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Abstract

We introduce a new family of minimal problems for re-
construction from multiple views. Our primary focus is a
novel approach to autocalibration, a long-standing prob-
lem in computer vision. Traditional approaches to this
problem, such as those based on Kruppa’s equations or
the modulus constraint, rely explicitly on the knowledge of
multiple fundamental matrices or a projective reconstruc-
tion. In contrast, we consider a novel formulation involy-
ing constraints on image points, the unknown depths of
3D points, and a partially specified calibration matrix K.
For 2 and 3 views, we present a comprehensive taxonomy
of minimal autocalibration problems obtained by relaxing
some of these constraints. These problems are organized
into classes according to the number of views and any as-
sumed prior knowledge of K. Within each class, we deter-
mine problems with the fewest—or a relatively small num-
ber of—solutions. From this zoo of problems, we devise
three practical solvers. Experiments with synthetic and real
data and interfacing our solvers with COLMAP demon-
strate that we achieve superior accuracy compared to state-
of-the-art calibration methods. The code is available at
github.com/andreadalcin/MinimalPerspectiveAutocalibration.

1. Introduction

Autocalibration is the fundamental process of determin-
ing intrinsic camera parameters using only point correspon-
dences, without external calibration objects or known scene
geometry [11-14, 23, 28, 33, 34, 36, 38, 47, 51].

1.1. Contribution

This paper presents a comprehensive characterization of
two- and three-view minimal autocalibration problems in
the case of a perspective camera with constant intrinsics.
We introduce practical and efficient solvers for minimal au-
tocalibration by introducing a novel formulation that ex-
tends the minimal Euclidean reconstruction problem of four
points in three calibrated views [24, 40] to the uncalibrated
case. Our approach jointly estimates camera intrinsics, en-
coded in the calibration matrix K, and unknown 3D point
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depths, and seamlessly integrates any partial knowledge
of the camera intrinsics. This gives rise to a variety of
two- and three-view minimal autocalibration problems, for
which we provide a complete taxonomy in Tab. 1. We de-
velop a general theory of minimal relaxations to address
cases where our formulation leads to an over-constrained
problem. These minimal relaxations of our depth formu-
lation can be completely enumerated, and each instance of
a specific autocalibration problem can be solved offline by
applying numerical homotopy continuation (HC) methods
to one such relaxation. Crucially, the offline analysis with
HC methods also enables us to identify the most efficiently
solvable minimal relaxations.

Our practical contributions include implementing a nu-
merical solver for full camera calibration, i.e., calibration of
all 5 unknown parameters of a perspective camera. We also
consider common assumptions—namely, zero-skew and
square pixels—and design fast solvers for specialized prob-
lems with a partially calibrated camera. These solvers can
be fast enough for many online calibration applications, and
can also bootstrap solutions using RANSAC-based frame-
works with high accuracy in offline calibration settings.
Among the strengths of our approach, we avoid well-known
degeneracies of Kruppa’s equations [48] and recover K di-
rectly instead of relying on estimates of the dual image
of the absolute conic (DIAC), which may not be positive-
semidefinite. Experiments show that our solvers outperform
existing autocalibration methods in terms of accuracy in
both synthetic and real image sequences despite increased
runtime. Interfacing our solvers with COLMAP [44] further
highlights the applicability of our approach.
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Figure 1. [llustrating the setup of equations (1) and (4).

5064



Thus, our contribution is two-fold: i) theoretically, we
provide a complete taxonomy of minimal autocalibration
problems in 2 or 3 views; ii) practically, our novel solvers
outperform classical autocalibration approaches in accuracy
and are robust against degenerate configurations arising in
very practical calibration scenarios when a camera revolves
around an object, which is a substantial problem for all
methods based on solving Kruppa’s equations [49].

1.2. Problem formulation

We recall here some standard constraints on the calibration
matrix K € R3*3 that involve the images of NV 3D points
from M different positions, as depicted in Figure 1. We
want to estimate the entries of K: focal lengths f and g,
principal point (u,v) and camera skew s. Image points are
expressed in homogeneous coordinates ;, € R? x {1}, i.e.,
3 x 1 vectors whose third entries equal 1.

In Eq. (1) below and throughout the paper, the letter
i € [M] = {1,...M} indexes a single image, while
p € [N] := {1,...,N} indexes a point, R, € R3*3
denotes a rotation matrix, C; € R? is a camera center,
X, € R3is a 3D point, and \;, € R is the depth of the
p-th point in the ¢-th camera [20].

Different flavors of the autocalibration problem exist
in practice, depending on the available partial knowledge
about the intrinsics in K. For instance, common assump-
tions are that the camera has square pixels (f = g) or zero
skew (s = 0). In general, we assume that there are L linear
equations f1(K) = ... = fr(K) = 0 which encode any
partial knowledge of intrinsics in K. For instance, if our
camera has square pixels and no skew, then we may take
h(EK)=s, [o(K) = [ —g.

