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Figure 1: (Left) Twisted pair symmetry for !ve-point relative pose. (Right) Nine-point four-bar mechanism synthesis.

ABSTRACT
Galois/monodromy groups attached to parametric systems of poly-
nomial equations provide a method for detecting the existence of
symmetries in solution sets. Beyond the question of existence, one
would like to compute formulas for these symmetries, towards the
eventual goal of solving the systems more e"ciently. We describe
and implement one possible approach to this task using numerical
homotopy continuation and multivariate rational function interpo-
lation. We illustrate our methods on several examples, including
two cases with nonlinear symmetries which appear in applications
from computer vision and robotics.
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1 INTRODUCTION
Structured systems of nonlinear equations appear frequently in
applications like computer vision and robotics. Although the word
“structure” can be interpreted in many ways, one of its aspects that
is strongly connected to the complexity of solving is the algebraic
degree of the problem to be solved. In many contexts, this may
simply refer to the number of solutions of a system (usually counted
over the complex numbers). However, if we adopt this de#nition
without scrutiny, we may fail in certain special cases to detect
additional structure such as symmetry.

To answer more re#ned questions involving structure, one can
often consider a Galois/monodromy group naturally associated to
the problem of interest. In this case, “problem” refers to a parametric
family of problem instances which must be solved for di!erent
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sets of parameter values. In our work, we are primarily interested
in geometric Galois groups arising from algebraic extensions of
functions #elds of varieties de#ned over the complex numbers.1

Currently, a number of heuristic methods for computing Ga-
lois/monodromy groups using numerical homotopy continuation
methods have been proposed and implemented, eg. [9, 15]. It is
also fairly well-understood how Galois/monodromy groups encode
important structural properties such as decomposability, or the ex-
istence of problem symmetries which may be expressed as rational
functions known as deck transformations. Thus, Galois/monodromy
group computation provides us a useful toolkit for detecting the
existence of special structure. However, one key challenge remains:
once we know that our problem does have such special structure,
can we use this information to solve systems more e"ciently?

Our work focuses on a natural #rst step towards addressing this
challenge: given the data of a numerical Galois/monodromy group
computation, can we recover formulas for the rational maps realizing
the underlying symmetry or decomposability?

In this paper, we describe and implement a solution to this #rst
step that combines the previous techniques for numerically com-
puting Galois/monodromy groups with $oating-point interpolation
of multivariate rational functions. Although both components are
well-established within the domain of symbolic-numeric computa-
tion, we are unaware of any previous work which combines them
in this novel way.

In Section 2, we provide some context for our approach by
considering related previous works. In Section 3, we establish
terminology and useful background facts. In Section 4, we de-
scribe our main algorithm for interpolating deck transformations
and illustrate it on simple examples. In Section 5, we describe ex-
periments performed with our accompanying software package
DecomposingPolynomialSystems for the Julia programming lan-
guage [3]. The source code for this package may be obtained at the
url below:
https://github.com/vviktorrK/DecomposingPolynomialSystems.jl

2 RELATEDWORK
Galois/monodromy groups have long had a presence in algebraic
computation, used as a tool in the study of algebraic curves, poly-
nomial factorization, and numerical irreducible decomposition [8,
12, 26]. In recent years, monodromy-based methods have become a
popular heuristic for computing the isolated solutions of parametric
polynomial systems [9, 19]. One appealing aspect of these methods
is that they are useful for constructing e"cient start systems to be
used in parameter homotopies, particularly in cases where more
traditional start systems (total degree, polyhedral) fail to capture
the full structure. Another appealing feature is that symmetry or
decomposability can be naturally incorporated in both the o%ine
monodromy and online parameter homotopy phases. This is the
main idea behind several recent, closely-related works which use
a priori knowledge of symmetries to speed up solving [1, 5]. In
contrast to these works, our approach recovers symmetries with
no such knowledge, and with limited assumptions on the system to
be solved. Our work is also a natural continuation of the paper [10],

1See eg. [27, §1.2] for a discussion of how other #elds of de#nition relate to this setup.

where Galois/monodromy groups were used to infer decomposi-
tions and symmetries that were not previously known for some
novel problems in computer vision. Here, we instead describe a
novel method, illustrated with familiar examples.

Interpolation is a well-studied problem in symbolic-numeric
computation and an important ingredient for solving our recovery
problem. In our work, we are faced with the di"cult task of inter-
polating an exact rational function (as opposed to some low-degree
approximation) from inexact inputs in double-precision $oating-
point arithmetic. For this reason, we employ many heuristics, and
make no attempt to match state-of-the-art interpolation techniques.
On the other hand, we hope that experts on interpolation will
view our particular application as a potential use case for their
own methods. Some relevant references for the speci#c problem of
multivariate rational function interpolation include [7, 18, 30].

Our focus on inexact inputs is due to the fact that interpola-
tion occurs downstream of numerical homotopy continuation in
our framework. This is also why we cannot pick inputs for the
interpolation problem arbitrarily. With that said, we point out that
assuming exact inputs could also be relevant if, say, certi#ed homo-
topy continuation (see [2, 14, 29, 33]) is used, augmented by some
additional postprocessing.

3 BACKGROUND
In this work, we are interested in solving polynomial systemswhose
solutions correspond to points in a generic #ber of a branched cover
of complex algebraic varieties. Here we collect some de#nitions
and theoretical facts that we need to work within this framework.
The section concludes with Proposition 3.7 and Corollary 4, which
we use to justify the correctness of our interpolation setup.

De!nition 1. Let 𝐿 and 𝑀 be irreducible algebraic varieties of
dimension 𝑁 over the complex numbers. A branched cover is a
dominant, rational map 𝑂 : 𝐿 ! 𝑀 . The varieties 𝐿 and 𝑀 are
called the total space and the base space of the cover, respectively.
The number of (reduced) points in the preimage over a generic
𝑃 ↑ 𝑀 is called the degree of 𝑂 , denoted deg 𝑂 .

