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ABSTRACT
The main results of this paper establish a partial correspondence
between two previously-studied analogues of Gröbner bases in the
setting of algebras: namely, subalgebra (aka SAGBI) bases for quo-
tients of polynomial rings and Khovanskii bases for valued algebras.
We aim to bridge the gap between the concrete, computational as-
pects of the former and the more abstract theory of the latter. Our
philosophy is that most interesting examples of Khovanskii bases
can also be realized as subalgebra bases and vice-versa. We also
discuss the computation of Newton-Okounkov bodies, illustrating
how interpreting Khovanskii bases as subalgebra bases makes them
more amenable to the existing tools of computer algebra.

CCS CONCEPTS
• Computing methodologies→ Representation of mathemat-
ical objects.

KEYWORDS
Subalgebra bases, Khovanskii bases, Newton-Okounkov bodies,
Finitely generated algebras
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1 INTRODUCTION
Subalgebra bases (sometimes also called canonical bases or SAGBI
bases) were originally introduced as analogues to Gröbner bases for
polynomial algebras independently by Kapur and Madlener [12]
and Robbiano and Sweedler [15]. This concept was further general-
ized to quotient polynomial rings by Stillman and Tsai [16] and to
Khovanskii bases of valued algebras by Kaveh and Manon [14].
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There are several existing implementations of subalgebra bases
for polynomial algebras in computer algebra systems: two imple-
mentations [4, 11] using S!"#$%&’ [8], a forthcoming implementa-
tion [3] in C(C(A [1], and an implementation [5, 6] inM&)&$%&*2
[10] by several of the authors of this paper. Among these imple-
mentations, we note that the recent work in [4] reports impressive
runtimes compared to the alternatives on a test suite of challenging
examples. On the other hand, the package [5], described in [6], also
handles subalgebra bases for quotient rings. This level of generality
is needed for the computations in the present paper.

Showcasing the generality of Khovanskii bases, [14, Example 7.7]
constructs "nite Khovanskii bases for the standard invariant ring
of the alternating group 𝐿 = 𝑀 [𝑁,𝑂, 𝑃]𝐿3 . Viewed as a subalgebra
𝐿 ↑ 𝑀 [𝑁,𝑂, 𝑃], a "nite subalgebra basis for 𝐿 does not exist [9].
However, in Example 3.10, we show that there is more to the story:
if we present𝐿 as the quotient of a polynomial ring, the Khovanskii
bases in question are also subalgebra bases in the sense of [16].

Our main goal is to establish explicit connections between the
two previously-mentioned notions of Khovanskii bases and sub-
algebra bases for quotient rings, with an eye towards leveraging
existing implementations. We show in Theorem 3.8 that the most
common cases of Khovanskii bases, namely those arising from val-
uations that satisfy our standing hypotheses in Section 3, can also
be realized as subalgebra bases of quotients of polynomial rings.
We note that the same hypotheses are satis"ed by the valuations
constructed using tropical geometry in [14, Theorem 1].

As a partial converse, Corollary 4.4 gives su#cient conditions
under which subalgebra bases for quotient rings are also Khovanskii
bases. Note that this result holds unconditionally in the original
setting of polynomial rings. Section 5 contains further discussion
of the relationship between the monomial orders and valuations
appearing in our constructions. Finally, in Section 6, we apply our
results to computing Newton-Okounkov bodies.

2 BACKGROUND
Fix a "eld 𝑀 and let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑀] be a commutative polynomial
ring with a monomial order <. We "x the maximum convention for
monomial orders, that is, lt(𝑅 + 𝑆) ↓ max{lt(𝑅 ), lt(𝑆)}, provided
none of 𝑅 , 𝑆, and 𝑅 + 𝑆 is zero.

Let 𝐿 := 𝑀 [𝑅𝑁 : 𝑇 ↔ I] be a subalgebra of 𝑄, where I is some
index set. The initial algebra of 𝐿 is the algebra generated by the
leading terms of 𝐿, that is,

lt(𝐿) := 𝑀 [lt(𝑅 ) : 𝑅 ↔ 𝐿] . (1)
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Here, we use the notation lt(𝐿) instead of the more common no-
tation in< (𝐿), as we reserve the latter notation for valuations and
Khovanskii bases, cf. [17].

De!nition 2.1. A set {𝑆 𝑂 } 𝑂↔J ↑ 𝐿 is a subalgebra basis for 𝐿
with respect to < if the leading terms {lt(𝑆 𝑂 )} 𝑂↔J generate the
initial algebra of 𝐿, that is,

lt(𝐿) = 𝑀 [lt(𝑆 𝑂 ) : 𝑈 ↔ J] . (2)

One of the most signi"cant di!erences between subalgebra bases
and Gröbner bases is that subalgebra bases do not receive the ben-
e"ts of the Noetherian property. Therefore, a "nitely generated
algebra may not have a "nite subalgebra basis under any term
ordering, see, for example, [15, Example 1.20].

Many of the standard algorithms from Gröbner basis theory have
analogues in subalgebra basis theory. For instance, polynomial long
division is replaced by subduction. The subduction algorithm pro-
vides a rewriting of a polynomial 𝑅 ↔ 𝑄 with respect to a subalgebra
basis {𝑆 𝑂 } 𝑂↔J . The result of the algorithm is a "nite sum

𝑅 =
∑

𝑃↔NJ
𝑉𝑃𝑆

𝑃 + 𝑊 ,

with the following properties: (1) 𝑋 𝑂 is zero for all but "nitely many
indices, (2) 𝑉𝑃 is zero for all but "nitely many values of 𝑋 , (3) if
𝑊 ω 0, then lt(𝑊 ) ↓ lt(𝑅 ), (4) the nonzero terms of 𝑊 are not in the
initial algebra lt(𝐿), (5) for every 𝑋 with 𝑉𝑃 ω 0, lt(𝑅 ) ↗ lt(𝑆𝑃 ), and
(6) the values of lm(𝑆𝑃 ) with 𝑉𝑃 ω 0 are distinct. The "niteness
in these de"nitions comes about since monomials orders are well-
orders, even when the subalgebra basis itself has in"nitely many
polynomials. Subduction has many standard properties of other
polynomial rewriting procedures: for example, the remainder 𝑊 is
zero if and only if 𝑅 ↔ 𝐿. In fact, the remainder 𝑊 is independent of
the choice of 𝑉𝑃 . Therefore, when 𝑅 ↔ 𝐿, the remainder is zero and
exactly one 𝑋 has both 𝑉𝑃 ω 0 and lm(𝑅 ) = lm(𝑆𝑃 ).

The term order induces a "ltration on 𝐿 by 𝑀-vector spaces as
follows: For any 𝑋 ↔ N𝑀 ,

𝑌↓𝑃 (𝐿) := {𝑅 ↔ 𝐿 : lt(𝑅 ) ↓ 𝑁𝑃 } ↘ {0}. (3)

𝑌<𝑃 (𝐿) is de"ned similarly, by replacing ↓ by < in Equation (3).
Then the associated graded algebra is

gr< (𝐿) :=
⊕
𝑃↔N𝐿

𝑌↓𝑃 (𝐿)/𝑌<𝑃 (𝐿) . (4)

2.1 Subalgebra bases for quotient rings
In [16], Stillman and Tsai extended the de"nition of subalgebra
bases to quotients of polynomial rings. They present their theory
for quotient rings over commutative Noetherian domains, but we
restrict our discussion to quotient rings over "elds.

Suppose that 𝑀 , 𝑄, and < are de"ned as above, and let 𝑍 be an
ideal of 𝑄. Let 𝐿 be a subalgebra of the quotient 𝑄/𝑍 . Stillman and
Tsai then consider the following sequence of maps in order to de"ne
the notion of a leading term:

𝑄/𝑍 ≃⇐→ 𝑄
lt⇐→ 𝑄

𝑄
⇐→ 𝑄/lt(𝑍 )

[𝑅 ] ⇒→ 𝑅 ⇒→ lt(𝑅 ) ⇒→ 𝑎(lt(𝑅 )).
The map ≃ indicates the normal form of 𝑅 in terms of standard
monomials (and not an isomorphism). The function lt selects the

largest nonzero term under < of its input polynomial. Finally, the
map 𝑎 is the quotient map. The image of [𝑅 ] under this sequence
of maps is de"ned to be its leading term, denoted by lt( [𝑅 ]).

With the notion of a leading term, the de"nition of the initial
algebra of 𝐿 is identical to the de"nition from polynomial algebras,
as in Equation (1).

De!nition 2.2. A set {[𝑆 𝑂 ]} 𝑂↔J ↑ 𝐿 is a subalgebra basis for 𝐿
with respect to < if the leading terms {lt( [𝑆 𝑂 ])} 𝑂↔J generate the
initial algebra of 𝐿, as de"ned as in Equation (2).

We highlight that lt( [𝑅 ]) is an element of 𝑄/lt(𝑍 ) while lt(𝑅 ) is a
monomial in 𝑄. Therefore, in the quotient case, both of the algebras
appearing in Equations (1) and (2) are subalgebras of 𝑄/lt(𝑍 ) .

