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1. Introduction

The study of plane curves under linear group actions is a classical subject of both differen-
tial (Guggenheimer, 1963) and algebraic geometry (Olver, 1999) with applications to image science
(Mundy et al., 1994). In particular, an important problem is to determine whether two curves are
equivalent under such a group action, which is more difficult when there is a significant level of
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Fig. 1. Two &,(C)-equivalent curves and their differential signature curve in red. A line and its pullback under the respective
signature maps in blue. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

noise. For instance, when the transformation group is the group of rigid motions, this can translate
to deciding whether two contours represent the same object in different positions, or, in the case of
affine and projective transformations, whether two contours might correspond to different projections
of the same 3D object. For plane algebraic curves, we state the group equivalence problem as follows
(@ denotes Zariski closure):

Problem 1. Given a positive dimensional algebraic group G C PGL3(C) acting linearly on C? and two
plane algebraic curves Co, C; € C2, decide if there exists g € G such that Co =g - Cq.

There exist many different symbolic algorithms to determine equivalence under a particular group
of algebraic transformations. For instance, one can directly use elimination algorithms to determine
whether there exists such a group element. One can also use invariants, for example by constructing a
set of rational invariants that characterize the orbits of the action on the coefficients of curves of fixed
degree d (Derksen and Kemper, 2015; Hubert and Kogan, 2007; Sturmfels, 2008) or by constructing a
pair of rational differential invariants which define a signature polynomial on a curve characterizing
its equivalence class (Burdis et al., 2013; Kogan et al., 2020).

In the analogous setting of smooth curves in R2, the Fels-Olver moving frame method (Fels and
Olver, 1999), based on Cartan’s method of moving frames, associates to each curve a differential signa-
ture curve, defined in terms of smooth invariants, which is classifying for the group action. In greater
generality, differential signatures may be constructed for smooth submanifolds of some ambient space
equipped with a Lie group action. The differential signature locally characterizes the manifold’s equiv-
alence class under the action, meaning that manifolds with the same signature are locally equivalent
under the Lie group (Fels and Olver, 1999). Differential signatures of curves have been successfully
applied to object recognition under noise, where it seems that curves that are “almost” equivalent
have “close” signatures. Specific applications range from jigsaw puzzle reconstruction (Hoff and Olver,
2014) to medical imaging (Grim and Shakiban, 2017). They have also been used to solve classical
invariant theory problems such as determining equivalence of binary and ternary forms (Berchenko
(Kogan) and Olver, 2000; Kogan and Moreno Maza, 2002; Olver, 1999).

Differential signatures were adapted from the smooth setting in order to construct explicit alge-
braic invariants in Hubert and Kogan (2007) and rational invariants in Kogan et al. (2020) for plane
algebraic curves. In Burdis et al. (2013) the notion of a signature polynomial was introduced to deter-
mine equivalence of plane algebraic curves, and in Kogan et al. (2020) it is shown that this reduction
to Problem 2 can always be done. For our purposes, the differential signature curve of an affine
curve C ¢ C? with respect to some group action will always be the image of some rational map
®:C--»C2.

Example 1.1. In Fig. 1, the red curve on left depicts real points (x, y) satisfying the cubic equation
8x3 — 20xy + 2y% + 5x — 10 = 0. Applying a real rotation and translation yields the red curve in the
middle. Theorem 2.18 tells us that they have the same differential signature curve. This is a degree
48 curve, depicted in red on the right.
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In the setting of Problem 1, Kogan et al. (2020) observed that local equivalence implies global
equivalence, reducing Problem 1 to a special case of Problem 2 below.

Problem 2. Given two irreducible algebraic varieties, Xo c C™ and X; c C™, and rational maps,
®g: Xg --»C™ and P : X7 --» C™, decide if im &g = im @1.!

