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Certified homotopy tracking using the Krawczyk method
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Seattle, Washington, United States
timduff@uw.edu

ABSTRACT

We revisit the problem of certifying the correctness of approximate
solution paths computed by numerical homotopy continuation
methods. We propose a conceptually simple approach based on a
parametric variant of the Krawczyk method from interval arith-
metic. Unlike most previous methods for certified path-tracking,
our approach is applicable in the general setting of parameter homo-
topies commonly used to solve polynomial systems of equations. We
also describe a novel preconditioning strategy and give theoretical
correctness and termination results. Experiments using a prelimi-
nary implementation of the method indicate that our approach is
competitive with specialized methods appearing previously in the
literature, in spite of our more general setting.
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1 INTRODUCTION

Homotopy continuation is a popular method for finding solutions to
a system of nonlinear equations. The main idea involves a system
G(x) : C"* — C" for which we already know the solutions (points x
with G(x) = 0), and tracking these solutions towards the solutions
of another system F(x) : C" — C" that we wish to solve. This
is done by constructing a homotopy H(x,t) : C* x [0,1] — C"
such that H(x,0) = G(x) and H(x,1) = F(x). In many cases of
interest, F and G are both polynomial systems with finitely many
nonsingular solutions. The homotopy is typically constructed such
that the solutions to H(x(¢),t) = 0 are implicit functions of ¢, each
represented by a smooth solution path x(t) : [0,1] — C™.

This work is licensed under a Creative Commons Attribution International
4.0 License.
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To track values of a solution path x(¢) numerically from ¢ = 0 to
t = 1, it is common to use a numerical predictor-corrector method
[18, Chapter 2.3]. When an approximation xg for a solution x (o)
to H(x, to) is available, the path tracking proceeds when we find an
approximation x; for a solution x(#;) to H(x, t;) for some t; > to.
The predictor-corrector method consists of a step constructing a
rough approximation for x(t1) (a predictor step, e.g. Euler’s method)
and a step refining this approximation (a corrector step, typically a
variant of Newton’s method).

For a system F(x) : C" — C", we say that x € C" is certified
if x is contained in a small region which also contains a unique
solution x*, and if x can be refined to be arbitrarily close to x*
using a finite procedure (such as Newton’s method).

The main problem addressed in this paper is certified homotopy
tracking: given a homotopy H(x,t) and an initial solution x(0)
at time (%) = 0, rigorously certify a sequence of approximations
x1,..., % to values of a solution path x(t(1)), . x(t%)) at dis-
crete time-steps M < <t = along with proving the
existence and uniqueness of the solution path x(t) along each inter-
val [t(=1) ()] (that is, constructing an interval box 1) in C" that
contains x(¢) uniquely for all ¢ € [£G=1) ¢(D]). If this is achieved,
we say that x(t) is a certified solution path. In particular, it is not
enough to certify that the final approximation x. is near some solu-
tion of F using a posteriori methods (e.g. [4, 5, 10, 13, 14]). We must
show that the true solution approximated by xy. is in fact x(1).

The contributions of this paper can be summarized as follows:

Theorem 1.1. Algorithms 1 and 3, when they terminate, return
certified paths for a square linear parameter homotopy.

Corollary 1.2. For a given certified homotopy path x(t) for a
homotopy H(x, t) : C" x [0,1] — C" with x( approximating x(0),
X is a certified solution to H(x, 1) that can be refined to x(1).

There have been a number of previous studies in certified homo-
topy tracking. For polynomial systems, Beltran and Leykin [1, 2]
give a certified homotopy tracking algorithm based on Smale’s
alpha theory [3, Chapter 8], mostly tuned to the “generic” case
of total-degree homotopies involving dense polynomials. Another
noteworthy contribution [9] considers the special case of “Newton
homotopies”, where H(x, t) = F(x)+(1—t)o for some fixedv € C".

Yet another class of certified homotopy methods involves interval
arithmetic. Early work of Kearfott and Xing [12] proposes a general
solution where intervals enclosing the solution path at every time-
step are constructed. More sophisticated variants have since been
proposed, e.g. in [19], for the case of univariate polynomials in [20],
and most recently in the remarkable preprint [8]. Two appealing
aspects of these interval-based methods are that they (1) naturally
accommodate systems F, G represented as straight-line programs
(also known as algebraic circuits), and (2) generally involve the
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Krawczyk method [13], whose a posteriori certificates may be easier
to verify than those coming from alpha-theory.

In this paper, we propose an interval-based Krawczyk homo-
topy for certified homotopy tracking. After reviewing preliminaries
in Section 2, we consider two Krawczyk homotopy variants in Sec-
tion 3: a base-line method (Algorithm 1) illustrating main ideas,
and a more effective “tilted” variant (Algorithm 3) based on a novel
preconditioning step. Section 4 addresses correctness and termi-
nation for these variants. To simplify our analysis in this section,
we consider only affine-linear homotopies and assume a model of
computation allowing exact computation with real numbers. In
Section 5, the experimental results using a proof-of-concept imple-
mentation are presented, demonstrating favorable performance for
our “tilted” variant.

