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Abstract

Serverless computing has emerged as a market-dominant
paradigm in modern cloud computing, benefiting both cloud
providers and tenants. While service providers can optimize
their machine utilization, tenants only need to pay for the
resources they use. To maximize resource utilization, these
serverless systems co-run numerous short-lived functions,
bearing frequent system condition shifts. When the system
gets overcrowded, a tenant’s function may suffer from dis-
turbing slowdowns. Ironically, tenants also incur higher costs
during these slowdowns, as commercial serverless platforms
determine costs proportional to their execution times.

This paper argues that cloud providers should compen-
sate tenants for losses incurred when the server is over-
provisioned. However, estimating tenants’ losses is challeng-
ing without pre-profiled information about their functions.
Prior studies have indicated that assessing tenant losses
leads to heavy overheads. As a solution, this paper intro-
duces a new pricing model that offers discounts based on
the machine’s state while presuming the tenant’s loss under
that state. To monitor the machine state accurately, Litmus
pricing frequently conducts Litmus tests, an effective and
lightweight solution for measuring system congestion. Our
experiments show that Litmus pricing can accurately gauge
the impact of system congestion and offer nearly ideal prices,
with only a 0.2% price difference on average, in a heavily
congested system.
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1 Introduction

Serverless computing is growing fast, satisfying today’s high
demands for better programmability. It allows tenants to
develop their programs as stateless functions in high-level
languages such as Python, Go, and JavaScript without con-
cerns with low-level resource management and task sched-
uling [14, 15, 32, 33, 36]. This advantage attracts cloud users,
helping them to deploy their programs quickly with minimal
effort. Recent reports note that over 50-70% of cloud users
have adopted serverless computing for their tasks [15].

Serverless computing also benefits tenants financially. Un-
like traditional cloud platforms that require tenants to pur-
chase the hardware resources needed to deploy their servers
regardless of actual usage [1], serverless computing claims
a pay-as-you-go pricing model, where tenants only pay for
the resources consumed during the execution of their func-
tions, facilitating significant cost savings. Meanwhile, this
pricing requires service providers to accurately monitor and
estimate each user’s fine-grained resource usage [3-5].

However, today’s high-performance systems maximize
resource efficiency by executing multiple applications simul-
taneously and allowing resources to be shared [45]. Such a
shared serverless system raises two major challenges. First,
tracking a tenant’s resource usage becomes challenging, as
the system can only monitor a tenant’s use of exclusively ded-
icated resources while the system is shared. Second, and more
importantly, co-running applications compete to grab more
resources, affecting each other’s progress [23, 25, 35, 38, 45].
This interference not only complicates tracking resource us-
age but also leads to tenants being charged unfairly due to
delayed execution times [10, 19, 23, 40].

A serverless platform should provide a user with an iso-
lated runtime environment. Otherwise, we argue that the
platform provider should compensate a tenant’s loss as a dis-
count when the isolation is not achievable. Thus, we define
a charged fee as fair when it reflects the tenant’s slowdowns
caused by resource sharing. The following two methods can
be used to offer a fair price in a multi-tenant environment.

First, strict resource partitioning can divide shared re-
sources into multiple partitions, each assigned exclusively
to a user. This means the user only pays for the allocated
resources and is free from others’ interference [27, 30, 31, 35].
However, strict partitioning is known to cancel opportunities



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

to utilize resources efficiently [17, 29, 42, 43]. Also, a tenant’s
application may suffer unacceptable slowdowns when insuf-
ficient resources are allocated [30, 31]. Such a delay directly
appears as an increased price. Consequently, resource par-
titioning inherently requires users to deduce the optimal
amount of resources they need when requested.

Alternatively, a discount-based scheme estimates a user’s
price relative to the slowdown experienced, discounting from
the price when running the task without interference, i.e.,
running the task alone on the machine [10, 40]. Ideally, this
scheme benefits both cloud providers and tenants compared
to partitioning. Unlike partitioning, it allows tenants to share
resources, enabling providers to maximize hardware utiliza-
tion and generate more revenue with the given machines.
Meanwhile, users get reasonable discounts proportional to
the slowdowns they experience due to co-running tasks, pre-
venting them from overpaying for lowered service quality.

While the alternative scheme looks superior, it poses a
new challenge: measuring a function’s slowdown. Although
the platform can measure its execution time, determining
the slowdown requires knowing its baseline performance,
which can be obtained when it runs without interference.
However, such profiling is often prohibited due to security
concerns, particularly when the function processes confi-
dential information. Additionally, the function may behave
differently, with varying inputs each time it runs. That is to
say, online profiling is necessary. Unfortunately, this requires
expensive runtime sampling, as presented in POPPA [10, 40].
When assessing baseline performance, all co-running tasks
must be stalled. Hundreds to thousands of concurrent short-
lived functions make this approach indeed impractical, as
frequently sampling the baseline performance of such numer-
ous functions is unrealistic. Thus, a new, practical solution
that can be adopted in serverless platforms is needed.

We highlight that both partitioning-based and sampling-
based approaches complicate the problem, either sacrificing
the machine’s efficiency or appearing impractical for server-
less computing. Approaches in serverless computing must
be lightweight, frequent, and sensitive enough to deal with
quickly changing environments with numerous concurrent
functions. This paper proposes Litmus pricing, a method that
efficiently estimates a tenant’s price with a discount propor-
tional to the level of system congestion without burdening
system performance.

During each function’s execution, Litmus pricing conducts
a Litmus test, which measures the level of system conges-
tion without adding extra overhead, using the function’s
startup process. Litmus test is based on the observation that
serverless functions perform largely identical operations
during their startup, typically involving significant memory
accesses. Additionally, Litmus pricing splits the hardware
resources into "private” and "shared" categories, proposing
different charging ratios for each. This approach further
enhances the accuracy of the discount calculation.
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This study investigates Litmus pricing across diverse envi-
ronments with varying levels of system congestion. We con-
firm that crowded environments pose complex challenges.
Despite this, Litmus pricing accurately estimates a tenant’s
cost, deviating by only 0.2% on average from the ideal price
that discounts tenants proportional to slowdowns.

2 Background

Serverless Computing: Serverless computing is a new
cloud execution model that allows cloud tenants to focus on
developing front-end applications while leaving back-end
implementation managed by service providers [15, 32]. This
model benefits tenants by easing their burdens to secure and
maintain the hardware resources and allowing them to write
their code (functions) in high-level languages (e.g., Python
or Node-js) as event handlers [15, 34, 36]. These functions
are later invoked upon associated events. The serverless plat-
form ensures security by executing the tenant’s function in a
sandbox, such as a container or a virtual machine [3-5, 44].