Essentially, the base space 𝑀 in De#nition 1 can be thought of as
a space of parameters or observations. The #ber 𝑂 ↓1 (𝑃) over some
particular 𝑃 ↑ 𝑀 should usually be understood as the solutions of
a particular problem instance speci#ed by 𝑃 . Oftentimes, 𝑀 may
be assumed to be an a"ne space C𝐿 , and in this case we write
p ↑ C𝐿 for parameter values. The assumptions that 𝑂 is dominant
and dim𝐿 = 𝑁 imply that there is a #nite, nonzero number of
solutions for almost all parameters. Counting solutions over C, that
number is deg 𝑂 . Additionally, the total space 𝐿 is often either

(1) an irreducible variety consisting of problem-solution pairs,

𝐿 = {(x, p) ↑ C𝑀+𝐿 | 𝑂1 (x, p) = · · · = 𝑂𝑁 (x, p) = 0} (1)

for some system of polynomials 𝑂1, . . . , 𝑂𝑁 ↑ C[x, p], with
projection 𝑂 : 𝐿 → C𝐿 given by 𝑂 (x, p) = p, or

(2) an a"ne space of unknowns 𝐿 = C𝐿 , and 𝑂 : C𝐿 ! C𝐿 .
Cases (1) and (2) for the total space 𝐿 given above are closely

related. Indeed, (2) reduces to (1) if we take 𝐿 to be the graph of
𝑂 . Conversely, it can often be the case that the variety 𝐿 has a
unirational parametrization 𝑄 : C𝐿 ! 𝐿 . In this case, (1) reduces
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to (2) by replacing 𝑂 with the branched cover 𝑂 ↔ 𝑄 : C𝐿 ! C𝐿 .
When deg 𝑂 and deg𝑄 are both greater than 1, the composite map
𝑂 ↔ 𝑄 is an example of a decomposable branched cover.

De!nition 2. A branched cover 𝑂 : 𝐿 ! 𝑀 is said to be decompos-
able if there exist two branched covers 𝑅 : 𝐿 ! 𝑆 and 𝑇 : 𝑆 ! 𝑀
with deg𝑅, deg𝑇 < deg 𝑂 such that 𝑂 (𝑈) = 𝑇 ↔ 𝑅(𝑈) for all 𝑈 in a
nonempty Zariski-open subset of 𝐿 . The maps 𝑅 and 𝑇 are said to
give a decomposition of 𝑂 .

Example 3.1. Let𝐿 = V(𝑉𝑈6 +𝑊𝑈5 +𝑋𝑈4 +𝑌𝑈3 +𝑋𝑈2 +𝑊𝑈 +𝑉) ↗ C5,
𝑀 = C4, and 𝑂 : 𝐿 → 𝑀 given by 𝑂 (𝑉,𝑊, 𝑋,𝑌, 𝑈) = (𝑉,𝑊, 𝑋,𝑌) .
The projection 𝑂 is a decomposable branched cover in the sense
of De#nition 2. To see this, take 𝑆 = V(𝑉(𝑍3 ↓ 3𝑍) +𝑊 (𝑍2 ↓ 2) +𝑋𝑍 +
𝑌) ↗ C5, and de#ne 𝑅 : 𝐿 ! 𝑆 by 𝑅(𝑉,𝑊, 𝑋,𝑌, 𝑈) = (𝑉,𝑊, 𝑋,𝑌, 𝑂2+1

𝑂 ),
and 𝑇 : 𝑆 → 𝑀 by 𝑇(𝑉,𝑊, 𝑋,𝑌,𝑍) = (𝑉,𝑊, 𝑋,𝑌). The degrees of the
various maps satisfy 6 = deg 𝑂 = deg(𝑇↔𝑅) = deg(𝑇) ·deg(𝑅) = 3 ·2.

Example 3.2. The following example is based on [5, §2.3.2], and
belongs to a general class of examples where decomposability can
be detected via equations’ Newton polytopes. Let 𝑀 = C23, and
𝐿 ↗ C26 be the vanishing locus of the three equations below:
𝑉 𝑈3𝑍 𝑃4 + 𝑊 𝑈2𝑍2𝑃4 + 𝑋 𝑈2𝑍 𝑃3 + 𝑌 𝑈 𝑍2𝑃3 + 𝑎 𝑈2𝑃2 + 𝑂 𝑈 𝑍 𝑃2 + 𝑅 𝑈 𝑃 + 𝑇,
𝑏 𝑈3𝑍 𝑃4 + 𝑐 𝑈2𝑍2𝑃4 + 𝑑 𝑈2𝑍 𝑃3 + 𝑒 𝑈 𝑍2𝑃3 +𝑁𝑈2𝑃2 + 𝑓 𝑈 𝑍 𝑃2 + 𝑔 𝑈 𝑃 + 𝑄,

𝑕 𝑈 𝑍 𝑃4 + 𝑖 𝑍 𝑃5 + 𝑗 𝑈 𝑃3 + 𝑘 𝑃4 + 𝑙 𝑃3 + 𝑚 𝑃2 +𝑛 .

The projection 𝑂 : 𝐿 → C23 given by 𝑂 (𝑉, . . . , 𝑃) ↘→ (𝑉, . . . ,𝑛)
is a branched cover of degree 32. If we let 𝑆 be the set of all
(𝑉, . . . ,𝑛 , 𝑈,𝑍) ↑ C25 such that

𝑉 𝑈3𝑍 + 𝑊 𝑈2𝑍2 + 𝑋 𝑈2𝑍 + 𝑌 𝑈 𝑍2 + 𝑎 𝑈2 + 𝑂 𝑈 𝑍 + 𝑅 𝑈 + 𝑇 =

𝑏 𝑈3𝑍 + 𝑐 𝑈2𝑍2 + 𝑑 𝑈2𝑍 + 𝑒 𝑈 𝑍2 +𝑁𝑈2 + 𝑓 𝑈 𝑍 + 𝑔 𝑈 + 𝑄 = 0,

then 𝑅 : 𝐿 → 𝑆 given by 𝑅(𝑉, . . . ,𝑛 , 𝑈,𝑍, 𝑃) = (𝑉, . . . ,𝑛 , 𝑈𝑃,𝑍𝑃) and
𝑇 : 𝑆 → 𝑀 given by 𝑇(𝑉, . . . ,𝑛 , 𝑈,𝑍) = (𝑉, . . . ,𝑛) show that 𝑂 is a
decomposable branched cover in the sense of De#nition 2. Here we
have deg𝑇 = 8 and deg𝑅 = 4.

The Galois/monodromy group is an invariant that allows us to
decide whether or not a branched cover is decomposable, without
actually exhibiting a decomposition. We recall the basic de#nitions
here. For a branched cover 𝑂 : 𝐿 ! 𝑀 , #x a dense Zariski-open
subset𝑜 ↗ 𝑀 such that 𝑂 ↓1 (𝑃) consists of𝑌 = deg(𝑂 ) points. Over a
regular locus, the branched cover 𝑂 restricts to a 𝑌-sheeted covering
map in the usual sense given by 𝑂 ↓1 (𝑜 ) → 𝑜 . For any basepoint
𝑃 ↑ 𝑜 , we may construct via path-lifting a group homomorphism
from the fundamental group 𝑝1 (𝑜 ; 𝑃) to the symmetric group 𝑞𝑃 .

