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ABSTRACT
We revisit the problem of certifying the correctness of approximate
solution paths computed by numerical homotopy continuation
methods. We propose a conceptually simple approach based on a
parametric variant of the Krawczyk method from interval arith-
metic. Unlike most previous methods for certi"ed path-tracking,
our approach is applicable in the general setting of parameter homo-
topies commonly used to solve polynomial systems of equations.We
also describe a novel preconditioning strategy and give theoretical
correctness and termination results. Experiments using a prelimi-
nary implementation of the method indicate that our approach is
competitive with specialized methods appearing previously in the
literature, in spite of our more general setting.

CCS CONCEPTS
• Mathematics of computing → Computations on polynomi-
als; Interval arithmetic; Solvers; Nonlinear equations; • Theory
of computation → Design and analysis of algorithms.
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1 INTRODUCTION
Homotopy continuation is a popular method for "nding solutions to
a system of nonlinear equations. The main idea involves a system
𝐿 (𝑀) : C𝐿 → C𝐿 for which we already know the solutions (points 𝑀
with 𝐿 (𝑀) = 0), and tracking these solutions towards the solutions
of another system 𝑁 (𝑀) : C𝐿 → C𝐿 that we wish to solve. This
is done by constructing a homotopy 𝑂 (𝑀, 𝑃) : C𝐿 ↑ [0, 1] → C𝐿

such that 𝑂 (𝑀, 0) = 𝐿 (𝑀) and 𝑂 (𝑀, 1) = 𝑁 (𝑀). In many cases of
interest, 𝑁 and 𝐿 are both polynomial systems with "nitely many
nonsingular solutions. The homotopy is typically constructed such
that the solutions to 𝑂 (𝑀 (𝑃), 𝑃) = 0 are implicit functions of 𝑃, each
represented by a smooth solution path 𝑀 (𝑃) : [0, 1] → C𝐿 .
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To track values of a solution path 𝑀 (𝑃) numerically from 𝑃 = 0 to
𝑃 = 1, it is common to use a numerical predictor-corrector method
[18, Chapter 2.3]. When an approximation 𝑀0 for a solution 𝑀 (𝑃0)
to 𝑂 (𝑀, 𝑃0) is available, the path tracking proceeds when we "nd an
approximation 𝑀1 for a solution 𝑀 (𝑃1) to 𝑂 (𝑀, 𝑃1) for some 𝑃1 > 𝑃0.
The predictor-corrector method consists of a step constructing a
rough approximation for 𝑀 (𝑃1) (a predictor step, e.g. Euler’s method)
and a step re"ning this approximation (a corrector step, typically a
variant of Newton’s method).

For a system 𝑁 (𝑀) : C𝐿 → C𝐿 , we say that 𝑀 ↓ C𝐿 is certi!ed
if 𝑀 is contained in a small region which also contains a unique
solution 𝑀𝐿, and if 𝑀 can be re"ned to be arbitrarily close to 𝑀𝐿

using a "nite procedure (such as Newton’s method).
The main problem addressed in this paper is certi!ed homotopy

tracking: given a homotopy 𝑂 (𝑀, 𝑃) and an initial solution 𝑀 (0)
at time 𝑃 (0) = 0, rigorously certify a sequence of approximations
𝑀1, . . . , 𝑀𝑀 to values of a solution path 𝑀 (𝑃 (1) ), . . . , 𝑀 (𝑃 (𝑀 ) ) at dis-
crete time-steps 𝑃 (1) < . . . < 𝑃 (𝑀 ) = 1 along with proving the
existence and uniqueness of the solution path 𝑀 (𝑃) along each inter-
val [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ] (that is, constructing an interval box 𝑄 (𝑁 ) in C𝐿 that
contains 𝑀 (𝑃) uniquely for all 𝑃 ↓ [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ]). If this is achieved,
we say that 𝑀 (𝑃) is a certi!ed solution path. In particular, it is not
enough to certify that the "nal approximation 𝑀𝑀 is near some solu-
tion of 𝑁 using a posteriori methods (e.g. [4, 5, 10, 13, 14]). We must
show that the true solution approximated by 𝑀𝑀 is in fact 𝑀 (1) .

The contributions of this paper can be summarized as follows:

Theorem 1.1. Algorithms 1 and 3, when they terminate, return
certi"ed paths for a square linear parameter homotopy.

Corollary 1.2. For a given certi"ed homotopy path 𝑀 (𝑃) for a
homotopy 𝑂 (𝑀, 𝑃) : C𝐿 ↑ [0, 1] → C𝐿 with 𝑀0 approximating 𝑀 (0),
𝑀𝑀 is a certi"ed solution to 𝑂 (𝑀, 1) that can be re"ned to 𝑀 (1).

There have been a number of previous studies in certi"ed homo-
topy tracking. For polynomial systems, Beltrán and Leykin [1, 2]
give a certi"ed homotopy tracking algorithm based on Smale’s
alpha theory [3, Chapter 8], mostly tuned to the “generic” case
of total-degree homotopies involving dense polynomials. Another
noteworthy contribution [9] considers the special case of “Newton
homotopies”, where𝑂 (𝑀, 𝑃) = 𝑁 (𝑀) + (1↔𝑃)𝑅 for some "xed 𝑅 ↓ C𝐿 .

Yet another class of certi"ed homotopymethods involves interval
arithmetic. Early work of Kearfott and Xing [12] proposes a general
solution where intervals enclosing the solution path at every time-
step are constructed. More sophisticated variants have since been
proposed, e.g. in [19], for the case of univariate polynomials in [20],
and most recently in the remarkable preprint [8]. Two appealing
aspects of these interval-based methods are that they (1) naturally
accommodate systems 𝑁 ,𝐿 represented as straight-line programs
(also known as algebraic circuits), and (2) generally involve the
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Krawczyk method [13], whose a posteriori certi"cates may be easier
to verify than those coming from alpha-theory.

In this paper, we propose an interval-based Krawczyk homo-
topy for certi"ed homotopy tracking. After reviewing preliminaries
in Section 2, we consider two Krawczyk homotopy variants in Sec-
tion 3: a base-line method (Algorithm 1) illustrating main ideas,
and a more e!ective “tilted” variant (Algorithm 3) based on a novel
preconditioning step. Section 4 addresses correctness and termi-
nation for these variants. To simplify our analysis in this section,
we consider only a#ne-linear homotopies and assume a model of
computation allowing exact computation with real numbers. In
Section 5, the experimental results using a proof-of-concept imple-
mentation are presented, demonstrating favorable performance for
our “tilted” variant.

2 PRELIMINARIES
2.1 Interval arithmetic
Interval arithmetic performs conservative computation for certi"ed
results by arithmetic between intervals. Speci"cally speaking, for
an arithmetic operator ↗ and two intervals 𝑄1 and 𝑄2, we de"ne

𝑄1 ↗ 𝑄2 := {𝑀 ↗ 𝑆 | 𝑀 ↓ 𝑄1,𝑆 ↓ 𝑄2}.
There are formulas for the interval version of standard arithmetic
operations. Thus, for example

[𝑇,𝑈] + [𝑉,𝑊] = [𝑇 + 𝑉,𝑈 + 𝑊] .
For more details, see [15]. These operations cannot be computed
exactly when the endpoints 𝑇, . . . ,𝑊 are represented in $oating
point, in which case the resulting intervals must be rounded out-
ward. Since our analysis in Section 4 assumes exact real number
computation, such concerns do not play a signi"cant role in this
paper.

Although it is natural to consider the concepts of intervals
with real numbers, interval arithmetic can be extended to com-
plex numbers by introducing intervals for real and imaginary parts.
In other words, we consider intervals 𝑄1 = ↘(𝑄1) + 𝑋≃(𝑄1) and
𝑄2 = ↘(𝑄2) + 𝑋≃(𝑄2). Then, based on interval arithmetic over R, we
may de"ne interval arithmetic over C as follows:

𝑄1 + 𝑄2 = (↘(𝑄1) +↘(𝑄2)) + 𝑋 (≃(𝑄1) + ≃(𝑄2))
𝑄1 ↔ 𝑄2 = (↘(𝑄1) ↔↘(𝑄2)) + 𝑋 (≃(𝑄1) ↔ ≃(𝑄2))
𝑄1 · 𝑄2 = (↘(𝑄1) ·↘(𝑄2) ↔ ≃(𝑄1) · ≃(𝑄2))

+ 𝑋 (↘(𝑄1) · ≃(𝑄2) + ≃(𝑄1) ·↘(𝑄2))

𝑄1/𝑄2 =
↘(𝑄1) ·↘(𝑄2) + ≃(𝑄1) · ≃(𝑄2)
↘(𝑄2) ·↘(𝑄2) + ≃(𝑄2) · ≃(𝑄2)

+ 𝑋≃(𝑄1) ·↘(𝑄2) ↔↘(𝑄1) · ≃(𝑄2)
↘(𝑄2) ·↘(𝑄2) + ≃(𝑄2) · ≃(𝑄2)

if 0 ω 𝑄2 .