2 PRELIMINARIES

2.1 Interval arithmetic

Interval arithmetic performs conservative computation for certified
results by arithmetic between intervals. Specifically speaking, for
an arithmetic operator © and two intervals I; and I, we define

Lol = {x@ylxeh,yelg}.

There are formulas for the interval version of standard arithmetic
operations. Thus, for example

[a,b] + [c,d] = [a+c,b+d].

For more details, see [15]. These operations cannot be computed
exactly when the endpoints q,...,d are represented in floating
point, in which case the resulting intervals must be rounded out-
ward. Since our analysis in Section 4 assumes exact real number
computation, such concerns do not play a significant role in this
paper.

Although it is natural to consider the concepts of intervals
with real numbers, interval arithmetic can be extended to com-
plex numbers by introducing intervals for real and imaginary parts.
In other words, we consider intervals 1 = R(I;) + iJ([;) and
I, = R(Iy) +iJ(L). Then, based on interval arithmetic over R, we
may define interval arithmetic over C as follows:

L+ =(R()+R(I)) +i(3(h) + I(I2))
I —L=(R()-R(k)+i(I(1) - I(I))
L - L= (R(h) - R(I2) - I(Nh) - (L))
+i(R(h) - 3(L) + I(N) - R(I2))
R(l1) - R(L) + (1) - (k)
R (L) - R(L) + I(I2) - (L)
;30 - R(k) - R(h) - I(2)
R(L2) - R(L) + I(I2) - (L)
From now on, we consider the intervals over C and interval arith-
metic over complex numbers unless otherwise mentioned.
LetI = (Iy,...,I,) be an n-dimensional interval box in C". For

a function f : C" — C with n variables, we define an interval
extension Of (I) of f over I to be an interval in C satisfying that

af () > {f(x) [ xel}.

In other words, we need Of(I) to be an interval containing the
image of f on I. Also, for a point x = (x1,...,x,) € C", we

L/ =

if0 ¢ L.
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denote by x not only the point itself but also the interval box
[R(x), R(x)] +i[TI(x), F(x)], so that Of (x) is well-defined. For
a given function f and an interval box I, an interval extension
Of (I) is not unique since interval arithmetic may return different
outputs depending on how f is evaluated on I. For polynomials,
such interval extensions are obtained by interval arithmetic.

For an interval I = [a, b] over R, the width w(I) of I is defined
by w(I) = b — a. If an interval I is given over C, we define the
absolute value of I by |I| = mg;( |x|. For an n-dimensional interval

X
box I = (I, ..., I), the max norm is defined by ||I|| = max |L]|.If
o

i=1,

I =(L,...,I) is a square n-dimensional interval box over C, i.e.
one satisfying
w(R(I) =w(3(I)) =+ = w(R(In)) = w(I(In)),

then we define the radius of I by w foranyi=1,...,n. We
also define an interval matrix whose entries are given by intervals.
Note that an m X n interval matrix M can be considered as a set
of m X n matrices whose ij entry is contained in the interval M;;.
The interval matrix norm ||M|| is defined by the maximum operator
norm of a matrix in M under the max norm. In other words, ||M|| =

max max LAxI
AeMxecn Ix]

where ||x]| = max |x;].
i=1,...,n

2.2 Krawczyk method

The Krawczyk method combines interval arithmetic and the gen-
eralized Newton’s method to prove the existence and uniqueness
of a solution within a region for a square system of equations. Al-
though the Krawczyk method is introduced only for real variables
in most literature, we state the result in the complex setting. Subtle
differences in the Krawczyk method in the complex setting are
introduced and analyzed in [5].

Let F : C" — C" be a polynomial system. For a point x € C",
an n-dimensional interval vector I and an invertible matrix Y, we
define the Krawczyk operator

Kyey(I) =x-Y -F(x)+ (1, =Y -0JF(I)) - (I-x)
where 1, is the nXn identity matrix. We have the following theorem.

Theorem 2.1. [13] Suppose that F : C" — C" is a square differen-
tiable system with a given interval extension OJF(I) on an interval
I. For an n X n invertible matrix Y and a point x,

(1) if Ky, y(I) C I, then I contains a solution x* of F, and
(2) if additionally V2||1, — Y - oJF(I)|| < 1, then the solution
x* in I is unique.

Note that the first part of the theorem proves the existence of the
solution in the region I, and the second part proves its uniqueness.
The V2 factor in Theorem 2.1 (2) is used for the Krawczyk method
in the complex setting. When the theorem is applied to inputs over
the real, satisfying ||1, — Y - OJF(I)|| < 1 is sufficient to prove the
uniqueness.

