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ABSTRACT
We study the following problem in computer vision from the perspective of
algebraic geometry: Using m pinhole cameras we take m pictures of a line in
P3. This produces m lines in P2 and the question is which m-tuples of lines can
arise that way. We are interested in polynomial equations and therefore study
the complex Zariski closure of all such tuples of lines. The resulting algebraic
variety is a subvariety of (P2)m and is called line multiview variety. In this article,
we study its ideal. We show that for generic cameras the ideal is generated by
3 × 3-minors of a speci"c matrix. We also compute Gröbner bases and discuss
to what extent our results carry over to the non-generic case.
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1. Introduction and main results

A pinhole camera is a projective linear map

P3 !!" P2, x "→ Cx,

where C ∈ C3×4 is rank 3. The symbol !!" indicates that the map is not de!ned everywhere; it is not
de!ned at the camera center c = ker C.

Suppose now that C = (C1, . . . , Cm) ∈ (C3×4)m is an arrangement of m cameras. Throughout this
article, we assume that the centers are distinct and that there are at least two cameras. We are interested
in the tuples of lines that arise by taking pictures of a common line L ⊂ P3 using the m cameras in C.
To make this precise, let us denote by G the Grassmannian of lines in P3. A line in the image plane P2

is represented by a linear equation xT! = 0 for some ! ∈ P2. For this reason, it is convenient to also
denote the dual of the image plane by P2. We consider the joint camera map

ϒC : G !!" (P2)m, L "→ (!1, . . . , !m), (1)

where !i is the linear equation for the i-th image line Ci · L. More explicitly, if L is spanned by two points
a, b ∈ P3 then !i = (Cia) × (Cib), where × is the cross product. The Zariski closure of the image of this
map is the line multiview variety of C,

LC := ϒC(G).

The ideal I(LC) of LC is the ideal of all polynomials that vanish on LC , or equivalently of all polynomials
that vanish on ϒC(G). The goal of this paper is to study the ideal I(LC), solving the implicitization
problem [6, Section 3.3] for line multiview varieties.

Multiview varieties are fundamental objects in algebraic vision, a !eld of research that applies the
tools of algebraic geometry and neighboring !elds to topics in computer vision. So far, most attention has
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Figure 1. Illustration of projecting three images of a line in three-dimensional space. The purple line, denoted by L, represents the actual
line in 3D space. The three small purple lines represent three images of the line L, captured from di!erent perspectives ci . Additionally,
transparent planes are shown, representing the backprojected planes Hi de"ned via CT

i !i corresponding to the captured images. This
visualization demonstrates the relationship between the original 3D line, its multiple images, and the corresponding backprojected
planes.

been paid to multiview varieties that model 3D scenes involving points. These point multiview varieties
and the equations de!ning them were originally studied in the computer vision literature under various
guises (e.g. the natural descriptor [14], the joint image [17, 18], or via the Grassmann-Cayley algebra
in [9].) From the point of view of algebraic vision, the results of [2, 3] characterize the vanishing ideal of
the point multiview variety of a suitably generic camera arrangement. In particular, these results solve
the implicitization problem for point multiview varieties. While the point multiview variety has received
much attention, the line multiview variety has less so. The study of line multiview varieties was initiated
in [5], which focused on the geometric structure of LC . Our paper extends this study, focusing on the
line multiview ideal I(LC).

In [5, Theorem 2.1] it is shown that LC is irreducible and dim LC = dim G = 4. The line multiview
ideal belongs to the polynomial ring

R := C[!i,j | 1 ≤ i ≤ 3, 1 ≤ j ≤ m]. (2)

We write !k = (!i,k)
3
i=1, and denote by M(!) the matrix

M(!) =
[
CT

1 !1 · · · CT
m!m

]
∈ R4×m. (3)

By [5, Theorem 2.5], we have LC =
{
! ∈ (P2)m | rank M(!) ≤ 2

}
if and only if no four camera centers

of the Ci are collinear. We refer to this as the generic case. If four camera centers are collinear we have
LC !

{
! ∈ (P2)m | rank M(!) ≤ 2

}
and the remaining equations to describe LC are discussed in [5,

Theorem 2.6] and treated with greater detail in Section 5 of this article. The geometric idea behind the
de!nition of M(!) is that CT

i !i de!nes the plane in P3 projecting to !i under Ci (called back-projected
plane), and there is a line in the intersection of all back-projected planes if and only if the rank of M(!)

is at most 2. The geometry is illustrated in Figure 1.
To any camera arrangement, we may also associate the ideal

IC := 〈3 × 3-minors of M(!)〉 .

Our !rst main result of this paper is the following.
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Theorem 1.1. Let C be an arrangement of m cameras such that no four cameras are collinear. Then, the
vanishing ideal of LC is generated by the 3 × 3-minors of M(!); i.e.,

I(LC) = IC .

We prove this theorem at the end of Section 2.
Next, we study Gröbner bases for the ideal IC . Recall that a Gröbner basis is a speci!c type of generating

set for an ideal. A Gröbner basis exist for every monomial order; see, e.g., [6, Section 2.5 Corollary 6]. A
monomial order de!nes the notion of leading term of a polynomial. The de!nition of a Gröbner basis G
is that the leading term of any polynomial in I is divisible by one of the leading terms of an element in G.

There are N := 4
(m

3
)

3 × 3-minors of the 4 × m-matrix M(!). Let us denote them by m1, . . . , mN , so
that, by Theorem 1.1, IC = 〈m1, . . . , mN〉. The !rst question is to decide whether B := {m1, . . . , mN} is
a Gröbner basis for some monomial order or not. For this, we implemented the Gröbner basis detection
algorithm in Macaulay2 [11] as a part of the package SagbiGbDetection [4]. This algorithm, !rst
described in [12] (see also [16, Chapter 3]), consists of two main steps. The !rst step involves polyhedral
computations: we compute the Newton polytope Newt(B) := Newt(m1 · · · mN) ⊆ R3m, collect all
vertices of Newt(B) whose normal cones intersect the positive orthant, and determine a weight order
from each of these cones. The second step then uses Buchberger’s criterion to check if B is a Gröbner
basis with respect to each weight order. In our case, already for m = 3 the minors do not form a Gröbner
basis for any monomial order.

This opens the follow-up question: which polynomials in the ideal IC do form a Gröbner basis? We
discuss this in Section 3. In our study we restrict ourselves to speci!c monomial orders. Computing
Gröbner bases for IC for every ordering remains an open problem. We emphasize that for the point
multiview variety, Aholt, Sturmfels, and Thomas give a universal Gröbner basis; that is, a subset of
polynomials that is a Gröbner basis for every monomial order; see [3, Theorem 2.1]. For m ≥ 4, the
structure of this universal Gröbner basis is completely determined by its restrictions to subsets of four
cameras, whose elements correspond to the 2, 3, and 4-view tensors of multiview geometry [13, Ch. 17].
Intriguingly, in our case, we obtain Gröbner bases that are determined by its restrictions to subsets
of cameras of size !ve rather than four. For m = 2, 3, 4 one can compute Gröbner basis of IC using
Macaulay2. For m ≥ 5, we have the following theorem.

Theorem 1.2. Suppose that m ≥ 5 and all camera matrices are of the form

Ci =




1 0 0 s1,i
0 1 0 s2,i
0 0 1 s3,i





and that s = (sj,i)1≤j≤3,1≤i≤m is generic. Then, the Gröbner basis Gm for the GRevLex order consists of
polynomials that are supported on at most !ve cameras. More speci!cally,

Gm =
⋃

σ∈([m]
5 )

Gσ ,

where Gσ is the Gröbner basis with respect to the GrevLex order of the line multiview ideal involving only
the cameras with indices in σ .

Proof. This follows from Theorems 3.3 and 3.6. In fact, Theorem 3.6 de!nes explicitly what it means for
s to be generic.

