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Abstract

We revisit certain problems of pose estimation based on

3D–2D correspondences between features which may be

points or lines. Specifically, we address the two previously-

studied minimal problems of estimating camera extrinsics

from p → {1, 2} point–point correspondences and l = 3↑p
line–line correspondences. To the best of our knowledge, all

of the previously-known practical solutions to these prob-

lems required computing the roots of degree ↓ 4 (univari-

ate) polynomials when p = 2, or degree ↓ 8 polynomi-

als when p = 1. We describe and implement two elemen-

tary solutions which reduce the degrees of the needed poly-

nomials from 4 to 2 and from 8 to 4, respectively. We

show experimentally that the resulting solvers are numer-

ically stable and fast: when compared to the previous state-

of-the art, we may obtain nearly an order of magnitude

speedup. The code is available at https://github.
com/petrhruby97/efficient_absolute

1. Introduction
1.1. Motivation
The problem of registering images to a known 3D coordi-
nate system plays a crucial role in applications such as vi-
sual localization [26], autonomous driving [12], and aug-
mented reality [28], as well as in general paradigms like
SLAM [15] and SfM [27]. Robust estimators based on
RANSAC [11], or one of its many refinements [3, 24], are
among the most successful tools for solving these prob-
lems. Such an estimator traditionally relies on a minimal
P3P solver [8, 13, 16, 23] to efficiently hypothesize poses
from putative matches between 3D and 2D points.

The literature on P3P and other purely point-based meth-
ods for absolute pose estimation is vast. Absolute pose esti-
mation from non-point features such as lines [2, 5, 7, 25,
29, 30], point-line incidences [10], and affine correspon-
dences [28], has received comparatively less attention, but
remains an active research area. In particular, solutions re-
lying on both points and lines are of increasing importance,
due to the prevalence of both types of feature in man-made
environments, as well as several recent advances in the com-
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Figure 1. The P2P1L (Top) and P1P2L (Bottom) problems.

ponents of 3D reconstruction systems responsible for line
detection [21], matching [22], and bundle adjustment [19].

1.2. Contribution

In this paper, we revisit the two minimal problems of ab-
solute pose estimation that combine both points and lines:
the Perspective-2-Point-1-Line Problem (or P2P1L, Sec-
tion 2.1), and the Perspective-1-Point-2-Line Problem
(P1P2L, Section 2.2.) See Figure 1 for illustrations.

In contrast to the purely point or line based minimal
problems P3P and P3L, we observe that the existing solu-
tions for the “mixed cases” considered here are suboptimal
from both a theoretical and practical point of view. Con-
sequently, we develop novel solutions to both problems,
which optimally exploit their underlying algebraic struc-
ture, and exhibit comparable or better performance than the
state of the art on simulated and real data—see Section 3.
On the other hand, these solvers are simple to implement,
and no knowledge of mathematics beyond elementary alge-
bra is needed to understand them.

To provide further context for our work, we include the
following quotation from [25]: Although we do not theo-

retically prove that our solutions are of the lowest possible

degrees, we believe so because of the following argument.

The best existing solutions for pose estimation using three
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points and three lines use 4th and 8th degree solutions re-

spectively. Since mixed cases are in the middle, our solu-

tions for (2 points, 1 line) and (1 point, 2 lines) cases use

4th and 8th degree solutions respectively. Recently, it was

shown using Galois theory that the solutions that use the

lowest possible degrees are the optimal ones [[20]].

Contrary to the informal reasoning presented above, we
claim that the existing solutions to the mixed point–line
cases are not optimal. As far as we know, the only support
for this claim appearing in the literature prior to our work
occurs in [9, §3]. This previous work showed, on the ba-
sis of Galois group computation, that the P2P1L and P1P2L
problems decompose into simpler subproblems. However,
this theoretical observation was not accompanied by a prac-
tical solution method for either problem. In this paper, we
rectify the situation by devising practical solvers for both
problems that incorporate these recent insights.

