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Abstract—Modern computer systems take advantage of In-
put/Output Memory Management Unit (IOMMU) to protect
memory from DMA attacks, or to achieve strong isolation
in virtualization. Despite its promising benefits, the IOMMU
could be a new source of security threats. Like the MMU,
the IOMMU also has Translation Lookaside Buffer (TLB)
named IOTLB, an address translation cache that keeps the
recent translations. Accordingly, the IOTLB can be a target
of a timing side-channel attack, revealing victim’s secret.
In this paper, we present DEVIOUS, a novel device-driven
side-channel attack exploiting the IOTLB. DEVIOUS employs
DMA -capable PCle devices, such as GPU and RDMA -enabled
NIC (RNIC), to deliver the attack. Thus, our attack has
no influence on CPU caches or TLB in a victim’s machine.
Implementing DEVIOUS is not trivial as microarchitectural
internals of the IOTLB of Intel processors are hidden. We
overcome this by reverse-engineering the IOTLB and disclose
its hidden architectural properties. Based on this, we construct
two IOTLB-based timing attack primitives using a GPU and
an RNIC. Then, we demonstrate practical attacks that target
co-located VMs under hardware-assisted isolation, and remote
machines connected over the RDMA network. We also discuss
possible mitigations against the proposed side-channel attack.

1. Introduction

A recent computing trend is to grant more peripheral
devices direct access to the host’s physical memory to
relieve the burden of processors. However, this results in
a series of device attacks by malicious DMA-capable pe-
ripheral devices, breaching the confidentiality and integrity
of the host memory in personal computers [8], [10], [11],
[19], [34], [58], [62], and breaking the isolation of virtual
machines (VMs) in cloud data centers [33], [75].

The Input/Output Memory Management Unit (IOMMU)
tackles these security challenges. The IOMMU is a hard-
ware unit in the CPU that performs a DMA re-mapping,
a feature that translates I/O addresses in DMA requests to
physical memory addresses. With the IOMMU enabled, I/O
virtualized address (IOVA) spaces are allocated for DMA
devices, and all the DMA requests are subject to inspection
based on their permission bits in the page table entry before
translating into the physical address. The IOMMU-based
protection mitigates DMA attacks as unauthorized devices

are not permitted to access critical areas of the host’s physi-
cal memory. In virtualization, it enables the strong isolation
of VMs by separating the IOVA spaces on the basis of a
group (i.e., domain) of devices.

However, IOMMU opens a new attack surface, be-
coming a new side-channel source between the attacker-
controlled devices and a victim’s device. Like MMU,
the IOMMU has an address translation cache named In-
put/Output Translation Lookaside Buffer (IOTLB), which
keeps recent IOVA-to-PA translations to serve translation
requests faster. The IOTLB is shared among multiple devices
across different domains. Although this has a high potential
to be used as an unintentional side-channel source [22],
[38], [64], [69], [79], the research communities have still
not studied it.

In this paper, we present DEVIOUS, a novel side-
channel attack exploiting the IOTLB in IOMMU-enabled
systems. In DEVIOUS, an attacker employs his/her own
DMA-capable PCle devices, such as GPU or NIC, which
share the same IOTLB with a victim’s device. The attacker
initiates an IOVA-based DMA request from the device,
causing contention with the victim’s device on the IOTLB.
The measured latency of the DMA request depends on
whether the request has been served by the IOTLB or not.
The timing difference reveals the information on the victim’s
behavior. DEVIOUS is available on any configuration of
the victim’s device that shares the IOTLB (IOMMU). The
victim’s device may be on the same machine, but isolated
from the attacker as they belong to different domains (e.g.,
VMs in a multi-tenant cloud with support of dedicated PCle
devices), or on the remote machine connected to the attacker
over the network.

We classify DEVIOUS into a device-driven side-channel
attack, as it employs DMA-capable devices to deliver the
attack. Unlike CPU-based side-channel attacks [24], [25],
[31], [40], [79], where memory requests to create contention
on cache-like shared resources are initiated from CPUs,
DEVIOUS makes device-initiated memory requests instead.
Hence, DEVIOUS has no influence on CPU caches or TLBs
on a victim’s machine. With such an inherent and unique
characteristic, DEVIOUS evades all the countermeasures and
well-established protection techniques against CPU-based
side-channel attacks, like anomaly detection based on the
behavior of a cache or TLB [7], [15], [46], [81].

Implementing DEVIOUS is not straightforward as the
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IOTLB is new, and its microarchitectural details are still hid-
den unlike TLBs and caches which have been widely studied
and reverse-engineered for decades [13], [22], [57]. To
bridge the knowledge gap, we reverse-engineer the IOTLB’s
internals in an Intel processor. We use RDMA-enabled NIC
(RNIC) for the reverse-engineering as it allows us to issue a
single DMA transaction, which is necessary for elaborately
dissecting the internal. We first explore the RNIC’s device
driver to uncover the address mapping in the IOMMU. Then,
we reveal the IOTLB’s architectural properties by reverse-
engineering it through formulated DMA transactions.

We develop two attack primitives for DEVIOUS using
two devices, GPU and RNIC, considering the device usage
in modern systems. The first primitive is DEVIOUSgpy,
which probes the status of IOTLB by using a GPU. It
leverages the data transfer between a host and GPU device
memory to issue DMA transactions on the IOMMU. The
following primitive is DEVIOUSgnic, that utilizes RNIC for
probing the IOTLB. DEVIOUSgnic initiates remote DMA
transactions over an RDMA network.

We prove the security impact of DEVIOUS by demon-
strating attacks under practical scenarios with these two
constructed primitives. An attacker can perform a side-
channel attack on systems highly secured by the IOMMU.
First, we leverage DEVIOUSgpy to construct a cross-VM
covert channel and a keystroke timing attack on the SSH
protocol in the virtualized environment. We show that the
attack can be performed across the isolation boundary of
VMs bypassing the IOMMU-based protection. Next, we use
DEVIOUSgNic to extend the local side-channel attack to
remote attacks, where the attacker infers a victim’s access
pattern on the Apache Crail and performs a website finger-
printing attack remotely over the RDMA network. In the
end, we discuss possible countermeasures to prevent side-
channel attacks based on the computing environments.
Comparison to previous works. Unlike previous TLB-
based attacks [22], [37], DEVIOUS is a device-driven attack
that uses DMA-capable I/O devices to carry out the attack.
Although there are similar attacks to ours, they differ in the
hardware component they exploit. For instance, [38], [65]
use RNIC to target the vulnerability in DDIO-enabled LLC,
while [69] also uses RNIC but targets its SRAM-based in-
ternal cache. Another attack [64] exploits traffic congestion
in a PCle switch as a side-channel. In contrast, our attack
leverages the IOTLB in the processor’s root complex as a
source of leakage. We provide a comprehensive comparison
with related work in Section 8.

We underscore this paper’s contributions as follows.

1) We unveil the IOMMU as a leakage source for side-
channel attacks. To demonstrate it, we reverse-engineer
the IOTLB’s architectural properties on Intel CPUs,
including cache organization and replacement policy.
We present a device-driven side-channel attack, DEVI-
Ous, exploiting the IOTLB as a side-channel, which
has no influence on CPU caches or TLB, and evades
countermeasures against CPU-based side-channel at-
tacks.

2)
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3) We develop two attack primitives of DEVIOUS by
using GPU and RNIC. Then, we systematically ana-
lyze and compare these primitives under experimental
settings. Furthermore, we propose a method that makes
the timing difference more apparent by leveraging the
IOTLB’s replacement policy.

We demonstrate practical attacks such as cross-VM
and remote timing attacks on the IOMMU-enabled
machines. We also discuss some effective mitigations
against the IOTLB-based side-channel attacks.

4)

2. Background

2.1. IOMMU

Intel processors with VT-d are equipped with a hardware
called Input/Output Memory Management Unit (IOMMU)
[30]. The purpose of the IOMMU is to protect system
from DMA attacks, and achieve strong isolation of virtual
machines by preventing unauthorized memory access from
malicious DMA-capable devices [6], [12], [62]. Like MMU,
the IOMMU allocates an I/O virtual address (IOVA) space to
each DMA device. With the IOVA space, a device is isolated
from the host and even other devices under different IOVA
spaces. However, memory access from the device needs
address translation from IOVAs to physical addresses in the
host memory. DMA Remapping Hardware Unit (DRHU)
inside the IOMMU is responsible for the address transla-
tion [30]. Upon an IOVA-based DMA request, the DRHU
consults a page table and outputs the corresponding physical
address. The page table exists in the host memory, managed
by operating systems [4], [30].

The address translation is time-consuming, demanding
a page-table walk with multiple memory look-ups. The
DRHU looks up the page tables to find a corresponding
physical address at every IOVA-based DMA request. This
extra operation may hurt the system’s performance with
the extended DMA’s latency. Like the traditional MMUSs,
the IOMMU thereby keeps recently accessed mappings in
the Input/Output Translation Lookaside Buffer (IOTLB) to
accommodate quick translation. Also, similar to the TLBs
[22], the timing difference between IOTLB hit and miss
can be a leakage source through a side-channel. To date,
the microarchitectural internals of Intel processor’s IOTLB
necessary for successful side-channel attacks have not been
disclosed yet.

2.2. RDMA

In modern large-scale computing, high-performance in-
terconnected networks are commonly deployed using the
Remote Direct Memory Access (RDMA) protocol to pro-
vide diverse services such as big data analysis [32], [41],
deep learning [55], [66], [78], cloud service [20], [68], [77],
and key-value store [14], [35], [43], [71]-[73]. RDMA is a
protocol that enables direct memory access from a machine
to the memory of a remote machine without involving
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either machine’s operating system [54]. Under the RDMA
network, a client issues an RDMA request from its user
space without a context switch to the kernel space, and the
received server processes the request without involving the
CPU. This RDMA'’s strategy that minimizes OS intervention
in network communication is a promising solution for a low-
latency network.