In the actual application of the theorem, the invertible matrix Y
is chosen to minimize the norm ||1, — Y - @JF(I)||. In the absence
of additional details about the system F, it is common to use the
midpoint of a given interval I as the value for x and JF(x)~! for Y.
Also, the interval extension OF (x) often replaces F(x) since exactly
evaluating F(x) may not be feasible in usual cases.
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3 ALGORITHMS

We present the algorithmic framework for certified homotopy con-
tinuation using the Krawczyk method. Two algorithms are proposed
depending on the path prediction strategy. The first algorithm is
a prototypical version of the Krawczyk homotopy continuation
based on the constant predictor. The second algorithm adopts a
preconditioning step for more sophisticated path prediction. Elab-
orating on each step in the first algorithm, we describe the main
idea of the Krawczyk homotopy. After that, the algorithm with the
preconditioning step is proposed to improve the first algorithm.
Both variants rely on three hyper-parameters which must be set in
advance: initial values for the step-size dt and a radius parameter r
controlling the sizes of interval boxes, and a scaling parameter A
used to update these values.

In applications, we are often interested in systems with parame-
ters, F(x; p) : C"*xC™ — C". The case of the homotopy H(x,t) = 0
is a special case with p = t and m = 1. On the other hand, systems
with parameters are often solved using parameter homotopies [18,
Chapter 8]. For two points py, p1 € C™, we consider a path p(t) in
the parameter space such that p(0) = pp and p(1) = p;. We define
a parameter homotopy H(x,t) = F(x; p(t)). Let x(¢) be a solution
path of homotopy H(x, t). We assume that the solution path x(t)
is nonsingular; that is, the Jacobian JF(x(t); p(t)) is invertible for
all t+ € [0,1]. In a typical application of parameter homotopies,
we further assume that solutions of the start system F(x; pg) are
known in advance at least approximately.

The goal of the Krawczyk homotopy algorithm is to construct
a finite sequence of time-steps 0 = 10 <t <<l =
and a collection of k interval boxes I(l), el 1(%) contained in C"
such that each I')) x [t(i=1) (1] is verified to enclose only a single
solution path x(¢) from ¢ = 10D o ¢ = (D) By accomplishing
this goal, we obtain a certified solution to F(x;p1) through the
refinement of a point in the last interval box I (k) we point out that
each t() and I) are computed by previously obtained (=1 and
10=1) In each subsection, we elaborate on steps from computing
the time sequence and collection of interval boxes to finalizing the
algorithm.

3.1 Initialization step

The algorithm first initializes an interval box containing the known
solution and time-step to compute the next interval box. For a
point xp € C™ approximating a solution x(0) of H(x, 0) = F(x; po),
we construct an n-dimensional interval box I(!) enclosing xo. In
addition, we wish to have a proper t(1) € (0,1) such that IV x
[0, t(l)] contains the solution path x(¢) uniquely from ¢ = 0 to
t =t In general, information for an effective guess of M
and t(1) may not be available. Hence, the interval box I with the
midpoint xo and the radius r for some r > 0 can be a natural choice
for IV, Furthermore, we begin with some dt € (0, 1), preferably
not too small or large compared to r, and set +) = dt. Fora simple
explanation of iterative steps in the algorithm, we introduce the
notations ty = t(o), t = t(l),l =1 and write I in place of I,..
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3.2 Krawczyk test step

The main task for this step is proving the existence and uniqueness
of the solution path, i.e. (x(¢),t) € IxX[to, t1] forall t € [#y, 1], with
the interval box I and ty, #; obtained from the previous step. We
establish a parametric version of the Krawczyk method to certify
all points in a certain path defined on some closed time interval.

Let us consider a homotopy H(x,t) : C" x [0,1] — C”" with a
parameter ¢ € [0, 1] and a solution path x(t). For an n-dimensional
interval box I in C" and an interval T c [0, 1], the parametric
Krawczyk method applies the Krawczyk method on I to the interval
extension OH(x, T), which is obtained by evaluating H(x, t) on
T only for t variable. The results of the Krawczyk method with
parameters are summarized in the theorem below:

Theorem 3.1. Let H(x,t) : C" x [0,1] — C™. Consider intervals
IcC"andT c [0,1]. For a point x € C" and an n X n-invertible
matrix Y, define

Key(LT) :=x=Y -0H(x,T) + (1o = Y - 00cH(I, T)) - (I - x)

where 9y H is the Jacobian of H with respect to x variables. Then,

(1) if Ky y(I,T) C I, then I contains a solution to H(x,t) for
eacht € T, and

(2) ifadditionally V2 ||1, — Y - 0dxH(I, T)|| < 1, thenI contains
a unique solution to H(x, t) for each t € T.

Proor. For a fixed parameter value ¢t € T, define F(x) := H(x, t).
Let K,y r(I) be the Krawczyk operator for F on I. In this case,
Kyeyr(I) C Key(LT) and 1, — Y - OJF(I) C 1, — Y - 03, H(I, T)
for any t € T. Applying Theoerm 2.1 at each ¢t € T, the result
follows. O

To apply the parametric Krawczyk method, we compute the
invertible matrix Y = 9,H (xo, to) ~! and define the time interval
T;,.dr = [to, t1]. From the Krawczyk operator Ky, y (I, Ty, 4¢), the
existence and uniqueness of x(t) can be verified for all ¢ € Ty 4,.