More precisely, if 𝑟 : [0, 1] → 𝑜 is any map that is continuous
with resepct to the Euclidean topology, then the unique lifting prop-
erty [13, Prop. 1.34] implies that there are precisely 𝑌 continuous
lifts 𝑟1, . . . ,𝑟𝑃 : [0, 1] → 𝑝↓1 (𝑜 ) satisfying 𝑂 ↔ 𝑟𝑄 (𝑘) = 𝑟𝑄 (𝑘) for all
𝑏 = 1, . . . ,𝑌 and 𝑘 ↑ [0, 1] . In particular, 𝑟𝑄 (0),𝑟𝑄 (1) ↑ 𝑂 ↓1 (𝑃), and
there is a permutation 𝑠𝑅 that sends each 𝑟𝑄 (1) to 𝑟𝑄 (0) . One may
check that this permutation is independent of the chosen represen-
tative 𝑟 of the homotopy class [𝑟] ↑ 𝑝1 (𝑜 ; 𝑃) . Thus, for our chosen
𝑜 and 𝑃 we may de#ne the monodromy representation,

𝑡𝑆,𝑇 : 𝑝1 (𝑜 ; 𝑃) → 𝑞𝑃 (2)
[𝑟] ↘→ 𝑠𝑅 .

This gives a group homomorphism, whose image is a subgroup of
𝑞𝑃 , which turns out to be independent of the choice of𝑜 and 𝑃 .

De!nition 3. The Galois/monodromy group of a branched cover
𝑂 is the subgroup of 𝑞𝑃 given by the image of the map (2).

The abstract structure of the Galois/monodromy group, although
interesting, is not our main focus. Instead, we will be mainly inter-
ested in the action of this group given by (2). Since 𝐿 is irreducible,
this action is transitive (see eg. [20, Lemma 4.4, p87].)

The monodromy action also provides a clean characterization of
decomposable branched covers. Recall that the action of a group𝑢
on a #nite set 𝑣 is said to be imprimitive if there exists a nontrivial
partition 𝑣 = 𝑣1 ≃ 𝑣2 ≃ · · · ≃ 𝑣𝑁 such that for any 𝑅 ↑ 𝑢 and 𝑣𝑄
there exists a 𝑣 𝑈 with 𝑅 · 𝑣𝑄 = 𝑣 𝑈 . If 𝑣 has 𝑌 elements and 𝑢 is a
#nite, transitive subgroup of 𝑞𝑃 , it follows that the subsets 𝑣𝑄 must
all have the same size. The sets 𝑣1, . . . ,𝑣𝑁 are called blocks of the
imprimitive action, and are said to form a block system.

Proposition 3.3. (See eg. Brysiewicz et al. [5, Proposition 1].) A
branched cover is decomposable if and only if its Galois/monodromy
group is imprimitive.

Example 3.4. For the branched cover 𝑂 from Example 3.1, the
Galois/monodromy group acts transitively on the set of roots, which
we replace with a set of labels 𝑣 = {1, . . . , 6}. Up to relabeling, there
is a block decomposition for this action given by 𝑣 = {1, 2, 3} ≃
{4, 5, 6}. There are 48 = 23 · 3! permutations in 𝑞6 that preserve
this block decomposition. These permutations form a group called
the wreath product 𝑞2 ⇐ 𝑞3 . This group can be presented by three
permutation generators, for instance

⇒(12) (45), (123) (456), (14) (25) (36)⇑. (3)

Computing the Galois/group monodromy group numerically, we
#nd that every element of 𝑞2 ⇐ 𝑞3 arises as 𝑠𝑅 for some loop 𝑟 .

Similarly, for the branched cover from Example 3.2, we #nd by
numerical computation that its Galois/monodromy group is the
wreath product 𝑞4 ⇐ 𝑞8, a group of order (4!)8 · 8!

In general, a transitive, imprimitive permutation group has a
block system 𝑣1, . . . ,𝑣𝑁 whose blocks all have the same size 𝑒,
and is thus permutation-isomorphic to a subgroup of the wreath
product 𝑞𝑉 ⇐ 𝑞𝑁 . Unlike the previous example, there are a number
of surprising cases of decomposable branched covers where the
Galois/monodromy group is a proper subgroup of the associated
wreath product: for instance, the #ve-point problem of Section 5.1.

We point out that Proposition 3.3 dates back, at least in some
form, to work of Ritt on polynomial decompositions [25]. This work
is directly related to decomposition problems for polynomials and
rational functions studied in computer algebra (see eg. [11, 31]).

However, the main focus in this paper is not decomposability per
se. Rather, we are interested in a property that is usually stronger:
the existence of symmetries. A natural, and general, notion of sym-
metry can be obtained by studying the embedding of function #elds
𝑂 ⇓ : C(𝑀 ) ! C(𝐿 ) induced by a branched cover. The #eld ex-
tension C(𝐿 )/C(𝑀 ), although not usually a Galois extension, may
nevertheless a have a nontrivial group of automorphisms. These
automorphisms correspond to rational maps ω : 𝐿 ! 𝐿 with
𝑂 ↔ ω = 𝑂 . In topological terms, these comprise the group of deck
transformations of 𝑂 .
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Figure 2: Illustration of Proposition 3.7.

Proposition 3.5 below explains the relationship between deck
transformations and decomposability, and provides an analogue
of Proposition 3.3 for detecting the existence of deck transforma-
tions. Proofs may be found in [10, §2.1].

Proposition 3.5. Let 𝑂 : 𝐿 ! 𝑀 be a branched cover of degree 𝑌 .
(1) If 𝑂 has a nontrivial deck transformation group, then its

Galois/monodromy group is either decomposable or cylic of
order 𝑌 . (Both are true when 𝑌 is composite.)

(2) Restricting the deck transformations to the #ber 𝑂 ↓1 (𝑃) de-
#nes another permutation group which is the centralizer
of the Galois/monodromy group in 𝑞𝑃 . In particular, there
exists a nontrivial deck transformation if and only if this
centralizer is nontrivial.

Example 3.6. For the branched cover 𝑂 from Example 3.1, the cen-
tralizer in 𝑞6 of the Galois/monodromy group presented as in eq. (3)
is a cyclic group of order 2, namely ⇒(14) (25) (36)⇑. Correspond-
ingly, there is a nontrivial deck transformation ω : 𝐿 ! 𝐿 de#ned
by ω(𝑉,𝑊, 𝑋,𝑌, 𝑈) = (𝑉,𝑊, 𝑋,𝑌, 1/𝑈) .

For the branched cover 𝑂 of Example 3.2, the centralizer of its
Galois/monodromy group 𝑞4 ⇐ 𝑞8 in 𝑞32 is trivial. Thus, this decom-
posable branched cover has no nontrivial deck transformations.

