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AN ATLAS FOR THE PINHOLE CAMERA

SAMEER AGARWAL, TIMOTHY DUFF, MAX LIEBLICH, AND REKHA R. THOMAS

Abstract. We introduce an atlas of algebro-geometric objects associated with image formation in
pinhole cameras. The nodes of the atlas are algebraic varieties or their vanishing ideals related
to each other by projection or elimination and restriction or specialization respectively. This
atlas offers a unifying framework for the study of problems in 3D computer vision. We initiate the
study of the atlas by completely characterizing a part of the atlas stemming from the triangulation
problem. We conclude with several open problems and generalizations of the atlas.

1. Introduction

The standard model of a pinhole camera (also known as a projective camera) in computer
vision is a surjective linear projection P3 -—5 P2. Such a map is specified by a 3 x 4-matrix A
of rank 3 up to scaling, which can be realized as a point in P!!. This map sends a world point
g in P3, which can be realized as a 4-vector up to scale, to its image point p € P2, which can
be realized as a 3-vector up to scale. The center of the projection map, also called the camera
center, can be identified with the kernel of the representing matrix A. If we wish to express that
a point ¢ is sent to the image p by the camera A, we will write Ag ~ p to indicate equality up
to scale.

Much work has been done on the algebraic varieties obtained from a fixed arrangement of
cameras A = (Ay,...,A,)! by taking the closed image of the rational imaging map

S S .
g~ (Aig,..., Anq). ()

Such a variety is known as a multiview variety [2, 5]. Several closely-related sets have been
studied in computer vision: for example, the names joint image and natural descriptor for the con-
structible set im ¢ 5 were coined, respectively, by Triggs [01] and Heyden and Astrém [27]. Much
previous work has also gone into studying various polynomials that vanish on the multiview
variety, eg. [20, 27, 38, 59, 01]. The associated multiview ideals have been calculated in [2, 5],
and their moduli have been considered in [5, 34].

I distinguish between known and unknown quantities, we use a bar over an object to indicate specialization.
For instance, A stands for a symbolic 3 X 4 matrix denoting a camera while A is a 3 X 4 scalar matrix realizing a
camera. We also use bold face letters to indicate collections. For instance, we use A and A to specify a collection of
symbolic and scalar cameras respectively.
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Consider now the universal incarnation of this problem where we treat the cameras and the
world points as unknowns. In particular, one can think about the universal imaging map
P ox PP -5 P?
(4,9) = Aq

that sends a pair (A,q) to Aq. This map describes the image of one unknown point by one
unknown camera. More generally, fixing integers m,n > 1 there is a map

(1.2)

(PH)™ x (P?)" - (P*)™ (13)
which, where defined, associates m unknown cameras A1, ..., A,, € P! and n unknown world
points qi, ..., q, € P? to their mn images Aiq; ~ pij € P22

For any nonempty Zariski-open U C (P!)™ x (P3)" where the imaging map (1.3) is defined,
we can consider the Zariski closure of the graph of the imaging map restricted® to U

Iiap = {((A a) )GUX(PZ)mn|Az%Np”VZ—1 my =10}, (14)

The set of polynomials vanishing on all points of I',"" _ can be understood as the set of all

A, q P
constraints that must be satisfied for any valid geometry (A q,p) € FX’Z b This set forms an
ideal in the polynomial ring C[A, q, p], generated by polynomials which are homogeneous in
each of the m + n + mn groups of variables A;, ..., An, q1,. .., qn, P11, - - s Dmn-

Definition 1.1. The image formation correspondence 'y q is the algebraic variety defined by (1.4).

We denote its vanishing ideal (Definition 2.7) by I\ q p:

In this paper, we will be concerned with the structure of Iy’ Aqp and the vanishing ideals of

A= B

varieties which may be defined in terms of three natural geometric operations on '

A, q p’
(1) Coordinate projection. For example, let 7q : T'\70 | — (P1H)™ x (P2)™" denote the coor-
dinate projection Fq(A, q, _) = (A, f)). We denote its image by

We note that, by the projective elimination theorem (see eg. [40, Theorem 4.22]), FZ:Z is
closed in the Zariski topology on (P1)™ x (P2)m",

(2) Coordinate specialization. For example, let A be a particular arrangement of cameras.
We can form the intersection of I''y’ with the coordinate planes where A; = A; for

Aq,p
t=1,...,m, and then coordinate project away from (Pll)m to obtain
m,n <
Fqu _{(qa )|(A7q7p)€Fqu} (16)
2The imaging map of (1.3) models a scenario in which all points are visible in every image. One may consider
other scenarios of interest in computer vision, eg. when each point is visible in only some of the images (eg. [19, 29]).
3We note that the definition of FXZP is independent of the choice of U. As such, it is insensitive to certain

physical assumptions about the camera matrices (eg. that they have full rank, or that their centers do not coincide.)
In particular, although a generic point (A,q,p) € I'4" 'q,p Will be such that each A; has full rank and all A;g; are

defined, these conditions do not hold for an arbitrary point (A,q,p) € ry Z b
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Figure 1. Atlas of the Pinhole Camera. Red arrows indicate variable special-
ization and black arrows indicate projection. An analogous diagram can be
constructed where the arrows remain the same but the varieties are replaced by
their vanishing ideals.

n

(3) Projection + specialization. Combining 1 and 2, the relevant variety is
s ={pl3ast (A,a,p) €Ty} (L7)

All the non-trivial varieties (and their vanishing ideals) obtained in this way can be organized
as shown in Figure 1*. Red arrows indicate variable specialization and black arrows indicate
variable elimination.

The aim of this paper is to motivate and initiate the study of this diagram which we will
call the Atlas of the Pinhole Camera. We call it an atlas because it is a systematic collection of
algebro-geometric objects associated with the pinhole camera that also captures the relationships
between them, telling us how one can travel from one object to another. For example, knowing
that a variety is obtained by specializing a group of variables (red arrow) can be used to easily
compute its dimension as the difference of the dimensions of two varieties. See Appendix A for
dimension counts for each of the varieties in the atlas.

1L1. Computer Vision and the Atlas. As the ideal I;n”g’p describes all the algebraic relation-
ships that hold between cameras, world, and image points in 3D reconstruction, many of the
problems studied in 3D computer vision (also known as multiview geometry) can be described
in terms of the varieties and ideals that occur in the atlas. So we begin our study of the atlas
by summarizing what is known about each node and how it relates to problems in multiview
geometry.

4Not every result of successively applying projection and specialization operations to Fm’n a.p is included here. For
example I'\"" and I'q""™ are trivial. Similarly T ’Zl’q 5 and I'0°7 o 5 are defined by linear equatlons and not interesting
for projective cameras. However this can change as the model for the camera is varied. For example, FA & 5 is an

interesting nonlinear variety for Euclidean cameras. See Section 8 for more.
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m,n
A,q,p
image observations p, the problem of finding A and q such that they best explain these image

observations is the reconstruction problem. Other names for this problem are Structure from Motion
(StM) [23] and Simultaneous Localization And Mapping (SLAM) [58].

Assuming Gaussian noise, the maximum likelihood estimate of A and q can be found by
solving the following optimization problem:

The image formation correspondence, I' is the starting point of our study. Given noisy

n m
arg(gqu) Z ZH;?U —pijlI* st (A,q,p) € T op (1.8)
7q7p Z‘ j

The quantity ||p;; — Di;||?>, known as the reprojection error, is understood to be the squared
Euclidean norm between dehomogenized p and p. That is, we assume that the p and p are
finite points. The optimization problem (1.8) is also known as the bundle adjustment problem [63].
Projective factorization is another method for solving the reconstruction problem [41, 62]. In this
method, one tries to find a nearby feasible point on I’T'A"b:gp by solving a matrix factorization
problem.

Eliminating q (also known as structure) from the constraint set in (1.8) we obtain FZ’Z and the
bundle adjustment without structure problem:

m n
argmin} Y [1pi; — byl st (A, p) € TG (L9)

Bundle adjustment without structure is of interest because eliminating the world points q signif-
icantly reduces the dimensionality of the problem [44, 47, 48, 50, 52]. The two-view (m = 2)
version of this problem is particularly important, as it is usually the first step in incremental 3D
reconstruction algorithms.
I m,n . . m,n A . .
Similarly I'qp is obtained from I',’ , by eliminating the cameras (also known as motion) and

F;n’n is obtained from FX’ZP by eliminating both cameras and points. One can formulate the
reconstruction problem as a nearness problem on each of these varieties, and each formulation

leads to its own version of the bundle adjustment problem. As a result we will refer to all four

ideals T30, I oo Iqp s Ip™" as bundle adjustment ideals.

Of these four ideals, only IZ’S has been studied to a certain extent [59]. Before our work,
very little was known about the structure of the other three ideals. This may come as a surprise
to the reader given the importance of the reconstruction problem in 3D computer vision. The
lack of study can be explained by computational reasons. Substituting p;; ~ A;g; into the
objective and dehomogenizing it gives us the more commonly occurring form of (1.8) as an
unconstrained rational optimization problem. This form is preferred in practice because it can
be solved much more efficiently using simpler algorithms than the form in (1.8) [63]. Similarly,
the bundle adjustment without structure problem is usually solved by approximating (1.9) by
an unconstrained optimization problem where the objective is the sum of squares of certain
polynomials (the so-called epipolar and trifocal constraints [23]).

These transformations have the disadvantage that they obscure the geometric structure of the
problem. For example, by formulating the reconstruction problem as an optimization problem
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over the variety "' q p» We can study it using the tools of complex and real algebraic geometry.
It also reveals two other versions of the problem not considered before. This perspective has
been useful in constructing effective algorithms for solving the triangulation problem.

In triangulation [20], the cameras A = A are known and fixed, we are given the noisy images

p of an unknown world point, and we seek a solution to

m
argmin > _[|pi — pil* st (A,@,) € TR (110)
i

i.e,, find the world point ¢ that best explains the image observations. The variety F is the

7q7

slice of T" ZZ,P that is obtained by fixing the cameras. So the above optimization problem is

better re-written in terms of I as:

A,q,p
m
. _ ~ 112 1
arg 1pin Zle —pill* st (@,p) €Ty wp (1.11)
(2
The multiview variety F Ap is obtained from '}’ A by eliminating the world point from it. As
we noted earlier, the multiview variety and sets related to 1t are perhaps the most well-studied
objects in computer vision [5, 23, 27, 38, 59, 61]. Using T’ A p We can re-write the triangulation
problem as:
m
. 2 _ 1
arg ml_}nZHpi —pill*st.pe ng' (L12)
3
This form of the triangulation problem has been used effectively in practice [3, 26, 35]. We will
refer to IZ’ZP and 13" as the triangulation ideals.
The optimization problem in (1.12) finds the nearest point on the variety F . One measure

of complexity of problems of this form is the concept of the Euclzdean dzstance degree of a
variety [18]. Recently the affine Euclidean distance degree of Iy A7p was computed [3Y], settling a
conjecture of Stéwenius et al [54].

In resectioning [23, Chapter 7], the world points q = q are known and fixed, we are given
their noisy images p by an unknown camera A and we seek a solution to:

n

arg min > lIp; — Bill* st (A,q,p) €T3y 1. (L13)
7p :
J

i.e., find the camera matrix A that best explains the image observations. Resectioning is also
known as the Perspective-n-Point Problem. Like triangulation, it is a fundamental problem in 3D
computer vision and a considerable effort has been devoted to solving it [33]. The variety rL"

is the slice of T'}"

A,q,p

Aqp that is obtained by fixing the world points, so like triangulation we can

re-write (1.13) as an optimization problem over rL" q.p- Also like triangulation, we can eliminate

sy
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A and formulate resectioning as a nearest point to the variety problem on F p- As a result we

will refer to I3 as resectioning ideals.

A q p’
The resectioning and triangulation problems are in a sense duals of each other. So one might

be inclined to think that the structure of I o7 would be as well-studied as that of Imz ThlS

however is not the case, very little is known about the structure of the resectioning ideals I'y

A, q p

and I— and their varieties [45, 49)].
Let us now talk about the three varieties that are obtained by fixing the image points p = p.
From Iy Ap ™ we obtain F The vanishing ideal of F 7_L is the set of polynomials on camera

matrices that satisfy given unage observations. Among these is a distinguished set of polynomials
which are multilinear forms over the image coordinates. Longuet-Higgins was the first to study
the matrix defining the bilinear form for a pair of Euclidean cameras - the essential matrix |17, 24,

|- The generalization of the essential matrix to projective cameras is known as the fundamental

matrix [37]. For three and four cameras we get the trifocal tensor [4, 23, 25] and the quadrifocal
tensor [43, 51] respectively. We note that the varieties of these tensors and their vanishing ideals
have been studied [4, 17, 43]. However, they do not appear in our atlas.

When we are given the minimal number of image observations such that Y g is zero di-
mensional (modulo PGLy), finding cameras A that lie on I',"" is a fundamental problem in
computer vision and the subject of intensive study. These problems are known as minimal
problems. Starting with Nistér’s work [42] on estimating the essential matrix using five point cor-
respondences, there has been an explosion of work on using methods of computational algebraic
geometry for solving these problems [31, 32, 53].

