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ABSTRACT ARTICLE HISTORY

We study the following problem in computer vision from the perspective of Received 31 March 2023

algebraic geometry: Using m pinhole cameras we take m pictures of a line in Revised 12 March 2024

P3. This produces m lines in P2 and the question is which m-tuples of lines can ~ Communicated by Daniel

arise that way. We are interested in polynomial equations and therefore study Erman

the complex Zariski closure of all such tuples of lines. The resulting algebraic KEYWORDS

variety is a subvariety of (P2)™ and is called line multiview variety. In this article, ~ Generic translational

we study its ideal. We show that for generic cameras the ideal is generated by camferlTS; mulgv;_ew 'dff’l;.

3 x 3-minors of a specific matrix. We also compute Grobner bases and discuss %a;;:a y-symbolic multiview

to what extent our results carry over to the non-generic case.
2020 MATHEMATICS
SUBJECT CLASSIFICATION
13P10; 68T45

1. Introduction and main results

A pinhole camera is a projective linear map
PP - P% x> Cx,

where C € C*** is rank 3. The symbol --+ indicates that the map is not defined everywhere; it is not
defined at the camera center ¢ = ker C.

Suppose now that C = (Cy,...,Cp) € (C***)™ is an arrangement of m cameras. Throughout this
article, we assume that the centers are distinct and that there are at least two cameras. We are interested
in the tuples of lines that arise by taking pictures of a common line L C P* using the m cameras in C.
To make this precise, let us denote by G the Grassmannian of lines in P?. A line in the image plane P?
is represented by a linear equation x'¢ = 0 for some £ € P2. For this reason, it is convenient to also
denote the dual of the image plane by P2. We consider the joint camera map

Yo:G--» PH", L (b1,...,¢0m), (1)

where ¢; is the linear equation for the i-th image line C; - L. More explicitly, if L is spanned by two points
a,b € P? then ¢; = (C;a) x (C;b), where x is the cross product. The Zariski closure of the image of this
map is the line multiview variety of C,

Lo =T (G).

The ideal I(L¢) of Lc is the ideal of all polynomials that vanish on L¢, or equivalently of all polynomials
that vanish on Y¢(G). The goal of this paper is to study the ideal I(L¢), solving the implicitization
problem [6, Section 3.3] for line multiview varieties.

Multiview varieties are fundamental objects in algebraic vision, a field of research that applies the
tools of algebraic geometry and neighboring fields to topics in computer vision. So far, most attention has
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Figure 1. lllustration of projecting three images of a line in three-dimensional space. The purple line, denoted by L, represents the actual
line in 3D space. The three small purple lines represent three images of the line L, captured from different perspectives ¢;. Additionally,
transparent planes are shown, representing the backprojected planes H; defined via C,TK; corresponding to the captured images. This
visualization demonstrates the relationship between the original 3D line, its multiple images, and the corresponding backprojected
planes.

been paid to multiview varieties that model 3D scenes involving points. These point multiview varieties
and the equations defining them were originally studied in the computer vision literature under various
guises (e.g. the natural descriptor [14], the joint image [17, 18], or via the Grassmann-Cayley algebra
in [9].) From the point of view of algebraic vision, the results of [2, 3] characterize the vanishing ideal of
the point multiview variety of a suitably generic camera arrangement. In particular, these results solve
the implicitization problem for point multiview varieties. While the point multiview variety has received
much attention, the line multiview variety has less so. The study of line multiview varieties was initiated
in [5], which focused on the geometric structure of L¢. Our paper extends this study, focusing on the
line multiview ideal 1(L¢).

In [5, Theorem 2.1] it is shown that L is irreducible and dim £ = dim G = 4. The line multiview
ideal belongs to the polynomial ring

R=Cl;j|1<i<31<j<m] )
We write £}, = (Z,-,k)?zl, and denote by M(¢) the matrix
M) =[CFey - CLen] e R 3)

By [5, Theorem 2.5], we have L = {E e (P*>)™ | rank M(¢) < 2} if and only if no four camera centers
of the C; are collinear. We refer to this as the generic case. If four camera centers are collinear we have
Lo C {Z € (P*)™ | rank M(¢) < 2} and the remaining equations to describe L¢ are discussed in [5,
Theorem 2.6] and treated with greater detail in Section 5 of this article. The geometric idea behind the
definition of M(¢) is that C ¢; defines the plane in P> projecting to ¢; under C; (called back-projected
plane), and there is a line in the intersection of all back-projected planes if and only if the rank of M (£)
is at most 2. The geometry is illustrated in Figure 1.

To any camera arrangement, we may also associate the ideal
I := (3 x 3-minors of M(£)).

Our first main result of this paper is the following.
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Theorem 1.1. Let C be an arrangement of m cameras such that no four cameras are collinear. Then, the
vanishing ideal of L¢ is generated by the 3 x 3-minors of M({); i.e.,

I(Le) = I¢.

We prove this theorem at the end of Section 2.

Next, we study Grobner bases for the ideal I¢. Recall that a Grobner basis is a specific type of generating
set for an ideal. A Grobner basis exist for every monomial order; see, e.g., [6, Section 2.5 Corollary 6]. A
monomial order defines the notion of leading term of a polynomial. The definition of a Grébner basis G
is that the leading term of any polynomial in I is divisible by one of the leading terms of an element in G.

There are N := 4(’}) 3 x 3-minors of the 4 x m-matrix M(£). Let us denote them by my, . .., my;, so
that, by Theorem 1.1, Ic = (my, ..., my). The first question is to decide whether B := {m,, ..., my} is
a Grobner basis for some monomial order or not. For this, we implemented the Grobner basis detection
algorithm in Macaulay?2 [11] as a part of the package SagbiGbDetection [4]. This algorithm, first
described in [12] (see also [16, Chapter 3]), consists of two main steps. The first step involves polyhedral
computations: we compute the Newton polytope Newt(B) := Newt(m; ---my) R3™ collect all
vertices of Newt(B) whose normal cones intersect the positive orthant, and determine a weight order
from each of these cones. The second step then uses Buchberger’s criterion to check if B is a Grobner
basis with respect to each weight order. In our case, already for m = 3 the minors do not form a Grobner
basis for any monomial order.

This opens the follow-up question: which polynomials in the ideal I¢ do form a Grobner basis? We
discuss this in Section 3. In our study we restrict ourselves to specific monomial orders. Computing
Grobner bases for I for every ordering remains an open problem. We emphasize that for the point
multiview variety, Aholt, Sturmfels, and Thomas give a universal Grébner basis; that is, a subset of
polynomials that is a Grobner basis for every monomial order; see [3, Theorem 2.1]. For m > 4, the
structure of this universal Grobner basis is completely determined by its restrictions to subsets of four
cameras, whose elements correspond to the 2, 3, and 4-view tensors of multiview geometry [13, Ch. 17].
Intriguingly, in our case, we obtain Grébner bases that are determined by its restrictions to subsets
of cameras of size five rather than four. For m = 2,3,4 one can compute Grébner basis of I using
Macaulay2. For m > 5, we have the following theorem.

Theorem 1.2. Suppose that m > 5 and all camera matrices are of the form

1 0 0 sy,
CG=10 1 0 s
0 0 1 83,i

and that s = (sj;)1<j<31<i<m is generic. Then, the Grobner basis G, for the GRevLex order consists of
polynomials that are supported on at most five cameras. More specifically,

Gm = U Go')
oe('sh
where G, is the Grobner basis with respect to the GrevLex order of the line multiview ideal involving only

the cameras with indices in .

