and periodic updates
or stochastic gradient descent for the lower-level variable, but their oracle complexity is not better
than Õ(ϵ−4). These facts indicate that we need new algorithm design and analysis techniques to get
potential acceleration.

Algorithm Design. To obtain potential acceleration and enable a high probability analysis for the
lower-level variable, our key idea is to update the upper-level variable by normalized stochastic
gradient descent with recursive momentum and update the lower-level variable by the stochastic
Nesterov accelerated gradient (SNAG) method. Different from [38, 32], the key innovation of our
algorithm design is that we achieve acceleration for both upper-level and lower-level problems
simultaneously but without affecting each other. The upper-level update rule can be regarded
as a generalization of the acceleration technique (e.g., the momentum-based variance reduction
technique) [18, 56] from single-level to bilevel problems. The main challenge is that we need to deal
with the accumulated error of the recursive momentum over time due to the hypergradient bias, which
is caused by the inaccurate estimation of the optimal lower-level variable. Therefore we require a
very small tracking error between the iterate of the lower-level variable and the optimal lower-level
solution defined by the upper-level variable (i.e., y∗(x)) at every iteration. This requirement is
satisfied by executing SNAG method under the distribution drift for the lower-level problem, where
the drift is caused by the change of the upper-level variable over time. Note that we can provide a
high probability analysis of the SNAG method under distributional drift, which strictly improves the
analysis of SGD under distributional drift in [19] in the small stochastic gradient noise regime.

The detailed description of our algorithm is illustrated in Algorithm 2. At the very beginning, we run
a certain number of iterations of SNAG for the fixed upper-level variable x0 (line 2) as the warm-start
stage, and then update the lower-level variable by SNAG (line 8 ∼ 20) with averaging (line 21) and
update the upper-level variable by normalized stochastic gradient descent with recursive momentum
(line 23 ∼ 24). Note that we have two options for implementing SNAG. In Option I (line 8 ∼ 9),
the algorithm simply runs SNAG under distribution drift caused by the sequence {xt}. Option I is
specifically designed for a particular subset of bilevel optimization problems where the lower-level
function is a quadratic function. Option II (line 11 ∼ 20) is designed for a broader range of bilvel
optimization problems, accommodating general strongly-convex lower-level functions. In Option II,
we run SNAG with periodic updates: the lower-level update is performed for N iterations only when
the iteration number t is a multiple of I .

4.2 Main Results

We first introduce some useful notations. Let σ(·) be the σ-algebra generated by the random
variables in the argument. We define the following filtrations for t ≥ 1: F init = σ(π̃0, . . . , π̃T0−1),
Ft = σ(ξ̄0, . . . , ξ̄t−1), F̃1

t = σ(π0, . . . , πt−1), and we also define F̃2
t = σ(π0

t , . . . , π
N−1
t ) when t is

a multiple of I . We use Et, EFt
and E to denote the conditional expectation E[· | Ft], the expectation

over Ft and the total expectation over FT respectively.
Theorem 4.1. Suppose Assumptions 3.1 to 3.4 hold. Let {xt} be the iterates produced by Algorithm 2.
For any given δ ∈ (0, 1) and small enough ϵ (see exact choice in (54)), if σg,1 = O(

√
ϵ) as defined in

(55), and we set parameters αinit, α, β, γ, η, τ, I,N, S,Q, T0 (see exact choices in (56), (57), (58),
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Algorithm 2 ACCELERATED BILEVEL OPTIMIZATION ALGORITHM (ACCBO)
1: Input: αinit, α, β, γ, η, τ, I, S, T0, T , set x0, y

init
0 = 0

2: y0 = SNAG(x0, y
init
0 , αinit, T0), and set y−1 = ŷ0 = y0 # Warm-start

3: for t = 0, 1, . . . , T − 1 do
4: Sample q(Q) ∼ Uniform{0, . . . , Q− 1} and {ζ(0)t,s , . . . , ζ

(q(Q))
t,s }Ss=1 ∼ Dg

5: Sample {ξt,s}Ss=1 ∼ Df , denote ξ̄t := ∪S
s=1{q(Q), ξt,s, ζ

(0)
t,s , . . . , ζ

(q(Q))
t,s }

6: # Lower-Level: Stochastic Nesterov Accelerated Gradient Descent with Averaging
7: # Option I: from Line 8 ∼ 9 (for quadratic lower-level function)
8: zt = yt + γ(yt − yt−1)
9: yt+1 = zt − α∇yG(xt, zt;πt), where πt ∼ Dg

10: # Option II: from Line 11 ∼ 20 (for general strongly convex lower-level function)
11: if t > 0 and t is a multiple of I then
12: Set y0t = y−1

t = yt
13: for j = 0, 1, . . . , N − 1 do
14: zjt = yjt + γ(yjt − yj−1

t )

15: yj+1
t = zjt − α∇yG(xt, z

j
t ;π

j
t ), where πj

t ∼ Dg

16: end for
17: yt+1 = yN+1

t
18: else
19: yt+1 = yt
20: end if
21: ŷt+1 = (1− τ)ŷt + τyt+1 # Averaging
22: # Upper-Level: Normalized Stochastic Gradient Descent with Recursive Momentum
23: mt = βmt−1+(1−β)∇̄f(xt, ŷt; ξ̄t)+β(∇̄f(xt, ŷt; ξ̄t)−∇̄f(xt−1, ŷt−1; ξ̄t)) if t ≥ 1 else

m0 = ∇̄f(x0, ŷ0; ξ̄0)
24: xt+1 = xt − η mt

∥mt∥
25: end for

(59), and (60)) as

αinit = Θ̃(ϵ4), α = Θ̃(ϵ2), 1− β = Θ̃(ϵ2), η = Θ̃(ϵ2), τ = Θ̃(ϵ), γ = O(1),

T0 = Õ(ϵ−2), I = Õ(ϵ−1), N = Õ(ϵ−1), Q = Õ(1), S = Õ(1).

Then with probability at least 1 − 2δ over the randomness in σ(F init ∪ F̃1
T ) (for Option I) or

σ(F init ∪ (∪t≤T F̃2
t )) (for Option II), Algorithm 2 guarantees 1

T

∑T
t=1 E∥∇Φ(xt)∥ ≤ 20ϵ within

T = 4d0

ηϵ = Õ(ϵ−3) iterations, where d0 := Φ(x0) − infx Φ(x) and the expectation is taken over

the randomness over FT . For Option I, it requires T0 + SQT = Õ(ϵ−3) oracle calls of stochastic
gradient or Hessian/Jacobian vector product. For Option II, it requires T0 +

NT
I + SQT = Õ(ϵ−3)

oracle calls of stochastic gradient or Hessian/Jacobian vector product.

Remark: Theorem 4.1 established an improved Õ(ϵ−3) oracle complexity for finding an ϵ-stationary
point when the standard deviation of lower-level stochastic gradient is small: σg,1 = O(

√
ϵ). This

complexity result strictly improves the Õ(ϵ−4) obtained by [38, 32] when the upper-level function
is nonconvex and unbounded smooth. This complexity result also matches that in the single-level
unbounded smooth setting [56] and is nearly optimal in terms of the dependency on ϵ [2]. The full
statement of Theorem 4.1 is included in Theorem E.2.

4.3 Proof Sketch

In this section, we provide a roadmap of proving Theorem 4.1 and the main steps. The detailed proofs
can be found in Appendix D and E. The key idea is to prove two things: (1) the lower-level iterate is
very close to the optimal lower-level variable at every iteration; (2) two consecutive iterates of the
lower-level iterates are close to each other. In particular, define y∗t = y∗(xt), and we aim to prove
that ∥ŷt − y∗t ∥ ≤ O(ϵ) and ∥ŷt+1 − ŷt∥ ≤ O(ϵ2) for every t. These two requirements are essential to
control the hypergradient estimation error (i.e., ∥mt−∇Φ(xt)∥) caused by inaccurate estimate of the
lower-level problem. Lemma 4.7 provides the guarantee for the lower-level problem, and Lemma 4.8
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characterizes the hypergradient estimation error. Equipped with these two lemmas, we can adapt the
momentum-based variance reduction techniques [18, 56] to the upper-level problem and prove the
main theorem.

The main technical contribution of this paper is to provide a general framework for proving the
convergence of SNAG under distributional drift in Section 4.3.1, which can be leveraged as a tool
to control the lower-level error in bilevel optimization and derive the Lemma 4.7, as illustrated in
Section 4.3.2. In particular, we can regard the change of the upper-level variable x at each iteration as
the distributional drift for the lower-level problem: the drift is small due to the normalization operator
of the upper-level update rule and also the Lipschitzness of y∗(x). Once we have the general lemma
for tracking the minimizer for any fixed distributional drift over time, this lemma can be applied to
our algorithm analysis and establish guarantees for the bilevel problem.

4.3.1 Stochastic Nesterov Accelerated Gradient Descent under Distributional Drift

In this section, we study the sequences of stochastic optimization problems minw∈Rd ϕt(w) indexed
by time t ∈ N. We denote the minimizer and the minimal value of ϕt as w∗

t and ϕ∗
t , and we define

the minimizer drift at time t to be ∆t := ∥w∗
t −w∗

t+1∥. With a slight abuse of notation 3, we consider
the SNAG algorithm applied to the sequence {ϕt}Tt=1, where T is the total number of iterations:

zt = wt + γ(wt − wt−1)

wt+1 = wt + γ(wt − wt−1)− αgt,
(3)

where gt = ∇ϕt(zt; ξt) is the stochastic gradient evaluated at zt with random sample ξt. Define
εt = gt −∇ϕt(zt) as the stochastic gradient noise at t-th iteration. Define Ht = σ(ξ1, . . . , ξt−1) as
the filtration, which is the σ-algebra generated by all random variables until t-th iteration. We make
the following assumption, which is the same as Assumption 3 in [20] for high probability analysis.
Assumption 4.2. Function ϕt : Rd → R is µ-strongly convex and L-smooth for constants µ,L > 0.
Also, there exists constants ∆, σ > 0 such that the drift ∆2

t is sub-exponential conditioned on Ht

with parameter ∆2 and the noise εt is norm sub-Gaussian conditioned on Ht with parameter σ/2.
Lemma 4.3. Suppose Assumption 4.2 holds and let {wt} be the iterates produced by the update
rule (3) with constant learning rate α ≤ 1/25L, and set γ =

1−√
µα

1+
√
µα . Define θt = [(wt −

w∗
t )

⊤, (wt−1 − w∗
t )

⊤]⊤ ∈ R2d, and the potential function Vt as

Vt = θ⊤t Pθt + ϕt(wt)− ϕt(w
∗
t ), where P =

1

2α

[
1

√
µα− 1√

µα− 1 (1−√
µα)2

]
⊗ Id.

Then for any given δ ∈ (0, 1) and all t ≥ 0, the following holds with probability at least 1− δ over
the randomness in Ht (here e denotes the base of natural logarithms):

(i) (With drift) Let ϕt(w) :=
µ
2 ∥w − w∗

t ∥2, then Vt ≤
(
1−

√
µα

4

)t
V0 +

(
5
√
ασ2

√
µ + 80∆2

α

)
ln eT

δ .

(ii) (Without drift) Let ϕt(w) ≡ ϕ(w) be any general strongly convex functions with ∆ = 0, then

Vt ≤
(
1−

√
µα

4

)t
V0 +

5
√
ασ2

√
µ ln eT

δ .

Remark: When {ϕt}Tt=1 is a sequence of quadratic functions with moving minimizers, Lemma 4.3
provides a high probability tracking guarantee for SNAG with distributional drift, which is useful
to provide guarantees for Option I in Algorithm 2. Note that this guarantee strictly improves the
guarantee of stochastic gradient descent with distributional drift (e.g., [20, Theorem 6]) in the small
stochastic gradient noise regime and therefore is of independent interest. In particular, for small α,
the decaying factor in the first term is improved from 1− µα

2 to 1−
√
µα

4 , the drift term is improved

from ∆2

µα2 to ∆2

α , and the variance term becomes a bit worse (from ασ2 to
√
ασ2

√
µ ). When σ is small

enough, the variance term becomes insignificant compared with the drift term, then Lemma 4.3
provides an improved convergence rate with high probability. To the best of our knowledge, such an
improved guarantee for SNAG with distributional drift is first shown in this work. When there is no
drift, Lemma 4.3 also provides a high probability guarantee for SNAG. It holds for any smooth and
strongly convex function ϕ, and it is useful to provide guarantees for Option II of Algorithm 2.

