
Litmus: Fair Pricing for Serverless Computing

Qi Pei
Binghamton University

Binghamton, New York, USA
pqi1@binghamton.edu

Yipeng Wang
Intel Labs

Portland, Oregon, USA
yipeng1.wang@intel.com

Seunghee Shin
Binghamton University

Binghamton, New York, USA
sshin@binghamton.edu

Abstract

Serverless computing has emerged as a market-dominant
paradigm in modern cloud computing, bene�ting both cloud
providers and tenants. While service providers can optimize
their machine utilization, tenants only need to pay for the
resources they use. To maximize resource utilization, these
serverless systems co-run numerous short-lived functions,
bearing frequent system condition shifts. When the system
gets overcrowded, a tenant’s function may su�er from dis-
turbing slowdowns. Ironically, tenants also incur higher costs
during these slowdowns, as commercial serverless platforms
determine costs proportional to their execution times.
This paper argues that cloud providers should compen-

sate tenants for losses incurred when the server is over-
provisioned. However, estimating tenants’ losses is challeng-
ing without pre-pro�led information about their functions.
Prior studies have indicated that assessing tenant losses
leads to heavy overheads. As a solution, this paper intro-
duces a new pricing model that o�ers discounts based on
the machine’s state while presuming the tenant’s loss under
that state. To monitor the machine state accurately, Litmus
pricing frequently conducts Litmus tests, an e�ective and
lightweight solution for measuring system congestion. Our
experiments show that Litmus pricing can accurately gauge
the impact of system congestion and o�er nearly ideal prices,
with only a 0.2% price di�erence on average, in a heavily
congested system.

CCS Concepts: • Computer systems organization →

Cloud computing.

Keywords: Serverless Computing, Congestion Estimation,
Resource Sharing, Online Pricing

ACM Reference Format:

Qi Pei, Yipeng Wang, and Seunghee Shin. 2024. Litmus: Fair Pricing
for Serverless Computing. In 29th ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems, Volume 4 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0391-1/24/04.
h�ps://doi.org/10.1145/3622781.3674181

USA. ACM, New York, NY, USA, 15 pages. h�ps://doi.org/10.1145/
3622781.3674181

1 Introduction

Serverless computing is growing fast, satisfying today’s high
demands for better programmability. It allows tenants to
develop their programs as stateless functions in high-level
languages such as Python, Go, and JavaScript without con-
cerns with low-level resource management and task sched-
uling [14, 15, 32, 33, 36]. This advantage attracts cloud users,
helping them to deploy their programs quickly with minimal
e�ort. Recent reports note that over 50-70% of cloud users
have adopted serverless computing for their tasks [15].

Serverless computing also bene�ts tenants �nancially. Un-
like traditional cloud platforms that require tenants to pur-
chase the hardware resources needed to deploy their servers
regardless of actual usage [1], serverless computing claims
a pay-as-you-go pricing model, where tenants only pay for
the resources consumed during the execution of their func-
tions, facilitating signi�cant cost savings. Meanwhile, this
pricing requires service providers to accurately monitor and
estimate each user’s �ne-grained resource usage [3–5].
However, today’s high-performance systems maximize

resource e�ciency by executing multiple applications simul-
taneously and allowing resources to be shared [45]. Such a
shared serverless system raises two major challenges. First,
tracking a tenant’s resource usage becomes challenging, as
the system can onlymonitor a tenant’s use of exclusively ded-
icated resourceswhile the system is shared. Second, andmore
importantly, co-running applications compete to grab more
resources, a�ecting each other’s progress [23, 25, 35, 38, 45].
This interference not only complicates tracking resource us-
age but also leads to tenants being charged unfairly due to
delayed execution times [10, 19, 23, 40].
A serverless platform should provide a user with an iso-

lated runtime environment. Otherwise, we argue that the
platform provider should compensate a tenant’s loss as a dis-
count when the isolation is not achievable. Thus, we de�ne
a charged fee as fair when it re�ects the tenant’s slowdowns
caused by resource sharing. The following two methods can
be used to o�er a fair price in a multi-tenant environment.
First, strict resource partitioning can divide shared re-

sources into multiple partitions, each assigned exclusively
to a user. This means the user only pays for the allocated
resources and is free from others’ interference [27, 30, 31, 35].
However, strict partitioning is known to cancel opportunities



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

to utilize resources e�ciently [17, 29, 42, 43]. Also, a tenant’s
application may su�er unacceptable slowdowns when insuf-
�cient resources are allocated [30, 31]. Such a delay directly
appears as an increased price. Consequently, resource par-
titioning inherently requires users to deduce the optimal
amount of resources they need when requested.

Alternatively, a discount-based scheme estimates a user’s
price relative to the slowdown experienced, discounting from
the price when running the task without interference, i.e.,
running the task alone on the machine [10, 40]. Ideally, this
scheme bene�ts both cloud providers and tenants compared
to partitioning. Unlike partitioning, it allows tenants to share
resources, enabling providers to maximize hardware utiliza-
tion and generate more revenue with the given machines.
Meanwhile, users get reasonable discounts proportional to
the slowdowns they experience due to co-running tasks, pre-
venting them from overpaying for lowered service quality.

While the alternative scheme looks superior, it poses a
new challenge: measuring a function’s slowdown. Although
the platform can measure its execution time, determining
the slowdown requires knowing its baseline performance,
which can be obtained when it runs without interference.
However, such pro�ling is often prohibited due to security
concerns, particularly when the function processes con�-
dential information. Additionally, the function may behave
di�erently, with varying inputs each time it runs. That is to
say, online pro�ling is necessary. Unfortunately, this requires
expensive runtime sampling, as presented in POPPA [10, 40].
When assessing baseline performance, all co-running tasks
must be stalled. Hundreds to thousands of concurrent short-
lived functions make this approach indeed impractical, as
frequently sampling the baseline performance of such numer-
ous functions is unrealistic. Thus, a new, practical solution
that can be adopted in serverless platforms is needed.
We highlight that both partitioning-based and sampling-

based approaches complicate the problem, either sacri�cing
the machine’s e�ciency or appearing impractical for server-
less computing. Approaches in serverless computing must
be lightweight, frequent, and sensitive enough to deal with
quickly changing environments with numerous concurrent
functions. This paper proposes Litmus pricing, a method that
e�ciently estimates a tenant’s price with a discount propor-
tional to the level of system congestion without burdening
system performance.

During each function’s execution, Litmus pricing conducts
a Litmus test, which measures the level of system conges-
tion without adding extra overhead, using the function’s
startup process. Litmus test is based on the observation that
serverless functions perform largely identical operations
during their startup, typically involving signi�cant memory
accesses. Additionally, Litmus pricing splits the hardware
resources into "private" and "shared" categories, proposing
di�erent charging ratios for each. This approach further
enhances the accuracy of the discount calculation.

This study investigates Litmus pricing across diverse envi-
ronments with varying levels of system congestion. We con-
�rm that crowded environments pose complex challenges.
Despite this, Litmus pricing accurately estimates a tenant’s
cost, deviating by only 0.2% on average from the ideal price
that discounts tenants proportional to slowdowns.

2 Background

Serverless Computing: Serverless computing is a new
cloud execution model that allows cloud tenants to focus on
developing front-end applications while leaving back-end
implementation managed by service providers [15, 32]. This
model bene�ts tenants by easing their burdens to secure and
maintain the hardware resources and allowing them to write
their code (functions) in high-level languages (e.g., Python
or Node-js) as event handlers [15, 34, 36]. These functions
are later invoked upon associated events. The serverless plat-
form ensures security by executing the tenant’s function in a
sandbox, such as a container or a virtual machine [3–5, 44].
Each tenant’s function is stateless and expected to be

short-lived [14–16, 22, 36]. Using these short-lived functions,
tenants can easily scale by invoking many functions with-
out provisioning the needed resources for themselves, rely-
ing instead on the serverless platform [36, 37]. In serverless
computing, numerous short-lived serverless workloads run
together on a single machine, making the execution envi-
ronment more dynamic than the traditional cloud [32, 39,
41]. Tenants need to trust the service provider to provision
enough necessary resources, expecting the quality of ser-
vice de�ned in the service level agreements (SLA) that the
provider and tenants mutually agreed upon [3–5].