From gy we get Fq p» by fixing the image points p = p. The vanishing ideal of this variety
is the set of polynomials that a set of 3D points must satisfy to explain a set of given image
observations. Finally, we have the intriguing variety Y Aq.p Points on this variety correspond to
3D reconstructions determined by a set of image observations. A particularly interesting case
is the two view, seven point problem, which is closely related to the seven point algorithm for
estimating the fundamental matrix [23].

The above is a necessarily brief presentation. However, we hope that we have convinced the
reader that the nodes/objects of the atlas are related to key problems in 3D computer vision.
Some of these objects have been studied before, but many remain completely unexplored. We
hope that by systematically constructing these objects as slices and projections of a single variety,
and organizing them in the atlas will reveal more of their shared structure and propel their study.

In the remainder of this paper, we initiate the study of the atlas by exploring a part of it in
detail. The next section introduces our main results.

12. A Square in the Atlas. Polynomial constraints, particularly those which are implied by
rank constraints, pervade the multiview geometry literature. An extensive catalogue of these
constraints may be found, for instance, in [38, Chapter 8]. In the context of the atlas, many of
these constraints are sufficient to describe various varieties locally. For instance, we have

Ag~p = TdAst.Ag=Ap = rank (Aq p) <1 (1.14)
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Figure 2. The four ideals studied in this paper.

Thus, the condition Ag ~ p may be expressed as the vanishing of the 2 X 2 minors of (Aq p) )

giving equations defining r near a generic point. However the question of whether these

A, q p
equations globally define the full closed correspondence I'y qp is more subtle. In fact, already

for 2 symbolic cameras A, A3 and image points pj, p2, the 2-focal polynomial (cf. Definition 3.1)

Ay pr O
det <A2 0 p2>

is contained in I3 A’ and yet this polynomial is not in the ideal generated by all 2 x 2 minors

4P
of the matrices (Alq pl) and (qu pg) . Thus, in a precise sense, the rank constraints of (1.14)
are not complete.

The main results of our paper characterize the four ideals appearing in Figure 2 for all m
and n. This square, although not comprising the full atlas, is a natural point of departure since

it includes both I,"" and the multiview 1deal IZ !

In the case of the triangulation ideals I A ap and I " Theorem 7.1 and Theorem 7.2, identify

simple, explicit generators and Grobner bases under sultable genericity assumptions. For the
bundle adjustment ideals I q P and I s our characterization is more subtle. Theorem 7.3

determines these ideals up to saturation by certain minors of the matrix of indeterminates
(A" ]| An')

Studying the bundle adjustment ideals with their corresponding triangulation ideals is reveal-
ing in interesting ways. Despite being closely related, many facts about the triangulation ideals
do not transfer to their bundle adjustment ideals—see Examples 4.1, 7.1, and 7.2. The seemingly
simple act of making the cameras symbolic gives the bundle adjustment ideals a more elaborate
structure. It also offers further insight into the structure of the triangulation ideals. For instance,
it explains the origin of the quadrifocal tensor.

The quadrifocal tensor and the associated 4-view constraints [51] are an oddity in multiview
geometry, where they are known to be redundant - ie. they are not needed to cut out the
multiview variety. However, they are needed to form a Grobner basis for the multiview ideal [2, 5].
We show in Example 4.1 that, unlike the case of Fg:ll), four-view constraints are necessary to cut

out the variety I Z’Il), and that these constraints only become redundant after specialization to
a particular arrangement of cameras.
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The structure of the ideals IZ:’; and [Zﬁ,p plays an important role in our study. In Section 3,

we determine explicit generators for IZ’;, which form a Grébner basis for a large class of term
orders. Using this result, we then recover the strongest known results about the multiview ideal
IZL’; as simple corollaries using specialization arguments. Section 5 and Section 6 follow the

same pattern, first giving an explicit Grébner basis for IXL’é p> and then specializing to obtain

mt |
A,q,p
treated in Sections 3-6. Closing the paper, we list several open problems and further research

directions centered around the atlas from Figure 1.

. We then establish our main results in Section 7 as consequences of the n = 1 cases

1.3. Notation. The notation p ~ p’ is used to denote equality of p and p’ in projective space.

In sections 3-6, we restrict attention to the case of a single world point ¢ € P3 whose image
in the ith camera A;, for i = 1,...,m, is p; € P2. We will use MATLAB notation to refer to
subentities of A, g and p: A;[j, k| for the entry of matrix A; in row j and column £, ¢[j] for the
jth entry of ¢ and p;[j] for the jth entry of p;. When multiple world points are involved we let
pi;j be the image of ¢; in A; foreach j =1,...,n.

The reader has already encountered our use of a bar over an object to indicate specialization.
For instance, A stands for a symbolic 3 X 4 matrix denoting a camera while Aisa3d x4
scalar matrix realizing a camera. Boldface font will be reserved for sets of variables or ordered
row indices of submatrices. For example, if ) # r C {1,2,3} is a collection of row indices of
A;, we let A;[r,:] denote the |r|x4 submatrix of A consisting of the rows indexed by r in the
usual order. The notation A, q, p will denote collections of m cameras, n world points and the
corresponding mn image points and A, q, p will refer to their specializations.

Acknowledgements. We thank Jessie Loucks Tavitas, Erin Connelly & Craig Citro for helpful
discussions. Timothy Duff acknowledges support from the National Science Foundation Math-
ematical Sciences Postdoctoral Research Fellowship (DMS-2103310). Max Lieblich was partially
supported by a National Science Foundation Grant (DMS - 1902251). Rekha Thomas was par-
tially supported by a National Science Foundation grant (DMS - 1719538).

2. Tools

2.1. Vanishing Ideals. The homgoeneous coordinate ring of the product of projective spaces
P™ x ... x P" is the polynomial ring C[x1,...,Xy] in the k sets of indeterminates x; =
{mi1, ..., ®i(n,41)}, which we equip with the multigrading deg(z;;) = e; € ZF. A set of poly-
nomials {f1,..., fs} C C[x1,...,Xy], where each f; is homogeneous with respect to the multi-
grading, has a well-defined vanishing locus:

V(fi,.o oy fs) ={x € P x ... x P" sit. fi(z) =--- = fs(x) = 0}.

These algebraic varieties are the closed sets in the Zariski topology on P x --. x P". The
polynomials f1,..., fs are said to vanish on a set X if X C V(f1,..., fs).

Definition 2.1. The vanishing ideal 1(X) of a set X C P™ x --- x P is the ideal generated by
all f € C[xy,...,xy] vanishing on X.
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For polynomials f1,..., fs € C[x1,...,Xg], we use the standard notation (f1, ..., fs) for the
ideal they generate. The ideal (fi,..., fs) need not be a vanishing ideal in the sense of Defini-
tion 2.1, although it will always be contained in the vanishing ideal I(V(f1,..., fs)). A necessary
condition for the equality of these ideals is that (fi,..., fs) is radical. We will rely on the fol-
lowing Grébner basis result to certify that an ideal is radical. For the basics of Grébner basis
theory, see [15].

Proposition 2.2. Let < be a monomial order on the polynomial ring R[x] = R[x1,...,x)| where R
is an integral domain. Suppose g1, . ..,gs € R[X] form a Gribner basis with respect to <, and their
leading terms in<(g1), ... ,in<(gs) are squarefree monomials in the variables 1, . .., xy. Then

1) (g1,-..,9s) is radical, and
(2) when R =R is the field of real numbers, (g1, ... ,gs) is real radical.

For a proof of the first statement, see Appendix B, and for the second statement, see [04,
Proposition 1.2].

Grobner bases satisfying the conditions of Proposition 2.2 establish much more than the radi-
cality of the ideal they generate. For particular monomial orders, they serve the extra purpose of
deducing results about specializations and eliminations of these ideals. They also imply a nice
bonus for ideals defined over R, namely, Proposition 2.2 (2) establishes that the ideal generated
by the Grobner basis is real radical. In other words, this ideal is also the vanishing ideal of all
real points in its variety.

In our applications of Proposition 2.2, R is almost always a field, where many standard
results about Grébner bases [15, Ch 2] are at our disposal. The sole exception is in the proof
of Theorem 7.3, where R is obtained by localizing a polynomial ring at the powers of certain
polynomials in C[A].

As a reminder, a main contribution of this paper is to explicitly describe the following four
vanishing ideals and their corresponding varieties (see Definition 1.1, (1.4)- (1.7)):

mmn m,n mmn m,n mmn m,n mmn m,n
IAvq,p =1 (FA,qp) ) IA,p =1 (FA,p> ’ IA,q,p =1 (FA,q,p) ’ IA,p =1 (FA,p> )
These ideals live in the polynomial rings C[A, q, p], C[A, p], C[q, p] and C[p] respectively.

Throughout the paper, we employ the following simple Nullstellensatz-based recognition crite-
rion to determine vanishing ideals.

Proposition 2.3 (Recognition Criterion). Given a closed subvariety X C P™ x --- x P"k, its
vanishing ideal 1(X) is generated by the 7* -homogeneous polynomials f1,. .., fs € C[x1,...,xx] if
and only if the following three conditions hold:

() fi,..., fs cut out X set-theoretically, i.e., V(f1,..., fs) = X.
2) (fi,..., fs) is saturated with respect to the irrelevant ideal:

(frooesfs) = (froeo s o) s (Mg N Nimy )™

where my, = (x;1, . .. 7$i(ni+1)>‘

3) (f1,---, fs) is radical.
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This recognition criterion is a standard consequence of Hilbert’s Nullstellensatz, but we pro-
vide a proof in Appendix B for completeness. In all of our results, we establish Condition 3
in Proposition 2.3 via explicit Gr6bner bases as in Proposition 2.2.

If M is a m X n matrix over a polynomial ring, then for ¢ < min(m,n) we let minors(¢, M)
denote the ideal generated by all ¢ x ¢ minors of M. We will consider matrices M in which all
entries are polynomials, some of which may be variables or scalars. Here is a small example
illustrating some of the above tools.

Example 2.1. [I4, Example 1.2] Let fi, f2, f3 be the 2 X 2 minors of the matrix
_ (@& a2 ag
M= (b% b1b b%)
in the polynomial ring Clay, as, as, by, ba]. Explicitly,

fl = bl(albg — agbl), f2 = alb% — agb%, fg = bg(agbg — agbl).
The ideal J = (fi, f2, f3) = minors(2, M) is homogeneous with respect to the Z2-grading
deg(a;) = e1, deg(b;) = ea. However it is not the vanishing ideal of V(fi, f2, f3). Indeed, it
does not satisfy Condition 2 in Proposition 2.3; for instance the polynomial a1by — a2b; is an
element of J : ({a1, a2, as) N (b1, b2))>, but not .J. Condition 3 also fails; f = bz(a3 —aja3) ¢ J,
while f3 € J.
The vanishing ideal of V(J) C P? x P! turns out to be

2
I = <a3b1 — ang, a1b2 — agbl, ajas — a2>.

The three generators of I form a Grobner basis for both Lex and GRevLex orders in the variable
ordering by < by < az < az < a;. The GRevLex initial ideal (a3by, azbi, a3) is not squarefree.
However, the Lex initial ideal (a2bs, aibe,ajas) is squarefree, so Proposition 2.2 lets us verify
that 7 is radical. O

To prove that Condition 2 in Proposition 2.3 holds, we make frequent use of the following
lemma about GRevLex Grobner bases.

Lemma 2.4 (|55, Lemma 12.1)). Let G be a Gribner basis for an ideal I C Clzy,..., x| with
respect to the GRevLex order where x| is the cheapest variable:

xp < e < T

Then
G' = {g € G s.t. x| does not divide g} U{(g/x) s.t. g € G and x; divides g}

is a GRevLex Gribner basis for the ideal quotient I : x;.

2.2. Generic Cameras. Broadly speaking, the main results of this paper may be divided into
three progressively stronger categories: geometric results giving set-theoretic equations for the va-
rieties of interest, ideal-theoretic results which characterize the vanishing ideals of these varieties,
and, strongest of all, results about the Gribner bases of these vanishing ideals. For the geometric
and ideal-theoretic results, our genericity hypotheses will be that the camera arrangement A
has pairwise distinct centers. For the Grobner basis results we will need stronger notions of
genericity which we discuss in this section.
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Figure 3. Classes of camera arrangements related by inclusion and equivalence
up to projective change-of-coordinates.

Definition 2.5 (Minor Generic). 4 camera arrangement A = (A4,...,A,,) is minor generic if
all 4 x 4 minors of the 4 x 3m matrix (AlT ‘ ‘ A;) are nonzero (cf- [, Sec. 2], [2, Sec. 3].)

Definition 2.6 (Ultra Minor Generic). 4 camera arrangement A = (44,... Ay,) is ultra minor
generic if all k x k minors of the 4 x 3m matrix (A{ | --- | A},) are nonzero for any k € [4].

We now have three notions of genericity for camera arrangements: pairwise distinct centers,
minor generic, and ultra minor generic. They are progressively stronger in the sense established
by the following proposition, whose proof may be found in Appendix B.

Proposition 2.7. If a camera arrangement A = (A4, ... Ay,) is ultra minor generic then it is minor
generic, and if A is minor generic, then it has pairwise distinct centers.