Proof. This follows from Theorems 3.3 and 3.6. In fact, Theorem 3.6 defines explicitly what it means for
s to be generic. O

The assumption on the shape of camera matrices in Theorem 1.2 may appear to be restrictive.
However, as we observe in Section 4 that the group PGL4 x PGL}" which acts on camera arrangements
by

h-(Ci,...,Cp) = (HICtH™ Y, ... ,HuCH ™), where h = (H,Hy, ..., Hp), (4)
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also acts on line multiview ideals as £y.c = Ly, (L¢) or, equivalently, I(Ly.c) = L;l (I(L¢)), where Ly, is
defined by L, (¢;) = H; Tpi; see Proposition 4.1. Any camera arrangement C can be transformed into an
arrangement of the form specified in Theorem 1.2 by a suitable choice of h € PGL4 x PGLY'. Moreover,
one can find h such that h - C is general in the sense of Theorem 1.2, if and only if no three camera
centers in C are collinear. We prove this fact in Proposition 4.2. The group action can then be exploited
to solve computational problems for line multiview ideals. For example, consider the problem of ideal
membership. Suppose that we have f € R and want to decide whether f € I(L¢). Since f € I(L¢), if
and only if L;l (f) € L;l (I(L¢)) = I(Ly.¢), we can use a Grobner basis of the latter for the division
algorithm from [6, §2.6].

Finally, in the last part of the paper, Sections 5 and 6, we prove variants of Theorems 1.1 and 1.2 for
the case when all cameras are collinear. More specifically, in Section 5, we give an explicit set-theoretic
description of line multiview varieties with arbitrary camera arrangements. This is an improvement over
the treatment in [5], where the polynomial equations are described via elimination. This includes cases
when there are 4 collinear cameras or when all cameras are collinear. Note that we use the term collinear
cameras to refer to cameras that have collinear centers. Next, in Section 6 we adapt the results from
Section 5 to the ideal-theoretic methods of Section 3. We produce a Grébner basis for the multiview
ideal for an arrangement of m > 4 collinear cameras. Notably, this Grobner basis is, analogously to the
generic case discussed above, determined by its restrictions to subsets of four cameras.

2. The line multiview ideal for generic cameras

The goal of this section is to prove Theorem 1.1. For this, we introduce the cone over the line multiview
variety

Lo = {€ e (C™ | rank M(¢) < 2). (5)

The key step for proving Theorem 1.1 is to prove the following result. Recall that we assume all centers
of an arrangement are distinct and that m > 2.

Proposition 2.1. If no four cameras are collinear, then Ic = I (Zz).

The idea for proving this proposition is to show that I¢ is a Cohen-Macaulay ideal in the case when no
four cameras are collinear. We do so in Proposition 2.4 and use this result to deduce in Proposition 2.5
that R/I¢ is reduced. We formally give the proof of Theorem 2.1 together with a proof of Theorem 1.1
at the end of this section.

We first need two lemmata.

Lemma 2.2. Let C be an arrangement such that no four cameras are collinear.

1. Denote X¢ := {€ = (b1,...,€m) € ZE | £i # 0forl < i < m}. Then Xc is a Zariski dense subset of
L¢, meaning X¢ = Lc.
2. Le C (C*)™ is the closure of the image of the following map,
Yo :CHx CHx C™ =5 (CH™, (1AL hm) = Clse s ),

where £; = 1; (Cix) x (C;y) and x denotes the cross-product in C> (so if €; # 0, it is the equation of
the projective line passing through Cix and Ciy).

Proof. We show that Zz lies in the Euclidean closure of X¢. Let £ € Z:; \ Xc and let ] € [m] denote the
set of indices for which ¢; # 0. Observe that if £; = 0, then the generators of I that involve the variables
of ¢; are zero, because they are homogeneous in £;. The remaining generators define the ideal I/, where
C’ is the arrangement we get by removing C; from C. In particular, let

T[]tZE—)ZC\]



4208 P. BREIDING ET AL.

be the coordinate projection, where Cy denotes the arrangement of cameras corresponding to the indices
of J. Then 7r7(¢) € (C?)/ is a representative of an element of L.

In order to show ¢ € X, it suffices to find a point £’ € L¢ (which we identify with a representative
in (C*)™) such that 7r;(€) = 7;(¢’). This is because we can create a sequence £, € X¢ converging to £
as € — 0 by letting (£c); = ¢; € C3 wheneveri € J and (£); = el e C3 otherwise.

We can find such a ¢ trivially if |J| = 0. If |J| = 1, say J = {i}, then let £’ be the image of any line L
in H; meeting no center under the joint camera map Y¢. If |J| > 2, since 777(£) represents an element of
Lc;, [5, Proposition 2.4 2.] says that there is an element ¢’ € L that projects onto 77 (£) Via 7.

For the second part, note that the set Yo € C* x C* x C™ of points (x, y, A1, ..., An) such that
the line spanned by x, y in IP3 contains no center and A; # 0 is an open dense subset. Its ts image under
Tc is a subset of X¢ and its closure is a subset of £c For the other direction, take £ € EC By the first
statement, let (" = (E(") R/ 5;') ) — £with €™ e Xc. The projective class of £ in (P2)™ lies in L.
Fix an n. Since L¢ is the Euclidean closure of the image Y (G) (by Chevalley’s theorem [15, Theorem

4.19)), there is a sequence of lines L meeting no centers such that for some nonzero scaling kgk) we

have Z(n) = limy_, oo A(k)C L® _ Therefore the images of (x®, y(k) )»(k) am m ) under the map ?c
converge to £ so that €™ is in the closure of the image for each n. This 1mp11es that the limit £ of £
is also in the closure of the image of Ye. O

Lemma 2.3. L is irreducible and of dimension 4 + m.

Proof. By the second statement of Lemma 2.2, Lc is the closure of the image of an irreducible variety
under a rational map. This means that it is irreducible. Consider X¢ as in Lemma 2.2. The projection
7 : X¢_— Lc is surjective and has m-dimensional fibers. So dim Xc = dim L¢ + m. Moreover,
Xc = ,Cc by the first statement of Lemma 2.2 and dim £¢ = 4 by [5, Theorem 2.1]. O

The goal is now to prove that I¢ is a Cohen-Macaulay ideal. Let us recall the definition of this: A unital,
commutative, and Noetherian ring S is called a Cohen-Macaulay ring, if dim S = depth S; see, e.g., [7,
chapter 5]. An ideal I is a Cohen-Macaulay ideal if S = R/I is a Cohen-Macaulay Ring.

To prove that I¢ is a Cohen-Macaulay ideal we need the concept of codimension for ideals in R =
Cl¢ij |1 =i<3,1<j<m]Letfirst] C Rbe a prime ideal. The codimension of ] is defined to be
codim J := dim Ry, where Ry is the localization of R at ] and dim Ry is the Krull dimension. Equivalently,
codim ] is the maximal length k of a chain of prime ideals of the form Py C --- C Py = J. This
equivalence follows from the bijection of ideals of R contained in J and ideals of R; by the map r 1.
For any ideal I C R its codimension is then defined as

codiml:= min codim].
ICJ, ] prime
It follows from the definitions that for all ideals I C R we have dim R/I 4+ codimI < dimR. By [10,
Lemma 11.6 (b)] we have for a prime ideal ] C R

dim R/J + codim ] = dimR. (6)

Moreover, since R is a polynomial ring, [8, Corollary 13.4] implies that (6) holds for any ideal ] C R. We
use these facts to prove the following result.

Proposition 2.4. If no four cameras are collinear, Ic is a Cohen-Macaulay ideal.

Proof. Recall that M(£) € R**™. We now specialize [7, Theorem 2.25] to k = 3 and p = 4,q = m (see
also [8, Section 18]). This result shows that I¢ is a Cohen-Macaulay ideal if codimIc = (p —k+ 1)(q —
k+ 1) = 2m — 4. We show the lat/t_e\:r. .

The zero set of I¢ in (C*)™ is L. This implies I(Lc) = +/Ic. Recall that /I is the intersection of
all prime ideals containing I¢. From this and the definition of codimension, it follows that codim I¢ =
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codim I(ZZ). Thus Lemma 2.3 implies dim R/I(ZE) = 4 + m. Using 6, we conclude
codimI(L¢) = dimR — (4 + m) = 2m — 4. O

The next result we need for proving Theorem 1.1 is that the quotient ring for the determinantal ideal
is reduced. The proof relies on Proposition 2.4.