3The notation in Section 4.3.1 is independent of that in other sections, although there may be incidental
overlaps in terminology.
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4.3.2 Application of Stochastic Nesterov Accelerated Gradient to Bilevel Optimization

Inspired by [38, 32], we can regard ϕt(·) as ϕt(·) := g(xt, ·) in the bilevel setting, and then we have
∆t = ηlg,1/µ for every t due to the upper-level update rule and the Lipschitzness of y∗(x). Therefore
we can focus on the high probability analysis on the lower-level variable without worrying about the
randomness from the upper-level. Throughout, we assume Assumption 3.1, 3.2, 3.3 and 3.4 hold. In
addition, the failure probability δ ∈ (0, 1) and ϵ > 0 are chosen in the same way as in Theorem 4.1.
Lemma 4.4 (Warm-start). Let {yinitt } be the iterates produced by line 2 of Algorithm 2. Set
αinit = Θ̃(ϵ4), σg,1 = (µα)1/4σ̃g,1, and ϕt(y) ≡ g(x0, y). Then ∥yinitT0

− y∗0∥ ≤
√

µα
32

ϵ
L0

holds with

probability at least 1− δ over the randomness in F̃ init (we denote this event as Einit) in T0 = Õ(ϵ−2)
iterations.

Remark: Lemma 4.4 shows that for fixed initialization x0, running SNAG for at most T0 = Õ(ϵ−2)
iterations can guarantee that the Euclidean distance between the lower-level variable yinitT0

and the
optimal solution y∗(x0) is at most O(ϵ), with high probability.
Lemma 4.5 (Option I). Under event Einit, let {yt} be the iterates produced by Option I. Set α =

Θ̃(ϵ2), σg,1 = (µα)1/4σ̃g,1, and ϕt(y) = g(xt, y) =
µ
2 ∥y− y∗t ∥2. Then for any t ∈ [T ], Algorithm 2

guarantees with probability at least 1− δ over the randomness in F̃1
T (we denote this event as E1

y )
that ∥yt − y∗t ∥ ≤ ϵ/2L0.
Lemma 4.6 (Option II). Under event Einit, let {yt} be the iterates produced by Option II. Set
α = Θ̃(ϵ2), N = Õ(ϵ−1), I = Õ(ϵ−1), σg,1 = (µα)1/4σ̃g,1, and ϕt(y) = g(xt, y) when t is a
multiple of I (i.e., xt is fixed for each update round of Option II so g can be general functions).
Then for any t ∈ [T ], Algorithm 2 guarantees with probability at least 1− δ over the randomness in
σ(∪t≤T F̃2

t ) (we denote this event as E2
y ) that ∥yt − y∗t ∥ ≤ ϵ/L0.

Remark: Lemma 4.5 and Lemma 4.6 show that, under event Einit and both option I and option II,
the algorithm guarantees that each iterate yt is O(ϵ)-close to the the optimal lower-level variable y∗t
at every iteration t with high probability.
Lemma 4.7 (Averaging). Under event Einit ∩ E1

y (Option I) or Einit ∩ E2
y (Option II), set τ =

√
µα

in the averaging step (line 21 of Algorithm 2). Then for any t ≥ 0 we have ∥ŷt − y∗t ∥ ≤ 2ϵ
L0

and

∥ŷt+1 − ŷt∥ ≤ µϵ2

24L2
0σg,1

=: ϑ.

Remark: Lemma 4.7 shows that after performing averaging operations over the sequence {yt}Tt=1,
the averaged sequence enjoys stronger guarantees. First, each averaged iterate ŷt is still O(ϵ)-close to
the optimal lower-level variable y∗t ; Second, two consecutive averaged iterates (i.e., ŷt and ŷt+1) is
O(ϵ2)-close to each other. The stronger guarantees are crucial to control the hypergradient estimation
error as described in Lemma 4.8.
Lemma 4.8. Under event Einit ∩ E1

y (Option I) or Einit ∩ E2
y (Option II), define ϵt = mt −

Et[∇̄f(xt, ŷt; ξ̄t)], then we have the following averaged cumulative error bound:

1

T

T−1∑
t=0

E∥ϵt∥ ≤ σ̄

T (1− β)
+
√

1− βσ̄ +
L̄0√
1− β

√
2(η2 + ϑ2)

S
+ L̄1

√
2(η2 + ϑ2)

S(1− β)

1

T

T−1∑
t=0

E∥∇Φ(xt)∥,

where S denotes the batch size, and σ̄, L̄0, L̄1 are defined in Lemmas B.4 and B.6.

Remark: Lemma 4.8 characterizes the upper-level hypergradient estimation error under the good
event that the lower-level error can be controlled. One can choose hyperparameters appropriately
such that the cumulative error (i.e., LHS) grows only sublinearly in terms of T , which is important
for establishing the fast convergence of our algorithm.

5 Experiments

Deep AUC Maximization with Recurrent Neural Networks. AUC (Area Under the ROC
Curve) [36] is a critical metric in evaluating the performance of binary classification models.
It measures the ability of the model to distinguish between positive and negative classes, and
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Figure 1: Results of bilevel optimization on deep AUC maximization. Figure (a), (b) are the results
over epochs, and Figure (c), (d) are the results over running time.

it is defined as the probability that the prediction score of a positive example is higher than
that is a negative example [35]. Deep AUC maximization [53, 72] can be formulated as a min-
max optimization problem [53]: minw∈Rd,(a,b)∈R2 maxα∈R f(w, a, b, α) := Ez[F (w, a, b, α; z)],

where F (w, a, b, α; z) = (1 − r)(h(w;x) − a)2I[c=1] + r(h(w;x) − b)2I[c=−1] + 2(1 +

α)(rh(w;x)I[c=−1]−(1−r)h(w;x)I[c=1])−r(1−r)α2, w denotes the model parameter, z = (x, c)
is the random data sample (x denote the feature vector and c ∈ {+1,−1} denotes the label), h(w,x)
is the score function defined by a neural network, and r = Pr(c = 1) denotes the ratio of positive
samples in the population. This min-max formulation is an special case of the bilevel problem with
g = −f in (1), which can be reformulated as the following:

min
w∈Rd,(a,b)∈R2

Ez[F (w, a, b, α∗(w, a, b); z)] s.t., α∗(w, a, b) ∈ argmin
α∈R

−Ez[F (w, a, b, α; z)]

(4)
where (w, a, b) denotes the upper-level variable, and α denotes the lower-level variable. In this case,
the lower-level is a quadratic function in terms of α and is strongly convex, and the upper-level
function is non-convex function with potential unbounded smoothness when using a recurrent neural
network as the predictive model.

We aim to perform imbalanced text classification task and maximize the AUC metric. The Deep
AUC maximization experiment is performed on imbalanced Sentiment140 [31] dataset (under the
license of CC BY 4.0), which is a binary text classification task. Specifically, we follow [73] to make
training set imbalanced with a pre-defined imbalanced ratio (r), and leave the test set unchanged.
Given r, we randomly discard the positive samples (with label 1) in original training set until the
portion of positive samples equals to r. The imbalance ratio r is set to 0.2 in our experiment, which
means only 20% data is positive in the training set. We use a two-layer recurrent neural network with
input dimension=300, hidden dimension=4096, and output dimension=2 for the model prediction.

We compare with some bilevel optimization baselines, including StocBio [44], TTSA [41], SABA
[21], MA-SOBA [12], SUSTAIN [46], VRBO [71] and BO-REP [38]. We show the training and
test AUC result with 25 epochs in (a) (b) of Figure 1 and running time in (c), (d) of Figure 1. Our
algorithm AccBO achieves highest AUC score among all the baselines over epochs and running time.
The running time figure shows AccBO converges to a good result faster than other baselines. The
detailed parameter tuning and selection are included in Appendix G.

Data Hypercleaning. The Data hypercleaning task tries to learn a set of weights λ for the corrupted
training data Dtr, such that the model trained on the weighted corrupted training set can achieve
good performance on the clean validation set Dval, where the corrupted training set Dtr := {xi, ȳi}
and the label ȳi is randomly flipped to one of other labels with probability 0 < p < 1. The data
hyper-cleaning can be formulated as a bilevel optimization problem,

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) ∈ argmin
w

1

|Dtr|
∑

ζi∈Dtr

σ(λi)L(w; ζi) + c∥w∥2, (5)

where w is the model parameter of a neural network, and σ(x) = 1
1+e−x is the sigmoid function.

We perform bilevel optimization algorithms on the noisy text classification dataset Stanford Natural
Language Inference (SNLI) [8] (under the license of CC BY 4.0) with a three-layer recurrent
neural network with input dimension=300, hidden dimension=4096, and output dimension=3 for the
label prediction. Each of sentence-pairs manually labeled as entailment, contradiction, and neutral.
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Figure 2: Results of bilevel optimization on data hyper-cleaning with p = 0.1. Figure (a), (b), (c), (d)
are the results with noise rate p = 0.1 where (a), (b) are the results over epochs, and Figure (c), (d)
are the results over running time. Figure (e), (f), (g), (h) are the results with noise rate p = 0.2.

Specifically, the label of each training data is randomly flipped to one of the other two labels with
probability p. We set p = 0.1 and p = 0.2 in the experiments, respectively. We compare all the
baselines used in the deep AUC maximization experiment. Different from the formulation (4) for the
deep AUC maximization, the lower-level function in (5) is not quadratic function of the lower-level
variable. Therefore we choose Option II in Algorithm 2, i.e., periodic updates for the lower-level
variable. The results are presented in Figure 2 (p = 0.1 and p = 0.2). Our algorithm AccBO exhibits
the highest classification accuracy on training and test set among all the bilevel baselines, and also
shows a high runtime efficiency. More detailed parameter tuning and selection can be found in
Appendix G. All the experiments are run on the device of NVIDIA A6000 (48GB memory) GPU and
AMD EPYC 7513 32-Core CPU.

6 Conclusion

In this paper, we propose a new algorithm named AccBO for solving bilevel optimization problems
where the upper-level is nonconvex and unbounded smooth and the lower-level problem is strongly
convex. The algorithm achieved Õ(ϵ−3) oracle complexity for finding an ϵ-stationary point when
the lower-level stochastic gradient variance is O(ϵ), which matches the rate of the state-of-the-art
single-level relaxed smooth optimization [56] and is nearly optimal in terms of dependency on ϵ [2].

Limitations. There are two limitations of our work. One limitation of our work is that the convergence
analysis for the Option I of our algorithm relies on the lower-level problem being a quadratic function:
only under this case the algorithm becomes a single-loop procedure. Another limitation is that we
require the lower-level stochastic gradient has variance O(ϵ). It remains unclear how to design
single-loop algorithms for more general lower-level strongly convex functions and get rid of the small
stochastic gradient variance assumption for the lower-level variable.
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optimization. IEEE Transactions on Automatic Control, 64(2):496–509, 2018.

[71] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670–13682, 2021.

[72] Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In Advances
in Neural Information Processing Systems, pages 451–459, 2016.

[73] Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Large-scale robust deep auc
maximization: A new surrogate loss and empirical studies on medical image classification. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3040–3049,
2021.

14



[74] Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms
for non-convex optimization. Advances in Neural Information Processing Systems, 33:15511–
15521, 2020.

[75] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. International Conference on Learning
Representations, 2020.

15



A Technical Lemmas

In this section, we will introduce a few useful lemmas. The following technical lemma on recursive
control is crucial for providing high probability guarantee of the lower-level variables yt and ŷt
in Algorithm 2 at anytime. We follow a similar argument as in [20, Proposition 29] with a slight
generalization.
Lemma A.1 (Recursive control on MGF). Consider scalar stochastic processes (Vt), (V ′

t,1), (V
′
t,2),

(Dt,1), (Dt,2) and (Xt) on a probability space with filtration (Ht), which are linked by the inequality

Vt+1 ≤ αtVt +Dt,1

√
V ′
t,1 +Dt,2

√
V ′
t,2 +Xt + κt

for some deterministic constants αt ∈ (−∞, 1] and κt ∈ R. Suppose the following properties hold.

• Vt, V
′
t,1 and V ′

t,2 are non-negative and Ht-measurable.

• Dt,i is mean-zero sub-Gaussian conditioned on Ht with deterministic parameter σi, and
V ′
t,i ≤ Vt for i = 1, 2:

E[exp(λDt,i) | Ht] ≤ exp(λ2σ2
i /2) for all λ ∈ R.

• Xt is non-negative and sub-exponential conditioned on Ht with deterministic parameter νt:

E[exp(λXt) | Ht] ≤ exp(λνt) for all 0 ≤ λ ≤ 1/νt.

Then the estimate

E[exp(λVt+1)] ≤ exp(λ(νt + κt))E[exp(λ(1 + αt)Vt/2)]

holds for any λ satisfying 0 ≤ λ ≤ min
{

1−αt

2(σ2
1+σ2

2)
, 1
2νt

}
.

Proof of Lemma A.1. For any index t ≥ 0 and any scalar λ ≥ 0, the law of total expectation implies

E[exp(λVt+1)] ≤ E
[
exp(λ(αtVt +Dt,1

√
V ′
t,1 +Dt,2

√
V ′
t,2 +Xt + κt))

]
= exp(λκt)E

[
exp(λαtVt)E

[
exp

(
λ
(
Dt,1

√
V ′
t,1 +Dt,2

√
V ′
t,2

))
exp(λXt) | Ht

]]
.