The assumption on the shape of camera matrices in Theorem 1.2 may appear to be restrictive.
However, as we observe in Section 4 that the group PGL4 × PGLm

3 which acts on camera arrangements
by

h · (C1, . . . , Cm) = (H1C1H+1, . . . , HmCmH+1), where h = (H, H1, . . . , Hm), (4)
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also acts on line multiview ideals as Lh·C = Lh(LC) or, equivalently, I(Lh·C) = L+1
h (I(LC)), where Lh is

de!ned by Lh(!i) = H+T
i !i; see Proposition 4.1. Any camera arrangement C can be transformed into an

arrangement of the form speci!ed in Theorem 1.2 by a suitable choice of h ∈ PGL4 × PGLm
3 . Moreover,

one can !nd h such that h · C is general in the sense of Theorem 1.2, if and only if no three camera
centers in C are collinear. We prove this fact in Proposition 4.2. The group action can then be exploited
to solve computational problems for line multiview ideals. For example, consider the problem of ideal
membership. Suppose that we have f ∈ R and want to decide whether f ∈ I(LC). Since f ∈ I(LC), if
and only if L+1

h (f ) ∈ L+1
h (I(LC)) = I(Lh·C), we can use a Gröbner basis of the latter for the division

algorithm from [6, §2.6].
Finally, in the last part of the paper, Sections 5 and 6, we prove variants of Theorems 1.1 and 1.2 for

the case when all cameras are collinear. More speci!cally, in Section 5, we give an explicit set-theoretic
description of line multiview varieties with arbitrary camera arrangements. This is an improvement over
the treatment in [5], where the polynomial equations are described via elimination. This includes cases
when there are 4 collinear cameras or when all cameras are collinear. Note that we use the term collinear
cameras to refer to cameras that have collinear centers. Next, in Section 6 we adapt the results from
Section 5 to the ideal-theoretic methods of Section 3. We produce a Gröbner basis for the multiview
ideal for an arrangement of m ≥ 4 collinear cameras. Notably, this Gröbner basis is, analogously to the
generic case discussed above, determined by its restrictions to subsets of four cameras.

2. The line multiview ideal for generic cameras

The goal of this section is to prove Theorem 1.1. For this, we introduce the cone over the line multiview
variety

L̂C := {! ∈ (C3)m | rank M(!) ≤ 2}. (5)
The key step for proving Theorem 1.1 is to prove the following result. Recall that we assume all centers
of an arrangement are distinct and that m ≥ 2.

Proposition 2.1. If no four cameras are collinear, then IC = I(L̂C).

The idea for proving this proposition is to show that IC is a Cohen-Macaulay ideal in the case when no
four cameras are collinear. We do so in Proposition 2.4 and use this result to deduce in Proposition 2.5
that R/IC is reduced. We formally give the proof of Theorem 2.1 together with a proof of Theorem 1.1
at the end of this section.

We !rst need two lemmata.

Lemma 2.2. Let C be an arrangement such that no four cameras are collinear.

1. Denote XC := {! = (!1, . . . , !m) ∈ L̂C | !i ,= 0 for 1 ≤ i ≤ m}. Then XC is a Zariski dense subset of
L̂C , meaning XC = L̂C .

2. L̂C ⊂ (C3)m is the closure of the image of the following map,
ϒ̂C : C4 × C4 × Cm !!" (C3)m, (x, y, λ1, . . . , λm) "→ (!1, . . . , !m),

where !i = λi (Cix) × (Ciy) and × denotes the cross-product in C3 (so if !i ,= 0, it is the equation of
the projective line passing through Cix and Ciy).

Proof. We show that L̂C lies in the Euclidean closure of XC . Let ! ∈ L̂C \ XC and let J ⊆ [m] denote the
set of indices for which !i ,= 0. Observe that if !i = 0, then the generators of IC that involve the variables
of !i are zero, because they are homogeneous in !i. The remaining generators de!ne the ideal IC′ , where
C′ is the arrangement we get by removing Ci from C. In particular, let

πJ : L̂C → L̂CJ
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be the coordinate projection, where CJ denotes the arrangement of cameras corresponding to the indices
of J. Then πJ(!) ∈ (C3)J is a representative of an element of LCJ .

In order to show ! ∈ XC , it su"ces to !nd a point !′ ∈ LC (which we identify with a representative
in (C3)m) such that πJ(!) = πJ(!′). This is because we can create a sequence !ε ∈ XC converging to !

as ε → 0 by letting (!ε)i = !i ∈ C3 whenever i ∈ J and (!ε)i = ε!′
i ∈ C3 otherwise.

We can !nd such a !′ trivially if |J| = 0. If |J| = 1, say J = {i}, then let !′ be the image of any line L
in Hi meeting no center under the joint camera map ϒC . If |J| ≥ 2, since πJ(!) represents an element of
LCJ , [5, Proposition 2.4 2.] says that there is an element !′ ∈ LC that projects onto πJ(!) via πJ .

For the second part, note that the set YC ⊆ C4 × C4 × Cm of points (x, y, λ1, . . . , λm) such that
the line spanned by x, y in P3 contains no center and λi ,= 0 is an open dense subset. Its image under
ϒ̂C is a subset of XC and its closure is a subset of L̂C . For the other direction, take ! ∈ L̂C . By the !rst
statement, let !(n) = (!

(n)
1 , . . . , !(n)

m ) → ! with !(n) ∈ XC . The projective class of !(n) in (P2)m lies in LC .
Fix an n. Since LC is the Euclidean closure of the image ϒC(G) (by Chevalley’s theorem [15, Theorem
4.19]), there is a sequence of lines L(k) meeting no centers such that for some nonzero scaling λ

(k)
i we

have !
(n)
i = limk→∞ λ

(k)
i Ci · L(k). Therefore the images of (x(k), y(k), λ(k)

1 , . . . , λ(k)
m ) under the map ϒ̂C

converge to !(n) so that !(n) is in the closure of the image for each n. This implies that the limit ! of !(n)

is also in the closure of the image of ϒ̂C .

Lemma 2.3. L̂C is irreducible and of dimension 4 + m.

Proof. By the second statement of Lemma 2.2, L̂C is the closure of the image of an irreducible variety
under a rational map. This means that it is irreducible. Consider XC as in Lemma 2.2. The projection
π : XC → LC is surjective and has m-dimensional !bers. So dim XC = dim LC + m. Moreover,
XC = L̂C by the !rst statement of Lemma 2.2 and dim LC = 4 by [5, Theorem 2.1].

The goal is now to prove that IC is a Cohen-Macaulay ideal. Let us recall the de!nition of this: A unital,
commutative, and Noetherian ring S is called a Cohen-Macaulay ring, if dim S = depth S; see, e.g., [7,
chapter 5]. An ideal I is a Cohen-Macaulay ideal if S = R/I is a Cohen-Macaulay Ring.

To prove that IC is a Cohen-Macaulay ideal we need the concept of codimension for ideals in R =
C[!i,j | 1 ≤ i ≤ 3, 1 ≤ j ≤ m]. Let !rst J ⊂ R be a prime ideal. The codimension of J is de!ned to be
codim J := dim RJ , where RJ is the localization of R at J and dim RJ is the Krull dimension. Equivalently,
codim J is the maximal length k of a chain of prime ideals of the form P0 ! · · · ! Pk = J. This
equivalence follows from the bijection of ideals of R contained in J and ideals of RJ by the map r "→ r

1 .
For any ideal I ⊂ R its codimension is then de!ned as

codim I := min
I⊂J, J prime

codim J.

It follows from the de!nitions that for all ideals I ⊂ R we have dim R/I + codim I ≤ dim R. By [10,
Lemma 11.6 (b)] we have for a prime ideal J ⊂ R

dim R/J + codim J = dim R. (6)
Moreover, since R is a polynomial ring, [8, Corollary 13.4] implies that (6) holds for any ideal J ⊂ R. We
use these facts to prove the following result.

Proposition 2.4. If no four cameras are collinear, IC is a Cohen-Macaulay ideal.

Proof. Recall that M(!) ∈ R4×m. We now specialize [7, Theorem 2.25] to k = 3 and p = 4, q = m (see
also [8, Section 18]). This result shows that IC is a Cohen-Macaulay ideal if codim IC = (p + k + 1)(q +
k + 1) = 2m + 4. We show the latter.

The zero set of IC in (C3)m is L̂C . This implies I(L̂C) = √
IC . Recall that

√
IC is the intersection of

all prime ideals containing IC . From this and the de!nition of codimension, it follows that codim IC =
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codim I(L̂C). Thus Lemma 2.3 implies dim R/I(L̂C) = 4 + m. Using 6, we conclude

codim I(L̂C) = dim R + (4 + m) = 2m + 4.

The next result we need for proving Theorem 1.1 is that the quotient ring for the determinantal ideal
is reduced. The proof relies on Proposition 2.4.

Proposition 2.5. If no four cameras are collinear, then R/IC is reduced.

Proof. Denote by m1, . . . , mN , where N = 4
(m

3
)
, the 3 × 3 minors of M(!). Then, we have IC =

〈m1, . . . , mN〉. We have shown in the proof of Proposition 2.4 that

c := codim(IC) = 2m + 4.

Consider the Jacobian matrix

Jac :=
[

∂mk
∂!i,j

]

k∈{1,...,N},(i,j)∈{1,2,3}×{1,...,m}
∈ CN×(3m).