Each tenant’s function is stateless and expected to be
short-lived [14-16, 22, 36]. Using these short-lived functions,
tenants can easily scale by invoking many functions with-
out provisioning the needed resources for themselves, rely-
ing instead on the serverless platform [36, 37]. In serverless
computing, numerous short-lived serverless workloads run
together on a single machine, making the execution envi-
ronment more dynamic than the traditional cloud [32, 39,
41]. Tenants need to trust the service provider to provision
enough necessary resources, expecting the quality of ser-
vice defined in the service level agreements (SLA) that the
provider and tenants mutually agreed upon [3-5].

In traditional cloud computing, tenants purchase hardware
resources for a contracted term to support their applications,
which are typically large servers. Thus, tenants must pay
for the agreed period regardless of actual usage. In contrast,
serverless workloads are generally small and launched on-
demand as short-lived event handlers. This difference leads
to a unique pricing policy known as pay-as-you-go. Under
this model, tenants are charged only for the resources con-
sumed during execution, typically calculated as the product
of execution time and assigned memory capacity [3-5].

Language runtime: Python and Node.js stand out as
the most popular runtimes in AWS Lambda, with Python
used in 58% of all Lambda functions and Node.js in 31% [13].
Over 90% of organizations choose Python and Node.js for
their AWS services. Other popular runtimes include Java,
Go, .NET, and Ruby [14, 15]. These high-level languages
offer significant abstraction from machine code with good
programmability and portability, which in turn improves
programmer productivity. Consequently, they are widely
adopted by serverless users. However, high-level languages
typically rely on runtime interpretation, leading to slower
program startup due to extra launching steps. For example,
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when an application is launched in Python, the interpreter is
first prepared. It then parses command-line arguments and
imports necessary modules. Afterward, the codes are com-
piled and executed. Upon completion, the Python program
terminates, and all allocated resources are released [12].

3 Methodology

This section outlines our test setup for evaluating serverless
functions in this study.

Hardware Infrastructure: All experiments are conducted
on a dual-socket server platform equipped with two Intel
Xeon Gold 5218 processors based on the Cascade Lake archi-
tecture. Each CPU provides 16 cores that support simultane-
ous multithreading (SMT) with a maximum frequency of 3.9
GHz. Every core features 32KB of L1 instruction/data caches
and a 1MB L2 cache. All cores in each socket share a 22MB
L3 cache. The two sockets collectively have access to 384GB
of main memory. The server operates on Ubuntu Server OS,
version 22.04 LTS, with kernel version 5.15.0. We use Linux
Perf [6] to gather performance counters.

The CPU frequency is a critical factor influencing both
performance and energy consumption, significantly affect-
ing a function’s execution time and energy usage. A CPU’s
frequency can be adjusted through software or hardware
based on power and thermal budget, optimizing for either
energy efficiency or performance. However, varying frequen-
cies can cause instability in system performance and energy
usage, complicating system management. For this reason,
commercial systems like Google Cloud offer only one fixed
frequency for their vCPUs [5]. Accordingly, we set our CPUs’
frequency at 2.8GHz. If we do not fix the frequency through
software, Intel’s Turbo technology occasionally adjusts it,
but it mostly remains at 2.8 GHz during our tests. We will
provide more details on this in Section 8.

Table 1. Serverless Benchmarks & Language Runtimes (py,
nj, go)

’ Function Abbr. H Function Abbr.
SeBs [11] Function Bench [26]

Dyn HTML dyn-py Chameleon chame-py
Thumbnail thum-py* || FloatOp float-py
Compression  compre-py || Gzip gzip-py”*
Image Recogn recogn-py || RandDisk randDisk-py*
Graph Rank  pager-py SequenDisk seqDisk-py
Graph Mst mst-py Online Boutique [7]
Graph Bfs bfs-py* Currency cur-nj”
DNA Visual  visual-py* | Payment pay-nj

Hotel Reservation [18] Other [2, 11]
Geo geo-go Authen auth-py*/nj/go
Profile profile-go* || Fibonacci fib-py*/nj*/go*
Rate rate-go AES aes-py/nj*/go”
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Workload: As listed in Table 1, we selected 27 distinct
serverless functions from various benchmark suites, includ-
ing AWS authentication serverless functions [2], the Ho-
tel Reservation from DeathStarBench [18], Google’s Online
Boutique application [7], FunctionBench [26], and the SeBS
serverless benchmark suite [11]. The functions are imple-
mented using three languages: Python, Nodejs, and Go. No-
tably, the three functions, Authen, Fibonacci, and AES, are
implemented in all three languages, creating three separate
test cases per function. We installed Python 3.10.6, Nodejs
v12.22.9, and Go 1.19.2 to support them. Additionally, we se-
lected 13 benchmarks (* marked) in Table 1 as our reference
applications, which are explained later.
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Figure 1. (a) L2 misses and (b) L3 misses of traffic genera-
tors, both normalized with the average L2 and L3 misses of
serverless applications listed in Table 1

Traffic Generator: We categorize the CPU’s shared re-
sources into two groups: those before the L3 caches and
those after. To stress each group independently, we devel-
oped two separate traffic generators designed to generate
traffic and congestion within these resources. The first gen-
erator, CT-Gen, exerts pressure from the core up to the L3
cache by creating substantial memory accesses that mostly
miss the L2 cache but hit the L3 cache. Another generator,
MB-Gen, induces massive L3 misses, which stress the re-
sources beyond the L3 cache, primarily targeting off-chip
memory bandwidth and L3 cache spaces.

Both traffic generators are multi-threaded and govern the
amount of traffic by adjusting the number of threads they
spawn. Each thread is pinned to a specific core to avoid con-
flicts between threads, allowing us to vary the stress level on
our 32-core processors from level 1 to 31. Figure 1 illustrates
each generator’s characteristics. In Figure 1(a), with each
increase in thread count, CT-Gen generates substantial L2
cache misses. These L2 misses by CT-Gen are ended with
L3 cache hits, as shown in Figure 1(b). In contrast, MB-Gen
produces significant L2 and L3 cache misses. Interestingly,
MB-Gen’s L2 misses are fewer than those of CT-Gen be-
cause MB-Gen is hindered by its L3 misses, suffering from a
self-imposed performance bottleneck.