In traditional cloud computing, tenants purchase hardware
resources for a contracted term to support their applications,
which are typically large servers. Thus, tenants must pay
for the agreed period regardless of actual usage. In contrast,
serverless workloads are generally small and launched on-
demand as short-lived event handlers. This di�erence leads
to a unique pricing policy known as pay-as-you-go. Under
this model, tenants are charged only for the resources con-
sumed during execution, typically calculated as the product
of execution time and assigned memory capacity [3–5].
Language runtime: Python and Node.js stand out as

the most popular runtimes in AWS Lambda, with Python
used in 58% of all Lambda functions and Node.js in 31% [13].
Over 90% of organizations choose Python and Node.js for
their AWS services. Other popular runtimes include Java,
Go, .NET, and Ruby [14, 15]. These high-level languages
o�er signi�cant abstraction from machine code with good
programmability and portability, which in turn improves
programmer productivity. Consequently, they are widely
adopted by serverless users. However, high-level languages
typically rely on runtime interpretation, leading to slower
program startup due to extra launching steps. For example,



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

when an application is launched in Python, the interpreter is
�rst prepared. It then parses command-line arguments and
imports necessary modules. Afterward, the codes are com-
piled and executed. Upon completion, the Python program
terminates, and all allocated resources are released [12].

3 Methodology

This section outlines our test setup for evaluating serverless
functions in this study.

Hardware Infrastructure:All experiments are conducted
on a dual-socket server platform equipped with two Intel
Xeon Gold 5218 processors based on the Cascade Lake archi-
tecture. Each CPU provides 16 cores that support simultane-
ous multithreading (SMT) with a maximum frequency of 3.9
GHz. Every core features 32KB of L1 instruction/data caches
and a 1MB L2 cache. All cores in each socket share a 22MB
L3 cache. The two sockets collectively have access to 384GB
of main memory. The server operates on Ubuntu Server OS,
version 22.04 LTS, with kernel version 5.15.0. We use Linux
Perf [6] to gather performance counters.
The CPU frequency is a critical factor in�uencing both

performance and energy consumption, signi�cantly a�ect-
ing a function’s execution time and energy usage. A CPU’s
frequency can be adjusted through software or hardware
based on power and thermal budget, optimizing for either
energy e�ciency or performance. However, varying frequen-
cies can cause instability in system performance and energy
usage, complicating system management. For this reason,
commercial systems like Google Cloud o�er only one �xed
frequency for their vCPUs [5]. Accordingly, we set our CPUs’
frequency at 2.8GHz. If we do not �x the frequency through
software, Intel’s Turbo technology occasionally adjusts it,
but it mostly remains at 2.8 GHz during our tests. We will
provide more details on this in Section 8.

Table 1. Serverless Benchmarks & Language Runtimes (py,
nj, go)

Function Abbr. Function Abbr.

SeBs [11] Function Bench [26]

Dyn HTML dyn-py Chameleon chame-py
Thumbnail thum-py* FloatOp �oat-py
Compression compre-py Gzip gzip-py*
Image Recogn recogn-py RandDisk randDisk-py*
Graph Rank pager-py SequenDisk seqDisk-py
Graph Mst mst-py Online Boutique [7]

Graph Bfs bfs-py* Currency cur-nj*
DNA Visual visual-py* Payment pay-nj
Hotel Reservation [18] Other [2, 11]

Geo geo-go Authen auth-py*/nj/go
Pro�le pro�le-go* Fibonacci �b-py*/nj*/go*
Rate rate-go AES aes-py/nj*/go*

Workload: As listed in Table 1, we selected 27 distinct
serverless functions from various benchmark suites, includ-
ing AWS authentication serverless functions [2], the Ho-
tel Reservation from DeathStarBench [18], Google’s Online
Boutique application [7], FunctionBench [26], and the SeBS
serverless benchmark suite [11]. The functions are imple-
mented using three languages: Python, Nodejs, and Go. No-
tably, the three functions, Authen, Fibonacci, and AES, are
implemented in all three languages, creating three separate
test cases per function. We installed Python 3.10.6, Nodejs
v12.22.9, and Go 1.19.2 to support them. Additionally, we se-
lected 13 benchmarks (* marked) in Table 1 as our reference
applications, which are explained later.

0

200

400

600

800

1 4 7 10 13 16 19 22 25 28 31

CT-Gen

MB-Gen

N
o

r
m

a
li

z
e

d
 L

2
 M

is
s
e

s

0

10000

20000

30000

1 4 7 10 13 16 19 22 25 28 31

CT-Gen

MB-Gen
(b)

N
o

r
m

a
li

z
e

d
 L

3
 M

is
s
e

s(a)

Figure 1. (a) L2 misses and (b) L3 misses of tra�c genera-
tors, both normalized with the average L2 and L3 misses of
serverless applications listed in Table 1

Tra�c Generator: We categorize the CPU’s shared re-
sources into two groups: those before the L3 caches and
those after. To stress each group independently, we devel-
oped two separate tra�c generators designed to generate
tra�c and congestion within these resources. The �rst gen-
erator, CT-Gen, exerts pressure from the core up to the L3
cache by creating substantial memory accesses that mostly
miss the L2 cache but hit the L3 cache. Another generator,
MB-Gen, induces massive L3 misses, which stress the re-
sources beyond the L3 cache, primarily targeting o�-chip
memory bandwidth and L3 cache spaces.

Both tra�c generators are multi-threaded and govern the
amount of tra�c by adjusting the number of threads they
spawn. Each thread is pinned to a speci�c core to avoid con-
�icts between threads, allowing us to vary the stress level on
our 32-core processors from level 1 to 31. Figure 1 illustrates
each generator’s characteristics. In Figure 1(a), with each
increase in thread count, CT-Gen generates substantial L2
cache misses. These L2 misses by CT-Gen are ended with
L3 cache hits, as shown in Figure 1(b). In contrast, MB-Gen
produces signi�cant L2 and L3 cache misses. Interestingly,
MB-Gen’s L2 misses are fewer than those of CT-Gen be-
cause MB-Gen is hindered by its L3 misses, su�ering from a
self-imposed performance bottleneck.

4 The Need for Fair Pricing

Fairness in cloud computing, especially when multiple ten-
ants share hardware resources, is addressed through various



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

approaches. One standard method is the Service Level Agree-
ment (SLA), which speci�es the level of service the cloud
provider must deliver and the tenants’ expectations. How-
ever, the SLA outlines the minimum quality of service the
providers should deliver rather than solving fairness issues.
Despite serverless computing’s emphasis on a pay-as-you-go
pricing model, unfairness among tenants still exists.

Unfortunately, modern systems are designed to maximize
hardware e�ciency by running multiple applications concur-
rently. This results in con�icts over shared resources, a�ect-
ing each function’s execution time. Ironically, when service
providers optimize for pro�t by packing more functions into
a single machine, the execution time for each function in-
creases, resulting in higher costs for the same workload. In
serverless computing, tenants have no control or visibility
over how their software is executed, leading to potential
ine�ciencies and higher costs for the sake of convenience.

In serverless computing, although each function runs ex-
clusively in a virtual sandbox with private resources, it still
shares certain resources like caches and memory bandwidth
with other functions. Resource partitioning, a traditional so-
lution that eliminates interference by dedicating resources
exclusively to a tenant, cannot avoid ine�cient resource
utilization. It is also against the serverless philosophy, de-
manding the tenants govern their hardware resources.

0.9

1.0

1.1

1.2

1.3

ae
s-
py

fib
-p
y

dy
n-
py

th
um

-p
y

co
m
pr
e-
py

re
co
gn
-p
y

pa
ge
r-p
y

m
st
-p
y

bf
s-
py

vi
su
al
-p
y

au
th
-p
y

ch
am

e-
py

flo
at
-p
y

gz
ip
-p
y

ra
nd
Di
sk
-p
y

se
qD
isk
-p
y

ae
s-
nj

au
th
-n
j

fib
-n
j

cu
r-
nj

pa
y-
nj

ae
s-
go

au
th
-g
o

fib
-g
o

ge
o-
go

pr
of
ile
-g
o

ra
te
-g
o

gm
ea
n

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

Figure 2. Execution time of applications that run with 26
others, normalized to the execution time when running alone

Figure 2 shows how much a function can be slowed when
co-running with 26 other workloads. The workloads are
randomly selected from the benchmarks listed in Table 1.
Whenever a function �nishes, a new randomly-selected func-
tion is launched to maintain a total of 26 co-running func-
tions. The �gure shows a function’s performance can drop
by up to 35%, with most functions signi�cantly impacted
by the co-running functions. On average, functions perform
11.5% slower in this shared environment compared to an
isolated one, resulting in users being charged 11.5% more.
We highlight that this scenario involves only 26 co-running
functions, which is tiny compared to heavily crowded com-
mercial serverless platforms that run hundreds to thousands
of functions simultaneously [32, 39, 41].