From now on, we consider the intervals over C and interval arith-
metic over complex numbers unless otherwise mentioned.

Let 𝑄 = (𝑄1, . . . , 𝑄𝐿) be an 𝑌-dimensional interval box in C𝐿 . For
a function 𝑍 : C𝐿 → C with 𝑌 variables, we de"ne an interval
extension ↭𝑍 (𝑄 ) of 𝑍 over 𝑄 to be an interval in C satisfying that

↭𝑍 (𝑄 ) ⇐ {𝑍 (𝑀) | 𝑀 ↓ 𝑄 }.
In other words, we need ↭𝑍 (𝑄 ) to be an interval containing the
image of 𝑍 on 𝑄 . Also, for a point 𝑀 = (𝑀1, . . . , 𝑀𝐿) ↓ C𝐿 , we

denote by 𝑀 not only the point itself but also the interval box
[↘(𝑀),↘(𝑀)] + 𝑋 [≃(𝑀),≃(𝑀)], so that ↭𝑍 (𝑀) is well-de"ned. For
a given function 𝑍 and an interval box 𝑄 , an interval extension
↭𝑍 (𝑄 ) is not unique since interval arithmetic may return di!erent
outputs depending on how 𝑍 is evaluated on 𝑄 . For polynomials,
such interval extensions are obtained by interval arithmetic.

For an interval 𝑄 = [𝑇,𝑈] over R, the width 𝑎 (𝑄 ) of 𝑄 is de"ned
by 𝑎 (𝑄 ) = 𝑈 ↔ 𝑇. If an interval 𝑄 is given over C, we de"ne the
absolute value of 𝑄 by |𝑄 | = max

𝑂↓𝑃
|𝑀 |. For an 𝑌-dimensional interval

box 𝑄 = (𝑄1, . . . , 𝑄𝐿), the max norm is de"ned by ⇒𝑄 ⇒ = max
𝑁=1,...,𝐿

|𝑄𝑁 |. If
𝑄 = (𝑄1, . . . , 𝑄𝐿) is a square 𝑌-dimensional interval box over C, i.e.
one satisfying

𝑎 (↘(𝑄1)) = 𝑎 (≃(𝑄1)) = · · · = 𝑎 (↘(𝑄𝐿)) = 𝑎 (≃(𝑄𝐿)),

then we de"ne the radius of 𝑄 by 𝑄 (↘(𝑃𝐿 )
2 for any 𝑋 = 1, . . . ,𝑌. We

also de"ne an interval matrix whose entries are given by intervals.
Note that an𝑏 ↑ 𝑌 interval matrix 𝑐 can be considered as a set
of𝑏 ↑ 𝑌 matrices whose 𝑋 𝑑 entry is contained in the interval𝑐𝑁 𝑅 .
The interval matrix norm ⇒𝑐 ⇒ is de"ned by the maximum operator
norm of a matrix in𝑐 under the max norm. In other words, ⇒𝑐 ⇒ =
max
𝑆↓𝑇

max
𝑂↓C𝑀

⇒𝑆𝑂 ⇒
⇒𝑂 ⇒ where ⇒𝑀 ⇒ = max

𝑁=1,...,𝐿
|𝑀𝑁 |.

2.2 Krawczyk method
The Krawczyk method combines interval arithmetic and the gen-
eralized Newton’s method to prove the existence and uniqueness
of a solution within a region for a square system of equations. Al-
though the Krawczyk method is introduced only for real variables
in most literature, we state the result in the complex setting. Subtle
di!erences in the Krawczyk method in the complex setting are
introduced and analyzed in [5].

Let 𝑁 : C𝐿 → C𝐿 be a polynomial system. For a point 𝑀 ↓ C𝐿 ,
an 𝑌-dimensional interval vector 𝑄 and an invertible matrix 𝑒 , we
de"ne the Krawczyk operator

𝑓𝑂,𝑈 (𝑄 ) := 𝑀 ↔ 𝑒 · 𝑁 (𝑀) + (1𝐿 ↔ 𝑒 · ↭𝑔 𝑁 (𝑄 )) · (𝑄 ↔ 𝑀)
where 1𝐿 is the𝑌↑𝑌 identity matrix.We have the following theorem.

Theorem 2.1. [13] Suppose that 𝑁 : C𝐿 → C𝐿 is a square di!eren-
tiable system with a given interval extension ↭𝑔 𝑁 (𝑄 ) on an interval
𝑄 . For an 𝑌 ↑ 𝑌 invertible matrix 𝑒 and a point 𝑀 ,

(1) if 𝑓𝑂,𝑈 (𝑄 ) ⇑ 𝑄 , then 𝑄 contains a solution 𝑀𝐿 of 𝑁 , and
(2) if additionally

⇓
2⇒1𝐿 ↔ 𝑒 · ↭𝑔 𝑁 (𝑄 )⇒ < 1, then the solution

𝑀𝐿 in 𝑄 is unique.

Note that the "rst part of the theorem proves the existence of the
solution in the region 𝑄 , and the second part proves its uniqueness.
The

⇓
2 factor in Theorem 2.1 (2) is used for the Krawczyk method

in the complex setting. When the theorem is applied to inputs over
the real, satisfying ⇒1𝐿 ↔ 𝑒 · ↭𝑔 𝑁 (𝑄 )⇒ < 1 is su#cient to prove the
uniqueness.

In the actual application of the theorem, the invertible matrix 𝑒
is chosen to minimize the norm ⇒1𝐿 ↔ 𝑒 · ↭𝑔 𝑁 (𝑄 )⇒. In the absence
of additional details about the system 𝑁 , it is common to use the
midpoint of a given interval 𝑄 as the value for 𝑀 and 𝑔 𝑁 (𝑀)↔1 for 𝑒 .
Also, the interval extension ↭𝑁 (𝑀) often replaces 𝑁 (𝑀) since exactly
evaluating 𝑁 (𝑀) may not be feasible in usual cases.
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3 ALGORITHMS
We present the algorithmic framework for certi"ed homotopy con-
tinuation using the Krawczykmethod. Two algorithms are proposed
depending on the path prediction strategy. The "rst algorithm is
a prototypical version of the Krawczyk homotopy continuation
based on the constant predictor. The second algorithm adopts a
preconditioning step for more sophisticated path prediction. Elab-
orating on each step in the "rst algorithm, we describe the main
idea of the Krawczyk homotopy. After that, the algorithm with the
preconditioning step is proposed to improve the "rst algorithm.
Both variants rely on three hyper-parameters which must be set in
advance: initial values for the step-size 𝑊𝑃 and a radius parameter 𝑕
controlling the sizes of interval boxes, and a scaling parameter 𝑖
used to update these values.

In applications, we are often interested in systems with parame-
ters, 𝑁 (𝑀 ;𝑗) : C𝐿↑C𝑉 → C𝐿 . The case of the homotopy𝑂 (𝑀, 𝑃) = 0
is a special case with 𝑗 = 𝑃 and𝑏 = 1. On the other hand, systems
with parameters are often solved using parameter homotopies [18,
Chapter 8]. For two points 𝑗0, 𝑗1 ↓ C𝑉 , we consider a path 𝑗 (𝑃) in
the parameter space such that 𝑗 (0) = 𝑗0 and 𝑗 (1) = 𝑗1. We de"ne
a parameter homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀 ;𝑗 (𝑃)). Let 𝑀 (𝑃) be a solution
path of homotopy 𝑂 (𝑀, 𝑃). We assume that the solution path 𝑀 (𝑃)
is nonsingular; that is, the Jacobian 𝑔 𝑁 (𝑀 (𝑃); 𝑗 (𝑃)) is invertible for
all 𝑃 ↓ [0, 1]. In a typical application of parameter homotopies,
we further assume that solutions of the start system 𝑁 (𝑀 ;𝑗0) are
known in advance at least approximately.