Proposition 2.5. If no four cameras are collinear, then R/I¢ is reduced.

Proof. Denote by my,...,my, where N = 4(2"), the 3 x 3 minors of M(£). Then, we have I =
(my, ..., my). We have shown in the proof of Proposition 2.4 that

¢:= codim(lg) = 2m — 4.

Consider the Jacobian matrix

-  cveom,
Wedenoteby fi, . .., fur, where M := (I:_r ) (32"), the ¢ x c minors of Jac. Let us consider the ideal generated
by these minors modulo I¢;i.e., we consider J := (fi,. .., fm)/Ic C R/I¢.Since R/I¢ is Cohen-Macaulay
by Proposition 2.4, we know that R/I¢ is reduced if and only if codim ] > 1; see [8, Theorem 18.15]. It
therefore suffices to find a tuple £ of image lines such that Jac has rank equal to c. We prove' the existence
of such an £.

Consider a tuple of lines £ € (P?)" such that M(£) has rank 2, and such that £ € Y¢(G); i.e., there is
a line L mapping to ¢, and this line does not pass through any camera center. Let A = (ax,) € C*™ be
a matrix whose entries are variables that depend on ¢;;, and let m, ..., my be its 3 x 3 minors. Then,
by the chain rule Jac = J; - J,, where

] 3
I, = [ %] e CNXUm  and ], = [%] c CAmxG3m)

As M(€) has rank 2, the codimension of J; is equal to the dimension of the variety of rank 2 matrices in
C*m™ which is 2m — 4 = c. Moreover, by linearity

ImJ, = {[Clvi,...,CLvm] € C¥™ | vy, ..., vy € C)

(here, we have interpreted the image of ], as a space of matrices). So, rank J, = 3m and we have to show
that dimkerJ; NImJ, = 3m — (2m — 4) = m + 4. Notice that dimker J; N ImJ, = m + 4 if and only
if ker J; and Im]J, intersect transversally.

Denote the bilinear form (B;, By) = Trace(BlTBz), and for a subspace V. C C**™ we denote vi=
{B; € C¥*™ | (B;,B;) = Oforall B, € V}. Then, to show that kerJ; and ImJ, intersect transversally
we can equivalently show that (ker JH+ N ImJy)L =o.

We can write ImJ, = {P € C**™ | (P, cieiT) =0, for1 < i < m}, where ¢; € R™ denotes the i-th
standard basis vector. Assume that 0 # B = > ;* | A,-cieiT € (kerJ;)*. Without restriction, we assume
that A; # 0. We show B & (ker J,)*. The kernel of J; is the tangent space of the variety of rank 2 matrices
at A. Writing A = UVT with U € C**2,V e C™*? this tangent space is given by all matrices of the
form UVT + UVT with U € C**2,V € C™*2, Take U = 0 and V = xel with x = VTA*¢]. Then,

(B,UVTYy = (UTB, VT) = xTU"Be; = &1 (xTUT¢1) = M (ATe) T (AT ¢p).

Recall that L spans the left kernel of A. Since ¢; ¢ L, we have AT¢; # 0, so that (B,UVT) =
M (ATe)T(AT¢)) # 0. This shows B & (kerJ;)*. Hence, rank Jac = c. O

We can now prove Theorems 1.1 and 2.1.

'The proof is similar to the computation in [5, Section 3]
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Proof of Theorem 1.1 and Proposition 2.1. The zero set of I¢ in (CH™ is Zz Moreover, the ideal I is
reduced by Proposition 2.5. This implies I(Lc) = Ic, which is the statement oﬂ heorem 2.1.

By the multi-projective Nullstellensatz, I(L¢) is obtained from I = I(L¢) after saturation with
respect to the irrelevant ideal | " V(¢;). By the first part of Lemma 2.2,

I(Le) = I(Xc) = I(Le \ U, V() = I(Le) : (10U, V(ED))™.
~—— ———
irrelevant

This means that the ideal I¢ is already saturated. This proves Theorem 1.1. O

3. Grobner bases for generic translational cameras
Let C be an arrangement of m cameras such that no four cameras are collinear. As before,
I := (3 x 3-minors of M(£)).

By Theorem 1.1, proven in the last section, I¢ is the ideal of the line multiview variety L¢. The purpose
of this section is to provide a Grébner basis for Ic when C consists of sufficiently generic translational
cameras. As we discuss in detail in Section 4, a generic camera is equivalent to a translational camera up
to coordinate change. This section is also intended as a warm-up to Section 6.1, where similar techniques
are used to prove a version of Theorem 1.1. Our approach is inspired by the arguments in [1]. In this
article, the authors work with a certain symbolic multiview ideal, where the camera entries are also
variables, and then invoke a specialization argument (see [1, Theorem 3.2 and Section 4]). We use a
similar strategy to obtain a Grobner basis for Ic. We begin by defining an analogue of the symbolic
multiview ideal in our setting.

3.1. A Grobner basis for partially-symbolic multiview ideals

In this section, we study an analogue of the 3 x 3 minor ideal I¢ that is defined for an arrangement of
m > 3 partially-symbolic cameras of a particular form. Let

(C[‘e’ t] = (C[El,l) e £3,m’ tl,l) e t3,m]

denote a polynomial ring in 6m indeterminates. As before, the 3m indeterminates ¢;; represent homo-
geneous coordinates on the space of m-tuples of lines (P?)™. Let I3 denote the 3 x 3 identity matrix. We

use the other 3m indeterminates ¢;; to define matrices C(ty), ..., C(ty) € C[4, 134 given by
1 0 0 f,;
Ct) = [I3 t,‘] =(0 1 0 t;]|. (7)
0 0 1 t3;

By analogy with I¢, we define I¢(¢) to be the 3 x 3 minor ideal associated with the symbolic arrangement

C(t) := (C(t1),. .., C(tm)) € (CLHP*H)™:
Ie@p = (3 x 3-minors of [C(t1)Te; -+ Cltw)Tlm]). ®

We call I¢(p the indeterminate translation ideal or the IT ideal for short. The motivation for considering
camera matrices of the form (7) is that we can always choose coordinates on (P?)" and P* such
that the camera matrices have this form. Choosing coordinates corresponds to acting by PGLY' x
PGL4 on the space of m-tuples of camera matrices (C>**)" via (Hy,...,Hy, H) - (C1,...,Cp) =
(HiCH,...,H,C,H). This action is studied in Section 4.

Recall that the Graded Reverse Lex (GRevLex) order is defined as follows. Monomials are identified
with their exponent vector in N”. For a1,y € N”, we say 1 >GRevLex @2 if || > |o2] or 1| = |z
and the rightmost nonzero entry of ¢ — oz € Z" is negative. We will describe, for any number of
cameras m > 3, a Grobner basis for I¢ () with respect to a particular monomial order <, defined to be



COMMUNICATIONS IN ALGEBRA® 4211

m=25
R=0QQ[1_(1,1)..1_(3,m),t_(1,1)..t_(3,m), MonomialOrder => {3*m,3*m}]
linesP2 = for i from 1 to m list matrix{for j from 1 to 3 list 1_(j,i)}
cams = for i from 1 to m list id_(R"3)

| matrix for j from 1 to 3 list {t_(j,i)}
rankDropMatrix = matrix{apply(linesP2, cams, (1,c) -> transpose(l*c))}
ITm = minors(3, rankDropMatrix)
Gm = gb ITm

Figure 2. Macaulay?2 code for computing Gs.

the product of GRevLex orders on the subrings C[£] and C[¢]. In other words, the monomial order < is
defined as follows:

P < 02242 if (0 <GRevLex £5) or () = @ and P! <GRreviex £77). 9)
For a k-element set 0 = {o1,...,0%} C [m] we write IC(’ap---’tOk) for the IT ideal associated to the
cameras C(ls,> . . ., o). Let (['Z]) denote the set of all subsets of [m] of size k. For 3 < k < m, we observe
that
Ieqty = Z Ie(ty) oot (10)
oe('th

since the 3 x 3 minors generating Ic(s) also generate the ideal on the right-hand side. Now, for o, 7 €

([’;:]) let G, G’ be the reduced Grobner bases? for IC(tal,---,tak) and Iy, ok )s respectively. Substituting
variables with respect to the monomial order < we get an isomorphism e, N Ic(tm,__,,t”l) that

maps G to G'. Therefore, it suffices to study I¢(s,,....1,). This motivates the following.