Instead of guaranteeing invariant performance, POPPA [10,
40] o�ers price discounts to compensate for slowdowns. To
provide these discounts, POPPA measures a task’s slowdown
due to interference through sampling and determines the
discount amount based on the observed slowdowns. Unlike
partitioning, this scheme requires the service provider to
carry out all responsibilities related to contentions from re-
source sharing, ensuring tenants pay a consistent price for
their usage. Any unexpected slowdowns that a tenant experi-
ences are compensated with a discount. However, sampling
is an expensive operation that requires stalling all co-running
processes during the sampling. Moreover, accurate measure-
ment necessitates frequent sampling, especially in rapidly
changing environments, making the approach impractical
for dynamic environments like serverless platforms.
Overall, tenants need a new pricing model that consid-

ers more than just execution time. Prior approaches have
limitations, excessively burdening cloud participants and
being unsuitable for the many short-lived functions typi-
cal in serverless computing. This motivates us to propose a
new solution: Litmus pricing, which discounts prices based
on the system congestion while remaining lightweight and
imposing no additional overhead.

5 Litmus Pricing

5.1 Overview

The estimated prices of serverless functions should re�ect the
system’s congestion state. The presence of numerous small
transient functions within the serverless system can rapidly
alter its congestion state, causing sudden congestion or swift
resolution. Nevertheless, such transient tra�c jams can sig-
ni�cantly impact the performance of short-lived functions.
Thus, assessing the congestion must be lightweight, quick,
and timely. However, a prior approach, POPPA [10, 40], relies
on sampling, which incurs considerable performance costs,
thereby limiting its widespread adoption. Alternatively, this
study introduces Litmus pricing, which promptly gauges
system congestion at the onset of each function and re�ects
the estimated congestion level into pricing the function.

Like the prior approach, Litmus pricing suggests that ser-
vice providers should o�er discounts when a tenant’s func-
tions experience interference, thus compensating for the per-
formance loss. Litmus pricing determines the discount rate
based on the system’s congestion level. Evaluating conges-
tion also assists providers in estimating remaining resources
and making informed decisions regarding job scheduling.

However, Litmus pricing does not quantify the slowdown
of each individual function; the discount amount is solely
determined by the severity of the measured congestion. Even
though di�erent functions face the same congestion level,
their respective impacts can vary, making precise estimation
of each function’s performance loss a challenging task. This
complexity necessitated the expensive sampling relied upon



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

by the previous approach. Instead, Litmus pricing circum-
vents such overheads and lightens the service provider’s
burden solely to measure ongoing congestion levels.

Litmus pricing captures the dynamic signi�cance of shared
resources under varying system conditions by o�ering uni-
form discounts to all functions under the same system con-
gestion, regardless of their individual slowdowns. Embedded
within this policy is the distribution of pricing responsibil-
ity to both parties. During periods of system congestion,
shared resources become more valuable and meaningfully
in�uence a function’s performance. We observed that func-
tions experiencing larger slowdowns tend to demand more
of the crowded resources, thereby exacerbating adverse over-
crowded conditions. However, Litmus pricing does not o�er
additional compensation for the larger loss experienced by
functions that use shared resources more heavily than others.

As a result, Litmus inherently incentivizes users who use
shared resources sparingly. During periods of overcrowding,
functions with minimal needs for shared resources still enjoy
discounts but with only slight slowdowns. This implies that
users may take advantage of this policy by minimizing their
reliance on shared resources, receiving substantial discounts
despite only experiencing minor slowdowns. This trade-o�
is considered acceptable because reduced shared resource
usage by users helps mitigate congestion, thereby bene�ting
the overall system and other users.

5.2 Pricing Model

Developing Litmus pricing raises two challenges. First, it
needs a new model to estimate a function’s price. Second, it
needs a way to measure the system’s congestion state. Due to
the rapidly changing environment in serverless computing,
assessing congestion must be lightweight and timely. Com-
mercial serverless platforms employ a uniform pricing model
regardless of resource congestion dynamics. Consequently,
tenants end up paying more for prolonged execution time
when using over-crowded resources. Rather than simply im-
posing the price by multiplying the main memory usage and
a function’s execution time, Litmus pricing determines the
price as a sum of two distinct pricing components as follows.

% = %?A8E0C4 + %Bℎ0A43 (1)

In this equation, % denotes the total price tenants must
pay to execute their functions. Litmus pricing divides this
cost into two pricing components, each associated with a dif-
ferent resource type. %?A8E0C4 is the cost for private resources,
which are entirely assigned to a single tenant. %Bℎ0A43 is the
cost for shared resources. Each pricing component is mea-
sured proportional to the time users occupy the respective
resources. However, if contention disturbs a process’s ex-
ecution in the shared resources, the occupied time will be
extended. This delay unfairly increases the tenant’s cost.

0.6

1.0

1.4

1.8

2.2

2.6

3.0

ae
s-
py

fib
-p
y

dy
n-
py

th
um

-p
y

co
m
pr
e-
py

re
co
gn
-p
y

pa
ge
r-
py

m
st
-p
y

bf
s-
py

vi
su
al
-p
y

au
th
-p
y

ch
am

e-
py

flo
at
-p
y

gz
ip
-p
y

ra
nd
D
is
k-
py

se
qD
is
k-
py

ae
s-
nj

au
th
-n
j

fib
-n
j

cu
r-
nj

pa
y-
nj

ae
s-
go

au
th
-g
o

fib
-g
o

ge
o-
go

pr
of
ile
-g
o

ra
te
-g
o

gm
ea
n

Tprivate Tshared

N
o

rm
a

li
ze

d
 T

p
ri

v
a

te
&

 T
sh

a
re

d 4.9

Figure 3. )?A8E0C4 and )Bℎ0A43 of applications that run with
26 others, normalized to those when running alone

We observed that system congestion in�uences the oc-
cupied time for each resource type di�erently. The time to
use private resources is only slightly a�ected, with minor
changes, even under heavy congestion. In contrast, the time
spent on shared resources is broadly a�ected, showing sig-
ni�cant di�erences. Thus, we separately measure the delays
for the two resource types and apply di�erent charging rules
for their use.
Using Perf [6], we split a function’s execution time into

two slices: )?A8E0C4 , the time spent on private resources, and
)Bℎ0A43 , the time spent on shared resources. Litmus pricing
collects )Bℎ0A43 by reading the cycles stalled due to L2 cache
misses. )?A8E0C4 is calculated as the total execution cycles to
complete the application minus )Bℎ0A43 . Figure 3 shows the
impact of the contentions on each time slice, where )Bℎ0A43
per instruction and )?A8E0C4 per instruction are normalized
to the same tests when running alone. The �gure shows that
)Bℎ0A43 is signi�cantly a�ected by system congestion com-
pared to)?A8E0C4 . On average,)Bℎ0A43 increases by 181%, with
a maximum increase of 488%. Meanwhile, )?A8E0C4 increases
by only 4%, with minor variance between functions.
This �gure highlights two key factors. First, congestion

in shared resources has a negligible impact on the perfor-
mance of private resources. Accordingly, when the system
gets congested, the extent of a function’s reliance on shared
resources determines its performance. If )Bℎ0A43 constitutes
a minor portion of a function’s execution, even severe con-
gestion will have minimal impact on its overall execution.
Second, hardware Performance Monitoring Units (PMUs) in
modern CPUs and pro�ling tools like Linux Perf are widely
available and can be utilized to di�erentiate between the use
of shared and private resources. Throughout this paper, we
will leverage these tools to develop Litmus pricing.