The goal of the Krawczyk homotopy algorithm is to construct
a "nite sequence of time-steps 0 = 𝑃 (0) < 𝑃 (1) < · · · < 𝑃 (𝑀 ) = 1
and a collection of 𝑘 interval boxes 𝑄 (1) , . . . , 𝑄 (𝑀 ) contained in C𝐿

such that each 𝑄 (𝑁 ) ↑ [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ] is veri"ed to enclose only a single
solution path 𝑀 (𝑃) from 𝑃 = 𝑃 (𝑁↔1) to 𝑃 = 𝑃 (𝑁 ) . By accomplishing
this goal, we obtain a certi"ed solution to 𝑁 (𝑀 ; 𝑗1) through the
re"nement of a point in the last interval box 𝑄 (𝑀 ) . We point out that
each 𝑃 (𝑁 ) and 𝑄 (𝑁 ) are computed by previously obtained 𝑃 (𝑁↔1) and
𝑄 (𝑁↔1) . In each subsection, we elaborate on steps from computing
the time sequence and collection of interval boxes to "nalizing the
algorithm.

3.1 Initialization step
The algorithm "rst initializes an interval box containing the known
solution and time-step to compute the next interval box. For a
point 𝑀0 ↓ C𝐿 approximating a solution 𝑀 (0) of 𝑂 (𝑀, 0) = 𝑁 (𝑀 ;𝑗0),
we construct an 𝑌-dimensional interval box 𝑄 (1) enclosing 𝑀0. In
addition, we wish to have a proper 𝑃 (1) ↓ (0, 1) such that 𝑄 (1) ↑
[0, 𝑃 (1) ] contains the solution path 𝑀 (𝑃) uniquely from 𝑃 = 0 to
𝑃 = 𝑃 (1) . In general, information for an e!ective guess of 𝑄 (1)

and 𝑃 (1) may not be available. Hence, the interval box 𝑄𝑊 with the
midpoint 𝑀0 and the radius 𝑕 for some 𝑕 > 0 can be a natural choice
for 𝑄 (1) . Furthermore, we begin with some 𝑊𝑃 ↓ (0, 1), preferably
not too small or large compared to 𝑕 , and set 𝑃 (1) = 𝑊𝑃 . For a simple
explanation of iterative steps in the algorithm, we introduce the
notations 𝑃0 = 𝑃 (0) , 𝑃1 = 𝑃 (1) , 𝑄 = 𝑄 (1) and write 𝑄 in place of 𝑄𝑊 .

3.2 Krawczyk test step
The main task for this step is proving the existence and uniqueness
of the solution path, i.e. (𝑀 (𝑃), 𝑃) ↓ 𝑄 ↑ [𝑃0, 𝑃1] for all 𝑃 ↓ [𝑃0, 𝑃1],with
the interval box 𝑄 and 𝑃0, 𝑃1 obtained from the previous step. We
establish a parametric version of the Krawczyk method to certify
all points in a certain path de"ned on some closed time interval.

Let us consider a homotopy 𝑂 (𝑀, 𝑃) : C𝐿 ↑ [0, 1] → C𝐿 with a
parameter 𝑃 ↓ [0, 1] and a solution path 𝑀 (𝑃). For an 𝑌-dimensional
interval box 𝑄 in C𝐿 and an interval 𝑙 ⇑ [0, 1], the parametric
Krawczyk method applies the Krawczyk method on 𝑄 to the interval
extension ↭𝑂 (𝑀,𝑙 ), which is obtained by evaluating 𝑂 (𝑀, 𝑃) on
𝑙 only for 𝑃 variable. The results of the Krawczyk method with
parameters are summarized in the theorem below:

Theorem 3.1. Let 𝑂 (𝑀, 𝑃) : C𝐿 ↑ [0, 1] → C𝐿 . Consider intervals
𝑄 ⇑ C𝐿 and 𝑙 ⇑ [0, 1]. For a point 𝑀 ↓ C𝐿 and an 𝑌 ↑ 𝑌-invertible
matrix 𝑒 , de"ne

𝑓𝑂,𝑈 (𝑄 ,𝑙 ) := 𝑀 ↔ 𝑒 · ↭𝑂 (𝑀,𝑙 ) + (1𝐿 ↔ 𝑒 · ↭𝑚𝑂𝑂 (𝑄 ,𝑙 )) · (𝑄 ↔ 𝑀)
where 𝑚𝑂𝑂 is the Jacobian of 𝑂 with respect to 𝑀 variables. Then,

(1) if 𝑓𝑂,𝑈 (𝑄 ,𝑙 ) ⇑ 𝑄 , then 𝑄 contains a solution to 𝑂 (𝑀, 𝑃) for
each 𝑃 ↓ 𝑙 , and

(2) if additionally
⇓
2 ⇒1𝐿 ↔ 𝑒 · ↭𝑚𝑂𝑂 (𝑄 ,𝑙 )⇒ < 1, then 𝑄 contains

a unique solution to 𝑂 (𝑀, 𝑃) for each 𝑃 ↓ 𝑙 .

P!""#. For a "xed parameter value 𝑃 ↓ 𝑙 , de"ne 𝑁 (𝑀) := 𝑂 (𝑀, 𝑃).
Let 𝑓𝑂,𝑈 ,𝑋 (𝑄 ) be the Krawczyk operator for 𝑁 on 𝑄 . In this case,
𝑓𝑂,𝑈 ,𝑋 (𝑄 ) ⇑ 𝑓𝑂,𝑈 (𝑄 ,𝑙 ) and 1𝐿 ↔ 𝑒 · ↭𝑔 𝑁 (𝑄 ) ⇑ 1𝐿 ↔ 𝑒 · ↭𝑚𝑂𝑂 (𝑄 ,𝑙 )
for any 𝑃 ↓ 𝑙 . Applying Theoerm 2.1 at each 𝑃 ↓ 𝑙 , the result
follows. ↭

To apply the parametric Krawczyk method, we compute the
invertible matrix 𝑒 = 𝑚𝑂𝑂 (𝑀0, 𝑃0)↔1 and de"ne the time interval
𝑙𝑌0,𝑍𝑌 = [𝑃0, 𝑃1]. From the Krawczyk operator 𝑓𝑂0,𝑈 (𝑄 ,𝑙𝑌0,𝑍𝑌 ), the
existence and uniqueness of 𝑀 (𝑃) can be veri"ed for all 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 .

3.3 Successful Krawczyk step
If the parametric Krawczyk test passes, we proceed to track the
solution path 𝑀 (𝑃) as long as 𝑃1 < 1. To proceed to the next iteration,
we set 𝑃0 = 𝑃1. For a "xed scaling constant 𝑖 > 1, we update𝑊𝑃 = 𝑖𝑊𝑃 ,
𝑕 = 𝑖𝑕 , and 𝑃1 = 𝑃0 + 𝑊𝑃 . The purpose of scaling is for adaptive
choice of both 𝑊𝑃 and 𝑕 . If the Krawczyk test from the previous step
is successful, it may be feasible to proceed with a larger step size
𝑊𝑃 , thereby facilitating rapid path tracking. However, a relatively
larger 𝑊𝑃 compared to 𝑕 can increase the possibility of failure of the
Krawczyk test; hence 𝑕 should be scaled similarly. The importance
of this simultaneous scaling of 𝑊𝑃 and 𝑕 is mentioned again in the
proof of Theorem 4.1.

After the scaling of 𝑊𝑃 and 𝑕 , we apply Newton’s method at the
midpoint of 𝑄𝑊 to update a point 𝑀0 approximating the solution
𝑀 (𝑃0) to 𝑂 (𝑀, 𝑃0). After that, repeat the Krawczyk test step.

3.4 Failed Krawczyk step
There are scenarios in which the Krawczyk test fails. The existence
test fails when the solution path deviates from the interval box 𝑄𝑊 for
some 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 . On the other hand, the uniqueness test might fail if
another solution path enters 𝑄 at some 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 . These scenarios
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•

•
•

𝑃

•
𝑃 = 0

𝑃 (𝑁↔1)
𝑃 (𝑁 ) = 𝑃 (𝑁↔1) + 𝑊𝑃

𝑃 (𝑁+1) = 𝑃 (𝑁 ) + 𝑖𝑊𝑃

•
𝑃 = 1

Figure 1: An illustration of Algorithm 1. Solid red lines rep-
resent the midpoint of each interval box 𝑄𝑊 . Dotted red lines
show the corrector step producing the next midpoint.

may be resolved by updating 𝑊𝑃 = 1
𝑎𝑊𝑃 and 𝑕 =

1
𝑎 𝑕 , and repeating

the parametric Krawczyk test.