Subduction and the associated graded have similar de"nitions
and properties to the polynomial case. For example, for [𝑅 ] ↔ 𝑄/𝑍
and {[𝑆 𝑂 ]} 𝑂↔J a subalgebra basis, the algorithm produces

𝑅 =
∑

𝑃↔NJ
𝑉𝑃𝑆

𝑃 + 𝑊 + 𝑏,

with the additional property that 𝑏 ↔ 𝑍 and 𝑊 is composed of stan-
dard monomials for 𝑍 . The de"nition of leading terms for quotients
can be used to de"ne a "ltration as in Equation (3) and associated
graded as in Equation (4). In this case, the "ltration is de"ned as

𝑌↓𝑃 (𝐿) := {[𝑅 ] ↔ 𝑄/𝑍 : lt(𝑅 ) ↓ 𝑁𝑃 }. (5)

𝑌< (𝐿) is de"ned similarly, by replacing ↓ by < in Equation (5). Still-
man and Tsai show that the associated graded gr< (𝐿) is isomorphic
to lt(𝐿), see the algebraic remark in [16, Section 2].

2.2 Khovanskii bases
In [14], Kaveh and Manon adapted the ideas of subalgebra bases to
"nitely generated valued 𝑀-algebras as follows: Let 𝐿 be a "nitely
generated 𝑀-algebra and domain. Suppose, in addition, that 𝐿 is
equipped with a valuation 𝑐 : 𝐿 \ {0} → Q𝑅 that lifts the trivial
valuation on 𝑀⇑ . Moreover, we assume that Q𝑅 is given a total
ordering ⇓ so that the image of 𝑐 is maximum-well-ordered. We
"x the convention that 𝑐 is a min-valuation, that is, 𝑐 (𝑅 + 𝑆) ⇔
min{𝑐 (𝑅 ),𝑐 (𝑆)}, provided none of 𝑅 , 𝑆, and 𝑅 + 𝑆 are zero.

This valuation induces a "ltration where, for any 𝑑 ↔ Q𝑅 ,
𝑌⇔𝑆 (𝐿) := {𝑅 ↔ 𝐿 : 𝑐 (𝑅 ) ⇔ 𝑑} ↘ {0}. (6)

𝑌⇓ (𝐿) is de"ned similarly, by replacing ⇔ by ⇓ in Equation (6). The
associated graded algebra is

gr𝑇 (𝐿) =
⊕
𝑆↔Q𝑀

𝑌⇔𝑆 (𝐿)/𝑌⇓𝑆 (𝐿).

We often include the assumption that 𝑐 has one-dimensional leaves,
meaning each of the summands above is a vector space of dimen-
sion at most 1. This assumption is frequently satis"ed, see e.g. [14,
Theorem 2.3], and it has useful algorithmic consequences.

De!nition 2.3. A set of nonzero elements {𝑆 𝑂 } 𝑂↔J is aKhovanskii
basis for 𝐿 with respect to 𝑐 if the set of images 𝑆 𝑂 + 𝑌⇓𝑇 (𝑈𝑁 ) for
𝑈 ↔ J generate gr𝑇 (𝐿) as an algebra.

As in the subalgebra basis case, the subduction algorithm can
be adapted to Khovanskii bases. Any element of the algebra 𝑅 ↔ 𝐿
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can be rewritten as a polynomial in the Khovanskii basis {𝑆 𝑂 } 𝑂↔J ,

𝑅 =
∑

𝑃↔NJ
𝑉𝑃𝑆

𝑃 ,

with the following properties: (1) 𝑋 𝑂 is zero for all but "nitely many
indices, (2) 𝑉𝑃 is zero for all but "nitely many values of 𝑋 , (3) for
every 𝑋 with 𝑉𝑃 ω 0, 𝑐 (𝑅 ) ↖ 𝑐 (𝑆𝑃 ), and (4) the values of 𝑐 (𝑆𝑃 )
with 𝑉𝑃 ω 0 are distinct. The "niteness comes from the fact that
the image of 𝑐 is well-ordered, and the distinctness comes from the
one-dimensional leaves assumption. Unlike subalgebra bases, the
algebra 𝐿 might not be a subalgebra of some larger algebra, so the
subduction rewriting can only be performed on elements of 𝐿.

3 KHOVANSKII BASES AS SUBALGEBRA BASES
Let 𝐿 be a "nitely generated 𝑀-algebra and domain, as in the def-
inition of Khovanskii bases. Suppose that {𝑆1, . . . ,𝑆𝑉} is a "nite
Khovanskii basis for 𝐿. Our goal is to "nd a subalgebra basis in the
sense of [16] that re$ects the structure and properties of 𝐿.

We maintain the following standing hypotheses on a valuation
in order to simplify theorem statements.

Standing Hypotheses. Let𝐿 be a 𝑀-algebra equipped with a valua-
tion 𝑐 : 𝐿\ {0} → Q𝑅 , whereQ𝑅 is given a total order ↙. We say the
valued algebra 𝑐 : 𝐿 \ {0} → Q𝑅 satis"es the standing hypotheses if
(1) the image 𝑐 (𝐿 \ {0}) ↑ Q𝑅 is maximum-well-ordered, (2) 𝐿 is
a "nitely-generated domain, (3) 𝑐 lifts the trivial valuation on 𝑀⇑ ,
and (4) 𝑐 has one-dimensional leaves.

Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be a presentation ring for𝐿 corresponding
to our Khovanskii basis, meaning that there is a presentation map
𝑒 : 𝑄 → 𝐿 de"ned by 𝑒 (𝑁𝑁 ) = 𝑆𝑁 . Let 𝑍 be the kernel of this map.
Using the valuation 𝑐, we de"ne a monomial order on 𝑄.

De!nition 3.1. Let 𝑄 be a presentation ring for a "nite Khovanskii
basis with respect to𝑐 satisfying the standing hypotheses.We de"ne
a monomial order < on 𝑄 induced by the valuation 𝑐 as follows:
𝑁𝑃 > 𝑁𝑊 if 𝑐 (𝑒 (𝑁𝑃 )) ↙ 𝑐 (𝑒 (𝑁𝑊 )) or 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 )) and
𝑁𝑃 >∝ 𝑁𝑊 for some "xed, tie-breaking monomial order <∝ on 𝑄.

We verify that < de"nes a monomial order. It is a total ordering
since both the image of 𝑐 is totally ordered and <∝ induces a total
ordering on N𝑉 . Also, < re"nes the partial order given by divisibil-
ity due to the property 𝑐 (𝑅 𝑆) = 𝑐 (𝑅 ) + 𝑐 (𝑆). Finally, we note that 𝑐
lifts the trivial valuation on 𝑀 and its image is well-ordered. Thus,
there cannot be any 𝑅 ↔ 𝐿 \𝑀 such that 𝑐 (𝑅 ) ⇓ 0. Since <∝ satis"es
1 ↓∝ 𝑁𝑃 for all 𝑋 , we conclude that 1 ↓ 𝑁𝑃 for any 𝑋 ↔ N𝑉 .

R+,&’- 3.2. One of the main results in [14] is the construction of
the valuation 𝑐𝑋 corresponding to a prime cone [14, De!nition 4.1]
of the tropicalization of 𝑍 , where 𝑍 is the kernel de!ned above. This a
push-forward of a quasi-valuation [14, De!nition 2.26] 𝑐𝑋 de!ned
on the presentation ring 𝑄. When the image of 𝑐𝑋 is maximum-well-
ordered, the monomial order < de!ned here is a re!nement of the
order on monomials given by ⇐𝑐𝑋 .

We now consider 𝑄/𝑍 as a subalgebra of itself. For a Khovanskii
basis {𝑆1, . . . ,𝑆𝑉},we observe that {[𝑁1], . . . , [𝑁𝑉]} form a subalge-
bra basis for 𝑄/𝑍 . To verify this, we note that if lt( [𝑁𝑁 ]) ω 𝑁𝑁 + lt(𝑍 ),
then 𝑁𝑁 is not a standard monomial. Therefore, for all 𝑅 ↔ 𝑄, 𝑁𝑁 does
not appear in lt(𝑅 ), and so lt( [𝑅 ]) can be represented without 𝑁𝑁 .

Therefore, {[𝑁1], . . . , [𝑁𝑉]} and {[𝑁1], . . . , [̂𝑁𝑁 ], . . . [𝑁𝑉]} generate
the same subalgebra of gr> (𝑄/𝑍 ). Continuing recursively, we "nd
that for every 𝑅 in 𝑄, lt( [𝑅 ]) can be represented by a monomial in
the variables 𝑁𝑁 such that lt( [𝑁𝑁 ]) = 𝑁𝑁 + lt(𝑍 ). Hence, these variables
generate gr> (𝑄/𝑍 ) and form a subalgebra basis.

Therefore, not only are 𝑄/𝑍 and 𝐿 isomorphic as 𝑀-algebras, but
the presentationmap𝑒 also takes the subalgebra basis {[𝑁1], . . . , [𝑁𝑉]}
for 𝑄/𝑍 to the Khovanskii basis {𝑆1, . . . ,𝑆𝑉} for 𝐿.

R+,&’- 3.3. The argument above does not use the assumption
that {𝑆1, . . . ,𝑆𝑉} form a Khovanskii basis. Therefore, the set of {[𝑁𝑁 ]}
where lt( [𝑁𝑁 ]) = 𝑁𝑁 + lt(𝑍 ) always form a subalgebra basis for 𝑄/𝑍 .