We next show that a converse statement of sorts is possible under suitable group actions. This
is made precise in Theorem 2.8 and summarized pictorially in Figure 3.
Consider the following group actions on a camera arrangement A = (Aj,... A,,):

(PGL3)™ x (P'H)™ — (P*)™

_ _ _ (2.0)
(Hi,...,Hp)A = (H\Ay, -, Hy,Ap),
PGLy x (P'H™ — (PHH)™
HA=(AH .. A,H™, (22
and their combined action:
PGL4 x(PGL3)™ x (PH)™ — ()™ 03

(H,(Hy,...,Hp)A=(HAH - H,A,H™").

The combined group action may be interpreted as a simultaneous change of coordinates in
both the world P? and in the set of images (P?)™. We will say that two camera arrangements
are equivalent if they lie in the same orbit under one of these group actions.
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Theorem 2.8. (1) A camera arrangement A has pairwise distinct centers if and only if it is
equivalent to a minor generic camera arrangement under the group action in (2.1).
(2) A camera arrangement A is minor generic if and only if it is equivalent to an ultra minor
generic arrangement under the group action in (2.2).
(3) A camera arrangement A has pairwise distinct centers if and only if it is equivalent to an
ultra minor generic camera arrangement under the group action in (2.3).

Unlike the condition of pairwise distinct centers, minor genericity and ultra minor genericity
are algebraic conditions which are not preserved under coordinate change. These algebraic
genericity assumptions play a central role in deducing results about specializations of the bundle
adjustment ideals that we study in this paper.

. 1 . . .
3. IZL’p : Constraints on cameras and image points for n =1

In this section we study the ideal IZ’; consisting of all polynomials that constrain a tuple of
m symbolic cameras and the images of a single world point in them. Given one camera A and a
point p € P2 there is always a world point ¢ € P? such that Aq ~ p. Therefore, the ideal Ik}p
is trivial, and we will assume throughout this section that we have m > 2 cameras.

Let A = (Ay,...,A,) and p = (p1,...,Ppm) represent m symbolic cameras and image
points in them.

Definition 3.1. 4 k-focal of the pair (A, p) is any polynomial in C[A, p] that arises as a maximal
minor of the 3k x (4 + k) matrix:

Asy Py 0 ... 0
Asy 0 Doy, - 0 7 (3.)
A, 0 0

where 0 = {01, ...,01} is any k-element subset of [m] = {1,...,m} with k > 2.

Since 4 + k < 3k for all k& > 2, a k-focal is specified by a choice of 4 + k rows of the
matrix (3.1). Note that all k-focals of (A, p) lie in the ideal IZ:’; since if there exists a world
point ¢ such that A;q ~ p; for all i € [m], then the matrix (3.1) is rank deficient and hence all
maximal minors of (3.1) are zero.

We now state the main result of this section, which establishes the plausible, but by no means

)

obvious, fact that the k-focals generate IZ ! Moreover, a distinguished subset of these k-focals

p
form a Grobner basis with respect to a large class of monomial orders.

Theorem 3.2. For any number of cameras m, and n = 1 world point, the 2-, 3-, and 4-focals form
a Grobner basis for IXL’; with respect to any product order < with A < p.

We will recall the notion of a product order before proving Theorem 3.2. First, we explain
why the 2-, 3-, and 4-focals are the only “interesting” k-focals.
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For the sake of more compact notation, we let

ACTl [rb :] Doy [rl] 0 - 0
(Alp) iy = | Ael2d O palel 0 62
AUk [‘rkv :] 0 .. 0 pgk.[l'k]

denote the k-focal submatrix of (3.1) determined by ¢ and the sets r; C {1,2,3} indexing the
chosen rows of A,, and p,,. Thus, every k-focal is the determinant of a matrix of the form
in (3.2).

The following “bumping up/bumping down” lemma establishes that all k-focals are elemen-
tary consequences of 2-focals, 3-focals, and 4-focals. For I p , this observation is a classical

result, dating back at least to [0, Sec. 5] (see also, eg., [59, Proposition 2], or [2, Lemma 2.2].)
For 2 < k—1 < m, a (k— 1)-focal det (A |p) [r]s can be “bumped-up” to a k-focal by
including one row (say jth) from a new camera A; with i ¢ o as follows:

(Alp)[rl, 0 .
ot (“AD5 i) 69

There are 3(m — k) choices for the pair (4, j).
Proposition 3.3. (Bumping-up) A “bumped-up” k-focal (3.3) can be factored as

(Alp)[r]o 0O
det< Ailj, ] pi[j]>—pz[] det (A |p) [r]y, (3.4)

and (Bumping-down) every nonzero k-focal for k > 4 has the form (3.4) (up to sign.)

Proof. (3.4) is easily verified by Laplace expansion of the determinant. To prove bumping-down,
first note that every term in any k-focal has degree 4 in the camera variables since the camera
variables occur in exactly four columns of the matrix (3.1). Furthermore, this k-focal is homoge-
neous of degree (#r; — 1) in the variables of the camera A;. To see this, scale the k cameras by
c1,...,c; € C and use multi-linearity of det in rows and columns to obtain

det ((c1,...,cx) - A|p)[r (HC#“> ~det (A | (7t -, - p)irs

_ (H C?&ri—1> -det (A |p) [r],-
1=1

Since 4 = Zle(#ri — 1), and #r; — 1 > 0 for all i, at most four cameras can use more
than one row. Thus, if k£ > 4, there exists a camera A; using a single row indexed by r; = {j},
which implies the factorization in (3.4). U
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As explained in [23, Ch. 17], the 2-, 3-, and 4-focals encode many familiar entities from mul-
tiview geometry. A 2-focal has the form

A pi O

Aj 0 p;

where Fj;(A) is the 3 x 3 fundamental matrix associated to the pair (A;, A;). Similarly, for
{j1. g2} {k1, k2} € {1,2,3}, the 3-focal

det (A |p) [{1,2,3}, {1, 52}, {k1, ko i gk

A; pi 0 0
= det Aj[{jlajZ}az] 0 pj[{j17j2}7:] 0
Ak[{kl, kz}, Z] 0 0 pk[{kl, kz}, Z]

may be viewed as a polynomial in C[p] whose coefficients in C[A] make up a particular ¢rifocal
tensor for the triple (A4;, A;, Ay). Note in the equation above the privileged index i, also known
as the covariant index; for each triple (A4;, A;, Ay), there are 27 choices of 3-focals where the
covariant index may be 4, j, or k. Finally, each 4-tuple (A;, A;, Ay, A;) gives rise to 81 4-focals

det (A |p) [{i1, 2}, {J1, g2} {1, k2 HI, L2 gk

Ail{in,io}, ] pil{in,in}, ] 0 0 0

— det Aj[{jhj?}v:] 0 pj[{jlajé}v:] 0 0
Ak[{kbk?}v:] 0 0 pk[{k17k2}7:] 0f”’

Al[{llvb}v:] 0 0 0 pl[{llvb}v:]

whose coefficients in C[A] form the 81 quadrifocal tensors.
We will use Proposition 2.3 to prove Theorem 3.2. This in turn will rely on Proposition 2.2. We

begin by proving that both the m-focals and the 2-, 3-, and 4-focals cut out I’T'Al’; set-theoretically.
The latter will establish Condition 1 of the recognition criterion.

Proposition 3.4.
0L = V(2. 3, and 4-focals) = V (m-focals).

Proof: We first show that FZ’; C V(2-, 3-, and 4-focals). Suppose (A, p) € FZ:II), and fix a
representation for this point in homogeneous coordinates. Then there exists a nonzero 4 x 1
matrix ¢ and scalars \q,..., A, with A;§ = \;p;. This implies that the kernel of each k-focal
matrix (3.1) associated to (A, p) contains the nonzero vector

(=7 Ao+ Aoy |- (3.5)

Thus all k-focals, in particular all 2-, 3-, and 4-focals, vanish at (A, p).
The containment V(2-, 3-, and 4-focals) C V(m-focals) follows from Proposition 3.3.
To finish, we argue that V(m-focals) C I’T'Al’;. Consider a point

(A7 p) = (Ab s 7Am7ﬁ17 s 7pm) € V(m—focals),



AN ATLAS FOR THE PINHOLE CAMERA 15

with fixed homogeneous coordinates as before, and consider the vector (3.5) for ¢ = [m]. To
prove this inclusion we will construct a sequence of points

(A", A By pw) €T

converging to (A,p). Since Fz’ll) is closed in the Euclidean topology, this will imply that
(A,p) € Fz’ll), giving the desired inclusion. To construct the sequence, set flgn) = A; for
any ¢ with \; # 0. For each index i with \; = 0, choose an arbitrary camera A’ such that

Alg ~ p; and set f_ll(-n) = A; + (1/n)A’. This gives a sequence of points
(AP, AW A g, A G

s Ldm
in FK:;. To see that it converges to the given point (A, p) € I’X:;, we may consider each

camera separately: if \; # 0, then f_ll(-n) = A; and

AVg = Aig ~ pi,
for all n, whereas if \; = 0, then flgn) — A; as n — oo, and
—(n _ 1 _ 1 _ _
AVg = Mg+ —Ajg = —Aig ~ Ajg ~ p.
n n
O

Proposition 3.4 shows that the ideals of m-focals and 2-, 3-, and 4-focals both cut out Fz’ll)
set-theoretically; therefore, by Proposition 2.3,

12 = \J(2 3 and tefocals) - (ma Nmp)>

= \/<m—focals> : (ma Nmp)°e.
Theorem 3.2 will establish the following precise relationship between the three ideals:

]XL:; = (2-, 3-, and 4-focals) = (m-focals) : m’. (3.6)

Our next step in the proof of Theorem 3.2 is to note that the m-focals form a universal
Grébner basis for the ideal they generate. As noted in [59][Proposition b3], the m-focal ideal be-
longs to the class of sparse determinantal ideals, studied in algebraic geometry and commutative
algebra. Sparse (maximal) determinantal ideals are generated by the maximal minors of matri-
ces whose nonzero entries are distinct indeterminates. These ideals were studied by Giusti and
Merle [21], who determined their dimensions and associated primes, and later by Boocher [Y],
who, in addition to determining their minimal free resolutions and several related invariants,
showed that the maximal minors form a universal Grobner basis. The following is an immediate
consequence of [J][Proposition 5.4] and Proposition 2.2.

Proposition 3.5. For n = 1 world point and any number of cameras m, the m-focals form a
universal Grobner basis for the ideal they generate, and this ideal is radical.
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Proposition 3.5 does not directly give us any information about (2-, 3-, and 4-focals), since its
generators are minors of several different matrices which share variables. However, Theorem 3.2
asserts that the 2-; 3-, and 4-focals form a Grobner basis for a large class of term orders. To
get there, we next develop a result of a similar flavor to Lemma 2.4, about Grobner bases of
multihomogeneous ideals in C[x, ..., Xy, y] whose elements are linear in each set of variables
X1,...,X. This is Lemma 3.8, which deals with a product order instead of a GRevLex order.

Recall that two monomial orders <x on C[x] and <y on Cly]| specify a product order on
Clx,y] with y < x as follows: x*1y%1 < x®2yP2 when either x*' <, x°2 or a1 = a3 and
y?1 <y y?2. More generally, we may define a product order on C[x1, . .., Xx] with xj, < -+ < X3
by comparing monomials first using a monomial order <x, on C[x;] and breaking any ties
successively with <4,, ..., <x, . We also need the following condition on the monomial supports
of a (partially) multilinear polynomial g.

Definition 3.6. Suppose g € C[x1,...,Xk,y] is multilinear in X1, ... ,X) and supported in each
group of variables on the subsets X; C x; for j = 1,... k. We say that g is well-supported on
X1, ..., Xy if every monomial of the form H?:l xj with xj € x| divides some term of g.

Essentially, g is well-supported if it is multilinear in X1, ..., X and its monomial support in
X},...,X} (the x variables appearing in the support of g) is as large as possible.

Example 3.1. Consider
g = 21990 + y2w11201 + 3T11T00 + 2yT 10201

in the polynomial ring C[z11, 12, 213, Z21, Z22, y]. Then g is well-supported on x1 = {x11, z12, 213}
and x3 = {Z21, z22}. The monomial support of g comes from x| = {z11, 212} and x}, = x3
and indeed, all four products of variables from x| and x/, divide some term of g.

Suppose now that we remove the first term from g:

g = y*T11721 + 311792 + 2yT12721 .
Then ¢ is not well-supported on x; and X2 since no term of ¢’ is divisible by z12229. O
The following fact is used implicitly in the proof of [5, Theorem 2.1].

Proposition 3.7. Suppose g € C[x1,...,Xy,y] is multilinear in x1, . .. ,x), and well-supported on
X1,...Xg Letx = x1 U -+ - Uxy, and < be a product order withy < x formed from <« and <y .
Then the leading term in(g) depends only on <y and the relative ordering of the variables within
each group X1, ... Xg.

Proof: Let x1,. ..,z be the largest variables with respect to <y in each of the sets x/,...,x].
Since g is well-supported on X1, . .., Xg, it has a monomial of the form (H;?:1 x;)-y“. Choosing
y® maximal with respect to <y, in<(g) =c- (H§:1 x;) - y* for some c € C. O

We note that Proposition 3.7 may fail when g is not well-supported. In Example 3.1, suppose
x11 < x12 in X1 and z91 < a2 in Xa,. Then since, £12x99 is not in the monomial support of ¢,
we could have either in-(¢') = 2yx12291 or in.(g') = 3x11792.
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Lemma 3.8. With notation as in Proposition 3.7, let G be a Gribner basis for a Z*+* -homogeneous
ideal I in C[x1,...,Xy,y]| with respect to a product order where’y < x . If every element of G is
multilinear and well-supported on X1, . .. , Xy, and x; is the cheapest variable in x;, then

G' = {g € G s.t. z; does not divide g} U {(g/x;) s.t. g € G and x; divides g}
is a Grobner basis with respect to < for the ideal quotient I : x;.