3.5 Finalization step
Assume that the previous Krawczyk test succeeds with an updated
value of 𝑃0 ⇔ 1. In this case, we re"ne the midpoint of 𝑄𝑊 with
the system 𝑂 (𝑀, 1) = 𝑁 (𝑀 ;𝑗1) using Newton’s method, and return
the re"ned solution. The process described in Sections ?? to 3.5 is
summarized in Algorithm 1, and illustrated in Figure 1.

3.6 Preconditioning step (Algorithms 2 and 3)
Note that Algorithm 1 employs the interval 𝑄 ↑𝑙 in a rectangular
shape. This approach implicitly assumes that the midpoint of 𝑄𝑊
is close enough to the solution path 𝑀 (𝑃) for all 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 . When
the solution path rapidly changes, the algorithm requires frequent
reduction of 𝑊𝑃 and 𝑕 , resulting in slow tracking progress. The
preconditioning step discussed in this section adopts more proactive
and e#cient path prediction for an improved algorithm.

The preconditioning step from 𝑃 = 𝑃0 to 𝑃 = 𝑃1 is summarized
in Algorithm 2 below. This preconditioning step will be executed
before every step involving a Krawczyk test. We assume that an
approximation 𝑀0 of 𝑀 (𝑃0) is known, and 𝑄𝑊 is an 𝑌-dimensional in-
terval box whose midpoint is the origin and radius is 𝑕 . Furthermore,
we have 𝑃1 = 𝑃0 + 𝑊𝑃 for some 𝑊𝑃 from the previous step.

We "nd a point 𝑀1 approximating 𝑀 (𝑃1) using the predictor-
corrector method. De"ne the line segment 𝑛 (𝑃) in C𝐿 ↑ [0, 1] such
that 𝑛 (𝑃0) = 𝑀0 and 𝑛 (𝑃1) = 𝑀1. We use this as a prediction of 𝑀 (𝑃)
from 𝑃 = 𝑃0 to 𝑃 = 𝑃1. Compared to Algorithm 1, we de"ne the tilted
interval to be the Minkowski sum 𝑛 (𝑃) + 𝑄𝑊 . Just as interval boxes
in previous sections used approximate solutions as midpoints, the
tilted interval encloses the line segment 𝑛 (𝑃).

Note that the shape of this tilted interval will be a parallelepiped
so that each edge of the interval can be represented by some linear
function in 𝑃 . Intuitively, tilting seems to o!er the advantage of a
“"rst-order” approximation of the solution path. However, applying

Algorithm 1 Krawczyk homotopy

Input: • A parameter homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀 ; 𝑗 (𝑃)) : C𝐿 ↑
[0, 1] → C𝐿 analytic in 𝑀 and linear in 𝑗 ,

• a point 𝑀0 approximating 𝑀 (0), for some nonsingular solution
path 𝑀 (𝑃) : [0, 1] → C𝐿 such that 𝑂 (𝑀 (𝑃), 𝑃) = 0,

• a positive number 𝑕 > 0 for the initial radius,
• a time-step size 𝑊𝑃 ↓ (0, 1), and
• a scaling constant 𝑖 > 1.

Output: A certi"ed approximation of 𝑀 (1).
1: De"ne an interval box 𝑄𝑊 centered at 𝑀0 with radius 𝑕 .
2: Set 𝑃0 = 0, 𝑃1 = 𝑊𝑃 and 𝑙𝑌0,𝑍𝑌 = [𝑃0, 𝑃1].
3: Compute 𝑒 := 𝑚𝑂𝑂 (𝑀0, 𝑃0)↔1.
4: while 𝑃0 < 1 do
5: Run Krawczyk test with 𝑓𝑂0,𝑈 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ).
6: if Krawczyk test passed then
7: Set 𝑕 = 𝑖𝑕 and 𝑊𝑃 = 𝑖𝑊𝑃 .
8: Set 𝑃0 = 𝑃1, and 𝑃1 = 𝑃0 + 𝑊𝑃 .
9: Re"ne the midpoint of 𝑄𝑊 with 𝑂 (𝑀, 𝑃0) to approximate

𝑀 (𝑃0) and set it as 𝑀0.
10: Compute 𝑒 := 𝑚𝑂𝑂 (𝑀0, 𝑃0)↔1.
11: Set an interval box 𝑄𝑊 centered at 𝑀0 with radius 𝑕 , and

𝑙𝑌0,𝑍𝑌 = [𝑃0, 𝑃1].
12: else
13: Set 𝑕 = 1

𝑎 𝑕 and 𝑊𝑃 =
1
𝑎𝑊𝑃 .

14: Set 𝑃1 = 𝑃0 + 𝑊𝑃 .
15: Set an interval box 𝑄𝑊 centered at 𝑀0 with radius 𝑕 , and

𝑙𝑌0,𝑍𝑌 = [𝑃0, 𝑃1].
16: end if
17: end while
18: Re"ne the midpoint of 𝑄𝑊 with 𝑂 (𝑀, 1), and return it.

••

••

𝑀0

𝑀 (𝑃0)

𝑀1

𝑀 (𝑃1)

Figure 2: An illustration of the preconditioning in Algo-
rithm 2. The point 𝑀0 is an approximation of 𝑀 (𝑃0). The blue
line represents the predictor step, and the blue dotted line
represents the corrector step to get an approximation 𝑀1 of
𝑀 (𝑃1). The line segment 𝑛 (𝑃) connecting 𝑀0 and 𝑀1 is presented
by the red line. The tilted interval box is centered at 𝑛 (𝑃) at
each 𝑃 ↓ [𝑃0, 𝑃1] with the same radius.

the Krawczykmethod on a tilted interval boxmight incur signi"cant
overestimation due to the conservative nature of interval arithmetic.
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To prevent this issue, we de"ne a new homotopy 𝑂̂ (𝑀, 𝑃) = 𝑂 (𝑀 +
𝑛 (𝑃), 𝑃) which is obtained by change of coordinates via the shearing
map (𝑀, 𝑃) ↖→ (𝑀 + 𝑛 (𝑃), 𝑃). This new homotopy satis"es 𝑂̂ (0, 𝑃0) =
𝑂̂ (0, 𝑃1) = 0. In the transformed coordinates, the line segment 𝑛 (𝑃)
is parametrized by (0, . . . , 0, 𝑃) for 𝑃 ↓ [𝑃0, 𝑃1]. We may then apply
the parametric Krawczyk method on 𝑄𝑊 to ↭𝑂̂ (𝑀, [𝑃0, 𝑃1]). This step
is described in Algorithm 2 and illustrated in Figure 2. After this
pre-processing, we conduct the Krawczyk test step.

Algorithm 2 Preconditioning

Input: • A parameter homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀 ; 𝑗 (𝑃)) : C𝐿 ↑
[0, 1] → C𝐿 analytic in 𝑀 and linear in 𝑗 ,

• a point 𝑀0 approximating 𝑀 (0), for some nonsingular solution
path 𝑀 (𝑃) : [0, 1] → C𝐿 such that 𝑂 (𝑀 (𝑃), 𝑃) = 0,

• a positive number 𝑕 > 0 for the radius, and
• two positive constants 𝑃0, 𝑃1 ↓ [0, 1] with 𝑃0 < 𝑃1.

Output: • A point 𝑀1 approximating 𝑀 (𝑃1),
• a homotopy 𝑂̂ (𝑀, 𝑃),
• an interval box 𝑄𝑊 , and
• a time interval 𝑙𝑌0,𝑍𝑌 ⇑ [1, 0].

1: Find a point 𝑀1 approximating 𝑀 (𝑃1) using the predictor-
corrector method.

2: Compute the line segment 𝑛 (𝑃) such that 𝑛 (𝑃0) = 𝑀0 and 𝑛 (𝑃1) =
𝑀1.

3: De"ne 𝑂̂ (𝑀, 𝑃) = 𝑂 (𝑀 + 𝑛 (𝑃), 𝑃) so that 𝑂̂ (0, 𝑃0) and 𝑂̂ (0, 𝑃1)
approximate 0.

