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ABSTRACT

The main results of this paper establish a partial correspondence
between two previously-studied analogues of Grobner bases in the
setting of algebras: namely, subalgebra (aka SAGBI) bases for quo-
tients of polynomial rings and Khovanskii bases for valued algebras.
We aim to bridge the gap between the concrete, computational as-
pects of the former and the more abstract theory of the latter. Our
philosophy is that most interesting examples of Khovanskii bases
can also be realized as subalgebra bases and vice-versa. We also
discuss the computation of Newton-Okounkov bodies, illustrating
how interpreting Khovanskii bases as subalgebra bases makes them
more amenable to the existing tools of computer algebra.

CCS CONCEPTS

» Computing methodologies — Representation of mathemat-
ical objects.
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1 INTRODUCTION

Subalgebra bases (sometimes also called canonical bases or SAGBI
bases) were originally introduced as analogues to Grobner bases for
polynomial algebras independently by Kapur and Madlener [12]
and Robbiano and Sweedler [15]. This concept was further general-
ized to quotient polynomial rings by Stillman and Tsai [16] and to
Khovanskii bases of valued algebras by Kaveh and Manon [14].
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There are several existing implementations of subalgebra bases
for polynomial algebras in computer algebra systems: two imple-
mentations [4, 11] using SINGULAR [8], a forthcoming implementa-
tion [3] in CoCoA [1], and an implementation [5, 6] in MACAULAY2
[10] by several of the authors of this paper. Among these imple-
mentations, we note that the recent work in [4] reports impressive
runtimes compared to the alternatives on a test suite of challenging
examples. On the other hand, the package [5], described in [6], also
handles subalgebra bases for quotient rings. This level of generality
is needed for the computations in the present paper.

Showcasing the generality of Khovanskii bases, [14, Example 7.7]
constructs finite Khovanskii bases for the standard invariant ring
of the alternating group A = k[x, 1, z]%. Viewed as a subalgebra
A C k[x,y,z], a finite subalgebra basis for A does not exist [9].
However, in Example 3.10, we show that there is more to the story:
if we present A as the quotient of a polynomial ring, the Khovanskii
bases in question are also subalgebra bases in the sense of [16].

Our main goal is to establish explicit connections between the
two previously-mentioned notions of Khovanskii bases and sub-
algebra bases for quotient rings, with an eye towards leveraging
existing implementations. We show in Theorem 3.8 that the most
common cases of Khovanskii bases, namely those arising from val-
uations that satisfy our standing hypotheses in Section 3, can also
be realized as subalgebra bases of quotients of polynomial rings.
We note that the same hypotheses are satisfied by the valuations
constructed using tropical geometry in [14, Theorem 1].

As a partial converse, Corollary 4.4 gives sufficient conditions
under which subalgebra bases for quotient rings are also Khovanskii
bases. Note that this result holds unconditionally in the original
setting of polynomial rings. Section 5 contains further discussion
of the relationship between the monomial orders and valuations
appearing in our constructions. Finally, in Section 6, we apply our
results to computing Newton-Okounkov bodies.

2 BACKGROUND

Fix a field k and let R := k[xy, . .., X, ] be a commutative polynomial
ring with a monomial order <. We fix the maximum convention for
monomial orders, that is, lIt(f + g) < max{lt(f),1t(g)}, provided
none of f, g, and f + g is zero.

Let A := k[fi: i € I] be a subalgebra of R, where I is some
index set. The initial algebra of A is the algebra generated by the
leading terms of A, that is,

1t(A) = k[1t(f): f € A]. 1)
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Here, we use the notation 1t(A) instead of the more common no-
tation in< (A), as we reserve the latter notation for valuations and
Khovanskii bases, cf. [17].

Definition 2.1. A set {gj}je g C Ais a subalgebra basis for A
with respect to < if the leading terms {lt(g;)} e g generate the
initial algebra of A, that is,

1t(A) = k[lt(g)): j € T]. @

One of the most significant differences between subalgebra bases
and Grobner bases is that subalgebra bases do not receive the ben-
efits of the Noetherian property. Therefore, a finitely generated
algebra may not have a finite subalgebra basis under any term
ordering, see, for example, [15, Example 1.20].

Many of the standard algorithms from Grébner basis theory have
analogues in subalgebra basis theory. For instance, polynomial long
division is replaced by subduction. The subduction algorithm pro-
vides a rewriting of a polynomial f € R with respect to a subalgebra
basis {g;} je g The result of the algorithm is a finite sum

f= Z cag” +r,
aeNT

with the following properties: (1) ; is zero for all but finitely many
indices, (2) cq is zero for all but finitely many values of «, (3) if
r # 0, then lt(r) < It(f), (4) the nonzero terms of r are not in the
initial algebra 1t(A), (5) for every @ with ¢y # 0, It(f) > 1t(¢9%), and
(6) the values of Im(g*) with ¢, # 0 are distinct. The finiteness
in these definitions comes about since monomials orders are well-
orders, even when the subalgebra basis itself has infinitely many
polynomials. Subduction has many standard properties of other
polynomial rewriting procedures: for example, the remainder r is
zero if and only if f € A. In fact, the remainder r is independent of
the choice of ¢y. Therefore, when f € A, the remainder is zero and
exactly one « has both ¢, # 0 and Im(f) = Im(g%).

The term order induces a filtration on A by k-vector spaces as
follows: For any o € N,

FealA) = {f € A+ 1t(f) < x“} U {0}, 3)
F<x(A) is defined similarly, by replacing < by < in Equation (3).
Then the associated graded algebra is

gro(4) = P Fea(A)/Fa(A).

aeNn

4

2.1 Subalgebra bases for quotient rings

In [16], Stillman and Tsai extended the definition of subalgebra
bases to quotients of polynomial rings. They present their theory
for quotient rings over commutative Noetherian domains, but we
restrict our discussion to quotient rings over fields.