4 The Need for Fair Pricing

Fairness in cloud computing, especially when multiple ten-
ants share hardware resources, is addressed through various
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approaches. One standard method is the Service Level Agree-
ment (SLA), which specifies the level of service the cloud
provider must deliver and the tenants’ expectations. How-
ever, the SLA outlines the minimum quality of service the
providers should deliver rather than solving fairness issues.
Despite serverless computing’s emphasis on a pay-as-you-go
pricing model, unfairness among tenants still exists.
Unfortunately, modern systems are designed to maximize
hardware efficiency by running multiple applications concur-
rently. This results in conflicts over shared resources, affect-
ing each function’s execution time. Ironically, when service
providers optimize for profit by packing more functions into
a single machine, the execution time for each function in-
creases, resulting in higher costs for the same workload. In
serverless computing, tenants have no control or visibility
over how their software is executed, leading to potential
inefficiencies and higher costs for the sake of convenience.
In serverless computing, although each function runs ex-
clusively in a virtual sandbox with private resources, it still
shares certain resources like caches and memory bandwidth
with other functions. Resource partitioning, a traditional so-
lution that eliminates interference by dedicating resources
exclusively to a tenant, cannot avoid inefficient resource
utilization. It is also against the serverless philosophy, de-
manding the tenants govern their hardware resources.
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Figure 2. Execution time of applications that run with 26
others, normalized to the execution time when running alone

Figure 2 shows how much a function can be slowed when
co-running with 26 other workloads. The workloads are
randomly selected from the benchmarks listed in Table 1.
Whenever a function finishes, a new randomly-selected func-
tion is launched to maintain a total of 26 co-running func-
tions. The figure shows a function’s performance can drop
by up to 35%, with most functions significantly impacted
by the co-running functions. On average, functions perform
11.5% slower in this shared environment compared to an
isolated one, resulting in users being charged 11.5% more.
We highlight that this scenario involves only 26 co-running
functions, which is tiny compared to heavily crowded com-
mercial serverless platforms that run hundreds to thousands
of functions simultaneously [32, 39, 41].
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Instead of guaranteeing invariant performance, POPPA [10,
40] offers price discounts to compensate for slowdowns. To
provide these discounts, POPPA measures a task’s slowdown
due to interference through sampling and determines the
discount amount based on the observed slowdowns. Unlike
partitioning, this scheme requires the service provider to
carry out all responsibilities related to contentions from re-
source sharing, ensuring tenants pay a consistent price for
their usage. Any unexpected slowdowns that a tenant experi-
ences are compensated with a discount. However, sampling
is an expensive operation that requires stalling all co-running
processes during the sampling. Moreover, accurate measure-
ment necessitates frequent sampling, especially in rapidly
changing environments, making the approach impractical
for dynamic environments like serverless platforms.

Overall, tenants need a new pricing model that consid-
ers more than just execution time. Prior approaches have
limitations, excessively burdening cloud participants and
being unsuitable for the many short-lived functions typi-
cal in serverless computing. This motivates us to propose a
new solution: Litmus pricing, which discounts prices based
on the system congestion while remaining lightweight and
imposing no additional overhead.

5 Litmus Pricing
5.1 Overview

The estimated prices of serverless functions should reflect the
system’s congestion state. The presence of numerous small
transient functions within the serverless system can rapidly
alter its congestion state, causing sudden congestion or swift
resolution. Nevertheless, such transient traffic jams can sig-
nificantly impact the performance of short-lived functions.
Thus, assessing the congestion must be lightweight, quick,
and timely. However, a prior approach, POPPA [10, 40], relies
on sampling, which incurs considerable performance costs,
thereby limiting its widespread adoption. Alternatively, this
study introduces Litmus pricing, which promptly gauges
system congestion at the onset of each function and reflects
the estimated congestion level into pricing the function.
Like the prior approach, Litmus pricing suggests that ser-
vice providers should offer discounts when a tenant’s func-
tions experience interference, thus compensating for the per-
formance loss. Litmus pricing determines the discount rate
based on the system’s congestion level. Evaluating conges-
tion also assists providers in estimating remaining resources
and making informed decisions regarding job scheduling.
However, Litmus pricing does not quantify the slowdown
of each individual function; the discount amount is solely
determined by the severity of the measured congestion. Even
though different functions face the same congestion level,
their respective impacts can vary, making precise estimation
of each function’s performance loss a challenging task. This
complexity necessitated the expensive sampling relied upon
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by the previous approach. Instead, Litmus pricing circum-
vents such overheads and lightens the service provider’s
burden solely to measure ongoing congestion levels.

Litmus pricing captures the dynamic significance of shared
resources under varying system conditions by offering uni-
form discounts to all functions under the same system con-
gestion, regardless of their individual slowdowns. Embedded
within this policy is the distribution of pricing responsibil-
ity to both parties. During periods of system congestion,
shared resources become more valuable and meaningfully
influence a function’s performance. We observed that func-
tions experiencing larger slowdowns tend to demand more
of the crowded resources, thereby exacerbating adverse over-
crowded conditions. However, Litmus pricing does not offer
additional compensation for the larger loss experienced by
functions that use shared resources more heavily than others.

As a result, Litmus inherently incentivizes users who use
shared resources sparingly. During periods of overcrowding,
functions with minimal needs for shared resources still enjoy
discounts but with only slight slowdowns. This implies that
users may take advantage of this policy by minimizing their
reliance on shared resources, receiving substantial discounts
despite only experiencing minor slowdowns. This trade-off
is considered acceptable because reduced shared resource
usage by users helps mitigate congestion, thereby benefiting
the overall system and other users.

5.2 Pricing Model

Developing Litmus pricing raises two challenges. First, it
needs a new model to estimate a function’s price. Second, it
needs a way to measure the system’s congestion state. Due to
the rapidly changing environment in serverless computing,
assessing congestion must be lightweight and timely. Com-
mercial serverless platforms employ a uniform pricing model
regardless of resource congestion dynamics. Consequently,
tenants end up paying more for prolonged execution time
when using over-crowded resources. Rather than simply im-
posing the price by multiplying the main memory usage and
a function’s execution time, Litmus pricing determines the
price as a sum of two distinct pricing components as follows.