4: Set an interval vector 𝑄𝑊 centered at 0 with the radius 𝑕 , and a
time interval 𝑙𝑌0,𝑍𝑌 = [𝑃0, 𝑃1].

5: Return 𝑀1, 𝑂̂ (𝑀, 𝑃), 𝑄𝑊 and 𝑙𝑌0,𝑍𝑌 .

Compared to the steps discussed in Sections 3.3 and 3.4, there
are subtle di!erences when the preconditioning step is employed.
The process of preconditioning involves "nding an approximation
𝑀1 of 𝑀 (𝑃1). Since this process is executed in advance, re"ning the
midpoint of 𝑄𝑊 is no longer necessary when proceeding towards
larger 𝑃 . In addition, the preconditioning step must be conducted
regardless of the success or failure of the Krawczyk test since 𝑃1
must always be updated. With these caveats, the complete “tilted”
variant of the Krawczyk homotopy using the preconditioning is
described in Algorithm 3. See Figure 3 for an illustration.

4 CORRECTNESS AND TERMINATION
If the algorithms presented in Section 3 terminate, we obtain both a
region and a point within that region such that the point can be re-
"ned to an approximation of an exact solution to the system 𝑁 (𝑀 ;𝑗1)
to any desired accuracy. The correctness of the algorithms is en-
sured when each interval box 𝑄 (𝑁 ) encompasses only one solution
path 𝑀 (𝑃) for all 𝑃 ↓ [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ]. Hence, the proof of Theorem 3.1
also proves the correctness of the algorithms.

To prove termination for a system 𝑁 (𝑀 ;𝑗) with parameters 𝑗 ,
we assume that the parameter homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀 ; 𝑗 (𝑃)) is
a"ne-linear; that is, we assume 𝑁 is a#ne-linear in the parameters
𝑗 and 𝑗 (𝑃) = (1 ↔ 𝑃) · 𝑗0 + 𝑃 · 𝑗1 is a parametric segment. We
split the system 𝑁 (𝑀 ;𝑗) into two parts 𝑁 (𝑀 ; 𝑗) = 𝑁1 (𝑀 ; 𝑗) + 𝑁2 (𝑀)
where 𝑁1 (𝑀 ;𝑗) consists of terms involving parameters while 𝑁2 (𝑀)

Algorithm 3 Krawczyk homotopy (tilted)

Input: • A parameter homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀 ; 𝑗 (𝑃)) : C𝐿 ↑
[0, 1] → C𝐿 analytic in 𝑀 and linear in 𝑗 ,

• a point 𝑀0 approximating 𝑀 (0), for some nonsingular solution
path 𝑀 (𝑃) : [0, 1] → C𝐿 such that 𝑂 (𝑀 (𝑃), 𝑃) = 0,

• a positive number 𝑕 > 0 for the initial radius,
• a time-step size 𝑊𝑃 ↓ (0, 1), and
• a scaling constant 𝑖 > 1.

Output: A certi"ed approximation of 𝑀 (1).
1: Set 𝑃0 = 0 and 𝑃1 = 𝑊𝑃 .
2: Run Preconditioning(𝑂 (𝑀, 𝑃), 𝑕 , 𝑃0, 𝑃1, 𝑀0) to compute

𝑀1, 𝑂̂ (𝑀, 𝑃), 𝑄𝑊 and 𝑙𝑌0,𝑍𝑌 .
3: Compute 𝑒 := 𝑚𝑂 𝑂̂ (0, 𝑃0)↔1.
4: while 𝑃0 < 1 do
5: Run Krawczyk test with 𝑓0,𝑈 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ).
6: if Krawczyk test passed then
7: Set 𝑕 = 𝑖𝑕 and 𝑊𝑃 = 𝑖𝑊𝑃 .
8: Re"ne 𝑀1
9: Set 𝑀0 = 𝑀1, 𝑃0 = 𝑃1, and 𝑃1 = 𝑃0 + 𝑊𝑃 .
10: Run Preconditioning(𝑂 (𝑀, 𝑃), 𝑕 , 𝑃0, 𝑃1, 𝑀0) to compute

𝑀1, 𝑂̂ (𝑀, 𝑃), 𝑄𝑊 and 𝑙𝑌0,𝑍𝑌 .
11: Compute 𝑒 := 𝑚𝑂 𝑂̂ (0, 𝑃0)↔1.
12: else
13: Set 𝑕 = 1

𝑎 𝑕 and 𝑊𝑃 =
1
𝑎𝑊𝑃 .

14: Run Preconditioning(𝑂 (𝑀, 𝑃), 𝑕 , 𝑃0, 𝑃1, 𝑀0) to compute
𝑀1, 𝑂̂ (𝑀, 𝑃), 𝑄𝑊 and 𝑙𝑌0,𝑍𝑌 .

15: end if
16: end while
17: Find a point 𝑀1 by re"ning 𝑛 (1) with the system 𝑂 (𝑀, 1).
18: Return 𝑀1.

is a collection of terms without parameters (hence, terms only in
𝑀 variables). For the homotopy 𝑂 (𝑀, 𝑃), we assume a nonsingular
solution path 𝑀 (𝑃) from 𝑃 = 0 to 𝑃 = 1 and that a starting solution
𝑀 (0) ↓ C𝐿 is known exactly. The algorithms are guaranteed to
terminate if we can prove that the solution path 𝑀 (𝑃) from 𝑃 = 0
to 𝑃 = 1 can be enclosed by a "nite collection of interval boxes
𝑄 (1) , . . . , 𝑄 (𝑀 ) constructed by either algorithm.

We "rst show that the parametric Krawczyk test succeeds in
proving the existence and uniqueness of 𝑀 (𝑃) in an interval 𝑄 for all
values of 𝑃 in [𝑃0, 𝑃0 + 𝑊𝑃] ⇑ [0, 1] when 𝑊𝑃 and 𝑄 are small enough.
Results are presented with the theoretical assumption that the exact
solution 𝑀𝐿 is known in advance. However, we also comment on the
practical scenario where only an approximation of 𝑀𝐿 is available.

Theorem 4.1. Let 𝑂 (𝑀, 𝑃) : C𝐿 ↑ [0, 1] → C𝐿 be an a#ne-linear
homotopy, analytic with respect to 𝑀 . Assume that we have a point
𝑀𝐿 ↓ C𝐿 such that 𝑂 (𝑀𝐿, 𝑃0) = 0 for some 𝑃0 ↓ [0, 1]. Consider
a "xed positive constant 𝑜 > 0 such that 𝑜 ⇔ ⇒↭𝑚2𝑂𝑂 (𝑄1, [0, 1])⇒,
where 𝑄1 is an interval box centered at 𝑀𝐿 of radius 1. Suppose that
the solution path 𝑀 (𝑃) is nonsingular for all 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 := [𝑃0, 𝑃0 +𝑊𝑃]
for some 𝑊𝑃 > 0 such that𝑙𝑌0,𝑍𝑌 ⇑ [0, 1]. Then, there exist 0 < 𝑕 < 1
and 0 < 𝑊𝑃 < 1 such that the path 𝑀 (𝑃) is uniquely contained in the
interval box 𝑄𝑊 centered at 𝑀𝐿 with the radius 𝑕 whenever 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 .
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•

•
•

𝑀 (𝑃)

𝑃

•
𝑃 = 0

𝑃 (𝑁↔1)
𝑃 (𝑁 ) = 𝑃 (𝑁↔1) + 𝑊𝑃

𝑃 (𝑁+1) = 𝑃 (𝑁 ) + 𝑖𝑊𝑃

•
𝑃 = 1

𝑛 (𝑁 ) (𝑃)
𝑛 (𝑁+1) (𝑃) •

•
•

𝑃

•
𝑃 = 0

𝑃 (𝑁↔1)
𝑃 (𝑁 ) = 𝑃 (𝑁↔1) + 𝑊𝑃

𝑃 (𝑁+1) = 𝑃 (𝑁 ) + 𝑖𝑊𝑃

•
𝑃 = 1

Figure 3: A description of Algorithm 3. Thick black curves in each !gure represent the solution path of the homotopy. Red line
segments in the !rst !gure represent 𝑛 (𝑁 ) (𝑃) connecting 𝑀0 and 𝑀1 for 𝑃 ↓ [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ]. The second !gure depicts the situation
when the shearing map 𝑀 ↖→ 𝑀 + 𝑛 (𝑁 ) (𝑃) is applied for 𝑃 ↓ [𝑃 (𝑁↔1) , 𝑃 (𝑁 ) ] at each iteration. The red line in the second !gure
corresponds to the parametric line segment (0, . . . , 0, 𝑃) in C𝐿 ↑ [0, 1].