3.3 Successful Krawczyk step

If the parametric Krawczyk test passes, we proceed to track the
solution path x(t) as long as #; < 1. To proceed to the next iteration,
we set tg = t1. For a fixed scaling constant A > 1, we update dt = Adt,
r = Ar, and t; = ty + dt. The purpose of scaling is for adaptive
choice of both dt and r. If the Krawczyk test from the previous step
is successful, it may be feasible to proceed with a larger step size
dt, thereby facilitating rapid path tracking. However, a relatively
larger dt compared to r can increase the possibility of failure of the
Krawczyk test; hence r should be scaled similarly. The importance
of this simultaneous scaling of dt and r is mentioned again in the
proof of Theorem 4.1.

After the scaling of dt and r, we apply Newton’s method at the
midpoint of I to update a point xp approximating the solution
x(tp) to H(x, ty). After that, repeat the Krawczyk test step.

3.4 Failed Krawczyk step

There are scenarios in which the Krawczyk test fails. The existence
test fails when the solution path deviates from the interval box I, for
some t € Ty 4;. On the other hand, the uniqueness test might fail if
another solution path enters I at some t € T, 4. These scenarios
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Figure 1: An illustration of Algorithm 1. Solid red lines rep-
resent the midpoint of each interval box I,. Dotted red lines
show the corrector step producing the next midpoint.

may be resolved by updating dt = %dt andr = %r, and repeating
the parametric Krawczyk test.

3.5 Finalization step

Assume that the previous Krawczyk test succeeds with an updated
value of tp > 1. In this case, we refine the midpoint of I, with
the system H(x, 1) = F(x; p1) using Newton’s method, and return
the refined solution. The process described in Sections ?? to 3.5 is
summarized in Algorithm 1, and illustrated in Figure 1.

3.6 Preconditioning step (Algorithms 2 and 3)

Note that Algorithm 1 employs the interval I X T in a rectangular
shape. This approach implicitly assumes that the midpoint of I,
is close enough to the solution path x(¢t) for all t € Ty 4;. When
the solution path rapidly changes, the algorithm requires frequent
reduction of dt and r, resulting in slow tracking progress. The
preconditioning step discussed in this section adopts more proactive
and efficient path prediction for an improved algorithm.

The preconditioning step from t = #( to t = t; is summarized
in Algorithm 2 below. This preconditioning step will be executed
before every step involving a Krawczyk test. We assume that an
approximation xg of x(%p) is known, and I, is an n-dimensional in-
terval box whose midpoint is the origin and radius is r. Furthermore,
we have t; = to + dt for some dt from the previous step.

We find a point x; approximating x(#;) using the predictor-
corrector method. Define the line segment s(t) in C" x [0, 1] such
that s(#p) = xo and s(#1) = x;. We use this as a prediction of x(t)
from t = tg to ¢t = t;. Compared to Algorithm 1, we define the tilted
interval to be the Minkowski sum s(¢) + I. Just as interval boxes
in previous sections used approximate solutions as midpoints, the
tilted interval encloses the line segment s(t).

Note that the shape of this tilted interval will be a parallelepiped
so that each edge of the interval can be represented by some linear
function in t. Intuitively, tilting seems to offer the advantage of a
“first-order” approximation of the solution path. However, applying
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Algorithm 1 Krawczyk homotopy

Input: e A parameter homotopy H(x,t) = F(x;p(t)) : C* x
[0,1] — C™ analytic in x and linear in p,
e apoint xp approximating x(0), for some nonsingular solution
path x(t) : [0,1] — C™ such that H(x(t),t) = 0,
e a positive number r > 0 for the initial radius,
e a time-step size dt € (0,1), and
e ascaling constant A > 1.
Output: A certified approximation of x(1).

1: Define an interval box I, centered at xy with radius r.

2: Set tg = 0,¢t; = dt and Tiydr = [to, t1].

3. Compute Y := axH (xo, to) L.

4: while ty) < 1do

5 Run Krawczyk test with Ky, y (Ir, Ty, q;)-

6: if Krawczyk test passed then

7: Set r = Ar and dt = Adt.

8: Set ty = t1, and 1 =ty + dt.

9: Refine the midpoint of I with H(x, ty) to approximate
x(to) and set it as xg.

10: Compute Y := 9, H(xo, to) L.

11: Set an interval box I centered at x( with radius r, and
Ty,.dr = [to. t1].

12: else

13: Setr = %r and dt = %dt.

14: Set t1 = to +dt.

15: Set an interval box I, centered at xo with radius r, and
Tiydr = [to, t1].

16: end if

17: end while
18: Refine the midpoint of I, with H(x, 1), and return it.

Figure 2: An illustration of the preconditioning in Algo-
rithm 2. The point x( is an approximation of x(tp). The blue
line represents the predictor step, and the blue dotted line
represents the corrector step to get an approximation x; of
x(t1). The line segment s(t) connecting x( and x; is presented
by the red line. The tilted interval box is centered at s(t) at
each t € [ty, t;] with the same radius.

the Krawczyk method on a tilted interval box might incur significant
overestimation due to the conservative nature of interval arithmetic.
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To prevent this issue, we define a new homotopy H (x, t) = H(x +
s(t), t) which is obtained by change of coordinates via the shearing
map (x,t) — (x +s(t), t). This new homotopy satisfies H(0, 1) =
H(0,#;) = 0. In the transformed coordinates, the line segment s(t)
is parametrized by (0,...,0,¢) for t € [ty, t1]. We may then apply
the parametric Krawczyk method on I, to OH(x, [to, t1]). This step
is described in Algorithm 2 and illustrated in Figure 2. After this
pre-processing, we conduct the Krawczyk test step.