Definition 3.1. We denote by G the reduced Grobner basis of I, .. ) with respect to the monomial
order <.

The computer algebra system Macaulay?2 [11] allows us to compute G, for small values of k. As we
will argue, the results of these computations for Gs, . . ., Gyp allow us to determine the reduced Grébner
basis of I¢ () for any number of cameras m. We invite the reader to explore the important case m = 5 by
running the short script in Figure 2.

The code in Figure 2 lets us inspect G, for small m. The computation reveals the following interesting
pattern.

Lemma 3.2. Let2 < m < 10. Every element of G, is supported on at most five cameras. More specifically,
the reduced Grébner basis Gy, is the union of Grobner basis for all subsets of at most 5 cameras:

Gn=|J Getotoy)-
oe(y)
For each 3 < d < 7, the number of elements of G, of degree d are listed below.

d | 3 4 5 6 7
#HgeGnldeg@) =dt | (5) 3-(3)

We now state the main result of this section.

2Recall (see e.g. [6, Section 2.7, Theorem 9]) that a polynomial ideal has a unique reduced Grébner basis with respect to any
monomial order. A Grébner basis G is said to be reduced if every g € G has leading coefficient 1 and, for distinct g, g’ € G, the
leading term in (g) does not divide any term of g'.
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Theorem 3.3. For any m, the reduced Grobner basis G, is equal to the union over all of its restrictions to
subsets of 5 cameras; more precisely,

Gm = U GCltymstos)- (11)

By Lemma 3.2 we have G,, = G, for 2 < m < 10. For m > 11, we apply a variant of Buchberger’s
S-pair characterization. Let us briefly recall it. For a finite subset B C R we write f —p 0, if f
has a standard representation of the form f = Y ;_, hig; such that hy,...,h; € B and in_(f) =
max{in< (h141), ..., in<(hsgs)}. A set of polynomials B is a Grobner basis ifand only if for every g, ¢’ € B
we have that S(g,g’) —p 0, where

lem(in< (g),in<(g")) lem(in< (9),in<(g"))
in-(g) &= in-(g) g

Therefore, to show that G}, is a Grobner basis for I¢ (), it suffices to show S(g,¢’) —¢, 0forallg,g' €

S(g.g) =

G, Letg,¢’ € G,,. Then, by the definition of G}, there exists two subsets o', 7 € ([';1]) such that we have
8 € GC(ty),nmtos)> g € GC(ta,sostrs)- The union of two subsets of size 5 yields a subset of size at most 10.

,,,,,,
k

is a Grobner basis, so we must we have
/
S(¢gg) Ge it ) 0.
1 %

But this already implies S(g,g’) —¢;, 0, since g and ¢’ only depend on the variables corresponding to
01, ...,0y. This shows that G}, is a Grobner basis for <.
To see that G}, is reduced, we may again appeal to the cases m < 10. For any g and ¢’ as above, in (g)
does not divide any term of ¢’ since G¢(s , ...+ ,) is reduced. Since reduced Grébner bases are unique, we
(71 (Tk

may conclude that G,, = G,,,. O

Next, we state a particular property of the Grobner basis G, in the next proposition. This will be
used in the next subsections to determine a Grébner basis for I¢ under the explicit genericity conditions
given in Definition 3.5.

Proposition 3.4. The reduced Grobner basis G, has the following property: Suppose that f(t) € C[t] is
the coefficient of the leading GRevLex monomial in C[£] of some element of Gy,. Then f is of one of the four
forms listed below:

(i) f®)=1or

(ii) f(t) =1, — tl,j: or

(iii) f(£) = (t1; — t1))(tLk — t1,)

(iv) f(t) is a3 x 3 minor of the 4 x m matrix of symbolic camera centers:

hi tiz - tm
i bp - fm
31 t32 - I3m
-1 -1 ... -1

Proof. The statement for 2 < m < 5 is verified using again Macaulay?2. The case m > 5 follows using
Theorem 3.3: the elements in G, only depend on variables corresponding to at most 5 cameras. O
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3.2. Specialization to generic translational cameras

In this section, we pass from the IT ideal I¢ () to its specialization I¢(s) by fixing scalars s = (s1,...,sp,) €
(C3)™. More formally, let Ic(s) denote the extension of the ideal I¢ (s through the ring homomorphism
¢s: C[L, t] — C[4] (12)

defined by £ — £ and t — s; i.e., @5 replaces the t-variables of polynomials in C[£, £] by s. Similar to
before,

C(s) := (C(s1), . ..,C(spm)) € (CPHm

denotes the translational camera arrangement I¢(s) its associated 3 x 3 minor ideal. The goal of this
section is to prove that for general s, the image of G,,, under ¢; is again a Grobner basis. For this, we need
a definition.

Definition 3.5. Fors € (C*)™, we say the camera arrangement C(s) is center-generic if
(i) (sijy = Sijp) #0foralll <ip <ip <3and1 <j,j» <m,
(ii) All 3 x 3 minors of the matrix (13) below are nonzero:

S1,1 S1.2 ctr Sim
$2,1 S22t S2m . (13)
$3,1 S32 °r S3m
-1 -1 .-+ -1

The genericity conditions of Definition 3.5 ensure that all leading coefficients in Proposition 3.4
specialize to nonzero constants. Note that Condition (i) implies that all products (s;, j, — si, j,) - (Sizj3 —
Sig,j4) 4T€ NONZEro.

We now state the main result of this section.

Theorem 3.6. Let s € (C*™, such that C(s) is center-generic. Let Gy, be the Grobner basis from
Theorem 3.3. Then, the specialization ¢s(Gp) is a Grobner basis for the line multiview ideal 1(L,,)) with
respect to the GRevLex order.

Proof. It follows from the proof of [6, Section 4.7, Theorem 2] that, if none of the leading coefficients in
t that appear in Gy, vanish at s, then ¢s(G,,) is the Grébner basis for

¢s(c) = (3 x 3-minors of [Cs)Te1 -+ Clsm)Tlm]) = Ic(s)-

Therefore, Proposition 3.4 implies that ¢s(Gy,) is a Grébner basis for I¢(s). Since Gy, is a Grobner basis
with respect to the product of GRevLex orders on the subrings C[£] and C[t], ¢s(G,) is a Grobner basis
with respect to GRevLex on C[£].

Furthermore, the camera center ¢; := ker C(s;) is spanned by (s j, 525, 53,5, —1). Since I¢(s) is center-
generic, s satisfies condition (ii) in Definition 3.5. This implies that no four camera centers are collinear.
Theorem 1.1 implies I¢s) = I(Lpp,)- O

4. Group action by coordinate change

We want to extend the result from the previous section on center-generic translational cameras to any
camera arrangement, not necessarily translational, with no three cameras collinear. Recall from 4 the
action of G = PGL4 x PGLg” on camera arrangements

(H,Hy,...,Hp) - (C1,...,Cp) = (HICiH Y, ..., H,CpH V).

We show that it preserves line multiview ideals in the appropriate way.
Leta,b € P3. Then,

(HiC,-a) X (H,'Cib) = (detH,-)Hl._T(Cia X C,b) (14)
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This motivates the introduction of the following ring isomorphism:
Ly : C[£] — C[€], ¢+ H; "¢,

We identify Ly, with its map on the level of varieties sending ¢; € P? to H;- Te; e P2,

Proposition 4.1. Let h = (H,Hy,...,Hpn) € GandletC = (Cy,...,Cy) be a camera arrangement.
Then

Ln.c = La(Le)s
or equivalently

I(Lne) = L, I(Le)).