The RDMA protocol can be implemented with Infini-
band as follows. End-to-end hosts in the network prepare
a queue pair (QP) that consists of a send and a receive
queue. The queues keep work requests (WR); each defines
an RDMA operation, Memory Region (MR) description, and
an area RNIC can access. The MR description contains all
the necessary information about the device-shared memory,
including a remote key. The RNIC interprets the WRs
and sends an RDMA request to the remote machine. This
RDMA request contains the accessed memory address and
the remote key provided with the MR description. The RNIC
in the remote machine authenticates the RDMA requestor
by checking the key before processing the request.

2.3. Cache side-channel attack

A cache side-channel attack is a timing attack that
exfiltrates confidential data (e.g., secret key) using the timing
disparity in the shared cache [24], [25], [31], [40], [79]. The
potential side-channel source must be a shared resource and
produce discernible timing disparity depending on its in-
ternal status. Generally, hardware components with internal
caches for better latency can be the source [22], [38], [69].

Numerous side-channel attacks have been introduced
based on how to construct and prove the status transition
in the shared resource. The flush-based attack evicts cached
data from the shared cache using a c1flush instruction
and exploits the latency difference between the hit and
miss [24], [79]. The evict-based attack is similar to the flush-
based attacks but does not rely on the c1flush instruction
when evicting the target cache line [25]. This attack evicts
the target data using a cache conflict and replacement policy.
The attacker prepares an eviction set, a list of addresses
accessed to make the conflict with the target in the cache.
In the prime-based attack [31], [40], the attacker primes
the whole entries in the target set with the eviction set and
checks that the primed blocks are intact after a while.

These cache timing attacks are commonly performed ac-
cording to 3 steps. For the first step, the attacker manipulates
the status of a shared resource to a specific condition for a
future probe. Next, the attacker waits for a victim’s behavior
to the target data. Finally, the attacker probes the transition
of the status by measuring timing difference.

3. Reverse-engineering IOTLB

To accomplish a successful device-driven side-channel
attack on the IOTLB, we need information about the IOTLB
properties, such as cache organization and replacement pol-
icy. Unfortunately, their details are still publicly unknown.
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Figure 1: Procedure for updating Memory Translation Table
of RNICs when IOMMU is enabled.

Thus, this work uncovers the IOTLB designs by reverse-
engineering the current Intel processor. We choose Intel
Xeon Silver 4316, the 3rd Generation Xeon Scalable Pro-
cessor, as our target. To elaborately dissect the IOTLB,
we utilize an RNIC as it allows us to generate a single
DMA request at will. For this, we connected two machines
with RNICs, Mellanox BlueField-2, over the network with
RDMA over Converged Ethernet (RoCE) protocol. One
plays a client role which sends RDMA requests to the
remote machine, creating DMA transactions on the server
via the RNICs. The other plays a server role, and is equipped
with the target processor of reverse-engineering. We used
one-sided RDMA read operations in the experiment.

3.1. Address translation mechanism in RNICs

We observed that the DMA transactions via RNICs
introduce an extra challenge, requiring an additional trans-
lation from the VAs to IOVAs before issuing them. This
requirement is because the transaction is requested to the
RNIC with the application’s VAs for the device-visible
memory, but the RNIC starts DMA transactions with IOVAs.
To perform the designed reverse-engineering steps, we first
need to learn how the VAs map to IOVAs in the RNIC. This
mapping is essential to create DMA requests with specific
IOVAs. Besides the translation, the device also needs a mkey,
which is used to authenticate the requestor. When a device-
accessible memory is reserved, a dedicated mkey is assigned
by the kernel and shared with the RNIC. An application also
must initiate a DMA request to RNIC with the mkey.

Figure 1 shows the steps of the RNIC to complete an
address translation from an initial VA to the target physical
address (PA). Upon the kernel driver’s request, the kernel
reserves a device-accessible memory region with a mkey and
informs it to the RNIC. This creation is performed roughly
in three steps. In step 1, the kernel reserves the memory
space and updates its page table (VA to PA) and I/O page
table (IOVA to VA). In step 2, the kernel driver receives
the VAs and IOVAs for the reserved space from the kernel.
In step 3, the kernel driver delivers the VAs, IOVAs, and
mkey for the reserved space to the RNIC, which keeps the
information in its Memory Translation Table (MTT). When
a new DMA request arrives, the RNIC looks up its MTT
table to obtain the corresponding IOVA for the requested
VA.
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Algorithm 1: Creating a benchmark for IOTLB

Input: the number of sets S, the number of ways
W and a base address of memory region on
remote machine mr_addr

QOutput: none

1 procedure ToTLB_BENCHMARK (S, W, mr_addr) :

2 for k + 1 to 10 000 do

3 for w < 1to W+ 1 do

4 remote_addr < mr_addr + S X w X
4KB

5 RDMA_READ(remote_addr)

6 end

7 end

8 end

1

9

17 25 33 41 49 57 65 73
Sets

Figure 2: Heatmap depicting a result of reverse-engineering
experiment on Intel Xeon Silver 4316.

3.2. IOTLB structure

Reverse-engineering microarchitectural internals of a
processor generally requires hardware support [22], [37],
[52], [53], [60], [70]. We also utilize hardware performance
monitors to obtain necessary information of the behavior
of IOTLB. Intel begins to support performance monitoring
(PMON) for the IOMMU since the 3rd generation of Xeon
processors, codenamed Ice Lake [27]-[30].

PMON provides a number of hardware events (event
code: 0x40) for the IOMMU. Among them, three events
are related to the IOTLB; FIRST_LOOKUP (umask: 0x1)
to count the number of requests that look up the IOTLB,
MISSES (umask: 0x20) to count the number of times that
an IOTLB entry has been filled after the IOTLB miss, and
CTX_CACHE_LOOKUP (umask: 0x40) to count the number
of requests that look up a context cache after the IOTLB
miss. While CTX_CACHE_LOOKUP counts all the IOTLB
misses, MISSES only counts the misses that have a valid
translation in a page table. We choose to use MISSES event
as only RDMA requests that have valid addresses are used
in our experiment.

We first hypothesize that the IOTLB has a set-associative
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TABLE 1: Architectural properties of IOTLB for Intel Xeon
Silver 4316.

Property 4KB page 2MB page
Number of sets 32 16
Number of ways 8 8
Hash function Linear Linear
Indexing IOVA[16:12] IOVA[24:21]
Replacement policy LRU LRU

structure which linearly maps IOVAs to IOTLB sets with
certain associativity so that iotlb_set = V PN,y mod S,
where V PN denotes a virtual page number and S the num-
ber of sets. We verify this hypothesis by utilizing a reverse-
engineering technique introduced by Gras et al. [22]. First,
we prepare a large memory region for RDMA requests in
the server machine. Second, a client machine issues RDMA
read requests to the server with varying VAs, representing
different combinations of sets and ways. The VAs tested are
created as in Algorithm 1, where we attempt to fill a set by
set basis, filling one set first before filling another. Then, we
collect MISSES events via PMON on the server machine
for the examination.

Figure 2 illustrates the result of our reverse-engineering
efforts in a heatmap, where the brighter color indicates
more IOTLB misses with the given set count (x-axis) and
associativity (y-axis). The regular pattern in the figure shows
that the IOTLB employs linearly-mapped mapping from
IOVA to PA. Also, the figure shows the smallest way-set
pair in the heatmap is 8 and 32, implying that the IOTLB
has an 8-way 32-set associative cache. We later verified
this conclusion independently using PMON by checking the
miss events with arranged DMA transactions.

We also reverse-engineered the IOTLB’s structures for
2MB pages, repeating the above test with 2MB pages.
Additionally, we want to ensure whether the current IOTLB
allows differently-sized pages to share the same entries.
Our test was simple, priming the entire IOTLB entries with
4KB pages and attempting to evict one with a 2MB page.
However, we observed that none of the primed mappings
was evicted throughout this test. This result confirmed that
the IOTLB employs a separate hardware component for
2MB pages with slightly different set and way counts, 16
sets and 8 ways, requiring a page’s size to be the same
to make distinct requests interfere with each other. Table 1
summarizes the test results on the Intel Xeon Silver 4316
processor.

3.3. Replacement policy

Another critical factor in the IOTLB structure is the
replacement policy, which determines the TLB status af-
ter a miss. Prior works analyzed the replacement policy
mathematically using a permutation vector [1], [57]. The
permutation vector 7; represents an LRU order of TLB
entries after a hit at the i-th entry. For example, if m;
(€0,€1, .-y E1y—1, €y ), the rightmost element e,, is the LRU,
a next victim at a miss. After evicting the victim, a new
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m = (0, 1, 2, 3, 4,5, 6, 7)
m = (1,0, 2, 3,4 5, 6,7
m = (2,0, 1, 3, 4, 5,6, 7)
m = 3,0, 1, 2, 4, 5,6, 7
m =@, 0,1, 2, 3,5 6,7
o= (5,0, 1,2, 3,4, 6,7
e = (6, 0, 1, 2, 3, 4,5, 7)
m = (7,0, 1, 2, 3, 4, 5, 6)

Figure 3: Permutation vector for perfect LRU replacement
policy on IOTLB.

entry locates on the leftmost, the MRU position, and the
rest of the elements shift to the right by one.

Tatar et al. [57] propose a way to investigate the per-
mutation vector, 7;, after accessing the i-th entry. First, we
prepare two eviction sets, & and &, for a set in the IOTLB
and fill the set using & . Next, we access the i-th element
of & to update the LRU order in 7;, where i is in the
range of 0 < ¢ < 7. After the access, we examine an
entry’s position in 7;. This can be uncovered by counting
the number of prior evictions until the target element is
evicted while accessing the elements in &. For example,
if the target element is evicted after accessing four elements
in &, we can conclude that the target was in the 4th position
in mo. Figure 3 illustrates the permutation vectors from our
experiments. The figure shows all the elements keep their
positions well in the LRU order in every m;, proving that
IOTLB employs a perfect LRU replacement scheme.

4. Constructing Attack Primitives

This section describes two attack primitives, DEVI-
OUsgpy and DEVIOUSgnic, that utilize GPU and RNIC to
mount device-driven side-channel attacks on the IOTLB.