P= Pprivate + Pshared (1)

In this equation, P denotes the total price tenants must
pay to execute their functions. Litmus pricing divides this
cost into two pricing components, each associated with a dif-
ferent resource type. Py ivate is the cost for private resources,
which are entirely assigned to a single tenant. Pgpgpeq is the
cost for shared resources. Each pricing component is mea-
sured proportional to the time users occupy the respective
resources. However, if contention disturbs a process’s ex-
ecution in the shared resources, the occupied time will be
extended. This delay unfairly increases the tenant’s cost.
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We observed that system congestion influences the oc-
cupied time for each resource type differently. The time to
use private resources is only slightly affected, with minor
changes, even under heavy congestion. In contrast, the time
spent on shared resources is broadly affected, showing sig-
nificant differences. Thus, we separately measure the delays
for the two resource types and apply different charging rules
for their use.

Using Perf [6], we split a function’s execution time into
two slices: Ty jvare, the time spent on private resources, and
Tshared> the time spent on shared resources. Litmus pricing
collects Typqreq by reading the cycles stalled due to L2 cache
misses. Tyrivare is calculated as the total execution cycles to
complete the application minus Typgreq. Figure 3 shows the
impact of the contentions on each time slice, where Typ4rcq
per instruction and T, jyase per instruction are normalized
to the same tests when running alone. The figure shows that
Tsharea 1s significantly affected by system congestion com-
pared to Tpripare. On average, Tspareq increases by 181%, with
a maximum increase of 488%. Meanwhile, Tp;yaz increases
by only 4%, with minor variance between functions.

This figure highlights two key factors. First, congestion
in shared resources has a negligible impact on the perfor-
mance of private resources. Accordingly, when the system
gets congested, the extent of a function’s reliance on shared
resources determines its performance. If T4, constitutes
a minor portion of a function’s execution, even severe con-
gestion will have minimal impact on its overall execution.
Second, hardware Performance Monitoring Units (PMUs) in
modern CPUs and profiling tools like Linux Perf are widely
available and can be utilized to differentiate between the use
of shared and private resources. Throughout this paper, we
will leverage these tools to develop Litmus pricing.

Figure 4 shows the distribution of Tpripaze and Tspareqa dur-
ing a function’s execution. Compute-intensive workloads
(e.g., fib-py, float-py) exhibit a substantial T,,;sqze portion,
accounting for up to 99.96% of the execution time. How-
ever, this portion decreases when running memory-intensive
workloads such as fib-nj. This distribution reflects how other
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co-running functions can influence its execution. For ex-
ample, although running float-py in a crowded system may
increase its Tspareq, the total execution time, Tyrivare + Tshareds
will undergo only a minor change.

After collecting the time slices spent on each resource,
Litmus calculates each pricing component by multiplying
two different charging rates with corresponding slices. Con-
sequently, a new pricing equation emerges as follows:

P= Rpriuate * Tprivate + Rshared * Tshared (2)

Ryrivate and Rgpareq are the charging rates for private and
shared resources, determined by the congestion level. These
two charging rates are necessary because each component is
affected differently, either directly or indirectly. The charg-
ing rate determines the actual discount amount, reflecting
the degradation of applications’ performance caused by in-
terference from a crowded execution environment. Thus, the
charging rates should be measured as follows:

Tsolo
R= Rbase * oo (3)

Tcongestion

In this equation, R represents the charging rate for ex-
ecutions on private or shared resources. Ry is the base
charging rate when the function runs in a congestion-free
runtime environment; our tests select 1 for Rpgee. Tsolo 1S
its non-interfered execution time when the function runs
alone, and Teongestion is its execution time in a congested en-
vironment. We need to collect separate Tyo;o and Teongestion
values for each pricing component. To measure T, the
prior study [10, 40] employs an expensive approach that
suspends all co-running applications whenever sampling an
application’s non-interfered performance. However, Litmus
pricing avoids such a costly approach by presuming the func-
tion’s solo performance through reference workloads on the
system.

Litmus pricing requires both providers and tenants to be
involved in the price decision process. Providers need to
establish reasonable rates for each resource usage by analyz-
ing selected representative functions. To offer fair discounts,
providers must carefully choose the functions to be analyzed,

Qi Pei, Yipeng Wang, and Seunghee Shin

ensuring the functions accurately represent the system con-
dition. Tenants must also know the consequences when their
tasks heavily rely on shared resources. Unfortunately, their
tasks may get delayed more than the provider’s expectations
while still receiving the expected discount rate.

6 Estimating prices with Litmus

Before using Litmus pricing, service providers need to com-
plete the congestion and performance tables, shown in Fig-
ure 5. The congestion table lists the slowdowns during the
startup phases, whereas the performance table lists the slow-
downs of reference functions. Litmus pricing needs three
steps to determine the final price with a discount. First,
providers assess system congestion at multiple levels and
record the results in the congestion table. Second, providers
analyze the impact of congestion on reference functions and
fill out the performance table. Lastly, providers determine a
tenant’s price based on the data from both tables.

Congestion Table

| Go Startup
| Node-JS Startup
Python Startup

Performance Tables
Reference Functions
il

T TShared St Tanate
Co-run with|Co-run with|Co-run with|Co-run with| ress Co-run with|Co-run with[Co-run with{Co-run with|

CT-Gen [MB-Gen| CT-Gen [MB-Gen Levels || CT-Gen|MB-Gen|CT-Gen [MB-Gen!

Private Shared

1.012 | 1.042 | 1.082 | 1.881 [#1iLevel 4 1.017 | 1.043 | 1.024 | 2.096
1.017 | 1.044 | 1.152 | 1.972 |[#1Level 5 1.021 | 1.045 | 1.036 | 2.181
1.021 | 1.045 | 1.186 | 2.035 |[#t11Level 6% 1.023 | 1.053 | 1.067 | 2.298

Figure 5. Congestion and performance tables: numbers in
both tables indicate the slowdowns of startup codes and
reference functions, collected with CT-Gen and MB-Gen

Step 1, Defining Congestion Levels: We manage the
system’s congestion levels using two traffic generators that
create a range of congestion states by stressing shared re-
sources differently. The traffic generator is multi-threaded,
creating traffic in shared resources to incur congestion, with
each thread running on a separate core. We rank the stress
levels from 1 to 32 by changing the number of active threads
running on distinct cores. Entries from top to bottom in the
congestion table indicate increasing stress levels.