We denote by f1, . . . , fM , where M :=
(N

c
)
·
(3m

c
)
, the c×c minors of Jac. Let us consider the ideal generated

by these minors modulo IC ; i.e., we consider J := 〈f1, . . . , fM〉/IC ⊂ R/IC . Since R/IC is Cohen-Macaulay
by Proposition 2.4, we know that R/IC is reduced if and only if codim J ≥ 1; see [8, Theorem 18.15]. It
therefore su"ces to !nd a tuple ! of image lines such that Jac has rank equal to c. We prove1 the existence
of such an !.

Consider a tuple of lines ! ∈ (P2)m such that M(!) has rank 2, and such that ! ∈ ϒC(G); i.e., there is
a line L mapping to !, and this line does not pass through any camera center. Let A = (ak,!) ∈ C4×m be
a matrix whose entries are variables that depend on !i,j, and let m1, . . . , mN be its 3 × 3 minors. Then,
by the chain rule Jac = J1 · J2, where

J1 =
[

∂mk
∂ak,!

]
∈ CN×(4m) and J2 =

[
∂ak,!
∂!i,j

]
∈ C(4m)×(3m)

As M(!) has rank 2, the codimension of J1 is equal to the dimension of the variety of rank 2 matrices in
C4×m, which is 2m + 4 = c. Moreover, by linearity

Im J2 = {[CT
1 v1, . . . , CT

mvm] ∈ C4×m | v1, . . . , vm ∈ C3}
(here, we have interpreted the image of J2 as a space of matrices). So, rank J2 = 3m and we have to show
that dim ker J1 ∩ Im J2 = 3m + (2m + 4) = m + 4. Notice that dim ker J1 ∩ Im J2 = m + 4 if and only
if ker J1 and Im J2 intersect transversally.

Denote the bilinear form 〈B1, B2〉 = Trace(BT
1 B2), and for a subspace V ⊂ C4×m we denote V⊥ :=

{B1 ∈ C4×m | 〈B1, B2〉 = 0 for all B2 ∈ V}. Then, to show that ker J1 and Im J2 intersect transversally
we can equivalently show that (ker J1)⊥ ∩ (Im J2)⊥ = 0.

We can write Im J2 = {P ∈ C4×m | 〈P, cieT
i 〉 = 0, for 1 ≤ i ≤ m}, where ei ∈ Rm denotes the i-th

standard basis vector. Assume that 0 ,= B = ∑m
k=1 λicieT

i ∈ (ker J1)⊥. Without restriction, we assume
that λ1 ,= 0. We show B ,∈ (ker J2)⊥. The kernel of J1 is the tangent space of the variety of rank 2 matrices
at A. Writing A = UVT with U ∈ C4×2, V ∈ Cm×2 this tangent space is given by all matrices of the
form UV̇T + U̇VT with U̇ ∈ C4×2, V̇ ∈ Cm×2. Take U̇ = 0 and V̇ = xeT

1 with x = VTA∗c1. Then,

〈B, UV̇T〉 = 〈UTB, V̇T〉 = xTUTBe1 = λ1 (xTUTc1) = λ1(ATc1)
T(ATc1).

Recall that L spans the le# kernel of A. Since c1 ,∈ L, we have ATc1 ,= 0, so that 〈B, UV̇T〉 =
λ1(ATc1)T(ATc1) ,= 0. This shows B ,∈ (ker J1)⊥. Hence, rank Jac = c.

We can now prove Theorems 1.1 and 2.1.

1The proof is similar to the computation in [5, Section 3]
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Proof of Theorem 1.1 and Proposition 2.1. The zero set of IC in (C3)m is L̂C . Moreover, the ideal IC is
reduced by Proposition 2.5. This implies I(L̂C) = IC , which is the statement of Theorem 2.1.

By the multi-projective Nullstellensatz, I(LC) is obtained from IC = I(L̂C) a#er saturation with
respect to the irrelevant ideal

⋃m
i=1 V(!i). By the !rst part of Lemma 2.2,

I(L̂C) = I(XC) = I(L̂C \ ∪m
i=1V(!i)) = I(L̂C) :

(
I(∪m

i=1V(!i))︸ ︷︷ ︸
irrelevant

)∞.

This means that the ideal IC is already saturated. This proves Theorem 1.1.

3. Gröbner bases for generic translational cameras

Let C be an arrangement of m cameras such that no four cameras are collinear. As before,

IC := 〈3 × 3-minors of M(!)〉 .

By Theorem 1.1, proven in the last section, IC is the ideal of the line multiview variety LC . The purpose
of this section is to provide a Gröbner basis for IC when C consists of su"ciently generic translational
cameras. As we discuss in detail in Section 4, a generic camera is equivalent to a translational camera up
to coordinate change. This section is also intended as a warm-up to Section 6.1, where similar techniques
are used to prove a version of Theorem 1.1. Our approach is inspired by the arguments in [1]. In this
article, the authors work with a certain symbolic multiview ideal, where the camera entries are also
variables, and then invoke a specialization argument (see [1, Theorem 3.2 and Section 4]). We use a
similar strategy to obtain a Gröbner basis for IC . We begin by de!ning an analogue of the symbolic
multiview ideal in our setting.

3.1. A Gröbner basis for partially-symbolic multiview ideals

In this section, we study an analogue of the 3 × 3 minor ideal IC that is de!ned for an arrangement of
m ≥ 3 partially-symbolic cameras of a particular form. Let

C[ℓ, t] = C[!1,1, . . . !3,m, t1,1, . . . , t3,m]
denote a polynomial ring in 6m indeterminates. As before, the 3m indeterminates !i,j represent homo-
geneous coordinates on the space of m-tuples of lines (P2)m. Let I3 denote the 3 × 3 identity matrix. We
use the other 3m indeterminates ti,j to de!ne matrices C(t1), . . . , C(tm) ∈ C[ℓ, t]3×4 given by

C(ti) =
[
I3 ti

]
=




1 0 0 t1,i
0 1 0 t2,i
0 0 1 t3,i



 . (7)

By analogy with IC , we de!ne IC(t) to be the 3×3 minor ideal associated with the symbolic arrangement
C(t) := (C(t1), . . . , C(tm)) ∈ (C[t]3×4)m:

IC(t) =
〈
3 × 3-minors of

[
C(t1)T!1 · · · C(tm)T!m

]〉
. (8)

We call IC(t) the indeterminate translation ideal or the IT ideal for short. The motivation for considering
camera matrices of the form (7) is that we can always choose coordinates on (P2)m and P3 such
that the camera matrices have this form. Choosing coordinates corresponds to acting by PGLm

3 ×
PGL4 on the space of m-tuples of camera matrices (C3×4)m via (H1, . . . , Hm, H) · (C1, . . . , Cm) :=
(H1C1H, . . . , HmCmH). This action is studied in Section 4.

Recall that the Graded Reverse Lex (GRevLex) order is de!ned as follows. Monomials are identi!ed
with their exponent vector in Nn. For (1, (2 ∈ Nn, we say (1 >GRevLex (2 if |(1| > |(2| or |(1| = |(2|
and the rightmost nonzero entry of (1 + (2 ∈ Zn is negative. We will describe, for any number of
cameras m ≥ 3, a Gröbner basis for IC(t) with respect to a particular monomial order <, de!ned to be
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Figure 2. Macaulay2 code for computing G5.

the product of GRevLex orders on the subrings C[ℓ] and C[t]. In other words, the monomial order < is
de!ned as follows:

ℓ(1 t)1 < ℓ(2 t)2 if (ℓ(
1 <GRevLex ℓ(

2 ) or ((1 = (2 and t)1 <GRevLex t)2). (9)

For a k-element set σ = {σ1, . . . , σk} ⊂ [m] we write IC(tσ1 ,...,tσk ) for the IT ideal associated to the
cameras C(tσ1 , . . . , tσk). Let

([m]
k

)
denote the set of all subsets of [m] of size k. For 3 ≤ k ≤ m, we observe

that

IC(t) =
∑

σ∈([m]
k )

IC(tσ1 ,...,tσk ), (10)

since the 3 × 3 minors generating IC(t) also generate the ideal on the right-hand side. Now, for σ , π ∈([m]
k

)
let G, G′ be the reduced Gröbner bases2 for IC(tσ1 ,...,tσk ) and IC(tπ1 ,...,tπk ), respectively. Substituting

variables with respect to the monomial order < we get an isomorphism IC(tσ1 ,...,tσl )
→ IC(tπ1 ,...,tπl )

that
maps G to G′. Therefore, it su"ces to study IC(t1,...,tk). This motivates the following.