Thus, assuming no noise in image points, a solution K
must satisfy the following conditions:

)\zp‘rzp:KRz(I‘_Ct) ()ip> S [MLPE [N],

RIR; =1, detR; =1,

f s u
K = 0 g v ) Cip)\ip = 17 I'Lfg = 17 (l)
00U puy =0 1elL)

The additional unknowns (;;, and corresponding equations
CipAip—1 prohibit spurious solutions with zero depths. Sim-
ilarly, o f g — 1 = 0 ensures that det K = f g # 0.

1.3. Previous work

We focus on the classical scenario where K is constant
across views. For work exploring the non-constant case,
e.g., [23, 38] derive minimal conditions on the camera in-
trinsics for autocalibration. We also note that many works
have addressed special cases of autocalibration, such as fo-
cal length estimation [1, 41, 46].

General methods fall roughly into two classes.

Direct methods use the so-called rigidity constraint en-
coded in fundamental matrices. In theory, K can be re-
covered from the knowledge of three fundamental matrices
resulting from three different camera motions [11, 34]. Di-
rect methods [19, 30, 53] exploit this observation and re-
cover the intrinsic parameters by solving Kruppa’s equa-
tions [14, 28]. Methods used to solve these equations vary
considerably. In [30], instead of considering a complete,
over-constrained system of 6 equations in 5 unknowns, a
consensus solution is obtained by solving all 6 of the square
subsystems using a HC method. This work has several
parallels to ours—namely, its use of HC solvers and the
fact that these square subsystems are minimal relaxations
in the sense of Section 3. The main difference is that their
unknowns are the entries of the DIAC. In [53], the over-
constrained system of Kruppa’s equations is solved with a
nonlinear least squares technique; here, good initialization
is needed to obtain an accurate estimate. We note that sim-
plified polynomial systems have been derived by exploiting
additional assumptions on K [53]. Not all direct methods
use Kruppa’s equations—in [33], a method analogous to the
F4 method for computing Grobner bases is devised for com-
puting the DIAC. As our experiments illustrate, a common
weakness of such direct approaches is that they do not en-
force positive-semidefiniteness of the DIAC and hence fail
with larger noise that makes the estimated DIAC indefinite.

Certain camera motions give rise to degenerate autocal-
ibration problems [20, Ch. 19], [32], and additional degen-
eracies may exist for particular methods. For example, the
method of [30] also falls short when the optical centers of all
cameras lie on a sphere and the optical axes pass through the
center of the sphere [49]. Although our approach employs a
relaxation procedure analogous to this work, it does not suf-
fer from the same degeneracy. Another limitation of direct
methods is that they neglect non-trivial polynomial iden-
tities that tuples of compatible fundamental matrices must
satisfy [3, 15, 20, 26].

Stratified methods assume that a projective reconstruc-
tion is known and stratify the problem into Affine and Eu-
clidean stages. An affine reconstruction can be obtained by
estimating the plane-at-infinity (Pal); from this, the assump-
tion of constant K allows its entries to be easily retrieved.
This idea was pioneered in [21], where chirality constraints
are used to estimate the location of the Pal. The Pal can also
be located via the so-called modulus constraints. Specifi-
cally, in [39], this resulted in a system of three quartic poly-
nomials on the coefficient of the Pal.

Rather than using the Pal, the work [51] directly encodes
all metric information in terms of the absolute quadric,
which, once retrieved, allows the intrinsic parameters to be
retrieved by Cholesky factorization.

In general, stratified approaches are more robust to noise
than direct ones but require good initialization of the Pal.
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Thus, some works [4, 5, 13] focus on optimality guarantees
exploiting a branch-and-bound framework. Similarly, [17]
samples the bounded space of intrinsic parameters to esti-
mate the Pal robustly. Interestingly, [36] presents a branch-
and-bound paradigm to solve direct and stratified autocali-
bration based on sampling algebraic varieties.

2. Our approach
We now outline our approach to autocalibration.
2.1. Depth equations and removing symmetries

In this work, we propose to eliminate camera extrinsics
from (1) and use constraints involving the calibration ma-
trix K and depths \;,. By working with these constraints,
we are able to avoid potential issues arising from fundamen-
tal matrix compatibility. This approach is also well-suited
for constructing new minimal problems.

The main geometric constraint we use is that the Eu-
clidean distance || X, — X,|| between any two 3D points
X, and X, is the same whether these points are recon-
structed from the i-th or the j-th camera, for any ¢, j € [M]
as depicted in Fig. 1. Expressing each 3D point as X, =
AipK *1xip, this amounts to the vanishing of the function

di jpg( A, K5 2) :=(Nipzip — )‘iqxiq)TW()‘ipmip — XigTig)
—(AjpZjp — ququ)TW(Ajpxjp — NjgTiq)

where w = K TK~! is the image of the absolute
conic [20]. Note that d; ; »q is a polynomial in A, and z,,
and a rational function of K. We parametrize w as

1 _s* vs*—u
f* f* f*
_ s* 1 s*2 us* —vs*? v
w=| —7 o T 5 A )
vs*—u us* —vs*? v v? (u?—v?s*) 1
* f* - qi* qT + fi«k +

2
where f* := f2, g* := g% s* := 2. This parametriza-
tion is motivated by the invariance of w under substitutions

f — _f7 (97 S) — (_97 _S)' (3)

Thus, when f, g and s are unknown, solutions to the depth

equations typically come in symmetric quadruples, and in

pairs if only f or (g, s) are unknown. Substituting (2) into

d;,j pq» W€ May rewrite our main constraint as
di,j,pq()H wy IL') =0.