In the smooth setting, the reduction of Problem 1 to Problem 2 can also be achieved through
the use of joint signatures (introduced in Olver, 2001) which are obtained by constructing maps using
joint invariants of the induced action of G on the product C? x ... x C2. The joint signatures may
be interpreted as O-th order differential invariants, and are considered to be more noise-resistant in
applications. This further motivates our interest in studying Problem 2 in full generality.

In this paper, we study the group equivalence problem for the complex Euclidean group & (C) via
differential and joint signatures. As a theoretical contribution, we complement the results of Kogan et
al. (2020) (summarized in Section 2.2) with a rigorous analysis of Euclidean joint signatures, which
characterize &, (C)-equivalence in our algebraic setting (Theorem 2.24). Another main contribution is
our use of numerical algebraic geometry. This allows us to study the joint signature for curves of higher
degree than symbolic methods would allow; as an upshot, we obtain a conjectural formula for the
degree of the joint signature of a generic curve (see Conjecture 4.2). Numerical algebraic geometry
also gives us a novel approach to Problem 2 (and hence also Problem 1) based on witness sets.
To accommodate the many variations on the signature construction, we state a general algorithm
for Problem 2; this equality test is a variation on the standard membership tests from numerical
algebraic geometry. Admittedly, this approach is far less straightforward than the direct approach to
Problem 1 in which the group element g is solved for directly. Our interest in numerical algebraic
geometry is partially motivated by the potential viability of numerical methods in noisy settings. As
a third contribution, we experimentally investigate the potential of the equality test for signatures to
measure of “near-equivalence” of curves.

A previous version of this work appeared in the conference proceedings of ISSAC 2020 (Duff and
Ruddy, 2020). In this version we have made significant revisions, with simpler proofs of the main re-
sults on joint signatures. We also include new results relating the curve’s symmetry group to the joint
signature (Proposition 2.31), which mirror previous results of Kogan et al. (2020) for the differential
signature map. We conduct several new experiments on the sensitivity of the numerical equality test
to noise, now involving the equi-affine group as well as curves computed from noisy samples. Finally,
we include several new examples.

The paper is organized as follows. Section 2 gives a general overview of signatures and their rela-
tion to the group equivalence problem. In 2.2, we recall the results of Burdis et al. (2013), Kogan et
al. (2020), where the differential signature for a plane algebraic curve is constructed using a classify-
ing pair of differential invariants. In 2.3 we describe how joint signatures can be used to determine
equivalence of plane curves using lower order differential invariant functions, and mirror these pre-
vious results for the particular case of the complex Euclidean group & (C). In Section 3, we review
some notions from numerical algebraic geometry, before stating a general solution to Problem 2 (Al-
gorithm 1) in Section 3.2, with additional comments relevant to the application to signatures in 3.3.
In Section 4, we describe an implementation in Macaulay2 (Grayson and Stillman, 1997). Our ex-
periments demonstrate that computing witness sets for plane curves of relatively high degree is
feasible and that, for precomputed witness sets, the online equality test gives a fast alternative to
symbolic methods for signatures, and that Finally, we observe our numerical approach is robust in
a certain, moderate regime of noise in which we subject the curves to different types of pertur-
bations. The experiments were conducted using version 117 of Macaulay2 (Grayson and Stillman,
1997); our implementation and scripts for running experiments may be obtained via the url https://
github.com/timduff35/NumericalSignatures.

T In Problem 2, im ®; denotes the Zariski closure of the image of ®;. We do not address the more delicate problem of
deciding equality of the constructible sets im ®;.
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2. Signatures of curves
2.1. Invariants of plane curves

Invariants and the classification of differentiable curves in R? with respect to rigid motions are
classical subjects in differential geometry (Guggenheimer, 1963). This can be seen as a variant on
what we defined as Problem 1.

Definition 2.1. Two curves Cp, C1 are said to be G-equivalent, denoted Co =¢ Cq, if there exists an
element g in the group of transformations G such that Co =g - Cy.