Suppose that k, R, and < are defined as above, and let I be an
ideal of R. Let A be a subalgebra of the quotient R/I. Stillman and
Tsai then consider the following sequence of maps in order to define
the notion of a leading term:

~ 1
RIS R 5% R L rm

[f] t(f) -  qt(f)).

The map ~ indicates the normal form of f in terms of standard
monomials (and not an isomorphism). The function It selects the

|—>f»—>
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largest nonzero term under < of its input polynomial. Finally, the
map q is the quotient map. The image of [f] under this sequence
of maps is defined to be its leading term, denoted by 1t([f]).

With the notion of a leading term, the definition of the initial
algebra of A is identical to the definition from polynomial algebras,
as in Equation (1).

Definition 2.2. A set {[gj]}jeq C Ais a subalgebra basis for A
with respect to < if the leading terms {lt([g;])} je s generate the
initial algebra of A, as defined as in Equation (2).

We highlight that 1t([f]) is an element of R/It(I) while 1t(f) isa
monomial in R. Therefore, in the quotient case, both of the algebras
appearing in Equations (1) and (2) are subalgebras of R/1t(I).

Subduction and the associated graded have similar definitions
and properties to the polynomial case. For example, for [f] € R/I
and {[g;]} je g a subalgebra basis, the algorithm produces

f: Z cag® +r+h,

aeNT

with the additional property that h € I and r is composed of stan-
dard monomials for I. The definition of leading terms for quotients
can be used to define a filtration as in Equation (3) and associated
graded as in Equation (4). In this case, the filtration is defined as

F<q(A) = {[f] € R/T: 1t(f) < x*}. (5)

F<(A) is defined similarly, by replacing < by < in Equation (5). Still-
man and Tsai show that the associated graded gr_ (A) is isomorphic
to 1t(A), see the algebraic remark in [16, Section 2].

2.2 Khovanskii bases

In [14], Kaveh and Manon adapted the ideas of subalgebra bases to
finitely generated valued k-algebras as follows: Let A be a finitely
generated k-algebra and domain. Suppose, in addition, that A is
equipped with a valuation v : A\ {0} — Q" that lifts the trivial
valuation on k*. Moreover, we assume that Q" is given a total
ordering > so that the image of v is maximum-well-ordered. We
fix the convention that v is a min-valuation, that is, v(f + g) >
min{v(f), v(g)}, provided none of f, g, and f + g are zero.
This valuation induces a filtration where, for any a € Q”,

Frq(A) ={f € A:v(f) = a} U{0}. (6)

Fs (A) is defined similarly, by replacing > by > in Equation (6). The
associated graded algebra is

gr,(A) = P Fea(A)/F-a(A).
aeQ”
We often include the assumption that v has one-dimensional leaves,
meaning each of the summands above is a vector space of dimen-
sion at most 1. This assumption is frequently satisfied, see e.g. [14,
Theorem 2.3], and it has useful algorithmic consequences.

Definition 2.3. A setof nonzero elements {g;} jc g is a Khovanskii
basis for A with respect to v if the set of images g + F, (4, for
j € J generate gr,,(A) as an algebra.

As in the subalgebra basis case, the subduction algorithm can
be adapted to Khovanskii bases. Any element of the algebra f € A
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can be rewritten as a polynomial in the Khovanskii basis {g;} je 7.

f= Z cag”,
aeNT

with the following properties: (1) & is zero for all but finitely many
indices, (2) ¢y is zero for all but finitely many values of «, (3) for
every a with ¢ # 0, v(f) < v(g%), and (4) the values of v(g%)
with ¢, # 0 are distinct. The finiteness comes from the fact that
the image of v is well-ordered, and the distinctness comes from the
one-dimensional leaves assumption. Unlike subalgebra bases, the
algebra A might not be a subalgebra of some larger algebra, so the
subduction rewriting can only be performed on elements of A.

3 KHOVANSKII BASES AS SUBALGEBRA BASES

Let A be a finitely generated k-algebra and domain, as in the def-
inition of Khovanskii bases. Suppose that {g1,...,gm} is a finite
Khovanskii basis for A. Our goal is to find a subalgebra basis in the
sense of [16] that reflects the structure and properties of A.

We maintain the following standing hypotheses on a valuation
in order to simplify theorem statements.

Standing Hypotheses. Let A be a k-algebra equipped with a valua-
tionv: A\ {0} — Q", where Q" is given a total order <. We say the
valued algebra v : A\ {0} — Q" satisfies the standing hypotheses if
(1) the image v(A \ {0}) € Q" is maximum-well-ordered, (2) A is
a finitely-generated domain, (3) v lifts the trivial valuation on k*,
and (4) v has one-dimensional leaves.

Let R := k[x1, ..., Xm] be a presentation ring for A corresponding
to our Khovanskii basis, meaning that there is a presentation map
7 : R — A defined by 7(x;) = g;. Let I be the kernel of this map.
Using the valuation v, we define a monomial order on R.

Definition 3.1. Let R be a presentation ring for a finite Khovanskii
basis with respect to v satisfying the standing hypotheses. We define
a monomial order < on R induced by the valuation v as follows:
x> P if v(n(x®) < v(z(xF)) or v(x(x¥)) = v(x(xP)) and
x% >’ xP for some fixed, tie-breaking monomial order <’ on R.

We verify that < defines a monomial order. It is a total ordering
since both the image of v is totally ordered and <" induces a total
ordering on N™. Also, < refines the partial order given by divisibil-
ity due to the property v(fg) = v(f) + v(g). Finally, we note that v
lifts the trivial valuation on k and its image is well-ordered. Thus,
there cannot be any f € A\ k such that v(f) > 0. Since <’ satisfies
1 <’ x“ for all a, we conclude that 1 < x% for any a € N™,

REMARK 3.2. One of the main results in [14] is the construction of
the valuation vy corresponding to a prime cone [14, Definition 4.1]
of the tropicalization of I, where I is the kernel defined above. This a
push-forward of a quasi-valuation [14, Definition 2.26] V1 defined
on the presentation ring R. When the image of vps is maximum-well-
ordered, the monomial order < defined here is a refinement of the
order on monomials given by —vyy.