Proof. The equivalence of the statements in Proposition 4.1 comes from the following general fact in
commutative algebra: Given a morphism of projective varieties ¢ : X — Y there is a corresponding
map of graded coordinate rings ¢* : S(Y) > S(X). The ideal of the image ¢(X) is the kernel of ¢*. In
our setting ¢ : Lo — (P2)™ is the action of a group element h on the multiview variety £ and ¢ is the
composition of Ly, : C[¢] — C[£] and the projection C[£] — C[£]/I(L¢). This implies that the kernel
is L, ' (I(£c)) = I(Lu(Le))-

Therefore, it suffices to show Lj.c = Lj,(L¢) to prove the proposition. The argument follows from
the following commutative diagram of vector spaces

C44i>(c3

i s

4 v 3
C nG C

where h - C; = H;C;H~!. This induces a commutative diagram of camera maps

T
G----- g, NN (PZ)m
/\ZHJ th
G------- > (P2H)m
The

The map A2H is an isomorphism that sends a line L spanned by x, y, to the line spanned by Hx, Hy. Now
by commutativity, we can compute the closure of the image in the bottom-right corner of the diagram
as

Ly.c =Im(Ypc) = Im(Yhc o (A2H)) = Im(Ly o Ye¢).

Now, a polynomial f € C[£] vanishes on Im(Ly, o Y¢), if and only if L, (f) vanishes on Im(Y¢). This
implies

Ly.c =1Im(Ly o Y¢) = Ly((Im(Ye)) = Lp(Le). O

Proposition 4.2. C has the property that no three cameras are collinear if and only if there exists h € G
such that h - C is center-generic.

Proof. First, observe that condition (ii) in Definition 3.5 implies that no three centers are collinear when
C is center-generic. This gives one direction since camera collinearity is a G-invariant property.
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For the converse, let C = (Cy, ..., Cy) have the property that no three camera centers are collinear.
Consider first the case m = 4. If the camera centers are noncoplanar, then up to the G-action we may
assume that they form the standard basis ej, €3, €3, e4 € P3. In the noncoplanar case, we may assume the
centers are ey, €3, €3, e + e + e3 € P3. Correspondingly, we may assume our camera matrices are

a=[1188]. =[3188]. c=[1820] 09
0010 1 0001
and

In either case, let H be a 4 x 4 matrix whose entries are the indetermines of the polynomial ring R =
Clh1,15.-.,h44], and define A;(H) = C;H fori = 1,...,4. The kernel of each matrix A;(H) is a free
R-module of rank 1 generated by some ¢;(H) € R*¥*1_1f we construct the matrix

[ () | 2(H) | 3(H) | ca(H) | € R¥,

then we may verify by direct computation that the following polynomials defined in terms of this matrix
are nonzero:
(i) all2 x 2 minors and the differences between any two entries in the same column, and
(ii) all 3 x 3 minors and the last entry of each column.
These conditions correspond to conditions (i) and (ii) in Definition 3.5: specializing H to a generic
invertible matrix, we obtain cameras G-equivalent to C which can be made center-generic after acting
on the left by the subgroup PGL} C G.

When m > 5, fixa set S = {i, ip, 13,14} with 1 < i} < i < i3 < iy < m. For all H inside of a dense
Zariski open Us C C***, we have by the previous argument that (C;, H, C;,H, C;, H, C;, H) is equivalent
to a center-generic 4-tuple up to left-multiplication. Thus, if we take

then (C1H, ..., C,H) is G-equivalent to m center-generic cameras. O

5. Set-theoretic equations for line multiview varieties

In the case that four or more cameras are collinear, the rank condition of Theorem 1.1 is not sufficient to
describe the line multiview variety, even set-theoretically. In [5, Section 2], an example is computed with
four collinear cameras where the rank condition provides two components. One is the line multiview
variety, and the other is 4-dimensional and corresponds to the tuples of back-projected planes that
all contain the line spanned by the collinear centers. Using elimination of variables in Macaulay?2,
the authors find one additional equation in the variables of all four lines, that together with the rank
condition cuts out the line multiview variety. Elimination, however, is computationally demanding.
Here we describe ideals that set-theoretically determine any line multiview variety with pairwise distinct
centers without using elimination.
Throughout this section U v V denotes the linear space spanned by U and V.

5.1. Quadrics of the line multiview variety

To give equations for the line multiview variety L£¢c we first need to characterize points on L¢ in terms
of associated quadric surfaces. First, let 0 C [m] index a subset of collinear cameras. Let E, denote the
baseline spanned by the collinear camera centers ¢; for i € o, and let

E} := any line disjoint from E,.
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b

4]

Figure 3. The picture illustrates the definition of F, (¢;) from (16). Here, we have {1,2} C o and we only show F (£1) and Fi (£3). The
two backprojected planes Hy and H, depicted as triangles, intersect in a line L. The line Ef intersects the green backprojected plane Hy
in a point. The line spanned by this point and c; is the red line F; (€1). Similarly, E}; intersects the violet backprojected plane H; in a
point that together with ¢, spans the red line F5 (£3). The three distinct lines L, E; and E% intersect all F5 (¢)),i € .

For concreteness, one may take the dual line {x € P> | x*y = Oforally € E,} with respect to the
Hermitian inner product on C*.

Remark. In [5] the authors always use the dual line for E};. Nevertheless, the results in [5] are unchanged
when replacing the dual line with any other line, which does not intersect the baseline E,. The reason
why we use this more general definition is that in Lemma 5.9 we consider the action of PGL4 on P, This
action does not preserve Hermitian duality between lines, but it preserves that two lines do not intersect.

For i € o and aline ¢; in the image plane P? that is in general position with respect to the camera
center ¢;, we may construct another line F, (¢;) contained in the back-projected plane H; which passes
through ¢; and E?. As in [5], we use the notation

F;(4;) :==¢; Vv (H,‘ N E:), (16)

which indeed defines a line provided that E}; ¢ H;. Otherwise, it is the plane ¢; v E%. In Figure 3 we
illustrate this definition with a picture.
The next result is a rephrasing of [5, Theorem 2.6].

Theorem 5.1. We have £ = (41,...,¢m) € Lc if and only if the following three conditions hold:

1. all back-projected planes H; meet in at least a line,

2. for every maximal set 0 C [m] indexing collinear cameras with || > 4, there is a quadric surface
Qs = Qy(0) C P3, depending on £, such that E, E C Q4 and,

3. if Fx ({;), for some i € o, is a line, then Fy (€;) € Qq.

Proof. This follows from the proof of [5, Theorem 2.6]. We give a summary here. We assume the reader
is familiar with the contents of [5]. Recall that we assume that all centers are distinct and m > 2.

=) Since conditions 1-3 describe a Zariski-closed subset of (P?)™, it is enough to show that a generic
point ({1, ..., £) in the image of Y¢ satisfies these three conditions. Thus, we may assume that all F; (¢;)
are disjoint lines and that the back-projected planes H; meet in exactly a line L disjoint from both E,
and E7. This gives the first condition above and also implies L # Fy (¢;). The quadric Q, in the second
condition is uniquely determined by the property that it contains the pairwise-disjoint lines E,, E};, L.
Finally, each of the lines F,; (¢;) is contained in the quadric Q,, because the intersection Fy (¢;) N Qu
contains the three distinct points, where F,, (¢;) meets E,, E, and L.