Measuring the amount of system congestion and its im-
pact on performance is a crucial challenge. This challenge
becomes particularly pronounced when trying to quantify
the impact of the congestion on a running application with-
out pre-profiled information about the application. The fast-
changing system states of a serverless platform, with numer-
ous short-lived functions, further complicate the assessment,
necessitating quick and frequent performance examinations.
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Litmus pricing includes a novel method, named a Litmus
test, that examines the system’s state quickly without impos-
ing additional overheads. This method leverages our observa-
tion that high-level languages like Python and Node.js, com-
monly used in serverless computing, have lengthy startup
phases to accommodate their runtime environments. Since
the inception of serverless computing, these startup delays
have been identified as a major source of latency issues [21].
Litmus tests exploit these startups to read the system’s state,
utilizing their fixed routines with consistent operations. Our
tests have validated that tested functions exhibit similar per-
formance characteristics during startup phases.
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Figure 6. IPC of serverless applications based on languages
(Go, Python, and Node]S) during their startup phase

Figure 6 depicts a function’s fluctuation in IPC (Instruc-
tions Per Cycle) during its startup phases. The x-axis repre-
sents the time elapsed since the beginning, with each tick
indicating one millisecond. The y-axis shows the function’s
IPC measured for a millisecond at corresponding time in-
tervals. We picked functions with different languages and
characteristics from those listed in Table 1. These functions
were categorized into three groups based on language run-
time, and the IPC of each group is presented in separate
figures. As shown in these figures, functions in the same
figure show notable similarities. This implies that functions
written in the same language have nearly identical startups.

The startup of a runtime typically includes bursts of mem-
ory reads to load images and libraries, which can be used
to probe the traffic in shared resources. By conducting a
Litmus test before executing a tenant’s function, providers
can assess the system state. Meanwhile, providers also need
to study how startup phases perform under different system
states. They complete the congestion tables by conducting
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Figure 7. Progress of serverless applications on four cores
with Litmus tests (dotted arrows) over time

the Litmus tests with startups written in three languages
while varying congestion levels. This information from the
congestion table is then referenced when constructing the
congestion model in Figure 9.

Figure 7 shows the progress of serverless functions with
Litmus tests, which examine the level of system congestion
during each function’s startup. Many concurrent functions in
serverless offer frequent opportunities for testing. Function
#1, which is memory-intensive, causes congestion levels to
rise above 8 during its execution. A Litmus test in Core 3
detects this congestion. After Function #1 is complete, a
subsequent Litmus test indicates a non-congested system
with a congestion level below 3. However, during another
resource-intensive function, Function #2, the Litmus test
identifies new system congestion with a level above 9.

Step 2, Measuring the Impact of Congestion: Discern-
ing system congestion through the Litmus test solves only
one of the two challenges; the other is determining its impact
on a tenant’s function. Different tenants’ functions could ex-
perience varying degrees of slowdown under the same con-
gestion level. To address this, we propose using pre-selected
reference functions to analyze these impacts, thereby avoid-
ing the cost of runtime profiling. For this, providers need to
carefully select reference functions that represent tenants’
functions operating on the systems, as these selections influ-
ence the overall accuracy of congestion measurement. Later,
in Section 7, our tests will show that pre-selected reference
functions can effectively represent unknown user applica-
tions. For this study, the selected reference applications (*
marked) are listed in Table 1.

Once the reference functions are ready, providers analyze
their slowdowns under varying congestion levels. This analy-
sis completes the performance table shown in Figure 5. Each
entry in the table holds the geometric average of all refer-
ence functions’ slowdowns at the corresponding stress level.
With two traffic generators, providers can complete another
set of two sub-tables for the performance table. All entries
in this table are mapped 1-to-1 to entries in the congestion
table. Providers can estimate a general function’s slowdown
at a given congestion level using this one-to-one mapping.
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Figure 8 shows an example of the reference functions’
slowdowns when stressing the system. The X-axis shows
tested functions, each depicted with three bars: the first two
bars show Ty, ivare and Tspared, While the last bar shows the
total execution time, all normalized to their execution time
when running alone without interference. The figure shows
that the tested functions experience varying degrees of slow-
down despite consistent stress levels maintained during the
tests. The next-to-last group shows the gmean of all the
slowdowns, which providers use to estimate a function’s
slowdown later.
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Figure 9. The correlation between the slowdown of Python’s
startup phase and the slowdown of reference applications.
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Step 3, Determining Discount Rates: Providers can
determine a function’s price through the Litmus test once
the congestion and performance tables are ready. Upon ob-
taining a Litmus test result, the current congestion level is
estimated by comparing the measured slowdown to the pre-
studied slowdowns in the congestion tables. Then, Litmus
pricing conjectures a possible slowdown due to the estimated
congestion by using the congestion level as an index to the
performance table. However, while congestion levels vary
continuously, the tables only contain slowdowns at discrete
intervals. Therefore, providers need a model that estimates
the slowdown for any given congestion level. In our tests,
we employ linear regression to develop the model.

Our experiments employ linear regression analysis to
draw Figure 9, which shows the correlation between the
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two slowdowns. The X-axis shows the startup’s slowdown,
while the Y-axis shows the corresponding reference appli-
cations’ slowdowns at the same congestion level. From left
to right, the figure shows normalized Tprivate Tshared> and
Tioral- To extrapolate a precise congestion level, we created
two sub-tables within both the congestion and performance
tables using two distinct traffic generators. As a result, the
figure depicts two linear regression lines (red and blue dotted
lines), each associated with a different traffic generator.

These regression models return two different slowdowns.
To estimate a function’s slowdown, providers must deter-
mine which model reflects the current environment more
accurately. The traffic generators create two extreme con-
gestion scenarios: one before the L3 cache and one after.
CT-Gen generates substantial traffic from the core to the L3
cache that filters the traffic and prevents operations from
consuming memory bandwidth. Conversely, MB-Gen also
generates massive traffic but consumes memory bandwidth
and repeatedly evicts L3 cache blocks. Because each traf-
fic generator represents a distinct extreme case, the actual
machine state could fall somewhere between the two con-
gestion levels created by CT-Gen and MB-Gen. However,
Litmus pricing requires more than just the startup slow-
down to identify the machine’s state in these models. Thus,
we have enabled Litmus tests to gather the system’s L3 miss
count as a supplementary metric that offers deeper insights
into the crowdedness of shared resources.