We now consider R/I as a subalgebra of itself. For a Khovanskii
basis {g1, - . ., gm}, we observe that {[x1], ..., [xm]} form a subalge-
bra basis for R/I. To verify this, we note that if 1t([x;]) # x; + 1t(),
then x; is not a standard monomial. Therefore, for all f € R, x; does
not appear in It(f), and so 1t([f]) can be represented without x;.
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Therefore, {[x1],..., [xm]} and {[x1],..., [xi],... [xm]} generate
the same subalgebra of gr_ (R/I). Continuing recursively, we find
that for every f in R, It([f]) can be represented by a monomial in
the variables x; such that 1t([x;]) = x;+1t(I). Hence, these variables
generate gr. (R/I) and form a subalgebra basis.

Therefore, not only are R/I and A isomorphic as k-algebras, but

the presentation map 7 also takes the subalgebra basis {[x1], ..., [xm]}

for R/I to the Khovanskii basis {g1, . .., gm} for A.

REMARK 3.3. The argument above does not use the assumption
that{gi,...,gm} form a Khovanskii basis. Therefore, the set of { [x;] }
where 1t([x;]) = x; + 1t(I) always form a subalgebra basis for R/I.

Next, we show that the grading and filtration given by this mono-
mial order match that of the valuation.

LemMA 3.4. With the standing hypotheses and notation as above,
let [f] € R/I be nonzero, then v(r(f)) = v(z(1t(f))).

Proor. Using subduction, we write 7(f) = X zenm cag® as a
finite sum. By construction, there is exactly one a with ¢, # 0 and
v(g®) = v(n(f)). For all other a, either ¢, = 0 or v(g%) > v(x(f)).
We define 17 = Yl genm CgXx?. By the properties of subduction and
the fact that the monomial order uses the valuation to order, we
observe that v(z(1t(f))) = v(z(f)).

We first show that v(ﬂ(lt(f))) < v(n(f)) by contradiction. If the
other inequality held, then every term of f would map to an element
of A with valuation greater than v(z(f)) since the monomial order
is based on valuation-order. But then, since v is a min-valuation,
V(ﬂ(f)) > v(x(f)), which is not possible.

On the other hand, if v(z(1t(f))) < v(x(f)), then It(f — f) =
1t( f ) since the monomial order > is based on the valuation order.
However, f - j_f € I, which contradicts the fact that f is a linear
combination of standard monomials. O

In the previous proof, we note that generally f # ]_‘" We can only
conclude that the images of their leading terms under 7 must have
the same valuation. This relationship can be seen more precisely in
the following lemma, which shows that the filtrations of R/I and A
are compatible with the quotient 7.

LEmMMA 3.5. With the standing hypotheses and notation as above,
Fea(R/T) = {[f] € R/T: 7(f) € Fxy(n(x)) (A)}

PrOOF. By definition, [f] € F<4 if and only if It(f) < x*. By
the construction of the monomial order, this is true if and only
if either v(z(1t(f))) > v(x(x%)) or v(x(1t(f))) = v(x(x%)) and
1t(f) <’ x%. By Lemma 3.4, v((f)) = v(x(1t(f))), and, in either
case, v(7r(f)) = v(m(x%)), that is, 7(f) € Fy y(r(xx))(A).

On the other hand, suppose that 7(f) € Fy,(z(xa))(A), but
[f] ¢ F<q. This implies that v(z(f)) > v(x(x%)), but lt(f) >
x%. By the construction of the monomial order and Lemma 3.4,
if v(z(f)) > v(n(x%)), then lt(f) < x%. It then follows that
v((f)) = v(r(x%)) and 1t(f) > x2.

Since v has one-dimensional leaves, there is some A € k so
that either v(z(f) — Az (x%)) > v(x(x%)) or n(f) — An(x%) = 0.
Using subduction, we write 7(f) — A7(x%) = Xgenm Cﬁgﬁ as a
finite sum. By the properties of subduction, for all § with c¢g #
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0, v((f) = An(x%)) < v(gf). Let h =
construction, f — Ax% —h € I.

We now show that 1t( f —Ax%* —h) = 1t( f ). In particular, since
1t(f) > x% Ax® cannot be the leading term of this sum. In ad-
dition, by the properties of subduction, for all § with cg # 0,
v(1t(f)) < v(x(f) = Ar(x¥)) < v(gF). This implies that It(f) >
cﬁxﬁ whenever cp# 0. Therefore, no cﬁxﬂ can be the leading term
of f = Ax®* — h.

Since lt(f— Ax% —h) = lt(f) andf— Ax*—hel, lm(f) cannot
be a standard monomial of I. This contradicts the definition of f,
and so [f] € F<q. O

2 penm Cﬁxﬂ. Then, by

By construction, the elements of R/I are in bijective correspon-
dence with those of A. Hence, the elements of F<,(R/I) are in
bijective correspondence with the elements of F,. ,,(;(xa)) (A). By
the previous result, we see that if v(z(x%)) = v(r(xF)), then
F<a(R/I) = F<p(R/I) since the right-hand-side of the equality
is the same for both « and f.

Suppose that lm(f) = x% and v(r(x%)) = v(x(x#)). Since [f] e
F<a(R/I) = F<p(R/I), it follows that x% < xP.In other words,

# is the smallest monomial with respect to < whose valuation is
v(m(x%)).

On the other hand, suppose that x# is not the smallest monomial
with respect to < with valuation v(r(xP)). The observation above
implies that if v(z(f)) = v(x#), then 1t(f) < xP. Therefore, [f] €
F.g(R/I). Putting this together, we have the following conclusions:

COROLLARY 3.6. Using the standing hypotheses and notation as
above, suppose that x* and xP are such that v(x(x%)) = v(x(xF))
and x* < xP. Then

F<a(R/T) = F<g(R/I) = F<g(R/I).