In the #nal results of this section, Proposition 3.7 and Corollary 4,
we use the terminology generic path for a given branched cover
𝑂 : 𝐿 ! 𝑀 . This means a path 𝑤 : [0, 1] → 𝑜 where 𝑜 is some
suitably small set, either a regular locus in 𝑀 or its preimage in
𝐿 . In the former case, we write 𝑤𝑂 for the unique lift of a path 𝑤
through 𝑂 starting at 𝑈 ↑ 𝑂 ↓1 (𝑤 (0)).
Proposition 3.7. Let 𝑂 : 𝐿 ! 𝑀 be a branched cover with a #xed
generic point 𝑈 ↑ 𝐿 . Then the value of a deck transformation
ω ↑ Deck(𝐿/𝑀 ) at a generic point 𝑈 ⇔ ↑ 𝐿 is completely determined
via path-lifting by where it sends 𝑈 . Explicitly,

ω(𝑈 ⇔) = "(𝑂 ↔ 𝑤)ω(𝑂 ) (1), (4)

where 𝑤 is a generic path in 𝐿 from 𝑈 to 𝑈 ⇔ (see Figure 2).

P!""#. We refer to the proof of [13, Prop. 1.33] and the general
de#nition of a lift given on [13, p. 60]. The deck transformation
ω is a lift of 𝑂 to 𝐿 in the sense of this de#nition. This means
the proof of Proposition 1.33 can be applied to construct a deck

Z

X x0x

 (x0)

f

f � ↵

↵

(f � ↵) (x)

z z0

 (x)

Figure 3: Illustration of Corollary 4.

transformation ω⇔ with ω⇔ (𝑈) = ω(𝑈). This construction uses lifts
of a generic path 𝑤 to construct ω⇔, with the additional property
that ω⇔ (𝑈 ⇔) = "(𝑂 ↔ 𝑤)ω(𝑂 ) (1) . The unique path-lifting property
then implies that ω(𝑈 ⇔) = ω⇔ (𝑈 ⇔). ↭

A consequence of Proposition 3.7 is that the correspondence
between solutions for #xed set of parameters under a #xed deck
transformation ω is preserved under path-lifting.

C"!"$$%!& 4. Let 𝑂 : 𝐿 ! 𝑀 be a branched cover and ω ↑
Deck(𝐿/𝑀 ). Let 𝑃 ↑ 𝑀 be a generic point and 𝑥 be a generic path in
𝑀 starting at 𝑃 (see Figure 3). Then for 𝑈 ↑ 𝐿𝑊 we have

ω(𝑥𝑂 (1)) = 𝑥ω(𝑂 ) (1)
In other words, the points in the 2 lifts of 𝑥 starting at 𝑈 and ω(𝑈) are
conjugate under ω (see Figure 3.)

P!""#. By Proposition 3.7, ω(𝑥𝑂 (1)) =
"(
𝑂 ↔ 𝑥𝑂

)
ω(𝑂 )

(1), which,

in turn, is equal to 𝑥ω(𝑂 ) (1), since 𝑂 ↔ 𝑥𝑂 = 𝑥 . ↭

4 INTERPOLATING SYMMETRIES
Consider a branched cover encoding problem-solution pairs (x, p),

𝑂 : 𝐿 → C𝐿 (5)
(x, p) ↘→ p

with deg 𝑂 = 𝑌 , which has a nontrivial deck transformation

ω(x, p) =
[
𝑦1 (x, p) . . . 𝑦𝑀 (x, p) p↖

]↖
. (6)

As mentioned in the introduction, we may compute the Ga-
lois/monodromy group of 𝑂 using numerical homotopy continua-
tion. This is possible provided that we make the following assump-
tions about how our branched cover is given as input.

Assumption 4.1. For the branched cover de#ned in eq. (5), assume
that 𝑓 rational functions 𝑂1, . . . , 𝑂𝑀 vanishing on 𝐿 are known, and
that we have access to a sampling oracle that produces generic
(x⇓, p⇓) ↑ 𝐿 such that the 𝑓 ↙ 𝑓 Jacobian 𝑋f

𝑋x (x⇓, p⇓) has rank 𝑓.
Assumption 4.1 is often satis#ed in practice, including cases

where even a set-theoretic description of 𝐿 is not known. Addition-
ally, we assume that homotopy continuation—speci#cally, coe"-
cient parameter homotopy—can be used to track 𝑌 known solutions
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for #xed, generic parameter values p⇓ (corresponding to 𝑂 ↓1 (p⇓))
to 𝑌 solutions for some other parameter values p ↑ C𝐿 (correspond-
ing to 𝑂 ↓1 (p)). These parameter homotopies are the basis of the
unspeci#ed subroutines in lines 1 and 8 of Algorithm 1.

An important observation is that we can interpolate each of the
coordinate functions𝑦 𝑈 (x, p) in eq. (6) independently. We assume
that the rational function𝑦 𝑈 contains only monomials up to total
degree 𝑧 . Since these monomials may or may not involve the pa-
rameters p, we distinguish the parameter-dependent and parameter-
independent settings, in which we take the number of monomials 𝑘
to be either

𝑘 =
(
𝑓 +𝑁 + 𝑧

𝑧

)
, or (for parameter-dependent𝑦 𝑈 (x, p))

𝑘 =
(
𝑓 + 𝑧

𝑧

)
. (for parameter-independent𝑦 𝑈 (x))

Our task is then to recover two vectors of unknown coe"cients

a =
[
𝑉1 . . . 𝑉𝑌

]↖
, b =

[
𝑊1 . . . 𝑊𝑌

]↖ ↑ C𝑌 ,
such that𝑦 𝑈 can be represented on 𝐿 as

𝑦a,b (x, p) =
∑𝑌
𝑁=1 𝑉𝑁 · (x, p)𝜴𝐿∑𝑌
𝑁=1 𝑊𝑁 · (x, p)𝜶𝐿

. (7)

In Equation (7), the vectors 𝜴𝑁 , 𝜶𝑁 ↑ Z𝑀+𝐿∝0 range over a suitable
set of multidegrees, depending on whether we are in the parameter-
dependent or parameter-independent setting. If we know that
(x⇔𝑄 , p𝑄 ) = ω(x𝑄 , p𝑄 ) for points (x𝑄 , p𝑄 ), (x⇔𝑄 , p𝑄 ) ↑ 𝐿 , then this gives
us one homogeneous linear constraint on a and b,

𝑌∑
𝑁=1

𝑉𝑁 · (x𝑄 , p𝑄 )𝜴𝐿 ↓ 𝑈 ⇔𝑄 𝑈 ·
(

𝑌∑
𝑁=1

𝑊𝑁 · (x𝑄 , p𝑄 )𝜶𝐿

)
= 0. (8)

Suppose we have already computed permutations generating the
monodromy group based at parameter values p1 ↑ C𝐿 , and let
x1, x⇔1 be two solutions with ω(x1, p1) = (x⇔1, p1). Proposition 3.5
implies that𝑠 ·(x1, p1) = (x⇔1, p⇔1) for some element of the centralizer
𝑠 ↑ Cent𝑍𝑀 (Mon(𝑂 , p1)) corresponding to ω. Now, Corollary 4 im-
plies that we may obtain additional sample points satisfying (8) by
tracking parameter homotopies using the system 𝑂1, . . . , 𝑂𝑀 . Specif-
ically, we may track the solution curves with initial values x1, x⇔1
from p1 to generic p𝑄 ↑ C𝐿 for 𝑏 = 1, . . . , 2𝑘 , which then allows us
recover the coordinate functions of ω.