To complete our discussion of what makes a solution al-

gebraically optimal, we recall one proposal of such a no-
tion from work of Nistér et al. [20]. In this work, a re-
stricted class of algorithms Pn is considered for each natu-
ral number n ↓ 1: an algorithm in Pn consists of a finite
sequence of steps, each of which extracts the roots of some
polynomial equation p(x) = 0, with either p(x) = xm ↑ a
(where a → Q and deg(p) = m can be arbitrary), or with
deg(p) ↔ n and the coefficients of p belonging to a field
containing Q and any previously-computed roots. In this
setting, a solution is optimal if it leads to solving a poly-
nomial system of the lowest possible degree. Our proposed
solutions immediately establish that P2P1L is P2-solvable
and P1P2L is P4-solvable. It should be of little surprise that
P2P1L is not P1-solvable; therefore, we may say that our
solution to P2P1L is algebraically optimal. On the other
hand, the problem P1P2L is also P3-solvable. This is be-
cause any quartic equation can be solved by the standard
method which reduces the problem to computing the roots
of the associated resolvent cubic. Thus, our solution, which
computes the roots of a quartic with this same method, is
also algebraically optimal in the sense of [20]. The same
observation, of course, holds for the classical quartic-based
methods for solving P3P. Alternative P3P solvers that di-
rectly employ a cubic [8, 23], despite being superior in prac-
tical terms, are not distinguished by the complexity classes
Pn. Table 1 provides a summary of the algebraic complex-
ities, based on the Galois groups computed in [9, §3].

problem P3P P2P1L P1P2L P3L
class P3 P2 P3 P8

Table 1. For each minimal absolute pose problem with points and
line features, the class of polynomial root finding algorithms Pn

that solve the problem with n as small as possible [20, §2.1].

1.3. Related work
The first solutions to P2P1L and P1P2L were presented by
Ramalingam et al. [25], reducing the problems to comput-
ing the roots of polynomials of degree 4 and 8 via careful
choices of special reference frames in the world and image.
Although we obtain polynomials of lower degree, these spe-
cial reference frames are also an ingredient in our approach.

In work subsequent to [25], it was observed that both of
these problems could be solved using the E3Q3 solver [17].
This is a highly optimized method for computing the points
where three quadric surfaces in R3 intersect. Typically,
there are 23 = 8 such points, by Bézout’s theorem; how-
ever, EQ3Q also handles degenerate cases where the num-
ber of solutions may drop. In the follow-up work [30], a sta-
bilization scheme for E3Q3 was applied to these problems,
and experimentally shown to be more accurate than the
solvers in [25]. Efficient solvers for both problems based
on this stabilized E3Q3 are implemented in PoseLib [18].

The idea of using Galois groups to study minimal prob-
lems originates from [20]. The main takeaway from this pa-
per is that a problem with n solutions whose Galois group
is the full symmetric group Sn cannot be solved by an al-
gorithm in Pn→1. In the other direction, the main takeaway
from [9] is that if the Galois group is contained in the wreath
product Sn1 ↗ Sn2 , where n = n1n2, then the problem can
be solved with an algorithm in Pmax(n1,n2). A recent work
using such an insight to guide the more efficient solution of
a relative pose estimation problem may be found in [14].

2. Minimal solvers
In this section, we introduce our algebraically optimal so-
lutions to the P2P1L and P1P2L problems. These prob-
lems are depicted in Figure 1. As revealed by the Galois
group computed in [9, §3], the problem P2P1L can be re-
duced to computing the roots of a quadratic equation, and
the problem P1P2L can be reduced to a quartic equation.
In Sections 2.1 and 2.2, we turn these insights into explicit
solutions to the P2P1L and P12PL problems, respectively.
These solutions work generically—they are valid outside of
a measure-zero subset of the space of input point-point/line-
line correspondences. In Section 2.3, we describe a method
that stabilizes the P1P2L solver of Section 2.2 in a common
but non-generic case. Finally, Section 2.4 for a discussion
when the point-line configuration is coplanar.

2.1. P2P1L
Here, we provide the algebraically optimal solution to the
P2P1L problem. We mostly follow the notation of [25].

Problem Statement: Consider P 0
1 , P

0
2 → R3, two 3D

points, and their 2D projections under an unknown cali-
brated camera. Consider also a 3D line spanned by points
L0
3, L

0
4 → R3 and its projection. The goal is to recover the
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Figure 2. Special reference frame for P2P1L. Camera frame C0

is transformed to C1, world frame W0 to W1. See text for details.

unknown camera matrix, whose center we denote by C0.
Our first step is to rigidly transform the input into the

special reference frame introduced in [25]. Transforming to
this special frame simplifies the equations and helps to re-
veal the algebraically optimal solution. Figure 2 illustrates
the input reference frame C0 / W0 (top), and the special
frame C1 / W1 (bottom), which are related as follows:
• In the world frame W1, the 3D points take the form

P1 =
(
0 0 0

)T
, P2 =

(
X2 0 0

)T
, (1)

and the 3D line is spanned by two points of the form

L3 =
(
X3 Y3 0

)T
, L4 =

(
X4 Y4 Z4

)T
. (2)

• To find the transformation W0 ↘ W1, we set

P1 =
(
0 0 0

)T
, P2 =

(
≃P 0

1 ↑ P 2
2 ≃ 0 0

)T
,

L3 =
(
X3 Y3 0

)T
, w/ X3 = (L0

3↑P1)
T P2 ↑ P1

≃P2 ↑ P1≃
,

Y3 =
∥∥∥L0

3 ↑ P1 ↑X3 ·
P2 ↑ P1

≃P2 ↑ P1≃

∥∥∥.