COROLLARY 3.7. Using the standing hypotheses and notation as
above, suppose that x* is the smallest monomial with respect to <
with valuation v(7(x%)). Then,

Fea(R/I) ={[f]1 € R/I: n(f) € Fy (r(x))(A)}-

In the case of Corollary 3.6, we see that F<g(R/I)/F<g(R/I) is
trivial. On the other hand, in the case of Corollary 3.7, we conclude
that

F<a(R/D)[Fq(R/T) = Fy (g (xa)) (A)/Fs y(r(xe)) (A).

These two observations directly imply that the associated graded
algebras for both R/I under < and A under > are equal. Collecting
these results, we have the following:

THEOREM 3.8. Consider a valued algebra v : A\ {0} — Q"
satisfying the standing hypotheses, and suppose that A has a finite
Khovanskii basis with respect to v. Then there is a polynomial ring R,
ideal I of R, and monomial order < such that that

()R/I=A, and (2) gr,(A) = gr_(R/I).

REMARK 3.9. We focus on the case where A has a finite Khovanskii
basis for computational reasons, but the theory can be extended to the
case where A has an infinite Khovanskii basis. Then the polynomial
ring R would be a (countably) infinitely-generated polynomial ring.
This would also require extending the definition of subalgebra bases

111

Colin Alstad, Michael Burr, Oliver Clarke, and Timothy Duff

from [16]. The definitions carry over mutatis mutandis, but we leave
the details to the interested reader.

Example 3.10. Consider the following example from [14, Ex-
ample 7.7]: Let A be the subalgebra of k[z1, z2, 23] consisting of
polynomials that are invariant under the action of As. That is,
A = kley, ez, e3,y] where

e1 =2z1+2z22+z3, e = 2122 + 2123 + 2223,

e3 = 212223, y = (21 — z2)(z1 — 2z3) (22 — 23).

Let R = k[x1, x2, x3, x4] be the presentation ring of A where 7 :
R — A with 7(x;) = e; and 7 (x4) = y. The kernel of the map = is
the principal ideal I = (f), where

f= xlx2 - 4x2 - 4x3x1 + 18x1x2x3 — 27x3 - xi 7)

The tropical variety 7 (I) € R* contains three maximal prime
cones, and hence, by [14, Theorem 1], the set {e, ez, e3,y} is a
Khovanskii basis for each of the valuations constructed from these
cones. Moreover, none of these valuations are induced by monomial
order on k[z1, z2, z3] since a result of G6bel implies such subalgebra
bases are always infinite [9]. On the other hand, any valuation
v: A — Q? constructed from these prime cones corresponds to
many different monomial orders < on R satisfying the conclusions
of Theorem 3.8. Consider, for instance, the prime cone generated
by the rays R>o (-3, -6, 14, —9) and R»(22, -2, —3, —3). A suitable
monomial order < can be constructed from the weight matrix

0 2 2 3
M_(1416)’

where x* < xP if Ma is lexicographically smaller than Mp, and
any fixed monomial order is used to break ties.

We see that {[x1], [x2], [x3], [x4]} forms a subalgebra basis for
R/I,which corresponds under 7 to the Khovanskii basis {ey, ez, €3, y}
for A. Although the valuation on A is not induced by a monomial
order on k(z1, z2, z3], there is another ring R and monomial order
on this ring, which does induce the valuation on A.

Two remarks further illustrate the relationship between v and <.

REMARK 3.11. Lemma 3.4 implies the following characterization
(cf. [14, Equation (3.2)]) of v in terms of the presentation ring:

max{v(z(Ilt(h))) : h € R and n(h) = g} forg € A\ {0}.

REMARK 3.12. For every nonzero f € I, the two largest monomials
x% and P of f with respect to < must satisfy v(m(x%)) = v(m(xP)).
In Example 3.10, these are the underlined terms of Equation (7).

v(g) =

The construction of Theorem 3.8 assumes it is known a priori that
{91,...,9gm} forms a Khovanskii basis. Without this assumption,
the construction is merely existential. We next state a criterion that
can identify when {gi, ..., gm} form a Khovanskii basis.

THEOREM 3.13. For a valued algebrav : A\ {0} — Q" satisfying
the standing hypotheses, let {g1,...,gm} be a finite set of nonzero
generators for A. Let R := k[x1,...,xm] be the presentation ring for
these generators, I the kernel of the presentation map, and < a mono-
mial order induced by v. The set {g1,...,gm} forms a Khovanskii
basis for A if and only if gr ,(A) ~ gr _(R/I).
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Proor. By Theorem 3.8, if {g1, ...gm} is a Khovanskii basis of
(A, v), then gr ,(A) = gr_(R/I). On the other hand, by Remark 3.3
{[xi]} with x; a standard monomial form a subalgebra basis for R/I.
If the map It(R/I) — gr ,(A) defined by [x;] +1t(I) — g; + F. v(gs)
is an isomorphism, then {g; + F. ,(4,)} generate gr,(A). Hence
g1, - - -, gm is a Khovanskii basis. m]

A Khovanskii or subalgebra basis is minimal if none of its proper
subsets form a Khovanskii or subalgebra basis for the same algebra.
Our previous constructions respect minimality.

PROPOSITION 3.14. Letv : A\ {0} — Q" be a valued algebra
satisfying the standing hypotheses and {g1, . ..,gm} be a finite Kho-
vanskii basis for A. Let R := k[x1,...,xm] be the presentation ring
and I the kernel of the presentation map. There exists a monomial
order < induced from < such that {g1,...,gm} is a minimal Kho-
vanskii basis if and only if {[x1], ..., [xm]} is a minimal subalgebra
basis.