Proposition 4.1 (Correctness of Algorithm 1). Suppose that 𝑦 𝑈
in (6) can be represented as the quotient of polynomials with degree
′ 𝑧 and 𝑘 monomials each. For a su"ciently generic sample

(x1, p1), . . . , (x2𝑌 , p2𝑌 ), (x⇔1, p1), . . . , (x⇔2𝑌 , p2𝑌 ) ↑ 𝐿 ,

with (x⇔𝑄 , p𝑄 ) = ω(x𝑄 , p𝑄 ) for all 𝑏 , suppose
[
a↖ b↖

]
is a solution

to the 2𝑘 linear equations given by (8) for 𝑏 = 1, . . . , 2𝑘 , which lies
outside the span of all solutions with a = 0 or b = 0. Then the
rational function obtained by restricting𝑦a,b (x, p) to 𝐿 equals𝑦 𝑈 .

P!""#. The assumption that
[
a↖ b↖

]
is a nontrivial linear

combination of solutions with a, b ω 0 ensures that𝑦a,b is a well-
de#ned, nonzero rational function on 𝐿 . Such a function of the
form (7) is determined by its values on 2𝑘 generic points of 𝐿 .
Since𝑦 𝑈 , by assumption, is also such a function, the 2𝑘 linear con-
straints (8) force𝑦 𝑈 and𝑦a,b to agree on 𝐿 . ↭

Thus, to interpolate𝑦 𝑈 , we may determine from the linear equa-
tions (8) a 2𝑘 ↙ 2𝑘 Vandermonde-type coe"cient matrix A. We
represent the nullspace of A by the column-span of a matrix Nwith
2𝑘 rows. Although Proposition 4.1 can be viewed as a uniqueness
statement, the matrix N will generally have more than one column,
even for generic samples (x1, p1), . . . , (x2𝑌 , p2𝑌 ) ↑ 𝐿 . The “extra"
columns of N appear for two reasons:

(1) There may exist di!erent representatives of𝑦 𝑈 on 𝐿 of the
form (7), whose coe"cient vectors are linearly independent.

(2) The nullspace of A may contain spurious solutions not satis-
fying the hypothesis a = 0 or b = 0 in Proposition 4.1. For
instance, #xing b = 0 we may interpolate polynomial func-
tions of the form

∑𝑌
𝑁=1 𝑉𝑁 · (x, p)𝜴𝐿 vanishing on 𝐿 . In the

same way, #xing a = 0 we interpolate polynomial functions
of the form

∑𝑌
𝑁=1 𝑊𝑁 · (x, p)𝜶𝐿 vanishing on 𝐿 .

For some applications it may be necessary to pick a sparse repre-
sentative from the nullspace of A. In general, #nding the sparsest
vector in the nullspace of a matrix is NP-hard [6]. Nevertheless, in
many cases we may #nd a relatively good sparse representative by
looking at the reduced row echelon form of N↖ for some particular
ordering of its columns and picking one with the fewest zeros sub-
ject to the additional constraints a, b ω 0. We illustrate some of the
choices involved on two simple examples.

Example 4.2. Let 𝐿 = V(𝑈2 + 𝑄𝑈 + 1), 𝑂 (𝑈, 𝑄) = 𝑄 . The Ga-
lois/monodromy group and deck transformation group are both
𝑞2 . When interpolating a nontrivial deck transformations of degree
𝑧 = 1, we obtain the reduced row echelon form for N↖ below.

Ñ =

1 𝑈 𝑄 1 𝑈 𝑄[ ]
1 0 0 0 1 0 1

𝑂
0 1 1 ↓1 0 0 ↓𝑈 ↓ 𝑄

We see that ω(𝑈, 𝑄) has 2 di!erent representatives 1
𝑂 and ↓𝑈 ↓ 𝑄 ,

which both agree on 𝐿 . There is no clear choice of “best representa-
tive”. In terms of sparsity, the representative 1

𝑂 is superior. However,
one might instead prefer ↓𝑈 ↓ 𝑄 since it is a polynomial.

Example 4.3. Consider the branched cover

𝑂 : V(𝑈2 + 𝑈 + 𝑄, 𝑈 + 𝑍 + 𝑄) → C
(𝑈,𝑍, 𝑄) ↘→ 𝑄,

which has a unique non-identity deck transformationω = (𝑦1,𝑦2) .
If we interpolate parameter-dependent deck transformations, we
may #nd matrices A1 and A2 representing ω which are 8 ↙ 8. The
reduced row echelon forms of the transposed nullspaces are

Ñ1 =

1 𝑈 𝑍 𝑄 1 𝑈 𝑍 𝑄



1 0 ↓1 0 ↓1 0 ↓1 ↓1 1↓𝑎
↓1↓𝑎↓𝑏

0 1 1 0 0 0 1 1 𝑂+𝑎
𝑎+𝑏

0 0 0 1 0 0 ↓1 ↓1 𝑏
↓𝑎↓𝑏

0 0 0 0 0 1 1 1 spurious,
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and for𝑦2 (𝑈,𝑍, 𝑄) we have

Ñ2 =

1 𝑈 𝑍 𝑄 1 𝑈 𝑍 𝑄





1 0 ↓1 ↓2 1 0 0 0 1 ↓ 𝑍 ↓ 2𝑄

0 1 1 1 0 0 0 0 spurious

0 0 0 0 0 1 1 1 spurious.

If we are not interested in the sparsest representative, then we
may take𝑦1 =

𝑏
↓𝑎↓𝑏 and𝑦2 = 1 ↓ 𝑍 ↓ 2𝑄 .

In this example, it is possible to #nd the sparsest polynomial
representative for𝑦1 by solving an auxiliary linear system. In other
words, we compute a linear combination of rows

[
a↖ b↖

]
= r↖Ñ1

such that b↖ =
[
1 0↖

]
and a↖ contains the minimum number

of zeros. First, to obtain b↖ =
[
1 0↖

]
, we solve a linear system

obtained from the right 4 ↙ 4 block of Ñ1,(
r↖Ñ1

)
:,5:8

=
[
1 0↖

]
.