Hölder’s inequality in turn yields

E
[
exp(λαtVt)E

[
exp

(
λ
(
Dt,1

√
V ′
t,1 +Dt,2

√
V ′
t,2

))
exp(λXt) | Ht

]]
≤
√
E
[
exp

(
2λ
(
Dt,1

√
V ′
t,1 +Dt,2

√
V ′
t,2

))
| Ht

]
· E [exp(2λXt) | Ht]

≤
√

exp
(
2λ2(σ2

i V
′
t,1 + σ2

i V
′
t,2)
)
exp(2λνt)

≤ exp
(
λ2(σ2

1 + σ2
2)Vt

)
exp(λνt)

provided 0 ≤ λ ≤ 1/2νt, where we use V ′
t,i ≤ Vt for i = 1, 2 in the last inequality. Therefore, under

the condition that

0 ≤ λ ≤ min

{
1− αt

2(σ2
1 + σ2

2)
,
1

2νt

}
,

the following estimate hold for all t ≥ 0:

E[exp(λVt+1)] ≤ exp(λκt)E
[
exp(λαtVt) exp

(
λ2(σ2

1 + σ2
2)Vt

)
exp(λνt)

]
= exp(λ(νt + κt))E

[
exp

(
λ(αt + λ(σ2

1 + σ2
2))Vt

)]
≤ exp(λ(νt + κt))E[exp(λ(1 + αt)Vt/2)],

where the last inequality follows by the given range of λ. Thus the proof is completed.

Next, we introduce the following Young’s inequality beyond Euclidean norm cases. This lemma
serves as an important role when dealing with distributional drift for high probability SNAG analysis.
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Lemma A.2 (Young’s inequality). For any vectors v1, v2 ∈ Rd, positive semidefinite (PSD) matrix
Q ∈ Rd×d, and scalar c > 0, it holds that 4

∥v1 + v2∥2Q ≤ (1 + c)∥v1∥2Q +

(
1 +

1

c

)
∥v2∥2Q.

Proof of Lemma A.2. By definition of ∥ · ∥Q, we have

∥v1 + v2∥2Q = (v1 + v2)
⊤Q(v1 + v2)

= ∥v1∥2Q + ∥v2∥2Q + 2v⊤1 Qv2.
(6)

Since Q ∈ Rd×d is PSD, let Q = UU⊤ be the Cholesky decomposition, then

2v⊤1 Qv2 = 2v⊤1 UU⊤v2 = 2(U⊤v1)
⊤(U⊤v2)

≤ c∥U⊤v1∥2 +
1

c
∥U⊤v2∥2

= c∥v1∥2Q +
1

c
∥v2∥2Q,

(7)

where we use Young’s inequality and definition of ∥ · ∥Q for the second and third lines, respectively.
Combing (6) and (7) gives the result as claimed.

B Auxiliary Lemmas for Bilevel Optimization

In this section, we provide important properties of the objective function Φ in bilevel optimization
problems, as well as characterizations (such as variance and bias) for stochastic hypergradient
estimator ∇̄f(x, y; ξ̄) based on Neumann series. For readers’ convenience, we only list the results
here and defer the detailed proofs to Appendix F.
Lemma B.1 (Lipschitz property, [38, Lemma 8]). Under Assumptions 3.1 and 3.2, y∗(x) is (lg,1/µ)-
Lipschitz continuous.

Lemma B.2 ((L0, L1)-smoothness, [38, Lemma 9]). Under Assumptions 3.1 and 3.2, for any x, x′

we have

∥∇Φ(x)−∇Φ(x′)∥ ≤ (L0+L1∥∇Φ(x′)∥)∥x−x′∥ if ∥x−x′∥ ≤ 1√
2(1 + l2g,1/µ

2)(L2
x,1 + L2

y,1)
,

where (L0, L1)-smoothness constant L0 and L1 are defined as

L0 =

√
1 +

l2g,1
µ2

(
Lx,0 + Lx,1

lg,1lf,0
µ

+
lg,1
µ

(Ly,0 + Ly,1lf,0) + lf,0
lg,1lg,2 + lg,2µ

µ2

)
and L1 =

√
1 +

l2g,1
µ2

Lx,1.

Lemma B.3 (Descent inequality, [38, Lemma 10]). Suppose Assumptions 3.1 and 3.2 and 3.2 hold.
Then for any x, x′ we have

Φ(x) ≤ Φ(x′)+⟨∇Φ(x′), x−x′⟩+L0 + L1∥∇Φ(x′)∥
2

∥x−x′∥2 if ∥x−x′∥ ≤ 1√
2(1 + l2g,1/µ

2)(L2
x,1 + L2

y,1)
.

Lemma B.4 ([46, Lemma B.1]). Under Assumptions 3.1 to 3.4, the bias of the stochastic hypergradi-
ent estimate of the upper-level objective satisfies

∥∇̄f(x, y)− Eξ̄[∇̄f(x, y; ξ̄)]∥ ≤ lg,1lf,0
µ

(
1− µ

lg,1

)Q

,

where Q is the number of samples chosen to approximate the Hessian inverse. Moreover, we have

Eξ̄[∥∇̄f(x, y; ξ̄)− Eξ̄[∇̄f(x, y; ξ̄)]∥2] ≤ σ2
f,1 +

3

µ2

[
(σ2

f,1 + l2f,0)(σ
2
g,2 + 2l2g,1) + σ2

f,1l
2
g,1

]
:= σ̄2.

4Here we define ∥v∥Q :=
√

v⊤Qv for any vector v ∈ Rd and PSD matrix Q ∈ Rd×d.
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Lemma B.5. Under Assumptions 3.1 to 3.4, we have

∥∇̄f(x, y)−∇Φ(x)∥ ≤ (L̄+ Lx,1∥∇Φ(x)∥)∥y − y∗(x)∥,

where constant L̄ is defined as

L̄ := Lx,0 + Lx,1
lg,1lf,0

µ
+

lg,1
µ

(Ly,0 + Ly,1lf,0) + lf,0
µlg,2 + lg,1lg,2

µ2
≤ L0.

Lemma B.6. Under Assumptions 3.1 to 3.4, we have

(i) For any fixed y ∈ Rdy and any x, x′ ∈ Rdx ,

Eξ̄∥∇̄f(x, y; ξ̄)− ∇̄f(x′, y; ξ̄)∥2 ≤ (L̄2
0 + L̄2

1∥∇Φ(x)∥2)∥x− x′∥2.

(ii) For any fixed x ∈ Rdx and any y, y′ ∈ Rdy ,

Eξ̄∥∇̄f(x, y; ξ̄)− ∇̄f(x, y′; ξ̄)∥2 ≤ (L̄2
0 + L̄2

1∥∇Φ(x)∥2)∥y − y′∥2.

In the above expressions, we define L̄0 and L̄1 as

L̄0 =

{
4

(
Lx,0 + Lx,1

(
lg,1lf,0

µ
+

(
Lx,0 +

Lx,1lg,1lf,0
µ

)
∥y − y∗(x)∥

))2

+
6Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)

2 + l2f,0l
2
g,2 +

l2f,0l
2
g,1l

2
g,2Q

2

(lg,1 − µ)2

)}1/2

,

L̄1 = 2Lx,1(1 + Lx,1∥y − y∗(x)∥).

Note that in Lemma B.6, constant L̄0 depends on the value of ∥y − y∗(x)∥. When we consider this
term in Algorithm 2, it turns into ∥yt − y∗t ∥ or ∥ŷt − y∗t ∥, which are both as small as O(ϵ) (and thus
bounded) with high probability by Lemmas 4.5 to 4.7. In other words, we can treat this term as
another constant for our algorithm and analysis.

C Proofs of Results in Section 4.3.1

For convenience, we will restate a few concepts included in Section 4.3.1 here. We consider the
sequences of stochastic optimization problems

min
w∈Rd

ϕt(w) (8)

indexed by time t ∈ N. We denote the minimizer and the minimal value of ϕt as w∗
t and ϕ∗

t , and
we define the minimizer drift at time t to be ∆t := ∥w∗

t − w∗
t+1∥. With a slight abuse of notation,

we consider the SNAG algorithm applied to the sequence {ϕt}Tt=1, where T is the total number of
iterations:

zt = wt + γ(wt − wt−1)

wt+1 = wt + γ(wt − wt−1)− αgt,
(9)

where gt = ∇ϕt(zt; ξt) is the stochastic gradient evaluated at zt with random sample ξt. Define
εt = gt −∇ϕt(zt) as the stochastic gradient noise at t-th iteration. Define Ht = σ(ξ1, . . . , ξt−1) as
the filtration, which is the σ-algebra generated by all random variables until t-th iteration. We will
make the following standard assumption, as illustrated below 5.
Assumption C.1. The sequences of time-varying functions satisfy that, each function ϕt : Rd → R
is µ-strongly convex and L-smooth for some constants µ,L > 0.
Assumption C.2 (Sub-Gaussian drift and noise). There exists constants ∆, σ > 0 such that the
following holds for all t ≥ 0:

(i) (Drift) The drift ∆2
t is sub-exponential conditioned on Ht with parameter ∆2:

E
[
exp(λ∆2

t ) | Ht

]
≤ exp(λ∆2) for all 0 ≤ λ ≤ ∆−2.

5Note that Assumptions C.1 and C.2 are more concrete than that in Section 4.3.1.
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(ii) (Noise) The noise εt is norm sub-Gaussian conditioned on Ht with parameter σ/2:

Pr {∥εt∥ ≥ ϱ | Ht} ≤ 2 exp(−2ϱ2/σ2) for all ϱ > 0.

The following lemma characterize the one-step improvement for stochastic Nesterov accelerated
gradient method. Although part of our analysis is similar to [13, 5], our final goal is quite different: we
aim to derive a careful formulation (see (13)) such that we can apply Lemma A.1 to recursively control
the moment generating function of Vt with distributional drift, thus leading to a high probability
bound for Vt at anytime (see Lemma C.5), while [13, 5] only show the convergence in expectation
without distributional drift.

Lemma C.3 (Distance recursion, with drift). Suppose that Assumptions C.1 and C.2 hold. Let {wt}
be the iterates produced by update rule (9) with constant learning rate α ≤ 1/2L and set constants
γ, ρ > 0, and matrix P ∈ R2d×2d as

γ =
1−√

µα

1 +
√
µα

, ρ2 = 1−√
µα, P =

1

2α

[
1

√
µα− 1√

µα− 1 (1−√
µα)2

]
⊗ Id. (10)

Define θt = [(wt − w∗
t )

⊤, (wt−1 − w∗
t )

⊤]⊤ ∈ R2d, also define the potential function and ut,1, ut,2

as

Vt = θ⊤t Pθt + ϕt(wt)− ϕt(w
∗
t ), ut,1 =

wt − w∗
t

∥wt − w∗
t ∥

, ut,2 =
zt − wt

∥zt − wt∥
. (11)

Then for all t ≥ 0, it holds that[
wt+1 − w∗

t
wt − w∗

t

]⊤
P

[
wt+1 − w∗

t
wt − w∗

t

]
+ ϕt(wt+1)− ϕt(w

∗
t )

≤ ρ2Vt − α(1− Lα)⟨∇ϕt(zt), εt⟩+
Lα2

2
∥εt∥2.

(12)

Specifically, if ϕt(w) :=
µ
2 ∥w − w∗

t ∥2, then we have

Vt+1 ≤
(
1−

√
µα

2

)
Vt +

(
1 +

√
µα

4

)[
−
√

2µα(1− Lα)⟨ut,1, εt⟩
√

µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]
+

20µ∆2
t√

µα
.

(13)

Proof of Lemma C.3. We first apply Lemma A.2 with

v1 + v2 = θt+1 =

[
wt+1 − w∗

t+1
wt − w∗

t+1

]
, v1 =

[
wt+1 − w∗

t
wt − w∗

t

]
, v2 =

[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]
, Q = P

to obtain

Vt+1 = θ⊤t+1Pθt+1 + ϕt+1(wt+1)− ϕt+1(w
∗
t+1)

≤
(
1 +

√
µα

4

)[
wt+1 − w∗

t

wt − w∗
t

]⊤
P

[
wt+1 − w∗

t

wt − w∗
t

]
+

(
1 +

4
√
µα

)[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]⊤
P

[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]
+ ϕt+1(wt+1)− ϕt+1(w

∗
t+1)

=

(
1 +

√
µα

4

){[
wt+1 − w∗

t

wt − w∗
t

]⊤
P

[
wt+1 − w∗

t

wt − w∗
t

]
+ ϕt(wt+1)− ϕt(w

∗
t )

}
︸ ︷︷ ︸

(A)

+ ϕt+1(wt+1)− ϕt+1(w
∗
t+1)−

(
1 +

√
µα

4

)
(ϕt(wt+1)− ϕt(w

∗
t ))︸ ︷︷ ︸

(B)

+

(
1 +

4
√
µα

)[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]⊤
P

[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]
︸ ︷︷ ︸

(C)

.