We transform the rays
↑↑↑↘
P 0
1P

0
2 and

↑↑↑↘
P 0
1L

0
3 to

↑↑↑↘
P1P2 and

↑↑↑↘
P1L3, respectively, via suitable translation and rotation.

• In the camera frame, the camera center is fixed at

C =
(
0 0 ↑1

)T
, (3)

the 2D points are projections of points of the form

D1 =
(
a1 b1 0

)T
, D2 =

(
a2 b2 0

)T
, (4)

and the 2D line is the projection of D3D4, where

D3 =
(
0 0 0

)T
, D4 =

(
1 0 0

)T
. (5)

• To find the transformation C0 ↘ C1, let D0
3 and D0

4 be the
homogeneous coordinates of two distinct points along the
given line. Independently of C0, we may rigidly trans-
form the rays d3 :=

↑↑↑↘
C0D0

3 , and d4 :=
↑↑↑↘
C0D0

3 to
↑↑↘
CD3 and

↑↑↘
CD4, by suitable rotation and translation.

Let us now write R = (Rij)1↑i,j↑3, T = (Ti)1↑i↑3 for the
unknown camera pose in this special reference frame. Our
projection constraints can then be written as

(Di ↑ C)⇐ (RPi + T ) = 0, i → {1, 2}, (6)

(D3 ⇐D4)
T (RLi + T ) = 0, i → {3, 4}. (7)

This gives a system of equations in 12 unknowns. How-
ever, in what follows, we consider a system of equations in
a smaller set of unknowns, namely

xT =
(
R11 R21 R31 R22 R23 T1 T2 T3

)
.
(8)

The entries of x are constrained by

R2
11 +R2

21 +R2
31 = R2

21 +R2
22 +R2

23 = 1. (9)

Thus, the entries of x specify a translation vector and a
partially-filled rotation matrix, which can be uniquely com-
pleted to a rotation matrix using the formulae




R12

R13

R32

R33



 = (R2
22 +R2

23)
→1 ·





↑R11R21R22 +R23R31

↑R11R21R23 ↑R22R31

↑R21R22R31 ↑R11R23

↑R21R23R31 +R11R22



 ,

(10)

subject to the genericity condition R2
22+R2

23 ⇒= 0, ie. when
R is not a rotation in the xz-plane.1 Hence, we focus on
recovering the entries of x. From 2 out of the 3 redundant
constraints from (6) together with (7), we obtain linear con-
straints on x ([25, eq. (4)–(5)]),

Ax = b, where

A =





0 0 0 0 0 →b1 a1 0
0 0 0 0 0 0 →1 b1

→b2X2 a2X2 0 0 0 →b2 a2 0
0 →X2 b2X2 0 0 0 →1 b2
0 X3 0 Y3 0 0 1 0
0 X4 0 Y4 Z4 0 1 0



,

bT =
(
0 ↑b1 0 ↑b2 0 0

)
. (11)

We may use these linear equations to solve for the transla-
tion T in terms of R and the problem data as follows:

T1 = a1B, T2 = b1B, T3 = ↑1 +B, where

B =
X2(a2R21 ↑ b2R11)

b2a1 ↑ b1a2
. (12)

1If R is known to be a plane rotation, two generic point-point corre-
spondences suffice to recover R and T.

21318



(1) Transform data in world and camera frames to the spe-
cial reference frames satisfying (1), (2), (3), (4), (5).

(2) Compute up to 2 solutions in v to the quadratic (16).
(3) For each root v in step (2), recover a corresponding value

of u using either of the linear expressions in (46).
(4) Recover up to 4 solutions in {R11, R21} using (15).
(5) Recover R and T using (13), (12), (10).
(6) Reverse the transformation applied in step (1).

Figure 3. Generic P2P1L solver. See Sec. 2.1 for details.