4.1. Constructing DEVIOUSGpy

To construct the GPU-driven timing attack on IOTLB,
DEVIOUSGpy, we need a method to trigger a DMA trans-
action from the GPU to the host memory. When a task is
offloaded into the GPU, the data needs to be migrated to
the GPU’s memory through DMA. Similarly, the produced
results in the GPU also should be returned to the host
memory after the GPU execution. The CUDA architecture
thereby offers diverse memory transfer methods in its run-
time API to support such data exchange between the host
and GPU memory. In this work, we use a primary API,
cudaMemcpy (), to issue a DMA transaction for GPU-to-
host data transfer.

Targeting a specific IOVA with a DMA transaction
requires further understanding GPU’s data transfer mech-
anism. In CUDA, the destined host memory for the GPU-
to-host data transfer must be pinned to avoid being paged
out by an operating system. The CUDA driver provides
implicit and explicit memory pinning. In the implicit pin-
ning, the driver temporarily allocates pinned pages at ar-
bitrary addresses and initiates the DMA transaction to the
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1 for (w=0; w<W; w++) // W: the of
cudaMemcpy (h_mem, d_mem,

bytes, cudaMemcpyDeviceToHost) ;

num. ways

2
3

Listing 1: Code snippet for Prime in DEVIOUSgpy.

pages. The transferred data is then copied from the pinned
to the destined memory. In this case, the location of the
temporary pinned memory may change throughout multi-
ple DMA transactions, challenging our attack that requires
persistent allocated pages. The problem can be avoided
by using the explicit memory pinning. CUDA provides an
API cudaMallocHost () to allocate a persistent pinned
memory at our own.

Prime+Probe. The GPU driver does not allow the allocated
memory to be shared between separate applications, which
is necessary for flush-, and evict-based side-channel tech-
niques. These restrictions drive the DEVIOUSgpy to rely
on the prime-based attack. We thus implement a GPU-
driven Prime+Probe attack for DEVIOUSgpy, which fills and
monitors the IOTLB with DMA transactions from GPUs.
The attack is performed following the 3 steps after an
initialization step.

In the initialization step, an attacker allocates a
pinned-memory buffer for DMA transactions in the
host with cudaMallocHost () and the GPU with
cudaMalloc (). This allocation allows the attacker to
avoid issuing a DMA transaction with the implicit pinned
memory. Based on the memory addresses on the host side,
the attacker constructs an eviction set £ using the algorithm
introduced by Oren et al. [SO]. Note that the DMA transac-
tions always incur in one direction from the device to the
host, but not otherwise. We thus observed that only varying
the memory address of the host side is enough to collect
each e € £. After this initialization, the attacker performs
the GPU-driven Prime+Probe attack following three steps.

Step 1. (Prime) The attacker primes a target set of the
IOTLB with £ by issuing DMA transactions for
each e € &. Listing 1 shows a code snippet for
Prime, where h_mem and d_mem denote the ad-
dresses of host and device memory, respectively.
(Wait) The attacker waits for a while, during which
a victim device that shares the IOTLB may perform
a DMA transaction or not depending on the secret.
(Probe) The attacker runs the code in Listing 1
again, but this time measures the execution time
with a rdt sc instruction. DMA transactions by the
victim result in a long latency. A short latency will
be observed, otherwise.

Step 2.

Step 3.

4.2. Constructing DEVIOUSgNic

The RNIC is designed to carry out a remote DMA
transaction to the remote machine over the RMDA network.
InfiniBand Verbs [49], an interface for RNICs, provides
useful APIs, ibv_post_send () and ibv_poll_cqg(),
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w++) {// W: the num.
2)i

for (w=0; w<W;

ibv_post_send (gp,

ibv_poll_cqg(cq, L)

[ S O

Listing 2: Code snippet for Evict/Prime in DEVIOUSgNic.-

to initiate DMA transactions to the RNIC and ensure its
completion. With the RNIC’s support, we can develop DE-
VIOUSgNic, Which allows us to extend our attack to a remote
timing attack. In this attack, any DMA-capable PCle devices
like GPU and NIC in the remote victim machine can be
a target of the attacker, given that these devices share the
IOMMU (IOTLB) with the RNIC.

Similar to the GPUs, DEVIOUSgnic implements the
remote side-channel using a prime-based technique [31],
[40]. Additionally, RNIC allows a memory region on the
server machine to be shared between two client applications.
This enables the DEVIOUSgnic to utilize an evict-based
technique [25], which the GPU cannot. Before performing
either attack, we need to complete a common initialization
step, where the connection between the server’s and the
client’s RNICs is established.

Initialization. During the initialization, the RDMA client
(i.e., the attacker) first handshakes with the remote server
where a victim’s device locates to open an one-sided RDMA
communication. Successful connection grants the attacker a
mkey and VAs to the memory region of the remote server
machine. Then, we prepare an eviction set £ to the remote
machine’s IOTLB by utilizing the approach introduced by
Oren et al. [50] again.
Evict+Reload. We first introduce evict-based DEVIOUSgNiC
attack. The attacker can exploit this method when an attacker
and victims share a memory region. Its details are as follows:
Step 1. (Evict) The attacker evicts the target set using the
eviction set £ by sending RDMA read requests for
each address e € &, replacing all entries in the set
where the target data resides. Listing 2 presents a
code snippet for this step.
(Wait) The attacker waits for a while, allowing time
for the victim device on the server to perform a
DMA transaction or not depending on the victim’s
secret.
(Reload) The attacker runs the code in Listing 2
again, but this time measures the execution time
with a rdt sc instruction. A latency shorter than the
threshold indicates a hit in the IOTLB, confirming
victim device’s DMA operation.
Prime+Probe. Similar to GPUs, prime-based DEVI-
OUsgnic attack follows the three steps:
Step 1. (Prime) Like in Evict+Reload, the attacker primes
the target set with £ using the code in Listing 2.
Step 2. (Wait) The attacker waits for a while, during which
the victim may perform a DMA transaction or not.
Step 3. (Probe) The attacker probes the target set by mea-
suring the execution time of the code in Listing 2.

Step 2.

Step 3.
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Figure 4: The difference in the number of IOTLB miss
events depending on probing sequence.

TABLE 2: Experimental setup for attack evaluation.

Sever machine Client machine

CPU Intel Xeon Silver 4316 AMD Ryzen 9 3950X
Motherboard ~ GIGABYTE MU72-SUO  MSI MAG X570S Tomahawk
GPU 1 NVIDIA Quadro K620
GPU 2 NVIDIA A100 _
RNIC Mellanox BlueField-2 (MLNX_OFED 5.6-1.0.3.3)
[N 64-bit Ubuntu 20.04 LTS

The slower latency than expected implies a DMA
transaction has occurred by the victim.

Prime+Probe with latency amplification. Unlike the local
side-channel attacks, the remote side-channel attack faces
one more challenge: making a robust channel that endures
noises from the network. Thus, we propose a novel method
to amplify the timing difference by leveraging the IOTLB’s
replacement policy.

Figure 4 shows the miss events with the different probing
order. When the attacker primes an IOTLB set with the evic-
tion set, the first cached entry (i.e., Lg) has the highest LRU
score, 8 (gray box). Upon a victim’s request for a new page
(i.e., T), caused by the DMA transaction in the second step
of Prime+Probe, the oldest entry Lg is evicted from the set,
and the scores for other entries are updated. At this moment,
if the attacker probes the entries in the same order when
they are primed, the probing experiences 8 misses (in-order
probe). These 8 consequent misses make the victim’s action
more detectable with a long timing difference. Instead, if
the attacker probes in the reverse order of the primed order,
the probing only experiences 1 miss (reverse-order probe).
We denote the Prime+Probe with the reverse-order probing
as Prime+Probe (PP) and the Prime+Probe with the in-order
probing as Prime+Probe with Amplification (PPA).

4.3. Evaluation and discussion

We evaluate the performance of two attack primitives
under various experimental settings, and discuss the results
by comparing them.

Experimental setup. The experimental setting is presented
in Table 2. To test DEVIOUSgpy, we prepared two VMs
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Figure 5: Timing distributions for two attack primitives.

on the server machine running KVM as a hypervisor. The
guest OS installed on both VMs is 64-bit Ubuntu 20.04
LTS. Additionally, two GPUs, an NVIDIA A100 and an
NVIDIA Quadro K620, are assigned to a VM1 and VM2,
respectively, through PCI-passthrough mode.

For the DEVIOUSgNic, We connect three machines, two
machines in Table 2 and an additional machine, over the
RDMA-based network using RNICs. The two machines
listed in the table still serve as an RDMA server and a client.
Also, the extra machine, which has Intel Core 17-8700, and
Mellanox ConnectX-6 RNIC, serves as another client. All
three machines run on Ubuntu 20.04 LTS with the same
device driver MLNX_OFED 5.6-1.0.3.3 for the RNICs.

Evaluation of attack primitives. To show the feasibility
of the DEVIOUSgpy and DEVIOUSgnic, we design an ex-
periment that distinguishes an IOTLB hit from an IOTLB
miss based on the timing information. For this, we collect
a timing information for each attack primitive. Note that
we obtain the timing information for DEVIOUSgpy and
DEVIOUSgNic based on the CPU cycles with a rdtsc
instruction. We also obtain 100,000 number of traces for
each IOTLB hit and IOTLB miss case.

Table 3 and Figure 5 present an experimental result for
our attack primitives. The main idea of DEVIOUS is to
infer the victim device’s behavior by decoding the change
in the IOTLB status into the timing information. Except for
DEVIOUSgnic with PPA, the other attack methods experi-
ence a single IOTLB miss during the decoding. Hence, they
have a similar timing difference (A) between hit and miss.
However, if we take a deeper look into the difference, we can
find out that DEVIOUSgpy with PP has a higher difference
of about 500 CPU cycles than others. This attributes to
the property of the channel that the devices construct. For
instance, the RNIC-driven remote timing attacks struggle
with the noise from the network that disturbs to get an
apparent timing difference. However, the GPU-driven local
timing attack is relatively free from the noise, through which
we can obtain a clear timing information. Figure 5a, 5b, and
5c show the timing distributions collected by GPU-driven
PP, RNIC-driven ER, and PP.

The property of the channel constructed from the devices
also affects the attack execution time. Contrary to our expec-
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TABLE 3: Average timing difference (A) and attack execu-
tion time (7)) of Evict+Reload (ER), Prime+Probe (PP) and
Prime+Probe with Amplification (PPA).