Proof. The proof is analogous to that given for Lemma 2.4 in [55]. For any f € I : z;, we have
that 2;f € I and hence in-(g) divides z;in-(f) for some g € G. We must show that the
leading term of some element of G’ divides in(f). We argue by considering two cases. In the
first case, if z; divides g, then the leading term of g/x; € G’ divides in-(f). In the second case,
z; does not divide g and hence g € G'. Proposition 3.7 then implies that x; also does not divide
in<(g). Indeed, if z; did divide in(g), then z; would be the most expensive variable in X}, and
this would force x; = {z;}. By the well-supportedness of g, this would imply that x; divides g,
a contradiction. Thus z; does not divide in-(g), which implies in(g) divides in-(f). O

Applying Lemma 3.8 over all product orders with y < x yields the following.

Corollary 3.9. With notation as in Lemma 3.8, if G is a Grobner basis with respect to all product
orders with 'y < X, then the same is true for G'.

Thus, if G is a Grébner basis with respect to all product orders with y < x, then we obtain a
Grobner basis with respect to all product orders for every successive quotient of (G) by variables
in x. With this tool in hand, we are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We construct an ascending chain of ideals
(m-focals) = Jy C J1 C -+ C Jp, = (2-, 3-, and 4-focals)

where each Ji = (G}) is given by an explicit set of generators G, which we now define. Set
Gy = {m-focals}, and for k > 0,

Gr ={g € G_1 s.t. pili] doesn’t divide g Vi} U
{(g/pkli]) s.t. g € Gx_1 and p[i] divides g for some i}.
Applying Proposition 3.3, one can also fix a j € [3] and obtain G}, as
Gr ={g € G_1 s.t. pi|i] doesn’t divide g Vi} U
{(9/px[s]) st. g € Gr—1 and p;[] divides g}.

Let < be any product order with A < p. We now argue that Gy, is a Grobner basis with
respect to < for all k. This is true for £ = 0 by Proposition 3.5, so suppose G_; is a Grébner
basis with respect to < for some k£ > 0. Then Proposition 3.3 implies that any element g € G}, is
a (-focal for some integer /. An (-focal is the determinant of a minor of (3.1) for £ = /¢ involving
4+ { rows. Every term in this determinant is multilinear in py, ..., p», and thus involves exactly
one variable from each subset of supporting variables p| C p1,...,p,, C Pm- Conversely, every
possible product of ¢ variables, one from each p} appears in a term of the ¢-focal. Therefore,
g is well-supported on pi,...,Pmy. Moreover, each term of the ¢-focal is the product of a p-
monomial as above and a 4 X 4 minor of of the symbolic matrix (AlT ‘ ‘e ‘ AmT).
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By Corollary 3.9, G, is a Grobner basis with respect to < for the ideal
Jk = Jk—l :pk[l] = Jk—l :pk[Q] = Jk—l Zpk[3]. (37)

When k = m, Proposition 3.3 establishes the equality G,,, = {2-, 3-, and 4-focals} and hence
Jm = (2-, 3-, and 4-focals). Further, G,,, is a Grobner basis with respect to all product orders
with A < p.

To conclude that J,,, = IZ’;, we verify that .J,,, satisfies the three conditions of Proposition 2.3.
Proposition 3.4 gives the set-theoretic Condition 1. For Condition 3, we must show that J,, is
radical; this follows from Proposition 2.2 since the lead terms of the 2-, 3-, and 4-focals are all
squarefree. Finally, for Condition 2, we calculate

JmCJm:m;[’,O

= Jm 1 mp (Jm is radical)
C (H@km 2 -pkm))
k=1
= ((Jm :p2[1]) 2 +) : pm[3]
= Jm, (Corollary 3.9 w/ G' = G.y,)

forcing J,, = Jim ¢ m;o. A similar calculation, shown below, gives J,,, = J,,, : m¥™:

Im = Jo 1 mp (Proposition 3.3)
= (Jop:ma):mp (Proposition 3.3, Proposition 3.5)
= (Jo:mp) : my
=J, :ma
= Jpy :my. (Jm is radical)

Thus J,, = Jp 0 (ma Nmp)>°, and we may conclude from Proposition 2.3 that

(2-, 3-, and 4-focals) = J,,, = XL’;.

4, IZ—;’; : The multiview ideal for n = 1

We now specialize the camera arrangement A and consider the ideal IZL’;. Recall that the

multiview variety is the closed image of the following rational imaging map associated to a
camera arrangement A:
pa PP - (P a
g (A1gq, ..., Anq).
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The closure of the image of ¢4 is precisely the variety I’T'A"b’ll) in (1.7). Thus, the vanishing ideal

Igb’; is none other than the multiview ideal of the camera arrangement A [2, 5]. Much previous

work has also gone into studying various polynomials that vanish on Fg:; [20, 27, 38, 59, 6]]
In this section, we show how Theorem 3.2 recovers two important previously-known theorems
about multiview ideals. Each of these previous results assumes the camera arrangement A is
generic in one of the senses discussed in Section 2.2. The first theorem characterizes a universal
Gribner basis for the multiview ideal of a minor generic camera arrangement; that is, a Grébner

basis with respect to all possible monomial orders on C[p].

Theorem 4.1 ([5, Theorem 2.1]). For minor generic A, the specialized 2-, 3-, and 4-focals from IZL’;

form a universal Grobuner basis for the multiview ideal et

In the work of Aholt, Sturmfels, and Thomas [5], Theorem 4.1 is one of the main results
needed to study the Hilbert Scheme parametrizing multiview ideals. We will obtain this result as
a direct corollary of Theorem 3.2. Our argument is essentially independent of the original proof,
which requires relating the multiview ideal to yet another Hilbert scheme studied in [I2]. In our
proof, Boocher’s result in Proposition 3.5 does much of the heavy lifting. Boocher’s result in
turn relies on an older result of Bernstein, Sturmfels, and Zelevinsky [3, 56], the proof of which

m,l .
IAp’ is not

was later greatly simplified by Conca, De Negri, and Gorla [13]. We also note that
a sparse determinantal ideal, since the matrices involved have some nonzero constant entries.
Therefore Proposition 3.5 cannot be applied directly to prove Theorem 4.1.

Recall that minor genericity of A is stronger than A having pairwise distinct centers. For
arbitrary A with pairwise distinct centers, the Grébner-theoretic Theorem 4.1 no longer applies.

However, we still have the following ideal-theoretic characterization of I:—:’;.

Theorem 4.2 ([2, Theorem 3.7)). For A with pairwise distinct centers, I s generated by the
specialized 2- and 3-focals.

The set-theoretic analogue of Theorem 4.2 is a classical result of multiview geometry. Indeed,
it can be shown under even stronger genericity assumptlons on A that just the 2-focals cut out
Fm ' form >4 [27, 59], although they do not generate I Ap’

We observe that the 4-focals, although needed for Theorem 4.1, are not needed for Theo-
rem 4.2. Indeed, it is a well-established principle in the vision literature that the 4-focals “do
not add more information” [20] and “are always completely unnecessary” | ] However, these
statements apply only to the multiview ideal I /1 By contrast, the ideal I s not generated
by only the 2- and 3-focals.

Example 4.1. We investigate Ij:lp = (2-, 3-, and 4-focals) using the computer algebra sys-

tem Macaulay2 [22]. The containment (2- and 3-focals) C Ii’l is strict, since there is a
nonzero remainder upon polynomial division of any 4-focal f by a Grobner basis for the ideal
(2- and 3-focals). However, polynomial division also shows, whenever ¢ € [m] and 1 < i3 <
1o < i3 < 4, that

det A;[:, {i1,12,i3}] - f € (2- and 3-focals). (4.2)
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(4.2) implies more generally that for any number of cameras m, IXL’; may be obtained from suc-
cessive ideal quotients of (2- and 3-focals) by certain subdeterminants of the symbolic camera
matrices A1, ..., Ap,. O

We reiterate that the 4-focals are not needed to generate Ij—:’;, but they are needed to generate
IXL’; where the cameras are symbolic. As Example 4.1 shows, this is because the open condition

that each symbolic camera matrix has full rank is not enforced when we consider IZL’;. Moreover,
for any camera arrangement A, Example 4.1 recovers the well-known fact that

(specialized 2- and 3-focals) = (specialized 2-, 3-, and 4-focals).

since, for each i, specializing A to A in each of the four polynomials det A;[:, {i1, 42, i3}] yields
four scalars, at least one of which is nonzero. Bearing this fact in mind, we still work with the
4-focals in the remainder of this section, as they are necessary for the Grébner-theoretic Theo-
rem 4.1 and in order to apply the results of the previous section. Thus, we state the well-known
set-theoretic analogue of Theorem 4.2 as follows.

Proposition 4.3. If A is a camera arrangement with pairwise distinct centers, then

Fz:; =V ((specialized 2-, 3-, and 4-focals)) .

We provide a complete, self-contained proof of Proposition 4.3 since it is an important step
in our proofs of Theorem 4.1 and Theorem 4.2. Also, we appeal to the geometric argument used
in the proof when establishing various results later in the text (eg. Theorem 6.1, Theorem 7.5.)

Before proceeding to the proofs, let us consider three simple camera arrangements and their
multiview ideals. For the first example, camera centers are distinct, so Proposition 4.3 applies.

Example 4.2. For m = 2 cameras with distinct centers, the multiview ideal is a principal ideal
which can be obtained by specializing the sole 2-focal generating Iilp. The Z2-graded Hilbert

. 21 . .
series of I3 in this case equals
A,p

1— Tp1Tp2
3
(1—Tp,)" (1 —Tp,)

2 2
3 =1+3Tp, +3Tp, +6T5 + 8Ty, Tp, +6T5, +...

Up to coordinate changes in the world and images, such an arrangement takes the form A=
((I 0) , (O 1 )) . Although generic in the sense of having distinct centers, this arrangement is
special in the sense that its multiview ideal is foric [5, Sec 4]:

Iglp = (—p1[2]p2[2] + p1[3]p2[1]).
O

The next two examples illustrate why the assumption of distinct centers cannot be relaxed
in Proposition 4.3. Namely, when camera centers coincide, the multiview ideal can contain
polynomials which are not specializations of polynomials in IZ’;. See [Z2][Example 3.10] for
another instance of this phenomenon.
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Example 4.3. For A = ((I 0) , (I 0)) , the camera centers coincide. Its multiview ideal is
generated by the 2 X 2 minors of the 3 X 2 matrix (pl pg) , with Hilbert series

1= 3T, Tp, + T3, Tp, + Tp, T3, ) )
=1+43Tp, +3Tp, +6T5, +6Tp,Tp, + 615, + ...
(1 _ T )3 (1 _ Tp1)3 P1 P2 P1 P1-P2 P2

In contrast to the previous example, specializing the 2-focal generatlng I L p to A results in the
zero polynomial. Thus, in general, I "8 cannot be obtained from I n by specialization when
7p 7p

the cameras in A do not have distinct centers. U
Example 4.4. For the camera arrangement
A= (A Ay, Ay) = (I 0),( 0),(0 1)),
the first two camera centers coincide. The multiview ideal is
(det (A |p)[1:3,1: 3lf1,3y, det (Alp)[1:3,1: 3]{273}> + minors (2, (p1 p2)). (4.3)

The first summand above is generated by specializations of the 2-focals in Iilp corresponding
to the camera pairs (A, A3) and (A, A3) with distinct centers. The second summand is the
multiview ideal from the previous example. Upon specializing I ’ p to this particular arrange-

ment A, the 2-focal on (A1, A2) and all 3-focals in IA’lp become zero, in contrast to the case of
a generic camera triple. (]

Theorem 4.2 asserts that the failure to obtain I Ap by specialization from I}," p occurs only

in examples with coincident centers like in Example 4.3 and Example 4.4. We begin by proving
the set-theoretic version.

Proof of Proposition 4.3. The inclusion Fz’ll) C V ((specialized 2-, 3-, and 4-focals)) follows along
similar lines as the inclusion I’T'Al’; C V(2-, 3-, and 4-focals) in the proof of Proposition 3.4. The
proof of the reverse inclusion is analogous to the proof of V(m-focals) C FZ’II) in that we con-

struct a sequence in 'y ’p that limits to any given point in V ({specialized 2-, 3-, and 4-focals)) .
However, instead of perturbing cameras, we perturb the associated world point, as illustrated
in Figure 4. We note that a similar argument appears in the proof of [59, Proposition 1J.