Algorithm 2 Preconditioning

Input: e A parameter homotopy H(x,t) = F(x;p(t)) : C" x
[0,1] — C" analytic in x and linear in p,
e apoint xo approximating x(0), for some nonsingular solution
path x(t) : [0,1] — C" such that H(x(t),t) = 0,
e a positive number r > 0 for the radius, and
e two positive constants t, t; € [0, 1] with ty < ;.
Output: e A point x; approximating x (1),
e a homotopy H(x,1),
e an interval box I, and
e atime interval Ty 4, C [1,0].
1: Find a point x; approximating x(t;) using the predictor-
corrector method.
2. Compute the line segment s(#) such that s(#) = xp and s(#1) =
X1.
3. Define H(x,t) = H(x + s(t),t) so that H(0, %) and H(0, )
approximate 0.
4: Set an interval vector I, centered at 0 with the radius r, and a
time interval Ty, 4, = [to, t1].
5: Return xi, H(x, t), I, and Ty, dt-

Compared to the steps discussed in Sections 3.3 and 3.4, there
are subtle differences when the preconditioning step is employed.
The process of preconditioning involves finding an approximation
x1 of x(#1). Since this process is executed in advance, refining the
midpoint of I, is no longer necessary when proceeding towards
larger t. In addition, the preconditioning step must be conducted
regardless of the success or failure of the Krawczyk test since #;
must always be updated. With these caveats, the complete “tilted”
variant of the Krawczyk homotopy using the preconditioning is
described in Algorithm 3. See Figure 3 for an illustration.

4 CORRECTNESS AND TERMINATION

If the algorithms presented in Section 3 terminate, we obtain both a
region and a point within that region such that the point can be re-
fined to an approximation of an exact solution to the system F(x; p1)
to any desired accuracy. The correctness of the algorithms is en-
sured when each interval box () encompasses only one solution
path x(t) forall t € [£G=1) ¢()]. Hence, the proof of Theorem 3.1
also proves the correctness of the algorithms.

To prove termination for a system F(x; p) with parameters p,
we assume that the parameter homotopy H(x,t) = F(x;p(t)) is
affine-linear; that is, we assume F is affine-linear in the parameters
pand p(t) = (1 —1t) - po+t-ppisaparametric segment. We
split the system F(x; p) into two parts F(x; p) = F1(x;p) + Fa(x)
where F; (x; p) consists of terms involving parameters while F(x)
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Algorithm 3 Krawczyk homotopy (tilted)

Input: e A parameter homotopy H(x,t) = F(x;p(t)) : C* x
[0,1] — C™ analytic in x and linear in p,
e apoint xp approximating x(0), for some nonsingular solution
path x(t) : [0,1] — C™ such that H(x(t),t) = 0,
e a positive number r > 0 for the initial radius,
e a time-step size dt € (0,1), and
e ascaling constant A > 1.
Output: A certified approximation of x(1).
1: Settyp = 0 and t; = dt.
22 Run Preconditioning(H(x, t), r, to, t1,x0)
X1, ﬁ(x, t), I, and Ty, dt-

to compute

3. Compute Y := 9xH(0, o) L.

4: while ty) < 1do

5 Run Krawczyk test with Koy (Ir, Ty, a4 )-

6: if Krawczyk test passed then

7: Set r = Ar and dt = Adt.

8: Refine x;

9: Set xg = x1,ty = t1, and t; = to + dt.

10: Run Preconditioning(H (x, t), r, ty, t1, Xo) to compute

x1,H(x, t),1, and Ty, dt-

Compute Y := AH(0, 1)~ 1.

else

Setr = %r and dt = %dt.

Run Preconditioning(H(x, t), r, to, t1, Xo) to compute
X1, H(x, t), I, and Ty, dr-
15: end if
16: end while
: Find a point x1 by refining s(1) with the system H(x, 1).
18: Return xq.

11:
12:

14:

is a collection of terms without parameters (hence, terms only in
x variables). For the homotopy H(x, t), we assume a nonsingular
solution path x(¢) from ¢t = 0 to t = 1 and that a starting solution
x(0) € C" is known exactly. The algorithms are guaranteed to
terminate if we can prove that the solution path x(¢) from t = 0
to t = 1 can be enclosed by a finite collection of interval boxes
1D, 1) constructed by either algorithm.

We first show that the parametric Krawczyk test succeeds in
proving the existence and uniqueness of x(#) in an interval I for all
values of t in [#, to + dt] C [0, 1] when dt and I are small enough.
Results are presented with the theoretical assumption that the exact
solution x* is known in advance. However, we also comment on the
practical scenario where only an approximation of x* is available.