Remaining purposefully agnostic about what constitutes a “curve” and a “group of transforma-
tions,” we can define the Group equivalence problem for curves as: given two curves and a group of
transformations G decide if they are G-equivalent. In this context both classical questions about ge-
ometry of real curves and Problem 1 are both specific instances of a larger class of problems. In this
subsection, we discuss how previous work on the group equivalence problem for differentiable curves
in R? connects to our approach to Problem 1 for algebraic curves in C2.

For now let C refer to the image of a smooth®> map y = (x(t), y(t)) where y : I — R? for some
interval I C R. We denote SE,(R) as the special Euclidean group, the transformation group of rotations
and translations of R2. A classical invariant of curves under rigid motion is the Euclidean curvature
function «(t), defined below in (1), meaning that the value of curvature at a particular point of a
curve does not change when the curve transformed by S& (R).

K(t) = X (©y"(®) =y OX"(©
Oy 022

Euclidean curvature at a point on a curve can be defined in many “geometrically-satisfying” ways,
as the multiplicative inverse of the radius of the osculating circle, or norm of the tangent vector when
the curve is parameterized by arc length. Euclidean curvature also provides a way to solve the group
equivalence problem for curves under S& (R). The following theorem appears in many places, for
instance (Guggenheimer, 1963), and is sometimes referred to as the “Fundamental theorem for planar
curves.”

(1)

Theorem 2.2. [f two smooth curves have the same Euclidean curvature as a function of arc length, then they
are SE(R)-equivalent.

Thus « (s), Euclidean curvature when C is parameterized by the arc length parameter s, completely
determines a curve up to S&(R). In practice comparing curves’ curvature functions to determine
S&>(R)-equivalence is difficult as this comparison depends on the parameterization and the starting
point when the curve is closed. In this sense, a single curve can have infinitely many different cur-
vature functions. Motivated by applications to object recognition, the authors of Calabi et al. (1998)
proposed the use of the Euclidean signature curve to determine SE& (IR)-equivalence of smooth curves.

Definition 2.3. The Euclidean signature curve of a smooth curve C is the image of C under the map
S :C — R2? defined by S = (k, k5), where ks is the function representing the derivative of k¥ with
respect to arc length.

Theorem 2.4 (Theorem 2.3 in Calabi et al., 1998). If two smooth curves, Co, C1 have the same Euclidean sig-
nature curve, then they are locally equivalent under S&,(R).

2 Here smooth refers to a map defined by infinitely differentiable functions. For simplicity we require smooth functions,
though for the results and constructions referenced, this restriction can be loosened to n-differentiable for an appropriate
choice of n.
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Here locally equivalent means that around each point of Cyp, there exist open subsets Uy C Cg and
Uy € Cq such that Ugp = g - Uy for some g € SE(R). Thus the local geometry of a curve is deter-
mined by the relationship between Euclidean curvature and another differential invariant function,
the derivative of x with respect to arc length. For closed curves this relationship is invariant with
respect to parameterization and starting point. Intuitively this produces an object, the Euclidean sig-
nature, where curves with local geometries that are “close” have “close” signatures. The word “close”
appears here in quotations as there is no rigorous statement to this effect, and a good definition of
“close” in this context needs further investigation. Nevertheless this idea still led to subsequent works
where the Euclidean signature curve is used for a curve matching algorithm (Hoff and Olver, 2013)
and then applied to automatic jigsaw puzzle reassembly (Hoff and Olver, 2014).

The authors of Calabi et al. (1998) also note that this procedure generalizes to plane curves under
other transformation groups of R2. For most Lie group actions of G on R? there exists a notion of
G-invariant curvature x and G-invariant arc length s such that if curves have the same image, or
differential signature, under (k, «s) then they are locally equivalent under G (Calabi et al., 1998, Thm
5.2). Moreover a pair of such differential invariants can be constructed explicitly by the Fels-Olver
moving frame method (Fels and Olver, 1999), giving a practical method to locally solve the group
equivalence problem for smooth curves.