*

“)

Depending on the minimal problem, (3) may not be the only
symmetries present. For example, in the fully calibrated
case L = 5, our minimal relaxation of four points in three
views has 640 solutions that can be grouped into pairs which
differ only in the signs of depths in some view.

Remark: Our depth formulation can be viewed as a relax-
ation of the formulation (1). Thus, if we get a finite number
of solutions, they surely give valid solutions to (1)".

ISee SM 6 for more discussion of different formulations.

2.2. Specifying a minimal autocalibration problem

Instead of requiring that (4) holds for all ¢, j € [M], p,q €
[N], we consider minimal problems which only require that
a subset of these constraints hold. Hence, we will be in a
situation similar to partial visibility as in [9, 27].

To specify a minimal problem, we consider:

(1) Priors on K: In practical situations, we often either
possess or lack knowledge of intrinsics. When we know
some intrinsics, we can transform images to normalize their
known values to standard ones: f = 1,9 = 1,u = 0,v =
0,s = 0. Subsequently, we solve for the unknown trans-
formed intrinsics and then recover their original values’.
We represent the knowledge of intrinsics as a 5-tuple of un-
knowns fguvs. If any intrinsic is known, we replace its
unknown with its normalized value. For instance, f1uvO0
indicates that f,u,v are unknown, while g = 1, s = 0 are
known. In the interesting scenario of a camera with square
pixels, ffuvs encodes that f and g are unknown but equal.

(2) Number of cameras M: For a given 5-tuple fguvs,
we will see that the minimum number of cameras needed to
obtain a minimal problem is either 2 or 3. Hence, we will
investigate problems for only 2 and 3 cameras.

(3) Number of points N: For each five-tuple of intrin-
sics and M cameras, we will consider the least number NV
of points such that there is a set g of constraints in (4) pro-
viding a minimal problem.

(4) Constraints g: For each triplet (fguvs, M, N), we
enumerate all possible subsets of constraints (4) which lead
to different minimal problems.

Each four-tuple (fguvs, M, N, g) specifies a candidate
minimal problem [8]. Table 1 lists the 80 groups according
to (fguvs, M, N). For each group, we list the number #g
of equivalence classes of constraints leading to a minimal
problem and a range of® numbers of solutions in w.

3. Relaxation, Enumeration, and Solving

We now give a more precise description of the taxonomy of
minimal autocalibration problems presented in Table 1 and
the tools needed to obtain it.

For each pair (fguvs, M), we will determine whether
camera calibration is possible and, if so, the minimum num-
ber IV of points such that there is a subset g of depth equa-
tions (4) providing a minimal problem. First, we determine
the number of parameters among fguvs that can be esti-
mated from N 3D points seen in M images captured by
the same camera with constant /. Then, we determine the
minimum number /N of 3D points required to solve the per-
spective autocalibration problem given a pair (fguvs, M).

2See SM 7 for more details on the normalization and recovering the
corresponding non-normalized values.