Figure 4 shows the distribution of )?A8E0C4 and )Bℎ0A43 dur-
ing a function’s execution. Compute-intensive workloads
(e.g., �b-py, �oat-py) exhibit a substantial )?A8E0C4 portion,
accounting for up to 99.96% of the execution time. How-
ever, this portion decreases when running memory-intensive
workloads such as �b-nj. This distribution re�ects how other



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

0%

20%

40%

60%

80%

100%

ae
s-
py

fi
b-
py

dy
n-
p
y

th
um

-p
y

co
m
pr
e-
py

re
co
gn
-p
y

pa
ge
r-
py

m
st
-p
y

bf
s-
py

vi
su
al
-p
y

au
th
-p
y

ch
am

e-
py

fl
oa
t-
py

gz
ip
-p
y

ra
nd
D
is
k-
py

se
qD
is
k-
py

ae
s-
nj

au
th
-n
j

fi
b-
nj

cu
r-
nj

pa
y-
nj

ae
s-
go

au
th
-g
o

fi
b-
go

ge
o-
go

pr
of
ile
-g
o

ra
te
-g
o

m
ea
n

Tprivate

Tshared

T
p

ri
v

a
te

&
 T

sh
a

re
d

D
is

tr
ib

u
ti

o
n

Figure 4. Execution time distribution of )?A8E0C4 and )Bℎ0A43

co-running functions can in�uence its execution. For ex-
ample, although running �oat-py in a crowded system may
increase its)Bℎ0A43 , the total execution time,)?A8E0C4 +)Bℎ0A43 ,
will undergo only a minor change.

After collecting the time slices spent on each resource,
Litmus calculates each pricing component by multiplying
two di�erent charging rates with corresponding slices. Con-
sequently, a new pricing equation emerges as follows:

% = '?A8E0C4 ∗)?A8E0C4 + 'Bℎ0A43 ∗)Bℎ0A43 (2)

'?A8E0C4 and 'Bℎ0A43 are the charging rates for private and
shared resources, determined by the congestion level. These
two charging rates are necessary because each component is
a�ected di�erently, either directly or indirectly. The charg-
ing rate determines the actual discount amount, re�ecting
the degradation of applications’ performance caused by in-
terference from a crowded execution environment. Thus, the
charging rates should be measured as follows:

' = '10B4 ∗
)B>;>

)2>=64BC8>=
(3)

In this equation, ' represents the charging rate for ex-
ecutions on private or shared resources. '10B4 is the base
charging rate when the function runs in a congestion-free
runtime environment; our tests select 1 for '10B4 . )B>;> is
its non-interfered execution time when the function runs
alone, and )2>=64BC8>= is its execution time in a congested en-
vironment. We need to collect separate )B>;> and )2>=64BC8>=
values for each pricing component. To measure )B>;> , the
prior study [10, 40] employs an expensive approach that
suspends all co-running applications whenever sampling an
application’s non-interfered performance. However, Litmus
pricing avoids such a costly approach by presuming the func-
tion’s solo performance through reference workloads on the
system.
Litmus pricing requires both providers and tenants to be

involved in the price decision process. Providers need to
establish reasonable rates for each resource usage by analyz-
ing selected representative functions. To o�er fair discounts,
providers must carefully choose the functions to be analyzed,

ensuring the functions accurately represent the system con-
dition. Tenants must also know the consequences when their
tasks heavily rely on shared resources. Unfortunately, their
tasks may get delayed more than the provider’s expectations
while still receiving the expected discount rate.

6 Estimating prices with Litmus

Before using Litmus pricing, service providers need to com-
plete the congestion and performance tables, shown in Fig-
ure 5. The congestion table lists the slowdowns during the
startup phases, whereas the performance table lists the slow-
downs of reference functions. Litmus pricing needs three
steps to determine the �nal price with a discount. First,
providers assess system congestion at multiple levels and
record the results in the congestion table. Second, providers
analyze the impact of congestion on reference functions and
�ll out the performance table. Lastly, providers determine a
tenant’s price based on the data from both tables.

Figure 5. Congestion and performance tables: numbers in
both tables indicate the slowdowns of startup codes and
reference functions, collected with CT-Gen and MB-Gen

Step 1, De�ning Congestion Levels: We manage the
system’s congestion levels using two tra�c generators that
create a range of congestion states by stressing shared re-
sources di�erently. The tra�c generator is multi-threaded,
creating tra�c in shared resources to incur congestion, with
each thread running on a separate core. We rank the stress
levels from 1 to 32 by changing the number of active threads
running on distinct cores. Entries from top to bottom in the
congestion table indicate increasing stress levels.
Measuring the amount of system congestion and its im-

pact on performance is a crucial challenge. This challenge
becomes particularly pronounced when trying to quantify
the impact of the congestion on a running application with-
out pre-pro�led information about the application. The fast-
changing system states of a serverless platform, with numer-
ous short-lived functions, further complicate the assessment,
necessitating quick and frequent performance examinations.



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Litmus pricing includes a novel method, named a Litmus

test, that examines the system’s state quickly without impos-
ing additional overheads. This method leverages our observa-
tion that high-level languages like Python and Node.js, com-
monly used in serverless computing, have lengthy startup
phases to accommodate their runtime environments. Since
the inception of serverless computing, these startup delays
have been identi�ed as a major source of latency issues [21].
Litmus tests exploit these startups to read the system’s state,
utilizing their �xed routines with consistent operations. Our
tests have validated that tested functions exhibit similar per-
formance characteristics during startup phases.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6

aes-go auth-go
fib-go geo-go
profile-go rate-go

S
ta

rt
u

p
 P

h
a

se
 o

f 
G

O

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

aes-py fib-py dyn-py

thum-py compre-py recogn-py

pager-py mst-py bfs-py

visual-py auth-py chame-py

float-py

S
ta

rt
u

p
 P

h
a

se
 o

f 

P
y

th
o

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

aes-nj auth-nj
fib-nj cur-nj
pay-nj

S
ta

rt
u

p
 P

h
a

se
 o

f 

N
o

d
e

.j
s

Timeline(ms)

Timeline(ms)

Timeline(ms)

Figure 6. IPC of serverless applications based on languages
(Go, Python, and NodeJS) during their startup phase

Figure 6 depicts a function’s �uctuation in IPC (Instruc-
tions Per Cycle) during its startup phases. The x-axis repre-
sents the time elapsed since the beginning, with each tick
indicating one millisecond. The y-axis shows the function’s
IPC measured for a millisecond at corresponding time in-
tervals. We picked functions with di�erent languages and
characteristics from those listed in Table 1. These functions
were categorized into three groups based on language run-
time, and the IPC of each group is presented in separate
�gures. As shown in these �gures, functions in the same
�gure show notable similarities. This implies that functions
written in the same language have nearly identical startups.

The startup of a runtime typically includes bursts of mem-
ory reads to load images and libraries, which can be used
to probe the tra�c in shared resources. By conducting a
Litmus test before executing a tenant’s function, providers
can assess the system state. Meanwhile, providers also need
to study how startup phases perform under di�erent system
states. They complete the congestion tables by conducting

Figure 7. Progress of serverless applications on four cores
with Litmus tests (dotted arrows) over time

the Litmus tests with startups written in three languages
while varying congestion levels. This information from the
congestion table is then referenced when constructing the
congestion model in Figure 9.
Figure 7 shows the progress of serverless functions with

Litmus tests, which examine the level of system congestion
during each function’s startup. Many concurrent functions in
serverless o�er frequent opportunities for testing. Function
#1, which is memory-intensive, causes congestion levels to
rise above 8 during its execution. A Litmus test in Core 3
detects this congestion. After Function #1 is complete, a
subsequent Litmus test indicates a non-congested system
with a congestion level below 3. However, during another
resource-intensive function, Function #2, the Litmus test
identi�es new system congestion with a level above 9.

Step 2, Measuring the Impact of Congestion: Discern-
ing system congestion through the Litmus test solves only
one of the two challenges; the other is determining its impact
on a tenant’s function. Di�erent tenants’ functions could ex-
perience varying degrees of slowdown under the same con-
gestion level. To address this, we propose using pre-selected
reference functions to analyze these impacts, thereby avoid-
ing the cost of runtime pro�ling. For this, providers need to
carefully select reference functions that represent tenants’
functions operating on the systems, as these selections in�u-
ence the overall accuracy of congestion measurement. Later,
in Section 7, our tests will show that pre-selected reference
functions can e�ectively represent unknown user applica-
tions. For this study, the selected reference applications (*
marked) are listed in Table 1.