Turning attention back to Problem 1, for algebraic curves local equivalence under a group G imme-
diately implies global G-equivalence as in Definition 2.1. Thus the differential signature characterizes
algebraic curves under a transformation group G. In Burdis et al. (2013) the authors connect the
differential signature to symbolic methods by noticing that when the differential invariants can be
expressed as a rational map on the curve, two algebraic curves’ differential signatures can be com-
pared by computing their implicit equations, connecting Problem 2 to the group equivalence problem
for algebraic curves over R2.

In Kogan et al. (2020) it is shown that for any subgroup of PGL3(C) there exists a pair of ratio-
nal differential invariants which can reduce Problem 1 to Problem 2. Thus the differential signature
can be used to solve questions of classical invariant theory in a way that uses the same invariants
regardless of the degree of the algebraic curves in question. Moreover these differential invariants can
be interpreted as generators of a field of rational invariants, meaning that they can be computed by
symbolic methods such as those in Derksen and Kemper (2015) or the cross-section method in Hu-
bert and Kogan (2007) inspired by the previously mentioned moving frame method. Thus Problem 1
can be solved end-to-end by symbolic computation in this way.

In practice, these methods can be quite slow for computing implicit equations of differential
signatures (see Ruddy (2019, Ex. 3.2.13) for instance), which is our motivation to further extend
the connection between Problem 1 to Problem 2 by leveraging numerical algorithms for computing
pseudo-witness sets to compare differential signatures of algebraic curves. In Section 2.2 we explain,
in greater detail, the reduction of Problem 1 to Problem 2 along with examples.

In addition to differential invariants, a similar approach has been taken using joint differential
invariants to solve the group equivalence problem for smooth curves in Olver (2001), which are in
theory more robust to noise and perturbations. In Section 2.3 we consider for the first time using the
joint signature in a completely algebraic approach to Problem 1, proving in the case of £ (C) that the
Euclidean joint signature characterizes equivalence classes of algebraic curves.

In the next two sections, we assume that plane curves are complex algebraic, irreducible, and of
degree greater than one. The degree restriction removes from consideration lines, on which not all
transformations g € G may not be defined.

2.2. Differential signatures

For algebraic curves, we tweak Definition 2.1 to the following definition, which allows for the
image of a curve under the action of G to not be closed.

Definition 2.5. Two algebraic curves C; and C, are G-equivalent if there exists g € G such that C; =
g-Co.
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We assume that the group G C PGL3(C) is a positive dimensional algebraic group acting linearly
on C2 with action g- (x, y) = X, ).

Definition 2.6. The projective group PGL3(C) is the group of invertible matrices modulo scaling, i.e.
PGL;3(C) = g£3((c)/)\1. The linear action on C?2 is defined by the map @ : PGL3(C) x C2 --» C2
where for A € PGL3(C) and p = (x, y) € C?,

ai1X+apy +a13 axx+axpy +as
®(A,p)= ( )

a31X+asy +as3’ 31X+ any +as3
We consider a few classical subgroups of PGL3(C).

Definition 2.7. The Euclidean group &,(C) is the subgroup of PGL3(C) given by matrices of the form

oc as a
—-s ¢ b
0 0 1

where a,b,c,s€ C, € {—1,1}, and 2 +s2=1.

Definition 2.8. The special Euclidean group SE,(C) is the subgroup of £ (C) consisting of determinant
one matrices.

Definition 2.9. The equi-affine group SA>(C) is the subgroup of PGL3(C) given by matrices of the
form

a1 412 a13
a1 a2 a3
0 0 1

with entries in C and aq1a; — ajza21 = 1.