Now we bound terms (A), (B) and (C) individually.
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Bounding (A). Let us define vector ωt ∈ Rd and matrices A ∈ R2d×2d,B ∈ R2d×d as

ωt = ∇ϕt(zt), A =

[
1 + γ −γ
1 0

]
⊗ Id, B =

[
−α
0

]
⊗ Id.

By (9) we have
[(wt+1 − w∗

t )
⊤, (wt − w∗

t )
⊤]⊤ = Aθt +B(ωt + εt) (14)

Since ϕt is µ-strongly convex, then

ϕt(wt)− ϕt(zt) ≥ ⟨∇ϕt(zt), wt − zt⟩+
µ

2
∥wt − zt∥2. (15)

By L-smoothness of ϕt and the fact that wt+1 = zt − αgt, we have

ϕt(zt)− ϕt(wt+1) ≥ ⟨∇ϕt(zt), zt − wt+1⟩ −
L

2
∥wt+1 − zt∥2

= α⟨∇ϕt(zt), gt⟩ −
Lα2

2
∥gt∥2

= α∥∇ϕt(zt)∥2 + α⟨∇ϕt(zt), εt⟩ −
Lα2

2
(∥∇ϕt(zt)∥2 + 2⟨∇ϕt(zt), εt⟩+ ∥εt∥2)

=
α

2
(2− Lα)∥∇ϕt(zt)∥2 −

Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩,

(16)

where we use gt = ∇ϕt(zt) + εt in the second equality. Noting that by (9) we have

wt − zt = −γ(wt − w∗
t ) + γ(wt−1 − w∗

t ),

and combining (15) and (16) we obtain

ϕt(wt)− ϕt(wt+1) ≥ ⟨∇ϕt(zt), wt − zt⟩+
µ

2
∥wt − zt∥2

+
α

2
(2− Lα)∥∇ϕt(zt)∥2 −

Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩

=

[
θt
ωt

]⊤
X1

[
θt
ωt

]
− Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩,

(17)

where matrix X1 ∈ R3d×3d is defined as

X1 =
1

2

 µγ2 −µγ2 −γ
−µγ2 µγ2 γ
−γ γ α(2− Lα)

⊗ Id.

Then applying the strong convexity of ϕt again gives

ϕt(w
∗
t )− ϕt(zt) ≥ ⟨∇ϕt(zt), w

∗
t − zt⟩+

µ

2
∥w∗

t − zt∥2. (18)

Noting that
w∗

t − zt = (w∗
t − wt)− γ(wt − w∗

t ) + γ(wt−1 − w∗
t )

= −(1 + γ)(wt − w∗
t ) + γ(wt−1 − w∗

t ),

and combining (16) and (18) we obtain

ϕt(w
∗
t )− ϕt(wt+1) ≥ ⟨∇ϕt(zt), w

∗
t − zt⟩+

µ

2
∥w∗

t − zt∥2

+
α

2
(2− Lα)∥∇ϕt(zt)∥2 −

Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩

=

[
θt
ωt

]⊤
X2

[
θt
ωt

]
− Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩,

(19)

where matrix X2 ∈ R3d×3d is defined as

X2 =
1

2

 µ(1 + γ)2 −µγ(1 + γ) −(1 + γ)
−µγ(1 + γ) µγ2 γ
−(1 + γ) γ α(2− Lα)

⊗ Id.
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Next, we multiply (17) by ρ2 and (19) by 1− ρ2, then sum them up to get
ρ2(ϕt(wt)− ϕt(w

∗
t ))− (ϕt(wt+1)− ϕt(w

∗
t ))

≥
[
θt
ωt

]⊤
(ρ2X1 + (1− ρ2)X2)

[
θt
ωt

]
− Lα2

2
∥εt∥2 + α(1− Lα)⟨∇ϕt(zt), εt⟩.

(20)

By [42, Section 3.1] (see also [5, Corollary 4.9], [4, Theorem 2.3]), we have the following fact:[
A⊤PA− ρ2P A⊤PB

B⊤PA B⊤PB

]
− (ρ2X1 + (1− ρ2)X2) ⪯ 0, (21)

which, combined with (20) yields[
wt+1 − w∗

t
wt − w∗

t

]⊤
P

[
wt+1 − w∗

t
wt − w∗

t

]
− ρ2θ⊤t Pθt

=

[
θt
ωt

]⊤ [
A⊤PA− ρ2P A⊤PB

B⊤PA B⊤PB

] [
θt
ωt

]
+ ε⊤t B

⊤PBεt

≤
[
θt
ωt

]⊤
(ρ2X1 + (1− ρ2)X2)

[
θt
ωt

]
+

α

2
∥εt∥2

≤ −(ϕt(wt+1)− ϕt(w
∗
t )) + ρ2(ϕt(wt)− ϕt(w

∗
t ))− α(1− Lα)⟨∇ϕt(zt), εt⟩+

α+ Lα2

2
∥εt∥2,

where the first inequality uses (14) and (21), along with the fact that B⊤PB = (α/2)⊗ Id and hence
λmax(B

⊤PB) = α/2; and the last inequality follows by (20). Rearrange the above inequality and
by definition of the potential function Vt, we obtain[

wt+1 − w∗
t

wt − w∗
t

]⊤
P

[
wt+1 − w∗

t
wt − w∗

t

]
+ ϕt(wt+1)− ϕt(w

∗
t )

≤ ρ2Vt − α(1− Lα)⟨∇ϕt(zt), εt⟩+
α(1 + Lα)

2
∥εt∥2.

(22)

Now recall that in (8) our objective function has the form of ϕt(w) =
µ
2 ∥w−w∗

t ∥2, hence ∇ϕt(zt) =
µ(zt − w∗

t ). Plugging this into the above inequality gives[
wt+1 − w∗

t
wt − w∗

t

]⊤
P

[
wt+1 − w∗

t
wt − w∗

t

]
+ ϕt(wt+1)− ϕt(w

∗
t )

≤ ρ2Vt − µα(1− Lα)⟨zt − w∗
t , εt⟩+

α+ Lα2

2
∥εt∥2

= ρ2Vt − µα(1− Lα)⟨wt − w∗
t , εt⟩ − µα(1− Lα)⟨zt − wt, εt⟩+

α(1 + Lα)

2
∥εt∥2

= ρ2Vt −
√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2,

(23)

where ut,1 and ut,2 are defined as

ut,1 =
wt − w∗

t

∥wt − w∗
t ∥

, ut,2 =
zt − wt

∥zt − wt∥
.

Therefore, we conclude that

(A) ≤
(
1 +

√
µα

4

)[
ρ2Vt −

√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]

≤
(
1−

3
√
µα

4

)
Vt +

[
−
√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]
,

(24)
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where the last inequality follows from the definition of ρ and simple calculation(
1 +

√
µα

4

)
ρ2 =

(
1 +

√
µα

4

)
(1−√

µα) ≤ 1−
3
√
µα

4
.

Bounding (B). Recall that under distributional drift, the objective function in (8) has the form of
ϕt(w) =

µ
2 ∥w − w∗

t ∥2, then we have

(B) = ϕt+1(wt+1)− ϕt+1(w
∗
t+1)−

(
1 +

√
µα

4

)
(ϕt(wt+1)− ϕt(w

∗
t ))

≤
(
1 +

√
µα

4

)
(ϕt+1(wt+1)− ϕt+1(w

∗
t+1)− ϕt(wt+1) + ϕt(w

∗
t ))

=
µ

2

(
1 +

√
µα

4

)
(∥wt+1 − w∗

t+1∥2 − ∥wt+1 − w∗
t ∥2)

≤ µ

2

(
1 +

√
µα

4

)
∥w∗

t − w∗
t+1∥∥wt+1 − w∗

t + wt+1 − w∗
t+1∥

≤ µ

2

(
1 +

√
µα

4

)
∆t(2∥wt+1 − w∗

t+1∥+ ∥w∗
t+1 − w∗

t ∥)

Since ϕt+1 is µ-strongly convex and matrix P is PSD, then
Vt+1 = θ⊤t+1Pθt+1 + ϕt+1(wt+1)− ϕt(w

∗
t+1) ≥ ϕt+1(wt+1)− ϕt(w

∗
t+1)

≥ µ

2
∥wt+1 − w∗

t+1∥2 =⇒ ∥wt+1 − w∗
t+1∥ ≤

√
2

µ

√
Vt+1.

Plugging the above fact back into the upper bound for (B) gives

(B) ≤ µ

2

(
1 +

√
µα

4

)
∆t

(
2

√
2

µ

√
Vt+1 +∆t

)
=
√
2µ∆t

(
1 +

√
µα

4

)√
Vt+1 +

µ

2

(
1 +

√
µα

4

)
∆2

t .

(25)

Bounding (C). For this part, we handle the distributional drift. By definition of P in (10), we have

(C) =

(
1 +

4
√
µα

)[
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]⊤
1

2α

[
Id (

√
µα− 1)Id

(
√
µα− 1)Id (1−√

µα)2Id

] [
w∗

t − w∗
t+1

w∗
t − w∗

t+1

]
=

µ

2

(
1 +

4
√
µα

)
∆2

t ,

(26)

where in the last equality we use the basic algebra of block matrix multiplication and the definition of
∆t = ∥w∗

t − w∗
t+1∥.

Final Bound for Vt+1. Now we are ready to derive the upper bound for Vt+1. Combining (24),
(25) and (26) together yields
Vt+1 ≤ (A) + (B) + (C)

≤
(
1−

3
√
µα

4

)
Vt +

[
−
√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]

+
√
2µ∆t

(
1 +

√
µα

4

)√
Vt+1 + µ

(
1 +

√
µα

8
+

2
√
µα

)
∆2

t .

(27)

For simplicity, we define D as the following

D =

(
1−

3
√
µα

4

)
Vt +

[
−
√

2µα(1− Lα)⟨ut,1, εt⟩
√

µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]
+ µ

(
1 +

√
µα

8
+

2
√
µα

)
∆2

t .
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Hence (27) turns into

Vt+1 −
√
2µ∆t

(
1 +

√
µα

4

)√
Vt+1 −D ≤ 0.

Solving the above inequality we get√
Vt+1 ≤ 1

2

√2µ∆t

(
1 +

√
µα

4

)
+

√(√
2µ∆t

(
1 +

√
µα

4

))2

+ 4D


≤
√

2µ∆t

(
1 +

√
µα

4

)
+
√
D

Then an application of Young’s inequality reveals

Vt+1 ≤
(
1 +

√
µα

4

)
D +

(
1 +

4
√
µα

)(√
2µ∆t

(
1 +

√
µα

4

))2

=

(
1 +

√
µα

4

){(
1−

3
√
µα

4

)
Vt +

[
−
√

2µα(1− Lα)⟨ut,1, εt⟩
√

µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]
+ µ

(
1 +

√
µα

8
+

2
√
µα

)
∆2

t

}

+

(
1 +

4
√
µα

)
2µ∆2

t

(
1 +

√
µα

4

)2

≤
(
1−

√
µα

2

)
Vt +

(
1 +

√
µα

4

)[
−
√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]

+ µ

(
1 +

√
µα

4

)(
1 +

√
µα

8
+

2
√
µα

)
∆2

t +

(
1 +

4
√
µα

)
2µ∆2

t

(
1 +

√
µα

4

)2

,

where we plug in the definition of D for the first equality. Since the learning rate α ≤ 1/L and thus
µα ≤ 1, then we have(

1 +

√
µα

4

)(
1 +

√
µα

8
+

2
√
µα

)
≤ 125

32
√
µα

, 2

(
1 +

4
√
µα

)(
1 +

√
µα

4

)2

≤ 125

8
√
µα

.

Therefore, we finally conclude that

Vt+1 ≤
(
1−

√
µα

2

)
Vt +

(
1 +

√
µα

4

)[
−
√
2µα(1− Lα)⟨ut,1, εt⟩

√
µ

2
∥wt − w∗

t ∥

− 2µ
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+
α(1 + Lα)

2
∥εt∥2

]
+

20µ∆2
t√

µα
,

which is as claimed in (13).

When there is no drift, the following lemma holds for any general strongly convex functions ϕ in Rd.
Lemma C.4 (Distance recursion, without drift). Under the same settings as in Lemma C.3 with
ϕt(w) ≡ ϕ(w), and w∗

t ≡ w∗, where ϕ(w) can be any general strongly functions in Rd. We redefine
ut,1, ut,2 as

ut,1 =
∇ϕ(wt)−∇ϕ(w∗)

∥∇ϕ(wt)−∇ϕ(w∗)∥
, ut,2 =

∇ϕ(zt)−∇ϕ(wt)

∥∇ϕ(zt)−∇ϕ(wt)∥
. (28)

Then for all t ≥ 0, it holds that

Vt+1 ≤ (1−√
µα)Vt −

√
2

µ
Lα(1− Lα)⟨ut,1, εt⟩

1

L

√
µ

2
∥∇ϕt(wt)−∇ϕt(w

∗)∥

− 2L
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2L
√
2α

∥∇ϕt(zt)−∇ϕt(wt)∥+
α(1 + Lα)

2
∥εt∥2.