Proor. Let < be any monomial order induced by v. Suppose
there is an i so that {[x1],..., [’xl\] ...» [xn]} is a subalgebra ba-
sis for R/I. This means that there is some a with @; = 0 so that
It([x])¥* = 1t([x;]). Since 1t(I) is a monomial ideal, we conclude

that 1t(x*) = lt(x;). We observe by Lemma 3.4 that
v(r(x?)) = v(x(x?)) = v(z(1t(x"))) = v(z(t(x))) = v(z(x:)).

Rewriting this statement in terms of Khovanskii bases gives that
v(g*) = v(gi). Since v has one-dimensional leaves, there is some A
so that either v(Ag* — g;) > v(g;) or Ag* — g; = 0. In other words,
Ag* and g; have the same image in the associated graded algebra.
Since Ag* does not involve g;, we conclude that {g1,...,§i...,gm}
generates the same image in the associated graded, and these ele-
ments also form a Khovanskii basis.

On the other hand, suppose that {g1, ..., di,...,gm} is a Khovan-
skii basis. By applying subduction to g;, we have g; = Yy enm cag®
as a finite sum such that for every a with ¢, # 0, we have a; = 0. By
the properties of subduction, for each a with ¢, # 0, v(g%) > v(gi).
Moreover, by the properties of the valuation, there is a unique f
with c¢g # 0 where equality is attained. Now, consider the poly-
nomial f = x; — X genm cax®. By construction, f € I and lt(f) is
either Cﬁxﬁ or x;. Since the valuation of the images of these terms
is the same, their order is determined by the fixed tie-breaking
monomial order <’ on R. We may choose the tie-breaking order
to have x; >’ cﬁxﬁ , for instance, using an elimination order. Since
x; is the leading term of f, x; is not a standard monomial, and, by
the argument preceding Remark 3.3, It([x;]) # x; +1t(I) and [x;]
can be dropped from the subalgebra basis. We iteratively apply this
procedure, dropping one term of the Khovanskii basis and a corre-
sponding subalgebra basis generator until both are minimal. O

REMARK 3.15. The proof above shows that when < is chosen ap-
propriately, the Khovanskii basis and subalgebra basis elements are
in bijective correspondence with each other.

4 SUBALGEBRA BASES AS KHOVANSKII BASES

Let R := k[x1,...,xm]. Suppose that R/I is a finitely generated
k-algebra and domain with a monomial order <. In this case, we
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can apply the theory of Khovanskii bases directly to R/I, provided
we can find a suitable valuation on R/I.

A motivating attempt would be to use ji : R/I\ {[0]} — Z™
defined as [ f] — —exp(Im( f )), where exp denotes the exponent of
the input monomial. In many cases, however, this is not a valuation.
In particular, suppose that x* and xP are standard monomials,
but their product x%*P is not a standard monomial. In this case,
A([x*]) + fi( [xP]) = —(a + B), but this does not equal ﬂ([x‘”ﬁ])

since Im(x*F) # x®*F We proceed to fix this deficiency.

Definition 4.1. Let f € R be nonzero and not a monomial. Sup-
pose that the two largest leading monomials of f with respect to <
are x® and x®, with x* > x% (cf. Remark 3.12). We define the
toric exponent of f to be torexp(f) = a1 — ap € Z™.

The key object in our construction is the following lattice:
K = Z{torexp(f) : f € I} € Z™.
We then define the torsion-free portion of Z™ /K as
torfree(Z™ /K) = (Z" /K) [torsion(Z™ /K).

From this, we define the map p : R/I'\ {[0]} — torfree(Z™/K)
where p([f]) maps to the image of fi([ f]) in this quotient. We now
define an order on the image of y. In particular, suppose that a and
b are in the image of p. We say that a < b if the smallest monomial
x® with p([x®]) = a is greater than the smallest monomial x# with
pu([xP]) = .

We observe that the monomial x%, as defined above, is a stan-
dard monomial. In particular, for any [f] € p~!(a), it follows that
[1t(f)] € g~ (a). We note that It(f) is both a standard monomial
and smaller than It(f).

THEOREM 4.2. Let R := k[x1,...,Xm]| with monomial order <.
Suppose I is a prime, monomial-free ideal of R. Let K be defined
as above. Define i : R/I — torfree(Z™/K) as above. If for every
nonzero a € torfree(Z™/K) in the image of u there is a unique
standard monomial x* such that p([x*]) = a, then p is a valuation
onR/I.

Proor. Suppose that [fi], [f2] € R/I, and let x% = lm(ﬁ). Since
our monomial orders use the maximum convention,

Im(fi + fo) = lm(ﬁ +E) < max{x*, x*}.

Rewriting this in terms of g, it follows that

u(Lfr+ f21) z min{p([Ai]), u([f2])}-

Now, suppose that lm(]?l‘fz) = xV. If x**# is a standard mono-
mial, then x¥ = x®*8, and p([fifz]) is the image of a + f§ in
torfree(Z™ /K), which is the sum of the images of « and f.

On the other hand, if x*+B is not a standard monomial, then we
consider

h = x@F — xa+B = x@*B _ x¥ _lower order terms

Note that £ is in I, and it is neither zero nor a monomial. Therefore,
torexp(h) = @ + f — y is in K. From this, it follows that p([fi]) +

u(f2]) = p(LATLRD)- o

REMARK 4.3. In the statement of Theorem 4.2, the assumption on
the unique standard monomial in the preimages of i is a version of
the one-dimensional leaves assumption.
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COROLLARY 4.4. Let R := k[x1,...,xm] with monomial order <.
Suppose I is a prime, monomial-free ideal of R. Let K be defined as
above. Define j1 : R/I — torfree(Z™/K) as above. Suppose that for
every nonzero a € torfree(Z™/K) in the image of ji there is a unique
standard monomial x* such that u([x*]) = a. Then{[x1], ..., [xm]}
is a Khovanskii basis with respect to p1.