A differential signature that determines G-equivalence of algebraic curves can be constructed from
a set of classifying invariants (Definition 2.15). We let J" denote the nth order jet space, a complex
vector space of dimension (n + 2) with coordinates (x, y, yV, ..., y™). Letting Q(J™) denote the set
of complex-differentiable functions from J" to C, the total derivative operator % QUM = QUM
is the unique C-linear map satisfying the product rule and the relations & (x) =1, &(y®) = y*+D
for k > 0, cf. Olver (1995, Ch. 7). The prolonged action of G on J" is given by

g-xy,yV, .y =&y 3", ..., 7"

where

B d [50 M )
%[y(g,x,y)] _(k+])_dx|:.y (g,X,yvy yees Y )]

v _ ’
Lx(g.x, »)] Lx(g. %, »)]

y

fork=1,...,n—1.

Definition 2.10. A differential invariant for the action of G is a function on J" that is invariant under
the prolonged action of G on J™. The order of a differential invariant is the maximum k such that the
function depends explicitly on y®.

Definition 2.11. The n-th jet of an algebraic curve C is the image of the map j : C --» J" given (where
defined) by
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X @Yy @y, 2@y, Ly y)),

where y(Ck) (x, y) is the k-th derivative of y with respect to x at the point (x, y) € C.

The prolonged action of G is defined such that
g-Jc(0)=jgclg-O).

Definition 2.12. The restriction of a differential invariant K of order n to a curve C is the map K|¢ :
C--»C? given by K|c =K o ji.

The coordinates of the n-th jet map ji are rational functions of x and y that can be computed via
implicit differentiation:

o _ ZE e

(k) ) (D)
2
€ 7 oyF ¢ @)

=0xyc +0yYe Yo',

where Z¢ = (F). Thus, if K is a rational differential invariant of order n, meaning it is a rational
function in the coordinates of J", then K|¢ is a rational function in x and y.

Definition 2.13. We say that a set of differential invariants Z separates orbits for the prolonged action
on a nonempty Zariski-open W c J" if, for all p,qe W,

K(p)=K(q) VKeZI <« 3IgeGsuchthatp=g-q.

Example 2.14. The prolonged action of £&(C) on J? is given by

Cyx—S O Yxx )

(XY, Yx, =|a(cx+sy)+a,—sx+cy+b, o ,
g (XY, Yx: Yxx) (( y) y T

where y, =y and y = y@. The Euclidean curvature function® in (1) can be written in the coor-
dinates of J? as
Yxx

KX, Y, Y, Yx) = ———=75-
(1+y2)*

Though « is not a rational differential function on J2, the function 2 is. Thus «?2 is a rational
differential invariant function for the action of & (C). In fact one can show that k2 separates orbits
for the prolonged action of £(C) on J2. For a particular algebraic curve C defined by F(x, y) =0, we
can restrict k2 to C to obtain the map k?|¢ : C — C defined by

—FxxF3+2Fxy FxFy—FyyF2 2
F (—FxxF2 + 2Fy FxFy — Fyy F2)

Gy

Definition 2.15. Let an r-dimensional algebraic group G act on C2. A pair of rational differential
invariants Z = {K1, K>} is said to be classifying if K1 separates orbits on a Zariski-open subset Uy C Jk
for some k <r and Z separates orbits on a Zariski-open subset U, C J'.

2

3 Note that in this formulation of Euclidean curvature, « is a local invariant, and a 180-degree rotation of the curve will
change the sign of x(x, ¥, ¥x, ¥xx). Unlike (1), x in this case does not take into account orientation of the curve, as y is locally
parameterized with respect to x. See Olver (2001, Example 4.8) for more details.
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For a particular action of G, such a pair of classifying invariants always exists, and one can explicitly
construct a pair by computing generators for the field of rational invariants for the prolonged action
of G (Kogan et al., 2020, Thm 2.20), using algorithms such as those found in Derksen and Kemper
(2015) and Hubert and Kogan (2007). It should be noted that Z is not unique, and different choices
can lead to different differential signatures.