Theorem 4.1. Let H(x,t) : C" x [0,1] — C" be an affine-linear
homotopy, analytic with respect to x. Assume that we have a point
x* € C" such that H(x*,ty) = 0 for some ¢y € [0,1]. Consider
a fixed positive constant L > 0 such that L > ||0d2H(I, [0, 1])]|,
where I is an interval box centered at x* of radius 1. Suppose that
the solution path x(¢) is nonsingular for all t € T; 4, := [to, to +d]
for some dt > 0 such that T, g, C [0, 1]. Then, there exist 0 < r < 1
and 0 < dt < 1 such that the path x(¢) is uniquely contained in the
interval box I, centered at x* with the radius r whenever t € Ty, 4;.
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Egments in the first figure represent s (1) connecting xo and x; for t € [t0=D +(D]. The second figure depicts the situation

when the shearing map x — x + s (1) is applied for t € [t(-D) ()] at each iteration. The red line in the second figure
corresponds to the parametric line segment (0,...,0,¢) in C" x [0, 1].

In other words, if the constant R = % satisfies

Va=IYIl- R IFr(x*; p1 = po)|l > 0

and

Vnr? +di? <

then Kyx y (Ir, Ty, ;) C Ir and

1
V2. |lYll-L @

1
11, =Y - OoxH(Iy, Tto,dt)” < _2

Proor. Take any y € Ky y (Ir, Ty, 4;)- Then, from the definition
of the Krawczyk operator K, y, we have

y—x* € =Y-OH(x*, Ty g)+(1n=Y-00xH(I, Ty, gp))-[-1, 71" (2)

Since x* is the midpoint of I, our goal is to show ||y — x*|| < r.
Note that we choose Y = 9, H(x™*, to)_l. Therefore,

10 = Y - 03cH Iy, Ty an) | = [V - (26HG* 10) - 00cH (I Ty ) )|

<||Y|l-L-Vnr?2+dt? 3)

ifr < 1and 0 < dt < 1. The last inequality follows from the dif-
ferentiability of H and the Lipschitz continuity of d,H [16, Section
1.5, Theorem 1.3].

Because H(x™*, tg) = 0, we have for any § € [0, dt] that

H(x*, tg +8) = F(x*; p(to + 5))
=F(x*;(1—tg—8) - po+ (to+9) - p1)
= F(x™; (1= t9) - po +to - p1) + F(x™;8 - (p1 = po))
= H(x*, 1) + F1 (x*;8 - (p1 = po))
=F; (x*;8- (p1-po)) .
Therefore, we know that
I0H (7, Ty a0)|| < dt - [|IF1 (x5 p1 = po)l. 4)

Using equations (3), (4)) to bound points in the interval of (2), we
deduce that Ky« y(Ir, Ty, g¢) C Ir if there are positive r and dt
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satisfying
WY1l de - IFy (x*spr = po)ll + 1Yl - L - Vr? +.dt? - 2ryn < r.

Setting R = % we rewrite the inequality above as

(Y11 R IFy (x*: p1 = po)ll = 1) r+

(||Y|| L-Vn+R2- z\/ﬁ) <0, (5)

This inequality is satisfied for a positive value of r provided that R
is sufficiently small. More precisely, choosing R small enough that

L= [Y[|- R+ [IF1(x*; p1 = po)|l > 0, (6)

some positive r satisfying the inequality (5) exists. This concludes
the existence statement that x(t) € I, forany t € T; 4;.

Lastly, using (3), we have Var? +dt? < \@IIlYll-L

small r and dt. This proves uniqueness of the solution pathinI,. O

for suitably

Note that the theorem and its proof applies to both Algorithms 1
and 3. When considering the case of Algorithm 3, the statement is
relevant to the homotopy H(x, t) rather than H(x, ).

Remark 4.2. Recall that Theorem 3.1 is stated for the exact solu-
tion x*. In practice, having x* is not feasible, but we will have an
approximation xo. Let I, be the interval centered at x( with the ra-
dius r, and assume that ||H(xo, fo)|| < €. In this case, the inequality
(3) still holds. On the other hand, we have
H(xo, to + ) = F(x0; p(to + 6))
= F(xo; (1 =129 — 8) - po + (to +6) - p1)
= F(x0; (1 —t0) - po + to - p1) + F(x050 - (p1 — po))
= H(xo, to) + F1 (x0;6 - (p1 — po)) -

Hence, the inequality (4) becomes

IBH (x0, Ty, ar) | < €+ dt - [|F1(x0; p1 = po)|
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Introducing R = % the inequality (5) turns into
Y1l e+ (Y[ - R - [[F1(xos p1 = po)ll = D) r
+ (||Y|| L-Vn+RZ- z\/ﬁ) 2 <o.

For small enough €, note that if inequality (6) is satisfied, the positive
values of r satisfying this inequality exist and are bounded below.
Hence, when replacing the interval box I, it is crucial to select one
with a radius that is not excessively small. A careful discussion of
refining an interval box to pass the Krawczyk test appears in [8].

We provide a corollary proving the termination of the algorithms.
The goal is finding a uniform lower bound for dt and r so that the
algorithm terminates in finitely many iterations.