De!nition 3.1. We denote by Gk the reduced Gröbner basis of IC(t1,...,tk) with respect to the monomial
order <.

The computer algebra system Macaulay2 [11] allows us to compute Gk for small values of k. As we
will argue, the results of these computations for G3, . . . , G10 allow us to determine the reduced Gröbner
basis of IC(t) for any number of cameras m. We invite the reader to explore the important case m = 5 by
running the short script in Figure 2.
The code in Figure 2 lets us inspect Gm for small m. The computation reveals the following interesting
pattern.

Lemma 3.2. Let 2 ≤ m ≤ 10. Every element of Gm is supported on at most !ve cameras. More speci!cally,
the reduced Gröbner basis Gm is the union of Gröbner basis for all subsets of at most 5 cameras:

Gm =
⋃

σ∈([m]
5 )

GC(tσ1 ,...,tσ5 ).

For each 3 ≤ d ≤ 7, the number of elements of Gm of degree d are listed below.

d 3 4 5 6 7
#{g ∈ Gm | deg(g) = d}

(m
3
)

3 ·
(m

3
) (m

4
) (m

4
) (m+1

5
)

We now state the main result of this section.

2Recall (see e.g. [6, Section 2.7, Theorem 9]) that a polynomial ideal has a unique reduced Gröbner basis with respect to any
monomial order. A Gröbner basis G is said to be reduced if every g ∈ G has leading coe#cient 1 and, for distinct g, g′ ∈ G, the
leading term in<(g) does not divide any term of g′ .
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Theorem 3.3. For any m, the reduced Gröbner basis Gm is equal to the union over all of its restrictions to
subsets of 5 cameras; more precisely,

Gm =
⋃

σ∈([m]
5 )

GC(tσ1 ,...,tσ5 ). (11)

Proof. Let us write G′
m := ⋃

σ∈([m]
k ) GC(tσ1 ,...,tσ5 ). The goal is to show G′

m = Gm.
By Lemma 3.2 we have Gm = G′

m for 2 ≤ m ≤ 10. For m ≥ 11, we apply a variant of Buchberger’s
S-pair characterization. Let us brie$y recall it. For a !nite subset B ⊂ R we write f →B 0, if f
has a standard representation of the form f = ∑s

i=1 higi such that h1, . . . , hs ∈ B and in<(f ) =
max{in<(h1g1), . . . , in<(hsgs)}. A set of polynomials B is a Gröbner basis if and only if for every g, g′ ∈ B
we have that S(g, g′) →B 0, where

S(g, g′) := lcm(in<(g), in<(g′))
in<(g)

g + lcm(in<(g), in<(g′))
in<(g′)

g′.

Therefore, to show that G′
m is a Gröbner basis for IC(t), it su"ces to show S(g, g′) →G′m 0 for all g, g′ ∈

G′
m. Let g, g′ ∈ G′

m. Then, by the de!nition of G′
m there exists two subsets σ , π ∈

([m]
5

)
such that we have

g ∈ GC(tσ1 ,...,tσ5 ), g′ ∈ GC(tπ1 ,...,tπ5 ). The union of two subsets of size 5 yields a subset of size at most 10.
We may therefore write σ ∪ π = {σ ′

1, . . . , σ ′
k} such that 5 ≤ k ≤ 10. Again by Lemma 3.2, GC(tσ ′

1
,...,tσ ′

k
)

is a Gröbner basis, so we must we have

S(g, g′) →GC(t
σ ′

1
,...,t

σ ′
k
) 0.

But this already implies S(g, g′) →G′m 0, since g and g′ only depend on the variables corresponding to
σ ′

1, . . . , σ ′
k. This shows that G′

m is a Gröbner basis for <.
To see that G′

m is reduced, we may again appeal to the cases m ≤ 10. For any g and g′ as above, in<(g)

does not divide any term of g′ since GC(tσ ′
1

,...,tσ ′
k
) is reduced. Since reduced Gröbner bases are unique, we

may conclude that Gm = G′
m.

Next, we state a particular property of the Gröbner basis Gm in the next proposition. This will be
used in the next subsections to determine a Gröbner basis for IC under the explicit genericity conditions
given in De!nition 3.5.

Proposition 3.4. The reduced Gröbner basis Gm has the following property: Suppose that f (t) ∈ C[t] is
the coe"cient of the leading GRevLex monomial in C[ℓ] of some element of Gm. Then f is of one of the four
forms listed below:
(i) f (t) = 1, or
(ii) f (t) = t1,i + t1,j, or
(iii) f (t) = (t1,i + t1,j)(t1,k + t1,l)
(iv) f (t) is a 3 × 3 minor of the 4 × m matrix of symbolic camera centers:





t1,1 t1,2 · · · t1,m
t2,1 t2,2 · · · t2,m
t3,1 t3,2 · · · t3,m
+1 +1 · · · +1



 .

Proof. The statement for 2 ≤ m ≤ 5 is veri!ed using again Macaulay2. The case m ≥ 5 follows using
Theorem 3.3: the elements in Gm only depend on variables corresponding to at most 5 cameras.
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3.2. Specialization to generic translational cameras

In this section, we pass from the IT ideal IC(t) to its specialization IC(s) by !xing scalars s = (s1, . . . , sm) ∈
(C3)m. More formally, let IC(s) denote the extension of the ideal IC(t) through the ring homomorphism

φs : C[ℓ, t] → C[ℓ] (12)
de!ned by ℓ "→ ℓ and t "→ s; i.e., φs replaces the t-variables of polynomials in C[ℓ, t] by s. Similar to
before,

C(s) := (C(s1), . . . , C(sm)) ∈ (C3×4)m

denotes the translational camera arrangement IC(s) its associated 3 × 3 minor ideal. The goal of this
section is to prove that for general s, the image of Gm under φs is again a Gröbner basis. For this, we need
a de!nition.

De!nition 3.5. For s ∈ (C3)m, we say the camera arrangement C(s) is center-generic if
(i) (si1,j1 + si2,j2) ,= 0 for all 1 ≤ i1 < i2 ≤ 3 and 1 ≤ j1, j2 ≤ m,
(ii) All 3 × 3 minors of the matrix (13) below are nonzero:





s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m
s3,1 s3,2 · · · s3,m
+1 +1 · · · +1



 . (13)

The genericity conditions of De!nition 3.5 ensure that all leading coe"cients in Proposition 3.4
specialize to nonzero constants. Note that Condition (i) implies that all products (si1,j1 + si2,j2) · (si3,j3 +
si4,j4) are nonzero.

We now state the main result of this section.

Theorem 3.6. Let s ∈ (C3)m, such that C(s) is center-generic. Let Gm be the Gröbner basis from
Theorem 3.3. Then, the specialization φs(Gm) is a Gröbner basis for the line multiview ideal I(LIC(s) ) with
respect to the GRevLex order.

Proof. It follows from the proof of [6, Section 4.7, Theorem 2] that, if none of the leading coe"cients in
t that appear in Gm vanish at s, then φs(Gm) is the Gröbner basis for

φs(IC(t)) =
〈
3 × 3-minors of

[
C(s1)T!1 · · · C(sm)T!m

]〉
= IC(s).

Therefore, Proposition 3.4 implies that φs(Gm) is a Gröbner basis for IC(s). Since Gm is a Gröbner basis
with respect to the product of GRevLex orders on the subrings C[ℓ] and C[t], φs(Gm) is a Gröbner basis
with respect to GRevLex on C[ℓ].

Furthermore, the camera center cj := ker C(sj) is spanned by (s1,j, s2,j, s3,j, +1). Since IC(s) is center-
generic, s satis!es condition (ii) in De!nition 3.5. This implies that no four camera centers are collinear.
Theorem 1.1 implies IC(s) = I(LIC(s) ).

4. Group action by coordinate change

We want to extend the result from the previous section on center-generic translational cameras to any
camera arrangement, not necessarily translational, with no three cameras collinear. Recall from 4 the
action of G = PGL4 × PGLm

3 on camera arrangements
(H, H1, . . . , Hm) · (C1, . . . , Cm) = (H1C1H+1, . . . , HmCmH+1).

We show that it preserves line multiview ideals in the appropriate way.
Let a, b ∈ P3. Then,

(HiCia) × (HiCib) = (det Hi)H+T
i (Cia × Cib). (14)
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This motivates the introduction of the following ring isomorphism:
Lh : C[ℓ] → C[ℓ], !i "→ H+T

i !i.

We identify Lh with its map on the level of varieties sending !i ∈ P2 to H+T
i !i ∈ P2.

Proposition 4.1. Let h = (H, H1, . . . , Hm) ∈ G and let C = (C1, . . . , Cm) be a camera arrangement.
Then

Lh·C = Lh(LC),
or equivalently

I(Lh·C) = L+1
h (I(LC)).