Primitive Method | Hit (cycles) | Miss (cycles) | A (cycles) | 7T (us)

DEVIOUSGpy PP 175,633 177,275 1,642 60.42

ER 16,798 17,891 983 52.29

DEVIOUSgNic PP 147,196 1,145 45.43
146,051

PPA 152,374 6,323 47.45

tation, the DEVIOUSGpy has a higher attack execution time
(T) of about 12 us than DEVIOUSgnic even if RNIC-driven
timing attack is delivered from the network. This difference
in the execution time comes from the characteristics of the
devices. Specifically, the GPU triggers a DMA transaction
with cudaMemcpy (). It induces an intervention of OS to
perform a data transfer between a host and device memory.
However, RDMA requests are directly issued and processed
by the user space applications without any OS intervention.
Thus, there is no data transfer between the I/O buffers
(i.e., zero-copy), where RNIC directly performs DMA trans-
actions to user space memory. Moreover, DEVIOUSgNic
uses one-sided RDMA requests that bypass the CPU of the
remote machine, further reducing the response time.

On the other hand, DEVIOUSgNic with PPA has the
highest 6,323 cycles of average timing difference due to
its amplification. Figure Sc illustrates the RNIC-driven PPA
has a more apparent timing difference than PP. However, its
attack execution time is about 2 us slower than RNIC-driven
PP. Such a delay may harm the attacker due to degrading the
attack performance with extended attack time. Contrarily, as
discussed above, the long latency helps the attacker to dis-
cern a victim’s activity in remote side-channel attacks. We
observed that the noise in the network is not tiny, disturbing
the attacker’s accurate probing. Instead, the miss latency
amplification makes the probed latency more apparent with
multiple times of misses, § times longer in our case. This
observation indicates that knowing the replacement policy in
remote side-channel attacks is essential, helping the attacker
build more robust attacks that bypass some glitches in its
environment, such as network delays.

Comparison to DEVIOUSgpy and DEVIOUSgnic. The
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IOMMU interacts with devices via the device-issued DMA
transactions. Thus, the device’s use case can affect how we
utilize the IOTLB-based timing attack. In Section 4.1, we
present DEVIOUSgpy to monitor another device’s activi-
ties in the virtualized environment. Generally, as GPU is
available in the local environment, it can be used to probe
the IOTLB of the local machine that an attacker locates.
Instead, the RNIC is designed to issue a DMA request to
the remote machine. Thus, DEVIOUSgnic can be utilized
in the remote attack scenario, where an attacker monitors
the remote machine’s IOTLB. The use of a shared memory
also can vary which kinds of attack methods an attacker
uses. Contrary to RNIC, the restriction on allocating a shared
memory between separate CUDA kernels forces the GPU-
controlled attacker only to use prime-based timing attacks.

5. Cross-VM Attacks

We present cross-VM attacks using attack primitives
constructed in the previous section. Our threat model as-
sumes at least two different DMA-capable PCle devices are
connected to the PCle network via the same root port, where
the devices also share the same IOMMU. In this model, a
victim VM uses one PCle device, and an attacker VM uses
another PCle device. We also assume that the PCle devices
are dedicated to each user, so the devices cannot be shared.
This constraint is common in the cloud environment, where
each hardware resource is exclusively assigned to a specific
VM to accommodate better isolation [30]. Therefore, the
attacker cannot maliciously snoop on the victim’s device.
At last, this threat model does not include any software
vulnerabilities (e.g., application bugs) that an unauthorized
attacker can exploit.

Figure 6 shows the setting of our attacks in detail. The
server machine is equipped with Intel Xeon Silver 4316
processor with 32GB RAM, and has two GPUs and one NIC
attached through a PCle switch. The attached GPU devices
are NVIDIA A100 (i.e., GPU1 in Figure 6), and NVIDIA
Quadro K620 (i.e., GPU2), and the NIC is NEXT-541SFP-
10G. Two guests, VM1 and VM2, are running on an KVM
hypervisor in the server. We use 64-bit Ubuntu 20.04 LTS
Linux as the OS for both the guests and the hypervisor.

We consider two cross-VM attack scenarios. In the
first attack (in Section 5.1), two isolated virtual machines
from different domains construct a covert channel by using
dedicated GPUs, which are assigned to each VM with a PCI-
passthrough mode. In the second attack (in Section 5.2), a
spy VM delivers SSH keystroke timing attack on a victim
VM. The spy utilizes his/her own GPU assigned with a PCI-
passthrough mode to probe the status of IOTLB made by
the victim’s NIC.

5.1. Attack 1 - Cross-VM covert channel

The VMs in this test run on the same machine, but they
are strictly isolated and have no means to access the other
VM’s memory. However, we construct a prohibited covert
channel through the IOTLB and pass messages between
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Figure 6: Cross-VM attacks on IOTLB.

two VMs. Note that this new channel bypasses all prior
software/hardware protections against the CPU cache-based
covert channels [18], [23], [39], [56], [74].

Constructing a covert channel. Before constructing an
IOTLB-based cover channel, the sender and the receiver
must arrange their communication protocol. The sender and
the receiver must determine an IOTLB set, S, which they
use for the channel. Also, they agree that the sender posts 1
bit every fixed time window. In this test, the sender post ‘1’
by priming whole entries in S using the GPU, wiping out
any last changes. Otherwise, the sender post ‘0’ by staying
inactive during the time window. During the next window,
the receiver retrieves the posted 1 bit by probing any changes
in S. A longer-than-expected probing latency indicates ‘1°;
otherwise, ‘0.

Evaluation. The performance of the covert channel is eval-
uated under the same experimental setting described in
Section 4.1. In the experiment, we use 100Kb data of bit
sequence, where bits ‘1’ and ‘0’ are uniformly distributed
randomly. The sender and the receiver synchronize with the
pre-determined time window, whose size affects a covert
channel’s effectiveness, such as throughput or bit-error rate.
The experiment reveals that, on average, the sender needs
76 ps to prime an IOTLB set with the GPU. Considering
this result, we test by altering the time window size from
100 ps to 400 us.

Figure 7 shows the throughput and the bit error rate
(BER) from our covert channel evaluation with a single
IOTLB set. As expected, we get lower BER and smaller
channel bandwidth as the time window size grows. The
covert channel with the single IOTLB set shows 2.54 Kbps
throughput and 2.18% BER with a time window of 250
us. This channel bandwidth can be enhanced by using
multiple sets. We confirm that the covert channel with
16 IOTLB sets results in 40.64 Kbps throughput. Also,
various enhancement techniques can be employed for further
improvement [2], [24], [48].
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Figure 7: Performance of a cross-VM covert channel over
a single IOTLB set.

5.2. Attack 2 - Keystroke timing attack

The SSH protocol is subject to keystroke timing attacks
[38], [61], [80], as individual transmitted SSH packets are
directly related to keystroke events from the SSH client.
The interarrival time of packets reveals the information
on keydown-to-keydown time of users. Previous studies
relevant to our work rely on the contention on a last level
cache [38], [65] in server-grade processors equipped with
Data-Direct I/O (DDIO), or the congestion of a PCle link
[64] as a side-channel to leak the keystroke information. In
this attack, we use the IOMMU as a novel leakage source
of the timing information of packet’s arrival at the victim’s
NIC.

We consider a spy who mounts SSH keystroke timing
attack with DEVIOUSgpy. The spy is located in a virtual ma-
chine VM1, as shown in Figure 6, and uses a dedicated GPU
(i.e., GPU1) to probe IOTLB shared with other devices. The
victim is located in another virtual machine VM2, where a
dedicated NIC device is assigned with a PCI-passthrough
mode. The victim is running an SSH server, and accepts
SSH connections from remote clients connected through the
Ethernet NIC device. For this attack, the spy does not need
any SSH connection or access permission to VM2, where
an SSH server is running. The attack can be performed as
long as the spy and the victim share the same IOTLB.

In Linux, an RX ring buffer is a list of packet descriptors
with head and tail pointers pointing out the first and last
element of the list [76]. Each descriptor contains a physical
address of the receive buffer for a received packet and
its size. When a packet arrives, the NIC first looks for
an available descriptor in the RX ring, and then transfers
the received packet to the receive buffer specified by the
descriptor.

The main idea of our attack originates from the fact
that the NIC device performs DMA access to the RX ring
buffer in the physical memory upon the receipt of packets.
The DMA access to the ring buffer will consequently cause
an IOTLB lookup, which can be observed by our IOTLB
probing techniques.
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Figure 9: IOTLB trace for arrivals of SSH packets.

Identifying IOTLB sets. The first step for our attack is to
identify IOTLB sets associated with the ring buffer. Linux
allocates a 4KB page for the RX ring buffer by default, and
its DMA address is mapped with consistent/coherent DMA
type as the ring buffer remains throughout packet transmis-
sions. Hence, our hypothesis is that the cache activity will
be consistently observed in only one set of the IOTLB while
receiving packets.

We conduct an experiment to verify our hypothesis,
and identify the associated IOTLB set. In the experiment,
we probe cache activities for the entire sets of IOTLB
while repeatedly sending packets from a remote machine
to the NIC assigned to VM2. We command a program in
the remote machine to perform 256 rounds of a packet-
sending operation at a fixed time interval of 146 us. In
each round of receiving a packet, we use DEVIOUSgpy
to measure the cache activity for the entire IOTLB sets.
To make it more clear, we control the remote program so
that every 64 rounds, it keeps sending packets only for the
first 32 rounds. Figure 8 presents the experimental result.
The heatmap shows cache activities of each set for the 256
rounds, where the bright color implies more IOTLB misses.
The distinguishable pattern is only observed in the first set
(i.e., the set number 0), indicating that the RX ring buffer is
located at the set 0. We confirm this result remains consistent
throughout multiple system reboots and guest resets.
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TABLE 4: Evaluation result of keystroke timing attack.

A(=Tr = Ti1l) | Ag(=1Tc = Til)
Mean 0.81 ms 2.87 ms
Std. deviation 10.07 10.08

Inferring packet arrival. The spy uses the information
about the IOTLB set associated with the RX ring buffer to
infer a packet’s arrival at the NIC. That is, he/she repeatedly
probes the set O by using GPU1 assigned to VM1, and traces
the probe results to obtain the timing information of received
packets.