In other words, if the constant 𝑝 = 𝑍𝑌
𝑊 satis"es

⇓
𝑌 ↔ ⇒𝑒 ⇒ · 𝑝 · ⇒𝑁1 (𝑀𝐿;𝑗1 ↔ 𝑗0)⇒ > 0

and √
𝑌𝑕2 + 𝑊𝑃2 <

1⇓
2 · ⇒𝑒 ⇒ · 𝑜

, (1)

then 𝑓𝑂𝐿,𝑈 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ) ⇑ 𝑄𝑊 and

⇒1𝐿 ↔ 𝑒 · ↭𝑚𝑂𝑂 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 )⇒ ↙ 1⇓
2
.

P!""#. Take any 𝑆 ↓ 𝑓𝑂𝐿,𝑈 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ). Then, from the de"nition
of the Krawczyk operator 𝑓𝑂,𝑈 , we have

𝑆↔𝑀𝐿 ↓ ↔𝑒 ·↭𝑂 (𝑀𝐿,𝑙𝑌0,𝑍𝑌 )+(1𝐿↔𝑒 ·↭𝑚𝑂𝑂 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ))·[↔𝑕 , 𝑕 ]
𝐿 . (2)

Since 𝑀𝐿 is the midpoint of 𝑄𝑊 , our goal is to show ⇒𝑆 ↔ 𝑀𝐿⇒ ↙ 𝑕 .
Note that we choose 𝑒 = 𝑚𝑂𝑂 (𝑀𝐿, 𝑃0)↔1. Therefore,

⇒1𝐿 ↔ 𝑒 · ↭𝑚𝑂𝑂 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 )⇒ =
"""𝑒 ·

(
𝑚𝑂𝑂 (𝑀𝐿, 𝑃0) ↔ ↭𝑚𝑂𝑂 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 )

)"""
↙ ⇒𝑒 ⇒ · 𝑜 ·

√
𝑌𝑕2 + 𝑊𝑃2 (3)

if 𝑕 < 1 and 0 < 𝑊𝑃 < 1. The last inequality follows from the dif-
ferentiability of 𝑂 and the Lipschitz continuity of 𝑚𝑂𝑂 [16, Section
1.5, Theorem 1.3].

Because 𝑂 (𝑀𝐿, 𝑃0) = 0, we have for any 𝑞 ↓ [0,𝑊𝑃] that
𝑂 (𝑀𝐿, 𝑃0 + 𝑞) = 𝑁 (𝑀𝐿;𝑗 (𝑃0 + 𝑞))

= 𝑁 (𝑀𝐿; (1 ↔ 𝑃0 ↔ 𝑞) · 𝑗0 + (𝑃0 + 𝑞) · 𝑗1)
= 𝑁 (𝑀𝐿; (1 ↔ 𝑃0) · 𝑗0 + 𝑃0 · 𝑗1) + 𝑁 (𝑀𝐿;𝑞 · (𝑗1 ↔ 𝑗0))
= 𝑂 (𝑀𝐿, 𝑃0) + 𝑁1

(
𝑀𝐿;𝑞 · (𝑗1 ↔ 𝑗0)

)
= 𝑁1

(
𝑀𝐿;𝑞 · (𝑗1 ↔ 𝑗0)

)
.

Therefore, we know that

⇒↭𝑂 (𝑀𝐿,𝑙𝑌0,𝑍𝑌 )⇒ ↙ 𝑊𝑃 · ⇒𝑁1 (𝑀𝐿; 𝑗1 ↔ 𝑗0)⇒ . (4)

Using equations (3), (4)) to bound points in the interval of (2), we
deduce that 𝑓𝑂𝐿,𝑈 (𝑄𝑊 ,𝑙𝑌0,𝑍𝑌 ) ⇑ 𝑄𝑊 if there are positive 𝑕 and 𝑊𝑃

satisfying

⇒𝑒 ⇒ · 𝑊𝑃 · ⇒𝑁1 (𝑀𝐿; 𝑗1 ↔ 𝑗0)⇒ + ⇒𝑒 ⇒ · 𝑜 ·
√
𝑌𝑕2 + 𝑊𝑃2 · 2𝑕

⇓
𝑌 ↙ 𝑕 .

Setting 𝑝 = 𝑍𝑌
𝑊 , we rewrite the inequality above as

(
⇒𝑒 ⇒ · 𝑝 · ⇒𝑁1 (𝑀𝐿;𝑗1 ↔ 𝑗0)⇒ ↔ 1

)
𝑕+(

⇒𝑒 ⇒ · 𝑜 ·
√
𝑌 + 𝑝2 · 2

⇓
𝑌
)
𝑕2 ↙ 0. (5)

This inequality is satis"ed for a positive value of 𝑕 provided that 𝑝
is su#ciently small. More precisely, choosing 𝑝 small enough that

1 ↔ ⇒𝑒 ⇒ · 𝑝 · ⇒𝑁1 (𝑀𝐿;𝑗1 ↔ 𝑗0)⇒ > 0, (6)

some positive 𝑕 satisfying the inequality (5) exists. This concludes
the existence statement that 𝑀 (𝑃) ↓ 𝑄𝑊 for any 𝑃 ↓ 𝑙𝑌0,𝑍𝑌 .

Lastly, using (3), we have
⇓
𝑌𝑕2 + 𝑊𝑃2 < 1⇓

2·⇒𝑈 ⇒ ·𝑏 for suitably
small 𝑕 and𝑊𝑃 . This proves uniqueness of the solution path in 𝑄𝑊 . ↭

Note that the theorem and its proof applies to both Algorithms 1
and 3. When considering the case of Algorithm 3, the statement is
relevant to the homotopy 𝑂̂ (𝑀, 𝑃) rather than 𝑂 (𝑀, 𝑃).

Remark 4.2. Recall that Theorem 3.1 is stated for the exact solu-
tion 𝑀𝐿. In practice, having 𝑀𝐿 is not feasible, but we will have an
approximation 𝑀0. Let 𝑄𝑊 be the interval centered at 𝑀0 with the ra-
dius 𝑕 , and assume that ⇒𝑂 (𝑀0, 𝑃0)⇒ ↙ 𝑟 . In this case, the inequality
(3) still holds. On the other hand, we have

𝑂 (𝑀0, 𝑃0 + 𝑞) = 𝑁 (𝑀0; 𝑗 (𝑃0 + 𝑞))
= 𝑁 (𝑀0; (1 ↔ 𝑃0 ↔ 𝑞) · 𝑗0 + (𝑃0 + 𝑞) · 𝑗1)
= 𝑁 (𝑀0; (1 ↔ 𝑃0) · 𝑗0 + 𝑃0 · 𝑗1) + 𝑁 (𝑀0;𝑞 · (𝑗1 ↔ 𝑗0))
= 𝑂 (𝑀0, 𝑃0) + 𝑁1 (𝑀0;𝑞 · (𝑗1 ↔ 𝑗0)) .

Hence, the inequality (4) becomes

⇒↭𝑂 (𝑀0,𝑙𝑌0,𝑍𝑌 )⇒ ↙ 𝑟 + 𝑊𝑃 · ⇒𝑁1 (𝑀0;𝑗1 ↔ 𝑗0)⇒
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Introducing 𝑝 = 𝑍𝑌
𝑊 , the inequality (5) turns into

⇒𝑒 ⇒ · 𝑟 + (⇒𝑒 ⇒ · 𝑝 · ⇒𝑁1 (𝑀0;𝑗1 ↔ 𝑗0)⇒ ↔ 1) 𝑕

+
(
⇒𝑒 ⇒ · 𝑜 ·

√
𝑌 + 𝑝2 · 2

⇓
𝑌
)
𝑕2 ↙ 0.

For small enough 𝑟, note that if inequality (6) is satis"ed, the positive
values of 𝑕 satisfying this inequality exist and are bounded below.
Hence, when replacing the interval box 𝑄𝑊 , it is crucial to select one
with a radius that is not excessively small. A careful discussion of
re"ning an interval box to pass the Krawczyk test appears in [8].

We provide a corollary proving the termination of the algorithms.
The goal is "nding a uniform lower bound for 𝑊𝑃 and 𝑕 so that the
algorithm terminates in "nitely many iterations.