Definition 2.16. For a pair of classifying invariants Z = {K1, K>}, an algebraic curve C is said to be

non-exceptional if all but finitely many points on p € C satisfy
oKy 0Ky -
W, m #0at jc(p),

where Uy, U, are defined in Definition 2.15 for a classifying pair Z.

i&(p) € Up, j-(p) € Uy, and

A generic curve of degree d where (szrz

set (Kogan et al., 2020, Thm 2.27).

) — 2 >r is non-exceptional with respect to a given classifying

Definition 2.17. Let Z = {K1, K} be a pair of classifying invariants for the action of G on C2 and C a
non-exceptional algebraic curve with respect to Z. The map o¢ : C — C2 defined by o¢ = (K1|c, K2|¢)
is the differential signature map for C and its image is the differential signature of C, denoted Sc.

The following appears as Theorem 2.37 in Kogan et al. (2020).

Theorem 2.18. If algebraic curves Co, C1 are non-exceptional with respect to a classifying set of rational dif-
ferential invariants Z = {K1, K} under an action of G on C?2 then

Co=cC1 & 8¢ =8¢-

Since the Zariski-closure of the differential signature of an algebraic curve S¢ characterizes its equiv-
alence class under G, so does the polynomial vanishing on Sc, referred to as the signature polynomial
of C and denoted S¢(x1, k2). Thus to determine if curves C; and C, are G-equivalent we can compare
signature polynomials Sc, and Sc,. The differential signature map also characterizes the size of the
symmetry group of C under G.

Definition 2.19. The symmetry group of C under G is the subgroup of G defined by
Sym(C,G)={geG|C=g-C}.
The following follows from Lemma 2.34 and Theorem 2.38 in Kogan et al. (2020).

Theorem 2.20. For an algebraic curve, non-exceptional with respect to Z = {K1, K»}, the symmetry group
Sym(C, G) is of cardinality n < oo if and only if the map oc is generically n : 1. Furthermore Sym(C, G) is
infinite if and only if Sc is a single point.

Example 2.21. Consider the action of the Euclidean group £ (C) on curves in C? (defined in Defini-
tion 2.7). In Example 2.14 we saw that «2 is rational invariant for the prolonged action of £ (C) on
J2. Similarly the function

2= (.Vxxx (1 + y%) - 3YX.V;2<X)2
(1 +y,2<)6

N
representing the square of the derivative of curvature with respect to arc length, is also a rational
invariant for this action. Together the pair Z = {Kz,/csz} is a classifying set of rational differential

)
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invariants for the action of £&(C) on curves in C2. Moreover, there are no Z-exceptional algebraic
curves—for details see Ruddy (2019, Sec. 4.1). By Theorem 2.18, the equivalence class of an algebraic
curve C under £ (C) is completely determined by Sc.
Consider the two ellipses C1 and C, defined by the zero sets of
Fixy)=x*+y*4+xy -1
Fy(x,y) =x*+y*> —xy —5x+y +6,

respectively. The signature maps oc,, oc, are rational maps on C1, C2 defined by

36 (F1(x,y)+1)% 2916 (x—y)> 2 (F1(x,y)+1)?
0C1(X»J’)=(K2|C17K52|C1> — ( (FLy)+1 @=y)? x+y)* (F1 (%9 +1) )

(5x2+8xy+5y2)3° (5x2+8xy+5y2)6
(2 2 _ 36 (Fy(x.y)+1)? 2916 (x—y—2)2 (x+y—4% (F2(x.y)+1)?
oc, (%, y) = (K lc, K5 |C2> - ((5x78xy+5y2722x+14y+26)3’ (5x—8xy+5y2—22x+14y+26)5 ’

From the above, we see that each map o¢; has an equivalent expression modulo Z¢;, where the total
degrees drop by 4.* Both ellipses C; and C; have symmetry groups under £(C) of cardinality 4
(generated by a reflection and 180°-degree rotation). Thus, by Theorem 2.20, the above maps are
generically 4 : 1. We can directly compute the signature polynomials Sc, and Sc, using elimination:

Scy (K1, K2) = Sc, (K2, K2)
=2916kS — 13608 k3 + 972kiky + 2187k} + 1944 k3k, + 108 k3k3 + 4k3.
Since these two curves have the same signature polynomial, the Zariski-closure of their images are

equal, i.e. Sc, = Sc,. Thus by Theorem 2.18 the two curves are & (C)-equivalent.