Figure 9 is an example of a trace obtained from probing

the IOTLB set with the GPU-based probing technique while
aword ‘notebook’ is being sent to the SSH server. Each
SSH packet is created and transmitted to the server whenever
a single character is input from the SSH client. When an
SSH packet arrives, the NIC performs DMA access to the
RX ring buffer, and a lookup to the IOTLB set 0 will take
place. The lookup by the NIC will cause an eviction of
entries primed by the spy. As a result, the spy observes
IOTLB miss, which is shown as a peak in the trace as shown
in Figure 9. By analyzing the peaks, the spy is able to obtain
the interarrival time of the received packets, which provides
timing information that enables the spy to deduce the key
pressed by the SSH client.
Evaluation. We evaluate the performance of our keystroke
timing attack. Our experimental environment is the same
as the setting presented in Figure 6. It is noteworthy that
the objective of our attack is not to completely recover
the characters, but rather to obtain the interarrival time of
the received packets using the probing technique. In the
evaluation, we measure the accuracy of detecting keystroke
events by IOTLB probing, i.e., how much difference in the
timing is between the detection and ground truth?

In the experiment, we run a remote SSH client connected
through the NIC to the SSH server running in VM2. The
SSH client is automated to send 1,000 words of a dictionary
to the SSH server. As the time interval of keystrokes by
human is observed to be around 240 ms on average [36],
the timing of sending a packet (i.e., an individual character)
is determined by emulating the human behavior.

The SSH client records a timestamp whenever a charac-
ter is input, which is used as a ground truth in the evaluation.
We also trace the received packets through the NIC by using
tcpdump, and use the timestamps of the packet arrival for
comparing our result. While packets are being sent from the
SSH client, the spy performs tracing the IOTLB set O with
the GPU-based probing technique. After the trace has been
obtained, we figure out timestamps of peaks, like shown in
Figure 9, from the trace.

Table 4 presents statistical differences of timestamps
captured by the GPU-based probing technique from ground
truth and tcpdump. 77 denotes a timestamp with a peak in
the IOTLB trace for a certain character input from the SSH
client. 7 and 77 denote a timestamp obtained from ground
truth and tcpdump for the same character input, respectively.
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Figure 10: Remote timing attacks on IOTLB.

We observe from the result that the timing difference
(A¢) with tcpdump is much smaller than the difference (Ag)
with the ground truth. We also observe that the difference
Ay is less than 1 ms, which is significantly small compared
to 240 ms of the average interarrival time. From these
observations, we come to a conclusion that our keystroke
timing attack is as accurate as sniffing-based timing attacks
[61], and can effectively recover keystroke events with high
probability.

6. Remote Timing Attacks

In this section, we present remote IOTLB-based timing
attacks. We consider two attack scenarios, where a spy and
victim are located on different machines connected over an
RDMA network. Figure 10 illustrates the setting of our
remote timing attacks. In the threat model, the spy has
control over an RDMA client, which is connected to a
remote machine where target applications such as an RDMA
server or web browser are running. However, the spy has
neither direct control over the target machine, nor other
RDMA clients.

In the first attack (in Section 6.1), a spy delivers the
DEVIOUSgNic attack to a target machine running Apache
Crail, a key-value store. The spy tries to infer the access
pattern to specific key-value pairs of a victim on other
RDMA client. In the second attack (in Section 6.2), a
spy mounts website fingerprinting against the remote target
machine running a web browser.

It is noteworthy that remote attacks are also available in
the cross-VM setting, as shown in Section 5. For example,
Attack 4 (the second attack) can be carried out when one
VM has an RDMA application that connects to a remote
adversary while the other VM (the victim) is using a web
browser. Additionally, Attack 3 (the first attack) is also
viable in a cross-VM attack scenario like this.

6.1. Attack 3 - Attacking Apache Crail

We consider a spy trying to infer access patterns of a
key-value store. The spy is located in an RDMA client,
connected to the server over the RDMA network, and uses
DEVIOUSgNic to deliver the attack.
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The server runs Apache Crail for the key-value store.
Crail is a high performance distributed storage [5], [63],
consisting of a name node and data node'. The data node
has a storage, which is a large list of 1 MB data blocks, to
keep up user data. The name node contains all the metadata
related to the user data stored in the data node. In the
RDMA-based configuration, separate memory regions are
allocated for the name node and data node. The name node
serves a client’s read request for a key-value item. It retrieves
metadata such as a location of the corresponding value in
the data node. As the metadata is stored in a memory region,
such retrieval induces an RDMA read, which internally
makes a DMA access to the memory region.

The spy is interested in the access pattern of a victim
client, i.e., whether the victim has requested a certain key-
value item or not. Thus, the spy probes the IOTLB sets
corresponding to the memory region of the metadata in the
name node to leak the access pattern. In this work, we
consider two attack scenarios according to the setting of the
memory region of the name node, i.e., the memory region
is shared with the spy or not.

Attack with the separate memory region. In this attack,
we suppose that the spy acts as a client of the key-value
store, and has access to a different memory region on the
server. As the spy has no memory regions shared with the
victim on the RDMA server, there are no options but to
use prime-based techniques such as PP and PPA in the
DEVIOUSgnNc attack. Hence, the first step for the attack is
to construct an eviction set that occupies the same IOTLB
set of the victim’s target memory region. As a name node in
the Crail has memory regions allocated with hugepage (i.e.,
2MB page), the eviction set needs to be constructed upon the
IOTLB of 16 sets for hugepages. The next step is to identify
the set of the memory region where the target key-value item
resides. It can be easily achieved by investigating the entire
IOTLB sets and looking for the one showing expected usage
patterns of key-value items.

Attack with the shared memory region. In this scenario,
the spy has access to the memory region of the name node
shared with the victim client. For instance, this is the case
where the spy acts as an YCSB Crail client [17], which is
one of the Crail applications that support memory sharing.
As the spy has the shared memory region with the metadata
for the target key-value item, DEVIOISgnic with ER is
available in this attack.

Evaluation. The experimental setting for the attack eval-
uation is the same as that depicted in Figure 10. For the
experiment, we implement a spy program that performs
DEVIOUSgnic With PP, PPA, and ER methods to a given
eviction set or an address of the memory region. To iden-
tify the target set, we search for IOTLB sets that exhibit
significant activity when sending requests to key-value pairs.
We measure the performance of the attacks in terms of the
accuracy and execution time by running the spy program
while a victim client is sending a read request of a key-
value item to the Crail server. We allow the program to run

1. The Apache Crail project retired on June 2022.
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Figure 11: Evaluation of DEVIOUSgNic on Apache Crail.

multiple times to obtain multiple traces of the IOTLB for
the same read request. The number of traces (V) reflects
the attacker’s ability. That is, traces more than once (i.e.,
Ny > 1) imply that the attacker can control the victim to
send multiple requests of the target key-value item while
a single trace (i.e., Ny = 1) implies no control over the
victim. Even though having N, > 1 may not be a practical
scenario in Crail, we assume it to evaluate the overall attack
performance in relation to their capability (V).

Figure 11 shows the performance of the attacks ac-
cording to the number of traces. The more we collect a
large amount of trace, the more the attack accuracy and
attack execution time increase. As shown in Figure 1la,
the accuracy of PPA sharply rises from 89.47% to 99.18%
with N; = 20 while the accuracy of PP has stabilized
to 62.66% even with N; = 100. We attribute this to the
low accuracy of the PP method. Figure 11b shows attack
execution times for each method. It is noteworthy that ER
shows the highest attack execution time. This has to do with
an implementation method of each attack. Specifically, nine
individual RDMA read requests are used for the ER attack
in our implementation; eight requests to evict a set, and
one request for reloading. On the other hand, PP and PPA
attack needs only eight RDMA requests, as the requests in
the Probe step are the same as the requests in the Prime
step. Hence, the one more RDMA request of the ER method
results in the highest attack execution time.

6.2. Attack 4 - Website fingerprinting

We consider a spy mounting a website fingerprinting
attack. As shown in Figure 10, the spy is located at a remote
RDMA client, which is connected to a victim machine
over the RDMA network. The spy tries to infer websites
that the victim visits by probing the IOTLB status with
DEVIOUSgNic. Our attack exploits the GPU acceleration
of modern web browsers. There are generally two types of
GPUs available in computers: integrated and discrete GPUs.
Our attack is not affected by the type of GPU since both are
managed by IOMMU [44], [82]. Nevertheless, we primarily
focus on discrete GPUs since they are more widely used.
Rendering a web page. As the internal rendering process
varies with web browsers, we focus on Chrome in this
work. In Chrome, a process called renderer is responsible
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for rendering a web page in each tab. It translates HTML,
JavaScript, and CSS into a Data Object Model (DOM) object
and a computed style for the DOM object. The renderer
then calculates the geometry of the page and determines the
paint order. Once the information necessary for displaying
parts of the page has been gathered, the renderer performs
rasterizing, i.e., converting the rendering information into
a bitmap. The resulted bitmap is then transferred to the
framebuffer.

Inferring website. Chrome turns on the GPU acceleration
by default, and offloads some parts of the rendering opera-
tion, such as rasterization and compositing, to the GPU. To
further speed up the acceleration, offloading takes place as
soon as necessary elements become available.

The GPU offloading induces a DMA transfer to the

device memory, creating unique DMA access pattern ac-
cording to the content and shape of the web page. This
unique pattern is also observed in a trace of the IOTLB
status. Figure 14 in Appendix D shows examples of traces
for the entire IOTLB sets obtained during visiting websites.
The traces are obtained by using DEVIOUSgnic With the
PPA technique. On average, it takes 600ms to load a web
page, but a single execution of PPA for the entire IOTLB
takes less than 2ms. Therefore, DEVIOUSgNic can collect
over 300 IOTLB traces, which is enough to capture unique
and identifiable traces for each website. With this trace, the
spy can infer the information about the web site visited by
the victim.
Building classifier. To identify a web site from the obtained
IOTLB trace, we build a deep learning-based classification
model. As the trace is time-series data, we choose a bidirec-
tional LSTM model (Bi-LSTM). We stack up the attention
layer for improving the weight per label to the output layer
of Bi-LSTM. As the last layer of the classifier, the Att-
BLSTM model constructed the dense layer that contains a
softmax activation function to classify time series data.