Proof. The equivalence of the statements in Proposition 4.1 comes from the following general fact in
commutative algebra: Given a morphism of projective varieties ϕ : X → Y there is a corresponding
map of graded coordinate rings ϕ# : S(Y) "→ S(X). The ideal of the image ϕ(X) is the kernel of ϕ#. In
our setting ϕ : LC → (P2)m is the action of a group element h on the multiview variety LC and ϕ# is the
composition of Lh : C[!] → C[!] and the projection C[!] → C[!]/I(LC). This implies that the kernel
is L+1

h (I(LC)) = I(Lh(LC)).
Therefore, it su"ces to show Lh·C = Lh(LC) to prove the proposition. The argument follows from

the following commutative diagram of vector spaces

C4 C3

C4 C3

Ci

h · Ci

H Hi

.

where h · Ci = HiCiH+1. This induces a commutative diagram of camera maps

G (P2)m

G (P2)m

ϒC

ϒh·C

∧2H Lh

.

The map ∧2H is an isomorphism that sends a line L spanned by x, y, to the line spanned by Hx, Hy. Now
by commutativity, we can compute the closure of the image in the bottom-right corner of the diagram
as

Lh·C = Im(ϒh·C) = Im(ϒh·C ◦ (∧2H)) = Im(Lh ◦ ϒC).
Now, a polynomial f ∈ C[!] vanishes on Im(Lh ◦ ϒC), if and only if Lh(f ) vanishes on Im(ϒC). This
implies

Lh·C = Im(Lh ◦ ϒC) = Lh
(
(Im(ϒC)

)
= Lh(LC).

Proposition 4.2. C has the property that no three cameras are collinear if and only if there exists h ∈ G
such that h · C is center-generic.

Proof. First, observe that condition (ii) in De!nition 3.5 implies that no three centers are collinear when
C is center-generic. This gives one direction since camera collinearity is a G-invariant property.
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For the converse, let C = (C1, . . . , Cm) have the property that no three camera centers are collinear.
Consider !rst the case m = 4. If the camera centers are noncoplanar, then up to the G-action we may
assume that they form the standard basis e1, e2, e3, e4 ∈ P3. In the noncoplanar case, we may assume the
centers are e1, e2, e3, e1 + e2 + e3 ∈ P3. Correspondingly, we may assume our camera matrices are

C1 =
[ 1 0 0 0

0 1 0 0
0 0 1 0

]
, C2 =

[ 1 0 0 0
0 1 0 0
0 0 0 1

]
, C3 =

[ 1 0 0 0
0 0 1 0
0 0 0 1

]
(15)

and

C4 =






[ 0 1 0 0
0 0 1 0
0 0 0 1

]
, in the non coplanar case

[ 1 0 +1 0
0 1 +1 0
0 0 0 1

]
, in the coplanar case.

In either case, let H be a 4 × 4 matrix whose entries are the indetermines of the polynomial ring R =
C[h1,1, . . . , h4,4], and de!ne Ai(H) = CiH for i = 1, . . . , 4. The kernel of each matrix Ai(H) is a free
R-module of rank 1 generated by some ci(H) ∈ R4×1. If we construct the matrix

[
c1(H) c2(H) c3(H) c4(H)

]
∈ R4×4,

then we may verify by direct computation that the following polynomials de!ned in terms of this matrix
are nonzero:
(i) all 2 × 2 minors and the di%erences between any two entries in the same column, and
(ii) all 3 × 3 minors and the last entry of each column.
These conditions correspond to conditions (i) and (ii) in De!nition 3.5: specializing H to a generic
invertible matrix, we obtain cameras G-equivalent to C which can be made center-generic a#er acting
on the le# by the subgroup PGL4

3 ⊂ G.
When m > 5, !x a set S = {i1, i2, i3, i4} with 1 ≤ i1 < i2 < i3 < i4 ≤ m. For all H inside of a dense

Zariski open US ⊂ C4×4, we have by the previous argument that (Ci1 H, Ci2 H, Ci3 H, Ci4 H) is equivalent
to a center-generic 4-tuple up to le#-multiplication. Thus, if we take

H ∈
⋂

S∈([m]
4 )

US,

then (C1H, . . . , CmH) is G-equivalent to m center-generic cameras.

5. Set-theoretic equations for line multiview varieties

In the case that four or more cameras are collinear, the rank condition of Theorem 1.1 is not su"cient to
describe the line multiview variety, even set-theoretically. In [5, Section 2], an example is computed with
four collinear cameras where the rank condition provides two components. One is the line multiview
variety, and the other is 4-dimensional and corresponds to the tuples of back-projected planes that
all contain the line spanned by the collinear centers. Using elimination of variables in Macaulay2,
the authors !nd one additional equation in the variables of all four lines, that together with the rank
condition cuts out the line multiview variety. Elimination, however, is computationally demanding.
Here we describe ideals that set-theoretically determine any line multiview variety with pairwise distinct
centers without using elimination.

Throughout this section U ∨ V denotes the linear space spanned by U and V .

5.1. Quadrics of the line multiview variety

To give equations for the line multiview variety LC we !rst need to characterize points on LC in terms
of associated quadric surfaces. First, let σ ⊂ [m] index a subset of collinear cameras. Let Eσ denote the
baseline spanned by the collinear camera centers ci for i ∈ σ , and let

E∗
σ := any line disjoint from Eσ .
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Figure 3. The picture illustrates the de"nition of Fσ (!i) from (16). Here, we have {1, 2} ⊂ σ and we only show Fσ (!1) and Fσ (!2). The
two backprojected planes H1 and H2 depicted as triangles, intersect in a line L. The line E∗

σ intersects the green backprojected plane H1
in a point. The line spanned by this point and c1 is the red line Fσ (!1). Similarly, E∗

σ intersects the violet backprojected plane H2 in a
point that together with c2 spans the red line Fσ (!2). The three distinct lines L, Eσ and E∗

σ intersect all Fσ (!i), i ∈ σ .

For concreteness, one may take the dual line {x ∈ P3 | x∗ y = 0 for all y ∈ Eσ } with respect to the
Hermitian inner product on C4.
Remark. In [5] the authors always use the dual line for E∗

σ . Nevertheless, the results in [5] are unchanged
when replacing the dual line with any other line, which does not intersect the baseline Eσ . The reason
why we use this more general de!nition is that in Lemma 5.9 we consider the action of PGL4 on P3. This
action does not preserve Hermitian duality between lines, but it preserves that two lines do not intersect.

For i ∈ σ and a line !i in the image plane P2 that is in general position with respect to the camera
center ci, we may construct another line Fσ (!i) contained in the back-projected plane Hi which passes
through ci and E∗

σ . As in [5], we use the notation

Fσ (!i) := ci ∨
(
Hi ∩ E∗

σ

)
, (16)

which indeed de!nes a line provided that E∗
σ ,⊂ Hi. Otherwise, it is the plane ci ∨ E∗

σ . In Figure 3 we
illustrate this de!nition with a picture.

The next result is a rephrasing of [5, Theorem 2.6].

Theorem 5.1. We have ! = (!1, . . . , !m) ∈ LC if and only if the following three conditions hold:

1. all back-projected planes Hi meet in at least a line,
2. for every maximal set σ ⊆ [m] indexing collinear cameras with |σ | ≥ 4, there is a quadric surface

Qσ = Qσ (!) ⊆ P3, depending on !, such that Eσ , E∗
σ ⊆ Qσ and,

3. if Fσ (!i), for some i ∈ σ , is a line, then Fσ (!i) ⊆ Qσ .

Proof. This follows from the proof of [5, Theorem 2.6]. We give a summary here. We assume the reader
is familiar with the contents of [5]. Recall that we assume that all centers are distinct and m ≥ 2.

⇒) Since conditions 1–3 describe a Zariski-closed subset of (P2)m, it is enough to show that a generic
point (!1, . . . , !m) in the image of ϒC satis!es these three conditions. Thus, we may assume that all Fσ (!i)
are disjoint lines and that the back-projected planes Hi meet in exactly a line L disjoint from both Eσ

and E∗
σ . This gives the !rst condition above and also implies L ,= Fσ (!i). The quadric Qσ in the second

condition is uniquely determined by the property that it contains the pairwise-disjoint lines Eσ , E∗
σ , L.

Finally, each of the lines Fσ (!i) is contained in the quadric Qσ , because the intersection Fσ (!i) ∩ Qσ

contains the three distinct points, where Fσ (!i) meets Eσ , E∗
σ , and L.