Next, we show that the grading and "ltration given by this mono-
mial order match that of the valuation.

L+,,& 3.4. With the standing hypotheses and notation as above,
let [𝑅 ] ↔ 𝑄/𝑍 be nonzero, then 𝑐 (𝑒 (𝑅 )) = 𝑐 (𝑒 (lt(𝑅 ))).

P’((.. Using subduction, we write 𝑒 (𝑅 ) =
∑
𝑃↔N𝑂 𝑉𝑃𝑆𝑃 as a

"nite sum. By construction, there is exactly one 𝑋 with 𝑉𝑃 ω 0 and
𝑐 (𝑆𝑃 ) = 𝑐 (𝑒 (𝑅 )). For all other 𝑋 , either 𝑉𝑃 = 0 or 𝑐 (𝑆𝑃 ) ⇓ 𝑐 (𝑒 (𝑅 )).
We de"ne 𝑅 =

∑
𝑃↔N𝑂 𝑉𝑃𝑁𝑃 . By the properties of subduction and

the fact that the monomial order uses the valuation to order, we
observe that 𝑐 (𝑒 (lt(𝑅 ))) = 𝑐 (𝑒 (𝑅 )).

We "rst show that 𝑐 (𝑒 (lt(𝑅 ))) ↖ 𝑐 (𝑒 (𝑅 )) by contradiction. If the
other inequality held, then every term of 𝑅 wouldmap to an element
of 𝐿 with valuation greater than 𝑐 (𝑒 (𝑅 )) since the monomial order
is based on valuation-order. But then, since 𝑐 is a min-valuation,
𝑐 (𝑒 (𝑅 )) ⇓ 𝑐 (𝑒 (𝑅 )), which is not possible.

On the other hand, if 𝑐 (𝑒 (lt(𝑅 ))) ↙ 𝑐 (𝑒 (𝑅 )), then lt(𝑅 ⇐ 𝑅 ) =
lt(𝑅 ) since the monomial order > is based on the valuation order.
However, 𝑅 ⇐ 𝑅 ↔ 𝑍 , which contradicts the fact that 𝑅 is a linear
combination of standard monomials. ↭

In the previous proof, we note that generally 𝑅 ω 𝑅 . We can only
conclude that the images of their leading terms under 𝑒 must have
the same valuation. This relationship can be seen more precisely in
the following lemma, which shows that the "ltrations of 𝑄/𝑍 and 𝐿
are compatible with the quotient 𝑒 .

L+,,& 3.5. With the standing hypotheses and notation as above,

𝑌↓𝑃 (𝑄/𝑍 ) =
{
[𝑅 ] ↔ 𝑄/𝑍 : 𝑒 (𝑅 ) ↔ 𝑌⇔𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿)

}
.

P’((.. By de"nition, [𝑅 ] ↔ 𝑌↓𝑃 if and only if lt(𝑅 ) ↓ 𝑁𝑃 . By
the construction of the monomial order, this is true if and only
if either 𝑐 (𝑒 (lt(𝑅 ))) ⇓ 𝑐 (𝑒 (𝑁𝑃 )) or 𝑐 (𝑒 (lt(𝑅 ))) = 𝑐 (𝑒 (𝑁𝑃 )) and
lt(𝑅 ) ↓∝ 𝑁𝑃 . By Lemma 3.4, 𝑐 (𝑒 (𝑅 )) = 𝑐 (𝑒 (lt(𝑅 ))), and, in either
case, 𝑐 (𝑒 (𝑅 )) ⇔ 𝑐 (𝑒 (𝑁𝑃 )), that is, 𝑒 (𝑅 ) ↔ 𝑌⇔𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿) .

On the other hand, suppose that 𝑒 (𝑅 ) ↔ 𝑌⇔𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿), but
[𝑅 ] ε 𝑌↓𝑃 . This implies that 𝑐 (𝑒 (𝑅 )) ⇔ 𝑐 (𝑒 (𝑁𝑃 )), but lt(𝑅 ) >
𝑁𝑃 . By the construction of the monomial order and Lemma 3.4,
if 𝑐 (𝑒 (𝑅 )) ⇓ 𝑐 (𝑒 (𝑁𝑃 )), then lt(𝑅 ) < 𝑁𝑃 . It then follows that
𝑐 (𝑒 (𝑅 )) = 𝑐 (𝑒 (𝑁𝑃 )) and lt(𝑅 ) >∝ 𝑁𝑃 .

Since 𝑐 has one-dimensional leaves, there is some 𝑓 ↔ 𝑀 so
that either 𝑐 (𝑒 (𝑅 ) ⇐ 𝑓𝑒 (𝑁𝑃 )) ⇓ 𝑐 (𝑒 (𝑁𝑃 )) or 𝑒 (𝑅 ) ⇐ 𝑓𝑒 (𝑁𝑃 ) = 0.
Using subduction, we write 𝑒 (𝑅 ) ⇐ 𝑓𝑒 (𝑁𝑃 ) =

∑
𝑊↔N𝑂 𝑉𝑊𝑆

𝑊 as a
"nite sum. By the properties of subduction, for all 𝑔 with 𝑉𝑊 ω
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0, 𝑐 (𝑒 (𝑅 ) ⇐ 𝑓𝑒 (𝑁𝑃 )) ↖ 𝑐 (𝑆𝑊 ). Let 𝑏 =
∑

𝑊↔N𝑂 𝑉𝑊𝑁
𝑊 . Then, by

construction, 𝑅 ⇐ 𝑓𝑁𝑃 ⇐ 𝑏 ↔ 𝑍 .
We now show that lt(𝑅 ⇐ 𝑓𝑁𝑃 ⇐ 𝑏) = lt(𝑅 ). In particular, since

lt(𝑅 ) > 𝑁𝑃 , 𝑓𝑁𝑃 cannot be the leading term of this sum. In ad-
dition, by the properties of subduction, for all 𝑔 with 𝑉𝑊 ω 0,
𝑐 (lt(𝑅 )) ↙ 𝑐 (𝑒 (𝑅 ) ⇐ 𝑓𝑒 (𝑁𝑃 )) ↖ 𝑐 (𝑆𝑊 ). This implies that lt(𝑅 ) >
𝑉𝑊𝑁

𝑊 whenever 𝑉𝑊 ω 0. Therefore, no 𝑉𝑊𝑁𝑊 can be the leading term
of 𝑅 ⇐ 𝑓𝑁𝑃 ⇐ 𝑏.

Since lt(𝑅 ⇐ 𝑓𝑁𝑃 ⇐𝑏) = lt(𝑅 ) and 𝑅 ⇐ 𝑓𝑁𝑃 ⇐𝑏 ↔ 𝑍 , lm(𝑅 ) cannot
be a standard monomial of 𝑍 . This contradicts the de"nition of 𝑅 ,
and so [𝑅 ] ↔ 𝑌↓𝑃 . ↭

By construction, the elements of 𝑄/𝑍 are in bijective correspon-
dence with those of 𝐿. Hence, the elements of 𝑌↓𝑃 (𝑄/𝑍 ) are in
bijective correspondence with the elements of 𝑌⇔𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿). By
the previous result, we see that if 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 )), then
𝑌↓𝑃 (𝑄/𝑍 ) = 𝑌↓𝑊 (𝑄/𝑍 ) since the right-hand-side of the equality
is the same for both 𝑋 and 𝑔 .

Suppose that lm(𝑅 ) = 𝑁𝑃 and 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 )). Since [𝑅 ] ↔
𝑌↓𝑃 (𝑄/𝑍 ) = 𝑌↓𝑊 (𝑄/𝑍 ), it follows that 𝑁𝑃 ↓ 𝑁𝑊 . In other words,
𝑁𝑃 is the smallest monomial with respect to < whose valuation is
𝑐 (𝑒 (𝑁𝑃 )).

On the other hand, suppose that 𝑁𝑊 is not the smallest monomial
with respect to < with valuation 𝑐 (𝑒 (𝑁𝑊 )). The observation above
implies that if 𝑐 (𝑒 (𝑅 )) = 𝑐 (𝑁𝑊 ), then lt(𝑅 ) < 𝑁𝑊 . Therefore, [𝑅 ] ↔
𝑌<𝑊 (𝑄/𝑍 ). Putting this together, we have the following conclusions:

C(’(%%&’* 3.6. Using the standing hypotheses and notation as
above, suppose that 𝑁𝑃 and 𝑁𝑊 are such that 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 ))
and 𝑁𝑃 < 𝑁𝑊 . Then

𝑌↓𝑃 (𝑄/𝑍 ) = 𝑌↓𝑊 (𝑄/𝑍 ) = 𝑌<𝑊 (𝑄/𝑍 ) .

C(’(%%&’* 3.7. Using the standing hypotheses and notation as
above, suppose that 𝑁𝑃 is the smallest monomial with respect to <
with valuation 𝑐 (𝑒 (𝑁𝑃 )). Then,

𝑌<𝑃 (𝑄/𝑍 ) = {[𝑅 ] ↔ 𝑄/𝑍 : 𝑒 (𝑅 ) ↔ 𝑌⇓ (𝑌 (𝑍𝑃 ) ) (𝐿)}.