The general solution of this system is given by

r↖ =
[
↓1 𝑖 𝑖 + 1 0

]
, 𝑖 ↑ C.

Using r to form a linear combination of rows now from the left 4↙4
block of Ñ1, we obtain

a↖ =
[
↓1 𝑖 𝑖 + 1 𝑖 + 1

]
.

To maximize the sparsity, we may set 𝑖 = ↓1 to obtain[
a↖ b↖

]
=
[
↓1 ↓1 0 0 1 0 0 0

]
which encodes the function

𝑦1 (𝑈,𝑍, 𝑄) = ↓𝑈 ↓ 1.

Our pseudocode in Algorithm 1 outlines a degree-by-degree pro-
cedure for interpolating the full set of deck transformations up
to a given degree 𝑧⇓ . To implement such a procedure, there are
many design choices that could improve performance or meet the
needs of a particular task. Among the design choices, we note that
the monodromy, parameter homotopy, and get_representative

subroutines on respective lines 1, 8, and 16 are left unspeci#ed. Our
implementation relies on HomotopyContinuation.jl for the #rst
two of these subroutines. For get_representative, our implemen-
tation chooses the sparsest row in the rref matrix Ñ𝑈 . For the #nal
output of line 18, we heuristically truncate “small” entries of Ñ𝑈 of
size < 10↓5.

Finally, we note the following improvements to the pseudocode
in Algorithm 1, which we have used in our implementation.

(1) Computing the monodromy group and centralizer in lines
1–2 is an o%ine task which only needs to be performed once
for a given family of systems.

(2) In practice, we might only need to recover generators of the
deck transformation group. The needed modi#cations are
trivial, since deck transformations are interpolated indepen-
dently.

(3) To restart the computation at a higher degree limit 𝑧⇓, one
can use previously-computed samples from 𝐿 . In principle,
one can also draw > 2𝑘 samples and compute the nullspace
of the resulting rectangular matrices A𝑈 .

Algorithm 1: Interpolating deck transformations
Input: 𝛥 = (𝑂1, . . . , 𝑂𝑀) and (x⇓, p⇓) as in Assumption 4.1,

representing 𝑂 as in (5); an upper bound for the total
degree 𝑧⇓ of monomials in each interpolant

Output: Partially-speci#ed rational maps representing the
group of deck transformations,
{ω1, . . . ,ω𝑐} = Deck(𝑂 ), with all coordinate
functions representable in degree ′ 𝑧⇓ speci#ed

1 (𝑈 (1) , . . . , 𝑈 (𝑃 ) ),Mon(𝑂 , p⇓) ∞ run_monodromy(𝛥 , x⇓, p⇓)
2 {𝑠1, . . . ,𝑠𝑐} ∞ Cent𝑍𝑀 (Mon(𝑂 , p⇓))
3 ω1 ∞ x
4 for ( 𝑏 ∞ 2; 𝑏 ′ 𝑕; 𝑏 ∞ 𝑏 + 1 )
5 ω𝑄 ∞

[
nothing . . . nothing

]↖
6 for ( 𝑧 ∞ 1; 𝑧 ′ 𝑧⇓; 𝑧 ∞ 𝑧 + 1 )
7 𝑘 ∞

𝑀+𝐿+𝑑
𝑑


, or

𝑀+𝑑
𝑑


if parameter-independent

8 Track parameter homotopies for ∝ 2𝑘 samples from 𝐿 .
9 for ( 𝑏 ∞ 2; 𝑏 ′ 𝑕; 𝑏 ∞ 𝑏 + 1 )
10 for ( 𝑐 ∞ 1; 𝑐 ′ 𝑓; 𝑐 ∞ 𝑐 + 1 )
11 if ω𝑄 𝑁 is nothing then
12 A𝑈 ∞ 2𝑘 ↙ 2𝑘 Vandermonde matrix from (8),
13 x⇔𝑁 = 𝑠𝑄 · x𝑁 for 𝑑 = 1, . . . , 2𝑘
14 N𝑈 ∞ nullspace(A𝑈 )
15 Ñ𝑈 ∞ rref(N↖

𝑈 )
16

[
a↖ b↖

]↖ ∞ get_representative(Ñ𝑈 )
17 if

[
a↖ b↖

]↖ is not nothing then
18 ω𝑄 𝑁 ∞

∑𝑂
𝐿=1 𝑒𝐿 · (x,p)𝜴𝐿∑𝑂
𝐿=1 𝑓𝐿 · (x,p)𝜶𝐿

19 if all ω𝑄 are interpolated then
20 return {ω1, . . . ,ω𝑐}

21 return {ω1, . . . ,ω𝑐}

(4) To minimize the number of calls to the parameter homotopy
subroutine, one can attempt to track samples in “batches":
since every #ber consists of 𝑌 points and each point gives 1
constraint on𝑦 𝑈 , then we need to obtain a complete set of
𝑌 solutions for 𝑖 di!erent sets of parameters (including p)
such that

𝑖𝑌 ∝ 2𝑘 ∈ 𝑖 ∝

2𝑘
𝑌


. (9)

In our experience, this strategy can work well, but comes
with the additional caveat that the samples need not sat-
isfy the genericity conditions of Proposition 4.1, since multi-
ple parameter values are duplicated. We encoutered one
(ultimately benign) instance of this phenomenon in our
study of Alt’s problem Section 5.2. In this example, we had
𝑌 = 8652 ∝ 2𝑘 = 650, and this strategy resulted in many
more spurious rows in Ñ due to all samples using the same
parameter values.
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5 EXPERIMENTS
5.1 Five-point relative pose
One of the most well-known minimal problems in computer vision
is that of the classical #ve-point problem. While many solvers
exist for this problem [21], and the symmetry is well-known, this
section aims to show how the methods in this paper can recover
this symmetry without any a priori knowledge.

The general set-up is as follows. There are 5 correspondences
between 2D image points x1 ∋ y1, . . . , x5 ∋ y5. These 2D data
points are 3 ↙ 1 vectors whose third coordinates equal 1, and are
assumed to be images of 5 world points under two calibrated cam-
eras, where the two camera frames di!er by a rotation R and a
translation t. This relative orientation [R | t] ↑ SER (3) between
the two cameras is what this problem aims to solve for, in addition
to each of the #ve points in 3D space, as measured by their depths
with respect to the #rst and second camera frames.

Writing 𝑤1, . . . ,𝑤5 for the depths with respect to the #rst camera
and 𝑥1, . . . , 𝑥5 for the depths with respect to the second camera,
solutions to the #ve-point problem must satisfy a system of poly-
nomial equations and inequations:

R↖R = I, detR = 1,
𝑥𝑄y𝑄 = R𝑤𝑄x𝑄 + t, 𝑤𝑄 , 𝑥𝑄 ω 0, △ 𝑏 = 1, . . . , 5.