⇐) Suppose ! = (!1, . . . , !m) satis!es conditions 1–3. Let L be a line where all back-projected planes
meet. If L meets none of the m camera centers, then ! lies in the image of ϒC . If L meets exactly one
center, then ! ∈ LC by [5, Lemma 2.8]. If L meets exactly two centers, then ! ∈ LC by Case 1 of the
proof of [5, Theorem 2.6]. If L meets three or more centers, we argue as follows. Let σ index all camera
centers contained in L, so that L = Eσ ⊂ Hi for all i ∈ σ . It follows that all Fσ (!i), i ∈ σ , are lines, since
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E∗
σ is not contained in Hi. If the lines Fσ (!i), i ∈ σ , are pairwise-disjoint, then the quadric Qσ is smooth

and ! ∈ LC by Case 2 of the proof of [5, Theorem 2.6]. Otherwise, if Fσ (!i) and Fσ (!j) meet for distinct
i, j ∈ σ , then Qσ contains the plane P1 spanned by these two lines. It follows that Qσ is the union of
two planes P1 ∪ P2, where P1 contains Eσ and P2 contains E∗

σ . At most one of the lines Fσ (!i) can lie in
P2. Otherwise, two centers of σ would lie in P2, which would imply that P2 contains Eσ , but there is no
plane that contains both Eσ and E∗

σ . The fact that ! ∈ LC now follows from arguments of Case 3 of the
proof of [5, Theorem 2.6].

In order to establish the results of the next subsection we need a second lemma, where we determine
when the quadric from Theorem 5.1 is unique.

Lemma 5.2. Let L, L′ be two disjoint lines in P3. Let c1, c2, c3 ∈ L be distinct points and let A1, A2, A3
be three lines such that ci ∈ Ai for 1 ≤ i ≤ 3 and each Ai meets the line L′. There is a unique quadric
containing L, L′, A1, A2 and A3 if and only if at least two of the Ai are disjoint.

Proof. A quadric Q containing L and L′ must be either a union of two planes or smooth. If it is smooth,
then the Ai must be disjoint, and three disjoint lines uniquely determine a quadric in P3. So assume Q is
the union of two planes. In this case, one of these planes P is the join of two coplanar lines among the Ai,
say A1 and A2. If A3 is not contained in P, then the second plane in Q is determined uniquely as the join
of A3 and L′. Finally, if A3 is contained in P, then there are in!nitely many possibilities for the quadric
by letting the second plane be any plane containing L′.

To determine whether the choice of quadric Qσ in Theorem 5.1 is unique, we may apply Lemma 5.2
with (L, L′) = (Eσ , E∗

σ ), and A1, A2, A3 of the form Fσ (!i).

5.2. A set-theoretic description for line multiview varieties

The !rst step toward computing polynomial equations that cut out LC in the presence of at least 4
collinear cameras is to rewrite LC as a particular intersection. For this, we need a new notation. Let
σ ⊆ [m] be a subset of indices and let LCσ be the multiview variety of the arrangement Cσ = (Ci)i∈σ .
Then let πσ : (P2)m → (P2)σ be the projection onto the factors indexed by σ . We write

LC,σ := π+1
σ (LCσ ).

Proposition 5.3. Let , be the set of all 3-tuples of indices in [m] and those 4-tuples that correspond to
collinear cameras. Then, we have

LC =
⋂

σ∈,

LC,σ . (17)

Proof. The back-projected planes of ! meet in at least a line if and only if M(!) has rank at most 2. Recall
the rank condition ideal

IC = 〈3 × 3-minors of M(!)〉 ,
where M(!) =

[
CT

1 !1 · · · CT
m!m

]
. Each of the given generators of this ideal depends on exactly three

cameras. Thus, we are done if we can show that the conditions on 4-tuples σ in (17) imply the existence
of a quadric Qσ as in Theorem 5.1 and vice versa.

Fix a maximal set of indices of at least four collinear cameras -. The existence of a quadric Q-

satisfying conditions 2–3 of Theorem 5.1 directly implies the existence of Qσ satisfying conditions 2-
3 for any subset σ ⊂ -, particularly those of cardinality 4. Towards the other direction, let

! ∈
⋂

σ∈,

LC,σ ,
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and assume that three of F-(!i), i ∈ -, are lines that are not coplanar. Let σ ′ denote a set of three such
indices. Consider σ := σ ′ ∪ {i} ⊆ - for some i ∈ - \ σ ′. There exist quadric surfaces Qσ as in
Theorem 5.1 by assumption. But three such lines determine uniquely a quadric Q by Lemma 5.2, and
therefore Qσ is independent of i, and we have Q- = Qσ . Two cases remain. Firstly, if all F-(!i), i ∈ -,
lie in a common plane P, then the union of P with any plane containing E∗

- su"ces for Qσ . Secondly, if
exactly two F-(!i), i ∈ -, are lines and they are not coplanar, denote by L1, L2 these two lines, and let
P1 = E- ∨ L1 and P2 = E∗

- ∨ L2. We may then take Qσ to be P1 ∪ P2.

Proposition 5.3 implies that in order to obtain polynomial equations cutting out LC it is enough to
obtain equations for LC,σ for every subset σ that consists of either 3 indices or 4 indices that correspond
to 4 collinear cameras. If |σ | = 3, we can use [5, Theorem 2.5] to deduce that LC,σ is cut out by those
3 × 3 minors of the 4 × 3 submatrix of M(!) whose columns are indexed by σ . So, it remains to obtain
equations for LC,σ when σ consists of 4 indices corresponding to 4 collinear cameras.

Without loss of generality, we may assume that

σ = {1, 2, 3, 4}.

We !rst give polynomial equations for when the four lines Fσ (!i) lie on a quadric Qσ as in Theorem 5.1.
We need additional notation. Fix three distinct points f1, f2, f3 on a chosen line E∗

σ that is disjoint from
Eσ , and write f = (f1, f2, f3). We de!ne, for i ∈ σ ,

hi := hi(!) = CT
i !i,

ei(!i) := ci + (hT
i f2)f1 + (hT

i f1)f2. (18)

As long as Fσ (!i) is a line, then ei(!i) is a point on Fσ (!i) which does not lie on Eσ or E∗
σ . This is the

main property of ei(!i) that we will later use. Recalling the (a"ne) Veronese map

. : C4 → C10, (x, y, z, w)T "→ (x2, y2, z2, w2, xy, xz, xw, yz, yw, zw)T ,

we de!ne a 10 × 10 matrix /C,f ,σ (!) ∈ C10×10 by applying . column-wise to the 10 points
c1, c2, c3, f1, f2, f3 and ei(!i) as

/C,f ,σ (!) := .
( [

c1 c2 c3 f1 f2 f3 e1(!1) e2(!2) e3(!3) e4(!4)
] )

.

The next result shows that the line multiview variety for a set of four collinear cameras σ is determined
by rank conditions on M(!) and this 10 × 10 matrix.

Theorem 5.4. Let |σ | = 4 such that the cameras with indices in σ are collinear. As before, let E∗
σ be any

!xed line disjoint from Eσ , and let f = (f1, f2, f3) be three distinct !xed points of E∗
σ . Then,

LC,σ = {! ∈ (P2)m | rank M(!) ≤ 2 and det /C,f ,σ (!) = 0}.

Proof. A quadratic form de!ning Qσ may be written as

q(x, y, z, w) = θT .(x, y, z, w), (19)

for some nonzero vector θ ∈ C10. We recall once again that if three distinct points of a line lie on a
quadric, then the whole line lies on that quadric. Therefore, the conditions

q(ci) = θT .(ci) = 0 and q(fi) = θT.(fi) = 0, i = 1, 2, 3 (20)

hold if and only if Eσ , E∗
σ ⊆ Qσ . This explains the !rst 6 columns of the matrix /C,f ,σ (!), as we aim to

apply Theorem 5.1.
Next, we observe that any point of ci ∨ E∗

σ is of the form (ici + )if1 + γif2, where ((i : )i : γi) ∈ P2.
The points x that lie on Fσ (!i) are those of ci ∨ E∗

σ such that hT
i x = 0 (this follows directly from the

de!nition of Fσ (!i) in (16)). We have

hT
i ((ici + )if1 + γif2) = hT

i ()if1 + γif2) = 0,
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which leaves two alternatives: Either hT
i f1 = hT

i f2 = 0 or

()i : γi) = (+hT
i f2 : hT

i f1).
In the !rst case, we have that Fσ (!i) = ci ∨ E∗

σ is a plane. Otherwise, Fσ (!i) is a line and lies in Qσ if and
only if three distinct point of Fσ (!i) lie in Qσ . Consider the three points ci, ei(!i) and ai := E∗

σ ∩ Fσ (!i).
Under the assumption that qσ (ci) = 0, qσ (fi) = 0 for i = 1, 2, 3 we have seen above that Eσ , E∗

σ ⊆ Qσ .
It follows that ci, aσ ∈ Qσ . Then Fσ (!i) ⊆ Qσ if and only if

qσ (ei(!i)) = θT .(ei(!i)) = 0. (21)
This gives the last 4 columns of the matrix /C,f ,σ (!).