In the case of Corollary 3.6, we see that 𝑌↓𝑊 (𝑄/𝑍 )/𝑌<𝑊 (𝑄/𝑍 ) is
trivial. On the other hand, in the case of Corollary 3.7, we conclude
that

𝑌↓𝑃 (𝑄/𝑍 )/𝑌<𝑃 (𝑄/𝑍 ) ′ 𝑌⇔𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿)/𝑌⇓𝑇 (𝑌 (𝑍𝑃 ) ) (𝐿).
These two observations directly imply that the associated graded
algebras for both 𝑄/𝑍 under < and 𝐿 under ⇓ are equal. Collecting
these results, we have the following:

T/+(’+, 3.8. Consider a valued algebra 𝑐 : 𝐿 \ {0} → Q𝑅

satisfying the standing hypotheses, and suppose that 𝐿 has a !nite
Khovanskii basis with respect to 𝑐 . Then there is a polynomial ring 𝑄,
ideal 𝑍 of 𝑄, and monomial order < such that that

(1) 𝑄/𝑍 ′ 𝐿, and (2) gr𝑇 (𝐿) ′ gr< (𝑄/𝑍 ) .

R+,&’- 3.9. We focus on the case where𝐿 has a !nite Khovanskii
basis for computational reasons, but the theory can be extended to the
case where 𝐿 has an in!nite Khovanskii basis. Then the polynomial
ring 𝑄 would be a (countably) in!nitely-generated polynomial ring.
This would also require extending the de!nition of subalgebra bases

from [16]. The de!nitions carry over mutatis mutandis, but we leave
the details to the interested reader.

Example 3.10. Consider the following example from [14, Ex-
ample 7.7]: Let 𝐿 be the subalgebra of 𝑀 [𝑃1, 𝑃2, 𝑃3] consisting of
polynomials that are invariant under the action of 𝐿3. That is,
𝐿 = 𝑀 [𝑕1, 𝑕2, 𝑕3,𝑂] where

𝑕1 = 𝑃1 + 𝑃2 + 𝑃3, 𝑕2 = 𝑃1𝑃2 + 𝑃1𝑃3 + 𝑃2𝑃3,

𝑕3 = 𝑃1𝑃2𝑃3, 𝑂 = (𝑃1 ⇐ 𝑃2) (𝑃1 ⇐ 𝑃3) (𝑃2 ⇐ 𝑃3) .

Let 𝑄 = 𝑀 [𝑁1, 𝑁2, 𝑁3, 𝑁4] be the presentation ring of 𝐿 where 𝑒 :
𝑄 → 𝐿 with 𝑒 (𝑁𝑁 ) = 𝑕𝑁 and 𝑒 (𝑁4) = 𝑂. The kernel of the map 𝑒 is
the principal ideal 𝑍 = ∞𝑅 ∈, where

𝑅 = 𝑁21𝑁
2
2 ⇐ 4𝑁32 ⇐ 4𝑁3𝑁31 + 18𝑁1𝑁2𝑁3 ⇐ 27𝑁23 ⇐ 𝑁24 . (7)

The tropical variety T (𝑍 ) ↑ R4 contains three maximal prime
cones, and hence, by [14, Theorem 1], the set {𝑕1, 𝑕2, 𝑕3,𝑂} is a
Khovanskii basis for each of the valuations constructed from these
cones. Moreover, none of these valuations are induced by monomial
order on 𝑀 [𝑃1, 𝑃2, 𝑃3] since a result of Göbel implies such subalgebra
bases are always in"nite [9]. On the other hand, any valuation
𝑐 : 𝐿 → Q2 constructed from these prime cones corresponds to
many di!erent monomial orders < on 𝑄 satisfying the conclusions
of Theorem 3.8. Consider, for instance, the prime cone generated
by the rays R↗0 (⇐3,⇐6, 14,⇐9) and R↗0 (22,⇐2,⇐3,⇐3). A suitable
monomial order < can be constructed from the weight matrix

𝑖 =
(
0 2 2 3
1 4 1 6

)
,

where 𝑁𝑃 < 𝑁𝑊 if 𝑖𝑋 is lexicographically smaller than 𝑖𝑔, and
any "xed monomial order is used to break ties.

We see that {[𝑁1], [𝑁2], [𝑁3], [𝑁4]} forms a subalgebra basis for
𝑄/𝑍 , which corresponds under𝑒 to the Khovanskii basis {𝑕1, 𝑕2, 𝑕3,𝑂}
for 𝐿. Although the valuation on 𝐿 is not induced by a monomial
order on 𝑀 [𝑃1, 𝑃2, 𝑃3], there is another ring 𝑄 and monomial order
on this ring, which does induce the valuation on 𝐿.

Two remarks further illustrate the relationship between 𝑐 and <.

R+,&’- 3.11. Lemma 3.4 implies the following characterization
(cf. [14, Equation (3.2)]) of 𝑐 in terms of the presentation ring:

𝑐 (𝑆) = max{𝑐 (𝑒 (lt(𝑏))) : 𝑏 ↔ 𝑄 and 𝑒 (𝑏) = 𝑆} for 𝑆 ↔ 𝐿 \ {0}.

R+,&’- 3.12. For every nonzero 𝑅 ↔ 𝑍 , the two largest monomials
𝑁𝑃 and 𝑁𝑊 of 𝑅 with respect to < must satisfy 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 )).
In Example 3.10, these are the underlined terms of Equation (7).

The construction of Theorem 3.8 assumes it is known a priori that
{𝑆1, . . . ,𝑆𝑉} forms a Khovanskii basis. Without this assumption,
the construction is merely existential. We next state a criterion that
can identify when {𝑆1, . . . ,𝑆𝑉} form a Khovanskii basis.

T/+(’+, 3.13. For a valued algebra 𝑐 : 𝐿 \ {0} → Q𝑅 satisfying
the standing hypotheses, let {𝑆1, . . . ,𝑆𝑉} be a !nite set of nonzero
generators for 𝐿. Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be the presentation ring for
these generators, 𝑍 the kernel of the presentation map, and < a mono-
mial order induced by 𝑐 . The set {𝑆1, . . . ,𝑆𝑉} forms a Khovanskii
basis for 𝐿 if and only if gr𝑇 (𝐿) ′ gr< (𝑄/𝑍 ).
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P’((.. By Theorem 3.8, if {𝑆1, . . .𝑆𝑉} is a Khovanskii basis of
(𝐿,𝑐), then gr𝑇 (𝐿) ! gr< (𝑄/𝑍 ). On the other hand, by Remark 3.3
{[𝑁𝑁 ]} with 𝑁𝑁 a standard monomial form a subalgebra basis for 𝑄/𝑍 .
If the map lt(𝑄/𝑍 ) → gr𝑇 (𝐿) de"ned by [𝑁𝑁 ] + lt(𝑍 ) ⇒→ 𝑆𝑁 + 𝑌⇓𝑇 (𝑈𝑄 )
is an isomorphism, then {𝑆𝑁 + 𝑌⇓𝑇 (𝑈𝑄 ) } generate gr𝑇 (𝐿). Hence
𝑆1, . . . ,𝑆𝑉 is a Khovanskii basis. ↭

A Khovanskii or subalgebra basis isminimal if none of its proper
subsets form a Khovanskii or subalgebra basis for the same algebra.
Our previous constructions respect minimality.

P’(0(1!2!(" 3.14. Let 𝑐 : 𝐿 \ {0} → Q𝑅 be a valued algebra
satisfying the standing hypotheses and {𝑆1, . . . ,𝑆𝑉} be a !nite Kho-
vanskii basis for 𝐿. Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be the presentation ring
and 𝑍 the kernel of the presentation map. There exists a monomial
order < induced from ↙ such that {𝑆1, . . . ,𝑆𝑉} is a minimal Kho-
vanskii basis if and only if {[𝑁1], . . . , [𝑁𝑉]} is a minimal subalgebra
basis.

P’((.. Let < be any monomial order induced by 𝑐 . Suppose
there is an 𝑇 so that {[𝑁1], . . . , [̂𝑁𝑁 ], . . . , [𝑁𝑀]} is a subalgebra ba-
sis for 𝑄/𝑍 . This means that there is some 𝑋 with 𝑋𝑁 = 0 so that
lt( [𝑁])𝑃 = lt( [𝑁𝑁 ]). Since lt(𝑍 ) is a monomial ideal, we conclude
that lt(𝑁𝑃 ) = lt(𝑁𝑁 ). We observe by Lemma 3.4 that

𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (lt(𝑁𝑃 ))) = 𝑐 (𝑒 (lt(𝑁𝑁 ))) = 𝑐 (𝑒 (𝑁𝑁 )).

Rewriting this statement in terms of Khovanskii bases gives that
𝑐 (𝑆𝑃 ) = 𝑐 (𝑆𝑁 ) . Since 𝑐 has one-dimensional leaves, there is some 𝑓
so that either 𝑐 (𝑓𝑆𝑃 ⇐ 𝑆𝑁 ) ⇓ 𝑐 (𝑆𝑁 ) or 𝑓𝑆𝑃 ⇐ 𝑆𝑁 = 0. In other words,
𝑓𝑆𝑃 and 𝑆𝑁 have the same image in the associated graded algebra.
Since 𝑓𝑆𝑃 does not involve 𝑆𝑁 , we conclude that {𝑆1, . . . ,𝑆𝑁 . . . ,𝑆𝑉}
generates the same image in the associated graded, and these ele-
ments also form a Khovanskii basis.