Figure 10 shows our approach to using L3 misses to esti-
mate slowdowns. We created two figures illustrating sepa-
rate regression models. The left figure (a) is derived from the
startup slowdowns and L3 misses with logarithmic regres-
sion, indicating L3 misses at specific congestion levels. The
right figure (b) is derived from the performance table with
linear regression, displaying discounts at specific congestion
levels. Each figure depicts two regression lines associated
with different traffic generators.

The two traffic generators set the upper and lower bound-
aries for L3 misses. For instance, if a Litmus test reports 10
L3 misses, close to what CT-Gen generates: (DThis suggests
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congestion occurs before reaching the L3 cache, similar to
CT-Gen'’s scenario. Thus, Litmus pricing estimates the func-
tion’s discount to be around 1%. Conversely, if the Litmus test
reports 1000 L3 misses, close to MB-Gen’s results: (2)Litmus
pricing estimates the function’s discount rate to be approxi-
mately 6%, indicating congestion similar to MB-Gen, where
memory bandwidth is heavily consumed and L3 cache blocks
are frequently evicted. When the Litmus test reports 100 L3
misses, an interpolation between these extremes is applied:
(3@ Using logarithmic interpolation, Litmus pricing estimates
the function’s discount rate to be midway between CT-Gen’s
1% and MB-Gen’s 6%, resulting in approximately 3.5%. Upon
obtaining the discount rates, Litmus pricing computes the
final price, as discussed in Section 5.2.

7 Evaluation

We split our functions into two groups: as listed in Table 1,
one consists of functions to test Litmus pricing, while the
other consists of chosen reference applications to derive
linear regression models for Litmus pricing. The discount
models plug into the Litmus pricing employed in the tests.
In this study, we estimate a function’s price in three ways:
the price using the Litmus pricing, a commercial price that
offers no discounts, and an ideal price that provides an exact
discount proportional to its slowdown.

7.1 One Function Per Core

We maintain consistent congestion levels across all tests by
co-running each function with 26 other functions. As out-
lined in Section 4, whenever a function finishes, another is
randomly launched to keep a total of 26 co-running func-
tions. Using Perf [6], we collect three key statistics: Tprivate.
Tshared> and the machine’s L3 misses during the first 45 mil-
lion instructions of the Python startup. Through these met-
rics, Litmus pricing estimates the level of system congestion
and the discount rates a function receives. Each function is
executed 30 times, and we average its Tpyipaze and Tspared
values. Subsequently, we calculate each function’s Ppyjpaze,
Pshared> and total price (P) by summing Pprivare and Pspareq.

Figure 11 illustrates estimated prices derived from Litmus
pricing and ideal prices; both are normalized to the price from
commercial pricing. The functions receive discounted prices
to offset delays in a congested execution environment. The
figure shows minimal disparities between the two prices, im-
plying that Litmus pricing offers a reasonable discount. The
average discount from Litmus pricing across all functions
is 10.7%, which is only marginally higher by 0.4% compared
to the average slowdown experienced by functions, which
stands at 10.3%, as depicted by the ideal price.

However, the discounts per slowdown differ among func-
tions. For instance, float-py’s ideal discount rate is 0.05%,
but it benefits from a 4.3% discount with Litmus pricing.
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Figure 11. Prices computed via Litmus pricing and ideal
prices when co-running with 26 other functions, normalized
to the commercial price that offers no discount
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Figure 12. Weighted errors in prices derived from Litmus
pricing, which are compared to ideal prices

Conversely, pager-py encounters a 15.6% performance de-
cline while receiving only a 13.9% discount. As shown in
Figure 4, pager-py relies more on shared resources with
a longer Tipareq, implying that pager-py’s execution time
is more susceptible to congestion than the references. In
contrast, float-py predominantly utilizes private resources,
resulting in minimal impact from the execution environ-
ment. Further insights into these variations in each pricing
component are presented in Figure 12.

Figure 12 depicts the weighted errors each function expe-
riences. The error rate is computed by comparing the esti-
mated prices with the ideal prices and dividing the difference
by the ideal prices. The first two bars show errors in Py ivate
and Pspgreq, weighted by their corresponding ratios in exe-
cution time, reflecting their impacts as shown in Figure 4.
The last bar shows the error in their total execution time.
Functions may have two types of errors: positive and nega-
tive. A positive error means that the estimated price exceeds
its ideal price, implying that the compensation received is
less than the performance loss incurred. In other words, Lit-
mus pricing underestimates the slowdown relative to the
actual slowdown. Conversely, a negative error indicates the
opposite; a function’s compensation exceeds its slowdown.
This discrepancy indicates Litmus pricing may offer varying
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advantages to different functions, favoring those with lesser
slowdowns. Meanwhile, tenants must recognize the conse-
quences if their functions differ vastly from the references,
particularly those heavily reliant on shared resources.

The largest absolute error is 0.072, occurring with rate-go,
while the smallest absolute error is 0.004 with mst-py. Over-
all, Litmus pricing exhibits minor errors, averaging 0.023.
Thus, the estimated discount deviates by 22.5% from the
ideal discount. Note that Litmus pricing aims to match the
average discount across all functions by applying a system-
wide discount based on the system’s congestion level rather
than adjusting the discount for each function individually.
Consequently, individual functions may experience either
positive or negative errors. However, it is noteworthy that
the average discount between Litmus and ideal pricing dif-
fers by just 0.4%, as illustrated in Figure 11, satisfying its
objectives. Specifically, Litmus pricing estimates slowdowns
in Pprivate With an average weighted error rate of 0.018. The
highest for Pyrigaze is 0.079, while the lowest is just 0.001.
For Psp4req, the average weighted error rate is even lower, at
0.007. The highest for P44 is 0.040.

Litmus pricing estimates each pricing component sepa-
rately with an individual discount rate. For functions that
demand minimal shared resources, such as float-py, the er-
rors in P are nearly identical to those in Tpripase, and the
errors in Tgpareq can be overlooked. As shown in Figure 4,
Tprivare dominates the execution time across many appli-
cations. While even a small error in the estimated Tpripase
influences the function’s execution time, substantial errors
in Typgreq likely have limited impacts, except for functions
that have a relatively meaningful T4, ratio, such as pager-
py and mst-py, whose errors in Ty4,q are observable in the
total price.