Once the reference functions are ready, providers analyze
their slowdowns under varying congestion levels. This analy-
sis completes the performance table shown in Figure 5. Each
entry in the table holds the geometric average of all refer-
ence functions’ slowdowns at the corresponding stress level.
With two tra�c generators, providers can complete another
set of two sub-tables for the performance table. All entries
in this table are mapped 1-to-1 to entries in the congestion
table. Providers can estimate a general function’s slowdown
at a given congestion level using this one-to-one mapping.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

fib
-p
y

th
um

-p
y

bf
s-
py

vi
su
al
-p
y

au
th
-p
y

gz
ip
-p
y

ra
nd
Di
sk
-p
y

ae
s-
nj

fib
-n
j

cu
r-
nj

ae
s-
go

fib
-g
o

pr
of
ile
-g
o

gm
ea
n

st
ar
t-p
y

Tprivate Tshared Ttotal

N
o

rm
a

li
ze

d
 T

p
ri

v
a

te
&

 T
sh

a
re

d

a
n

d
 T

o
ta

l 
E

x
e

cu
ti

o
n

 T
im

e

Figure 8. )?A8E0C4 , )Bℎ0A43 , and )C>C0; of serverless applica-
tions that run with MB-Gen at stress level 14, normalized to
their execution time when they run alone

Figure 8 shows an example of the reference functions’
slowdowns when stressing the system. The X-axis shows
tested functions, each depicted with three bars: the �rst two
bars show )?A8E0C4 and )Bℎ0A43 , while the last bar shows the
total execution time, all normalized to their execution time
when running alone without interference. The �gure shows
that the tested functions experience varying degrees of slow-
down despite consistent stress levels maintained during the
tests. The next-to-last group shows the gmean of all the
slowdowns, which providers use to estimate a function’s
slowdown later.

1.0

1.2

1.4

1 1.1 1.2

CT-Gen

MB-Gen

(c)

N
o

rm
a

li
ze

d
 T

to
ta

l

1.00

1.05

1.10

1.15

1 1.05 1.1

CT-Gen

MB-Gen

1.0

2.0

3.0

1 2 3 4

CT-Gen

MB-Gen

(b)

N
o

rm
a

li
ze

d
 T

p
ri

v
a

te

N
o

rm
a

li
ze

d
 T

sh
a

re
d(a)

R2=0.977

R2=0.836

R2=0.961 R2=0.966

R2=0.989R2=0.980

Figure 9. The correlation between the slowdown of Python’s
startup phase and the slowdown of reference applications.
From left, (a) )?A8E0C4 , (b) )Bℎ0A43 , and (c) )C>C0; , normalized
to the execution time when running alone

Step 3, Determining Discount Rates: Providers can
determine a function’s price through the Litmus test once
the congestion and performance tables are ready. Upon ob-
taining a Litmus test result, the current congestion level is
estimated by comparing the measured slowdown to the pre-
studied slowdowns in the congestion tables. Then, Litmus
pricing conjectures a possible slowdown due to the estimated
congestion by using the congestion level as an index to the
performance table. However, while congestion levels vary
continuously, the tables only contain slowdowns at discrete
intervals. Therefore, providers need a model that estimates
the slowdown for any given congestion level. In our tests,
we employ linear regression to develop the model.

Our experiments employ linear regression analysis to
draw Figure 9, which shows the correlation between the

Figure 10. Estimating a function’s slowdown with logarith-
mic interpolation

two slowdowns. The X-axis shows the startup’s slowdown,
while the Y-axis shows the corresponding reference appli-
cations’ slowdowns at the same congestion level. From left
to right, the �gure shows normalized )?A8E0C4 , )Bℎ0A43 , and
)C>C0; . To extrapolate a precise congestion level, we created
two sub-tables within both the congestion and performance
tables using two distinct tra�c generators. As a result, the
�gure depicts two linear regression lines (red and blue dotted
lines), each associated with a di�erent tra�c generator.

These regression models return two di�erent slowdowns.
To estimate a function’s slowdown, providers must deter-
mine which model re�ects the current environment more
accurately. The tra�c generators create two extreme con-
gestion scenarios: one before the L3 cache and one after.
CT-Gen generates substantial tra�c from the core to the L3
cache that �lters the tra�c and prevents operations from
consuming memory bandwidth. Conversely, MB-Gen also
generates massive tra�c but consumes memory bandwidth
and repeatedly evicts L3 cache blocks. Because each traf-
�c generator represents a distinct extreme case, the actual
machine state could fall somewhere between the two con-
gestion levels created by CT-Gen and MB-Gen. However,
Litmus pricing requires more than just the startup slow-
down to identify the machine’s state in these models. Thus,
we have enabled Litmus tests to gather the system’s L3 miss
count as a supplementary metric that o�ers deeper insights
into the crowdedness of shared resources.
Figure 10 shows our approach to using L3 misses to esti-

mate slowdowns. We created two �gures illustrating sepa-
rate regression models. The left �gure (a) is derived from the
startup slowdowns and L3 misses with logarithmic regres-
sion, indicating L3 misses at speci�c congestion levels. The
right �gure (b) is derived from the performance table with
linear regression, displaying discounts at speci�c congestion
levels. Each �gure depicts two regression lines associated
with di�erent tra�c generators.

The two tra�c generators set the upper and lower bound-
aries for L3 misses. For instance, if a Litmus test reports 10
L3 misses, close to what CT-Gen generates: 1○This suggests



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

congestion occurs before reaching the L3 cache, similar to
CT-Gen’s scenario. Thus, Litmus pricing estimates the func-
tion’s discount to be around 1%. Conversely, if the Litmus test
reports 1000 L3 misses, close to MB-Gen’s results: 2○Litmus
pricing estimates the function’s discount rate to be approxi-
mately 6%, indicating congestion similar to MB-Gen, where
memory bandwidth is heavily consumed and L3 cache blocks
are frequently evicted. When the Litmus test reports 100 L3
misses, an interpolation between these extremes is applied:
3○Using logarithmic interpolation, Litmus pricing estimates
the function’s discount rate to be midway between CT-Gen’s
1% and MB-Gen’s 6%, resulting in approximately 3.5%. Upon
obtaining the discount rates, Litmus pricing computes the
�nal price, as discussed in Section 5.2.

7 Evaluation

We split our functions into two groups: as listed in Table 1,
one consists of functions to test Litmus pricing, while the
other consists of chosen reference applications to derive
linear regression models for Litmus pricing. The discount
models plug into the Litmus pricing employed in the tests.
In this study, we estimate a function’s price in three ways:
the price using the Litmus pricing, a commercial price that
o�ers no discounts, and an ideal price that provides an exact
discount proportional to its slowdown.

7.1 One Function Per Core

We maintain consistent congestion levels across all tests by
co-running each function with 26 other functions. As out-
lined in Section 4, whenever a function �nishes, another is
randomly launched to keep a total of 26 co-running func-
tions. Using Perf [6], we collect three key statistics: )?A8E0C4 ,
)Bℎ0A43 , and the machine’s L3 misses during the �rst 45 mil-
lion instructions of the Python startup. Through these met-
rics, Litmus pricing estimates the level of system congestion
and the discount rates a function receives. Each function is
executed 30 times, and we average its )?A8E0C4 and )Bℎ0A43

values. Subsequently, we calculate each function’s %?A8E0C4 ,
%Bℎ0A43 , and total price (P) by summing %?A8E0C4 and %Bℎ0A43 .

Figure 11 illustrates estimated prices derived from Litmus
pricing and ideal prices; both are normalized to the price from
commercial pricing. The functions receive discounted prices
to o�set delays in a congested execution environment. The
�gure shows minimal disparities between the two prices, im-
plying that Litmus pricing o�ers a reasonable discount. The
average discount from Litmus pricing across all functions
is 10.7%, which is only marginally higher by 0.4% compared
to the average slowdown experienced by functions, which
stands at 10.3%, as depicted by the ideal price.

However, the discounts per slowdown di�er among func-
tions. For instance, �oat-py’s ideal discount rate is 0.05%,
but it bene�ts from a 4.3% discount with Litmus pricing.

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 11. Prices computed via Litmus pricing and ideal
prices when co-running with 26 other functions, normalized
to the commercial price that o�ers no discount

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

aes-
py

dyn-p
y

co
m

pre
-p

y

re
co

ngn-p
y

pager-p
y

m
st

-p
y

ch
am

e-p
y

flo
at-p

y

se
qDisk

-p
y

auth
-n

j

pay-n
j

auth
-g

o

geo-g
o

ra
te

-g
o

abs g
eom

ean

Pprivate Pshared Ptotal

P
r
ic

e
 E

r
r
o

r
 R

a
te

s

Figure 12. Weighted errors in prices derived from Litmus
pricing, which are compared to ideal prices

Conversely, pager-py encounters a 15.6% performance de-
cline while receiving only a 13.9% discount. As shown in
Figure 4, pager-py relies more on shared resources with
a longer )Bℎ0A43 , implying that pager-py’s execution time
is more susceptible to congestion than the references. In
contrast, �oat-py predominantly utilizes private resources,
resulting in minimal impact from the execution environ-
ment. Further insights into these variations in each pricing
component are presented in Figure 12.