Moreover, from (11) we may use R11 and R21, to express
the remaining entries of R as

R31 =
(a1 ↑ a2)R21 + (b2 ↑ b1)R11)

b2a1 ↑ b1a2
,

R22 =
b1b2X2R11 + (b1a2X2 ↑ b1a2X2 ↑ b2a1X3)R21

Y3(b2a1 ↑ b1a2)
,

R23 =
b1b2X2(Y3 ↑ Y4)R11

Y3Z4(b2a1 ↑ b1a2)

+

(
X3Y4 ↑X4Y3

Y3Z4
+

b2a1X3Y4 ↑ b1a2X2Y3

Y3Z4(b2a1 ↑ b1a2)

)
R21.

(13)

Substituting (13) into (9), we obtain two bivariate quadratic
constraints in R11 and R21. In matrix form,

(
c1 c2 c3
d1 d2 d3

)
·




R2

11

R11R21

R2
21



 =

(
1
1

)
, (14)

where the coefficients c1, c2, c3, d1, d2, d3 are rational func-
tions of the problem data. Applying the change of variables

u = R2
11, v = R21/R11, (15)

and subtracting the two equations in (14), we obtain

(c1 ↑ d1)u+ (c2 ↑ d2)uv + (c3 ↑ d3)uv
2 = 0.

Assuming u ⇒= 0, we therefore have the univariate quadratic
equation in v

(c1 ↑ d1) + (c2 ↑ d2)v + (c3 ↑ d3)v
2 = 0. (16)

If v is one of the roots of (16), we may recover a corre-
sponding value for u using one of the equations in (14), eg.

u = (c1+c2v+c3v
2)→1, or u = (d1+d2v+d3v

2)→1.
(17)

To summarize, we provide the outline of steps for solv-
ing the P2P1L absolute pose problem in Figure 3.

Algebraically, the nontrivial steps in Figure 3 are the sec-
ond and fourth, which require solving a univariate quadratic
equation and computing square roots, respectively.
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Figure 4. Special reference frame for P1P2L. Camera frame C0

is transformed to C1, world frame W0 to W1. See text for details.

2.2. P1P2L
Here, we provide the algebraically optimal solution to the
P1P2L problem. We mostly follow the notation of [25].

Problem Statement: Let us consider a 3D point P 0
1 →

R3, and its homogeneous 2D projection D1 → R3 under
an unknown calibrated camera matrix. Let us also consider
two 3D lines—the first spanned by points L1, L2 → R3, and
the second one is spanned by L3, L4 → R3—and both of
their corresponding projections. Our task is to recover the
camera matrix from the given point-point correspondence
and line-line correspondences.

Much like the P2P1L solver, our P1P2L solver begins by
transforming the input data into a special reference frame,
as illustrated in Figure 4. Specifically,
• In the world frame, the 3D point takes the form

P1 =
(
0 0 0

)T
. (18)

The first line is spanned by points

L1 =
(
X1 Y1 Z1

)T
, L2 =

(
X2 Y2 Z2

)T
,

(19)
and the second line is spanned by points

L3 =
(
X3 Y3 Z3

)T
, L4 =

(
X4 Y4 Z4

)T
.

(20)
• For W0 ↘ W1, we simply translate P 0

1 to P1.
• The world frame may still be rotated freely. We may use

the strategy of Section 2.3, which makes the solver sta-
ble for a larger class of non-coplanar scenes. However, if
P1, L1L2, and L3L4 are coplanar, no rotation is recom-
mended.

• In the camera frame, the camera center is fixed at

C =
(
0 0 ↑1

)T
. (21)
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The image point is the projection of a point of the form

D1 =
(
a1 b1 0

)T
, (22)

the first line in the image is the projection of a line
spanned by points of the form

D2 =
(
a2 0 0

)T
, D3 =

(
0 0 0

)T
, (23)

and the second line in the image is the projection of a line
spanned by points of the form

D4 =
(
a4 b4 0

)T
, D5 =

(
a5 b5 0

)T
. (24)

• The homogeneous coordinates of the lines in the camera
frame are n1 = d2 ⇐ d3, n2 = d4 ⇐ d5, where the rays
d2 ⇒= d3, d4 ⇒= d5 to meet the lines in distinct points.

• To find the transformation C0 ↘ C1, we define

d12 = n1 ⇐ n2, D0
2 = C0 +

d2
dT2 d12

, D0
3 = C0 + d3,

D2 =
(
tan(cos→1(dT2 d12)) 0 0

)T
, D3 =

(
0 0 0

)T
,

and, independently of C0, rigidly transform the rays
d2 :=

↑↑↑↘
C0D0

2 and d3 :=
↑↑↑↘
C0D0

3 to
↑↑↑↘
C0D0

2 and
↑↑↘
CD3.