We emphasize that Litmus pricing cannot avoid producing
a certain degree of error since it relies on estimation using a
few metrics. However, the figure proves that Litmus pricing
effectively captures a congested environment and reflects
that environment in the price. Under the same congestion
level, Tyripaze values of all functions are delayed similarly
with a little variation. Thus, the Litmus pricing can precisely
estimate the P jqre With the Litmus test, leading to reli-
able total price estimates since Tj,rjvqre generally dominates
execution time. Typ4,eq fluctuates more dynamically across
functions and has a relatively larger error, but the impact of
this error is minimal, as shown in Figure 12.

Figure 13 shows the T ivare and Tspareq of each function,
normalized to the same time components of the baseline.
The gap between the bar and 1 represents the amount of
slowdown that should be translated into ideal discounts. The
top (black) and bottom (blue) dotted lines, along with the
last bars, represent the estimated slowdowns of Tp,;aze and
Tshareq With Litmus tests. The figure shows that interferences
in private resources extend the function execution time by
only 5.3%, implying the performance of the private resources
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Figure 13. Tjrivare & Tsharea of applications when co-running
with 26 others, normalized to those when they run alone.
The top(black) and bottom(blue) lines are discount rates from
Litmus pricing for Ty ivate and Tspared

is marginally affected by congestion. Additionally, all func-
tions exhibit similar T,,,;qre values with little dispersion,
helping precise estimation with Litmus tests.

Meanwhile, shared resources are more significantly af-
fected than what the Litmus test estimates. However, the
errors remain within an acceptable range as their impacts
are minor. Functions that have a considerable T 4 ratio
are more sensitive to system congestion. Conversely, a func-
tion like float-py, which has a negligible Tp,,¢q ratio, gains
huge benefits from high discounts while maintaining sta-
ble performance under congestion. This shows that Litmus
pricing accurately reflects the dynamic values of shared re-
sources when the congestion level changes and incentivizes
functions to be developed to use less shared resources.

7.2 Temporal CPU Sharing

The previous evaluation assumes an isolated environment
where a CPU is assigned exclusively to an active function dur-
ing execution, disallowing temporal sharing between func-
tions through context-switching. While this setup ensures
strict performance isolation, it inherently limits resource
utilization. Conversely, enhancing utilization by permitting
temporal CPU sharing among functions complicates price
estimation. We explore how Litmus pricing can be applied
in a less restrictive environment that permits sharing, where
functions can temporarily share the same CPU and are not
bound exclusively to specific cores.

In this section, we deploy a testing function to co-run
with 160 other functions across 16 cores without exclusive
core assignments, assuming an average of 10 functions share
a core. The reduction in the number of cores tested was
necessitated by our system’s memory limitations, as certain
functions require significant memory space.

Method 1, Modeling Switching Overhead: When a
function is switched out, a subsequent function evicts the
cached data of the displaced one. We noticed that this over-
head grows as the number of co-running functions increases.
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Figure 15. Prices derived from Litmus pricing (Method 1)
and ideal prices when co-running with 160 others, both nor-
malized to commercial prices that offer no discount

Consequently, permitting more concurrent functions results
in slower function execution. However, delayed execution
due to extra sharing financially benefits the providers. Thus,
we argue that the extent of temporal sharing should be in-
corporated into Litmus pricing as another discount factor.
Figure 14 depicts the switching overheads as concurrently
running functions increase. The figure demonstrates that the
sharing overhead follows a logarithmic growth pattern and
stabilizes at around 20 co-running functions. Furthermore,
we discovered that the switching overheads predominantly
affect Tpripaze. Consequently, Litmus pricing needs to cali-
brate Tpripare to account for the impacts of sharing before
estimating the slowdown using the performance table.
Figure 15 illustrates the discounted price reflecting this
adjustment. In our configuration, with an average of 10 func-
tions per core, we divide Tpy;paze by 1.025 before estimating
the slowdown. In this figure, Litmus pricing estimates an
average discount of 14.5%, which falls 2.9% short of the ideal
discount of 17.4%. While most benchmarks receive discounts
lower than ideal, aes-py stands out with the largest error of
9.9%, which is 6.9% less than its ideal discount of 16.8%.
Method 2, Updating Performance Tables: Rather than
reusing the performance/congestion tables designed for re-
strictive environments, arranging new tables for the sharing-
enabled environments returns better accuracy. Although
the notion of preparing separate tables for various sharing
levels may seem challenging, we argue that only one or a
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few extra tables for heavily crowded systems would suf-
fice, given that commercial systems are typically heavily
crowded. Again, we emphasize that the impact of function
co-placement stabilizes above a certain co-placement count,
as shown in Figure 14.

For this test, we prepared new performance/congestion
tables for the environment described above, where a testing
function is assumed to co-locate and compete for a core with
9 other functions. Moreover, considering the scenario where
a switched-out function has a low chance of being resched-
uled to the same core, instead of assigning 10 functions to a
specific core, we ran 50 functions across 5 dedicated cores;
each can run on any of the 5 cores. We managed the conges-
tion levels in shared resources using traffic generators on
the other cores, as outlined in Section 6.
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Figure 16. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others, both nor-
malized to commercial prices that offer no discount

Figure 16 shows the prices obtained from Litmus pricing
with the new tables, which are normalized to those from
commercial sources. Once more, as in Figure 11, the figure
reveals marginal distinctions between the two price points,
suggesting that Litmus pricing continues to offer a reason-
able discount. Across all functions, the average discount
provided by Litmus pricing stands at 17.2%, merely 0.2% less
than the ideal discount of 17.4%.

8 Sensitivity

While the aforementioned tests highlight Litmus’s potential,
we recognize the need for more compelling results. This
section expands our analysis and examines Litmus pricing
from various angles across diverse system environments.
Heavy Congestion: We significantly escalate the con-
gestion level to verify Litmus pricing under conditions of
substantial slowdowns. Figure 17 presents the outcomes of
the same tests depicted in Figure 16 but with 320 co-running
functions. Not only did we increase the function count, but
we also specifically selected 8 memory-intensive functions,
aes-py, compre-py, thum-py, bfs-py, auth-py, fib-go, geo-go,
and profile-go, that produce the most L2 cache misses among
the tested functions to create heavy congestion in shared
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Figure 17. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 320 others, both nor-
malized to commercial prices that offer no discount

resources deliberately. Even under such intensified conges-
tion, Litmus pricing produces results remarkably close to the
ideal price, discounting the price by 20.0%, which deviates
by merely 1.5% from the ideal discount of 21.5%. The highest
discount by Litmus pricing is 26.0% for dyn-py, a minor error
of 2.8% compared to the ideal discount.