Figure 12 depicts the weighted errors each function expe-
riences. The error rate is computed by comparing the esti-
mated prices with the ideal prices and dividing the di�erence
by the ideal prices. The �rst two bars show errors in %?A8E0C4

and %Bℎ0A43 , weighted by their corresponding ratios in exe-
cution time, re�ecting their impacts as shown in Figure 4.
The last bar shows the error in their total execution time.
Functions may have two types of errors: positive and nega-
tive. A positive error means that the estimated price exceeds
its ideal price, implying that the compensation received is
less than the performance loss incurred. In other words, Lit-
mus pricing underestimates the slowdown relative to the
actual slowdown. Conversely, a negative error indicates the
opposite; a function’s compensation exceeds its slowdown.
This discrepancy indicates Litmus pricing may o�er varying



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

advantages to di�erent functions, favoring those with lesser
slowdowns. Meanwhile, tenants must recognize the conse-
quences if their functions di�er vastly from the references,
particularly those heavily reliant on shared resources.

The largest absolute error is 0.072, occurring with rate-go,
while the smallest absolute error is 0.004 with mst-py. Over-
all, Litmus pricing exhibits minor errors, averaging 0.023.
Thus, the estimated discount deviates by 22.5% from the
ideal discount. Note that Litmus pricing aims to match the
average discount across all functions by applying a system-
wide discount based on the system’s congestion level rather
than adjusting the discount for each function individually.
Consequently, individual functions may experience either
positive or negative errors. However, it is noteworthy that
the average discount between Litmus and ideal pricing dif-
fers by just 0.4%, as illustrated in Figure 11, satisfying its
objectives. Speci�cally, Litmus pricing estimates slowdowns
in %?A8E0C4 with an average weighted error rate of 0.018. The
highest for %?A8E0C4 is 0.079, while the lowest is just 0.001.
For %Bℎ0A43 , the average weighted error rate is even lower, at
0.007. The highest for %Bℎ0A43 is 0.040.
Litmus pricing estimates each pricing component sepa-

rately with an individual discount rate. For functions that
demand minimal shared resources, such as �oat-py, the er-
rors in P are nearly identical to those in )?A8E0C4 , and the
errors in )Bℎ0A43 can be overlooked. As shown in Figure 4,
)?A8E0C4 dominates the execution time across many appli-
cations. While even a small error in the estimated )?A8E0C4
in�uences the function’s execution time, substantial errors
in )Bℎ0A43 likely have limited impacts, except for functions
that have a relatively meaningful)Bℎ0A43 ratio, such as pager-
py and mst-py, whose errors in )Bℎ0A43 are observable in the
total price.

We emphasize that Litmus pricing cannot avoid producing
a certain degree of error since it relies on estimation using a
few metrics. However, the �gure proves that Litmus pricing
e�ectively captures a congested environment and re�ects
that environment in the price. Under the same congestion
level, )?A8E0C4 values of all functions are delayed similarly
with a little variation. Thus, the Litmus pricing can precisely
estimate the %?A8E0C4 with the Litmus test, leading to reli-
able total price estimates since )?A8E0C4 generally dominates
execution time. )Bℎ0A43 �uctuates more dynamically across
functions and has a relatively larger error, but the impact of
this error is minimal, as shown in Figure 12.
Figure 13 shows the )?A8E0C4 and )Bℎ0A43 of each function,

normalized to the same time components of the baseline.
The gap between the bar and 1 represents the amount of
slowdown that should be translated into ideal discounts. The
top (black) and bottom (blue) dotted lines, along with the
last bars, represent the estimated slowdowns of )?A8E0C4 and
)Bℎ0A43 with Litmus tests. The �gure shows that interferences
in private resources extend the function execution time by
only 5.3%, implying the performance of the private resources

0.00

0.20

0.40

0.60

0.80

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

L-
Di
sc
ou
nt

Tprivate Tshared

N
o

rm
a

li
ze

d
 T

p
ri

v
a

te
&

 T
sh

a
re

d

Figure 13.)?A8E0C4 &)Bℎ0A43 of applicationswhen co-running
with 26 others, normalized to those when they run alone.
The top(black) and bottom(blue) lines are discount rates from
Litmus pricing for )?A8E0C4 and )Bℎ0A43

is marginally a�ected by congestion. Additionally, all func-
tions exhibit similar )?A8E0C4 values with little dispersion,
helping precise estimation with Litmus tests.
Meanwhile, shared resources are more signi�cantly af-

fected than what the Litmus test estimates. However, the
errors remain within an acceptable range as their impacts
are minor. Functions that have a considerable )Bℎ0A43 ratio
are more sensitive to system congestion. Conversely, a func-
tion like �oat-py, which has a negligible )Bℎ0A43 ratio, gains
huge bene�ts from high discounts while maintaining sta-
ble performance under congestion. This shows that Litmus
pricing accurately re�ects the dynamic values of shared re-
sources when the congestion level changes and incentivizes
functions to be developed to use less shared resources.

7.2 Temporal CPU Sharing

The previous evaluation assumes an isolated environment
where a CPU is assigned exclusively to an active function dur-
ing execution, disallowing temporal sharing between func-
tions through context-switching. While this setup ensures
strict performance isolation, it inherently limits resource
utilization. Conversely, enhancing utilization by permitting
temporal CPU sharing among functions complicates price
estimation. We explore how Litmus pricing can be applied
in a less restrictive environment that permits sharing, where
functions can temporarily share the same CPU and are not
bound exclusively to speci�c cores.
In this section, we deploy a testing function to co-run

with 160 other functions across 16 cores without exclusive
core assignments, assuming an average of 10 functions share
a core. The reduction in the number of cores tested was
necessitated by our system’s memory limitations, as certain
functions require signi�cant memory space.
Method 1, Modeling Switching Overhead: When a

function is switched out, a subsequent function evicts the
cached data of the displaced one. We noticed that this over-
head grows as the number of co-running functions increases.



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1.000

1.010

1.020

1.030

0 5 10 15 20 25N
o

rm
a

li
ze

d
 T

p
ri

v
a

te

Figure 14. )?A8E0C4 of functions over di�erent co-running
counts in the same core, normalized to when running alone

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 15. Prices derived from Litmus pricing (Method 1)
and ideal prices when co-running with 160 others, both nor-
malized to commercial prices that o�er no discount

Consequently, permitting more concurrent functions results
in slower function execution. However, delayed execution
due to extra sharing �nancially bene�ts the providers. Thus,
we argue that the extent of temporal sharing should be in-
corporated into Litmus pricing as another discount factor.

Figure 14 depicts the switching overheads as concurrently
running functions increase. The �gure demonstrates that the
sharing overhead follows a logarithmic growth pattern and
stabilizes at around 20 co-running functions. Furthermore,
we discovered that the switching overheads predominantly
a�ect )?A8E0C4 . Consequently, Litmus pricing needs to cali-
brate )?A8E0C4 to account for the impacts of sharing before
estimating the slowdown using the performance table.
Figure 15 illustrates the discounted price re�ecting this

adjustment. In our con�guration, with an average of 10 func-
tions per core, we divide )?A8E0C4 by 1.025 before estimating
the slowdown. In this �gure, Litmus pricing estimates an
average discount of 14.5%, which falls 2.9% short of the ideal
discount of 17.4%. While most benchmarks receive discounts
lower than ideal, aes-py stands out with the largest error of
9.9%, which is 6.9% less than its ideal discount of 16.8%.

Method 2, Updating Performance Tables: Rather than
reusing the performance/congestion tables designed for re-
strictive environments, arranging new tables for the sharing-
enabled environments returns better accuracy. Although
the notion of preparing separate tables for various sharing
levels may seem challenging, we argue that only one or a

few extra tables for heavily crowded systems would suf-
�ce, given that commercial systems are typically heavily
crowded. Again, we emphasize that the impact of function
co-placement stabilizes above a certain co-placement count,
as shown in Figure 14.
For this test, we prepared new performance/congestion

tables for the environment described above, where a testing
function is assumed to co-locate and compete for a core with
9 other functions. Moreover, considering the scenario where
a switched-out function has a low chance of being resched-
uled to the same core, instead of assigning 10 functions to a
speci�c core, we ran 50 functions across 5 dedicated cores;
each can run on any of the 5 cores. We managed the conges-
tion levels in shared resources using tra�c generators on
the other cores, as outlined in Section 6.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 16. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others, both nor-
malized to commercial prices that o�er no discount

Figure 16 shows the prices obtained from Litmus pricing
with the new tables, which are normalized to those from
commercial sources. Once more, as in Figure 11, the �gure
reveals marginal distinctions between the two price points,
suggesting that Litmus pricing continues to o�er a reason-
able discount. Across all functions, the average discount
provided by Litmus pricing stands at 17.2%, merely 0.2% less
than the ideal discount of 17.4%.