<) Suppose £ = ({1, ..., £,) satisfies conditions 1-3. Let L be a line where all back-projected planes
meet. If L meets none of the m camera centers, then £ lies in the image of Y¢. If L meets exactly one
center, then £ € L¢ by [5, Lemma 2.8]. If L meets exactly two centers, then £ € L¢ by Case 1 of the
proof of [5, Theorem 2.6]. If L meets three or more centers, we argue as follows. Let ¢ index all camera
centers contained in L, so that L = E, C H; foralli € o. It follows that all F,; (¢;),i € o, are lines, since
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E} is not contained in H;. If the lines F; (¢;), i € 0, are pairwise-disjoint, then the quadric Q, is smooth
and £ € L¢ by Case 2 of the proof of [5, Theorem 2.6]. Otherwise, if F; (£;) and F; (¢;) meet for distinct
i,j € o, then Q, contains the plane P; spanned by these two lines. It follows that Q, is the union of
two planes P; U P,, where P; contains E; and P, contains E}. At most one of the lines F, (¢;) can lie in
P,. Otherwise, two centers of o would lie in P,, which would imply that P, contains E,, but there is no
plane that contains both E, and E}. The fact that £ € L¢ now follows from arguments of Case 3 of the
proof of [5, Theorem 2.6]. O

In order to establish the results of the next subsection we need a second lemma, where we determine
when the quadric from Theorem 5.1 is unique.

Lemma 5.2. Let L, L’ be two disjoint lines in P3. Let ¢1,¢a,¢c3 € L be distinct points and let Ay, Az, Az
be three lines such that ¢; € A; for 1 < i < 3 and each A; meets the line L. There is a unique quadric
containing L, L', A1, Ay and As if and only if at least two of the A; are disjoint.

Proof. A quadric Q containing L and L’ must be either a union of two planes or smooth. If it is smooth,
then the A; must be disjoint, and three disjoint lines uniquely determine a quadric in IP3. So assume Q is
the union of two planes. In this case, one of these planes P is the join of two coplanar lines among the A;,
say A1 and A,. If A3 is not contained in P, then the second plane in Q is determined uniquely as the join
of A3 and L'. Finally, if A3 is contained in P, then there are infinitely many possibilities for the quadric
by letting the second plane be any plane containing L’. O

To determine whether the choice of quadric Qy in Theorem 5.1 is unique, we may apply Lemma 5.2
with (L, L") = (Es, E%), and Aj, Az, A3 of the form Fy, (¢5).

5.2. Aset-theoretic description for line multiview varieties

The first step toward computing polynomial equations that cut out £¢ in the presence of at least 4
collinear cameras is to rewrite L£¢ as a particular intersection. For this, we need a new notation. Let
o C [m] be a subset of indices and let L, be the multiview variety of the arrangement C; = (C))jcs-
Then let 7, : (P?)™ — (P?) be the projection onto the factors indexed by o. We write

Leg = n;l(ﬁca).

Proposition 5.3. Let ¥ be the set of all 3-tuples of indices in [m] and those 4-tuples that correspond to
collinear cameras. Then, we have

Lo = ﬂ Leg- (17)

oeX

Proof. The back-projected planes of £ meet in at least a line if and only if M (€) has rank at most 2. Recall
the rank condition ideal

Ic = (3 x 3-minors of M(£)),

where M(¢) = [C1T£1 ‘e C,E@m] . Each of the given generators of this ideal depends on exactly three
cameras. Thus, we are done if we can show that the conditions on 4-tuples ¢ in (17) imply the existence
of a quadric Q, as in Theorem 5.1 and vice versa.

Fix a maximal set of indices of at least four collinear cameras I'. The existence of a quadric Qr
satisfying conditions 2-3 of Theorem 5.1 directly implies the existence of Q, satistying conditions 2-
3 for any subset o C T, particularly those of cardinality 4. Towards the other direction, let

le ﬂ Leos

oED
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and assume that three of Fr(¢;),i € T, are lines that are not coplanar. Let ¢’ denote a set of three such
indices. Consider 0 := ¢’ U {i} € T for some i € I' \ o’. There exist quadric surfaces Q, as in
Theorem 5.1 by assumption. But three such lines determine uniquely a quadric Q by Lemma 5.2, and
therefore Q, is independent of i, and we have Qr = Q.. Two cases remain. Firstly, if all Fr(¢;),i € T,
lie in a common plane P, then the union of P with any plane containing E} suffices for Q,. Secondly, if
exactly two Fr(¢;),i € T, are lines and they are not coplanar, denote by L;, L, these two lines, and let
Py = Er Vv L; and P, = Ef. Vv L,. We may then take Q, to be P; U P;. [

Proposition 5.3 implies that in order to obtain polynomial equations cutting out L¢ it is enough to
obtain equations for L¢ , for every subset o that consists of either 3 indices or 4 indices that correspond
to 4 collinear cameras. If |o| = 3, we can use [5, Theorem 2.5] to deduce that L¢ ; is cut out by those
3 x 3 minors of the 4 x 3 submatrix of M(¢£) whose columns are indexed by o. So, it remains to obtain
equations for L£¢ » when o consists of 4 indices corresponding to 4 collinear cameras.

Without loss of generality, we may assume that

o =1{1,2,3,4}.

We first give polynomial equations for when the four lines F,; (¢;) lie on a quadric Q, as in Theorem 5.1.
We need additional notation. Fix three distinct points fi, f», f3 on a chosen line E}; that is disjoint from
E,, and write f = (f1, f2,f3). We define, for i € o,

hi := hi(0) = Cl'e;,
ei(ty) = ci — (W ) + (WL fD)f. (18)

As long as F; (¢;) is a line, then e;(£;) is a point on Fy (¢;) which does not lie on E, or E%. This is the
main property of e;(¢;) that we will later use. Recalling the (affine) Veronese map

4 10 T 2.2 .2 2 T
V:C* = C7, (xy,z,w) = (x5, 95,27, W5 XY, X2, XW, YZ, yW, ZW) ",

we define a 10 x 10 matrix ®¢cr,(¢0) € C!°*'0 by applying v column-wise to the 10 points
C1,C2, C3,f1,f2,f3 and ei(ﬁi) as

Pofo@=v([c0 & a fi o i e(t) el e(ls) esx(ls)]).
The next result shows that the line multiview variety for a set of four collinear cameras o is determined
by rank conditions on M(£) and this 10 x 10 matrix.
Theorem 5.4. Let |o| = 4 such that the cameras with indices in o are collinear. As before, let E}. be any
fixed line disjoint from E,, and let f = (f1,f2,f3) be three distinct fixed points of E};. Then,
Lo ={€e @)™ | rank M(£) < 2and det D¢y, (£) = 0}.

Proof. A quadratic form defining Q, may be written as
4%y, 2w) =0T v(x,y,2,w), (19)

for some nonzero vector § € C!°. We recall once again that if three distinct points of a line lie on a
quadric, then the whole line lies on that quadric. Therefore, the conditions

gc)=0Tv(c) =0 and  q(f) =0Tv(f)=0,i=1,2,3 (20)

hold if and only if E;, E; C Q. This explains the first 6 columns of the matrix ®¢ s, (£), as we aim to
apply Theorem 5.1.