In the special reference frame, we now write the pose as
(Rij)1↑i,j↑3, (Ti)1↑i↑3. The projection constraints can be
formulated as:

(D1 ↑ C)⇐ (RP1 + T ) = 0, (25)

(D2 ⇐D3)
T (RLi + T ) = 0, i → {1, 2}, (26)

(D4 ⇐D5)
T (RLi + T ) = 0, i → {3, 4}. (27)

Analagously to (11), we have a system of linear equations
Ax = b, obtained by picking 2 out of the 3 redundant
constraints from (25) together with (26), (27) , where now
(cf. [25, eq. 7–8])

A =





0 0 0 0 0 0 →b1 a1 0
0 0 0 0 0 0 0 →1 b1
0 0 X1 Y1 Y1 Z1 0 1 0
0 0 X2 Y2 Y2 Z2 0 1 0

→b4X3 →b4Y3 a4X3 a4Y3 a4Y3 a4Z3 →b4 a4 0
→b4X4 →b4Z4 a4X4 a4Y4 a4Y4 a4Z4 →b4 a4 0



,

x =
(
R11 R12 R13 R21 R22 R23 T1 T2 T3

)T
,

b =
(
0 ↑b1 0 0 0 0

)T
.

Solving for translation as in (12), we have

T1 =
a1
b1

(↑R21X1 ↑R22Y1 ↑R23Z1),

T2 = ↑R21X1 ↑R22Y1 ↑R23Z1,

T3 = ↑1 +
1

b1
(↑R21X1 ↑R22Y1 ↑R23Z1).

(28)

Furthermore, we express R23 from the fourth equation as

R23 =
1

Z1 ↑ Z2
(R21(X2 ↑X1) +R22(Y2 ↑ Y1)), (29)

and we solve for R11, R12 using the last two equations.
Now, we can express R23, T2, T1, R12, R11 as linear

combinations of R13, R21, R22 in the following form:

R23 = c1R21 + c2R22,

T2 = c3R21 + c4R22,

T1 = c5R21 + c6R22,

R12 = c7R13 + c8R21 + c9R22,

R11 = c10R13 + c11R21 + c12R22.

(30)

The non-linear internal constraints imposed on the ele-
ments of R have the form:

R2
11 +R2

12 +R2
13 = 1,

R2
21 +R2

22 +R2
23 = 1,

R11R21 +R12R22 +R13R23 = 0.

(31)

We substitute (30) into (31), obtaining equations of the form

(
d1 d2 d3 d4 d5 d6

)
ω(R) = 1, (32)

(
0 0 0 d7 d8 d9

)
ω(R) = 1, (33)

(
0 d10 d11 d12 d13 d14

)
ω(R) = 0, (34)

where

ω(R) =
(
R2

13 R13R21 R13R22 R2
21R21R22 R2

22

)T
.

(35)
We express R13 from (34) as

R13 = ↑d12R2
21 + d13R21R22 + d14R2

22

d10R21 + d11R22
. (36)

Substituting (36) into (32), we obtain

d1
(d12R2

21 + d13R21R22 + d14R2
22)

2

(d10R21 + d11R22)2
↑

d2
d12R3

21 + d13R2
21R22 + d14R21R2

22

d10R21 + d11R22
↑

d3
d12R2

21R22 + d13R21R2
22 + d14R3

22

d10R21 + d11R22
+

d4R
2
21 + d5R21R22 + d6R

2
22 = 1. (37)

Subtracting (33) from (37),

d1
(d12R2

21 + d13R21R22 + d14R2
22)

2

(d10R21 + d11R22)2
↑

d2
d12R3

21 + d13R2
21R22 + d14R21R2

22

d10R21 + d11R22
↑

d3
d12R2

21R22 + d13R21R2
22 + d14R3

22

d10R21 + d11R22
+

(d4 ↑ d7)R
2
21 + (d5 ↑ d8)R21R22 + (d6 ↑ d9)R

2
22 = 0.

(38)
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(1) Transform data in world and camera frames to
the special reference frames satisfying (18), (19),
(20), (21), (22), (23), (24).

(2) Compute up to 4 solutions in v to the quartic (41).
(3) For each root v in step (2), recover 2 solutions in

{R21, R22} using R21 = R22v and (33).
(4) Recover remaining coordinates for each solution us-

ing (34),(30).
(5) Reverse the transformation applied in step (1).

Figure 5. Generic P1P2L solver. See Sec. 2.2 for details.
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Figure 6. Stabilization of P1P2L solver. The frame is rotated to
align the line L1L2 with the z-axis. See Sec. 2.3 for details.