PRrRoOF. LetS C {x1,...,xm} consisting of variables that are also
standard monomials. By Remark 3.3 {[x;]};es is a subalgebra basis
with respect to <. Consider an element p([f]) in the image of p,
where f € R. We have that u([f]) = p([f]) = p([1t(f)]). We write
1t(f) as a product of variables in S as follows: 1t(f) = [T;cs x{.
Hence

1+ Fopirn) = [ﬂxl‘“ +Eum = | ([xi] +F>u<[x,»]>) :

i€S i€S

Therefore, {[x;]}ics generate the associated graded. O

5 EQUIVALENCE OF VALUATIONS

When the monomial order on R/I is constructed as in Section 3,
then R/I ~ A has two valuations on it: # and v. We show that these
valuations are linearly equivalent. As a first step, we simplify the
construction of the lattice K as above.

LEMMA 5.1. Consider a valued algebrav : A\{0} — Q" satisfying
the standing hypotheses, and suppose that A has a finite Khovanskii
basis {g1,...,gm} with respect tov. Let R := k[x1,...,xm] be the
presentation ring for this basis. Let K be defined as above. Then,

K=Z{a-p: a,peZ™ v(r(x%) = v(x(xF))}.

PRroOF. By Remark 3.12, every toric exponent of an element in [
is of the desired form. On the other hand, suppose that v(z(x%)) =
v(r(xP)) with o # B. Since v has one-dimensional leaves, there
exists a A such that v(z(x%) = Ax(x#)) > v(x(x%)) or m(x%) —
An(xP) = 0. We write 7(x%) — An(xP) = ZyeNm cyg" as a finite
sum using subduction. By the properties of subduction, for all y with
cy #0, v(r(x®) =Ax(xP)) = v(g¥).Leth = x“—Axﬁ—ZyeNm cpxt.
By construction, h € I and torexp(h) =a — ff,soa — ff € K. O

REMARK 5.2. The proof of this lemma shows that if v(r(x%)) =
v(r(xP)), with a # B, then there is a polynomial f € I whose two
leading monomials are x* and xP.

We further simplify the construction of K in terms of a Grob-
ner basis for I. This simplification is particularly useful for the
construction of the Newton-Okounkov body in Section 6.

COROLLARY 5.3. Consider a valued algebrav : A\ {0} — Q" sat-
isfying the standing hypotheses, and suppose that A has a finite Kho-
vanskii basis {g1, . . ., gm} with respect tov. LetR := k[x1,...,xm] be
the presentation ring for this basis and I the kernel of the presentation
map 7w : R — A. Let K be defined as above, and {fi, .. ., fi} a Grobner
basis forI. K is generated by {torexp(fj)}i.:l as a Z-lattice.

PROOF. Let a be in the image of v, and suppose that a1, ..., a, €
N are the exponents of all monomials x* such that v(7(x%)) = a
and ordered by x% < x%*. By induction on /, we show that all
differences of the form a;, — a;, with iy, iy < [ are in the Z-lattice
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generated by the toric exponents of the Grébner basis. The base
case of [ = 1 is vacuously true.

We assume the claim is true for [ > 1 and consider the case of
I + 1. By Remark 5.2, there is some polynomial h whose leading
monomial is x%/*1. By the property of being a Grébner basis, there
is some f; such that Im(fj) divides x#+1. Therefore, there is some
x9 so that x%+1 = x9 Im(f;). By Remark 3.12, the second largest
monomial of x‘sfj is x%* for some i < I + 1. Therefore, a;,; — a; =
torexp(x? fj) = torexp(fj). The inductive hypothesis then implies
that the claim is true for the case of [ + 1. O

REMARK 5.4. Suppose that f € R so that v(n(f)) = v(z(lt(f)))-
Then, v(z(1t(f))) = v(ﬂ(lt(f))). By Remark 5.2, there is a polyno-
mial f € I whose leading monomials are lm(f) and lm(f). This
implies that the image of —exp(Im(f)) in torfree(Z™/K) equals
HU([f]). In this case, it is not necessary to replace f byf in our com-
putations.

We now show that the two valuations defined on R/I ~ A are
linearly equivalent. This indicates that we may use subalgebra bases
for quotient rings as a computational replacement for Khovanskii
bases without losing information.

THEOREM 5.5. Consider a valued algebrav : A\{0} — Q" satisfy-
ing the standing hypotheses, and suppose that A has a finite Khovan-
skii basis {g1, . ..,gm} with respect tov. Let R := k[x1,...,xm] be
the presentation ring for this basis and I the kernel of the presentation
map m : R — A. Let K and i be defined as above. Then, u and v
are linearly equivalent, that is, there is an invertible linear transfor-
mation ¢ from the span of the image of ji to the span of v such that

vor(f) = ¢ou(lf]) forall f € R.

PROOF. Suppose that the image of y1 is of rank r and that the vari-
ables {x1, ..., x,} are standard monomials such that Z{u([x;])}]_,
is of rank r. We define the map ¢ as ¢(u([x;])) = v(x(x;)), and
extend it by linearity.

We first show that {v(z(x;))}]_, is independent by contradic-
tion. Suppose that there is a nontrivial sum }!_; c;v(7(x;)) =
iy civ(gi) = 0. By scaling, we may assume that each ¢; is an inte-
ger. We separate the positive and negative parts of the coefficients,
where a; = max{0, ¢; } is the vector of positive coefficients and f; =
a; — c; is the vector of negative coefficients. It follows that v(g%) =
V(gﬁ). Since 7(x%) = g% and x(xP) = gﬁ, Remark 5.2 implies that
there is an f in I whose leading monomials are x* and xP . There-
fore, « — f = ¢ € K. By Remark 5.4, u([x%*]) = X; @ip([xi]), which
is the image of « in torfree(Z™ /K), and p([xﬂ]) = >; Pip([xi]),
which is the image of f in torfree(Z™/K). Therefore, Y; c;u([x;i])
is the image of @ — f§ in torfree(Z™ /K). This image is trivial, which
contradicts the assumption that {u([x;])}]_, is independent.