(29)
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Proof of Lemma C.4. By (12) in Lemma C.3 with ϕt(w) ≡ ϕ(w) and w∗
t ≡ w∗, we have

Vt+1 ≤ ρ2Vt − α(1− Lα)⟨∇ϕt(zt), εt⟩+
Lα2

2
∥εt∥2

= ρ2Vt − α(1− Lα)⟨∇ϕt(wt)−∇ϕt(w
∗), εt⟩ − α(1− Lα)⟨∇ϕt(zt)−∇ϕt(wt), εt⟩+

α(1 + Lα)

2
∥εt∥2

= (1−√
µα)Vt −

√
2

µ
Lα(1− Lα)⟨ut,1, εt⟩

1

L

√
µ

2
∥∇ϕt(wt)−∇ϕt(w

∗)∥

− 2L
√
2α

1 +
√
µα

α(1− Lα)⟨ut,2, εt⟩
1 +

√
µα

2L
√
2α

∥∇ϕt(zt)−∇ϕt(wt)∥+
α(1 + Lα)

2
∥εt∥2.

Hence the proof is completed.

The following result shows the first part of Lemma 4.3. To the best of our knowledge, this is the first
high probability guarantee with improved rate for SNAG under distributional drift.
Lemma C.5 (High-probability distance tracking, with drift). Under the same setting as in Lemma C.3
with α ≤ 1/25L, for any given δ ∈ (0, 1) and all t ∈ [T ], the following holds with probability at
least 1− δ over the randomness in Ht:

Vt ≤
(
1−

√
µα

4

)t

V0 +

(
5
√
ασ2

√
µ

+
80∆2

α

)
ln

eT

δ
. (30)

Proof of Lemma C.5. We will invoke Lemma A.1 to show the results. To apply Lemma A.1, we first
need to show the following two facts:

Fact (I) :
√

µ

2
∥wt − w∗

t ∥ ≤
√
Vt & Fact (II) :

1 +
√
µα

2
√
2α

∥zt − wt∥ ≤
√
Vt. (31)

Fact (I) verification. Since ϕt is µ-strongly convex and matrix P is PSD, then

Vt = θ⊤t Pθt + ϕt(wt)− ϕt(w
∗
t ) ≥ ϕt(wt)− ϕt(w

∗
t )

≥ µ

2
∥wt − w∗

t ∥2 =⇒
√

µ

2
∥wt − w∗

t ∥ ≤
√
Vt.

Fact (II) verification. By definition of matrix P and simple calculation we have√
Vt ≥

√
θ⊤t Pθt =

√
1

2α
∥(wt − w∗

t ) + (
√
µα− 1)(wt−1 − w∗

t )∥

=

√
1

2α
∥(1−√

µα)(wt − wt−1) +
√
µα(wt − w∗

t )∥

≥
√

1

2α
(1−√

µα)∥wt − wt−1∥ −
√

µ

2
∥wt − w∗

t ∥

≥
√

1

2α
(1−√

µα)∥wt − wt−1∥ −
√
Vt.

Rearrange the above inequality, and recall the update rule of stochastic Nesterov accelerated gradient
method, we have

∥zt − wt∥ = γ∥wt − wt−1∥ ≤ 2γ
√
2α

1−√
µα

√
Vt =

2
√
2α

1 +
√
µα

√
Vt,

where for the last equality we use the definition of γ as in (10). Rearrange it gives (31).

By Lemma C.3 and the choice of α ≤ 1/L, we have

Vt+1 ≤
(
1−

√
µα

2

)
Vt +

(
1 +

√
µα

4

)[√
2µα(1− Lα)⟨ut,1,−εt⟩

√
µ

2
∥wt − w∗

t ∥

+
2µ

√
2α

1 +
√
µα

α(1− Lα)⟨ut,2,−εt⟩
1 +

√
µα

2
√
2α

∥zt − wt∥+ α∥εt∥2
]
+

20µ∆2
t√

µα
.

(32)
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Note that under Assumption C.2, there exists an absolute constant c ≥ 1 such that for all t ≥ 0,
∥εt∥2 is sub-exponential conditioned on Ht with parameter cσ2, and εt is mean-zero sub-Gaussian
conditioned on Ht with parameter cσ [20, Theorem 30]. For convenience we simply let c = 1
here. Thus ⟨ut,1,−εt⟩ is mean-zero sub-Gaussian conditioned on Ht with parameter σ, and ∆2

t is
sub-exponential conditioned on Ht with parameter ∆2 by assumption. Hence, in light of (32), we
apply Lemma A.1 with

Ht = Ht, Vt = Vt, V ′
t,1 =

µ

2
∥wt − w∗

t ∥2, V ′
t,2 =

(1 +
√
µα)2

8α
∥zt − wt∥2,

Dt,1 =

(
1 +

√
µα

4

)√
2µα(1−Lα)⟨ut,1,−εt⟩, Dt,2 =

(
1 +

√
µα

4

)
2µ

√
2α

1 +
√
µα

α(1−Lα)⟨ut,2,−εt⟩,

Xt =

(
1 +

√
µα

4

)
α∥εt∥2 +

20µ∆2
t√

µα
, αt = 1−

√
µα

2
, κt = 0,

σ1 =

(
1 +

√
µα

4

)√
2µα(1− Lα)σ, σ2 =

(
1 +

√
µα

4

)
2µ

√
2α

1 +
√
µα

α(1− Lα)σ,

νt =

(
1 +

√
µα

4

)
ασ2 +

20µ∆2

√
µα

,

yielding the following recursion

E[exp(λVt+1)] ≤ exp

(
λ

[(
1 +

√
µα

4

)
ασ2 +

20µ∆2

√
µα

])
E
[
exp

(
λ

(
1−

√
µα

4

)
Vt

)]
(33)

for all λ satisfying

0 ≤ λ ≤ min

{
2

125α
√
µασ2

,
1

5ασ2/2 + 40µ∆2/
√
µα

}
.

We then apply (33) recursively to deduce

E[exp(λVt+1)] ≤ exp

[
λ

(
1−

√
µα

4

)t

V0 + λ

((
1 +

√
µα

4

)
ασ2 +

20µ∆2

√
µα

) t−1∑
i=0

(
1−

√
µα

4

)i
]

≤ exp

{
λ

[(
1−

√
µα

4

)t

V0 + 4

(
1 +

√
µα

4

)
α

√
µα

σ2 +
80∆2

α

]}
for all λ satisfying

0 ≤ λ ≤ min

{
2

125α
√
µασ2

,
1

5ασ2/2 + 40µ∆2/
√
µα

}
.

Moreover, setting

ν :=
5
√
ασ2

√
µ

+
80∆2

α

and taking into account α ≤ 1/25L, then we have

4

(
1 +

√
µα

4

)
α

√
µα

σ2 +
80∆2

α
≤ ν

and
1

ν
=

1

5
√
ασ2/

√
µ+ 80∆2/α

≤ min

{
2

125α
√
µασ2

,
1

5ασ2/2 + 40µ∆2/
√
µα

}
.

Thus we obtain

E

[
exp

(
λ

(
Vt −

(
1−

√
µα

4

)t

V0

))]
≤ exp(λν) for all 0 ≤ λ ≤ 1/ν.

Taking λ = 1/ν and applying Markov’s inequality and union bound completes the proof.
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The following result shows the second part of Lemma 4.3.
Lemma C.6 (High-probability distance tracking, without drift). Under the same setting as in
Lemma C.4 with α ≤ 1/25L, for any given δ ∈ (0, 1) and all t ∈ [T ], the following holds with
probability at least 1− δ over the randomness in Ht:

Vt ≤
(
1−

√
µα

4

)t

V0 +
5
√
ασ2

√
µ

ln
eT

δ
. (34)

Proof of Lemma C.6. First it is easy to verify that
1

L

√
µ

2
∥∇ϕt(wt)−∇ϕt(w

∗)∥ ≤
√

Vt and
1 +

√
µα

2L
√
2α

∥∇ϕt(zt)−∇ϕt(wt)∥ ≤
√

Vt.

Then we apply Lemma A.1 to obtain the final result. We omit the detailed proof here since it follows
the same procedure as in proof of Lemma C.5.

D Proofs of Results in Section 4.3.2

We first present the following algebraic fact under suitable choice of parameters.
Lemma D.1 (Parameter choice, informal). For any given δ ∈ (0, 1) and any small ϵ satisfying

ϵ ≤

(
170 · 32ed0L2

0σ̃
2
g,1

δµ2
max

{
lg,1
σ̃g,1

,
σ̄

d0

})1/3

, (35)

if we set parameters α, β, η, T as

1−β =
µ2ϵ2

170 · 64L2
0σ̃

2
g,1 ln(P )

, η = min

{
σ̃g,1

lg,1
,
d0
σ̄

}
(1−β), α =

1

µ
(1−β), σg,1 =

√
µασ̃g,1, T =

4d0
ηϵ

,

(36)
where σ̄ is defined in Lemma B.4, and d0 and P are defined as

d0 = Φ(x0)− inf
x∈Rdx

Φ(x), P =

(
170 · 64ed0L2

0σ̃
2
g,1

δµ2ϵ3
max

{
lg,1
σ̃g,1

,
σ̄

d0

})2

. (37)

Then the following holds for all t ∈ [T ]:(
4ασ̃2

g,1

µ
+

160η2l2g,1
µ3α

)
ln

eT

δ
≤ ϵ2

64L2
0

.

Proof of Lemma D.1. By Lemma B.1, we have ∆t = ∥y∗t − y∗t+1∥ ≤ lg,1
µ ∥xt − xt+1∥ = ηlg,1/µ.

Thus in our bilevel setting, we choose ∆ = ηlg,1/µ, where ∆ is defined in Section 4.3.1. By choice
of α, η, T as in (36), we have(

10ασ̃2
g,1

µ
+

160η2l2g,1
µ3α

)
ln

eT

δ
=

(
10(1− β)σ̃2

g,1

µ2
+

160η2l2g,1
µ2(1− β)

)
ln

(
4ed0
δηϵ

)
≤

170(1− β)σ̃2
g,1

µ2
ln

(
4ed0

δϵ(1− β)
max

{
lg,1
σ̃g,1

,
σ̄

4d0

})
.

Now we choose β to be

1− β =
µ2ϵ2

170 · 64L2
0σ̃

2
g,1 ln(P )

, where P =

(
170 · 64ed0L2

0σ̃
2
g,1

δµ2ϵ3
max

{
lg,1
σ̃g,1

,
σ̄

d0

})2

.

Then we have
170(1− β)σ̃2

g,1

µ2
ln

(
4ed0lg,1

δϵσ̃g,1(1− β)

)
=

ϵ2

64L2
0 ln(P )

ln
(√

P ln(P )
)
≤ ϵ2

64L2
0

,

where we use the fact that ln(
√
P ln(P )) ≤ ln(P ) ≤ ln2(P ) for any P ≥ 4 by choice of ϵ as in

(35).

In the rest of this section, we assume Assumptions 3.1 to 3.4 hold. In addition, the failure probability
δ ∈ (0, 1) and ϵ > 0 are chosen in the same way as in Theorem 4.1.
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D.1 Proof of Lemma 4.4

Lemma D.2 (Warm-start, Restatement of Lemma 4.4). Let {yinitt } be the iterates produced by
line 2 of Algorithm 2. Set αinit = µα2 = Θ̃(ϵ4) with α defined in (36), σg,1 = (µα)1/4σ̃g,1, and
ϕt(y) ≡ g(x0, y). Then ∥yinitT0

− y∗0∥ ≤
√

µα
32

ϵ
L0

holds with probability at least 1 − δ over the

randomness in F̃ init (we denote this event as Einit) in T0 = Õ(ϵ−2) iterations, where

T0 = ln

(
µ3α3ϵ2

256L2
0∥yinit0 − y∗0∥2

)/
ln
(
1− µα

4

)
= Õ(ϵ−2). (38)

Proof of Lemma D.2. By Lemmas C.6 and D.1 and µ-strong convexity of g in y, we have with
probability at least 1− δ over the randomness in F init that

∥yinitT0
− y∗0∥2 ≤ 2

µ

(
1−

√
µ2α2

4

)T0

U init
0 +

10µα2σ̃2
g,1

µ
ln

eT0

δ

≤ 2

µ

(
1− µα

4

)T0

U init
0 +

µαϵ2

64L2
0

,

where the first inequality uses the choice of αinit = µα2. By lg,1-smoothness of g we have

U init
0 ≤ 2−

√
µ2α2 + µ2α2

2µα2
∥yinit0 − y∗0∥2 + g(x0, y

init
0 )− g(x0, y

∗
0)

≤ 3

2µα2
∥yinit0 − y∗0∥2 +

lg,1
2

∥yinit0 − y∗0∥2 ≤ 2

µα2
∥yinit0 − y∗0∥2,

where the last inequality uses α ≤ 1/lg,1. Now we set

2

µ

(
1− µα

4

)T0 2

µα2
∥yinit0 − y∗0∥2 +

µαϵ2

64L2
0

≤ µαϵ2

32L2
0

,

which gives

T0 ≥ ln

(
µ3α3ϵ2

256L2
0∥yinit0 − y∗0∥2

)/
ln
(
1− µα

4

)
.