We then clear denominators in (38), multiplying by
(d10R21 + d11R22)2 to get a polynomial equation

d1(d12R
2
21 + d13R21R22 + d14R

2
22)

2 ↑
((

d2(d12R
3
21 + d13R

2
21R22 + d14R21R

2
22)↑

d3(d12R
2
21R22 + d13R21R

2
22 + d14R

3
22)

)
·

(d10R21 + d11R22) + ((d4 ↑ d7)R
2
21+

(d5 ↑ d8)R21R22 + (d6 ↑ d9)R
2
22)

)
·

(d10R21 + d11R22) = 0.

(39)

Upon expanding equation (39), we find that it takes the form

ε1R
4
21+ε2R

3
21R22+ε3R

2
21R

2
22+ε4R21R

3
22+ε52R

4
22 = 0

(40)
Similarly to (16), we divide (40) by R4

22 and define a new
variable v = R21

R22
, and thereby deduce the univariate quartic

ε1v
4 + ε2v

3 + ε3v
2 + ε4v + ε5 = 0. (41)

After solving for v, we can solve for R21, R22 using (33),
and for the other equations using (34), and (30).

To summarize, we provide the outline of steps for solv-
ing the P1P2L absolute pose problem in Figure 5. Alge-
braically, the nontrivial steps in Figure 5 are second and
third, which require solving a univariate quartic equation
and computing square roots, respectively.

Generic Mean R Med. R Mean T Med. T
P1P2L no fix 0.00050 1.0e-14 0.00065 1.8e-13

P1P2L fix 9.0e-09 4.2e-15 3.4e-07 7.0e-14
P2P1L no fix 7.1e-11 1.4e-15 1.2e-09 2.1e-14

P2P1L fix 3.2e-09 2.6e-15 7.4e-08 4.3e-14
Coplanar Mean R Med. R Mean T Med. T

P1P2L no fix 0.00022 9.6e-15 0.00030 1.75e-13
P1P2L fix 1.1 0.79 1.2 0.96

P2P1L no fix 2.4 3.14 2.2 3.14
P2P1L fix 1.2e-12 4.0e-15 7.9e-11 6.3e-14

Table 2. The mean and median of the rot.(R) and tran.(T) errors
over 1e5 noiseless generic (top) and coplanar (bottom) samples.
In radians. The best results are marked bold.

2.3. Stabilizing the P1P2L Solver
In this section, we outline a method to increase the stability
of the P1P2L solver (Sec. 2.2).

Our proposed P1P2L solution faces a degeneracy when
Z1 ↑ Z2 = 0, since this leads to a division by zero in equa-
tion (29). Furthermore, our observations indicate that the
result of the solver is unstable if the value of Z1 ↑ Z2 is
close to zero. Note, that this instability is specific to our
solver and not inherent to the P1P2L problem.

This degeneracy may be interpreted geometrically as fol-
lows: the values of Z1 and Z2 are the last coordinates of
the points L1, L2, which span the first 3D line. Therefore,
the vector L1 ↑ L2 represents the direction of the line, and
Z1 ↑ Z2 represents the last coordinate of this direction.

Since the special reference frame used in Section 2.2 is
independent of the rotation of the world frame, we can re-
move the source of instability by rotating the world frame
such that the first line L1L2 aligns with the z-axis. See Fig-
ure 6 for an illustration.

2.4. Resolving the coplanar case
In this section, we discuss the performance of the P2P1L
(Sec. 2.1) and P1P2L (Sec. 2.2) solvers in the case, where
all 3D points and 3D lines are coplanar.
P2P1L. The P2P1L solver presented in Sec. 2.1 (P2P1L no

fix) is degenerate in coplanar situations, since then Z4 = 0
(2), causing a division by zero issue in equation (11). To re-
solve this issue, we propose a modified solver (P2P1L fix),
which handles the coplanar case. See SM A for a descrip-
tion of this modified solver.
P1P2L. The original version of the P1P2L solver (P1P2L

no fix, Sec. 2.2) is able to handle the coplanar case. How-
ever, the stabilized P1P2L solver (P1P2L fix, Sec. 2.3) fails
due to a degeneracy for coplanar input.

We conducted a synthetic experiment to evaluate the im-
pact of the proposed stablization scheme. In this experi-
ment, we used the same setting as in Section 3.1. The re-
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Figure 7. Stability test. Histogram of rotation (l.), and translation
(r.) errors computed over 1e5 noiseless samples.