3For fguvs, we checked roughly 20% of the 3313 cases. It is conceiv-
able, but unlikely, that problems with fewer solutions remain unchecked.
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Prior on K M N L Min # sol. in C Max # sol. in C # subsys. #g Prior on K M N L Min # sol. in C Max # sol. in C # subsys. #g
fguvs 2 N 0 oo oo 0 0 1g0vs 2 - 2 oo o 0 0
fguvs 3 6 0 2985* 1136202 5852925 3313 1g0vs 3 5 2 29012 315653 1140 8
fguvo 2 - 1 oo oo 0 0 1g0vo 2 7 3 18 18 1 1
fguvo 3 5 1 2313 2313 190 3 1g0v0 3 5 3 4400 102784 4845 37
fguls 2 - 1 o) oo 0 0 1g00s 2 7 3 24 24 1 1
fguls 3 5 1 2058 2058 190 3 1g00s 3 5 3 4480 238544 4845 37
£gu00 2 - 2 o oo 0 0 1g000 2 6 4 30 30 1 1
£gu00 3 5 2 9686 33606 1140 8 1g000 3 4 4 668 668 1 1
fgOvs 2 - 1 oo oo 0 0 11luvs 2 - 2 [eS) oo 0 0
fgOvs 3 5 1 2058 2058 190 3 1luvs 3 5 2 57912 201265 1140 8
£g0ovo 2 - 2 oo oo 0 0 11uv0 2 7 3 48 48 1 1
£g0v0 3 5 2 9686 112520 1140 8 11uv0 3 5 3 8940 477080 4845 37
£g00s 2 - 2 oo oo 0 0 11u0s 2 7 3 36 36 1 1
£g00s 3 5 2 9686 33606 1140 8 11u0s 3 5 3 8786 46192 4845 37
£g000 2 7 3 18 18 1 1 11u00 2 6 4 60 60 1 1
£g000 3 5 3 3884 207664 4845 37 11u00 3 4 4 1336 1336 1 1
fluvs 2 - 2 =) oo 0 0 110vs 2 7 3 72 72 1 1
fluvs 3 5 2 4111 4111 190 3 110vs 3 5 3 16390 85480 4845 37
f1luv0 2 - 2 oo =) 0 0 110v0 2 6 4 60 60 1 1
f1luv0 3 5 2 29044 100816 1140 8 110v0 3 4 4 1336 1336 1 1
£1u0s 2 - 2 =) =) 1 1 1100s 2 6 4 60 60 1 1
f1u0s 3 5 2 14760 160190 1140 8 1100s 3 4 4 1336 1336 1 1
£1u00 2 7 3 18 18 1 1 11000 2 5 5 20 20 1 1
£1u00 3 5 3 4400 244544 4845 37 11000 3 4 5 640 640 1 1
£10vs 2 - 2 oo oo 0 0 ffuvs 2 - 1 =3 oo 0 0
f10vs 3 5 2 24332 86539 1140 8 ffuvs 3 5 1 4617 4617 190 3
£10v0 2 7 3 36 36 1 1 f£fuv0 2 - 2 oo oo 0 0
£10v0 3 5 3 7764 57220 4845 37 f£fuv0 3 5 2 16188 119119 1140 8
£100s 2 7 3 18 18 1 1 £fu0s 2 - 2 =3 =) 0 0
£100s 3 5 3 4392 102778 4845 37 f£fuls 3 5 2 29028 100758 1140 8
£1000 2 6 4 30 30 1 1 ££u00 2 7 3 24 24 1 1
£1000 3 4 4 668 668 1 1 ££u00 3 5 3 4484 176992 4845 37
1guvs 2 - 1 oo oo 0 0 ££0vs 2 - 2 oo o 0 0
lguvs 3 5 1 4360 4360 190 3 f£f0vs 3 5 2 38700 134352 1140 8
1guv0 2 - 2 oo oo 0 0 ££0v0 2 7 3 24 24 1 1
1guv0 3 5 2 29046 100808 1140 8 ££0v0 3 5 3 4484 92336 4845 37
1gu0s 2 - 2 oo oo 0 0 ££00s 2 7 3 36 36 1 1
1guls 3 5 2 29024 100718 1140 8 ££00s 3 5 3 7756 396042 4845 37
1gu00 2 7 3 36 36 1 1 ££000 2 6 4 30 30 1 1
1gu00 3 5 3 7760 43315 4845 37 ££000 3 4 4 668 668 1 1

Table 1. 80 groups of minimal autocalibration problems for M € {2,3} views. For each triplet (fguvs, M, N) we list: i) L, the

number of linear constraints on K, ii) the minimum and maximum solution count in C, iii) #subsys. = (

a-1)(%)

AN 52a)» the number of

square subsystems of (4), iv) #g, the number of inequivalent minimal relaxations. The numbers #g and Min # sol. are most important,
as they measure the number of minimal relaxations and the complexity of solving them. Solution counts refer to unknown depths and the
parameters of w in (2)—(4). The two counts e* are only conjectural extrema, due to the prohibitive time needed to check all cases.

Infeasible cases. In general, for K unknown and non-
constant, the reconstruction of N 3D points from M views
can be obtained only up to a projective transformation H,
which has 15 degrees of freedom. Additional constraints on
H may allow us to assume [ is a similarity transformation
with 7 degrees of freedom. For M = 2 views, the assump-
tion that K is constant puts 5 constraints on H. Thus, we
need L > 15 — 7 — 5 = 3 linear constraints on K to obtain
a Euclidean reconstruction and hence recover the full K.

To determine the minimum number /N of 3D points re-
quired to solve the perspective camera autocalibration prob-
lem as a function of a pair (fguvs, M), we must ensure
that the number of degrees of freedom in image measure-
ments is at least the number of degrees of freedom in the
unknown scene and cameras. For this purpose, the full for-
mulation (1) is preferable to the equations we actually use
for solving, namely (4). This is because we can rigorously
employ a count similar to that given in [8, §5]: we should
assume there are at least

L>3N+6M—2-2MN (5)

independent linear constraints on K in order to solve the
autocalibration problem up to a finite number of candidate
solutions. Noting also the trivial upper bound L < 5, this
explains the values of L appearing in Table 1. The infea-
sible cases where M = 2 and L < 2 have already been
addressed above. The remaining cases are accounted for

by (5) and the rows of Tab. 1. This table indicates that
at least one minimal relaxation for the potentially feasible
choices of (M, N, L) actually exists. To properly interpret
the table, we must now formalize what we mean when we
say a subsystem g of equations determines a minimal relax-
ation of the autocalibration problem (1).

3.1. Minimal problems and minimal relaxations

Many estimation problems in vision can be expressed us-
ing the language of algebraic geometry. In general, we may
consider an irreducible algebraic variety X, whose points
consist of problem-solution pairs (p,x) € C™ x C™ satis-
fying some set of equations depending polynomially on p
and x. Our task is to estimate the solution x € C™ given
some problem instance p € C™, meaning (p,x) € X.