On the other hand, suppose that {𝑆1, . . . ,𝑆𝑁 , . . . ,𝑆𝑉} is a Khovan-
skii basis. By applying subduction to 𝑆𝑁 , we have 𝑆𝑁 =

∑
𝑃↔N𝑂 𝑉𝑃𝑆𝑃

as a "nite sum such that for every 𝑋 with 𝑉𝑃 ω 0, we have 𝑋𝑁 = 0. By
the properties of subduction, for each 𝑋 with 𝑉𝑃 ω 0, 𝑐 (𝑆𝑃 ) ⇔ 𝑐 (𝑆𝑁 ).
Moreover, by the properties of the valuation, there is a unique 𝑔
with 𝑉𝑊 ω 0 where equality is attained. Now, consider the poly-
nomial 𝑅 = 𝑁𝑁 ⇐

∑
𝑃↔N𝑂 𝑉𝑃𝑁𝑃 . By construction, 𝑅 ↔ 𝑍 and lt(𝑅 ) is

either 𝑉𝑊𝑁𝑊 or 𝑁𝑁 . Since the valuation of the images of these terms
is the same, their order is determined by the "xed tie-breaking
monomial order <∝ on 𝑄. We may choose the tie-breaking order
to have 𝑁𝑁 >∝ 𝑉𝑊𝑁𝑊 , for instance, using an elimination order. Since
𝑁𝑁 is the leading term of 𝑅 , 𝑁𝑁 is not a standard monomial, and, by
the argument preceding Remark 3.3, lt( [𝑁𝑁 ]) ω 𝑁𝑁 + lt(𝑍 ) and [𝑁𝑁 ]
can be dropped from the subalgebra basis. We iteratively apply this
procedure, dropping one term of the Khovanskii basis and a corre-
sponding subalgebra basis generator until both are minimal. ↭

R+,&’- 3.15. The proof above shows that when < is chosen ap-
propriately, the Khovanskii basis and subalgebra basis elements are
in bijective correspondence with each other.

4 SUBALGEBRA BASES AS KHOVANSKII BASES
Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉]. Suppose that 𝑄/𝑍 is a "nitely generated
𝑀-algebra and domain with a monomial order <. In this case, we

can apply the theory of Khovanskii bases directly to 𝑄/𝑍 , provided
we can "nd a suitable valuation on 𝑄/𝑍 .

A motivating attempt would be to use 𝑗̃ : 𝑄/𝑍 \ {[0]} → Z𝑉

de"ned as [𝑅 ] ⇒→ ⇐ exp(lm(𝑅 )),where exp denotes the exponent of
the input monomial. In many cases, however, this is not a valuation.
In particular, suppose that 𝑁𝑃 and 𝑁𝑊 are standard monomials,
but their product 𝑁𝑃+𝑊 is not a standard monomial. In this case,
𝑗̃ ( [𝑁𝑃 ]) + 𝑗̃ ( [𝑁𝑊 ]) = ⇐(𝑋 + 𝑔), but this does not equal 𝑗̃ ( [𝑁𝑃+𝑊 ])
since lm(*𝑁𝑃+𝑊 ) ω 𝑁𝑃+𝑊 . We proceed to "x this de"ciency.

De!nition 4.1. Let 𝑅 ↔ 𝑄 be nonzero and not a monomial. Sup-
pose that the two largest leading monomials of 𝑅 with respect to <
are 𝑁𝑃1 and 𝑁𝑃2 , with 𝑁𝑃1 > 𝑁𝑃2 (cf. Remark 3.12). We de"ne the
toric exponent of 𝑅 to be torexp(𝑅 ) = 𝑋1 ⇐ 𝑋2 ↔ Z𝑉 .

The key object in our construction is the following lattice:

𝑘 := Z{torexp(𝑅 ) : 𝑅 ↔ 𝑍 } ↑ Z𝑉 .

We then de"ne the torsion-free portion of Z𝑉/𝑘 as

torfree(Z𝑉/𝑘) := (Z𝑉/𝑘)/torsion(Z𝑉/𝑘).
From this, we de"ne the map 𝑗 : 𝑄/𝑍 \ {[0]} → torfree(Z𝑉/𝑘)
where 𝑗 ( [𝑅 ]) maps to the image of 𝑗̃ ( [𝑅 ]) in this quotient. We now
de"ne an order on the image of 𝑗. In particular, suppose that ϑ and
ϖ are in the image of 𝑗. We say that ϑ ↙ ϖ if the smallest monomial
𝑁𝑃 with 𝑗 ( [𝑁𝑃 ]) = ϑ is greater than the smallest monomial 𝑁𝑊 with
𝑗 ( [𝑁𝑊 ]) = ϖ.

We observe that the monomial 𝑁𝑃 , as de"ned above, is a stan-
dard monomial. In particular, for any [𝑅 ] ↔ 𝑗⇐1 (ϑ), it follows that
[lt(𝑅 )] ↔ 𝑗⇐1 (ϑ). We note that lt(𝑅 ) is both a standard monomial
and smaller than lt(𝑅 ).

T/+(’+, 4.2. Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] with monomial order <.
Suppose 𝑍 is a prime, monomial-free ideal of 𝑄. Let 𝑘 be de!ned
as above. De!ne 𝑗 : 𝑄/𝑍 → torfree(Z𝑉/𝑘) as above. If for every
nonzero ϑ ↔ torfree(Z𝑉/𝑘) in the image of 𝑗 there is a unique
standard monomial 𝑁𝑃 such that 𝑗 ( [𝑁𝑃 ]) = ϑ, then 𝑗 is a valuation
on 𝑄/𝑍 .

P’((.. Suppose that [𝑅1], [𝑅2] ↔ 𝑄/𝑍 , and let 𝑁𝑃𝑄 = lm( 𝑅̃𝑁 ). Since
our monomial orders use the maximum convention,

lm(+𝑅1 + 𝑅2) = lm(𝑅1 + 𝑅2) ↓ max{𝑁𝑃1 , 𝑁𝑃2 }.
Rewriting this in terms of 𝑗, it follows that

𝑗 ( [𝑅1 + 𝑅2]) ⇔ min{𝑗 ( [𝑅1]), 𝑗 ( [𝑅2])}.
Now, suppose that lm(𝑅1 𝑅2) = 𝑁𝑎 . If 𝑁𝑃+𝑊 is a standard mono-

mial, then 𝑁𝑎 = 𝑁𝑃+𝑊 , and 𝑗 ( [𝑅1 𝑅2]) is the image of 𝑋 + 𝑔 in
torfree(Z𝑉/𝑘), which is the sum of the images of 𝑋 and 𝑔 .

On the other hand, if 𝑁𝑃+𝑊 is not a standard monomial, then we
consider

𝑏 = 𝑁𝑃+𝑊 ⇐ *𝑁𝑃+𝑊 = 𝑁𝑃+𝑊 ⇐ 𝑁𝑎 ⇐ lower order terms

Note that 𝑏 is in 𝑍 , and it is neither zero nor a monomial. Therefore,
torexp(𝑏) = 𝑋 + 𝑔 ⇐ 𝑙 is in 𝑘 . From this, it follows that 𝑗 ( [𝑅1]) +
𝑗 ( [𝑅2]) = 𝑗 ( [𝑅1] [𝑅2]). ↭

R+,&’- 4.3. In the statement of Theorem 4.2, the assumption on
the unique standard monomial in the preimages of 𝑗 is a version of
the one-dimensional leaves assumption.
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C(’(%%&’* 4.4. Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] with monomial order <.
Suppose 𝑍 is a prime, monomial-free ideal of 𝑄. Let 𝑘 be de!ned as
above. De!ne 𝑗 : 𝑄/𝑍 → torfree(Z𝑉/𝑘) as above. Suppose that for
every nonzero ϑ ↔ torfree(Z𝑉/𝑘) in the image of 𝑗 there is a unique
standardmonomial 𝑁𝑃 such that 𝑗 ( [𝑁𝑃 ]) = ϑ. Then {[𝑁1], . . . , [𝑁𝑉]}
is a Khovanskii basis with respect to 𝑗 .

P’((.. Let 𝑚 ↑ {𝑁1, . . . , 𝑁𝑉} consisting of variables that are also
standard monomials. By Remark 3.3 {[𝑁𝑁 ]}𝑁↔𝑏 is a subalgebra basis
with respect to <. Consider an element 𝑗 ( [𝑅 ]) in the image of 𝑗,
where 𝑅 ↔ 𝑄. We have that 𝑗 ( [𝑅 ]) = 𝑗 ( [𝑅 ]) = 𝑗 ( [lt(𝑅 )]). We write
lt(𝑅 ) as a product of variables in 𝑚 as follows: lt(𝑅 ) =

∏
𝑁↔𝑏 𝑁

𝑃𝑄
𝑁 .

Hence

[𝑅 ] + 𝑌⇓𝑐 ( [ 𝑑 ] ) =

[∏
𝑁↔𝑏

𝑁𝑃𝑄𝑁


+ 𝑌⇓𝑐 ( [ 𝑑 ] ) =

∏
𝑁↔𝑏


[𝑁𝑁 ] + 𝑌⇓𝑐 ( [𝑍𝑄 ] )

𝑃𝑄
.