We alleviate an overfitting problem by adding a dropout
layer and batch-normalization layer to the output of each
classifying layer. We also apply Early-Stop method to dy-
namically decrease the learning rate if validation loss does
not increase after the n iterations, where n is set by the
patience argument. Hyper-parameters for our model are
shown in Table 5.

2 4 6 8101214161820222426283032
Number of selected features

(b)y N =200
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2 4 6 8101214161820222426283032
Number of selected features

(¢) N =300

regarding the number of selected features (/N denotes the number of websites.).

TABLE 5: Hyper-parameters for the classification model (/V
denotes the number of websites in the closed set S.).

Hyper-parameter Value
Size of hidden layer 96
Size of attention layer 96
Size of dense layer (/N=100,200,300) 100,200,300
Dropout 0.5
Learning rate 0.013
Learning rate decay 0.19
Batch size 32
Epoch 200

To obtain the training data, we choose top 300 websites

from Alexa Top IM Sites [3]. Then, we collect traces of
the entire IOTLB sets for each website while the web page
is being displayed in the Chrome web browser. The data is
divided into a training set and a test set with a ratio of 8:2.
The data is also normalized to make the classifier resilient
against specific noise such as outlier.
Evaluation. We evaluate the accuracy of our classification
model under the experimental setting depicted in Figure 10.
We use Chrome on Linux with version 103.0.5060.114 as a
victim’s web browser. The experiment is conducted under a
default setting of the GPU acceleration in the web browser.
The evaluation follows a closed-world scenario: the victim
is restricted to visit websites in a closed set S.

The classification accuracy is presented in Table 6. For
instance, the probability that the visited website matches the
topmost output of our classification model under the closed
set S of 100 websites is 98.90%. The probability that the
website is in the top 3 ranked outputs under the same closed
set is 99.82%.

The classification model is built with features of the
entire IOTLB sets. Our expectation is that not all the features
(i.e., the sets) are necessary for accurate classification of
websites. Hence, we also evaluate our model with respect
to the number of selected features. For this, we rank each
feature based on its importance using a random forest feature
selection algorithm, and choose features with the highest
ranks in the evaluation.

Figure 12 shows the evaluation result. In the case of clas-
sifying among 100 websites (i.e., N = 100), the accuracy
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TABLE 6: Accuracy of classifying websites.

N=100 | N=200 | N=300
Top 1 Acc. | 98.90% | 88.57% | 86.75%
Top 3 Acc. | 99.82% | 96.77% | 95.64%

for Top 1 and Top 3 is close to 90% even with only a half
of 32 features selected. This result implies that the spy can
achieve high accuracy even by probing just a small portion
of IOTLB sets, enabling faster attacks that are effective in
fingerprinting websites with short loading time.

There are several limitations of the demonstrated attack.
First, the generality of the classifier is limited because
the IOTLB footprints vary depending on the specific GPU
model or version of the web browser, thus requiring the
classifier to be built accordingly. Second, the attack is
susceptible to noise from other devices that share the same
IOTLB, lowering the classifier’s accuracy (See Appendix
A.1). Finally, as for GPU rendering using huge pages, the
accuracy will decrease as the attacker is only able to obtain
coarser-grained information (See Appendix A.2).

7. Mitigation

In this section, we discuss some possible mitigations

against the DEVIOUS attack.
Anomaly detection. Anomaly-based detection of DEVIOUS
can be an effective mitigation strategy. Similar to previous
detection techniques for CPU-based side-channel attacks [7],
[15], [46], [81], the hardware events can be utilized to
develop a runtime detection method for our attack. Although
there already exists a number of well-established detection
methods for the CPU-based side-channel attacks, we cannot
directly use them for our attack. This is because they utilize
hardware events related to the behavior of CPU caches or
TLBs, while DEVIOUS never affects these hardware. Thus,
it is necessary to figure out the relevant hardware events for
the detection of our attack.

Fortunately, Intel provides some hardware events related
to the IOTLB since the 3rd generation of Xeon processors,
as described in Section 3.2. To detect anomalies, we suggest
utilizing four events related to IOTLB: FIRST_LOOKUPS
(umask: 0x1), 4K_HITS (umask: 0x4), 2M_HITS (umask:
0x8), and MISSES (umask: 0x20). These events are crucial
for observing the IOTLB’s state in regards to all DMA trans-
actions. Detecting DEVIOUS follows a similar approach to
that of detecting CPU-based side-channel attacks [7], [15],
[46], [81], with the exception being the hardware events
utilized. As a result, the implementation of the detector is
uncomplicated. According to our assessment, the detector
incurs a runtime overhead of less than 5%. Further infor-
mation on the implementation and evaluation of the detector
is presented in Appendix B.

IOTLB partitioning. Sharing the IOTLB among multiple
devices becomes the main cause of the security risk. Hence,
the IOTLB partitioning can be another effective mitigation
strategy. With this feature, only devices that belong to the
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same protection domain share a portion of the IOTLB. The
IOTLB partitioning fundamentally eliminates any possibili-
ties of the contention with devices from different domains
on the IOTLB. Unfortunately, we have no idea of any works
in progress to redesign the IOTLB for this purpose. We
only found an Intel patent that proposes a single partitioning
approach for the IOTLB [26]. It is to prioritize each Process
Address Space ID (PASID) and determine the maximum
number of IOTLB entries to assign for each device de-
pending on the priority. We expect that this approach can
mitigate the DEVIOUS attack. However, the partitioning
approach obstructs devices from fully utilizing the IOTLB
entries. This will lead to a higher occurrence of IOTLB
misses, negatively impacting the I/O performance of the
system. According to the previous results of partitioning-
based mitigation approaches for side-channel attacks, L3
cache partitioning resulted in a runtime performance over-
head of 5.9% [39], due to the increased miss rate. Regarding
TLB partitioning, evaluation through SPEC benchmarking
showed a threefold increase in the number of TLB misses
[18].

Randomization. Randomizing IOTLB is a promising
hardware-based mitigation approach against DEVIOUS. The
basic idea is to randomize the IOTLB set when allocating
an entry in the case of a miss. This approach has been
demonstrated by Deng et al. [18] for TLBs, but can also be
applied to the IOTLB. Specifically, a hit operates the same
as a typical IOTLB, but upon a miss, the hardware fills an
IOTLB entry with a random address translation instead of
the desired one. The actual IOTLB set of the allocated entry
is determined not only by the set index bits but also by a
secret. Without knowledge of the secret, attackers cannot
construct eviction sets or identify target set, which is a
necessary step to deliver attacks. In terms of the performance
overhead, Deng et al. reported a 7% increase in the area of
the randomized TLB implementation [18].
Application-level mitigation. As fixing the IOTLB hard-
ware requires a considerable amount of time, we suggest
short-term measures that can be implemented in applica-
tions. To address Attack 2, the SSH client can inject dummy
packets [59] or introduce random delays [61] to disrupt
the inference of keystroke timing based on the observed
interarrival time of received packets. When it comes to
Attack 3, it is crucial to conceal the victim’s access pattern to
the key-value store. This can be achieved through the use of
ORAM (Oblivious RAM) [21], which ensures access pattern
privacy. Some practical ORAM implementations exhibit 1.0
- 4.7 slowdown in the storage performance [9], showing the
feasibility of ORAM. To mitigate Attack 4, web browsers
can introduce dummy DMA transactions to the rendering
process to prevent an attacker from inferring the website
(See Appendix C for further discussion on the mitigation).

8. Related Work

Attacks to the IOMMU. There are several works that
studied the vulnerabilities of IOMMU. Morgan et al. [44],
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[45] discovered that there is a vulnerable time window be-
tween the system boot and the IOMMU initialization, during
which an attacker can initiate malicious DMA requests that
compromise the IOMMU configuration data, such as a page
table for DMA remapping, stored in the physical memory.
This allows an attacker to bypass the IOMMU protection,
enabling DMA attacks. Zhu et al. [82] exploit that the
IOTLB is not kept coherent with the IOMMU page table.
This opens another vulnerability window, through which
an attacker can manipulate a page table entry. Markettos
et al. [42] extensively investigated the IOMMU usage of
modern operating systems by using an FPGA-based analy-
sis platform named Thunderclap. The investigation reveals
inadequate use of the IOMMU in certain OSes like macOS
and Linux, allowing attackers to bypass the IOMMU.

Previous works described above mainly focus on vul-

nerabilities due to the misconfiguration and misuse of the
IOMMU. These vulnerabilities reopen DMA attacks [6],
[12], [62], circumventing the IOMMU-based protection.
Unlike the previous studies, our work uncovers a new side-
channel vulnerability, introduced by a shared caching struc-
ture inside the IOMMU. A DEVIOUS attacker can leak the
confidential information through the side-channel without
having direct access to the host memory.
Side-channel attacks on peripherals. Side-channel attacks
are evolving from targeting software via CPU-based side-
channel [24], [25], [31], [40], [79] to targeting peripheral
devices exploiting a variety of shared hardware resources as
a side-channel source. In Pythia [69], an attacker utilizes
the RNIC’s SRAM that caches metadata for the RDMA
communication as a side-channel, and constructs an evict-
based remote timing attack over the RDMA network. In
NetCAT [38] and Packet Chasing [65], a last-level cache
(LLC) is utilized as a side-channel source. With the DDIO
technology, a victim device has direct access to the LLC
bypassing the physical memory. Thus, an attacker can leak
a victim’s secret by probing the LLC. In InvisiProbe [64],
an attacker exploits the congestion from a PCle switch as a
leakage source, and constructs a side-channel attack to leak
secret of the victim device.

Similar to our work, IOTLB-SC [67] proposes an at-
tack that targets the IOTLB. However, this work differs in
two key respects. First, we have done a thorough reverse
engineering of the IOTLB’s internal structure. The newly
discovered knowledge of IOTLB enables more powerful
attacks, such as PPA (in Section 4.2). Second, unlike our
work, they only use FPGA as an attack device, limiting
its generality. However, we demonstrated multiple attack
primitives using different PCle devices in cross-VM and
remote attack scenarios.