More specifically, image points p = (Zip)ic|[n],pe[N]
specify an instance of an autocalibration problem. We
want to estimate the unknowns x defining w in (2) and the
(suitably normalized) depths (\;p,). Thus m = 2M N and
n = (5— L)+ MN — 1. If we define the variety X to
be the image of a rational map (much like the joint camera
map of [8, §4]), the condition that X is irreducible holds.

Let 7 denote the map which projects X into the space of
problem instances C™, i.e.,

m: X —=>C™", (p,x)+—p. (6)

The set of solutions of some problem instance p € C™ may
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Figure 2. Minimal relaxations V(g1), V(g2), w/ X = V(g1, 82),
g1(p1,p2,x) = 2 — p1, and g2(p1, p2, ) = p2a® — 1.

be identified with the fiber 7! (p). Following [8], we say
that 7 defines a minimal problem if the following hold:
1. The problem is balanced—that is, dim X = m.
2. Almost every problem instance in C™ has a solution—
equivalently, the image of the map 7 is dense in C™.
In practice, we check that a problem is minimal using
some system of equations g(p,x) = 0 defining X locally,
via the following rank conditions at a point (pg,xg) € X:

Jg | g _ Jg
rank (ap | Bx) o) rank <8x

Some of the cases appearing in Table 1 are already minimal
problems. These are precisely the rows where both sides
of (5) are equal. In general, dim X = 3N +6M — 2 — L.

When the inequality (5) is strict, we expect the autocali-
bration problem (1) to be overconstrained in the sense that
a generic problem in C™ does not have an exact solution.

To deal with overconstrained problems, consider a sys-
tem g consisting of n polynomial or rational functions van-
ishing on X—thatis, X C V(g) where

=n. (7)

(Po,x0)

V(g) = {(p,x) € C™*" | g(p, x) is defined and equals 0}

(~ denotes the Zariski closure [6, §4.4].) If the rank condi-
tions (7) hold at a generic point (pg,Xo) € X, we say that
g determines a minimal relaxation of w. Figure 2 illustrates
this definition on a simple example (see SM 9 for details).
In general, an overconstrained problem can have differ-
ent minimal relaxations. In the next section, we obtain a
combinatorial classification of all minimal relaxations ob-
tained from subsets of the depth constraints (4), grouping
minimal relaxations into natural equivalence classes.

3.2. Enumerating Minimal Relaxations

We now explain how to obtain minimal relaxations of au-
tocalibration problems using the depth equations (4). The
combinatorial structure of minimal relaxations obtained by
removing a subset of equations (4) is neatly encoded by a
4-coloring: that is, a function c: ([g]) — {B,R,C,W},
which assigns one of four colors to all pairs of 3D points.
In standard graph-theoretic terminology, these are exactly

the improper edge 4-colorings of the complete graph K.

q L2,p¢v ( d1,2,pq q q

dl,&pq

Figure 3. Non-isomorphic 4-colorings when L = 2 in 3 views.
3D point pairs (p, q) are colored according to the removal of depth
equations d; j pq in the relaxed subsystem. W (white) indicates
removal from both image pairs, B no removal. R and (- indicate
removal in image pairs (1,3) and (1,2), respectively.

Every 4-coloring determines a subsystem of equations (4)—
for each edge pq € ([1;7]), we take equations g in the set

{di,2,pq | c(pg) € {B, R}} U{d1,3pq | c(pg) € {B,C}}. ®)

We say two 4-colorings ¢, ¢3 : ([g]) — {B,R,G,W} are
isomorphic if there exist permutations o : [N] — [N] and
7:{B,R,G,W} = {B,R,,W} such that 7(W) = W,
7(B) = B, and ¢c5 = To¢j oo. The minimal relaxations de-
termined by isomorphic 4-colorings are equivalent, since 7
corresponds to swapping views 2 and 3, and o corresponds
to relabeling world points. Fig. 3 shows an example.

Determining isomorphism classes of 4-colorings, i.e.,
and thus equivalence classes of minimal relaxations g, of-
fers us a key practical advantage. Given the large number of
4-colorings, exceeding 5 million for fguvs, computing the
solution count for all associated problems is computation-
ally prohibitive. Consequently, we opt to consider only one
representative per isomorphism class when computing solu-
tions offline with HC. This approach facilitates the creation
of the comprehensive taxonomy outlined in Tab. 1. We de-
termine a unique representative c in each isomorphism class
using the line graph L(c), as detailed in 10 of the SM.