In summary, the quadric Qσ de!ned by (19) satis!es the conditions of Theorem 5.1 if and only if θ

satis!es equations (20) and (21). In other words,
θT/C,f ,σ (!) = 0,

which in turn is equivalent to det /C,f ,σ (!) = 0.

Example 5.5. Let v1, v2, v3, v4 be distinct complex numbers. Consider the four collinear cameras of the
form

Ci =




1 0 0 vi
0 1 0 0
0 0 1 0



 ,

for i ∈ σ = {1, 2, 3, 4}. The centers are ci = [vi : 0 : 0 : +1]. Notice that we may substitute the three
centers c1, c2, c3 with [1 : 0 : 0 : 0], [0 : 0 : 0 : 1] and [1 : 0 : 0 : 1] in the computation of /C,f ,σ (!),
since the corresponding columns are only there to ensure that the associated quadric Qσ contains the
baseline. Choose the line E∗

σ to be spanned by f1 = [0 : 1 : 0 : 0] and f2 = [0 : 0 : 1 : 0]. Letting
f3 = [0 : 1 : 1 : 0], we can then write explicitly

/C,f ,σ (!) =





1 0 1 0 0 0 v2
1 v2

2 v2
3 v2

4
0 0 0 0 0 0 +l3,1v1 +l3,2v2 +l3,3v3 +l3,4v4
0 0 0 0 0 0 l2,1v1 l2,2v2 l2,3v3 l2,4v4
0 0 1 0 0 0 +v1 +v2 +v3 +v4
0 0 0 1 0 1 l23,1 l23,2 l23,3 l23,4
0 0 0 0 0 1 +l2,1l3,1 +l2,2l3,2 +l2,3l3,3 +l2,4l3,4
0 0 0 0 0 0 l3,1 l3,2 l3,3 l3,4
0 0 0 0 1 1 l22,1 l22,2 l22,3 l22,4
0 0 0 0 0 0 +l2,1 +l2,2 +l2,3 +l2,4
0 1 1 0 0 0 1 1 1 1





.

The determinant of this matrix can be rewritten as

det





l3,1v1 l3,2v2 l3,3v3 l3,4v4
l2,1v1 l2,2v2 l2,3v3 l2,4v4
l3,1 l3,2 l3,3 l3,4
l2,1 l2,2 l2,3 l2,4



 .

9

As an extension of IC as de!ned in the introduction, we de!ne
ĨC := 〈3 × 3 minors of M(!)〉 +

∑

σ∈J
〈 det /C,f ,σ (!) 〉, (22)

where J is the collection of index sets σ of four collinear cameras and with f , depending on σ , being
three distinct points of the line E∗

σ . Using Proposition 5.3 and Theorem 5.4, we establish the following
result.
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Corollary 5.6. Set-theoretically, the line multiview variety is cut out by the ideal ĨC .

In [5], a#er the statement of Theorem 2.6, which this section is based on, an example is given of the
set-theoretic constraints for a set of four collinear cameras that have been found through elimination.
Here we expand on this example by adding an additional camera matrix.

Example 5.7. Consider the collinear cameras

C1 =
[ 1 0 0 0

0 1 0 0
0 0 1 0

]
, C2 =

[ 0 1 0 0
0 0 1 0
0 0 0 1

]
, C3 =

[ 1 0 0 +1
0 1 0 0
0 0 1 0

]
, C4 =

[ 1 0 0 1
0 1 0 0
0 0 1 0

]
, C5 =

[ 2 0 0 1
0 1 0 0
0 0 1 0

]
.

The centers ci of Ci lie on the baseline Eτ , τ = {1, 2, 3, 4, 5}, spanned by c1 = [0 : 0 : 0 : 1] and
c2 = [1 : 0 : 0 : 0]. To make the equations below easier to read, we write x = !1, y = !2, z = !3, w = !4
and !5 = u. There are

(5
4
)

= 5 subsets σ ⊂ τ with 4 elements giving us 5 constraints beyond the rank
condition of M(!). These 5 constraints are as follows:

0 = 2x3y2z2w2 + x3y1z3w2 + x2y2z3w2 + x3y1z2w3 + x2y2z2w3 + 2x2y1z3w3,
0 = 3x3y2z2u2 + 2x3y1z3u2 + x2y2z3u2 + x3y1z2u3 + 2x2y2z2u3 + 3x2y1z3w3,
0 = +x3y2w2u2 + 2x3y1w3u2 + x2y2w3u2 + x3y1w2u3 + 2x2y2w2u3 + x2y1w3u3,
0 = +x3z3w2u2 + 3x3z2w3u2 + 2x2z3w3u2 + 2x3z2w2u3 + 3x2z3w2u3 + x2z2w3u3,
0 = y2z3w2u2 + 3y2z2w3u2 + 4y1z3w3u2 + 4y2z2w2u3 + 3y1z3w2u3 + y1z2w3u3.

The ideal IC , in this case, is not prime. Computing a primary decomposition of this ideal in
Macaulay2 [11], there is an associated prime generated by the !ve polynomials above and the !ve
additional polynomials det /C,f ,σ (!). This is the vanishing ideal of LC . 9

5.3. Saturation with respect to the irrelevant ideal

Analogous to Section 2, we de!ne the cone over the line multiview variety for an arbitrary camera
arrangement as the zero set of ĨC :

L̃C := {! ∈ (C3)m | f (!) = 0 for all f ∈ ĨC}
= L̂C ∩

(⋂

σ

{! ∈ (C3)m | det /C,f ,σ (!) = 0}
)

,

where in the second line, L̂C is as in (5) and σ runs over all sets of indices corresponding to four collinear
cameras. The main result of this subsection is that if ĨC is radical, then it is also saturated with respect to
the irrelevant ideal

⋃m
i=1 V(!i).

Proposition 5.8. Consider

XC := {! = (!1, . . . , !m) ∈ L̃C | !i ,= 0 for 1 ≤ i ≤ m}.

The following hold:

1. XC is a Zariski dense subset of L̃C , meaning XC = L̃C .
2. If ĨC is radical, then it is also saturated with respect to the irrelevant ideal

⋃m
i=1 V(!i).

In particular, if no four cameras are collinear we have L̂C = L̃C and IC = ĨC , so that the results of this
proposition hold verbatim for L̂C and IC in this case.

Proof. The !rst part is shown analogously to the !rst part of Lemma 2.2. Note that also in the setting of
this result, the generators of ĨC that do not involve !i, generate the ideal ĨC′ , where C′ is the arrangement
we get by removing Ci from C.



COMMUNICATIONS IN ALGEBRA® 4221

We next deal with saturation, analogously to the proof of Theorem 1.1. Assuming that ĨC is radical,
we have I(L̃C) = ĨC . We conclude by noting that from the !rst part of the proof,

I(L̃C) = I(XC) = I(L̃C \ ∪m
i=1V(!i)) = I(L̃C) :

(
I(∪m

i=1V(!i))︸ ︷︷ ︸
irrelevant

)∞.

5.4. Applying the group action

In Section 4, we have discussed how G = PGL4 × PGLm
3 acts on the ideal IC generated by the 3 × 3-

minors of M(!). Here, we study the action on the additional constraints det /C,σ ,f (!) = 0 from the
previous section.

For h = (H, H1, . . . , Hm) ∈ G, we extend the group action (4) by setting
h · f = (Hf1, Hf2, Hf3),

where f = (f1, f2, f3) is a triple of distinct points on E∗
σ , σ ⊂ [m]. Recall that the action Lh sends !i ∈ P2

to H+T
i !i.

Lemma 5.9. Fix h = (H, H1, . . . , Hm) ∈ GL4 × GLm
3 representing any element of G, and let σ be indices

of four collinear cameras. Then
det /h·C,h·f ,σ (Lh(!)) = det(H)2 · det /C,f ,σ (!).

In particular, the vanishing of det /C,f ,σ (!) is una#ected by coordinate changes.

Proof. First we make the natural identi!cation between C10 and the set of symmetric 4 × 4 matrices
Sym2(C4),

(a1, . . . , a10) ∼=
[ a1 a5 a6 a7a5 a2 a8 a9a6 a8 a3 a10a7 a9 a10 a4

]
.