Corollary 4.3. With the same hypotheses on 𝑂 (𝑀, 𝑃) as in Theo-
rem 4.1, Algorithm 3 terminates in "nitely many steps.

P!""#. Our smoothness assumption implies the real-valued
function 𝑠 (𝑃) : [0, 1] → R de"ned by 𝑠 (𝑃) = ⇒𝑚𝑂𝑂 (𝑀 (𝑃), 𝑃))↔1⇒ is
uniformly bounded by some constant 𝑐1. During any particular
iteration at time 𝑃0, we have ⇒𝑒 ⇒ = ⇒𝑚𝑂 𝑂̂ (0, 𝑃0)↔1⇒ = 𝑠 (𝑃0) ↙ 𝑐1 .
Furthermore, considering a su#ciently large compact region that
contains 𝑀𝐿, we know that ⇒𝑁1 (𝑀𝐿, 𝑗1 ↔ 𝑗0)⇒ can be bounded uni-
formly by some constant, ⇒𝑁1 (𝑀𝐿, 𝑗1 ↔ 𝑗0)⇒ ↙ 𝑐2.

Finally, de"ning 𝑄𝑊 to be the interval box in C𝐿 centered at the
origin with the radius 𝑕 , we claim that for some "xed 𝑕 , 𝑞 > 0,
there is a constant𝑐3 > 0 such that𝑐3 ⇔ ⇒↭𝑚2𝑂 𝑂̂ (𝑄𝑊 , [𝑃0, 𝑃0 + 𝑞])⇒
at any iteration at 𝑃0 ↓ [0, 1]. By considering a su#ciently large
compact region containing 𝑀 (𝑃), we know that there is 𝑜 > 0 such
that 𝑜 ⇔ ⇒𝑚2𝑂𝑂 (𝑀 (𝑃), 𝑃)⇒ for any 𝑃 ↓ [0, 1]. Therefore, there is 𝑕 > 0
such that 2𝑜 ⇔ ⇒𝑚2𝑂𝑂 (𝑀, 𝑃)⇒ for any 𝑀 ↓ 𝑀 (𝑃) + 𝑄2𝑊 and 𝑃 ↓ [0, 1].
Here, 𝑀 (𝑃) + 𝑄2𝑊 is the Minkowski sum of 𝑀 (𝑃) and 𝑄2𝑊 . Then, there is
𝑞 > 0 such that for any 𝑃0 ↓ [0, 1], the line segment 𝑛 (𝑃) connecting
𝑀 (𝑃0) and 𝑀 (𝑃0 +𝑊𝑃) is contained in 𝑀 (𝑃) + 𝑄𝑊 whenever 𝑊𝑃 ↙ 𝑞 . Note
that this is possible since we may assume that ⇒𝑀 ∝ (𝑃)⇒ < ′ for all
𝑃 ↓ [0, 1]. Setting 𝑂̂ (𝑀, 𝑃) = 𝑂 (𝑀+𝑛 (𝑃), 𝑃), we have ⇒𝑚2𝑂 𝑂̂ (𝑀, 𝑃)⇒ ↙ 2𝑜
if 𝑀 ↓ 𝑄𝑊 and 𝑃 ↓ [𝑃0, 𝑃0 + 𝑞] at any time 𝑃0 ↓ [0, 1]. This shows that
𝑐3 = 2𝑜 is a uniform upper bound on ⇒↭𝑚2𝑂 𝑂̂ (𝑄𝑊 , [𝑃0, 𝑃0 + 𝑞])⇒ at
any 𝑃0 ↓ [0, 1].

We now apply Theorem 4.1 to the homotopy 𝑂̂ . Referring to (6),
the existence test succeeds provided that

𝑝 < (𝑐1 ·𝑐2)↔1 ∞ 𝑊𝑃 < 𝑕 · (𝑐1 ·𝑐2)↔1 < (𝑐1 ·𝑐2)↔1 .
Thus, there is a uniform lower bound on the value of 𝑊𝑃 at any point
in the algorithm. Moreover, by the bound (1), choosing 𝑕 and 𝑊𝑃
satisfying that √

𝑌𝑕2 + 𝑊𝑃2 <
1⇓

2 ·𝑐1 ·𝑐3
,

uniform lower bounds for 𝑕 and 𝑊𝑃 are obtained. Therefore, the
uniqueness of the solution path when tracking from an exact so-
lution at time 𝑃 = 0 is guaranteed. When tracking from an ap-
proximate solution at subsequent times 𝑃 = 𝑃 (1) , . . . , we proceed
by "rst re"ning the solution so that 𝑕 can be chosen as indicated
in Remark 4.2, giving us the needed analogue of inequality (5). ↭

For the base-line method Algorithm 1, the proof is similar, but
simpler, since Theorem 3.1 applies directly to the homotopy 𝑂 .

Remark 4.4. The theoretical analysis of Algorithm ?? depends on
carefully-chosen constants. We point out the following regarding
these constants:

(1) From the inequality (6), a su#ciently small value of 𝑝 is
required to guarantee termination. As Algorithm ?? do not
change the value of 𝑝, the initial values of 𝑊𝑃 and 𝑕 should
be chosen carefully to ensure 𝑝 is su#ciently small. The re-
sulting theoretical bounds on 𝑝 are likely pessimistic, which
would lead to more iterations per path. Thus, in practice, it
is recommended to choose a “reasonable” initial value for 𝑝,
at the possible expense of termination. Our experiments use
a range 𝑝 ↓ [1/5, 2] .

(2) Additional analysis is needed in order to make all constants
appearing in Corollary 4.3 e!ective. For instance, a uniform
bound |𝑠 (𝑃) | ↙ 𝑐1 for all 𝑃 ↓ [0, 1] can be obtained under
the slightly stronger hypothesis that 𝑀 (𝑃) is analytic on an
open interval containing [0, 1] . Indeed, since the value of
the solution curve 𝑀 (0) is known exactly, and the values of
derivatives of 𝑀 (𝑃) can be computed using the Davidenko
di!erential equation 𝑀 ∝ (𝑃) = (𝑚𝑂𝑂 )↔1 · 𝑚𝑌𝑂 , this hypothesis
would enable a uniform Taylor approximation of 𝑠 (𝑃) to any
desired accuracy on [0, 1] .

5 EXPERIMENTS
In this section, we present experiments conducted with our prelimi-
nary implementation of Algorithm 3 in Macaulay2 [7]. Throughout
this section, we use hyper-parameter setting 𝑖 = 3 for the step
increase/decrease factor. The values for step-size 𝑊𝑃 and radius 𝑕
depend on the experiment. Real interval arithmetic computations
are performed by the library MPFI [17]. A current limitation of
our implementation is that complex interval computations are per-
formed at the top-level, and thus tracking complex homotopies is
slower than real homotopies.

For parametric systems 𝑁 (𝑀 ;𝑗) de"ned over the real numbers,
we are typically interested in real-valued solutions 𝑀 ↓ R𝐿 for real-
valued parameters 𝑗 ↓ R𝑉 . However, a real parameter path 𝑗 :
[0, 1] → R𝑉 typically leads to singularities: that is, 𝑔 𝑁 (𝑀 (𝑃);𝑗 (𝑃))
will be singular for some 𝑃 ↓ (0, 1) . Thus, it is typical to instead
use a complex-valued path 𝑗 : [0, 1] → C𝑉 , whose target param-
eters 𝑗1 = 𝑗 (1), and possibly also start parameters 𝑗0 = 𝑗 (0), are
real-valued. Moreover, 𝑗 is constructed in a randomized fashion;
depending on the application, 𝑗1 ↓ C𝑉 may be chosen randomly,
or for 𝑗1 ↓ R𝑉 a suitably random complex path may be constructed
using the 𝑡-trick [18, Chapter 8] or some variant thereof.

Motivated by the preceding discussion, we evaluate our method
for complex homotopies in Section 5.1 by comparing the number of
predictor steps used by our method to those reported in previous
works on examples ranging with 1 ↙ 𝑌 ↙ 6 variables. Complemen-
tary to these results, we present timings for tracking a special class
of real homotopies in Section 5.2 in up to 𝑌 = 20 variables. Taken
together, these results show that the Krawczyk homotopy is com-
petitive with the previous state-of-the-art in certi"ed path tracking,
and that the number of variables is not an inherent limitation.