Suppose that there is a nontrivial .72, c;u([x;]) = 0. By scaling,
we may assume that each ¢; is an integer. We separate the posi-
tive and negative parts of the coefficients where @; = max{0, c;}
is the vector of positive coefficients and f; = a; — c; is the vector
of negative coefficients. By Remark 5.4, we note that }}; a;ju([x;])
is the image of « in torfree(Z™/K) and Y ; fiu([x;]) is the im-
age of f in torfree(Z™/K). Since X; aip([xi]) = X; Bip([xi]), we
have that the image of a — f is zero in torfree(Z™/K). In other
words, there is some nonzero integer s € Z so that s(¢ — ) € K.
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From Lemma 5.1, it follows that v(z(x%%)) = V(T[(XS‘B)), Since
v(r(x5%)) = sv((x%)) and v(z(x°P)) = sv(x(xF)), we conclude
that v(7(x%)) = v((x#)). Thus, by Remark 5.2, « — f € K and
2 @iv(gi) = X; Piv(gi) or that 3; ¢;v(g;) = 0.

Therefore, since any p([x;]) can be written in terms of the basis
{u([x1]), - .., p([x])}, v(gi) is the corresponding linear combina-
tion of {v(g1), ..., v(gr)}. Hence, {v(g1),...,v(gr)} also form a full
rank sublattice of the lattice generated by {v(g1), ..., v(gm)}. These
relationships additionally imply that the transformation ¢ takes
pu([xi]) tov(g;) foralll <i < m. |

REMARK 5.6. Theorem 5.5 shows that the valuations v and y carry
the same information. This differs from previous work, e.g., [14, Lemma
3, Corollary 4.7, and Remark 5.3], which show the existence of valua-
tions with the desired properties, but are not designed for comparisons.

6 NEWTON-OKOUNKOV BODIES

One of the most important invariants of a graded, valued algebra
A is its Newton-Okounkov body [2, 7, 13, 14]. This is a convex
body which captures homological and geometric data of A. For
instance, the normalized volume of the Newton-Okounkov body is
the asymptotic growth rate of the Hilbert function for the algebra,
see, for instance [14, Theorem 2.23] and [13, Theorem 4.9]. We show
how to compute the Newton-Okounkov body of a graded algebra
using the constructions of the previous sections.

We follow the construction of the Newton-Okounkov body as in
[14]. Consider a valued algebra v/ : A” \ {0} — Z' satisfying the
standing hypotheses, and a positively graded algebra A = @izo A;
where A; C A’ for all i. We extend v’ to valuation, which also
satisfies the standing hypotheses, v : A\ {0} —» N x Z". We de-
compose f € A\ {0} into homogeneous components, f = X7/ f;
with f; € A; and fi, # 0, and define v(f) = (m, v’ (f;n)). We order
N x Z" so that (m,a) > (n,b)if m<norm=nanda > b.

Definition 6.1. The Newton-Okounkov body associated to A and
v/ is the closed, convex set

A(A,v) = conv{Vv'(f)/i: f € A; \ {0}}.

When A has a finite Khovanskii basis, we may assume, without
loss of generality, that every basis element is homogeneous. In other
words, {g1,...,gm} form a Khovanskii basis and deg(g;) = d;, that
is g € Ag,. Then, the Newton-Okounkov body is conv{v’(g;)/d;}.

Suppose that A = (P, A; is a positively graded and valued
algebra with valuation v" as above with a finite Khovanskii basis
{g1,...,9m}. Let R be the presentation ring such that 7 : R —» A
has kernel I, and a monomial order < induced by v.

THEOREM 6.2. Let i be the valuation on R/I defined above and
letd = (deg(g;): 1 < i < m) be the vector of degrees of Khovanskii
basis elements. The Newton-Okounkov body of R/I is given by

AR/ p) = conv {ldI12a(Lxil) i [xiDa ®)

Proor. Fix a lattice basis (wy, ..., w) for K, and set wy41 = d.
By construction, w; and wy4; are orthogonal for all i. Choose a set
of vectors {Wy+2, ..., Wm} C Z™ which extends {wy, ..., We+1} toa
basis of the vector space Q™ such that w; and wy,; are orthogonal
foralli# ¢+1.
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The valuation y can be represented by p : R/I'\ {0} — Q™ ¢
where p([x%]) are the coordinates of « with respect to the vec-
tors {Wg+1, ..., Wm } in the basis defined above. This construction
embeds torfree(Z™/K) as a subset of Q™ ¢. Let L ~ Z™~! be the
lattice generated by the images {u([x1]),...,u([xm])}, and the
Newton-Okounkov body for R/I is defined with respect to this
lattice. We observe that, since wyt is orthogonal to the other wjs,

the first entry of p([x*]) is deg(ﬁ(x“))/HJHZ. O

REMARK 6.3. Theorem 6.2 makes the results in [14, Corollary 5 and
Proposition 4.2] more explicit in anticipation of the computations in
our algorithm.

Suppose {[x1],..., [xm]} form a minimal subalgebra basis, then
A(R/L, p) is (m—¢t)-dimensional. When A(R/I, p) is full-dimensional,
the normalized volume of the Newton-Okounkov body can be com-
puted in terms of the standard volume on Q™= (as opposed to
computing the volume in terms of the integral lattice as in Equa-
tion 8). Since wy41 is perpendicular to all other vectors, the mul-
tiplicative factor for the volume splits along this dimension. In
particular, the multiplicative factor for the volume is the length of a
lattice generator of the first-coordinates of (u([x1]), ..., pu([xm]))
divided by the volume of a fundamental domain of L in Q™. Since
u([xi])g = \%ll’ the length of the lattice generator of the first-

coordinates is S———=2—>""2

Algorithm 1 Calculating vol(A(R/L, p)).