3.3. Solving with homotopy continuation

For any system g(p, x) = 0 encoding a minimal relaxation
of an autocalibration problem, we construct minimal solvers
using a standard online/offline approach based on numerical
HC methods. In the offline stage, we construct a synthetic
solution (pg,xo) € X D X, by fabricating a 3D scene. If
g arises from a balanced problem, we check that it is mini-
mal via the rank conditions (7), and use monodromy heuris-
tics [7] to recover (with high probability) all remaining solu-
tions in 71 (pg, Xo) for the synthetic parameters pg € C™.
As postprocessing, we use parameter homotopy [45, Ch. 8]
with equations g to track all solutions to new parameter val-
ues p; € C™ whose coordinates are random complex num-
bers. Finally, in the online stage, the solver receives a new
problem instance pa € R™ as input, and uses parameter
homotopy to track all solutions for p; to those for ps.
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4. Experiments

We evaluate the performance of our proposed minimal
solvers on simulated and real image sequences, with a fo-
cus on three of the most practical cases: i) £fuv0, an un-
calibrated camera with square pixel aspect ratio and zero-
skew, ii) fguv0, an uncalibrated camera with zero-skew,
iii) fguvs, a fully uncalibrated camera. First, we assess
the theoretical correctness of our proposed solvers and their
resilience to noise in simulated image sequences (Sec. 4.1).
Then, in Sec. 4.2, we perform experiments on real image
sequences and compare the results attained by our solvers
with several competing autocalibration methods. Finally,
we demonstrate that integrating our solvers into the recon-
struction pipeline COLMAP [43, 44] improves autocalibra-
tion and reconstruction on real image sequences (Sec. 4.3).

Competitors. We compare our solvers to the HC-based
method for solving Kruppa’s equations in [30]. As de-
scribed in Sec. 1.3, we remark that, in this method, each
subsystem of 5 / 6 Kruppa’s equations may also be consid-
ered minimal relaxations in the sense of Section 3. More-
over, whether we consider these equations as rational or
polynomial functions matters. In the latter case, considered
in [30], it was correctly observed that these equations had
the expected number of 2° = 32 solutions over C. However,
for 14 of these solutions, denominators appearing in the ra-
tional form of Kruppa’s equations become undefined. Thus,
only 18 HC paths must be tracked to find a valid solution.

To address the imbalance between our method (based
on triples of image points) and Kruppa (based on triples
of fundamental matrices), we consider three variants of
Kruppa that estimate these fundamental matrices differ-
ently. The first variant, Kruppa-8, estimates fundamental
matrices using the non-minimal 8-point algorithm. The sec-
ond, Kruppa-7, estimates fundamental matrices using the
minimal 7-point algorithm. The third, Kruppa-6, imple-
ments a minimal solver for projective reconstruction from
6 points in 3 views [42], from which a set of compatible
fundamental matrices can be determined. Kruppa-6 is the
closest to our fguvs solver, which also requires six points.
For all three variants, we normalize the input as in [22].

In real-world experiments, we also compare our solvers
with the state-of-the-art camera autocalibration approach
presented in [36]. This method uses semidefinite program-
ming and a Branch-and-Bound (BnB) scheme to maximize
consensus among polynomials and solve the calibration
problem with either the Kruppa equations [31] or the mod-
ulus constraint [37]. We refer to these variants as Kruppa
BnB and Modulus BnB, respectively.

Implementation. We implement our solvers in Julia using
the package HomotopyContinuation [2], with C++
and Python bindings. SM 11.1 reports the minimal relax-
ations used by these solvers. All experiments were con-

ducted on an Intel Core 19 13900k with 16GB RAM.
4.1. Synthetic Experiments

We evaluate the performance of our ffuv0, fguv0, and
fguvs solvers in synthetic images under varying noise lev-
els applied to the generated pixel coordinates. Our evalu-
ation involves comparing the Kruppa-8 [30] and Kruppa-6
methods. Results for Kruppa-7 are inferior in accuracy and
are presented in SM 11.4.

Simulations. In each simulated scene, we generate 100 ran-
domly distributed 3D points within the unit sphere. We sim-
ulate three camera displacements, with the first located 2
world units from the sphere’s center along the y-axis. The
other two cameras are translated by 40.5 units along all
axes relative to the first camera, enforcing a minimum L2-
norm of 0.1 for translation vectors. Camera motion is con-
strained to ensure all views capture the scene, with random
rotations obtained by uniformly sampling angles in the 45
degrees range along all axes. Simulated points are projected
onto 640 x 480 images, discarding any points not observed
in all views. Noise is introduced by adding zero-mean
Gaussian displacements to pixel coordinates with standard
deviation o in the [0, 1] range in increments of 0.2. For
each noise level o, we conduct 1000 independent tests for
all methods. Our solvers, Kruppa-6 and Kruppa-8 [30] are
evaluated with intrinsics: f = 330, g = 310, v = 300,
v = 250, s = 10.

Metrics. We report the relative error A fg in focal lengths
and errors in the principal point Auv and skew As,

Auv = 1 ('ﬁ_ugt| + @_Ugd) , As:27|§_sgt‘ .
2 Ugt Vgt fat + Gt

We report the reprojection error Re computed using the es-
timated intrinsics K and camera poses* {R;, C;}M,. Note
that Re is not reported for Kruppa-8 due to the inconsistent
reconstruction across the three views obtained from funda-
mental matrices computed using the 8-point algorithm. This
inconsistency leads to significantly higher errors, making
any comparison unfair. Instead, we report Re for Kruppa-
6, where a metric reconstruction consistent across the three
views is obtained by upgrading the projective cameras using
the estimated intrinsic parameters.