By choice of α as in (36) and simple calculation we obtain T0 = Õ(ϵ−2) when ϵ is small.

D.2 Proof of Lemma 4.5

Lemma D.3 (Option I, Restatement of Lemma 4.5). Under event Einit, let {yt} be the iterates
produced by Option I. Set α = Θ̃(ϵ2) as in (36), σg,1 = (µα)1/4σ̃g,1, and ϕt(y) = g(xt, y) =
µ
2 ∥y − y∗t ∥2. Then for any t ∈ [T ], Algorithm 2 guarantees with probability at least 1− δ over the
randomness in F̃1

T (we denote this event as E1
y ) that ∥yt − y∗t ∥ ≤ ϵ/2L0.

Proof of Lemma D.3. By Lemmas C.5 and D.2 we have

∥yt − y∗t ∥2 ≤ 2

µ

(
1−

√
µα

4

)t

U0 +

(
10ασ̃2

g,1

µ
+

160η2l2g,1
µ3α

)
ln

eT

δ

≤ 2

µ

(
1−

√
µα

4

)t
2

α
∥yinitT0

− y∗0∥2 +

(
10ασ̃2

g,1

µ
+

160η2l2g,1
µ3α

)
ln

eT

δ

≤ 4

µα
∥yinitT0

− y∗0∥2 +
ϵ2

64L2
0

≤ ϵ2

4L2
0

.

Thus we conclude that for all t ∈ [T ], we have ∥yt − y∗t ∥ ≤ ϵ/2L0.
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D.3 Proof of Lemma 4.6

Lemma D.4 (Option II, Restatement of Lemma 4.6). Under event Einit, let {yt} be the iterates
produced by Option II. Set α = Θ̃(ϵ2) as in (36), σg,1 = (µα)1/4σ̃g,1, and run SNAG in each update
round for

N = ln
( µα

128

)/
ln

(
1−

√
µα

4

)
= Õ(ϵ−1)

steps in every I = µϵ
2(1−β)L0σ̃g,1

= Õ(ϵ−1) iterations, set ϕt(y) = g(xt, y) when t is a multiple of
I (i.e., xt is fixed for each update round of Option II so g can be general functions). Then for any
t ∈ [T ], Algorithm 2 guarantees with probability at least 1− δ over the randomness in σ(∪t≤T F̃2

t )
(we denote this event as E2

y ) that ∥yt − y∗t ∥ ≤ ϵ/L0.

Proof of Lemma D.4. At the beginning of the first round, by Lemmas D.2 and D.3 we have ∥y0 −
y∗0∥ ≤ ϵ/2L0, then we do not update the lower-level variable until t = I-th iteration, then for t = I ,
we have

∥yI − y∗I∥ = ∥y0 − y∗I∥ ≤ ∥y0 − y∗0∥+
I∑

i=1

∥y∗i − y∗i−1∥

≤ ϵ

2L0
+

ηlg,1
µ

I =
ϵ

L0
,

where in the last equality we plug in the definition of η and I . By lg,1-smoothness of g we have

UI ≤
2− 2

√
µα+ µα

2α
∥yI − y∗0∥2 + g(xI , yI)− g(xI , y

∗
I )

≤ 3

2α
∥yI − y∗I∥2 +

lg,1
2

∥yI − y∗I∥2 ≤ 2ϵ2

αL2
0

Then for N steps update in the inner loops of t = I-th iteration, we set

2

µ

(
1−

√
µα

4

)N
2ϵ2

αL2
0

+
ϵ2

64L2
0

≤ ϵ2

16L2
0

,

which gives

N ≥ ln
( µα

128

)/
ln

(
1−

√
µα

4

)
By choice of α as in (36) and simple calculation we obtain N = Õ(ϵ−1) when ϵ is small. Now we
have

∥yI+1 − y∗I∥2 = ∥yNI − y∗I∥2 ≤ 2

µ

(
1−

√
µα

4

)N
2ϵ2

αL2
0

+
ϵ2

64L2
0

≤ ϵ2

16L2
0

,

which yields

∥yI+1 − y∗I+1∥ ≤ ∥yI+1 − y∗I∥+ ∥y∗I − y∗I+1∥ ≤ ϵ

4L0
+

ηlg,1
µ

≤ ϵ

2L0
,

where we choose 1− β to be small (see (56) for details) such that η is small enough to make above
inequality holds. Repeating the same process yields the result.

D.4 Proof of Lemma 4.7

Lemma D.5 (Averaging, Restatement of Lemma 4.7). Under Assumptions 3.1 to 3.4 and event
Einit ∩ E1

y (Option I) or Einit ∩ E2
y (Option II), we further set τ =

√
µα in the averaging step (line 21

of Algorithm 2). Then for any t ≥ 0 we have

∥ŷt − y∗t ∥ ≤ 2ϵ

L0
and ∥ŷt+1 − ŷt∥ ≤ µϵ2

24L2
0σ̃g,1

=: ϑ.

28



Proof of Lemma D.5. We will first show the following result by induction, i.e., for any t ≥ 0, the
averaged sequence {ŷt} satisfies

∥ŷt − y∗t ∥ ≤ (1− τ)ηlg,1
τµ

+
ϵ

L0
. (39)

For t = 0, by Lemma D.2 we have

∥ŷ0 − y∗0∥ = ∥yinitT0
− y∗0∥ ≤

√
µα

32

ϵ

L0
=

√
1− β

32

ϵ

L0
≤ ϵ

L0
,

thus the base case holds. Now suppose (39) holds for some t ≥ 0, then for time step t+ 1 we have

∥ŷt+1 − y∗t+1∥ = ∥(1− τ)(ŷt − y∗t+1) + τ(yt+1 − y∗t+1)∥
= ∥(1− τ)(ŷt − y∗t ) + (1− τ)(y∗t − y∗t+1) + τ(yt+1 − y∗t+1)∥
≤ (1− τ)∥ŷt − y∗t ∥+ (1− τ)∥y∗t − y∗t+1∥+ τ∥yt+1 − y∗t+1∥

≤ (1− τ)

(
(1− τ)ηlg,1

τµ
+

ϵ

L0

)
+

(1− τ)ηlg,1
µ

+
τϵ

L0

≤ (1− τ)ηlg,1
τµ

+
ϵ

L0
,

where we use induction hypothesis in the second inequality. Therefore, we have that (39) holds for
any t ≥ 0. Also, as a consequence, for any t ≥ 0 we have

∥ŷt+1 − ŷt∥ = ∥τ(yt+1 − ŷt)∥
≤ τ∥yt+1 − y∗t+1∥+ τ∥y∗t+1 − y∗t ∥+ τ∥y∗t − ŷt∥

≤ τ

(
ϵ

L0
+

ηlg,1
µ

+
(1− τ)ηlg,1

τµ
+

ϵ

L0

)
= τ

(
ηlg,1
τµ

+
2ϵ

L0

)
.

Now we plug in the definition of α, β, τ, η as in (36) to obtain

∥ŷt − y∗t ∥ ≤ (1− τ)ηlg,1
τµ

+
ϵ

L0
=

σ̃g,1

µ

√
1− β +

ϵ

L0
≤ 2ϵ

L0

and

∥ŷt+1 − ŷt∥ ≤ τ

(
ηlg,1
τµ

+
2ϵ

L0

)
≤ µϵ2

24L2
0σ̃g,1

.

D.5 Proof of Lemma 4.8

Lemma D.6 (Restatement of Lemma 4.8). Under Assumptions 3.1 to 3.4 and event Einit∩E1
y (Option

I) or Einit ∩E2
y (Option II), define ϵt = mt−Et[∇̄f(xt, ŷt; ξ̄t)], then we have the following averaged

cumulative error bound:

1

T

T−1∑
t=0

E∥ϵt∥ ≤ σ̄

T (1− β)
+
√

1− βσ̄ +
L̄0√
1− β

√
2(η2 + ϑ2)

S
+ L̄1

√
2(η2 + ϑ2)

S(1− β)

1

T

T−1∑
t=0

E∥∇Φ(xt)∥.

Proof of Lemma D.6. Define ϵt = mt − Et[∇̄f(xt, ŷt; ξ̄t)], also define ϵ̃t and ϵ̂t as

ϵ̃t = ∇̄f(xt, ŷt; ξ̄t)− Et[∇̄f(xt, ŷt; ξ̄t)],

ϵ̂t = ∇̄f(xt, ŷt; ξ̄t)− ∇̄f(xt−1, ŷt−1; ξ̄t)− Et[∇̄f(xt, ŷt; ξ̄t)] + Et[∇̄f(xt−1, ŷt−1; ξ̄t)].

By definition of ϵt, ϵ̃t and ϵ̂t, we have the following recursion for any t ≥ 0:

ϵt+1 = βϵt + (1− β)ϵ̂t+1 + βϵ̃t+1. (40)
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Then we apply (40) recursively to obtain

ϵt = βtϵ0 + β
t∑

i=1

βt−iϵ̃i + (1− β)
t∑

i=1

βt−iϵ̂i,

which by triangle inequality and total expectation gives

E∥ϵt∥ = βt E∥ϵ0∥︸ ︷︷ ︸
Err1

+(1− β)E

∥∥∥∥∥
t∑

i=1

βt−iϵ̂i

∥∥∥∥∥︸ ︷︷ ︸
Err2

+β E

∥∥∥∥∥
t∑

i=1

βt−iϵ̃i

∥∥∥∥∥︸ ︷︷ ︸
Err3

. (41)

Bounding Err1. By definition of ϵ0 and Lemma B.4, along with Jensen’s inequality, we have

E∥ϵ0∥ ≤
√

E∥ϵ0∥2 ≤ σ̄. (42)

Bounding Err2. We apply Lemma B.4 and follow the similar procedure as in [38, Lemma D.9] to
obtain

E

∥∥∥∥∥
t∑

i=1

βt−iϵ̃i

∥∥∥∥∥ ≤

√√√√E

∥∥∥∥∥
t∑

i=1

βt−iϵ̃i

∥∥∥∥∥
2

≤

√√√√ t∑
i=1

β2(t−i)E∥ϵ̃i∥2 ≤ σ̄√
1− β

, (43)

where we use Jensen’s inequality for the first step.

Bounding Err3. We will first use induction to show that for 0 ≤ i ≤ t+1, the following inequality
holds:

E

[∥∥∥∥∥
t∑

j=1

βt−j ϵ̂j

∥∥∥∥∥
]
≤
√

2(η2 + ϑ2)

S
L̄1

t∑
j=t+1−i

βt−jE∥∇Φ(xj)∥+ E


√√√√2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 +

∥∥∥∥∥
t−i∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 .