Method Mean Med. Min Max
P2P1L Ours 313.8 324.9 230.8 3061.0
P2P1L 3Q3 1860.6 1909.9 1439.1 10102.1

P2P1L R.+S 8897.5 9491.2 5805.1 49984.1
P2P1L R.+L 4720.8 5239.5 2763.3 15362.6
P1P2L Ours 504.0 521.0 364.0 4554.4
P1P2L 3Q3 1967.1 2008.2 1483.9 12931.1

Table 3. Runtime The mean, median and max values of the run-
time. In nanoseconds. Best values for each problem are bold.

sults, presented in Table 2 demonstrate that solvers P2P1L

no fix and P1P2L fix achieve superior numerical stability in
the generic case, while solvers P2P1L fix and P1P2L no fix

handle the coplanar case. Since it is simple to detect the
coplanar case, we recommend to use solvers P2P1L fix and
P1P2L no fix in the coplanar case and solvers P2P1L no fix

and P1P2L fix in the generic case.

3. Experiments
In this section, we experimentally compare the proposed
solvers with the state-of-the-art methods, specifically 3Q3
[17] and Ramalingam [25]. For 3Q3, we employ the pub-
licly available implementation from Poselib. As the im-
plementation of Ramalingam is not publicly accessible, we
have created our own implementation. Since it is not explic-
itly specified which method should be used for solving the
linear equations, we compare with two variants: SVD and
LU decomposition. All the solvers have been implemented
in C++, and the experiments are conducted on a desktop
computer with an AMD Ryzen 9 CPU with 3.9 GHz.

In Sec. 3.1, we provide an analysis of the numerical sta-
bility and runtime performance of the solvers on synthetic
data. Subsequently, in Section 3.2, we present an evaluation
of the solvers within the RANSAC scheme.

3.1. Synthetic experiments
In this section, we present an analysis of the numerical sta-
bility and runtime performance of the minimal solvers on
synthetic data.

We generate instances of each minimal problem (either
P2P1L or P1P2L), according to the following procedure:
• Rotation Matrix (R): An axis v → R3 is sampled from

the uniform distribution on the unit sphere, and an angle
ε is sampled from the normal distribution N (0, 1). The
rotation matrix R is then constructed using the angle-axis
formula, R = I + sin(ε)[v]↓ + (1↑ cos(ε))[v]2↓.

• Translation (T ): The camera center C is sampled uni-
formly at random from the unit sphere. The translation
vector T is computed as T = ↑RC.

• Point correspondence: A 3D point Xi is sampled from
the trivariate normal distribution with mean vector µ =
[0, 0, 5]T and standard deviation ϑ = 1 in each compo-
nent. The corresponding 2D point Di is obtained by pro-
jecting Xi onto a pinhole camera with the pose (R, T ).

• Line correspondence: Two 3D points, Li and Li+1, are
sampled as described in the previous bullet-point. These
points define the 3D line L. Two 2D points, Di and Di+1,
are obtained by sampling two points on the 3D line L and
projecting them onto the camera with the pose (R, T ).
In the case of P2P1L, two points and one line are sam-

pled, while in the case of P1P2L, one point and two lines
are sampled. Let (Rest, Test) be the pose obtained by the
minimal solver. We measure the rotation error as the an-
gle ϖR = arccos((1 + trace(RT

estR))/2). We calculate the
translation error ϖT as ϖT = |Test→T |

|T | . The histograms of
rotation errors (ϖR) and translation errors (ϖT ) for all con-
sidered solvers are depicted in Figure 7. Furthermore, sum-
mary statistics including the median, mean, and maximum
errors are provided in Table 4. The results indicate that
all minimal solvers are stable. Our algebraically optimal
solvers demonstrate superior stability compared to the pre-
vious solvers.

The runtime evaluation for all considered solvers is
shown in Table. 3. Our P2P1L solver requires 313.8ns on
average, which is about 6x faster than the 3Q3 solver [17].
Similarly, our P1P2L solver requires on average 504.0ns,
which is about 4x faster than the 3Q3 solver. These results
show a significant speedup achieved by our solvers in com-
parison to the previous methods.