Therefore, {[𝑁𝑁 ]}𝑁↔𝑏 generate the associated graded. ↭

5 EQUIVALENCE OF VALUATIONS
When the monomial order on 𝑄/𝑍 is constructed as in Section 3,
then 𝑄/𝑍 ′ 𝐿 has two valuations on it: 𝑗 and 𝑐 . We show that these
valuations are linearly equivalent. As a "rst step, we simplify the
construction of the lattice 𝑘 as above.

L+,,& 5.1. Consider a valued algebra 𝑐 : 𝐿\{0} → Q𝑅 satisfying
the standing hypotheses, and suppose that 𝐿 has a !nite Khovanskii
basis {𝑆1, . . . ,𝑆𝑉} with respect to 𝑐 . Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be the
presentation ring for this basis. Let 𝑘 be de!ned as above. Then,

𝑘 = Z{𝑋 ⇐ 𝑔 : 𝑋, 𝑔 ↔ Z𝑉, 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 ))}.

P’((.. By Remark 3.12, every toric exponent of an element in 𝑍
is of the desired form. On the other hand, suppose that 𝑐 (𝑒 (𝑁𝑃 )) =
𝑐 (𝑒 (𝑁𝑊 )) with 𝑋 ω 𝑔 . Since 𝑐 has one-dimensional leaves, there
exists a 𝑓 such that 𝑐 (𝑒 (𝑁𝑃 ) ⇐ 𝑓𝑒 (𝑁𝑊 )) ⇓ 𝑐 (𝑒 (𝑁𝑃 )) or 𝑒 (𝑁𝑃 ) ⇐
𝑓𝑒 (𝑁𝑊 ) = 0. We write 𝑒 (𝑁𝑃 ) ⇐ 𝑓𝑒 (𝑁𝑊 ) = ∑

𝑎 ↔N𝑂 𝑉𝑎𝑆𝑎 as a "nite
sum using subduction. By the properties of subduction, for all𝑙 with
𝑉𝑎 ω 0, 𝑐 (𝑒 (𝑁𝑃 )⇐𝑓𝑒 (𝑁𝑊 )) ⇔ 𝑐 (𝑆𝑎 ). Let𝑏 = 𝑁𝑃⇐𝑓𝑁𝑊⇐∑𝑎 ↔N𝑂 𝑉𝑊𝑁

𝑎 .
By construction, 𝑏 ↔ 𝑍 and torexp(𝑏) = 𝑋 ⇐ 𝑔 , so 𝑋 ⇐ 𝑔 ↔ 𝑘 . ↭

R+,&’- 5.2. The proof of this lemma shows that if 𝑐 (𝑒 (𝑁𝑃 )) =
𝑐 (𝑒 (𝑁𝑊 )), with 𝑋 ω 𝑔 , then there is a polynomial 𝑅 ↔ 𝑍 whose two
leading monomials are 𝑁𝑃 and 𝑁𝑊 .

We further simplify the construction of 𝑘 in terms of a Gröb-
ner basis for 𝑍 . This simpli"cation is particularly useful for the
construction of the Newton-Okounkov body in Section 6.

C(’(%%&’* 5.3. Consider a valued algebra 𝑐 : 𝐿 \ {0} → Q𝑅 sat-
isfying the standing hypotheses, and suppose that 𝐿 has a !nite Kho-
vanskii basis {𝑆1, . . . ,𝑆𝑉} with respect to 𝑐 . Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be
the presentation ring for this basis and 𝑍 the kernel of the presentation
map 𝑒 : 𝑄 → 𝐿. Let𝑘 be de!ned as above, and {𝑅1, . . . , 𝑅𝑒 } a Gröbner
basis for 𝑍 . 𝑘 is generated by {torexp(𝑅𝑂 )}𝑒𝑂=1 as a Z-lattice.

P’((.. Let 𝑑 be in the image of 𝑐 , and suppose that 𝑋1, . . . ,𝑋𝑀 ↔
N𝑉 are the exponents of all monomials 𝑁𝑃 such that 𝑐 (𝑒 (𝑁𝑃 )) = 𝑑
and ordered by 𝑁𝑃𝑄 < 𝑁𝑃𝑄+1 . By induction on 𝑛 , we show that all
di!erences of the form 𝑋𝑁1 ⇐ 𝑋𝑁2 with 𝑇1, 𝑇2 ↓ 𝑛 are in the Z-lattice

generated by the toric exponents of the Gröbner basis. The base
case of 𝑛 = 1 is vacuously true.

We assume the claim is true for 𝑛 ↗ 1 and consider the case of
𝑛 + 1. By Remark 5.2, there is some polynomial 𝑏 whose leading
monomial is 𝑁𝑃𝑅+1 . By the property of being a Gröbner basis, there
is some 𝑅𝑂 such that lm(𝑅𝑂 ) divides 𝑁𝑃𝑅+1 . Therefore, there is some
𝑁𝑓 so that 𝑁𝑃𝑅+1 = 𝑁𝑓 lm(𝑅𝑂 ). By Remark 3.12, the second largest
monomial of 𝑁𝑓 𝑅𝑂 is 𝑁𝑃𝑄 for some 𝑇 < 𝑛 + 1. Therefore, 𝑋𝑒+1 ⇐ 𝑋𝑁 =
torexp(𝑁𝑓 𝑅𝑂 ) = torexp(𝑅𝑂 ). The inductive hypothesis then implies
that the claim is true for the case of 𝑛 + 1. ↭

R+,&’- 5.4. Suppose that 𝑅 ↔ 𝑄 so that 𝑐 (𝑒 (𝑅 )) = 𝑐 (𝑒 (lt(𝑅 ))).
Then, 𝑐 (𝑒 (lt(𝑅 ))) = 𝑐 (𝑒 (lt(𝑅 ))). By Remark 5.2, there is a polyno-
mial 𝑅 ↔ 𝑍 whose leading monomials are lm(𝑅 ) and lm(𝑅 ). This
implies that the image of ⇐ exp(lm(𝑅 )) in torfree(Z𝑉/𝑘) equals
𝑗 ( [𝑅 ]). In this case, it is not necessary to replace 𝑅 by 𝑅 in our com-
putations.

We now show that the two valuations de"ned on 𝑄/𝑍 ′ 𝐿 are
linearly equivalent. This indicates that we may use subalgebra bases
for quotient rings as a computational replacement for Khovanskii
bases without losing information.

T/+(’+, 5.5. Consider a valued algebra 𝑐 : 𝐿\{0} → Q𝑅 satisfy-
ing the standing hypotheses, and suppose that 𝐿 has a !nite Khovan-
skii basis {𝑆1, . . . ,𝑆𝑉} with respect to 𝑐 . Let 𝑄 := 𝑀 [𝑁1, . . . , 𝑁𝑉] be
the presentation ring for this basis and 𝑍 the kernel of the presentation
map 𝑒 : 𝑄 → 𝐿. Let 𝑘 and 𝑗 be de!ned as above. Then, 𝑗 and 𝑐
are linearly equivalent, that is, there is an invertible linear transfor-
mation 𝑜 from the span of the image of 𝑗 to the span of 𝑐 such that
𝑐 ∋ 𝑒 (𝑅 ) = 𝑜 ∋ 𝑗 ( [𝑅 ]) for all 𝑅 ↔ 𝑄.

P’((.. Suppose that the image of 𝑗 is of rank 𝑊 and that the vari-
ables {𝑁1, . . . , 𝑁𝑅 } are standard monomials such that Z{𝑗 ( [𝑁𝑁 ])}𝑅𝑁=1
is of rank 𝑊 . We de"ne the map 𝑜 as 𝑜 (𝑗 ( [𝑁𝑁 ])) = 𝑐 (𝑒 (𝑁𝑁 )), and
extend it by linearity.

We "rst show that {𝑐 (𝑒 (𝑁𝑁 ))}𝑅𝑁=1 is independent by contradic-
tion. Suppose that there is a nontrivial sum

∑𝑅
𝑁=1 𝑉𝑁𝑐 (𝑒 (𝑁𝑁 )) =∑𝑅

𝑁=1 𝑉𝑁𝑐 (𝑆𝑁 ) = 0. By scaling, we may assume that each 𝑉𝑁 is an inte-
ger. We separate the positive and negative parts of the coe#cients,
where 𝑋𝑁 = max{0, 𝑉𝑁 } is the vector of positive coe#cients and 𝑔𝑁 =
𝑋𝑁 ⇐ 𝑉𝑁 is the vector of negative coe#cients. It follows that 𝑐 (𝑆𝑃 ) =
𝑐 (𝑆𝑊 ). Since 𝑒 (𝑁𝑃 ) = 𝑆𝑃 and 𝑒 (𝑁𝑊 ) = 𝑆𝑊 , Remark 5.2 implies that
there is an 𝑅 in 𝑍 whose leading monomials are 𝑁𝑃 and 𝑁𝑊 . There-
fore, 𝑋 ⇐ 𝑔 = 𝑉 ↔ 𝑘 . By Remark 5.4, 𝑗 ( [𝑁𝑃 ]) = ∑

𝑁 𝑋𝑁𝑗 ( [𝑁𝑁 ]), which
is the image of 𝑋 in torfree(Z𝑉/𝑘), and 𝑗 ( [𝑁𝑊 ]) =

∑
𝑁 𝑔𝑁𝑗 ( [𝑁𝑁 ]),

which is the image of 𝑔 in torfree(Z𝑉/𝑘). Therefore, ∑𝑁 𝑉𝑁𝑗 ( [𝑁𝑁 ])
is the image of 𝑋 ⇐ 𝑔 in torfree(Z𝑉/𝑘). This image is trivial, which
contradicts the assumption that {𝑗 ( [𝑁𝑁 ])}𝑅𝑁=1 is independent.