(44)
Then it’s easy to check that by setting i = t+ 1 we can obtain the bound. When i = 0, (44) holds
obviously since

E

[∥∥∥∥∥
t∑

j=1

βt−j ϵ̂j

∥∥∥∥∥
]
≤ E


√√√√∥∥∥∥∥

t∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 = E

[∥∥∥∥∥
t∑

j=1

βt−j ϵ̂j

∥∥∥∥∥
]
.
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Hence the base case stands. Now suppose (44) holds for some i ≥ 0, and we aim to show that (44)
holds for i+ 1. In fact, we have

E


√√√√2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 +

∥∥∥∥∥
t−i∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 (45)

= EFt−i−1

Et−i−1


√√√√2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 +

∥∥∥∥∥
t−i∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 (46)

≤ EFt−i−1

Et−i−1

√√√√√
2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 +

∥∥∥∥∥
t−i∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2

 (47)

= EFt−i−1

Et−i−1

√√√√√
2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 + β2i∥ϵ̂t−i∥2 +

∥∥∥∥∥
t−i−1∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2

 (48)

≤ EFt−i−1

Et−i−1

√√√√√
2(η2 + ϑ2)L̄2

0

S

i∑
j=1

β2j−2 +
β2i

S
2(L̄2

0 + L̄2
1∥∇Φ(xt−i)∥2)(η2 + ϑ2) +

∥∥∥∥∥
t−i−1∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2



(49)

= EFt−i−1


√√√√2β2i

S
L̄2

1(η
2 + ϑ2)∥∇Φ(xt−i)∥2 +

2(η2 + ϑ2)L̄2
0

S

i+1∑
j=1

β2j−2 +

∥∥∥∥∥
t−i−1∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 (50)

≤ EFt−i−1

√2(η2 + ϑ2)

S
βiL̄1∥∇Φ(xt−i)∥+

√√√√2(η2 + ϑ2)L̄2
0

S

i+1∑
j=1

β2j−2 +

∥∥∥∥∥
t−i−1∑
j=1

βt−j ϵ̂j

∥∥∥∥∥
2
 , (51)

where (46) follows by law of total expectation, (47) follows by Jensen’s inequality, (48) uses the
fact that ϵ̂j for j < t − i are Ft−i−1-measurable, and are uncorrelated with ϵ̂t−i; for (49) we use
Lemmas B.6 and D.5 to derive

Et−i−1[∥ϵ̂t−i∥2] = Et−i−1

[
∥∇̄f(xt−i, ŷt−i; ξ̄t−i)− ∇̄f(xt−i−1, ŷt−i−1; ξ̄t−i)

−Et−i[∇̄f(xt−i, ŷt−i; ξ̄t−i)] + Et−i[∇̄f(xt−i−1, ŷt−i−1; ξ̄t−i)]∥2
]

≤ Et−i−1

[
∥∇̄f(xt−i, ŷt−i; ξ̄t−i)− ∇̄f(xt−i−1, ŷt−i−1; ξ̄t−i)∥2

]
≤ 2Et−i−1

[
∥∇̄f(xt−i, ŷt−i; ξ̄t−i)− ∇̄f(xt−i, ŷt−i−1; ξ̄t−i)∥2

]
+ 2Et−i−1

[
∥∇̄f(xt−i, ŷt−i−1; ξ̄t−i)− ∇̄f(xt−i−1, ŷt−i−1; ξ̄t−i)∥2

]
≤ 2

S
(L̄2

0 + L̄2
1∥∇Φ(xt−i)∥2)(∥ŷt−i − ŷt−i−1∥2 + ∥xt−i − xt−i−1∥2)

=
2

S
(L̄2

0 + L̄2
1∥∇Φ(xt−i)∥2)(η2 + ϑ2).

And (50) follows from the fact that xt−i is Ft−i−1-measurable, (51) uses
√
a+ b ≤

√
a +

√
b for

a, b ≥ 0. Hence the induction proof is completed. We set i = t+ 1 to obtain

E

[∥∥∥∥∥
t∑

i=1

βt−iϵ̂i

∥∥∥∥∥
]
≤
√

2(η2 + ϑ2)

S
L̄1

t∑
i=0

βt−iE∥∇Φ(xi)∥+

√√√√2(η2 + ϑ2)L̄2
0

S

t∑
i=0

β2i

≤
√

2(η2 + ϑ2)

S
L̄1

t∑
i=0

βt−iE∥∇Φ(xi)∥+
L̄0√
1− β

√
2(η2 + ϑ2)

S
.

(52)

Final Bound. Combining (42), (43) and (52) yields

E∥ϵt∥ ≤ βtσ̄ +
√
1− βσ̄ +

L̄0√
1− β

√
2(η2 + ϑ2)

S
+

√
2(η2 + ϑ2)

S
L̄1

t∑
i=0

βt−iE∥∇Φ(xi)∥.
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Taking summation and dividing 1/T on both sides gives the final result

1

T

T−1∑
t=0

E∥ϵt∥ ≤ σ̄

T (1− β)
+
√

1− βσ̄ +
L̄0√
1− β

√
2(η2 + ϑ2)

S
+ L̄1

√
2(η2 + ϑ2)

S(1− β)

1

T

T−1∑
t=0

E∥∇Φ(xt)∥.

E Proof of Theorem 4.1

Before starting the proof of main results, i.e., Theorem 4.1, we first need the following lemma.
Lemma E.1. Suppose that Assumptions 3.1 to 3.4 hold. For any η satisfying

η ≤ 1√
2(1 + l2g,1/µ

2)(L2
x,1 + L2

y,1)
,

it holds that(
1− 1

2
ηL1 − 2L1∥ŷt − y∗t ∥

)
1

T

T−1∑
t=0

E∥∇Φ(xt)∥

≤ Φ(x0)− Φ(xT )

Tη
+

2

T

T−1∑
t=0

E∥ϵt∥+
2lg,1lf,0

µ

(
1− µ

lg,1

)Q

+
2L0

T

T−1∑
t=0

∥ŷt − y∗t ∥+
1

2
ηL0.

Proof of Lemma E.1. Define ht = mt −∇Φ(xt). Then we apply Lemma B.3 to obtain

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
L0 + L1∥∇Φ(xt)∥

2
∥xt+1 − xt∥2

= Φ(xt)− η⟨∇Φ(xt),
mt

∥mt∥
⟩+ 1

2
η2(L0 + L1∥∇Φ(xt)∥)

= Φ(xt)− η⟨mt − ht,
mt

∥mt∥
⟩+ 1

2
η2(L0 + L1∥∇Φ(xt)∥)

= Φ(xt)− η∥mt∥+ η⟨ht,
mt

∥mt∥
⟩+ 1

2
η2(L0 + L1∥∇Φ(xt)∥)

≤ Φ(xt)− η∥mt∥+ η∥ht∥+
1

2
η2(L0 + L1∥∇Φ(xt)∥)

≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ht∥+
1

2
η2(L0 + L1∥∇Φ(xt)∥),

(53)

where for the last two lines we use Cauchy-Schwarz inequality and ∥ht∥ = ∥∇Φ(xt) + ht∥ ≥
∥∇Φ(xt)∥ − ∥ht∥. Now expanding ht by triangle inequality, we have

∥ht∥ = ∥mt −∇Φ(xt)∥
≤ ∥mt − Et[∇̄f(xt, ŷt; ξ̄t)]∥+ ∥Et[∇̄f(xt, ŷt; ξ̄t)]− ∇̄f(xt, ŷt)∥+ ∥∇̄f(xt, ŷt)−∇Φ(xt)∥

≤ ∥ϵt∥+
lg,1lf,0

µ

(
1− µ

lg,1

)Q

+ (L0 + L1∥∇Φ(xt)∥)∥ŷt − y∗t ∥,

where we use definition of ϵt, Lemmas B.4 and B.5 in the last inequality. Plugging the above
inequality back into (53) we obtain

Φ(xt+1) ≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ϵt∥+ 2η
lg,1lf,0

µ

(
1− µ

lg,1

)Q

+ 2η(L0 + L1∥∇Φ(xt)∥)∥ŷt − y∗t ∥+
1

2
η2(L0 + L1∥∇Φ(xt)∥)

= Φ(xt)−
(
η − 1

2
η2L1 − 2ηL1∥ŷt − y∗t ∥

)
∥∇Φ(xt)∥+ 2η∥ϵt∥

+ 2η
lg,1lf,0

µ

(
1− µ

lg,1

)Q

+ 2ηL0∥ŷt − y∗t ∥+
1

2
η2L0.
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Dividing 1/Tη on both sides, then taking telescope sum and total expectation, and rearranging it
finally yields(

1− 1

2
ηL1 − 2L1∥ŷt − y∗t ∥

)
1

T

T−1∑
t=0

E∥∇Φ(xt)∥

≤ Φ(x0)− Φ(xT )

Tη
+

2

T

T−1∑
t=0

E∥ϵt∥+
2lg,1lf,0

µ

(
1− µ

lg,1

)Q

+
2L0

T

T−1∑
t=0

∥ŷt − y∗t ∥+
1

2
ηL0.

Theorem E.2 (Restatement of Theorem 4.1). Suppose Assumptions 3.1 to 3.4 hold. Let {xt} be the
iterates produced by Algorithm 2. For any given δ ∈ (0, 1) and any small ϵ > 0 satisfying

ϵ ≤ min

 L0

32L1
,
lg,1L0

µL̄1
,
L0

8L̄1
,
L0lg,1σ̃g,1

µ2
,
L0

µ

√
lg,1σ̃g,1

L1
,

(
164 · 32ed0L2

0σ̃
2
g,1

δµ2
max

{
lg,1
σ̃g,1

,
σ̄

d0

})1/3
 ,

(54)
if σg,1 satisfies

σg,1 =

(
min

{
µ2ϵ2

164 · 16L2
0σ̃

2
g,1 ln(P )

,
lg,1

4σ̃g,1L1
,
ϵ2

4σ̄2

})1/4

σ̃g,1 (55)

with σ̃g,1 = O(1), and we set parameters α, αinit, β, γ, η, τ, I,N, S,Q, T0 as

1− β = min

{
µ2ϵ2

164 · 16L2
0σ̃

2
g,1 ln(P )

,
lg,1

4σ̃g,1L1
,
ϵ2

4σ̄2

}
, η = min

{
σ̃g,1

lg,1
,
d0
σ̄

}
(1− β), (56)

αinit =
1− β

µ+ lg,1
α =

1− β

µ
, γ =

1−√
µα

1 +
√
µα

, τ = 1−√
µα, (57)

T0 = ln

(
µ3α3ϵ2

256L2
0∥yinit0 − y∗0∥2

)/
ln
(
1− µα

4

)
, (58)

I =
µϵ

2(1− β)L0σ̃g,1
, N = ln

( µα

128

)/
ln

(
1−

√
µα

4

)
, (59)

S = max

{
128 ln(P ),

128L̄2
0

L2
0

ln(P ),
µ2L̄2

0

l2g,1L
2
0

}
, Q = ln

(
1− µ

lg,1

)/
ln

(
µϵ

lg,1lf,0

)
, (60)

where d0 and P are defined in (37). Then with probability at least 1 − 2δ over the randomness
in σ(F init ∪ F̃1

T ) (for Option I) or σ(F init ∪ (∪t≤T F̃2
t )) (for Option II), Algorithm 2 guarantees

1
T

∑T
t=1 E∥∇Φ(xt)∥ ≤ 20ϵ within T = 4d0

ηϵ = Õ(1/ϵ3) iterations, where the expectation is taken

over the randomness in FT . For Option I, it requires T0+SQT = Õ(1/ϵ3) oracle calls of stochastic
gradient or Hessian/Jacobian vector product. For Option II, it requires T0 +

NT
I + SQT = Õ(1/ϵ3)

oracle calls of stochastic gradient or Hessian/Jacobian vector product.

Proof of Theorem E.2. By Lemmas D.6 and E.1, we have(
1− 1

2
ηL1 − 2L1∥ŷt − y∗t ∥

)
1

T

T−1∑
t=0

E∥∇Φ(xt)∥

≤ Φ(x0)− Φ(xT )

Tη
+

2

T

T−1∑
t=0

E∥ϵt∥+
2lg,1lf,0

µ

(
1− µ

lg,1

)Q

+
2L0

T

T−1∑
t=0

∥ŷt − y∗t ∥+
1

2
ηL0

≤ d0
Tη

+
2lg,1lf,0

µ

(
1− µ

lg,1

)Q

+
2L0

T

T−1∑
t=0

∥ŷt − y∗t ∥+
1

2
ηL0

+
2σ̄

T (1− β)
+ 2
√
1− βσ̄ +

2L̄0√
1− β

√
2(η2 + ϑ2)

S
+ 2L̄1

√
2(η2 + ϑ2)

S(1− β)

1

T

T−1∑
t=0

E∥∇Φ(xt)∥.
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Rearranging the above inequality gives(
1− 1

2
ηL1 − 2L1∥ŷt − y∗t ∥ − 2L̄1

√
2(η2 + ϑ2)

S(1− β)

)
︸ ︷︷ ︸

(LHS)

1

T

T−1∑
t=0

E∥∇Φ(xt)∥

≤ d0
Tη

+
2lg,1lf,0

µ

(
1− µ

lg,1

)Q

+
2L0

T

T−1∑
t=0

∥ŷt − y∗t ∥+
1

2
ηL0 +

2σ̄

T (1− β)
+ 2
√
1− βσ̄ +

2L̄0√
1− β

√
2(η2 + ϑ2)

S︸ ︷︷ ︸
(RHS)

.

Bounding (LHS). By Lemma D.5, we have

(LHS) ≥ 1− σ̃g,1L1

2lg,1
(1− β)− 2L1

2ϵ

L0
− 2L̄1

√
2(η2 + ϑ2)

S(1− β)

≥ 1− 1

8
− 1

8
− 1

4
=

1

2

(61)

Bounding (RHS). By choice of parameters, we have

(RHS) ≤ 1

4
ϵ+ 2ϵ+ 4ϵ+ ϵ+

1

2
ϵ+ ϵ+ ϵ ≤ 10ϵ. (62)

Combining (61) and (62) finally yields

1

T

T−1∑
t=0

E∥∇Φ(xt)∥ ≤ 20ϵ.