Reverse-engineering (IO)TLB structure. An address
translation cache has recently been getting attention as a new
source of side-channel attacks [22], [37], [57]. Compared to
CPU caches, the most internals of TLBs are unknown, re-
quiring reverse-engineering efforts. The authors of TLBleed
[22] and TagBleed [37] conducted reverse-engineering on
the Intel processor’s TLB architecture with 4KB, 2MB,
and 1GB pages by utilizing hardware performance counters.
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Tatar et al. [57] uses a TLB desynchronization technique
for reverse-engineering, and succeeded in disclosing the
replacement policy of Intel’s TLB. On the other hand,
there was an effort to figure out an architectural property
of IOTLB. Peglow [51] relied on timing measurements to
reverse-engineer the microarchitectural internals of IOTLB,
but failed to completely disclose it. Unlike the previous
work, we rely on a hardware performance monitoring unit
for the uncore part of Intel processors and successfully
reverse-engineer the internals of IOTLB including its cache
organization and replacement policy.

9. Conclusion

The IOMMU is introduced to tackle security problems

caused by malicious DMA-capable devices. With the ad-
dress translation capability, the [OMMU creates a virtualized
and isolated DMA address space for each device, achiev-
ing device isolation on the basis of protection domains.
However, the IOTLB, an address translation cache inside
the IOMMU, can be abused by attackers to deliver side-
channel attacks. In this paper, we performed a deep dive
into undisclosed microarchitectural internals of the IOTLB
by reverse-engineering an Intel processor, and presented
DEVIOUS, a novel device-driven side-channel attacks. Our
attack employs two DMA-capable PCle devices, a GPU
and an RNIC, to generate device-initiated memory requests
that create contention with a victim’s device on the IOTLB.
It allows attackers to infer the victim’s secret information
through the IOTLB side-channel with high fidelity. We
argued the security impact of DEVIOUS by demonstrating
practical attacks under the real-world setting like a highly-
isolated virtualized environment and the network of RDMA
machines with IOMMU-based protections applied. With
security solutions proposed in this paper, we believe that
DEVIOUS can be effectively mitigated.
Responsible disclosure. We reported our attacks to both the
Google Chrome security team and the OpenSSH maintainer
on March 20, 2023. At the time of finalizing this paper, we
have not yet received any responses from either of them.

Acknowledgments

We would like to thank our reviewers for their valuable
feedback to improve our paper. This work was supported
by IITP grant (IITP-2023-2020-0-01819, IITP-2023-2021-
0-01810) and NRF grant funded by the Korea government
(No0.2023R1A2C2006862, NRF-2021R1A6A1A13044830).
This work was supported by NSF CAREER Award CCF-
2146475.

References

[1]

A. Abel and J. Reineke, “Measurement-based modeling of the cache
replacement policy,” in RTAS, 2013, pp. 65-74.

J. Ahn, J. Kim, H. Kasan, L. Delshadtehrani, W. Song, A. Joshi, and
J. Kim, “Network-on-chip microarchitecture-based covert channel in
gpus,” in MICRO, 2021, pp. 565-577.

[2]

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30,2025 at 08:51:04 UTC from IEEE Xplore. Restrictions apply.



(3]

(4]

(3]

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

Alexa, “Alexa Top Websites,” 2022, accessed on 26-09-2022. [On-
line]. Available: https://www.expireddomains.net/alexa-top-websites/

AMD, “Amd i/o virtualization technology (iommu) specification,”
2021. [Online]. Available: https://www.amd.com/system/files/
TechDocs/48882_IOMMU.pdf

Apache, “Crail: High-performance distributed data store,” https:/
crail.incubator.apache.org/, 2018, accessed on 26-09-2022.

D. Aumaitre and C. Devine, “Subverting windows 7 x64 kernel with
dma attacks,” in HITBSecConf, 2010.

M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M.
Menaud, “Cache-based side-channel attacks detection through intel
cache monitoring technology and hardware performance counters,”
in FMEC, 2018, pp. 7-12.

M. Becher, M. Dornseif, and C. N. Klein, “Firewire: all your memory
are belong to us,” in CanSecWest, 2005.

V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward,” in ACM CCS, 2015, pp. 837-849.

E.-O. Blass and W. Robertson, “Tresor-hunt: Attacking cpu-bound
encryption,” in ACSAC, 2012, pp. 71-78.

A. Boileau, “Hit by a bus: Physical access attacks with firewire,” in
Ruxcon, 2006.

R. Breuk and A. Spruyt, “Integrating dma attacks in exploitation
frameworks,” University of Amsterdam, Tech. Rep., 2012.

S. Briongos, P. Malagén, J. M. Moya, and T. Eisenbarth,
“Reload+refresh: Abusing cache replacement policies to perform
stealthy cache attacks,” in USENIX Security Symposium, 2020, pp.
1967-1984.

B. Cassell, T. Szepesi, B. Wong, T. Brecht, J. Ma, and X. Liu,
“Nessie: A decoupled, client-driven key-value store using rdma,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 12, pp. 3537-3552, 2017.

J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time
detection for cache side channel attack using performance counter
monitor,” Applied Sciences, 2020.

Chrome, “Analyze runtime performance.” [Online]. Available:

https://developer.chrome.com/docs/devtools/performance/

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010,
pp. 143-154.

S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in ISCA, 2019, pp.
346-359.

U. Frisk, “Direct memory attack the kernel,” in DEFCON, 2016.

Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu,
S. Liu, L. Yan et al., “When cloud storage meets RDMA,” in NSDI,
2021, pp. 519-533.

0. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” J. ACM, vol. 43, no. 3, p. 431-473, 1996.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks,”
in USENIX Security Symposium, 2018, pp. 955-972.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa, “Strong and efficient cache side-channel protection using
hardware transactional memory,” in USENIX Security Symposium,
2017, pp. 217-233.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in DIMVA, 2016, pp. 279-299.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Au-
tomating attacks on inclusive last-level caches,” in USENIX Security
Symposium, 2015, pp. 897-912.

2302

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

K. Guo, W. Li, J. Wang, L. Ma, M. Lukoshkov, and Y. Huo, “Address
translation technologies,” Nov. 26 2020, US Patent 11,422,944.

Intel, “Intel® xeon® processor scalable memory family
uncore performance monitoring,” 2017. [Online]. Available:
https://kib.kiev.ua/x86docs/Intel/PerfMon/336274-001.pdf

Intel, “Utilizing the intel® xeon® processor scalabe family iio

performance monitoring event,” 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/
technical/utilizing- the- intel- xeon-processor-scalable- family-iio-
performance-monitoring-events.html

Intel, “3rd gen intel® xeon® processor scalable family, codename
ice lake, uncore performance monitoring,” 2021. [Online].
Available: https://software.intel.com/content/www/us/en/develop/
download/3rd-gen-intel-xeon-processor-scalable-uncore-pm.html

Intel, “Intel® virtualization technology for directed i/o,” 2022.
[Online].  Available:  https://www.intel.com/content/www/us/en/
content-details/671081/intel- virtualization-technology-for-directed-i-
o-architecture-specification.html

G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies vm sandboxing—and its application
to aes,” in IEEE S&P, 2015, pp. 591-604.

N. S. Islam, D. Shankar, X. Lu, M. Wasi-Ur-Rahman, and D. K.
Panda, “Accelerating i/o performance of big data analytics on hpc
clusters through rdma-based key-value store,” in ICPP, 2015, pp.
280-289.

D. Jaeger, K.-F. Krentz, M. Richly, C. Willems, W. Dawoud, and
I. Takouna, “Xen episode iv: The guests still strike back,” in Cloud
Computing Security Summer Term, 2011.

T. M. John, “Privacy leakage via write-access patterns to
the main memory,” Master’s Theses, 2017. [Online]. Available:
https://opencommons.uconn.edu/gs_theses/1134/

A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma efficiently
for key-value services,” in ACM SIGCOMM, 2014, pp. 295-306.

K. S. Killourhy and R. A. Maxion, “Free vs. transcribed text for
keystroke-dynamics evaluations,” in LASER, 2012, pp. 1-8.

J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “Tagbleed: breaking
kaslr on the isolated kernel address space using tagged tlbs,” in
EuroS&P, 2020, pp. 309-321.

M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“Netcat: Practical cache attacks from the network,” in IEEE S&P,
2020, pp. 20-38.

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in HPCA, 2016, pp. 406—418.

F Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE S&P, 2015, pp. 605-622.

X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with rdma for big data processing: Early experi-
ences,” in HOTI, 2014, pp. 9-16.

T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neumann,
S. Moore, and R. Watson, “Thunderclap: Exploring vulnerabilities
in operating system iommu protection via dma from untrustworthy
peripherals,” in NDSS, 2019.

I. Messadi, S. Neumann, N. Weichbrodt, L. Almstedt, M. Mahhouk,
and R. Kapitza, “Precursor: a fast, client-centric and trusted key-value
store using rdma and intel sgx,” in Middleware, 2021, pp. 1-13.

B. Morgan, E. Alata, V. Nicomette, and M. Kaéniche, “Bypassing
iommu protection against i/o attacks,” in LADC, 2016, pp. 145-150.

B. Morgan, E. Alata, V. Nicomette, and M. Kaéniche, “Iommu
protection against i/o attacks: a vulnerability and a proof of concept,”
Journal of the Brazilian Computer Society, vol. 24, no. 1, pp. 1-11,
2018.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30,2025 at 08:51:04 UTC from IEEE Xplore. Restrictions apply.



[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre,
and G. Gogniat, “Nights-watch: A cache-based side-channel intrusion
detector using hardware performance counters,” in HASP, 2018, pp.
1-8.

M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gog-
niat, and P. Benoit, “Whisper: A tool for run-time detection of side-
channel attacks,” IEEE Access, vol. 8, pp. 83 871-83 900, 2020.

H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on gpgpus,” in MICRO,
2017, pp. 354-366.

Nvidia, “RDMA  Aware  Programming  User = Manual
v1.7”  [Online]. Available: https://docs.nvidia.com/networking/
display/RDMA AwareProgrammingv17/RDMA+Aware+Networks+
Programming+User+Manual

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and
their implications,” in ACM CCS, 2015, pp. 1406-1418.