CPU Frequency: Modern CPUs feature dynamic CPU
frequency adjustments, which are controlled via software
or hardware. A hardware technique like Intel Turbo Tech-
nology autonomously adjusts the CPU frequency based on
the CPU’s power and thermal budgets, allowing the CPU to
operate at higher frequencies when conditions permit and
lower frequencies under heavy load. Prior tests assumed that
the frequencies were fixed and strictly managed by service
providers who had knowledge of when and to what extent
frequency adjustments were necessary. Also, we evaluated
Litmus pricing under the other scenarios where CPU frequen-
cies were not fixed, providing more dynamic perspectives.

Figure 18 illustrates the prices derived from Litmus pricing
alongside the ideal prices, both normalized to commercial
prices. This evaluation was conducted under the configura-
tion outlined in Section 7.2 with 160 other functions. Com-
pared with Figure 16, we observe a slight decrease in Litmus
pricing’s discount, from 17.2% to 16.8%, while the ideal dis-
count rate decreases from 17.4% to 17.3%. Still, even without
fixed CPU frequencies, the difference in the discount rate
from the ideal price is only 0.5%. We noted that CPU fre-
quency changes were infrequent when the system operated
with 160 functions. Overall, the variation in frequency had a
negligible impact on Litmus pricing.

CPU Architecture: Ensuring the validity of Litmus pric-
ing across different architectures is crucial. Our Litmus tests
rely on the performance counter that measures a stall count
due to L2 cache misses (cycle_activity.stalls_L2_miss) [20],
supported by Intel’s CPUs. Unfortunately, other vendors like
AMD do not yet offer the same performance counter [9], re-
stricting our tests to Intel CPUs. Alternatively, we conducted
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Figure 18. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others with un-
fixed CPU frequencies, both normalized to commercial prices

tests on another Intel CPU based on the Ice Lake architecture,
Xeon Silver 4314, to broaden the scope of our analysis.

Once again, this evaluation was conducted following the
configuration outlined in Section 7.2, albeit with 70 co-running
functions, limited by the main memory capacity of 128GB.
Following Method 2, we constructed new congestion and
performance tables with 50 functions running across 5 cores.
Then, we ran 70 functions across 7 cores to match the com-
petition count, averaging 10 functions per core. Figure 19
presents the results. On average, with Litmus pricing, the
tenant only pays 82.5% of the commercial prices, which is
merely 0.7% less than the ideal price.

CPU Sharing Overhead: The co-located function count
determines the level of interference, impacting a function’s
performance differently. To assess Litmus pricing under var-
ious co-running function counts, we increased the function
count to 240 from the configuration outlined in Section 7.2,
making an average of 15 functions running on each core.
However, we reused the performance and congestion tables
generated in Section 7.2. Figure 20 illustrates the results,
where the Litmus pricing’s error is 1.2% with an average
discount of 16.7%, compared to the ideal of 17.9%. Despite
reusing the tables constructed for 10 co-running functions
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Figure 19. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 70 others on Xeon
Silver 4314, both normalized to commercial prices
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Figure 20. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 15 functions per core

and reusing tables, both normalized to commercial prices
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Figure 21. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others in an SMT-
enabled system, both normalized to commercial prices

per core, the error remains negligible. This outcome aligns
with Figure 14, which highlights the diminishing impact of
temporal sharing when running more than 10 co-running
functions. Given the perpetual overcrowding of commercial
systems, any configuration gap between the environment
where constructing the tables and where conducting tests is
expected to remain minor and easily manageable.

Simultaneous Multithreading (SMT): SMT is a tech-
nique aimed at maximizing resource utilization by enabling
multiple threads to execute concurrently on the same core,
extending the shared resource domain across the entire pro-
cessor. However, while SMT enhances resource utilization,
it significantly complicates the measurement of interference
impact. Moreover, SMT introduces additional side channels,
thereby increasing the processor’s vulnerability to security
attacks. Due to these concerns, serverless platforms like Ama-
zon Lambda disable SMT in their systems [8, 32, 33]. Nonethe-
less, we have conducted a study to assess the impact of SMT
on our Litmus pricing methodology.

To construct the performance and congestion tables, we
executed 50 applications across 5 physically separated cores,
allowing an average of 10 functions to share two virtual cores.
Figure 21 illustrates the results, presenting prices derived
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from Litmus pricing and ideal prices, both normalized to
commercial prices without discounts. The normalized price
experiences a significant drop compared to other configura-
tions, highlighting the impact of heavy congestion within
a physical core. The ideal price, which assumes no interfer-
ence, stands at 47.3% of the commercial price. Meanwhile,
Litmus pricing offers a discount of 45.4%, which is only 1.9%
less, confirming the effectiveness of Litmus pricing.

9 Related Work

Cloud providers strive to maximize profits by accommo-
dating more tenants on their machines, which inevitably
introduces interference between tenants, leading to unpre-
dictable application slowdowns. To address this challenge,
prior researchers have focused on providing tenants with
a more unbiased and predictable quality of service [23-25,
28, 35, 38, 45]. Vicent et al. [35] proposed clustering-based
cache partitioning to mitigate unfairness between tenants.
Rohan et al. [31] aimed for both fairness and throughput by
simultaneously controlling multiple architectural resources.
However, achieving fairness comes at the cost of sacrificing
resource utilization. In contrast, Alex et al. [10, 40] addressed
the unfairness by adjusting their prices while accepting a
certain degree of unfairness. Our study follows a similar
direction but explores a more practical solution within the
context of serverless computing.

10 Conclusion

Serverless computing is a key technology in contemporary
cloud computing, offering a range of benefits. One primary
advantage is effective cost-saving, as tenants are billed only
for the resources they use. However, the time-based fees on
commercial platforms can unfairly charge tenants during
periods of high congestion, which not only results in slow-
downs but also higher costs for tenants. Rather than aiming
to maintain service quality, this paper suggests discounting
tenants’ costs to compensate for performance losses. Lit-
mus pricing proposed in this work monitors machine states
through Litmus tests and adjusts tenant costs accordingly.
The Litmus test is a lightweight testing approach for server-
less platforms, which assesses the machine’s congestion level
before starting a user’s function. Our tests prove that Lit-
mus pricing offers nearly ideal prices in heavily congested
environments, with an average deviation of just 0.2% from
the ideal price that adjusts discounts in proportion to the
slowdown experienced.
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