F Omitted Proofs in Appendix B

F.1 Proof of Lemma B.5

Lemma F.1 (Restatement of Lemma B.5). Under Assumptions 3.1 to 3.4, we have

∥∇̄f(x, y)−∇Φ(x)∥ ≤ (L̄+ Lx,1∥∇Φ(x)∥)∥y − y∗(x)∥,

where constant L̄ is defined as

L̄ := Lx,0 + Lx,1
lg,1lf,0

µ
+

lg,1
µ

(Ly,0 + Ly,1lf,0) + lf,0
µlg,2 + lg,1lg,2

µ2
≤ L0.

Proof of Lemma B.5. Recall that the exact expressions of ∇̄f(x, y) and ∇Φ(x) are

∇̄f(x, y) = ∇xf(x, y)−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y)

and
∇Φ(x) = ∇xf(x, y

∗(x))−∇2
xyg(x, y

∗(x))[∇2
yyg(x, y

∗(x))]−1∇yf(x, y
∗(x)).

Then by Assumption 3.2 we have

∥∇̄f(x, y)−∇Φ(x)∥ ≤ ∥∇xf(x, y)−∇xf(x, y
∗(x))∥

+ ∥∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y)−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y

∗(x))∥
≤ (Lx,0 + Lx,1∥∇xf(x, y

∗(x))∥)∥y − y∗(x)∥
+ ∥∇2

xyg(x, y)[∇2
yyg(x, y)]

−1∇yf(x, y)−∇2
xyg(x, y

∗(x))[∇2
yyg(x, y)]

−1∇yf(x, y)∥
+ ∥∇2

xyg(x, y
∗(x))[∇2

yyg(x, y)]
−1∇yf(x, y)−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y)∥

+ ∥∇2
xyg(x, y

∗(x))[∇2
yyg(x, y

∗(x))]−1∇yf(x, y)−∇2
xyg(x, y

∗(x))[∇2
yyg(x, y

∗(x))]−1∇yf(x, y
∗(x))∥
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≤
(
Lx,0 + Lx,1

(
lg,1lf,0

µ
+ ∥∇Φ(x)∥

))
∥y − y∗(x)∥

+
lf,0
µ

lg,2∥y − y∗(x)∥+ lf,0lg,1
µ2

lg,2∥y − y∗(x)∥+ lg,1
µ

(Ly,0 + Ly,1∥∇yf(x, y
∗(x))∥)∥y − y∗(x)∥

=

(
Lx,0 + Lx,1

lg,1lf,0
µ

+
lg,1
µ

(Ly,0 + Ly,1lf,0) + lf,0
µlg,2 + lg,1lg,2

µ2
+ Lx,1∥∇Φ(x)∥

)
∥y − y∗(x)∥.

By definition of L̄ we conclude the proof.

F.2 Proof of Lemma B.6

Lemma F.2 (Restatement of Lemma B.6). Under Assumptions 3.1 to 3.4, we have

(i) For any fixed y ∈ Rdy and any x1, x2 ∈ Rdx ,

Eξ̄∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2 ≤ (L̄2
0 + L̄2

1∥∇Φ(x1)∥2)∥x1 − x2∥2.

(ii) For any fixed x ∈ Rdx and any y1, y2 ∈ Rdy ,

Eξ̄∥∇̄f(x, y1; ξ̄)− ∇̄f(x, y2; ξ̄)∥2 ≤ (L̄2
0 + L̄2

1∥∇Φ(x1)∥2)∥x1 − x2∥2.

In the above expressions, we define L̄0 and L̄1 as

L̄0 =

{
4

(
Lx,0 + Lx,1

(
lg,1lf,0

µ
+

(
Lx,0 +

Lx,1lg,1lf,0
µ

)
∥y1 − y∗1∥

))2

+
6Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)

2 + l2f,0l
2
g,2 +

l2f,0l
2
g,1l

2
g,2K

2

(lg,1 − µ)2

)}1/2

,

L̄1 = 2Lx,1(1 + Lx,1∥y1 − y∗1∥).

Proof of Lemma B.6. We show statement (i) of the lemma, and (ii) follows by similar arguments.
For any fixed y ∈ Rdy and any x1, x2 ∈ Rdx , by definition of ∇̄f(x, y; ξ̄) we have

∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2

≤ 2∥∇xF (x1, y; ξ)−∇xF (x2, y; ξ)∥2 + 2

∥∥∥∥∥∇2
xyG(x1, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)]
∇yF (x1, y; ξ)

−∇2
xyG(x2, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)]
∇yF (x2, y; ξ)

∥∥∥∥∥
2

≤ 2(Lx,0 + Lx,1∥∇xf(x1, y)∥)2∥x1 − x2∥2 + 2

∥∥∥∥∥∇2
xyG(x1, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)]
∇yF (x1, y; ξ)

−∇2
xyG(x2, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)]
∇yF (x2, y; ξ)

∥∥∥∥∥
2

.

For the second term above, we have∥∥∥∥∥∇2
xyG(x1, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)]
∇yF (x1, y; ξ)

−∇2
xyG(x2, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)]
∇yF (x2, y; ξ)

∥∥∥∥∥
2

≤ 3l2g,1
Q2

l2g,1

(
1− µ

lg,1

)2q

∥∇yF (x1, y; ξ)−∇yF (x2, y; ξ)∥2

+ 3l2f,0
Q2

l2g,1

(
1− µ

lg,1

)2q

∥∇2
xyG(x1, y; ζ

(0))−∇2
xyG(x2, y; ζ

(0))∥2
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+ 3l2g,1l
2
f,0

∥∥∥∥∥ Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)
− Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)∥∥∥∥∥
2

≤ 3Q2

(
1− µ

lg,1

)2q

(Ly,0 + Ly,1∥∇yf(x1, y)∥)2∥x1 − x2∥2 + 3
l2f,0Q

2

l2g,1

(
1− µ

lg,1

)2q

l2g,2∥x1 − x2∥2

+ 3l2f,0Q
2

∥∥∥∥∥
q∏

i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)
−

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)∥∥∥∥∥
2

.

Then we take expectation with respect to q and obtain

Eq

∥∥∥∥∥∇2
xyG(x1, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)]
∇yF (x1, y; ξ)

−∇2
xyG(x2, y; ζ

(0))

[
Q

lg,1

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)]
∇yF (x2, y; ξ)

∥∥∥∥∥
2

≤

(
3Q2(Ly,0 + Ly,1∥∇yf(x1, y)∥)2∥x1 − x2∥2 + 3

l2f,0Q
2

l2g,1
l2g,2∥x1 − x2∥2

)
Eq

[(
1− µ

lg,1

)2q
]

+ 3l2f,0Q
2Eq

∥∥∥∥∥
q∏

i=1

(
I − 1

lg,1
∇2

yyG(x1, y; ζ
(i))

)
−

q∏
i=1

(
I − 1

lg,1
∇2

yyG(x2, y; ζ
(i))

)∥∥∥∥∥
2

≤

(
3Q2(Ly,0 + Ly,1∥∇yf(x1, y)∥)2∥x1 − x2∥2 + 3

l2f,0Q
2

l2g,1
l2g,2∥x1 − x2∥2

)
·

l2g,1
Q(2µlg,1 − µ2)

+ 3l2f,0Q
2 ·

l2g,1l
2
g,2Q

(lg,1 − µ)2(2µlg,1 − µ2)
∥x1 − x2∥2

≤ 3Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)

2∥x1 − x2∥2 + l2f,0l
2
g,2∥x1 − x2∥2

)
+

3l2f,0l
2
g,1l

2
g,2Q

3

(lg,1 − µ)2(2µlg,1 − µ2)
∥x1 − x2∥2

=
3Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)

2 + l2f,0l
2
g,2 +

l2f,0l
2
g,1l

2
g,2Q

2

(lg,1 − µ)2

)
∥x1 − x2∥2

Finally, taking expectation on both sides yields

Eξ̄∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2 ≤ 2(Lx,0 + Lx,1∥∇xf(x1, y)∥)2∥x1 − x2∥2

+
6Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)

2 + l2f,0l
2
g,2 +

l2f,0l
2
g,1l

2
g,2Q

2

(lg,1 − µ)2

)
∥x1 − x2∥2.

Since for any y ∈ Rdy , we have

∥∇xf(x1, y)−∇xf(x1, y
∗
1)∥ ≤ (Lx,0 + Lx,1∥∇xf(x1, y

∗
1)∥)∥y1 − y∗1∥

≤
(
Lx,0 + Lx,1

(
lg,1lf,0

µ
+ ∥∇Φ(x1)∥

))
∥y1 − y∗1∥

=

(
Lx,0 +

Lx,1lg,1lf,0
µ

+ Lx,1∥∇Φ(x1)∥
)
∥y1 − y∗1∥,

which yields

∥∇xf(x1, y)∥ ≤ ∥∇xf(x1, y
∗
1)∥+

(
Lx,0 +

Lx,1lg,1lf,0
µ

+ Lx,1∥∇Φ(x1)∥
)
∥y1 − y∗1∥

≤ lg,1lf,0
µ

+ ∥∇Φ(x1)∥+
(
Lx,0 +

Lx,1lg,1lf,0
µ

+ Lx,1∥∇Φ(x1)∥
)
∥y1 − y∗1∥

=

(
lg,1lf,0

µ
+

(
Lx,0 +

Lx,1lg,1lf,0
µ

)
∥y1 − y∗1∥

)
+ (1 + Lx,1∥y1 − y∗1∥)∥∇Φ(x1)∥.
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Therefore, we conclude that

Eξ̄∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2 ≤ 2(Lx,0 + Lx,1∥∇xf(x1, y)∥)2∥x1 − x2∥2

+
6Q

2µlg,1 − µ2

(
l2g,1(Ly,0 + Ly,1lf,0)
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where we use the definition of L̄0 and L̄1 in the last equality.

G Additional Experimental Details

Hyerparameter setting. We tune the best hyperparameters for each algorithm, including upper-
/lower-level step size, the number of inner loops, momentum parameters, etc. The upper-level
learning rate ηup and lower-level learing rate ηlow are tuned in the range of [0.001, 0.1] for all the
baselines on experiments of AUC maximization and data hyper-cleaning, the best (ηup, ηlow) on
AUC maximization are summarized as follows: StocBio: (0.01, 0.001), TTSA: (0.005, 0.01),
SABA: (0.01, 0.005), MA-SOBA: (0.01, 0.005), SUSTAIN: (0.03, 0.01), VRBO: (0.05, 0.01),
BO-REP: (0.001, 0.001), AccBO: (0.005, 0.005). The best learning rate on the experiment of
data hyper-cleaning are summarized as follows: Stocbio: (0.01, 0.002), TTSA: (0.001, 0.01),
SABA: (0.05, 0.02), MA-SOBA: (0.01, 0.01), SUSTAIN: (0.05, 0.05), VRBO: (0.1, 0.05), BO-
REP: (0.02, 0.01), AccBO: (0.1, 0.1). Note that SUSTAIN decays its upper-/lower-level step size
with epoch (t) by ηup = ηup/(t+2)1/3, ηlow = ηup/(t+2)1/3, while other algorithms use a constant
learning rate. The number for neumann series estimation in StocBiO and VRBO is fixed to 3, while it
is uniformly sampled from {1, 2, 3} in TTSA, SUSTAIN, and AccBO. In AUC maximization, AccBO
uses Option I (Option II in data hyper-cleaning) to update the lower-level variable, and sets the Ne-
strov momentum parameter γ = 0.5, the averaging parameter τ = 0.5 (γ = 0.1 and τ = 0.5 in data
hyper-cleaning). In AUC maximization, the batch size is set to be 32 for all algorithms except VRBO,
which uses larger batch size of 64 (tuned in the range of {32, 64, 128, 256, 512}) at the checkpoint
step and 32 otherwise. In data hyper-cleaning, the batch size is set to be 128 for all algorithms except
VRBO, which uses larger batch size of 256 (tuned in the range of {63, 128, 256, 512, 1024}) at the
checkpoint step and 128 otherwise. AccBO uses Option II in data hyper-cleaning, and the periodical
update for low-level variable sets the iterations N = 3 and update interval I = 2. Other hyperparame-
ters setting keep the same in AUC maximization and data hyper-cleaning: The momentum parameter
β is fixed to 0.9 in AccBO, MA-SOBA, BO-REP. The warm start steps for lower-level variable in
AccBO is set to 3. The number of inner loops for StocBio is set to 3. BO-REP uses the periodical
update for low-level variable, and set the iterations N = 3 and the update interval I = 2.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Every claim made in the abstract is specified a section of the paper, including
algorithm design and analysis in Section 4 and experiments in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide both assumptions and proofs in Appendices C to E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are fully specified in Section 5 and Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39



Answer: [Yes]

Justification: The code and data are attached as a supplement with instructions for repro-
ducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are included in Section 5 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We only run once due to limited computational budget.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The hardware specification is described in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and conformed to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning from algorithmic and theoretical aspects. We do not see any direct paths to
negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve the release of any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our paper uses existing text classification datasets and are cited in Section 5
and their licenses are mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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