Then we can identify the Veronese embedding with the map
. : C4 → Sym2(C4),

p "→ p ⊗ p = ppT .
For H ∈ GL4, de!ne the linear map

(H ⊗ H) : Sym2(C4) → Sym2(C4)

A "→ HAHT .
It is easy to check that this map is bijective. We may view (H⊗H) as an invertible linear map C10 → C10,
meaning an invertible 10 × 10 matrix, via the identi!cation above. For any vector p ∈ C4, we can then
write in C10 that .(Hp) = (H ⊗ H).(p).

Observe that the last four columns of /h·C,h·f ,σ (Lh(!)) are, a#er simpli!cation,

.(Hci + (!T
i Cif2) · Hf1 + (!T

i Cif1)Hf2), s = 1, . . . , 4.
The inputs of these expressions can be written Hes(!s), where es(!s) de!ned with respect to (C, f , !).
It follows that every column of /h·C,h·f ,σ (Lh(!)) corresponds to the same column of /C,f ,σ (!), except
multiplied by the invertible matrix (H ⊗ H) from the le#. In other words,

det /h·C,h·f ,σ (Lh(!)) = det(H ⊗ H) · det /C,f ,σ (!).

6. Gröbner bases for collinear cameras

This section is aimed at studying the ideal ĨC introduced in Corollary 5.6 that cuts out the multiview
variety set-theoretically when all centers are collinear. We do this by providing a Gröbner basis for ĨC
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in some special cases and by verifying through the recognition criterion [1, Proposition 2.3] that ĨC is
also the vanishing ideal of the multiview variety. We closely follow the ideas in Section 3.1, which can
be summarized in the following steps: (a) De!ne an ideal that describes an arrangement of collinear
cameras with indeterminate translations, and compute an explicit Gröbner basis for this ideal. (b) Show
that this ideal specializes to the line multiview ideal for “su"ciently generic” translational cameras on
a !xed line. (c) Use the action of the group PGL4 × PGLm

3 and Proposition 4.1 to extend our results to
general collinear camera arrangements.

We note that it is possible to do similar work for con!gurations of centers other than generic and
collinear ones. For the sake of brevity, we restrict to these two cases in this paper, and leave a more
general treatment for future work.

6.1. The indeterminate collinear translation ideal

Here we study an analogue of the 3 × 3 minor ideal IC that is de!ned for a collection of m ≥ 4 partially-
symbolic cameras in a polynomial ring in 4m indeterminates,

C[ℓ, v] = C[!1,1, . . . !3,m, v1, . . . , vm].
The 3m indeterminates !i,j represent homogeneous coordinates on the space of m-tuples of lines (P2)m.
We use the remaining m indeterminates vi to de!ne the tuple of matrices C(v) = (C(v1), . . . , C(vm)) ∈
(C[ℓ, v]3×4)m given by

C(vi) =




1 0 0 vi
0 1 0 0
0 0 1 0



 .

The centers of cameras of this form are (vi : 0 : 0 : +1). Following Theorem 5.4 we de!ne the
indeterminate collinear translation ideal, or ICT ideal as

ĨC(v) :=
〈
3 × 3-minors of

[
C(v1)T!1 · · · C(vm)T!m

]〉
+

∑

σ∈([m]
4 )

〈 det /C(v),f ,σ (!) 〉.

where the matrix /C,f ,σ (!) is as in Theorem 5.4; see also Example 5.5.
Similar to (9) we de!ne < to be the product of GRevLex orders on C[ℓ] and C[v]. Let G̃C(vσ1 ,...,vσk )

denote the reduced Gröbner basis of ĨC(vσ1 ,...,vσk ) with respect to <, corresponding to the subset of
cameras indexed by σ . For brevity, we also write G̃m or G̃C(v) for the Gröbner basis of ĨC(v).

The next proposition shows that analogous to Theorem 1.2, we get a reduced Gröbner basis by taking
the union of smaller Gröbner bases corresponding to all 4-tuples of cameras.

Proposition 6.1. For any m ≥ 4, the reduced Gröbner basis G̃m is equal to the union over all of its
restrictions to subsets of 4 cameras; more precisely,

G̃m =
⋃

σ∈([m]
4 )

G̃C(vσ1 ,...vσ4 ). (23)

We note the following additional properties of G̃m:
P1 No element of G̃m is divisible by any of the variables !1,1, . . . , !3,m.
P2 The leading terms in<(G̃m) are all squarefree monomials.
P3 Suppose f (v) ∈ C[v] is the coe"cient of the leading monomial in C[ℓ] of some element of G̃m. Then f

is of one of the four forms listed below:
i. f (v) = 1, or
ii. f (v) = va + vb, or
iii. f (v) = (va + vb)(vc + vd)
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Figure 4. Computing G̃m for m = 8 in Macaulay2.

Proof of Proposition 6.1. The statement and its proof are analogous to Theorem 3.3 and Proposition 3.4,
respectively. As before, we take the following two steps:

1. Verify computationally with the Macaulay2 [11] script from Figure 4 that G̃m has the desired form
and that P1, P2, P3 hold for 4 ≤ m ≤ 8.

2. Deduce that the statement holds for all m because the S-pairs of two elements in G̃m will never involve
more than 8 cameras.

Remark. We could analogously choose to de!ne C(vi) by replacing the column (vi, 0, 0)T by (0, vi, 0)T

or (0, 0, vi)T . However, note that in the last case, we would need to adjust the choice of order on C[ℓ, v].

6.2. Specialization to generic collinear translational cameras

Following the same argument and notation presented in Section 3.2 we transfer what we know about the
ICT ideal to a generic arrangement of collinear cameras. For this, we !rst de!ne for a !xed u ∈ Cm and
analogous to (12) the ring homomorphism

φu : C[ℓ, v] → C[ℓ]

which evaluates the v variables at u. The !rst main result is the following theorem.

Theorem 6.2. Let u ∈ Cm be a vector of distinct numbers, or equivalently such that C(u) has distinct
camera centers. Let G̃m be the Gröbner basis from Proposition 6.1. Then, the specialization φu(G̃m) is a
Gröbner basis for the ideal ĨC(u).
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Proof. It follows from [6, Theorem 2, p. 220] that, if none of the leading coe"cients in v that appear
G̃m vanish at u, then φu(G̃m) the Gröbner basis for φu(̃IC(v)) = ĨC(u). Because the camera centers are
distinct, none of the leading coe"cients presented in the statement of Proposition 6.1 vanish.

Proposition 6.3. With u ∈ Cm as above, the ideal ĨC(u) is radical.

Proof. The property P2 in Proposition 6.1 and Theorem 6.2 gives us a Gröbner basis for ĨC(u) whose
leading terms are squarefree. The result now follows by [1, Proposition 2.2].

Finally, we prove a variant of Theorem 1.1 for m collinear cameras.

Theorem 6.4. Let m ≥ 4, and consider a camera arrangement C(u) with m distinct camera centers. Then
ĨC(u) is the vanishing ideal of the corresponding multiview variety:

ĨC(u) = I(LC(u)).

Proof. We !rst consider the case of a collinear translational camera arrangement, C(u) =
(C(u1), . . . , C(um)), that has distinct camera centers. To show that ĨC(u) is the vanishing ideal, we use a
multiprojective form of the Nullstellensatz (see e.g. [1, Proposition 2.3]).

In Section 5, we showed that ĨC(u) cuts out the variety set-theoretically. We also showed that ĨC(u)

is radical (Proposition 6.3), and thus saturated with respect to the irrelevant ideal (Proposition 5.8).
Therefore, ĨC(u) is the vanishing ideal of the line multiview variety.

Corollary 6.5. Any arrangement of collinear cameras C has ĨC as its vanishing ideal.

Proof. Up to G-equivalence, we prove that collinear cameras have the form

C(ui) =




1 0 0 ui
0 1 0 0
0 0 1 0



 . (24)

Combining Theorem 6.4, Proposition 4.1, and Lemma 5.9 the result follows.
To begin with, we use a matrix H ∈ PGL4 to transform any collinear camera arrangement into a form

where the centers are of the form (ui : 0 : 0 : +1). Then, !x a camera Ci = [Ai|ti] in the arrangement ,
where Ai ∈ C3×3 and ti ∈ C3. Since the kernel is of the form (ui : 0 : 0 : +1), ti is a scaling of the !rst
column of Ai. So if det(Ai) = 0, then Ci would be at most of rank 2. It follows that Ai ∈ GL3 and A+1

i Ci
is of the form (24). We are now done by letting h = (H, A+1

1 , . . . , A+1
m ).
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