(10)

The parameters of the depths, along with t, are de#ned in pro-
jective space, meaning t,𝑤1, . . . ,𝑤5, 𝑥1, . . . , 𝑥5 can only be recov-
ered up to a common scale factor. One option to remove this
ambiguity is to treat these unknowns as homogeneous coordi-
nates on a 12-dimensional projective space, then for generic data
x1, . . . , x5, y1, . . . , y5, there are at most #nitely many solutions in
(R, t,𝑤1, . . . ,𝑤5, 𝑥1, . . . , 𝑥5) ↑ SOC (3) ↙ P12C to the system (10). This
#nite-ness is what creates the minimal problem structure. In prac-
tice, these solutions may be computed by working in a #xed a"ne
patch of P = P12C (eg. 𝑤1 = 1.)

There are exactly 20 solutions over the complex numbers for
generic data in𝑀 =


C2 ↙ {1}

5↙ 
C2 ↙ {1}

5
. The solutions to (10)

are naturally identi#ed with the #bers of a branched cover 𝑂 : 𝐿 →
𝑀 , where 𝐿 is the incidence correspondence

𝐿 = {(R, (t,𝑤1, . . . ,𝑤5, 𝑥1, . . . , 𝑥5), (x1, . . . , x5, y1, . . . , y5))
↑ SOC (3) ↙ P12C ↙ 𝑀 | (10) holds }.

Alternatively, the problem may be formulated using a branched
cover between a"ne spaces of the same dimension C20 ! C20,
eg. using Cayley’s parametrization C3 ! SOC (3) .

With our chosen formulation, the branched cover 𝑂 has a single
deck transformation ω known as the twisted pair. We refer to [10,
§1], and (11) below for explicit formulas for ω, which show that ω
consists of component functions of total degree at most 3. The e!ect
of this deck transformation on solutions to the #ve-point problem
is illustrated on the left in Figure 1. The component functions
ω(R, t) are parameter-independent, whereas the components of
ω(𝑤1, . . . , 𝑥5) are parameter-dependent.

We ran Algorithm 1 on the formulation (10) with the upper
bound for the total degree 𝑧⇓ = 3. However, when running Algo-
rithm 1, we considered only the parameter-independent setting,
for which 𝑘 =

22+3
3


= 2300. In the parameter-dependent setup, we

would have 2𝑘 = 2
22+20+3

3

= 28380 coe"cients to interpolate. This

seemed to exceed the capacity of the machine we used.2
The computation described above succeeded in revealing known

formulas for the twisted pair on R and t, namely

𝑦 (R, t,𝑤1, . . . , 𝑥5) =
(
2
tt↖

t↖t
↓ I

)
R, 𝑦 (R, t,𝑤1, . . . , 𝑥5) = t. (11)

For the coordinate functions corresponding to 𝑤𝑄 or 𝑥𝑄 , no reason-
able representative was found—all rows of Ñwere such that a ▽ 0 or
b ▽ 0. These coordinate functions remain “nothing” in Algorithm 1.
This is expected, because the twisted pair is parameter-dependent
for the depths 𝑤1, . . . , 𝑥5 .

The experiment described above took approximately 20 minutes
on our machine. Due to the low number of solutions and relatively
small value of 𝑘, computing monodromy and tracking the solutions
to the additional parameter values (lines 1 and 8) took only seconds.
The bottleneck of the algorithm in the case was computing the
nullspaces ofA𝑈 ↑ C4600↙4600 for 𝑐 = 1, . . . , 22. In total, we sampled
the solutions for 𝑖 =

 2𝑌
𝑃


=
 4600

20

= 230 random instances using

the “batch” strategy described at the end of Section 4.

5.2 Nine-point Four-bar path generation
We now turn our attention toAlt’s problem. This is a classic problem
of kinematic synthesis which was #rst solved using homotopy
continuation in work of Morgan, Sommese, and Wampler [32].
Several more recent works have used monodromy to verify their
result, eg. [16, 23, 24]. Here we explain how this problem can be
modeled using a branched cover, and show how its well-known
symmetry group can be recovered in our approach.

The formulation we use follows [32], employing the standard
convention of isotropic coordinates. A vector in the plane is rep-
resented by two variables 𝑈, 𝑈 ↑ C. For the purpose of solving
polynomial systems, 𝑈 and 𝑈 are treated as independent complex
variables; for any physically meaningful solutions, these coordi-
nates will be related by complex conjugation. With this convention,
angles 𝛩 = 𝑎𝑄𝑔 are modeled by points on the hyperbola 𝛩𝛩 = 1.

In Figure 1, the vectors 𝑈 and 𝑍 point from the coupler point 𝑄0
to the upper joints of the four bar, and vectors 𝑉 and 𝑊 point from
𝛬0 towards the ground pivots. The four-bar mechanism has four
revolute joints: two connecting the left “crank” and right “rocker”
bars to the ground pivots, and another two connecting these bars
to the base of the coupler triangle. The motion of the mechanism is
induced by rotating the crank bar about its ground pivot. Atop the
coupler triangle sits the coupler point, which traces out a curve as
the mechanism moves. Without loss of generality, we may assume
(0, 0) is a point on this curve.

Alt’s problem can be stated as follows: given nine task posi-
tions 𝑄0 = 0, 𝑄1, . . . , 𝑄8 ↑ C, determine the mechanism parameters
𝑈,𝑍,𝑉,𝑊 and angles 𝛯 𝑈 ,𝛩𝑈 , 𝑞 𝑈 such that the coupler point moves
from 𝑄0 to 𝑄𝑄 for 𝑏 = 1, . . . , 8. Here𝛩𝑈 = 𝑎𝑄𝑕𝑁 , 𝑞 𝑈 = 𝑎𝑄𝑖 𝑁 as in Figure 1
(right), and 𝛯 𝑈 = 𝑎𝑄𝑔 𝑁 gives the rotation of 𝐿 as the coupler point
moves from 𝑄0 to 𝑄 𝑈 .