Results. In Fig. 4, boxes represent the interquartile range of
errors in estimated camera parameters and mean reprojec-
tion error. Errors generally increase with higher noise levels
0. Across most experiments, fuv0 and fguvO0, despite as-
suming prior camera knowledge not aligned to the synthetic
camera parameters, match or surpass Kruppa methods, par-
ticularly in focal length, with principal point results gener-
ally within a £5% deviation from Kruppa methods. fguvs,

4SM 11.2 explains how camera poses are derived from projective
depths and SM 11.3 gives the formula for the reprojection error.
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Figure 4. Autocalibration Evaluation on Synthetic Images. Solver accuracy is assessed under varying levels of zero-mean Gaussian
noise (denoted by o on the x-axis) applied to pixel coordinates. Mean reprojection error and relative errors in focal lengths A f g, principal
point Auv, and skew As are reported. For error measures, boxes represent the interquartile range of error distribution. The right-most plot
illustrates the failure rate as a percentage, with £fuv0, fguv0, and fguvs excluded due to no failures.

similar to Kruppa’s in not assuming prior camera knowl-
edge, attains comparable performance to Kruppa methods
in focal length and principal point estimation but underper-
forms in skew estimation, especially for o > 0.4. Across all
noise levels, all our solvers outperform Kruppa-6 in repro-
jection error, which jointly assesses the accuracy in intrinsic
camera parameters and camera pose estimation.

Kruppa methods recover K via the Cholesky decompo-
sition of the DIAC w*. In the presence of noise, w* may not
be positive-semidefinite. This leads to autocalibration fail-
ure, making the estimation of K unfeasible. Failure rates
range from 4% to 13% for Kruppa-6 and from 3% to 6%
for Kruppa-8, as reported in Fig. 4-right. In principle, our
solvers could also fail at higher noise levels. However, we
did not encounter these issues in our synthetic experiments.

Remark 1. In SM 11.4, we confirm the theoretical correct-
ness of £fuv0 and fguv0 by showing that zero error is at-
tained in the noiseless case when each solver’s prior camera
knowledge matches the synthetic camera parameters.

Remark 2. All Kruppa-based methods present a degener-
acy arising from a singularity in the Kruppa equations when
the optical centers of cameras lie on a sphere, and their op-
tical axes intersect at the sphere’s center [49]. As discussed
in SM 11.4, we reproduce such conditions and confirm that
our method is unaffected by the Kruppa degeneracy.

4.2. Evaluation on Real Datasets

We assess autocalibration accuracy on the calibrated
Fountain-P11 and Herz-Jesu-P8 [47] datasets. The ffuvO,
fguv0, and fguvs solvers are embedded in a conventional
MSAC-framework [50]. At each iteration of the MSAC,
we evaluate the recovered camera intrinsics and extrinsics
in terms of their induced reprojection error weighted by
the Huber loss. We set a limit of 200 iterations. Image
points are obtained by extracting and matching SIFT [29]
keypoints across image triplets.

We compare our solvers with Kruppa-8 [30], Kruppa-
7, and Kruppa-6 embedded in MSAC, mirroring our solver

setup. For Kruppa-8 and Kruppa-7, we compute cam-
era poses by decomposing the pairwise essential matrices
E = K"FK = [t]x R, where F is the fundamental matrix.
Then, we compute the reprojection error pairwise, averag-
ing it across all image pairs. Kruppa-6 yields a consistent
metric reconstruction across the three views, allowing di-
rect computation of the reprojection error by projecting the
3D points using the recovered camera matrices. Finally, our
evaluation includes Kruppa BnB and Modulus BnB [36],
representing state-of-the-art autocalibration methods.

Metrics. We assess calibration accuracy using A fg, Auwv,
As in Eq. (9). We also report reprojection errors Re, com-
puted using estimated camera intrinsics and extrinsics, and
Regt, computed using the estimated intrinsics, but ground
truth camera poses. € and e represent the angular errors’
in degrees for estimated camera rotations and centers, re-
spectively. Errors are averaged across all image sequences.

Results. Tab. 2 reports the results of our evaluation. Con-
cerning full camera calibration, our fguvs solver sets the
benchmark for most calibration metrics, except for Auw
in Fountain-P11, where it is the second-best method after
Kruppa BnB. fguvs also outperforms Kruppa-6 at camera
pose estimation. Remarkably, fguvs excels in focal length
estimation, achieving 3.6 times lower A fg in Fountain-P11
compared to the second-best Kruppa BnB.

The solvers ffuvO and fguvO outperform fguvs
across various metrics, with £fuv0O emerging as the top-
performing method overall. This demonstrates the advan-
tages of integrating partial knowledge of K into our solvers,
especially given that the zero-skew assumption and square
pixel aspect ratio very often hold in practice.