3.2. Experiments in RANSAC
Here, we provide an analysis of the minimal solvers within
the RANSAC scheme [4], using the Oxford Multi-view
Data [1]. This dataset includes a variety of indoor and
outdoor scenes, some of which contain both point and line
matches. An example of images from this dataset is illus-
trated in Figure 8.
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Method Mean R Median R Max R Mean T Median T Max T
P2P1L Ours 5.3e-12 1.4e-15 1.2e-07 3.7e-10 2.1e-14 2.2e-05
P2P1L 3Q3 2.8e-05 6.5e-15 2.7 2.0e-05 1.2e-13 1.04

P2P1L Ramalingam (SVD) 4.9e-09 1.5e-14 0.00041 1.6e-07 2.7e-13 0.0099
P2P1L Ramalingam (LU) 4.7e-07 1.3e-14 0.040 2.3e-05 2.4e-13 0.10

PP1P2L Ours (fix 2) 1.2e-07 4.4e-15 0.010 2.0e-06 7.1e-14 0.13
P1P2L 3Q3 3.3e-05 7.2e-15 2.60 3.4e-05 1.5e-13 1.01

Table 4. The mean, median and max values of the rot.(R) and tran.(T) errors over 1e5 noiseless samples. The best results are marked bold.

P2P1L P1P2L
Dataset OUR 3Q3 Ram. SVD Ram. LU OUR 3Q3

Model House 7.72 (0.85x) 9.09 (1x) 20.69 (2.28x) 17.30 (1.90x) 8.06 (0.85x) 9.52 (1x)
Corridor 11.32 (0.91x) 12.46 (1x) 26.56 (2.13x) 23.54 (1.89x) 13.3 (0.90x) 14.76 (1x)
Merton I 35.93 (0.98x) 36.83 (1x) 77.96 (2.12x) 74.87 (2.03x) 28.85 (0.64x) 45.41 (1x)

Merton II 33.30 (0.97x) 34.27 (1x) 74.37 (2.17x) 71.35 (2.08x) 26.7 (0.67x) 39.64 (1x)
Merton III 24.04 (0.96x) 25.07 (1x) 52.07 (2.08x) 48.97 (1.95x) 10.91 (0.37x) 29.67 (1x)

Library 32.42 (0.97x) 33.31 (1x) 69.29 (2.08x) 66.23 (1.99x) 10.04 (0.28x) 35.98 (1x)
Wadham 39.60 (0.98x) 40.51 (1x) 86.10 (2.13x) 83.00 (2.05x) 22.96 (0.45x) 50.79 (1x)

Avg. Speed-up 0.94x 1x 2.14x 1.99x 0.59x 1x

Table 5. RANSAC timing, on Oxford Multi-view dataset [1], in milliseconds. Speed-up compared to the 3Q3 in the bracket.

Figure 8. Example images of University Library (top) and Merton
College III (bottom), from [1].

We utilize the Poselib [18] implementation of LO-
RANSAC [6]. In this implementation, local optimization
is applied both when the new solution surpasses the cur-
rently best one and at the end of the entire procedure. The
RANSAC parameters used include a maximum number of
iterations set to 100000, a minimum number of iterations
set to 1000, a success probability of 0.9999, and an inlier
threshold of 1 pixel. To ensure a fair comparison between
the solvers, we use a fixed random seed.

Since all the solvers are stable, we do not expect any sig-
nificant difference in the estimated pose when using differ-
ent solvers. Therefore, our primary focus is on comparing
the runtime of the RANSAC scheme. The runtime com-
parison is presented in Table 5, which displays the average
runtime for each scene in the Oxford multiview dataset and

for each considered solver. Additionally, the table includes
a speedup value compared to the 3Q3 solver of [18]. The
results show that our solvers consistently outperform the
3Q3 [17] and Ramalingam [25] solvers in terms of runtime.
However, there is a notable variation in the speed-up among
the scenes, which ranges from 0.85 to 0.98 for the P2P1L
problem and from 0.28 to 0.90 for the P1P2L solver. This
variation can be attributed to the fact that different scenes
require varying proportions of time spent by RANSAC on
scoring hypothesized models and local optimization. The
more time is dedicated to these tasks, the less significant
speedup can be reached. In cases with fewer matches or a
lower inlier ratio, more substantial speedups are possible.

The final pose estimation errors in RANSAC are shown
in the Supplementary. As expected, the errors are the same
for all solvers. This demonstrates that we can achieve im-
proved runtimes without sacrificing any accuracy.

4. Conclusion
In revisiting absolute pose from mixed point-line correso-
pondences, we have developed new solvers, which have the
merit of being both algebraically optimal and elementary in
nature. Moreover, our solvers outperform the state-of-the-
art in terms of both runtime and numerical stability. Despite
the simplicity of many minimal absolute pose problems, our
findings suggest that their continued investigation remains
worthwhile. The code is available at https://github.
com/petrhruby97/efficient_absolute
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