Corollary 4.3. With the same hypotheses on H(x, ) as in Theo-
rem 4.1, Algorithm 3 terminates in finitely many steps.

Proor. Our smoothness assumption implies the real-valued
function p(t) : [0,1] — R defined by p(t) = ||axH (x(t), 1)) 71| is
uniformly bounded by some constant Mj. During any particular
iteration at time f, we have ||Y|| = ||0xH (0, t) ~!|| = p(to) < M.
Furthermore, considering a sufficiently large compact region that
contains x*, we know that ||F; (x*, p1 — po)|| can be bounded uni-
formly by some constant, ||F; (x*, p1 — po)|| < Ma.

Finally, defining I, to be the interval box in C” centered at the
origin with the radius r, we claim that for some fixed 7,6 > 0,
there is a constant M3 > 0 such that M3 > ||D<9)ZCI:I(I;, [to,to + S|
at any iteration at ¢y € [0, 1]. By considering a sufficiently large
compact region containing x(t), we know that there is L > 0 such
that L > ||02H (x(2), t)|| for any ¢ € [0, 1]. Therefore, there is 7 > 0
such that 2L > [|02H(x, t)|| for any x € x(t) + I;; and t € [0,1].
Here, x(t) + I5; is the Minkowski sum of x(t) and I»;. Then, there is
& > 0 such that for any #y € [0, 1], the line segment s(¢) connecting
x(to) and x(ty +dt) is contained in x(¢t) + I; whenever dt < §. Note
that this is possible since we may assume that ||x’(¢)|| < oo for all
t € [0,1]. Setting H(x, t) = H(x+s(t), t), we have || 02H (x, t)|| < 2L
ifx € I; and t € [to, tp + J] at any time ty € [0, 1]. This shows that
M3 = 2L is a uniform upper bound on ||D832CI:I(I;, [to, to + S])|| at
any fp € [0,1].

We now apply Theorem 4.1 to the homotopy H. Referring to (6),
the existence test succeeds provided that

R< (M -M) V= de<r- (M- M)~ < (My - My)~ L.

Thus, there is a uniform lower bound on the value of dt at any point
in the algorithm. Moreover, by the bound (1), choosing r and dt
satisfying that

1
Var? +dt2 <« ——M,
V2 M- Ms

uniform lower bounds for r and dt are obtained. Therefore, the
uniqueness of the solution path when tracking from an exact so-
lution at time t = 0 is guaranteed. When tracking from an ap-
proximate solution at subsequent times ¢ = t(l), ..., we proceed
by first refining the solution so that r can be chosen as indicated
in Remark 4.2, giving us the needed analogue of inequality (5). O

For the base-line method Algorithm 1, the proof is similar, but
simpler, since Theorem 3.1 applies directly to the homotopy H.
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Remark 4.4. The theoretical analysis of Algorithm ?? depends on
carefully-chosen constants. We point out the following regarding
these constants:

(1) From the inequality (6), a sufficiently small value of R is
required to guarantee termination. As Algorithm ?? do not
change the value of R, the initial values of dt and r should
be chosen carefully to ensure R is sufficiently small. The re-
sulting theoretical bounds on R are likely pessimistic, which
would lead to more iterations per path. Thus, in practice, it
is recommended to choose a “reasonable” initial value for R,
at the possible expense of termination. Our experiments use
arange R € [1/5,2].

(2) Additional analysis is needed in order to make all constants
appearing in Corollary 4.3 effective. For instance, a uniform
bound |p(t)| < M; for all t € [0, 1] can be obtained under
the slightly stronger hypothesis that x(¢) is analytic on an
open interval containing [0, 1]. Indeed, since the value of
the solution curve x(0) is known exactly, and the values of
derivatives of x(t) can be computed using the Davidenko
differential equation x’(¢) = (3xH) ! - 8;H, this hypothesis
would enable a uniform Taylor approximation of p(t) to any
desired accuracy on [0, 1].

5 EXPERIMENTS

In this section, we present experiments conducted with our prelimi-
nary implementation of Algorithm 3 in Macaulay2 [7]. Throughout
this section, we use hyper-parameter setting A = 3 for the step
increase/decrease factor. The values for step-size dt and radius r
depend on the experiment. Real interval arithmetic computations
are performed by the library MPFI [17]. A current limitation of
our implementation is that complex interval computations are per-
formed at the top-level, and thus tracking complex homotopies is
slower than real homotopies.

For parametric systems F(x;p) defined over the real numbers,
we are typically interested in real-valued solutions x € R™ for real-
valued parameters p € R™. However, a real parameter path p :
[0,1] — R™ typically leads to singularities: that is, JF(x(¢); p(t))
will be singular for some ¢ € (0, 1). Thus, it is typical to instead
use a complex-valued path p : [0,1] — C™, whose target param-
eters p1 = p(1), and possibly also start parameters pg = p(0), are
real-valued. Moreover, p is constructed in a randomized fashion;
depending on the application, p; € C™ may be chosen randomly,
or for p; € R™ a suitably random complex path may be constructed
using the y-trick [18, Chapter 8] or some variant thereof.