2All timings reported were obtained with a 2022 Mac M1 with 8GB RAM.
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Referring to Figure 1, we may write down for each 𝑐 = 1, . . . , 8
four loop-closure equations,

𝛯 𝑈 (𝑈 ↓ 𝑉) = 𝛩𝑈𝑈 + 𝑄 𝑈 ↓ 𝑉,

𝑞 𝑈 (𝑍 ↓ 𝑊) = 𝛩𝑈𝑍 + 𝑄 𝑈 ↓ 𝑊,
(12)

and their conjugates. Consequently, the orientation of the coupler
point may be written as a rational function in the mechanism pa-
rameters and the other angles,

𝛩𝑈 (𝑉,𝑊, 𝑈,𝑍,𝛯 𝑈 , 𝑞 𝑈 ) = (𝑍↓𝑈)↓1 (𝑞 𝑈 (𝑍↓𝑊) +𝛯 𝑈 (𝑉↓𝑈) +𝑊↓𝑉) . (13)
The rocker angle 𝑞 𝑈 is an algebraic function of degree 2 in the
quantities x = (𝑈, 𝑈,𝑍,𝑍,𝑉,𝑉,𝑊,𝑊) and the crank angle 𝛯 𝑈 . That is,

𝛱(x,𝛯 𝑈 ) 𝑞2𝑈 + 𝑣(x,𝛯 𝑈 )𝑞 𝑈 +𝛴 (x,𝛯 𝑈 ) = 0 (14)

for some 𝛱,𝑣,𝛴 ↑ Q[x,𝛯 𝑈 ] . We note that for generic, #xed values
of mechanism parameters x, this equation de#nes an elliptic curve
in the a"ne plane of (𝛯 𝑈 , 𝑞 𝑈 ) ↑ C2 . Since the discriminant of the
quadratic (14) is square-free, we may de#ne an irreducible variety

𝐿 ⇔ = {(x,𝛯1, . . . , 𝑞8) ↑ C24 | (14), 𝛱(x,𝛯 𝑈 ) ω 0 hold, 𝑐 = 1, . . . , 8}.
Using (12), each coupler point can now be expressed in terms of
rational functions on 𝐿 ⇔, say 𝑄 𝑈 (x,𝛯 𝑈 , 𝑞 𝑈 ), and 𝑄 𝑈 (x,𝛯 𝑈 , 𝑞 𝑈 ) for the
conjugate. We may then take as an irreducible variety of problem-
solution pairs𝐿 ↗ C8↙C16 be the closed image of𝐿 ⇔ under themap
(x,D,Q) ↘→ (x, p(x,Q, S)), p̄(x,Q, S)). This gives a branched cover
𝑂 : 𝐿 → C16. Although not yet formally proved, there is strong
evidence that deg 𝑂 = 8652. Following the elimination strategy
described in [32], we obtain a system of 8 equations

𝑂1 (x; p, p̄) = . . . = 𝑂8 (x; p, p̄) = 0 (15)

that vanishes on 𝐿 and satis#es Assumption 4.1. With this formu-
lation, we have two parameter-independent deck transformations:
a label-swapping that exchanges the crank and rocker bars

ωswap (x) = (𝑍,𝑍, 𝑈, 𝑈,𝑊,𝑊,𝑉,𝑉), (16)

(we omit the dependence of ω on p, p̄), and the Roberts cognate map

ωRob (x) =
( (𝑈 ↓ 𝑉)𝑍

𝑈 ↓ 𝑍
,
(𝑈 ↓ 𝑉)𝑍
𝑈 ↓ 𝑍

,
𝑊𝑈 ↓ 𝑉𝑍

𝑈 ↓ 𝑍
,
𝑊𝑈 ↓ 𝑉𝑍

𝑈 ↓ 𝑍
,𝑉 ↓ 𝑈,𝑉 ↓ 𝑈,𝑉,𝑉

)
.

(17)
Despite its simplicity in these variables, we note that extendingωRob
to the eliminated variables {𝛯 𝑈 , 𝑞 𝑈 ,𝛩𝑈 } yields parameter-dependent
coordinate functions.

We ran Algorithm 1 on the formulation (15) with the upper
bound for the total degree 𝑧⇓ = 2. As with the previous experi-
ment, we assumed parameter-independent deck transformations,
so that 𝑘 =

8+2
2

= 45. In total, we sampled 𝑖 =

 2𝑌
𝑃


=
 90
8652


= 1

instance. In this case, due to the relatively large number of solu-
tions,monodromy was the bottleneck, taking approximately 15min-
utes. The subsequent interpolation tasks took approximately 3min-
utes in total. We were able to interpolate both label-swapping (16)
and Roberts cognates (17), as well as the other 3 nontrivial deck
transformations they generate. The bottleneck during the inter-
polation phase, as expected, is again nullspace computation for
A𝑄 𝑁 ↑ C8652↙90, 𝑏 = 2, . . . , 6, 𝑐 = 1, . . . , 8.

The #rst numerical evidence that deg 𝑂 = 8652 was given in [32].
Later on, the lower bound deg 𝑂 ∝ 8652was certi#ed by Hauenstein
and Sottile using Smale’s 𝑤-theory [17]. A rigorous proof that this
bound is tight remains an open problem. More recently, Sottile and

Yahl have posed the problem of determining the Galois/monodromy
group of the branched cover 𝑂 [27, §7.3]. From equations (15), we
heuristically computed permutations inMon(𝑂 ) using the software
package HomotopyContinuation.jl [4]. This produced 4 permu-
tations using default settings. Using Proposition 3.5, we determine
that the deck transformation group is isomorphic to 𝑞3, generated
by a transposition and 3-cycle corresponding to (16) and (17), re-
spectively. This con#rms that these symmetries generate the full
deck transformation group of 𝑂 . Our attempts to determine the or-
der of the full Galois/monodromy group using the Julia interface to
GAP [22, 28] did not succeed after 2 days of computation. However,
we were able to easily determine that image of the homomorphism
Mon(𝑂 ) → 𝑞1442 given by the action on the maximal block system
was the full-symmetric group. 3 Based on what we know, it seems
plausible that these permutations generate the group 𝑞3 ⇐ 𝑞1442,
where 𝑞3 → 𝑞6 via the regular representation. Is this really the case,
and do they generateMon(𝑂 )?

6 CONCLUSION
In summary, we have proposed a novel method for recovering
hidden symmetries of commonly-occuring parametric polynomial
systems. Despite its heuristic nature, our experiments demonstrate
that the method is capable of delivering results on examples with a
relatively larger number of solutions (namely Section 5.2) or with
relatively large numerical interpolation subproblems (Section 5.1).

One obvious avenue for further research is to test more examples
and develop better heuristics. There is also potential for fruitful
contact with more traditional methods of symbolic computation.
In addition to our comments in Section 2, we point out that some
hybrid symbolic-numerical methods may be useful in practice. For
instance, it seems plausible that one could (1) run Algorithm 1 until
recovering coordinate functions for the deck transformations on
some subset of variables y ↗ x, then (2) eliminate the remaining
variables x \ y and use parametric Gröbner bases to solve for their
coordinate functions using the interpolated expressions from step
(1). Such hybrid methods might also be useful for recovering deck
transformations when a decomposition as in De#nition 2 is already
known, or vice-versa. Development of numerical methods for de-
termining the maps and intermediate variety appearing in such a
decomposition is also an appealing next step.
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