Let A = (Ay,...,A,,) be a camera arrangement with distinct centers. Suppose p lies in the
vanishing locus of the A-specialized 2-, 3-, and 4-focals. Then P also lies in the vanishing locus
of all m-focals and the corresponding specialized m-focal matrix is rank-deficient, so we may
consider an element in its nullspace as in (3.5). At most one of Ay, ..., A, in that null vector
can be zero since if, say, A\ = Ay = 0, then ¢ is the center of both Aq and A,. If all \; are
nonzero, then p is in the image of the imaging map (4.1) and thus p € I’g:ll). Otherwise, we may
assume without loss of generality that Ay = 0, so that ¢ is the center of ffl We now write p

as the limit of a sequence of points in '} ’p as n — oo, showing that p € F . Let ¢ be such
that A,§ ~ p1, and, working affinely, let ™) = G+ (1/n)g. Set p(®) = (Alq( o Apg™).
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A; g | ,’—;‘)f
r'Y "‘-

-7 ) Aig~ D

Figure 4. Proof of Proposition 4.3; the A; = 0 case.

Passing to a subsequence if necessary, we may assume that A;q™ # 0 for all i > 1 and all
n > 1. Observe for ¢ = 1 and all n > 1 that

A" ~ A7 ~
For ¢ > 2, in the limit as n — oo,
Aiq™ = Aig+ (1/n)Aid — Aig ~ pi.

We have exhibited p as the limit of points in Fz’ll). Since I’T'A"b’ll) is closed in the Euclidean

)

topology, this implies that p € Fg’;, proving the desired inclusion. 0

Proof of Theorem 4.1. Let < be any product order on C[A, p] with A < p, formed from product
orders <p on C[p] and <A on C[A]. We note the following identity:

in< Y 9a(A)DPY | = inc, (e, (A)P™. (4.4)
p*l <p - <p pYk

Using this identity and Theorem 3.2, application of Buchberger’s S-pair criterion [15, §2.6] shows
that the A-specialized 2-, 3-, and 4-focals form a Grébner basis with respect to <p, as long as
none of their leading coefficients g,, (A) vanish. Each of these leading coefficients is a 4 x 4
minor of ([l]— ‘ e ‘ fl;';b) and by minor genericity, they do not vanish. Since <y, is an arbitrary
monomial order on C[p], the specialized 2-, 3-, and 4-focals form a universal Grobner basis. To
show they generate IZ”;, apply the recognition criterion of Proposition 2.3. The set-theoretic
statement is just Proposition 4.3, and the remaining conditions follow as in Theorem 3.2. O

Combining the last example with our previous results allows us to recover the main ideal-
theoretic result of [2].
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Proof of Theorem 4.2. When A is minor generic, this follows by applying Theorem 4.1 and spe-
cializing (4.2) for every 4-focal f. For A with pairwise distinct centers, Theorem 2.8 shows that

there exists h = (Hy,..., Hy,) € (PGL3)™ such that
hA = (H Ay, ..., Hy,Ap)
is minor generic. Consider the automorphism of Z™-graded rings defined as
Ly, : C[p] — Clp]
(1,5 pm) = (Hipys .- Hinpm)-

This allows us to reduce to the minor generic case:

(2- and 3-focals|z ) = Ly, ((2- and 3-focals|, 5)) (|2, Lemma 2.3, 3.6])
=1Ly ([?A{p) (hA is minor generic)

m,1

=I5

In the above calculation, we note that the results used from [2] are proven by Cauchy-Binet type
arguments analogous to the proof of Theorem 2.8. The final equality follows directly from the

o T i . . o
definition of IAm’ . Since A was an arbitrary camera arrangement with pairwise distinct centers,

)

the proof is complete. U

5. IZ’é’p : Constraints on cameras, world points, and image points for n =1

1
7q7p 1
vanishing ideal of the image formation correspondence I' Z’qp (14), and the second bundle

We now move on to I}’ for m cameras and one world point. Recall that this is the

adjustment ideal in Figure 2.

For fixed 7, the condition A;q ~ p; is equivalent to the vanishing of all 2 X 2 minors of the
matrix (Aiq pi). Thus, we may consider the ideal generated by all such minors, which we
denote as:

MXL,’;p = Z minors (2, (Aiq p,)) . (5.1)

Each summand, minors (2, (Aiq pi)), appearing in (5.1) looks similar to a well-studied ex-
ample in combinatorial commutative algebra, namely, the 2 X 2 minors of a 3 X 2 matrix of
indeterminates, which form a quadratic universal Grébner basis by [55, Example 1.4]. However,
this analogy cannot be pursued too closely here, as the minors in (5.1) are cubics and the matrix
entries are not indeterminates.

. m,l . . m,1 . m,1 m,1
’ ’ ’ C ’
The ideal M, , is a natural candidate for I, .. However, in general M ", , C Ip", -

Example 5.1. For m = 2 cameras, we can easily check in Macaulay?2 that

2,1 2,1 2,1 2,1 2,1
El — ) El D ) — El .
IA,qvp MA,qvp + IA,p = MA,qvp IA,qvp Nmg
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In spite of Example 5.1, the ideals Iz:’é p and MX“; p are closely related. Our main result of

. . . m,1 o m,1 m,1
this section, Theorem 5.1 below, establishes that IA’(“) = MA,q,p + IA,p‘

Theorem 5.1. The vanishing ideal IK’; o 0f the variety FX’; o May be described as follows:
Foranyl <1 <4,

71 71 . ;
I:&nvq,p = Zq,p - qldl, (5:2)
and
Im,l _ Mm,l + Im,l 5.3
A,q,p ~ "TAaqp Ap’ (5:3)

Thus, I;'f’(ll p 1S generated by the 2 X 2 minors generating MX“; p and the 2-, 3-, and 4-focals.

Once again, we use the recognition criterion of Proposition 2.3 to characterize IZL’q . The

set-theoretic equalities

m,1 m,1 m,1 m,1
Dagp = VMg p) = VIME g p + Iap) (5.4)

follow along the same lines as in Proposition 3.4. To verify the remaining conditions in Proposi-
tion 2.3, we identify explicit Grobner bases with squarefree initial ideals. At the core of our ar-
guments is the following technical result, whose proof, unlike Theorem 3.2, is computer-assisted.

ope . . . .. . m,1 .
Proposition 5.2. There exists a set G ML s which is a Grobner basis for My, ., with respect to
all 12 Lex or GRevLex orders < satisfying

Anl3.4] < ... < Ai[1,1], ql4] <...<q[l], pm[3]<- - <pi[1],

where < refines the column-major order on each matrix A;,q,p; and the groups A, q,p may be
permuted in any of the six possible ways.

Elements of the set G are listed explicitly in Appendix C and their degrees are tabulated

m,1
MA,q,p

in Figure 5.

Proof. To begin, we record several important properties of G m.1 .

A,q,p
P1 For m > 4,
Gymi = |J G

A,q,p A ,q,p
oe('y)
where GX/[m,l = GMm,l N (C[Acn ’ A027 Acrga Acr47 4;Poy5Poys Poss po’4]'

A,q,p A,q,p

P2 G,,m1 contains all elements of the form q[4] times a 2,3, or 4-focal.
A,q,p

_ m,1
P3 <GMZ;;’I,> =Mpqp
P4 Aside from the g[4]-bumped focals, no other elements of G} m.1 are divisible by any

A,q,p

variable in C[A, q, p].
P5 The lead terms of all g € G, m.1 are squarefree.

A,q,p
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P1 and P2 follow upon inspecting the polynomials listed in Appendix C, each of which
depends on at most 4 cameras and their corresponding image points.

For P3, the inclusion M7"! < (G ymt ) holds since G
A,aq,p

A qp contains all the 3m cubic

My
2 X 2 minors generating M’ q p- The reverse inclusion and the assertions P4 and P5 may all be
verified for m =1,...,4 using Macaulay2, and for m > 4 using P1. Here we are using the fact

that M"  is the sum of all minor ideals M ‘o‘q p as o varies over all 4 element subsets of [m].
Havmg ‘established P1- P5, Macaulay?2 verifies that G, m1 is a Grébner basis for all 12

A,q,p
term orders for each of the “base cases” m = 1,...,8 . For m > 8, we use Buchberger’s

S-pair criterion: G, m1 is a Grobner basis for the monomial order < if and only if for any
A.,q,p

f,g¢€ GMZJ , the S-pair
S(f,9) =lem(in<(f),in<(9))(f/in<(f) — g/in<(g))

has zero remainder after division by G

feqge

. Consider any f,g € GMXZJ . By P1, we have
AP

m,1
MA,q,p

for some o, 7 € ([Zb}). Thus

(f,g)G( ?\—4m1 UGMml >

A,q,p A,q,p

mi1 andge G
Mqu Mqu

This S-pair involves at most 8 cameras, so its remainder upon division by G m1 is zero by
AP

the base cases. O

In contrast to the set of 2-, 3-, and 4-focals that form a Grobner basis for I’} ’p the Grobner

basis G Myl is quite mysterlous We list three additional properties which may provide further

clues to its structure.

P6 The elements of G ;m1 are linear in the variable group q, and may be partitioned
A,q,p

according to their suppyo7rt as follows:
Degree-3 elements have q-support {¢[1], ¢[2], ¢[3], ¢[4]}.
Degree-4, 5 elements have q-support {q[2], ¢[3], ¢[4]}.
Degree-6, 7 elements which are not bumped 2-focals have q-support {¢[3], ¢[4]}.
Bumped 2-, 3-, and 4-focals have q-support {g[4]}.
P7 Viewed as polynomials in q and p, the leading coefficient of any element of GG Mgl
with respect to either of the induced Lex orders on C[A][q, p] is always a k x k minor
of (AI A,—;) for some 1 < k < 4.
P8 With respect to the 12 monomial orders in Proposition 5.2, there are 4 distinct initial
ideals in<(MZ’01bp), realized by letting < be one of the two GRevLex orders with q <
A p or one of the two Lex orders with q > A, p.

By Proposition 5.2, it suffices to check these properties for m = 4 cameras. Property P7
justifies the notion of ultra minor genericity in Definition 2.6, which we make use of in Section 6.
Definition 5.3. Let G el be the set consisting of all 2-, 3-, and 4-focals together with the elements
of G yma  which are not bumped Jocals.

A,q,p
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degree G ML G el
3 3m 3m
4 m m
5 9('y 9(%y
6 6(" 7(y
T | sl
8 27("% 81("})
9 81("} 0

Figure 5. The number of generators of each degree in G ;m,1 and G m.

A,q,p A,q,p

Alternatively, G ym1  consists of the elements of G ot after bumping down the elements
A

»q,P A.q,p
of the form q[4] - k-focal where k = 2,3, 4. See Figure 5 for the degrees of elements in G ;m.1
A.,q,p
Our notation G;m,1 foreshadows the not-yet-proven fact that this set is a Grobner basis

A,q,p
of IZL’(Il p- This will be established in the proof of of Theorem 5.1. First we write down some

corollaries to Proposition 5.2.

Corollary 5.4. () Gyma is a Grobner basis for the ideal

A,q,p

1 1 g1
M gp T 1A = Ma'gp  al4] (5.5)

with respect to any of the 12 monomial orders defined in Proposition 5.2.
(2) Moreover,

MX'L77(17P + IZ?’II) - (MXL77(17P + IZ”II)> : Am [3’ 4] - <MX'L77(17P + IZ?’II)) : pm [3]' (5.6)

Proof. Let < be one of the two GRevLex orders appearing in property P8 of G ML Since
AP

G ym1 is a Grobner basis for MZ’Qllp with respect to < by Proposition 5.2, combining the
A,aq,p B
definition of G';m,1 and Lemma 2.4 says that G m.1 is a Grobner basis of MZ’Qll p: q[4] with
A,q,p A.q.p 7’

respect to <. On the other hand, the ideal generated by G m1 is precisely Mgn’ép + IXL’;.
A’q P ) ) k)

Indeed, by the construction in Definition 5.3, (G;m,1 ) contains My IZ’;, while every

I ap A,q,p
. m,1 m,1 m,1 m,l m,l
element of G m1 liesin My", +1,",. Therefore, we get that My, +1p7, = Mp', |t ql4].

A,q,p
Now suppose < is one of the two Lex orders appearing in P8. Using P6, the elements of

G 1 are well-supported with respect to q, and hence we may apply Lemma 3.8 to conclude
A,q,p

. o . m,l .
that GIXL;;’F is a Grobner basis of My, . : ¢[4] with respect to <.

Next we argue that Glm,l is a Grobner basis for MZ’; p + IZ’; with respect to any of the
qu’p 9 b b

remaining 8 orders considered in Proposition 5.2. Letting <’ be such an order, P8 lets us choose
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< from the 4 previously considered orders such that
. 1 . 1
m<r(MZL7q7p) = m<(MZL7q7p). (5.7)

We may apply either Lemma 2.4 when < is a GRevLex order or Lemma 3.8 when < is a Lex
order to the monomial ideal in (MXL’& p)- In either case this gives

. 1 .
('ln< (M;n7q7p)) : q[4] = <'ln< (GIXL’,;YP)% (58)
where in (G ,m1 ) is the set of leading terms of elements in G';m.1 . Thus,
A,q,p A,q,p
y y 71 . — 71 .
m</<G~’Z;,p> = m<’(MZq,p 2 q4]) (<GIZ,;,p> = MXb,qp : q[4])
C (inar (Mg )+ al4]
= (in< (M ) : q[4] (Equation (5.7))
= (in<(Gm1 )) (Equation (5.8))
A,q,p
=in(Gm1 ) (Gm.1 is a Grobner basis with respect to <.)
A,q,p A,q,p

The inclusion C follows from the definition of an ideal quotient. Since distinct initial ideals are
incomparable with respect to inclusion, we conclude

ina (G ) =in (GTL ),

b
Ia,q,p Ia,q,p

showing that G?::lq 5 is a Grobner basis with respect to all 12 term orders.
Finally, we establish (5.6). Note that since no polynomial in G';m1 has A;,[3,4], pm[3] or q[4]

A,q,p

as a factor, by Lemma 2.4, G ;m1 is a GRevLex Grobner basis of (MXL’; p T IZL’;) s A3, 4],
A,qyp b I b

(leﬁ,p + IZ’;) : q[4] and (leﬁ,p + IZ’;) : pm[3]. Hence, all three of these ideal quotients

equal the ideal generated by G?{:’lq . which is MXL’Oll pt IZL’;. O

To complete the proof of Theorem 5.1, we need a basic lemma on the quotient by some
variable of a polynomial ideal that is invariant under the action of a permutation group.