8 Sensitivity

While the aforementioned tests highlight Litmus’s potential,
we recognize the need for more compelling results. This
section expands our analysis and examines Litmus pricing
from various angles across diverse system environments.
Heavy Congestion: We signi�cantly escalate the con-

gestion level to verify Litmus pricing under conditions of
substantial slowdowns. Figure 17 presents the outcomes of
the same tests depicted in Figure 16 but with 320 co-running
functions. Not only did we increase the function count, but
we also speci�cally selected 8 memory-intensive functions,
aes-py, compre-py, thum-py, bfs-py, auth-py, �b-go, geo-go,
and pro�le-go, that produce the most L2 cache misses among
the tested functions to create heavy congestion in shared



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 17. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 320 others, both nor-
malized to commercial prices that o�er no discount

resources deliberately. Even under such intensi�ed conges-
tion, Litmus pricing produces results remarkably close to the
ideal price, discounting the price by 20.0%, which deviates
by merely 1.5% from the ideal discount of 21.5%. The highest
discount by Litmus pricing is 26.0% for dyn-py, a minor error
of 2.8% compared to the ideal discount.
CPU Frequency: Modern CPUs feature dynamic CPU

frequency adjustments, which are controlled via software
or hardware. A hardware technique like Intel Turbo Tech-
nology autonomously adjusts the CPU frequency based on
the CPU’s power and thermal budgets, allowing the CPU to
operate at higher frequencies when conditions permit and
lower frequencies under heavy load. Prior tests assumed that
the frequencies were �xed and strictly managed by service
providers who had knowledge of when and to what extent
frequency adjustments were necessary. Also, we evaluated
Litmus pricing under the other scenarios where CPU frequen-
cies were not �xed, providing more dynamic perspectives.

Figure 18 illustrates the prices derived from Litmus pricing
alongside the ideal prices, both normalized to commercial
prices. This evaluation was conducted under the con�gura-
tion outlined in Section 7.2 with 160 other functions. Com-
pared with Figure 16, we observe a slight decrease in Litmus
pricing’s discount, from 17.2% to 16.8%, while the ideal dis-
count rate decreases from 17.4% to 17.3%. Still, even without
�xed CPU frequencies, the di�erence in the discount rate
from the ideal price is only 0.5%. We noted that CPU fre-
quency changes were infrequent when the system operated
with 160 functions. Overall, the variation in frequency had a
negligible impact on Litmus pricing.

CPU Architecture: Ensuring the validity of Litmus pric-
ing across di�erent architectures is crucial. Our Litmus tests
rely on the performance counter that measures a stall count
due to L2 cache misses (cycle_activity.stalls_L2_miss) [20],
supported by Intel’s CPUs. Unfortunately, other vendors like
AMD do not yet o�er the same performance counter [9], re-
stricting our tests to Intel CPUs. Alternatively, we conducted

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 18. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others with un-
�xed CPU frequencies, both normalized to commercial prices

tests on another Intel CPU based on the Ice Lake architecture,
Xeon Silver 4314, to broaden the scope of our analysis.

Once again, this evaluation was conducted following the
con�guration outlined in Section 7.2, albeit with 70 co-running
functions, limited by the main memory capacity of 128GB.
Following Method 2, we constructed new congestion and
performance tables with 50 functions running across 5 cores.
Then, we ran 70 functions across 7 cores to match the com-
petition count, averaging 10 functions per core. Figure 19
presents the results. On average, with Litmus pricing, the
tenant only pays 82.5% of the commercial prices, which is
merely 0.7% less than the ideal price.

CPU Sharing Overhead: The co-located function count
determines the level of interference, impacting a function’s
performance di�erently. To assess Litmus pricing under var-
ious co-running function counts, we increased the function
count to 240 from the con�guration outlined in Section 7.2,
making an average of 15 functions running on each core.
However, we reused the performance and congestion tables
generated in Section 7.2. Figure 20 illustrates the results,
where the Litmus pricing’s error is 1.2% with an average
discount of 16.7%, compared to the ideal of 17.9%. Despite
reusing the tables constructed for 10 co-running functions

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 19. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 70 others on Xeon
Silver 4314, both normalized to commercial prices



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 20. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 15 functions per core
and reusing tables, both normalized to commercial prices

0.45

0.50

0.55

0.60

0.65

0.70

ae
s-
py

dy
n-
py

co
m
pr
e-
py

re
co
ng
n-
py

pa
ge
r-p
y

m
st
-p
y

ch
am

e-
py

flo
at
-p
y

se
qD
isk
-p
y

au
th
-n
j

pa
y-
nj

au
th
-g
o

ge
o-
go

ra
te
-g
o

gm
ea
n

Litmus Price Ideal Price

N
o
r
m
a
li
z
e
d
P
r
ic
e

Figure 21. Prices derived from Litmus pricing (Method 2)
and ideal prices when co-running with 160 others in an SMT-
enabled system, both normalized to commercial prices

per core, the error remains negligible. This outcome aligns
with Figure 14, which highlights the diminishing impact of
temporal sharing when running more than 10 co-running
functions. Given the perpetual overcrowding of commercial
systems, any con�guration gap between the environment
where constructing the tables and where conducting tests is
expected to remain minor and easily manageable.
Simultaneous Multithreading (SMT): SMT is a tech-

nique aimed at maximizing resource utilization by enabling
multiple threads to execute concurrently on the same core,
extending the shared resource domain across the entire pro-
cessor. However, while SMT enhances resource utilization,
it signi�cantly complicates the measurement of interference
impact. Moreover, SMT introduces additional side channels,
thereby increasing the processor’s vulnerability to security
attacks. Due to these concerns, serverless platforms like Ama-
zon Lambda disable SMT in their systems [8, 32, 33]. Nonethe-
less, we have conducted a study to assess the impact of SMT
on our Litmus pricing methodology.
To construct the performance and congestion tables, we

executed 50 applications across 5 physically separated cores,
allowing an average of 10 functions to share two virtual cores.
Figure 21 illustrates the results, presenting prices derived

from Litmus pricing and ideal prices, both normalized to
commercial prices without discounts. The normalized price
experiences a signi�cant drop compared to other con�gura-
tions, highlighting the impact of heavy congestion within
a physical core. The ideal price, which assumes no interfer-
ence, stands at 47.3% of the commercial price. Meanwhile,
Litmus pricing o�ers a discount of 45.4%, which is only 1.9%
less, con�rming the e�ectiveness of Litmus pricing.

9 Related Work

Cloud providers strive to maximize pro�ts by accommo-
dating more tenants on their machines, which inevitably
introduces interference between tenants, leading to unpre-
dictable application slowdowns. To address this challenge,
prior researchers have focused on providing tenants with
a more unbiased and predictable quality of service [23–25,
28, 35, 38, 45]. Vicent et al. [35] proposed clustering-based
cache partitioning to mitigate unfairness between tenants.
Rohan et al. [31] aimed for both fairness and throughput by
simultaneously controlling multiple architectural resources.
However, achieving fairness comes at the cost of sacri�cing
resource utilization. In contrast, Alex et al. [10, 40] addressed
the unfairness by adjusting their prices while accepting a
certain degree of unfairness. Our study follows a similar
direction but explores a more practical solution within the
context of serverless computing.

10 Conclusion

Serverless computing is a key technology in contemporary
cloud computing, o�ering a range of bene�ts. One primary
advantage is e�ective cost-saving, as tenants are billed only
for the resources they use. However, the time-based fees on
commercial platforms can unfairly charge tenants during
periods of high congestion, which not only results in slow-
downs but also higher costs for tenants. Rather than aiming
to maintain service quality, this paper suggests discounting
tenants’ costs to compensate for performance losses. Lit-
mus pricing proposed in this work monitors machine states
through Litmus tests and adjusts tenant costs accordingly.
The Litmus test is a lightweight testing approach for server-
less platforms, which assesses the machine’s congestion level
before starting a user’s function. Our tests prove that Lit-
mus pricing o�ers nearly ideal prices in heavily congested
environments, with an average deviation of just 0.2% from
the ideal price that adjusts discounts in proportion to the
slowdown experienced.