Our solvers’ runtimes depend on the number of paths
tracked by HC, i.e., by the solution counts in C. We refer
to Tab. 1 to optimize speed and select g with the lowest so-
lution count. We report the median runtime per iteration:
fguv0 1.78 s/iter (2313 paths), fguvs 2.15 s/iter (2985
paths), £fuv0 9.21 sf/iter (16188 paths). Our solvers are

5See SM 11.3 for complete error definitions.
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Fountain-P11

Herz-Jesu-P8

Method Afg  Auv As Regt Re €Rr e Afg Auwv As Regt Re €R e
Kruppa-6 0.137 0.184 0.022 19.563 2.891 7.061 5579 0.098 0.112 0.014 14.565 1.112 2.125 1.902
Kruppa-7 0.249 0.204 0.040 28.197 - - - 0.122  0.114 0.040 15.252 - - -
Kruppa-8 [30] 0.260 0.173 0.029 28.466 0.140 0.115 0.022 13.606

Kruppa BnB [36]  0.127 0.058 0.014 9.231 0.078 0.096 0.018 21.023

Modulus BnB [36] 0.162 0.071 0.016 10.540 0.097 0.102 0.019 22.641

f£fuv0 0.017  0.029 4435 0449 0.623 0.664 0.017 0.044 8.082 0.672 0.664 0.656
fguv0 0.028  0.050 - 8.580 0.554 0.970 1.183 0.029 0.063 - 11.128 0.680 1.295 1.540
fguvs 0.035 0.064 0.008 9.769 1.075 1274 1428 0.041 0.058 0.013 11348 00989 1.085 1.139

Table 2. Autocalibration Evaluation on Real Datasets.

Mean relative errors in the focal lengths A fg, principal point Auv, and skew

As are reported. Reprojection error is computed in two variations: i) Regs, using estimated K and ground truth camera poses, ii) Re,
using estimated K and estimated camera poses (when applicable). er and ec are the angular errors in estimated camera rotations and
translations, respectively. Lower values indicate better performance for all metrics.

Fountain-P11 Rathaus KITTI-Depth
Variant Afgl Auww] Re Points3D Afgl Auv| Re Points3D Afgl Auwv| Re  Points3D
COLMAPg;cs5 0.3350 0.0140 0.444 4848 0.0671 0.0812 0.624 847 0.6510 0.1360 0.810 210
COLMAP: 0 0.0058 0.0297 0.241 5356 0.0237  0.0111  0.450 823 0.0720  0.0185 0.409 231
COLMAP,,s + K-BA  0.0012  0.0013 0.212 5296 0.0185 0.0607 0.435 868 0.3480 0.5072 0.547 232
COLMAP:y,,0 + K-BA  0.0011  0.0012 0.212 5367 0.0165 0.0307 0.432 823 0.0626 0.1773  0.404 236
COLMAP; + K-BA 0.0013  0.0011 0.210 5368 0.0069 0.0291 0.430 794 0.0401  0.0553 0.398 237

Table 3. Comparing errors and numbers of registered points for autocalibration strategies in COLMAP (Sec. 4.3.)

multithreaded, with quasi-linear scaling in the number of
CPU cores. Comparatively, the median runtime for Kruppa-
6, Kruppa-7, and Kruppa-8 is 0.71 s/iter, with 6 - 18 = 108
solutions paths overall. For Kruppa, we observe that per-
formance scaling is not linear, but we attribute this to the
small number of solutions and overhead when running the
Julia HC solver. Despite their faster runtimes, these meth-
ods exhibit inferior accuracy and higher failure rates, as
illustrated in Fig. 4. Setting a strict threshold of 0.02 on
Afg, the fguvs solver takes an average of 4.21 minutes on
Fountain-P11 and Herz-Jesu-P8, whereas Kruppa methods
are, on average, only 27% faster. The BnB methods [36] are
the fastest overall, by 62% compared to ours, yet they still
provide inferior accuracy.

4.3. Autocalibration in COLMAP

We integrate our autocalibration solvers into COLMAP
[43, 44] to initialize the camera intrinsics before 3D
reconstruction. The evaluation is conducted on five triplets
of images from the Fountain-P11 (2 sequences), Rathaus
[47] (1 sequence), and KITTI-Depth [16] (2 sequences)
datasets. We report results for fguv0. Additional details
about other solvers and datasets may be found in SM 11.

We consider two strategies for initializing K:
COLMAPg s uses the default COLMAP guess based on
image size, and COLMAPz4.,o employs the fguv0 solver.
These variants exclude the K from Bundle Adjustment
(BA). We also evaluate results obtained using BA on K (+
K-BA). COLMAP,; + BA involves starting from ground
truth camera parameters and applying BA and is provided
as an oracle for performance.

Tab. 3 reports results for each strategy. COLMAP:g,,0
estimates K better than COLMAP,¢ss in most cases and
yields accurate reconstructions, even without refining K.
When applying BA, the gap between COLMAP:,,0 and
COLMAPcss narrows, particularly in Fountain-P11,
where many keypoints are available. In Rathaus, the
principal point is displaced from the image center. The final
calibration accuracy is improved by using the estimate of
K from £guv0. In KITTI-Depth, BA often struggles due to
fewer matches. In this scenario, using BA results in a 9.58x
degradation in Auw, but only a 1.15x improvement in A fg
compared to the calibration by fguv0. This indicates that
in challenging scenes, our estimates of K are more reliable
than those obtained solely through refinement with BA.

5. Conclusion

Motivated by the quest for a complete understanding
of the autocalibration of a camera with constant K, we
presented a new complete analysis of minimal autocalibra-
tion problems and their implementations, improving the
state-of-the-art.
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