Lemma 5.5. Let P C Sy, be a permutation group with its standard action on C[z1, . .., x]. Suppose
I C Clzy,...,x] is an ideal which is P-invariant, meaning, P - I = I. Then

I'=I:2; = I=1:x,; VpeP
Proof. Suppose f € I : ;). Equivalently,
(p-xi)f =xp)f € 1.
We need to show f € I as well. Note that
p~t (@ ) =mi(pt - f)eP-I=1

This gives
plofel:az=1
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Thus,
f=p-(p'-fleP-I=1

Corollary 5.6. The following identities hold for anyi € [m],j € [3], k € [4].

71 . J— 71 .
MZq,p Hq[4] = MZq,p - q[k],
71 . — 71 . y
MXL,q,p s An[3,4] = Mz%p D Aqlg, Kl

1 1 .
MZq,p s3] = qu,p s pilJ]-

Proof. We deduce each identity from Lemma 5.5 by producing a suitable permutation p € P,
where the group P C S4415, is generated by all permutations taking one of three forms:

(1) Camera permutations, given by some p € Sy, which sends A; to A,;) and p; to p, ;).
(2) World coordinate permutations, given by some p € Sy which sends ¢[k] to ¢[p(k)] and
sends A;[:, k] to A;[:, p(k)].
(3) Image coordinate permutations, given by p € S which sends the jth coordinate of p;[j]
to pi[p(j)] and Ai[j,:] to Ai[p(4),:].
Note that MXL”;p is invariant under the action of P. To deduce the first identity in the statement
of the Corollary, apply a permutation of the form 2 above. For the second identity, apply 2, then
3, then 1. For the third identity, apply 2, then 1. (]
Proof of Theorem 5.1. By Corollary 54, G el is a Grobner basis for MZ’;p + IZ’; whose
initial monomials are squarefree. Therefore, M ml o IZ’; is a radical ideal by Proposition 2.2.

A,q,p
By Corollary 5.4 and Corollary 5.6, this ideal is saturated with respect to all variables. This gives

us both (5.2) and that
m,1 m,1
MA,q,p + [A,p
is saturated with respect to the irrelevant ideal. Equation (5.4) gives the set-theoretic statement

T = VIMAg ) = V(MR o+ Ix")- Thus, (5.3), which states that

m,1 m,l _ m,1
MA,q,p + IA,p - IA,q,p’

now follows from Proposition 2.3. O

6. IZL’; o Completing the square for n =1

Just as our results on the ideal IZL’; allow us to recover known results about the multiview

ideal I}:’Il), we may combine the results of the previous section with specialization arguments to

study IZL’; . This ideal is an analogue of the multiview ideal that does not eliminate the world

'

point variables q. It is the final ideal in the square seen in Figure 2. The next two theorems

characterize Igb’; o Grobner-theoretically and ideal-theoretically.
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Theorem 6.1. Specializing the Grobner basis G jm,1  to an ultra minor generic camera arrangement

A yields a (non-reduced) Grobner basis for I%n’cll b with respect to the restrictions of Lex or GRevLex
orders to C|q, p| such that A > q,p

Proof. The strategy is much like the proof of Theorem 4.1. Property P7 of G?::lq 5 implies that
the leading coefficients of the elements of G?::lq , in C[A] are nonzero after specialization

to an ultra minor generic camera arrangement A. Since the Lex orders are product orders,

the specialized Grobner basis elements G Ia form a Grobner basis for both Lex orders in
4P

the statement of the theorem. Moreover, the leading terms of G with respect to either

Lex order are the same for the corresponding GRevLex order. Comparlng leading terms as in
Corollary 5.4 proves that G forms a Grobner basis for the ideal it generates. Finally, to
aQ,p

prove that this ideal is I < q . apply the recognition criterion of Proposition 2.3 in a manner
analogous to the proof of Theorem 5.1. (|

Theorem 6.2. If A has pairwise distinct centers, then specializing the 2 X 2 minors of (Aiq  p;)
and 2- and 3-focals yields generators for I:—:’; o In particular,

m,l
IAq,p - MA,q p + I (6.1)

Proof. A group element h = (H, Hy,...,H,,) € PGLy X(PGLg)m induces a linear automor-
phism of the Z™*!-graded ring C[q, p] :

Ly, : Clq,p] — Clq, p]
q— Hq, pi— Hp;.

We have already shown in Theorem 6.1 that (6.1) holds when A is ultra minor generic. To extend
this to A with pairwise distinct centers, we apply Theorem 2.8 which reduces the proof to
checking that the ideals Mg’l wp and [gb’l are preserved under coordinate change, ie.

)

m, 1 _ m,l m,l _ m71
Mz qp = In (MhA,qvp)  Axp=1In (IhA,p> '
The second equality appeared already in the proof of Theorem 4.2. The first may be proven
along similar lines: we calculate

(Aig pi) = (H7YH;A;H Y)Hq HY(Hp:))

= H' ((hA); - Li(q) Liu(pi))-

A Cauchy-Binet argument analogous to that given in Appendix B shows that every 2 X 2 minor
of the matrix on the left-hand side is a linear combination of 2 X 2 minors of the matrix on the

[ml

. . s . . m,1 , . . o e s
right. This gives the inclusion [ Ap C Ly, ( BA p). The reverse inclusion is similar. 0

In closing, we note that the ideals appearing in this section and the last provide another route
to understanding the ideals obtained by eliminating q from them. For instance, we could use
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the results of these sections to give a different proof of Theorem 4.2, or the ideal-theoretic part
of Theorem 3.2.

m,n m,n rm,n
7. Iqu7IA,p7IquvIAp The square for n > 1

So far, we have characterized the ideals in Figure 2 for the case of n = 1 world point and m
cameras. In this section, we establish results for these ideals when n > 1.

For each k = 1,...,n, denote as follows the elimination ideals involving the kth world point:
,1
I‘vaqupk - I7Angp a (C[A'7 9k, Pik - - - 7pmk],
1
]Xbpk - Im BN (C[A Pik--. 7pmk]>
wl =Tt Nl ] (7.1)
Aaqrpr ~ Aap 9k; P1k - - - s Pmk]

Il I Ay Pt
One naturally hopes that summing the appropriate extensions of the ideals in (7.1), over k =
1,...,n, would give us the ideals of Figure 2 for arbitrary n. If this were true, our results
about explicit generators for these ideals in the n = 1 case would generalize effortlessly. For
the triangulation ideals /5" and [ ms this ideal scenario turns out to be true. The essential

A.q,p
observation is that FE’Z o and F are both direct products of the restricted varieties:
m,n m,1 m,1
_ b — _ b ><
11A,q,p V([A7Q17P1) VI3 ,qn,pn)
mn (ol e m,1
Fap= V(IA,pl) XX V([A,pn)'
Let C[q, p] Igb’;k b, D€ the extension of IZ’; o, in the ring Cla, p), i.e., the ideal generated
by the generators of I} Aq . in C[q, p]. The first result of this section determines explicit
generators for the triangulation ideals I"" and I — whenever A has pairwise distinct centers.

A,q,p

Theorem 7.1 (Triangulation ideals when n > 1). For A with pairwise distinct centers and any
n > 1, the triangulation ideals are obtained by summing the extensions of individual ideals in the
Jollowing sense:

I_ Aq,p Z Cla,p ,qk pi’ (7.2)

Z Clp] I3 . (7.3)

Under appropriate genericity assumptions on A, the Grobner bases studied in Section 4
and Section 6 may be combined to give Grobner bases for any n > 1. A precise statement is the
following result.

Theorem 7.2 (Grobner bases for triangulation ideals when n > 1). Suppose G1,...,G,, are
Gribner bases for the restricted ideal I — (0 A ) fork =1,...,n, with respect to the term
orders <1,...,<y, allowed in Theorem 67 (or Theorem 4.7). If < is any term order on C|q, p] (or
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C[p]) refining <4, ... » <ny then G = G1 U --- UGy, is a Grobner basis with respect to < for the
triangulation ideal I— o (o7 13 ")

In particular, if A is a minor generic arrangement, then the set of specialized 2-, 3-, and 4-

focals form a universal Grébner basis for IAm’g Likewise, if A is ultra minor generic, then the

union of the Grobner bases G jm.1 described in Theorem 6.1 is a Grébner basis for I A.q.p
A’qk’Pk 7 )

with respect to a suitable refinement of the GRevLex or Lex orders used in Theorem 6.1.

In the case of the two bundle adjustment ideals in Figure 2 we can write down an ideal-
theoretic result using our results for n = 1. These ideals may be obtained by summing the
corresponding extended ideals for each individual world point, and then saturating by a poly-
nomial defining an appropriate locus of non-generic cameras.

Theorem 7.3. For anyn > 1 we have

m,1 00
A q P <Z (C A »d, P IA Ak Pk) * Sultra> (74)

Iy = (ZC [A,p I’”;k> £ 5% (7.5)

where s is the product of all 4 x 4 minors of (A] -+ Al), and sy is the product of all minors
(of any size) of (A] -+ A]).
The following is an immediate corollary of Theorem 7.3.

Corollary 7.4. Set-theoretically,

FZ:Z,p =cl < (Z (C A A, P IA e pk) \V(Sultm)> 5 and (76)
FAp—Cl< (ZCA pr"bék) \V(S)>- (7.7)

However, we can also prove a slightly stronger set-theoretic statement.

Theorem 7.5. Consider the subvariety C’ZL crly q p consisting of all tuples (A, q,p) where A

is such that the kernels of some pair of camem matrices intersect nontrivially. Let C'Xb’g denote its
Lo . m,n

projection into I‘A7p. Then

FZ:ZJ) =cl ( <Z (C A 4P A Ak pk> CZ:Z,p) ’ (78)
s =l ( <Z C[A,p I;’j;k> \ CZ’S) . (7.9)
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We note that Theorem 7.5 automatically implies Corollary 7.4, since every (ultra) minor
generic camera arrangement has pairwise distinct centers. For instance, since C' Ap C V(s),
we have the containments

rﬁ;gcd< (ZCApIApk>\V( )cd( (ZCApIApk>\CZ’g>,

and Theorem 7.5 gives equality throughout. On the other hand, it remains unclear whether or
not Theorem 7.5 can be “upgraded” to an ideal-theoretic result, since the technique used to
prove the ideal-theoretic Theorem 7.3 requires working in rings where the various minors have
inverses.

To summarize our results for n > 1 world point, the situation for the triangulation ideals Ig’;
and I— A.qp 1S @s nice as possible. For the bundle adjustment ideals 1 and e 'q.p’ Theorem 7.3
provides a characterization up to saturation by certain loci of non- generlc cameras. However,
we know little about explicit generators of the bundle adjustment ideals when n > 1. Below,
we investigate the smallest interesting cases, Ii?p and Ii’?p, highlighting differences from the
results for n = 1 established in Section 3.

Example 7.1. Consider the case of (m,n) = (2,2). The ideal C[A, p][ilpl + C[A, p][ilp2 is
minimally generated by the two 2 focals of degree 6 and is already saturated with respect to
(s). Therefore, Ii’?p = (C[A,p]]i’}m + C[A,p][i”lm as stated in Theorem 7.3. The equality
can also be verified computationally, by checking that the right-hand side is a prime ideal of
Krull dimension 34 = 11m + 3n + m + mn, where the right-hand side is the dimension of

—

the affine cone FZ’;. The situation with Grébner bases is more complicated. Using Macaulay?2,

we may verify that Ii?p has a reduced Grobner basis consisting of the 2-focals together with
four additional elements of degrees 8 through 11 for a Lex order with A > p. This is not the
union of any Lex Grobner bases of the individual ideals, which would consist of just the two
2-focals. O

Example 7.1 shows that Theorem 3.2 does not generalize for n > 1. Based on this example,
it is tempting to conjecture that the k-focals might still generate IZ’;L for all m and n. However,
such a conjecture is typically false for n > 1. In fact, for m = 2 cameras and n = 3 world
points, the next example shows that the k-focals do not even cut out F p Set-theoretically!