11 Acknowledgment

We would like to thank our reviewers for their valuable
feedback to improve this paper. This work was supported by
NSF CAREER Award CCF-2146475.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Qi Pei, Yipeng Wang, and Seunghee Shin

References
[1] Amazon ec2 pricing. h�ps://aws.amazon.com/ec2/pricing/?nc1=h_ls.
[2] Amazon web service. h�ps://docs.aws.amazon.com/apigateway/

latest/developerguide/apigateway-use-lambda-authorizer.html.
[3] Aws lambda pricing. h�ps://aws.amazon.com/lambda/pricing/?nc1=

h_ls.
[4] Google cloud function pricing. h�ps://azure.microso�.com/en-us/

pricing/details/functions/.
[5] Google cloud function pricing. h�ps://cloud.google.com/functions/

pricing.
[6] kernel.org. h�ps://perf.wiki.kernel.org/index.php/Main_Page.
[7] Google cloud platform microservice demo., 2022. h�ps://github.com/

GoogleCloudPlatform/microservices-demo.
[8] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th

USENIX symposium on networked systems design and implementation

(NSDI 20), pages 419–434, 2020.
[9] AMD. Performancemonitor counters for amd family 1ahmodel 00h0fh

processors. h�ps://www.amd.com/content/dam/amd/en/documents/

epyc-technical-docs/programmer-references/58550-0.01.pdf.
[10] Alex D. Breslow, Ananta Tiwari, Martin Schulz, Laura Carrington,

Lingjia Tang, and Jason Mars. Enabling fair pricing on hpc systems
with node sharing. In SC ’13: Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2013.

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoe�er. Sebs: A serverless benchmark suite
for function-as-a-service computing. In Proceedings of the 22nd In-

ternational Middleware Conference, Middleware ’21, page 64–78, New
York, NY, USA, 2021. Association for Computing Machinery.

[12] DataDog. Python setup and usage. h�ps://docs.python.org/3/using/
index.html.

[13] DataDog. The state of serverless, 2021. h�ps://www.datadoghq.com/

state-of-serverless-2021/.
[14] DataDog. The state of serverless, 2022. h�ps://www.datadoghq.com/

state-of-serverless-2022//.
[15] DataDog. The state of serverless, 2023. h�ps://www.datadoghq.com/

state-of-serverless/.
[16] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,

Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. A review of serverless use cases and their characteristics. arXiv
preprint arXiv:2008.11110, 2020.

[17] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture,
Xiaosong Ma, and Daniel Sanchez. Kpart: A hybrid cache partitioning-
sharing technique for commoditymulticores. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
104–117. IEEE, 2018.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
pages 3–18, 2019.

[19] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza.
Acctee: A webassembly-based two-way sandbox for trusted resource
accounting. In Proceedings of the 20th International Middleware Con-

ference, pages 123–135, 2019.
[20] Intel. Perfmon events. h�ps://perfmon-events.intel.com/.
[21] Mohamed Ismail and G Edward Suh. Quantitative overhead analy-

sis for python. In 2018 IEEE International Symposium on Workload

Characterization (IISWC), pages 36–47. IEEE, 2018.

[22] Zhipeng Jia and Emmett Witchel. Nightcore: e�cient and scalable
serverless computing for latency-sensitive, interactive microservices.
In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 152–
166, 2021.

[23] Seongwook Jin, Jinho Seol, Jaehyuk Huh, and Seungryoul Maeng.
Hardware-assisted secure resource accounting under a vulnerable
hypervisor. ACM SIGPLAN Notices, 50(7):201–213, 2015.

[24] Ram Srivatsa Kannan, Animesh Jain, Michael A Laurenzano, Lingjia
Tang, and Jason Mars. Proctor–detecting and investigating perfor-
mance interference in shared datacenters.

[25] Ram Srivatsa Kannan, Michael Laurenzano, Jeongseob Ahn, Jason
Mars, and Lingjia Tang. Caliper: Interference estimator for multi-
tenant environments sharing architectural resources. ACM Transac-

tions on Architecture and Code Optimization (TACO), 16(3):1–25, 2019.
[26] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of work-

loads for serverless cloud function service. In 2019 IEEE 12th Interna-

tional Conference on Cloud Computing (CLOUD), pages 502–504. IEEE,
2019.

[27] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In Proceedings. 13th International

Conference on Parallel Architecture and Compilation Techniques, 2004.

PACT 2004., pages 111–122, 2004.
[28] Rubao Lee, Xiaoning Ding, Feng Chen, Qingda Lu, and Xiaodong

Zhang. Mcc-db: Minimizing cache con�icts in multi-core processors
for databases. Proceedings of the VLDB Endowment, 2(1):373–384, 2009.

[29] Emir C Marangoz, Kyoung-Don Kang, and Seunghee Shin. Designing
gpu architecture for memory bandwidth reservation. In 2021 IEEE

International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), pages 87–89. IEEE, 2021.
[30] Jinsu Park, Seongbeom Park, and Woongki Baek. Copart: Coordinated

partitioning of last-level cache and memory bandwidth for fairness-
aware workload consolidation on commodity servers. In Proceedings

of the Fourteenth EuroSys Conference 2019, pages 1–16, 2019.
[31] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Satori: e�cient and

fair resource partitioning by sacri�cing short-term bene�ts for long-
term gains. In 2021 ACM/IEEE 48th Annual International Symposium

on Computer Architecture (ISCA), pages 292–305. IEEE, 2021.
[32] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sand-

berg, and Boris Grot. Lukewarm serverless functions: characterization
and optimization. In Proceedings of the 49th Annual International

Symposium on Computer Architecture, pages 757–770, 2022.
[33] David Schall, Andreas Sandberg, and Boris Grot. Warming up a cold

front-end with ignite. In 56th IEEE/ACM International Symposium on

Microarchitecture, 2023.
[34] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao

Carreira, Neeraja J Yadwadkar, Raluca Ada Popa, Joseph E Gonzalez,
Ion Stoica, and David A Patterson. What serverless computing is and
should become: The next phase of cloud computing. Communications

of the ACM, 64(5):76–84, 2021.
[35] Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit, and

María E. Gómez. Application clustering policies to address system
fairness with intel’s cache allocation technology. In 2017 26th Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 194–205, 2017.
[36] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205–218. USENIX Association, July 2020.

[37] Dimitrios Skarlatos, Umur Darbaz, Bhargava Gopireddy, Nam Sung
Kim, and Josep Torrellas. Babel�sh: Fusing address translations for
containers. In 2020 ACM/IEEE 47th Annual International Symposium



Litmus: Fair Pricing for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

on Computer Architecture (ISCA), pages 501–514, 2020.
[38] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan,

and Onur Mutlu. The application slowdown model: Quantifying
and controlling the impact of inter-application interference at shared
caches and main memory. In 2015 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 62–75, 2015.
[39] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth

Lanka. Sequoia: Enabling quality-of-service in serverless computing.
In Proceedings of the 11th ACM symposium on cloud computing, pages
311–327, 2020.

[40] A Tiwari, M Schulz, L Carrington, L Tang, and J Mars. Enabling fair
pricing on hpc systems with node sharing. Technical report, Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2013.

[41] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 559–572, 2021.

[42] Huaping Wang, Israel Koren, and C Mani Krishna. An adaptive re-
source partitioning algorithm for smt processors. In Proceedings of the

17th international conference on Parallel architectures and compilation

techniques, pages 230–239, 2008.
[43] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao

Zhang, and Minyi Guo. Simultaneous multikernel gpu: Multi-tasking
throughput processors via �ne-grained sharing. In 2016 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA),
pages 358–369. IEEE, 2016.

[44] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster
and cheaper serverless computing on harvested resources. In Pro-

ceedings of the ACM SIGOPS 28th Symposium on Operating Systems

Principles, pages 724–739, 2021.
[45] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. Un-

derstanding, predicting and scheduling serverless workloads under
partial interference. In Proceedings of the International conference for

high performance computing, networking, storage and analysis, pages
1–15, 2021.


	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 The Need for Fair Pricing
	5 Litmus Pricing
	5.1 Overview
	5.2 Pricing Model

	6 Estimating prices with Litmus
	7 Evaluation
	7.1 One Function Per Core
	7.2 Temporal CPU Sharing

	8 Sensitivity
	9 Related Work
	10 Conclusion
	11 Acknowledgment
	References