C. J. Peglow and T. Eisenbarth, “Security analysis of hybrid intel
cpu/fpga platforms using iommus against i/o attacks,” 2020.

H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against the
machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks,” in USENIX Security
Symposium, 2021, pp. 1451-1468.

H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida,
“Crosstalk: Speculative data leaks across cores are real,” in [EEE
S&P, 2021, pp. 1852-1867.

R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A remote
direct memory access protocol specification,” Tech. Rep., 2007.

Y. Ren, X. Wu, L. Zhang, Y. Wang, W. Zhang, Z. Wang, M. Hack, and
S. Jiang, “irdma: Efficient use of rdma in distributed deep learning
systems,” in HPCC, 2017, pp. 231-238.

G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-Based
cache attacks with a practical Fully-Associative design,” in USENIX
Security Symposium, 2021, pp. 1379-1396.

——, “Tlb;dr: Enhancing tlb-based attacks with tlb desynchronized
reverse engineering,” in USENIX Security Symposium, 2022, pp. 989—
1006.

F. L. Sang, V. Nicomette, and Y. Deswarte, “I/o attacks in intel pc-
based architectures and countermeasures,” in SysSec Workshop, 2011,
pp. 19-26.

M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer,
and S. Mangard, “Keydrown: Eliminating software-based keystroke
timing side-channel attacks,” in NDSS, 2018.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary
data sampling,” in ACM CCS, 2019, pp. 753-768.

D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in USENIX Security Symposium, 2001.

P. Stewin and I. Bystrov, “Understanding dma malware,” in DIMVA,
2012, pp. 21-41.

P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou,
and I. Koltsidas, “Crail: A high-performance i/o architecture for dis-
tributed data processing.” IEEE Bulletin of the Technical Committee
on Data Engineering, vol. 40, no. 1, pp. 3849, 2017.

M. Tan, J. Wan, Z. Zhou, and Z. Li, “Invisible probe: Timing attacks
with pcie congestion side-channel,” in IEEE S&P, 2021, pp. 322-338.

M. Taram, A. Venkat, and D. Tullsen, “Packet chasing: spying on
network packets over a cache side-channel,” in ISCA, 2020, pp. 721—
734.

F. Tian, Y. Zhang, W. Ye, C. Jin, Z. Wu, and Z.-L. Zhang, “Acceler-
ating distributed deep learning using multi-path rdma in data center
networks,” in SOSR, 2021, pp. 88-100.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

T. Tiemann, Z. Weissman, T. Eisenbarth, and B. Sunar, “IOTLB-
SC: An Accelerator-Independent Leakage Source in Modern Cloud
Systems.” arXiv preprint arXiv:2202.11623, 2022.

A. Trivedi, B. Metzler, and P. Stuedi, “A case for rdma in clouds:
turning supercomputer networking into commodity,” in APSys, 2011,

pp. 1-5.

S.-Y. Tsai, M. Payer, and Y. Zhang, “Pythia: remote oracles for the
masses,” in USENIX Security Symposium, 2019, pp. 693-710.

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in IEEE S&P, 2019, pp. 88-105.

Y. Wang, X. Meng, L. Zhang, and J. Tan, “C-hint: An effective and
reliable cache management for rdma-accelerated key-value stores,” in
SoCC, 2014, pp. 1-13.

Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin, X. Meng, and
S. Meng, “Hydradb: a resilient rdma-driven key-value middleware for
in-memory cluster computing,” in SC, 2015, pp. 1-11.

X. Wei, R. Chen, H. Chen, and B. Zang, “Xstore: Fast rdma-
based ordered key-value store using remote learned cache,” ACM
Transactions on Storage, vol. 17, no. 3, pp. 1-32, 2021.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting cache attacks via cache set
randomization,” in USENIX Security Symposium, 2019, pp. 675-692.

R. Wojtczuk et al., “Subverting the xen hypervisor,” in Black Hat
USA, 2008.

W. Wu, M. Crawford, and M. Bowden, “The performance analysis
of linux networking—packet receiving,” Computer Communications,
vol. 30, no. 5, pp. 1044-1057, 2007.

M. Xu, S. Liu, D. Yu, X. Cheng, S. Guo, and J. Yu, “Cloudchain: a
cloud blockchain using shared memory consensus and rdma,” IEEE
Transactions on Computers, 2022.

J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou, “Fast
distributed deep learning over rdma,” in EuroSys, 2019, pp. 1-14.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
13 cache side-channel attack,” in USENIX Security Symposium, 2014,
pp- 719-732.

K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems,” in USENIX Security Sympo-
sium, 2009, pp. 17-32.

T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-

channel attack detection system in clouds,” in RAID, 2016, pp. 118-
140.

Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and M. Silberstein,
“Understanding the security of discrete gpus,” in GPGPU, 2017, pp.
1-11.

Appendix A. Discussion of website fingerprint-
ing attack

We discuss the performance of our website fingerprint-

ing attack in terms of the noise and the use of huge pages.

1) Noise from other devices. To evaluate the website
fingerprinting attack in a more practical setting, we perform
the same experiment as described in Section 6.2 but this time
we introduce noise on the IOTLB. In particular, we use an
additional RNIC as a noise source, generating dummy DMA
transactions that occupy certain IOTLB sets. We measure
the classification accuracy by varying the amount of DMA
transaction (i.e., the ratio of the occupied IOTLB sets). For
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Figure 13: Classification accuracy according to the noise
from other devices (/N = 100).

example, to simulate 50% noise, the noise-generating RNIC
device repeatedly accesses half of the IOTLB sets while the
spy probes the IOTLB. Figure 13 shows the experimental
results under the noise condition, which show a decrease in
the classifier’s accuracy as the noise increases. Specifically,
the accuracy for Top 1 and Top 3 are decreased to 79% and
88.7%, respectively, when the dummy DMA transactions
occupy 75% (24 sets) of the IOTLB.

2) Using huge pages. The website fingerprinting attack in
Section 6.2 was evaluated on a web browser using GPU
rendering on IOTLB for 4KB pages. In this section, we
examine the performance of the attack in the context of
GPU rendering on IOTLB for huge (2MB) pages. We use
the same experimental setup presented in Section 6.2 for
the experiments. The measurement results are presented in
Table 7, which shows that the classification accuracy for
Top 1 and Top 3 in the attack using huge pages decreased
to 89.52% and 97.62%, respectively, compared to the attack
using regular pages. We attribute this decrease in accuracy
to the coarser-grained information contained in the IOTLB
for huge pages.

TABLE 7: Classification accuracy for huge and regular
pages (N = 100).

Huge page (2MB)
89.52%
97.62%

Regular page (4KB)
97.39%
99.62%

Top 1 Acc.
Top 3 Acc.

Appendix B. Anomaly detector

We have developed an anomaly detector for detecting
DEVIOUS attacks and evaluated its performance. Several
well-established ML-based anomaly detection techniques
have been developed for CPU-based side-channel attacks
[7], [15], [46], [47], [81], all of which utilize hardware
events for anomaly detection. Since our detector also utilizes
hardware events for the IOMMU, detector can be easily
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TABLE 8: Hyper-parameters for the anomaly detector.

Model Hyper-parameter Value
Max depth 2

Decision Tree  Splitter best
Max features auto

N-Estimators 20

Random Forest ~ Max depth 5
Max features sqrt

C 5

SVM Kernel sigmoid
degree 2

incorporated into these existing techniques by slightly mod-
ifying previous implementations. Specifically, our anomaly
detector is based on WHISPER [47], which employs an
ensemble model of decision tree, random forest, and SVM
for detecting attacks. Following the approach of [47], we
constructed the detector by utilizing four [OMMU hardware
events, which are detailed in Section 7. The classification
models utilized by our detector were trained using specific
hyper-parameters that are provided in Table 8.

We evaluated the performance of our anomaly detector
in terms of runtime overhead, accuracy, and F1-score under
the same experimental setup presented in Section 5. With
respect to runtime overhead, we measured the increase in
CPU usage while the detector is running. The experimental
result shows a 5% increase in CPU usage. Additionally,
the detector exhibits an accuracy of approximately 98% for
detecting DEVIOUS attack with a corresponding F1-score of
0.98, which indicates low false positive. The experimental
results are detailed in Table 9.

TABLE 9: Experimental results of the anomaly detector.

Precision | Recall | Fl-Score | Accuracy
Normal 0.97 0.98 0.98 098
Attack 0.98 0.97 0.98 )

Despite the promising performance of the anomaly
detector, skilled attackers may still be able to evade it.
One potential evasion technique involves the introduction
of dummy DMA transactions to the IOMMU, which can
potentially confuse the detector due to the increased noise.
However, as discussed in Appendix A.1, this approach caus-
ing the noise may also disrupt the attack.

Appendix C. Mitigation against Attack 4

The application-level mitigation against Attack 4 could
result in decreased performance of the web browser, particu-
larly when loading web pages. We conducted an experiment
to quantify the performance degradation. As the proposed
method requires modification of web browsers, we decided
to simulate the effects of dummy DMA transactions using
an RNIC. We used the same experimental setup described
in Section 6.2 for the evaluation. During the experiment,
we measured the rendering time of web pages in Chrome
as the RNIC generated DMA transactions accessing the
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IOTLB sets, simulating the web browser generating dummy
transactions. To measure the rendering time, we utilized the
Chrome’s performance panel [16], which enables profiling
runtime performance of Chrome. Table 10 presents the
results of our experiment, which shows the correlation be-
tween the amount of dummy transactions (i.e., the number of
accessed IOTLB sets) and the measured rendering time. For
instance, dummy DMA transactions accessing 16 sets of the
IOTLB resulted in 1,811ms of rendering time, which is 2.8
times slower than the baseline without dummy transactions.

TABLE 10: The averaged rendering time of a web page
(reddit.com) regarding the amount of dummy DMA trans-
actions.

Baseline | 16 sets | 32 sets
Rendering time (ms) 638 1,811 1,950

Appendix D. Examples of IOTLB traces for
different websites
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Figure 14: Examples of IOTLB traces for different websites. The brighter color indicates more IOTLB misses. The traces
are obtained from 32 IOTLB sets for 7.7 seconds with the time slot interval of 2.5ms while each website is being loaded

in Chrome.
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