Next, we observe that any point of ¢; v E} is of the form «;c; + Bifi + yif2, where (o : Bi: yi) € P2
The points x that lie on F, (¢;) are those of ¢; v E such that hiTx = 0 (this follows directly from the
definition of F,; (¢;) in (16)). We have

WY (aici + Bifi + vify) = b (Bifi + vif) = 0,
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which leaves two alternatives: Either h i = h!f, = 0 or

(Bi : vi) = (=hifo - h{fy).
In the first case, we have that F, (¢;) = ¢; V E} is a plane. Otherwise, F (¢;) is a line and lies in Q, ifand
only if three distinct point of F,; (¢;) lie in Q,. Consider the three points c;, e;(¢;) and a; := E}: N F, ({;).
Under the assumption that g, (c;) = 0, g, (f;) = 0 for i = 1,2, 3 we have seen above that E;, E} € Q,.
It follows that ¢j, a5 € Qs. Then F; (¢;) € Qy if and only if
qo (ei(£) = 0" v(e;(£;) = 0. (21)
This gives the last 4 columns of the matrix ®¢ s, (£).
In summary, the quadric Q, defined by (19) satisfies the conditions of Theorem 5.1 if and only if 6
satisfies equations (20) and (21). In other words,
67 D¢y o (0) =0,
which in turn is equivalent to det ®¢ s, (£) = 0. O

Example 5.5. Let vq, v2, v3, v4 be distinct complex numbers. Consider the four collinear cameras of the
form

o~ o
- o o
cox

fori € o = {1,2,3,4}. The centers are ¢; = [v; : 0 : 0 : —1]. Notice that we may substitute the three
centers c1,¢,¢3 With [1: 0:0:0],[0:0:0: 1]and [1:0: 0 : 1] in the computation of ®¢ 1 (¢),
since the corresponding columns are only there to ensure that the associated quadric Q, contains the
baseline. Choose the line E}; to be spanned by f; = [0 : 1 : 0 : OJandf, = [0 : 0 : 1 : 0]. Letting
f3=10:1:1:0], we can then write explicitly

1 0 1.0 0 0 ¥ v V3 vi ]
00 00 0 0 —kyvi —hovy —hLsvs —law
000 00 0 Ln bava h3vs h,ava
0 01 0 0 O —V1 —V) —V3 —V4
doro@y=|0 0 0 1 01 5, 3, B B4
fo 0 0 0 0 0 1 —hilsy —habky —hslas —bhalsa
000 0 O0 0 I3, Lo 3 L
00001 1 B 5, 5, B4
000 00 0 —h ) —b3 —h4
01 1000 1 1 1 1

The determinant of this matrix can be rewritten as
Lavi Bpva bB3vs l3avs
bavi hpva b3vs Lavs
det
31 Ly B3z ba

b by bz ha
o

As an extension of I¢ as defined in the introduction, we define
T = (3 x 3minors of M(£)) + Y _ (det Peysq(E) ), (22)

oeJ
where 7 is the collection of index sets o of four collinear cameras and with f, depending on o, being
three distinct points of the line E. Using Proposition 5.3 and Theorem 5.4, we establish the following
result.
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Corollary 5.6. Set-theoretically, the line multiview variety is cut out by the ideal Tp.

In [5], after the statement of Theorem 2.6, which this section is based on, an example is given of the
set-theoretic constraints for a set of four collinear cameras that have been found through elimination.
Here we expand on this example by adding an additional camera matrix.

Example 5.7. Consider the collinear cameras
1000 0100 100 -1 1001 2
C1=[0100],C2=[0010],C3=[010 0 ],C4=[0100],C5=[0
0010 0001 001 0 0010 0

The centers ¢; of C; lie on the baseline E;, 7 = {1,2,3,4,5}, spanned by ¢; = [0 : 0 : 1] and
c2 =[1:0:0:0]. To make the equations below easier to read, we write x = €1,y = €3,z = €3, w = {4
and ¢5 = u. There are (i) = 5 subsets 0 C T with 4 elements giving us 5 constraints beyond the rank
condition of M(£). These 5 constraints are as follows:

0 = 2x3y220w2 — X3Y123W2 — X2)223W2 — X3)120W3 — X2)222 W3 + 2X2)123W3,

0 = 3x3y220up + 2x3y123Up + X2)223Up + X3Y122U3 + 2X2)222U3 — 3X2)123W3,

0 = —x3yawatiy + 2X3y1W3lUp — X2)2 W3y — X3y1WalU3 + 2Xo)2Woll3 — X2)1 W3 U3,

0 = —x3z3wWauy + 3X32p W3y — 2X2Z3W3Uy — 2X32oWal3 + 3X223WolU3 — XpZo W33,
0 = yazawauy + 3y220w3up — 4y123Way — 4y22owaus + 3y123Wau3 + y122Wals.

The ideal I¢, in this case, is not prime. Computing a primary decomposition of this ideal in
Macaulay2 [11], there is an associated prime generated by the five polynomials above and the five
additional polynomials det ®¢ s, (€). This is the vanishing ideal of L¢. o

5.3. Saturation with respect to the irrelevant ideal

Analogous to Section 2, we define the cone over the line multiview variety for an arbitrary camera
arrangement as the zero set of I

={£ e (C"|f) =0forallf € I¢}
=Len (ﬂ (£ e ()" | detdey,(0) =0}),

where in the second line, L¢ isasin (5) and o runs over all sets of indices corresponding to four collinear
cameras. The main result of this subsection is that if I is radical, then it is also saturated with respect to
the irrelevant ideal | J., V/(¢)).
Proposition 5.8. Consider

={0=(l,....0n) €L |6 #0forl <i<m)
The following hold:

1. Xc is a Zariski dense subset of Lc, meaning Xc = ,Cc
2. IfIc is radical, then it is also saturated with respect to the irrelevant ideal | J", V (¢;).

In particular, if no four cameras are collinear we have Ec = Lc and Ic = Ic, so that the results of this
proposition hold verbatim for Lc and I¢ in this case.

Proof. The first part is shown analogously to the first part of Lemma 2.2. Note that also in the setting of
this result, the generators of I that do not involve ¢;, generate the ideal Ter, where C' is the arrangement
we get by removing C; from C.
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We next deal with saturation, analogously to the proof of Theorem 1.1. Assuming that Te is radical,
we have I(L¢) = Ic. We conclude by noting that from the first part of the proof,

I(Le) = I(Xe) = I(Le \ U, VL) = I(Le) : (10U, V(ED))™. O
~—— ———

irrelevant

5.4. Applying the group action

In Section 4, we have discussed how G = PGL4 x PGL}" acts on the ideal I¢ generated by the 3 x 3-
minors of M(¢). Here, we study the action on the additional constraints det ®¢ ¢(€) = 0 from the
previous section.

Forh = (H,H,,...,Hy) € G, we extend the group action (4) by setting

h-f = (Hf1, Hf, Hf3),

where f = (f1, /2, f3) is a triple of distinct points on E}, 0 C [m]. Recall that the action Ly, sends ¢; € P?
to H; T¢;.
1

Lemma 5.9. Fixh = (H,Hi,...,Hy) € GLy x GLY' representing any element of G, and let o be indices
of four collinear cameras. Then

det Dp.cfo (Ln(€)) = det(H)* - det b s (£).
In particular, the vanishing of det ®c 1 (€) is unaffected by coordinate changes.

Proof. First we make the natural identification between C!° and the set of symmetric 4 x 4 matrices
Sym?(C*),
ay as aeg Ay
(Lll,. . .,Lll()) = |::g Z; 22 ;190] .
az ag aio a4

Then we can identify the Veronese embedding with the map
v:C* > Symz(((:4),
pp®p=pp".
For H € GLy4, define the linear map
(H® H) : Sym?*(C*) — Sym?*(C*)
A HAH'.

It is easy to check that this map is bijective. We may view (H ® H) as an invertible linear map C!* — C19,
meaning an invertible 10 x 10 matrix, via the identification above. For any vector p € C*, we can then
write in C'° that v(Hp) = (H® H)v(p).
Observe that the last four columns of ®j.¢ j.1,o (L (£)) are, after simplification,
v(He; — (UI'Cify) - HA + (CTC)HR), s=1,...,4.

The inputs of these expressions can be written Hes({;), where e({;) defined with respect to (C,f, £).
It follows that every column of ®j.¢ j.f,o (Lp(£)) corresponds to the same column of ®¢ s, (£), except
multiplied by the invertible matrix (H ® H) from the left. In other words,

det Gp.chfoLn@)) = det(H ® H) - det Defo(0). O

6. Grobner bases for collinear cameras

This section is aimed at studying the ideal Tc introduced in Corollary 5.6 that cuts out the multiview
variety set-theoretically when all centers are collinear. We do this by providing a Grobner basis for I
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in some special cases and by verifying through the recognition criterion [1, Proposition 2.3] that Tc is
also the vanishing ideal of the multiview variety. We closely follow the ideas in Section 3.1, which can
be summarized in the following steps: (a) Define an ideal that describes an arrangement of collinear
cameras with indeterminate translations, and compute an explicit Grobner basis for this ideal. (b) Show
that this ideal specializes to the line multiview ideal for “sufficiently generic” translational cameras on
a fixed line. (c) Use the action of the group PGL4 x PGLY" and Proposition 4.1 to extend our results to
general collinear camera arrangements.