Suppose that there is a nontrivial
∑𝑉
𝑁=1 𝑉𝑁𝑗 ( [𝑁𝑁 ]) = 0. By scaling,

we may assume that each 𝑉𝑁 is an integer. We separate the posi-
tive and negative parts of the coe#cients where 𝑋𝑁 = max{0, 𝑉𝑁 }
is the vector of positive coe#cients and 𝑔𝑁 = 𝑋𝑁 ⇐ 𝑉𝑁 is the vector
of negative coe#cients. By Remark 5.4, we note that

∑
𝑁 𝑋𝑁𝑗 ( [𝑁𝑁 ])

is the image of 𝑋 in torfree(Z𝑉/𝑘) and ∑
𝑁 𝑔𝑁𝑗 ( [𝑁𝑁 ]) is the im-

age of 𝑔 in torfree(Z𝑉/𝑘). Since ∑𝑁 𝑋𝑁𝑗 ( [𝑁𝑁 ]) =
∑
𝑁 𝑔𝑁𝑗 ( [𝑁𝑁 ]), we

have that the image of 𝑋 ⇐ 𝑔 is zero in torfree(Z𝑉/𝑘). In other
words, there is some nonzero integer 𝑝 ↔ Z so that 𝑝 (𝑋 ⇐ 𝑔) ↔ 𝑘 .
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From Lemma 5.1, it follows that 𝑐 (𝑒 (𝑁𝑔𝑃 )) = 𝑐 (𝑒 (𝑁𝑔𝑊 )). Since
𝑐 (𝑒 (𝑁𝑔𝑃 )) = 𝑝𝑐 (𝑒 (𝑁𝑃 )) and 𝑐 (𝑒 (𝑁𝑔𝑊 )) = 𝑝𝑐 (𝑒 (𝑁𝑊 )), we conclude
that 𝑐 (𝑒 (𝑁𝑃 )) = 𝑐 (𝑒 (𝑁𝑊 )) . Thus, by Remark 5.2, 𝑋 ⇐ 𝑔 ↔ 𝑘 and∑
𝑁 𝑋𝑁𝑐 (𝑆𝑁 ) =

∑
𝑁 𝑔𝑁𝑐 (𝑆𝑁 ) or that

∑
𝑁 𝑉𝑁𝑐 (𝑆𝑁 ) = 0.

Therefore, since any 𝑗 ( [𝑁𝑁 ]) can be written in terms of the basis
{𝑗 ( [𝑁1]), . . . , 𝑗 ( [𝑁𝑅 ])}, 𝑐 (𝑆𝑁 ) is the corresponding linear combina-
tion of {𝑐 (𝑆1), . . . ,𝑐 (𝑆𝑅 )}. Hence, {𝑐 (𝑆1), . . . ,𝑐 (𝑆𝑅 )} also form a full
rank sublattice of the lattice generated by {𝑐 (𝑆1), . . . ,𝑐 (𝑆𝑉)}. These
relationships additionally imply that the transformation 𝑜 takes
𝑗 ( [𝑁𝑁 ]) to 𝑐 (𝑆𝑁 ) for all 1 ↓ 𝑇 ↓ 𝑞. ↭

R+,&’- 5.6. Theorem 5.5 shows that the valuations 𝑐 and 𝑗 carry
the same information. This di"ers from previous work, e.g., [14, Lemma
3, Corollary 4.7, and Remark 5.3], which show the existence of valua-
tions with the desired properties, but are not designed for comparisons.

6 NEWTON-OKOUNKOV BODIES
One of the most important invariants of a graded, valued algebra
𝐿 is its Newton-Okounkov body [2, 7, 13, 14]. This is a convex
body which captures homological and geometric data of 𝐿. For
instance, the normalized volume of the Newton-Okounkov body is
the asymptotic growth rate of the Hilbert function for the algebra,
see, for instance [14, Theorem 2.23] and [13, Theorem 4.9]. We show
how to compute the Newton-Okounkov body of a graded algebra
using the constructions of the previous sections.

We follow the construction of the Newton-Okounkov body as in
[14]. Consider a valued algebra 𝑐 ∝ : 𝐿∝ \ {0} → Z𝑅 satisfying the
standing hypotheses, and a positively graded algebra𝐿 =


𝑁↗0𝐿𝑁

where 𝐿𝑁 ↑ 𝐿∝ for all 𝑇 . We extend 𝑐 ∝ to valuation, which also
satis"es the standing hypotheses, 𝑐 : 𝐿 \ {0} → N ⇑ Z𝑅 . We de-
compose 𝑅 ↔ 𝐿 \ {0} into homogeneous components, 𝑅 =

∑𝑉
𝑁=0 𝑅𝑁

with 𝑅𝑁 ↔ 𝐿𝑁 and 𝑅𝑉 ω 0, and de"ne 𝑐 (𝑅 ) := (𝑞,𝑐∝ (𝑅𝑉)). We order
N ⇑ Z𝑅 so that (𝑞,𝑑) ⇓ (𝑟,𝑠) if𝑞 < 𝑟 or𝑞 = 𝑟 and 𝑑 ⇓ 𝑠.

De!nition 6.1. The Newton-Okounkov body associated to 𝐿 and
𝑐 ∝ is the closed, convex set

ω(𝐿,𝑐) " conv{𝑐 ∝ (𝑅 )/𝑇 : 𝑅 ↔ 𝐿𝑁 \ {0}}.

When 𝐿 has a "nite Khovanskii basis, we may assume, without
loss of generality, that every basis element is homogeneous. In other
words, {𝑆1, . . . ,𝑆𝑉} form a Khovanskii basis and deg(𝑆𝑁 ) = 𝑡𝑁 , that
is 𝑆𝑁 ↔ 𝐿𝑕𝑄 . Then, the Newton-Okounkov body is conv{𝑐 ∝ (𝑆𝑁 )/𝑡𝑁 }.

Suppose that 𝐿 =


𝑁↗0𝐿𝑁 is a positively graded and valued
algebra with valuation 𝑐 ∝ as above with a "nite Khovanskii basis
{𝑆1, . . . ,𝑆𝑉}. Let 𝑄 be the presentation ring such that 𝑒 : 𝑄 → 𝐿
has kernel 𝑍 , and a monomial order < induced by 𝑐 .

T/+(’+, 6.2. Let 𝑗 be the valuation on 𝑄/𝑍 de!ned above and
let △𝑡 = (deg(𝑆𝑁 ) : 1 ↓ 𝑇 ↓ 𝑞) be the vector of degrees of Khovanskii
basis elements. The Newton-Okounkov body of 𝑄/𝑍 is given by

ω(𝑄/𝑍 , 𝑗) = conv

▽ △𝑡 ▽2𝑗 ( [𝑁𝑁 ])/𝑗 ( [𝑁𝑁 ])1


. (8)

P’((.. Fix a lattice basis ( △𝑢1, . . . , △𝑢𝑖 ) for 𝑘 , and set △𝑢𝑖+1 = △𝑡 .
By construction, △𝑢𝑁 and △𝑢𝑖+1 are orthogonal for all 𝑇 . Choose a set
of vectors { △𝑢𝑖+2, . . . , △𝑢𝑉} ↑ Z𝑉 which extends { △𝑢1, . . . , △𝑢𝑖+1} to a
basis of the vector space Q𝑉 such that △𝑢𝑁 and △𝑢𝑖+1 are orthogonal
for all 𝑇 ω 𝑣 + 1.

The valuation 𝑗 can be represented by 𝑗 : 𝑄/𝑍 \ {0} → Q𝑉⇐𝑖

where 𝑗 ( [𝑁𝑃 ]) are the coordinates of 𝑋 with respect to the vec-
tors { △𝑢𝑖+1, . . . , △𝑢𝑉} in the basis de"ned above. This construction
embeds torfree(Z𝑉/𝑘) as a subset of Q𝑉⇐𝑖 . Let 𝑤 ′ Z𝑉⇐𝑖 be the
lattice generated by the images {𝑗 ( [𝑁1]), . . . , 𝑗 ( [𝑁𝑉])}, and the
Newton-Okounkov body for 𝑄/𝑍 is de"ned with respect to this
lattice. We observe that, since △𝑢𝑖+1 is orthogonal to the other △𝑢𝑁s,
the "rst entry of 𝑗 ( [𝑁𝑃 ]) is deg(𝑒 (𝑁𝑃 ))/▽ △𝑡 ▽2. ↭

R+,&’- 6.3. Theorem 6.2 makes the results in [14, Corollary 5 and
Proposition 4.2] more explicit in anticipation of the computations in
our algorithm.