All experiments were conducted with a Macbook M2 pro 3.5
GHz, 16 GB RAM. The code is available at

https://github.com/klee669/krawczykHomotopy
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5.1 Benchmark examples
We begin with the univariate example presented in [9, Section
7.1]. Considering 𝑁 (𝑀) = 𝑀2 ↔ 1 ↔𝑏 and 𝑅 = 𝑏 for 𝑏 > ↔1, we
de"ne a homotopy 𝑂 (𝑀, 𝑃) = 𝑁 (𝑀) + 𝑅𝑃 = 𝑀2 ↔ 1 ↔𝑏 +𝑏𝑃 . For the
initial choice of 𝑊𝑃 = .02 and 𝑕 = .1, we measure the number of
iterations by varying the value of𝑏. The result is summarized in
Table 1. For given initial values of 𝑊𝑃 = .02 and 𝑕 = .1, Algorithm 3
requires fewer iterations than that of [9] except for𝑏 = 30000. We
remark that, depending on initial values of 𝑊𝑃 and 𝑕 , the number of
iterations of Algorithm 3 may vary.

We also consider benchmark examples of [1] using our imple-
mentation with initial values 𝑊𝑃 = .1 and 𝑕 = .1. For each example,
we measure the maximum, minimum, and average number of it-
erations and compare the results with those reported in [1] (See
Table 2).

Lastly, to examine the impact of values of the hyper-parameters
𝑊𝑃 and 𝑕 on the performance of the Krawczyk homotopy, we address
two benchmark problems using di!erent values of 𝑊𝑃 and 𝑕 while
varying their ratios (See Table 3). The table shows that the results
have similar average numbers of iterations for a given ratio 𝑝 =
𝑍𝑌
𝑊 of 𝑊𝑃 and 𝑕 . The results suggest that the performance of the
Krawczyk homotopy is more signi"cantly in$uenced by the ratio
of 𝑊𝑃 to 𝑕 , rather than their individual values.

5.2 A real homotopy
In addition to the results obtained for complex homotopies, we
provide timings for tracking a special class of real homotopies
where bifurcations are naturally avoided. Our setup is the classical
problem of low-rank matrix approximation, following the geometric
formulation in [6]. Let V1 ⇑ R𝐿↑𝐿 denote variety of rank ↙ 1
matrices, and consider the incidence correspondence

E𝐿 =
{
(𝑢, 𝑀𝑆𝑐 ) ↓ R𝐿↑𝐿 ↑V1 | (𝑢 ↔ 𝑀𝑆𝑐 ) ↓

(
𝑙𝑂𝑑𝑁 V1

)∈}

(here 𝑙• denotes the tangent space). The map 𝑣 : E𝐿 → R𝐿↑𝐿

onto the "rst factor is a generically 𝑌-to-1 map. More precisely, for
generic 𝑢 ↓ R𝐿↑𝐿 we have from the singular value decomposition,

𝑢 = (𝑤1 | · · · |𝑤𝐿) diag(𝑥1, . . . ,𝑥𝐿) (𝑅1 | · · · | 𝑅𝐿)𝑐 , that

𝑣↔1 (𝑢) =
{
(⇓𝑥1𝑤1) (

⇓
𝑥1𝑅1)𝑐 , . . . , (

⇓
𝑥𝐿𝑤𝐿) (

⇓
𝑥𝐿𝑅𝐿)𝑐

}
.

Moreover, it is known that the branch locus of 𝑣—de"ned here
to be the set of points 𝑢 ↓ R𝐿↑𝐿 such that |𝑣↔1 (𝑢) | ε 𝑌—has
codimension greater than one [11]. Because of this, we may expect
that a suitably parameter path 𝑗 (𝑃) : [0, 1] → R𝐿↑𝐿 , with 𝑗 (0) =
𝑢0, 𝑗 (1) = 𝑢1, avoids the branch locus with probability-one, and
use such paths to construct homotopies connecting known points
of one "ber 𝑣↔1 (𝑢0) to another 𝑣↔1 (𝑢1).

In our experiments, we consider the straight-line segment 𝑗 that
connects the identiy matrix 𝑢0 = 𝑄 to the Hilbert matrix,

𝑢1 =
+,,,,
-

1 1
2 · · · 1

𝐿↔11
2

1
3 · · · 1

𝐿
...

...
. . .

...
1
𝐿

1
𝐿+1 · · · 1

2𝐿↔1

.////

.

This is a notoriously ill-conditioned test matrix used in numerical
linear algebra. Ourmodest goal is to certify the paths connecting the

best rank-one approximations, given by (⇓𝑥1𝑤1) (
⇓
𝑥1𝑅1)𝑐 , which

are the easiest solution paths to track in this example.
To carry this out, we use a suitable system of 2𝑌 parametric

equations in variables 𝑀,𝑆 ↓ R𝐿 which vanish on E1 and whose
solution paths are regular throughout the homotopy. From the ob-
jective function 𝑦 (𝑀,𝑆;𝑢) = ⇒𝑢↔𝑀𝑆𝑐 ⇒22, we use 2𝑌↔1 critical point
equations 𝑚𝑂2𝑧, . . . , 𝑚𝑂𝑀𝑧, 𝑚𝑑1𝑧, . . . , 𝑚𝑑𝑀𝑧, and impose the equation
of a generic a#ne chart 𝑈𝑐 𝑀 ↔ 𝑉 = 0.

The results of our experiments with this real homotopy are
shown in Table 4. The table illustrates that the number of steps
used by our method grows moderately with respect to the number
of variables. The measured timings grow at a comparable rate. The
number of iterations per second for this example is seen to steadily
decrease with the number of variables.

The changes in the step-size 𝑊𝑃 as tracking progresses are visu-
alized in Figure 4. For this problem, Algorithm 3 requires smaller
step-size both as 𝑃 tends towards 1 and as 𝑌 increases.

We point out that there will be some variance in such experi-
ments due e.g. to the randomly chosen chart, as witnessed by the
progression between cases 𝑌 = 5, 6, 7. Still, even for the cases con-
sidered with tens of variables, the step-size consistently stays above
unit roundo! and all paths are successfully tracked within an hour.

ACKNOWLEDGMENTS
We thank Michael Burr for several useful discussions. We also
thank the ISSAC 2024 referees for many helpful comments that led
to improvements in the manuscript. Timothy Du! acknowledges
support from an NSF Mathematical Sciences Postdoctoral Research
Fellowship (DMS-2103310).

ADDITIONAL FIGURES AND TABLES

𝑊𝑃 = .02, 𝑕 = .1
𝑏 value # iters HHL [9] # iters

10 31 51
40 20 82
100 14 105
2000 23 180
5000 57 204
10000 108 220
30000 327 250

Table 1: Comparing the number of iterations between Algo-
rithm 3 and the certi!ed tracking algorithm in [9].
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𝑊𝑃 = .1, 𝑕 = .1
System # roots avg. # iters max min BL [1] avg.

Random(23 ) 8 317.75 509 203 198.5
Random(24 ) 16 563.25 1257 211 813.81
Random(25 ) 32 675.31 5119 209 1542.5
Random(26 ) 64 1166.42 5415 267 2211.58
Katsura3 4 264.25 289 239 569.5
Katsura4 8 331.75 451 233 1149.88
Katsura5 16 444.75 731 311 1498.38
Katsura6 32 721.47 1391 497 2361.81
Table 2: Algorithm 3 versus certi!ed tracking in [1].

Random(23 )
𝑝 = 𝑍𝑌

𝑊 (𝑊𝑃, 𝑕 ) avg. # iters (𝑊𝑃, 𝑕 ) avg. # iters

.5 (.2, .4) 134.75 (.02, .04) 135.63
1 (.4, .4) 96.5 (.04, .04) 99.5
1.5 (.6, .4) 98.63 (.06, .04) 98.88
2 (.8, .4) 96.75 (.08, .04) 99.5

Katsura4
𝑝 = 𝑍𝑌

𝑊 (𝑊𝑃, 𝑕 ) avg. # iters (𝑊𝑃, 𝑕 ) avg. # iters

.5 (.2, .4) 287.75 (.02, .04) 298.88
1 (.4, .4) 351.88 (.04, .04) 326.25
1.5 (.6, .4) 444.38 (.06, .04) 460.13
2 (.8, .4) 594.5 (.08, .04) 552.63

Table 3: Average number of iterations for di"erent values of
the ratio 𝑍𝑌

𝑊 .

𝑊𝑃 = .2, 𝑕 = .1
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