Input: a positively graded k-algebra and domain A, a valuation v
satisfying the standing hypotheses, and a finite Khovanskii basis
{91, ..., gm} for A with respect to v.

Output: the normalized volume of A(R/L, p1).

1: Construct presentation ring R with presentation 7 : R — A,
monomial order > induced by v, and I := ker() (see Section 3).

2. Compute a Grobner basis G for I.

3: Compute a basis {wy, ..., wy} of the lattice K spanned by the
toric exponents of G.

4 Set wpy1 = d= (deg(gi)) € Z™ to be the vector of degrees of
all Khovanskii basis elements.

5. Extend Z{w1, ..., wWp+1} to a full-rank lattice Z{wy, ..
such that 17Vg+1 € {@(4.1, R \X/m}J‘.

6: SetW=( Wy |-+ | W ) €Zmm

7. Construct V € Q(M={=1)Xm by selecting the last m— £ — 1 rows
of W1 and scaling the ith column by dl._1 fori=1,...,m.

8: Construct the matrix L’ of minimal generators of the lattice

generated by the last m — £ rows of W1,
(m—¢—-1)!gcd(ds,....dn) vol(conv(V))

lld|I2| det(L’)]

oW}

9: return

Example 6.4. Consider the following example from [7, Example
23]. Let U denote the complex vector space of cubic polynomials in
C[x, y] that vanish on the points {(4, 4), (-3, -1), (-1,-1),(3,3) }.
We associate to U the algebra R(U) = @kzo Uksk, graded by
s-degree. In [7], the authors showed that R(U) has the finite Kho-
vanskii basis 8 = {gos,gls, 925, J3S, g4$, g5, 9632,9733} under the
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valuation v : R(U) \ {0} — Q3 induced by the graded reverse
lexicographic order with x > y, and

11 1 11 2 3
vB) =1 2 0 1 2 3 1 4|
1 0 3 10 3 1

The corresponding Newton-Okounkov body A(R(U), v) is shown
in Figure 1 and has normalized volume 5. Following Algorithm 1 we

(0,3)

(3,0)

Figure 1: The Newton-Okounkov body A(R(U), v). A repro-
duction of [7, Figure 2].

calculate vol(A(R/L p)). First let R = C|zy, 21, 22, 23, 24, 25, Z6, 27|
be the presentation ring for R(V) and the monomial order induced
on R by v is given by the rows of the matrix

11 1 1 1 1 2 3
2 2 3 3 3 3 4 5
12 0 1 2 3 1 4

as weight vectors where further ties are broken with graded reverse
lexicographic order. We have a direct sum decomposition Q% =
K ® Q ® Q?, with bases comprised of the columns of W,

1 2 3 -3 —4]1]l0 o
-1 -2 -3 1 0 |1]0 o0
-1 -1 -1 0 1 ]1]0 0
1 0 0 0 o 1l0 o0
W= 0 1 0 0 o0]1]0 o0
0o 0 1 o0 o0 1|2 3
0 0 0 1 o0 |2|-1 o0
o 0 0 o0 1 |3]0 -1

The Newton-Okounkov body A(R/I, i) = conv(V), where

_1 13 _91 _5 _3 2 _49 23
V= 190 38 95 95 19 95 190 95

s 7z s 9 & u  u _el|
190 38 95 95 19 95 95 285

is a polytope of Euclidean volume vol(V) = 1

7> see Figure 2.
Having now obtained the Euclidean volume of V, we now com-

pute its volume in the lattice produced by Step 8 in Algorithm 1. The

lattice L = Z3 formed from the last three rows of W1 is generated

by the columns of the matrix

2 gle

[,
0!
S

1 0
L'=f0o 1 -
0 0

=
O
S
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(-1,1)

-91 68
(—95, ﬁ).

(1’ _1)

Figure 2: The Newton-Okounkov body A(R/I, u).

Since d is the sixth column of W above, Algorithm 1 gives us the
normalized volume of A(R(U), i) as

(8-5-1)!(1) (i)
19(&)

agreeing with the normalized volume calculated in [7, Example 23].

=5,

THEOREM 6.5. Let v : A\ {0} — Z™*! be the valuation on
a graded algebra A = ®;>0A; induced by a valued algebra v/ :
A"\ {0} - Z satisfying the standard hypotheses with A; C A’.
Assume A has a finite Khovanskii basis {g1,...,gm}, and define
u: R/I — torfree(Z™/K) as in Section 4. The Newton-Okounkov
bodies A(A,v) and A(R/I, i1) are both rational polytopes which are
affinely-equivalent.

To be clear, Theorem 6.5 states that there is an affine transforma-
tion taking one Newton-Okounkov body to the other, and that this
affine transformation is invertible when restricted to the Q-affine
spans of the respective Newton-Okounkov bodies.

ProoF. We write the linear transformation ¢ from Theorem
5.5, which takes p([x;]) to v(x(x;)), in terms of the coordinates
presented in this section. Since one coordinate of each of u([x;])
and v(g;) records the degree of [x;] or g;, respectively, the stan-
dard matrix for ¢ decomposes (after a suitable permutation of the

coordinates) as
x 07
b M)’

where * denotes the nonzero scaling factor between the two rep-
resentations of the degrees. Using this notation, and scaling by
degrees, the appropriate affine transformation from A(R/I, u) to
A(A,v) is x — Mx +b. O

REMARK 6.6. Theorem 6.5 extends the results of [14, Proposition
5.5] by giving an explicit description of the affine transformation
between the Newton-Okounkov bodies.
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