Suppose {[𝑁1], . . . , [𝑁𝑉]} form a minimal subalgebra basis, then
ω(𝑄/𝑍 , 𝑗) is (𝑞⇐𝑣)-dimensional.Whenω(𝑄/𝑍 , 𝑗) is full-dimensional,
the normalized volume of the Newton-Okounkov body can be com-
puted in terms of the standard volume on Q𝑉⇐𝑖 (as opposed to
computing the volume in terms of the integral lattice as in Equa-
tion 8). Since △𝑢𝑖+1 is perpendicular to all other vectors, the mul-
tiplicative factor for the volume splits along this dimension. In
particular, the multiplicative factor for the volume is the length of a
lattice generator of the "rst-coordinates of (𝑗 ( [𝑁1]), . . . , 𝑗 ( [𝑁𝑉]))
divided by the volume of a fundamental domain of 𝑤 in Q𝑉 . Since
𝑗 ( [𝑁𝑁 ])1 = 𝑕𝑄

▽ △𝑕 ▽
, the length of the lattice generator of the "rst-

coordinates is gcd(𝑕1,...,𝑕𝑂 )
▽ △𝑕 ▽2

.

Algorithm 1 Calculating vol(ω(𝑄/𝑍 , 𝑗)).
Input: a positively graded 𝑀-algebra and domain 𝐿, a valuation 𝑐
satisfying the standing hypotheses, and a "nite Khovanskii basis
{𝑆1, . . . ,𝑆𝑉} for 𝐿 with respect to 𝑐 .
Output: the normalized volume of ω(𝑄/𝑍 , 𝑗).
1: Construct presentation ring 𝑄 with presentation 𝑒 : 𝑄 → 𝐿,

monomial order > induced by 𝑐 , and 𝑍 := ker(𝑒) (see Section 3).
2: Compute a Gröbner basis 𝑥 for 𝑍 .
3: Compute a basis { △𝑢1, . . . , △𝑢𝑖 } of the lattice 𝑘 spanned by the

toric exponents of 𝑥 .
4: Set △𝑢𝑖+1 = △𝑡 = (deg(𝑆𝑁 )) ↔ Z𝑉 to be the vector of degrees of

all Khovanskii basis elements.
5: Extend Z{ △𝑢1, . . . , △𝑢𝑖+1} to a full-rank lattice Z{ △𝑢1, . . . , △𝑢𝑉}

such that △𝑢𝑖+1 ↔ { △𝑢𝑖+1, . . . , △𝑢𝑉}̸ .
6: Set𝑦 = ( △𝑢1 · · · △𝑢𝑉 ) ↔ Z𝑉⇑𝑉 .

7: Construct𝑧 ↔ Q(𝑉⇐𝑖⇐1)⇑𝑉 by selecting the last𝑞⇐ 𝑣 ⇐1 rows
of𝑦 ⇐1 and scaling the 𝑇th column by 𝑡⇐1𝑁 for 𝑇 = 1, . . . ,𝑞.

8: Construct the matrix 𝑤∝ of minimal generators of the lattice
generated by the last𝑞 ⇐ 𝑣 rows of𝑦 ⇐1.

9: return (𝑉⇐𝑖⇐1)! gcd(𝑕1,...,𝑕𝑂 ) vol(conv(𝑗 ) )
▽ △𝑕 ▽2 | det(𝑘∝ ) |

.

Example 6.4. Consider the following example from [7, Example
23]. Let𝛥 denote the complex vector space of cubic polynomials in
C[𝑁,𝑂] that vanish on the points {(4, 4), (⇐3,⇐1), (⇐1,⇐1), (3, 3)}.
We associate to 𝛥 the algebra 𝑄(𝛥 ) =


𝑙↗0𝛥

𝑙𝑝𝑙 , graded by
𝑝-degree. In [7], the authors showed that 𝑄(𝛥 ) has the "nite Kho-
vanskii basis B =

{
𝑆0𝑝,𝑆1𝑝,𝑆2𝑝,𝑆3𝑝,𝑆4𝑝,𝑆5𝑝,𝑆6𝑝2,𝑆7𝑝3

}
under the
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valuation 𝑐 : 𝑄(𝛥 ) \ {0} → Q3 induced by the graded reverse
lexicographic order with 𝑁 > 𝑂, and

𝑐 (B) = 

1 1 1 1 1 1 2 3
1 2 0 1 2 3 1 4
1 0 3 2 1 0 3 1



.

The corresponding Newton-Okounkov body ω(𝑄(𝛥 ),𝑐) is shown
in Figure 1 and has normalized volume 5. Following Algorithm 1 we

(0, 3)

(3, 0)

(
1
2 ,

3
2

)

(
4
3 ,

1
3

)

Figure 1: The Newton-Okounkov body 𝛚(𝜴(𝜶 ),𝜷). A repro-
duction of [7, Figure 2].

calculate vol(ω(𝑄/𝑍 , 𝑗)). First let 𝑄 = C[𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7]
be the presentation ring for 𝑄(𝑧 ) and the monomial order induced
on 𝑄 by 𝑐 is given by the rows of the matrix



1 1 1 1 1 1 2 3
2 2 3 3 3 3 4 5
1 2 0 1 2 3 1 4




as weight vectors where further ties are broken with graded reverse
lexicographic order. We have a direct sum decomposition Q8 =
𝑘 ↦ Q ↦ Q2, with bases comprised of the columns of𝑦 ,

𝑦 =




1 2 3 ⇐3 ⇐4 1 0 0
⇐1 ⇐2 ⇐3 1 0 1 0 0
⇐1 ⇐1 ⇐1 0 1 1 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 2 3
0 0 0 1 0 2 ⇐1 0
0 0 0 0 1 3 0 ⇐1




.

The Newton-Okounkov body ω(𝑄/𝑍 , 𝑗) = conv(𝑧 ), where

𝑧 =


⇐ 11
190

13
38 ⇐ 91

95 ⇐ 53
95 ⇐ 3

19
23
95 ⇐ 49

190
23
95

3
190 ⇐ 7

38
68
95

49
95

6
19

11
95

11
95 ⇐ 62

285


,

is a polytope of Euclidean volume vol(𝑧 ) = 1
4 , see Figure 2.

Having now obtained the Euclidean volume of 𝑧 , we now com-
pute its volume in the lattice produced by Step 8 in Algorithm 1. The
lattice 𝑤 ! Z3 formed from the last three rows of𝑦 ⇐1 is generated
by the columns of the matrix

𝑤∝ =



1 0 ⇐ 6
19

0 1 ⇐ 67
190

0 0 1
190



.

(1,→1)

(→1, 1)
( →9195 , 6895 )

( 1338 , →7
38 )

Figure 2: The Newton-Okounkov body 𝛚(𝜴/𝜸 , 𝜹).

Since △𝑡 is the sixth column of𝑦 above, Algorithm 1 gives us the
normalized volume of ω(𝑄(𝛥 ), 𝑗) as

(8 ⇐ 5 ⇐ 1)!(1)

1
4



19


1
190

 = 5,

agreeing with the normalized volume calculated in [7, Example 23].

T/+(’+, 6.5. Let 𝑐 : 𝐿 \ {0} → Z𝑅+1 be the valuation on
a graded algebra 𝐿 = ↦𝑁↗0𝐿𝑁 induced by a valued algebra 𝑐 ∝ :
𝐿∝ \ {0} → Z𝑅 satisfying the standard hypotheses with 𝐿𝑁 ↑ 𝐿∝.
Assume 𝐿 has a !nite Khovanskii basis {𝑆1, . . . ,𝑆𝑉}, and de!ne
𝑗 : 𝑄/𝑍 → torfree(Z𝑉/𝑘) as in Section 4. The Newton-Okounkov
bodies ω(𝐿,𝑐) and ω(𝑄/𝑍 , 𝑗) are both rational polytopes which are
a#nely-equivalent.

To be clear, Theorem 6.5 states that there is an a#ne transforma-
tion taking one Newton-Okounkov body to the other, and that this
a#ne transformation is invertible when restricted to the Q-a#ne
spans of the respective Newton-Okounkov bodies.

P’((.. We write the linear transformation 𝑜 from Theorem
5.5, which takes 𝑗 ( [𝑁𝑁 ]) to 𝑐 (𝑒 (𝑁𝑁 )), in terms of the coordinates
presented in this section. Since one coordinate of each of 𝑗 ( [𝑁𝑁 ])
and 𝑐 (𝑆𝑁 ) records the degree of [𝑁𝑁 ] or 𝑆𝑁 , respectively, the stan-
dard matrix for 𝑜 decomposes (after a suitable permutation of the
coordinates) as (

∀ 0𝑚
𝑠 𝑖

)
,

where ∀ denotes the nonzero scaling factor between the two rep-
resentations of the degrees. Using this notation, and scaling by
degrees, the appropriate a#ne transformation from ω(𝑄/𝑍 , 𝑗) to
ω(𝐿,𝑐) is 𝑁 ⇒→ 𝑖𝑁 + 𝑠 . ↭

R+,&’- 6.6. Theorem 6.5 extends the results of [14, Proposition
5.5] by giving an explicit description of the a#ne transformation
between the Newton-Okounkov bodies.
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