Motivated by the preceding discussion, we evaluate our method
for complex homotopies in Section 5.1 by comparing the number of
predictor steps used by our method to those reported in previous
works on examples ranging with 1 < n < 6 variables. Complemen-
tary to these results, we present timings for tracking a special class
of real homotopies in Section 5.2 in up to n = 20 variables. Taken
together, these results show that the Krawczyk homotopy is com-
petitive with the previous state-of-the-art in certified path tracking,
and that the number of variables is not an inherent limitation.

All experiments were conducted with a Macbook M2 pro 3.5
GHz, 16 GB RAM. The code is available at

https://github.com/klee669/krawczykHomotopy
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5.1 Benchmark examples

We begin with the univariate example presented in [9, Section
7.1]. Considering F(x) = x> ~1—mand o = m for m > —1, we
define a homotopy H(x,t) = F(x) + ot = x> — 1 — m + mt. For the
initial choice of dt = .02 and r = .1, we measure the number of
iterations by varying the value of m. The result is summarized in
Table 1. For given initial values of dt = .02 and r = .1, Algorithm 3
requires fewer iterations than that of [9] except for m = 30000. We
remark that, depending on initial values of dt and r, the number of
iterations of Algorithm 3 may vary.

We also consider benchmark examples of [1] using our imple-
mentation with initial values dt = .1 and r = .1. For each example,
we measure the maximum, minimum, and average number of it-
erations and compare the results with those reported in [1] (See
Table 2).

Lastly, to examine the impact of values of the hyper-parameters
dt and r on the performance of the Krawczyk homotopy, we address
two benchmark problems using different values of dt and r while
varying their ratios (See Table 3). The table shows that the results
have similar average numbers of iterations for a given ratio R =
% of dt and r. The results suggest that the performance of the
Krawczyk homotopy is more significantly influenced by the ratio
of dt to r, rather than their individual values.

5.2 A real homotopy

In addition to the results obtained for complex homotopies, we
provide timings for tracking a special class of real homotopies
where bifurcations are naturally avoided. Our setup is the classical
problem of low-rank matrix approximation, following the geometric
formulation in [6]. Let V; c R™ " denote variety of rank < 1
matrices, and consider the incidence correspondence

1
En= {(A, xyl) e R sV | (A-xyT) e (TxyT(Vl) }

(here T, denotes the tangent space). The map 7 : &, — R™"
onto the first factor is a generically n-to-1 map. More precisely, for
generic A € R™ ™ we have from the singular value decomposition,

A= (ur|--|up) diag(oy,...,0n) (v |- |oa)T, that

771 (A) = {(Voru) (Varon) . ... (Vamun) (Vamon) " |
Moreover, it is known that the branch locus of 7—defined here
to be the set of points A € R™" such that [z~ 1(A)| # n—has
codimension greater than one [11]. Because of this, we may expect
that a suitably parameter path p(t) : [0,1] — R™", with p(0) =
Ao, p(1) = Ay, avoids the branch locus with probability-one, and
use such paths to construct homotopies connecting known points
of one fiber 771(Ag) to another 771 (A;).

In our experiments, we consider the straight-line segment p that
connects the identiy matrix Ay = I to the Hilbert matrix,

1 1
1 1 -
2 —1
101 "1
2 3 n
Ay = .
r 1 0 _1_
n n+1 2n-1

This is a notoriously ill-conditioned test matrix used in numerical
linear algebra. Our modest goal is to certify the paths connecting the
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best rank-one approximations, given by (v/o1u1)(y/or v1)T, which
are the easiest solution paths to track in this example.

To carry this out, we use a suitable system of 2n parametric
equations in variables x,y € R"™ which vanish on &; and whose
solution paths are regular throughout the homotopy. From the ob-
jective function £(x, y; A) = ||A—xyT ||2, we use 2n—1 critical point
equations dx,g, .. ., 9x, 9, 9y, g, - - -, Ay, g, and impose the equation
of a generic affine chart bTx — ¢ = 0.

The results of our experiments with this real homotopy are
shown in Table 4. The table illustrates that the number of steps
used by our method grows moderately with respect to the number
of variables. The measured timings grow at a comparable rate. The
number of iterations per second for this example is seen to steadily
decrease with the number of variables.

The changes in the step-size dt as tracking progresses are visu-
alized in Figure 4. For this problem, Algorithm 3 requires smaller
step-size both as ¢ tends towards 1 and as n increases.

We point out that there will be some variance in such experi-
ments due e.g. to the randomly chosen chart, as witnessed by the
progression between cases n = 5, 6, 7. Still, even for the cases con-
sidered with tens of variables, the step-size consistently stays above
unit roundoff and all paths are successfully tracked within an hour.
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ADDITIONAL FIGURES AND TABLES

dt=.02,r=.1
m value | # iters || HHL [9] # iters
10 31 51
40 20 82
100 14 105
2000 23 180
5000 57 204
10000 108 220
30000 327 250

Table 1: Comparing the number of iterations between Algo-
rithm 3 and the certified tracking algorithm in [9].
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