Example 7.2. Consider, in the case of (m,n) = (2, 3), the ideal I generated by the three 2-focals
associated to a partially-symbolic arrangement B = (([ O) ,Bg) in the ring C[B2, p11, . .., p23).
The ideal I is radical, with the prime decomposition

2,3 )
I=1g", N{(B2:,4]).
Thus, the vanishing ideal I]Zf’p may be obtained as an ideal quotient of the focal ideal:

15 =1: (B[, 4)).
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The prime component (Bs[:,4]) may be understood as defining the locus of camera pairs of
the form B, with coincident centers. The component I]Zf’p is generated by the 2-focals and an
additional polynomial f(Bg2, p) of degree 9 given by

f(Bg,p) = det (p21 X (BQ[Z, 123]]911) | P22 X (BQ[I, 1: 3]]912) | P23 X (Bg[:, 1: 3]p13)) s (710)

where x denotes the usual cross product. This polynomial f does not lie in I. However, if we
specialize to By = By generic, then the specialization of f is in the specialized focal ideal
associated to (Bj, Bs) by Theorem 7.1.

In the above, fixing the first camera allows us to decompose I more easily. However, we note
this example also allows us to prove the strict containment

I35 2 Iaip, + IXp, + i, (7.1

when both cameras A; and Ay are indeterminate. To see this, define the following 4 x 4 symbolic
matrix in block form:

adj A1[:,1:3] —adjAi[:,1: 3] A1[:, 4]
H(Ay) = < J 10 JdetlAl[:,l : 3]1 > ’

This is an explicit formula for a world coordinate change H € PGLy fixing the first camera to
be a multiple of (I 0); if we write

Bi=A1H(A) ~ (I 0), By=AyH(A)),
then g(A,p) := f(B2,p) lies in the left, but not the right, ideal in (7.11). O

In the vision literature, the polynomial f in (7.10) defines a scalar triple product constraint
that was considered in several previous works, eg. [I, 30]. We emphasize that, after specializing A
to an arrangement A with pairwise distinct centers, the specialized polynomial g(A, p) will lie
in the triangulation ideal I%?p (see eg. [I, Appendix 2].) This does not imply the corresponding

statement for the bundle adjustment ideal Iigp. Thus, we observe a similar phenomenon as

in Example 4.1, in which the 4-focals were required to cut out I‘ilp; equations that are necessary
to define a bundle adjustment ideal may generically specialize to redundant constraints in the
associated triangulation ideal.

Returning to the triangulation ideals Igj’g and IXL’Z p» We now prove Theorem 7.1 and Theo-

A= B

rem 7.2, making crucial use of the results for n = 1 world point given in Section 4 and Section 6.

Proof of Theorem 7.1 and Theorem 7.2. Equations (7.2) and (7.3) follow by applying Theorem 4.2
and Theorem 6.2, respectively, and the fact that the vanishing ideal of the direct product of
closed subvarieties in projective space is the sum of their individual vanishing ideals. This
proves Theorem 7.1.

For Theorem 7.2, we may show that GG is a Grobner basis using Buchberger’s S-pair criterion.
Two g,¢g' € G are either in the same G; or they have disjoint variable support. In the first
case, S(g,9') —¢, 0 implies S(g,¢9’) —¢ 0; in the latter case, the lead terms are relatively
prime, so Buchberger’s first criterion [15, Proposition 4, pp. 106] implies S(g,¢') —¢ 0. The
explicit descriptions of GG for suitably generic A follow from Theorem 4.1 and Theorem 6.1,
respectively. U



AN ATLAS FOR THE PINHOLE CAMERA 34

Now it only remains to prove our results about the varieties I"}” q . Fzg and their vanishing
ideals I n and I " As in the case of the triangulation ideals treated in the previous proof,

the n = 1 results of Sectlon 3 and Section 5 are used in an essential way. As a warm-up to the
ideal-theoretic Theorem 7.3, we first prove the simpler, more geometric result of Theorem 7.5.

Proof of Theorem 7.5. We prove the equality

rAp_d( (Z(CAp Am)\o ) (7.12)

The proof of the second equality in the theorem statement is identical. First, we observe that

T =l (Thp\ ng) (7.13)
This follows since FZ’Z is an irreducible variety, and Iy Ap N Cm" is a proper subvariety of
FZ’g. The equality

( <Z(CA p] Am) \CZQ) —cl( Z\CZ,’S)» (7.14)

follows by the same arguments used in the proof of Proposition 3.4. Combining (7.13) and (7.14)

gives (7.12). O
Finally, we prove the ideal-theoretic Theorem 7.3. In the proof below, we argue the result for
IXLS in (7.5). A nearly identical argument, relying on Property P7 of the Grébner basis G ol

A,
in Section 5, allows us to show (7.4). The general idea is to mimic the proof of Theorem 7. 2qb§/

extending scalars C[A] < C[A]; so that G is a Grébner basis for the ideal it generates in the
polynomial ring C[A];[p]. We emphasize that G need not be a Grobner basis in the polynomial
ring C[A, p], due to Example 7.1.
Proof of Theorem 7.3. Let Gy, ..., G, be the sets of 2-, 3-, and 4-focals which respectively gener-
ate the ideals IZ’;, . ,IZ’;n. Set G = G1 U --- G),. We extend scalars by localizing C[A] at
the powers of s:

C[A]s = {f/s" s.t. f € C[A], k> 0}.

Let ¢ be the natural inclusion
v : C[A][p] — C[A]s[p]
Note that saturating by (s) is the same as extending and contracting though the map ¢,
(G) : s =171 (C]A]4 (G)).
We claim that
IZ’;L = (G) : s™. (7.15)
To prove this, we first argue that (G) forms a Grobner basis for the extended ideal C[A]; (G)

with respect to any fixed monomial order <. This requires some care. Arguments based on
Buchberger’s algorithm, although valid over an arbitrary field, do not extend to arbitrary rings
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of scalars. However, we may first extend the coefficient ring to the fraction field C(A), extend
< to a monomial order <’ on C(A)[p], and extend ¢(G) to the set (G)" C C(A)[p]. The same
argument as in Theorem 7.1 shows that ¢(G)’ is a Grobner basis with respect to <’ . Moreover,
the initial ideal in./(:(G)’) is generated by the leading terms of ¢(G) with respect to <, since
the leading coefficients are units in either of the coefficient rings C[A]s or C(A). Thus, in-(f)
for any f € C[A]s (G) C C(A)(G) is divisible by in-(g) € C(A)[p] for some g € «(G),
showing that ¢(G) is a Grobner basis for the extended ideal C[A]; <G>

Finally, we verify that the contracted ideal t "1(C[A]s (G)) = (G) : 5™ satisfies the conditions
for being the vanishing ideal of I"'} Ap " given in the recognition criterion of Proposition 2.3:

(1) The argument for the set-theoretic Condition 1 is the same as in the proof of Theorem 7.5.
(2) Since s € my, it follows that (G) : s> is saturated with respect to m4. Moreover,
Lemma 2.4 can be applied to show that the extended ideal C[A]; (G) is saturated with
respect to the extension of the irrelevant ideal C[A]; mp. This implies the contracted

ideal (G) : s™ is saturated with respect to mp, since
(G):s7):my = (G) :mIO)O) R
="' (CA]s ((G) : mY))
! ((C[A]s (@) : (C[A], mlo,o)) (6, Exercise 1.18])
= ((ClA)5(G))) (Lemma 2.4)

(3) The extended ideal C[A]; (G) is radical by Proposition 2.2, since it has a squarefree
initial ideal. Thus the contracted ideal :~!(C[A], (G)) is also radical.

O

8. Open Problems and New Directions

In this section we list some open questions about the atlas (Figure 1) that we hope will guide
future research, starting with specific questions related to those studied in this paper.

8.1. Algebra.
(1) In view of Theorem 4.1, it is natural to ask whether Theorem 3.2 can be strengthened. Is
the set of 2-, 3-, and 4-focals is a universal Grobner basis of IK’;?

(2) The Grobner basis of IZ’; p (Appendix C) is complicated. Is it possible to obtain a better

understanding of its structure? What is a universal Grobner basis of 1" !

Aq, p
(3) What are generators for I i and I o for all m and n?
(4) What are set-theoretic and 1dea1 theoretlc descriptions of the resectioning varieties?
(6) All of our results about the specialized ideals I3 ’g and I ’q make genericity assump-

tions implying that the camera arrangement A has pairwise distinct centers. What can
be said when these assumptions are relaxed?

(6) What are the Euclidean distance degrees of the various varieties in Figure 1? In particular
what is the Euclidean distance degree of the bundle adjustment and resectioning varieties?
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Note that, generally speaking the Euclidean distance degree is studied by considering
nearness in all the coordinates of points on the variety. For us only nearness in p matters.
In general, it would be interesting to compare the nodes in the atlas via their ED degrees.

8.2. Geometry.

M)
(2)

(3)

What can be said about the geometry of the multiprojective varieties in the atlas? For
instance, what are their multidegrees and their singular loci?

The atlas (Figure 1) is drawn in a vertically symmetric manner. This is reminiscent of
a classical principle in multiview geometry known as Carlsson-Weinshall duality |11, 60].
Various formulations of this principle express a duality between world points and cam-
eras. Here we ask what ideal-theoretic consequences of this duality are. Can we deduce
significant results about the ideals Ig? l’)", g? 1’)", etc, from what we already know about the
ideals in Figure 2?

How can the results related to Igj’rl) and its Hilbert scheme in [5, 34] be extended to Ig’g

) )

and Igb’np, beyond Theorem 7.2? Are there more Hilbert schemes lurking in the atlas?

EAs B

More precisely, when does the flat locus of the associated family give an open immersion
into the Hilbert scheme as in [34]? Does this always happen?

We note that the ideals Igb’l appearing in Theorem 6.1 and Theorem 6.2 have the
7q7p

same Z"™ "1 -graded Hilbert function and Hilbert series for any camera arrangement A
with pairwise distinct centers. This is immediate if A is ultra minor generic, since the
initial ideals for a given term order are all the same. For A with pairwise distinct centers,
this follows since the map Lj defined in the proof preserves the grading. For m = 2
cameras, the first few terms of this Hilbert series are

1+4Tq+3Tp, +3Tp,+10T2 + 9T Tp, +
9TqTp, +6T5, +8Tp, Tp, + 615, + ...

This mirrors the corresponding result for the multiview variety given in [5, Theorem 3.7].
This could be a starting point for studying the Hilbert scheme parametrizing these ideals,
parallel to the study of the ideals Igb’ll) in [5].

Degenerate camera configurations may yield very different ideals for the I:—:’Zp than

Ehe B

the specializations of IZL’Z p- Example 4.3 shows that the multiview variety of a tuple of
concentric cameras has dimension 2; it is really parametrizing a tuple of planar homogra-

phies. This tells us that nice behavior for IZL’Z p almost ensures that we cannot capture
. 1. . . T . m,n

specializations properly in degenerate cases, or, equivalently, that I Alqp does not repre-

sent an obvious moduli problem. Is there a moduli problem that we can describe that

does naturally give rise to IZ’Z p Or some modification of it> What happens if we attempt

to flatten aprés Raynaud and Gruson [46]? Can the result be computed or interpreted?

More generally, what is the “correct” moduli problem for capturing degenerations?

8.3. Generalizations.
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(1) When constructing the atlas studied in this paper, we assumed the simplest possible
camera model, the projective camera, where the only constraint is that the camera matrix
be rank 3. There are a number of specializations of this camera model which are of
significant practical interest, each of which will lead to their own atlas. We mention a
few:

(a) Euclidean cameras, A4; = [RZ- ti], where R; € SO(3) and t; € R3.

(b) Calibrated cameras with varying intrinsics, A; = K; [R,- ti}, where R; € SO(3)
and t; € R3. Here K; is the so called calibration/intrinsics matrix, which is an upper
triangular matrix with positive diagonals.

(c) Calibrated cameras with common intrinsics, 4; = K [R; t;|, where R; € SO(3)
and t; € R3. Here all cameras share the same calibration/intrinsics matrix K. This
is the case for example when we are using a fixed focus video camera.

The camera models described above are linear, and they do not account for the non-
linear distortion caused by lenses. Accounting for them gives rise to polynomial and
rational cameras and their corresponding atlases.

(2) Just like atlases can be studied as we vary the kind of camera, we can also vary the scene
objects being imaged. The first would be to replace world points (q) and image points (p)
with lines [10]. This is a well studied topic in 3D computer vision [/,

We can go further and consider cameras imaging a world where the objects are
quadrics and their images are conics in the image plane [16, 28]. Unlike the point and
line case, where the world objects map directly to the image space objects, in this case
we take a quadric surface to the boundary of its shadow in the plane.

More precisely, given a camera P3 -5 P2 a general quadric () in P? has the property
that the camera defines a finite morphism ) — P2 whose set of critical values (the
branch curve) is a conic curve C' C P2, This defines a rational map of linear spaces
P? -—» IP° from the space of quadrics in P? to the space of conics in P2. Similarly, a tuple
of cameras defines a rational map in this way from P9 — Hilb(pzym. When m = 1, the
relevant component of the Hilbert scheme of PP? is the linear space of conics.

(3) The atlas can also be generalized by replacing the matrix-vector multiplication Ag with
arbitrary matrix-matrix multiplication, i.e.