We note that it is possible to do similar work for configurations of centers other than generic and
collinear ones. For the sake of brevity, we restrict to these two cases in this paper, and leave a more
general treatment for future work.

6.1. The indeterminate collinear translation ideal

Here we study an analogue of the 3 x 3 minor ideal I¢ that is defined for a collection of m > 4 partially-
symbolic cameras in a polynomial ring in 4m indeterminates,

(C[Z,v] = (C[El)l, .. .63,,,",1/1, e ,Vm].

The 3m indeterminates ¢;; represent homogeneous coordinates on the space of m-tuples of lines (P2)m,
We use the remaining m indeterminates v; to define the tuple of matrices C(v) = (C(v1),...,C(vn)) €
(C[L, v]3*4Hm given by

1 0 0 Vi
Cv)=10 10 0
0 0 1 O
The centers of cameras of this form are (v; : 0 : 0 : —1). Following Theorem 5.4 we define the

indeterminate collinear translation ideal, or ICT ideal as

Tewy = (3 x 3-minors of [C1)Te1 -+ Cvm)T€m]) + Z (det Doy f,0 (0) ).
oe("h
where the matrix ®¢ f, (€) is as in Theorem 5.4; see also Example 5.5.
Similar to (9) we define < to be the product of GRevLex orders on C[£] and C[v]. Let Gc(v{,1 o)

denote the reduced Grobner basis of TC(VUI ) with respect to <, correspondlng to the subset of

.....

cameras indexed by o. For brevity, we also write G or GC(v) for the Grobner basis of Ie ).
The next proposition shows that analogous to Theorem 1.2, we get a reduced Grébner basis by taking
the union of smaller Grobner bases corresponding to all 4-tuples of cameras.

Proposition 6.1. For any m > 4, the reduced Grobner basis Gy is equal to the union over all of its
restrictions to subsets of 4 cameras; more precisely,

U 5C(v(71 seVoy)® (23)
ae(["”)

We note the following additional properties of Gom:

P1 No element of Gy, is divisible by any of the variables £, . .., €3,m.

P2 The leading terms in (Gp) are all squarefree monomials.

P3 Suppose f(v) € C[v] is the coefficient of the leading monomial in C[£] of some element ome Then f
is of one of the four forms listed below:
. f(v)=1,0r
ii. f(v)=vq—wp,or

iii. f(v) = (va — vp)(ve — vg)
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m =8
R =0QQ[1_(1,1)..1_(3,m), v_1..v_m, MonomialOrder=>{3*m,m}]
linesP2 = for j from 1 to m list matrix{for i from 1 to 3 list 1_(i,j)};
cams = for i from 1 to m list id_(R~3) | matrix {{v_i}, {0}, {0}};
rankDropMatrix = matrix{transpose \ apply(linesP2, cams, (1, c) -> 1*c)}
centerMatrix = fold(gens \ ker \ cams, (a,b) -> alb)
veronese = p -> (

q := flatten entries p;

matrix {flatten apply(4, i-> apply(4-i,j -> q_i*q_(i+j)))}

)
Id = id_(R"4)
baseline = {matrix Id_O, matrix Id_3, matrix (Id_0 + Id_3)}
f = {matrix Id_1, matrix Id_2, matrix (Id_1 + Id_2) }
e = apply(4, i -> centerMatrix_i - f_Oxtranspose(f_1)*rankDropMatrix_i

+ f_1xtranspose (f_0)*rankDropMatrix_i)
Phi = matrix {transpose \ veronese \ join(baseline, f , e)}
F = det Phi
newgens = apply(subsets(m, 4), I -> sub(F, flatten
apply(4, i -> join({v_(i+1) => v_(I_i+1)},
apply (3, j-> 1_(j+1, i+1) => 1_(j+1, I_i+1))))))

ICTm = minors(3, rankDropMatrix) + ideal(newgens)
tildeGm = gb(ICTm)

Figure 4. Computing Em form = 8inMacaulay?2.

Proof of Proposition 6.1. The statement and its proof are analogous to Theorem 3.3 and Proposition 3.4,
respectively. As before, we take the following two steps:

1. Verify computationally with the Macaulay?2 [11] script from Figure 4 that Gy has the desired form
and that P1,P2,P3 hold for4 < m < 8. ~

2. Deduce that the statement holds for all 7 because the S-pairs of two elements in G, will never involve
more than 8 cameras. 0

Remark. We could analogously choose to define C(v;) by replacing the column (v;, 0, 07T by (0, v;, 0)T
or (0,0, v;)T. However, note that in the last case, we would need to adjust the choice of order on C[¥, v].

6.2. Specialization to generic collinear translational cameras

Following the same argument and notation presented in Section 3.2 we transfer what we know about the
ICT ideal to a generic arrangement of collinear cameras. For this, we first define for a fixed u € C" and
analogous to (12) the ring homomorphism

ou : ClL,v] — C[L]

which evaluates the v variables at #. The first main result is the following theorem.

Theorem 6.2. Let u € C™ be a vector of distinct numbers, or equivalently such that C(u) has distinct
camera centers. Let Gy, be the Grobner basis from Proposition 6.1. Then, the specialization ¢y(Gp) is a
Grobner basis for the ideal Icy).
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Proof. 1t follows from [6, Theorem 2, p. 220] that, if none of the leading coefficients in v that appear
G, vanish at u, then ¢>u(Gm) the Grobner basis for qbu(Ic(,,)) = Ic(u). Because the camera centers are
distinct, none of the leading coefficients presented in the statement of Proposition 6.1 vanish. O

Proposition 6.3. With u € C™ as above, the ideal?c(u) is radical.

Proof. The property P2 in Proposition 6.1 and Theorem 6.2 gives us a Grobner basis for TC(u) whose
leading terms are squarefree. The result now follows by [1, Proposition 2.2]. O

Finally, we prove a variant of Theorem 1.1 for m collinear cameras.

Theorem 6.4. Let m > 4, and consider a camera arrangement C(u) with m distinct camera centers. Then
Ic(u) is the vanishing ideal of the corresponding multiview variety:

IC(u) =I(Lcw))-

Proof. We first consider the case of a collinear translational camera arrangement, C(u) =
(C(u1),...,C(u)), that has distinct camera centers. To show that Ic(u) is the vanishing ideal, we use a
multlprOJectlve form of the Nullstellensatz (see e.g. [1, Proposition 2.3]).

In Section 5, we showed that Ic(,,) cuts out the variety set-theoretically. We also showed that IC(u)
is radical (Eroposmon 6.3), and thus saturated with respect to the irrelevant ideal (Proposition 5.8).
Therefore, Ic(y) is the vanishing ideal of the line multiview variety. O

Corollary 6.5. Any arrangement of collinear cameras C has T as its vanishing ideal.

Proof. Up to G-equivalence, we prove that collinear cameras have the form

1 0 0 uw
Clup)=|0 1 0 0. (24)
0 01 0

Combining Theorem 6.4, Proposition 4.1, and Lemma 5.9 the result follows.

To begin with, we use a matrix H € PGL4 to transform any collinear camera arrangement into a form
where the centers are of the form (4; : 0: 0: —1). Then, fix a camera C; = [A;|t;] in the arrangement ,
where A; € C3*3 and t; € C3. Since the kernel is of the form (4; : 0: 0: —1), f;isa scaling of the first
column of A;. So if det(A;) = 0, then C; would be at most of rank 2. It follows that A; € GL3 and Ai_1 C;
is of the form (24). We are now done by letting h = (H,Afl, ... ,A;l). O
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