Cij ~ A;B; (8.9)

where A; € P**# B; € PP*7 and C;; € P**7. This seems like a very general object and
worthy of study on its own.
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Appendix A. Dimension counts

Proposition A.l. Below, A € (P)™ q € (P3)",p € Ip"" are generic whenever they appear.

dim Ffﬂp =3n+11m (A
dimI'y"% = min(2mn + 11m, 3n + 11m) (A.2)
dim g’y = min(3n + 2mn, 3n + 11m) (A.3)
dim 3" = min(2mn, 11m + max(3n — 15,0)) (A4)

dim Fg’z b= dim FX’Z p — dim " =3n (A.5)

dimIy" = dimIy"  — dim T (A.6)

dim e = dimT00 = dimTg" = 11m (A7)
dim FZ’Z = dim FZ’g — dimI'y"" = min(2mn, 3n) (A.8)
dim FZ’; = dim FZ{L’S —dim """ (A.9)
dimI5 = dim Ty’ — dim T (A.10)
dim T3y = dim Ty — dim T (A.11)

Remark A.2. Form andn sufficiently large, the formulas above involving min and max expressions
can be simplified as follows:

dim I‘X:g =dim g’y = 3n+ 11m (A12)

dimI'p"" = 3n + 11m — 15 (A.13)

dim ngz,p = dim Fg:z =3n (A.14)

dim FZ’Z@ = dim I’T'A"”:g =dimI'yy =15 (A.15)
dim Fz’gp =dimI'gy = 11m (A.16)

Proof-

(A.1): This follows at once from the birational equivalence
mp i Do p = (B x (B?)"
(A,q,p) —~ (A, Q).
(A.2): Consider the projection
Tq : I’T'A"b:gp — (PIH™ x (p2)mn
(A,q,p) —~ (A, p).
A fiber T L(A,p) can be identified with the projective linear space of all g satisfying A;q; ~ p;;.
Equivalently, each of the 2mn matrices (Aiqj pij) is of rank one. For generic (A,p) € Fzzg,

the 2 x 2 minors impose 2 linear conditions on q, so that w;l(A, p) is a projective linear space
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of dimension max(3n — 2mn, 0). Hence, using (A.l) and the fiber-dimension theorem,

dim )"0 = dim )"0 — max(3n — 2mn, 0)

= min(2mn + 11m, 3n + 11m).
(A.3): Similar to (A.2), consider

ma D p = (BM)™ x (B
(A,q,p) = (@, P)-

For generic (q,p) € T'qp, the fibers 7,'(q,p) are projective linear spaces of dimension

max(11m — 2mn, 0) which are defined by the A-linear 2 x 2 minors of (A,-qj p,-j) . Hence

dim g’y = dim FKIZ,p — max(11lm — 2mn,0)

= min(3n + 2mn, 3n + 11m).
(A.4): For generic q1, ..., qs5 € P3, define o = {01,...,04} C [5],

_ -1
[Ul 0203 04] ! = det (q0'1 4oy Qo3 qu4) )

and consider the projective change of basis matrix
Cor,.ogs = ding (52347, [1534] 71, [1254] 71, [1285] ) - (@1 @2 a3 1) (A7)

where ~! denotes matrix inversion. When defined, the projective transformation defined by
Cqr,...qs MAps q1 - .. g5 onto the standard projective basis:

Coryogs -1 ~ €1,

qu,m,qs “q2 ~ €2,

Car,ogs 43 ~ €3,

qu,m,qs © g4~ ey,

Cor,ongs " 5 ~ €1+ €2+ €3 + eq.
Consider the projection

. m,n 5
TAq - FA,q,p —>an
(A,q,p) — P.

We observe a version of projective ambiguity [23, p 265], stating that the fibers of ma o are
invariant under the action of PGL, described in Section 2.2. Suppose first that n < 6. We
need to show dimI'p"" = 2mn. Let p € I'p"" be generic and suppose (A,q,p) € W;lq(f)).
Then for generic @' € (P3)", we may find (A’,q’,p) € W;}q(f)) by projective change of basis
H=C ({,IC'q, where @ and @’ extend @ and @’ to projective bases when n < 5. In other words,
the generic fiber of I' Zfi? — F;n’n has dimension 3n. Applying (A.1),

dim " = dim gy — 3n = (3n + 2mn) — 3n = 2mn.



AN ATLAS FOR THE PINHOLE CAMERA 44

Now suppose n > 6. For m = 1 camera, (A.4) asserts that dim I'p"" = 2n, which follows since
there are no constraints on image points. Otherwise, observe that the quantity

2mn — (1lm +3n —15) = (2m —3)n — 1lm + 15 = (2n — 11)m + 15 — 3n

is increasing in n for fixed m > 2 and increasing in m for fixed n > 6. Moreover, this quan-
tity equals zero precisely in the minimal cases (m,n) = (2,7), (3,6). Thus, (A.4) asserts that
dimFgL’" = 11m + 3n — 15 whenever either m > 2 and n > 7 orm > 3 and n > 6.
This leaves one exceptional case for n > 6, which is (m,n) = (2,6); here, to show that
dimI'p"" = 2mn = 24, it suffices to verify that the Jacobian of 74 ¢ evaluated at some point in
local coordinates has rank 24. The same Jacobian check gives us dimI'p”" = 11m+3n — 15 for
the two minimal cases; equivalently, dim W;’lq(f)) = 15 for generic p € I'y"". Finally, if either
m >2andn > 8 or m > 3 and n > 7, note that the fiber ﬂglq(f)) for generic p € T'p"" is
nonempty, and thus has dimension at least 15 by projective ambiguity. Since ﬂ'glq(f)) projects

onto a fiber for one of the minimal cases, we also have dim ngq(f)) < 15. Thus
dim TP = dimyn | — dimdim 7, ' (p) = 11m + 3n — 15,

(A.5)-(A.11) In all cases, F;’r; is the generic fiber of I'y’y, — I, so these formulas follow
from the fiber dimension theorem and (A.1)-(A.4). (]

Appendix B. Miscellaneous Proofs

B.l. Generic Cameras.

Proposition B.1. If a camera arrangement A = (Ay,... A,,) is ultra minor generic then it is minor
generic, and if A is minor generic, then it has pairwise distinct centers.

Proof. If A is ultra minor generic, then all k x k minors of (A] ‘ ‘ fl;’;) are nonzero for
any k € [4]. In particular, all 4 x 4 minors are nonzero and A is minor generic. If A is minor
generic, then for any 1 <7 < j < m, the 4 X 6 matrix (A;I' ‘ zzl;r) has rank 4. This implies that
A; and A; have district centers. O

Theorem B.2. (1) A camera arrangement A has pairwise distinct centers if and only if it is
equivalent to a minor generic camera arrangement under the group action (2.1).
(2) A camera arrangement A is minor generic if and only if it is equivalent to an ultra minor
generic arrangement under the group action (2.2).
(3) A camera arrangement A has pairwise distinct centers if and only if it is equivalent to an
ultra minor generic camera arrangement under the group action (2.3).

Proof. (1) This statement was proved in [2, Lemma 3.6].
(2) We already saw in Proposition B.l that ultra minor genericity implies minor genericity.

For the other direction, fix a minor generic arrangement (Aj,...A,,). Let 0 € ([i])

and T € ([3,7?}) be subsets indexing the rows and columns of some k X k minor of
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([l]— ‘ e ‘ fl;';b) Using the Cauchy-Binet theorem,
det (((Am) |- | (AnH)T ) o7]) =
_ _ B.1
> det (H[o,v]) -det (AT |-+ | AL) [o,7]) - (51
ve()

The minors det((A] |-+ | A}),) [v,7]) which occur in this sum range over all k x k
minors of the 4 x k matrix (A | --- | A},)[[4],7]. This 4 X k matrix has full rank &
since if it did not, we could add 4 — k additional columns from (f_l]— ‘ e ‘ f_l;l;) to geta
rank-deficient 4 X 4 matrix, contradicting our assumption that ([l]— ‘ e ‘ fl;;) is minor
generic. Thus, det (A] | --- | A}) [v,7] # 0 for some v € ([i]). Hence the expressions

in (B.1) are not zero, and setting (B.1) to 0 we obtain a hypersurface in GL4. Any choice of
H lying outside the union of the finitely many hypersurfaces, obtained by varying over
all k, o, 7 yields an arrangement (A; H, ..., A,, H) satisfying the conclusion.
(3) This statement follows from the first two.
O

B.2. Proof of Proposition 2.2, part 1.

Proof. Let I = (g1, ..., gs). By definition, g1, ..., gs forming a Grobner basis with respect to <
means that

in<(I) = (inc(g1),...,in<(gs))-

First, we verify that this monomial ideal in R[z1,...,x] is radical. To see this, let in-(gs) =
Z;, -+ x; and note that

I
inc(I) = m<m<(91)>--->in<(gs—1)>$ij>-
j=1

Iterating this argument, we obtain in. () as an intersection of prime ideals generated by subsets
of the variables.

Now, to show that T = (g1,...,gs) is radical, suppose that f € v/, so that f™ € I for some
positive integer n. We need to argue that f € I. We have

in<(f)* =in(f") €inc(I) = in<(f) € inc(I),

where the first equality of leading terms uses the fact that R is a domain and the implication
holds since in(I) is radical. Thus there exists fo € I C v/T such that in-(fo) = in<(f). Now
f — fo € VT is an element whose leading term is strictly smaller than in(f). Replacing f with
f — fo and iterating the argument, we obtain fo,..., f; € [ such that f = fo+---+ fie [. O
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B.3. Proof of the recognition criterion: Proposition 2.3.

Proof. A point x € P x --- x P™ may be represented in homogeneous coordinates by a point
% in the affine space C™ 1 x ... x C™*1. Consider the affine cone

X=c{zeCt x...xC** st. 2 e X}.
This is an affine variety whose vanishing ideal is precisely the vanishing ideal of X.

Suppose that Conditions 1-3 are satisfied; we must show that (fi,..., fs) is the vanishing
ideal of X, or equivalently that of X. Condition 3 and the Nullstellensatz [15, Ch. 4, §2] imply
that (f1,..., fs) is the vanishing ideal of the affine variety

Valfir oo fo) = {5 € CPH oo x O st fy(3) =+ = fy(8)).

Moreover, Conditions 2 and 3 together with standard properties of ideal quotients and satura-
tion [15, Ch. 4, §4] imply (f1,..., fs) is the vanishing ideal of

Cl(va(fl7--- 7fs) \Va(mx1 n--- mmxk)) :

Since affine varieties are uniquely determined by their vanishing ideals, it is now enough to
observe the following equality, which holds whenever Condition 1 is satisfied:

X =c(Valfi,---: fs) \ Va(mg, N Nimy,)) .
Conversely, we verify Conditions 1-3 when (fi,..., fs) is the vanishing ideal of X:

(1) X C V(f1,...,fs) since each f; vanishes on all points of X. On the other hand, we have
X = V(g1,...,9s) for certain homogeneous polynomials g1, ..., gs, all of which must
be contained in (fi,..., fs). If fi1,..., fs vanish at a point, so must g1, ..., gs, and thus

V(fl»---afs) c X
(2) Let f € (f1,..., fs) : (mx, N---Nmy, ). To show f € (f1,..., fs), it is enough to show
that each of the homogeneous components of f vanish on X, so suppose further that f
is homogeneous. If X is empty, then f vanishing on X holds vacuously. Otherwise, for
any point in X there exists some monomial of the form
m(T) = T14, + Ty, € My, N Nmy,

which does not vanish at that point. Since m(z)" f is in the vanishing ideal for some
n > 1, we see that that f must vanish at this point.
(3) If f*(x) =0 for some n > 1 and all z € X, then f(x) =0 for all z € X.

Appendix C. Generators of G ;m.1

A,q,p
The Grébner basis GG, ;m.1 of Proposition 5.2 contains elements in degree 3,4,5,6,7,8,9.
A,q,p

Here, for completeness, we gfve explicit formulas for all of them.
Degree 3: 3m elements—for 1 < i <m, 1 <i; <ip <3, det < (Aiq pi) [{i1,d2}, ])

Degree 4: m elements—for 1 < i < m, det (A,-[:, 1] Aiq pi) )
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Degree 5: 9 (73) elements—for 1 <i<j<m,1<i; <ip <3, 1< 71 <jg <3,
det (il 1] pi) in i}, i]) - det ((Aja py) [, o} )~
det (A1) py) [rdoh ) et (A pi) i} o).

Degree 6: 6 (ZL) elements—for 1 < k1 < k9 < 3,1 < 14,5 <m, 1 #j,
3

St (1 ). (i (4157) -t (413

=1
+det (A;[:,1]  Aj[5,2] pj) - det < (Aiq  pi) [{k1, K2}, ])

Degree 7: (ZL) elements of the form g4 times a 2-focal, plus an additional 27(?) elements—for
1<i<yi<k<m, 1< <in<3,1<j1 <j2<3, 1<k <k <3,

dot ( (Aq pi) Hinsiah, ) <pj[jﬂpk[k1]-det (B3~ mlindial- e (2523550 -

piljalpi[ki] - det <Ak[k'72, L 22]]> + pjlialprka] - det (ﬁﬁﬁll :: 22]]> )—
A

det ( (qu pj) {1, g2} ]) : < i[i1]pk[k1] - det

det ( (Akq  pr) [{k1, k2}, 3]) : < i[i1]p;g1] - det <ﬁl[i2’ 11 :: 22]] — pili1]p;[2] - det <ﬁl[z27 11 :: 22]]> -

pilia]p;[j1] - det <Aj [‘;2, 1 :1 22]

Degrees 8 & 9: ¢4 times 27(?) 3-focals and g4 times 81(2’;) 4-focals, respectively.
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