Example 2.22. For the action of the equi-affine group SA;(C) on curves in C? (defined in Defini-
tion 2.9), we can again construct a differential signature map from rational differential invariants. The
following pair

3
4),2 3))\2 2 3
(By( )y@ —5(y?) ) 9y (y@)? — 45y@y3y@ 4 40 (y)
8 ’ 4
(y(z)) (y(z))
forms a classifying set of rational differential invariants. Here K; = u® where p is classical affine

curvature (Guggenheimer, 1963). For details on classifying sets of rational differential invariants for
SA3(C) and other classical linear groups see Ruddy (2019, Sec. 4.1).

(K1, K2) =

2.3. Joint signatures

For any integer n > 1 and G acting on C?2 as before, there is an induced action of G on the n-fold
Cartesian product (C2)" given by

g-(x1,¥1), .-, K, Yyn)) = (- (X1, Y1), ..., & Xn, Yn)) -

On one hand, the group-equivalence problem for products of curves gives us nothing new; two plane
curves Cg, Cq are G-equivalent if and only if Cfj, C| are G-equivalent under this induced action. On the
other hand, it is often possible to construct classifying invariants for the induced action which involve
lower-order jets than would be needed when n = 1. Although the number of invariants required
may increase with n, the lower-order invariants are of interest in applications, as they may be more
noise-resistant. Of special interest are the invariants of order zero, giving rise to the joint signatures,

4 We detect this automatically with an implementation of rational function simplification from Monagan and Pearce (2006)
in Macaulay2 (Grayson and Stillman, 1997).
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which were introduced in Olver (2001) and studied for many of the classical groups in the smooth
setting.

In this section, we study joint signatures for the Euclidean group in the algebraic setting of this
paper. We define for n > 2 the regular map

dn . ((Cz)n — (Cn(nfl)/z

(X1, Y1, -+ Xn, Yn) = (d12,d13, ..., d1n, ..., dn=1)n),

whose coordinate functions are the squared inter-point distances

djx = (xj — %)% + (vj — yu)*.

Abusing notation, we write d,(C) for the restriction of d, to the n-fold Cartesian product C" for
any algebraic curve C ¢ C2.

Definition 2.23. The Euclidean joint signature Jc = d4(C) is the image of the map C* — C® obtained
by restricting d4.

Since dy4 is invariant under the induced action of & (C) on (C2)%, it is clear that if two curves are
&> (C)-equivalent, then they will have the same joint signature. We will show that the converse also
holds.

Theorem 2.24. Two irreducible plane curves Cg, C; C C? are & (C)-equivalent if and only if Jcp = Jcy-

The hypothesis of irreducibility cannot simply be dropped—for instance, the joint signature does
not distinguish an irreducible curve from its union with any number of isotropic lines. Here, we define
an isotropic line to be any curve which is £ (C)-equivalent to the line {(x, y) € C? | x =iy}, where i
is the imaginary unit. In all that follows, we let C c C2 be an irreducible affine plane curve.

We begin with nearly-matching upper and lower bounds on the dimensions of d, (C).

Proposition 2.25. For all n > 2, we have dimd,,(C) < n. If C is not an isotropic line, we also have dimd,,(C) >
n — 1; in particular, 2 < dimd3(C) < 3, and 3 < dimd4(C) < 4.

Proof. The first statement follows easily since dimd,(C) < dim(C"). For the second statement, note
first that d»(C) is an irreducible subvariety of C! and that 0 € d(C). Thus, d»(C) will be Zariski
dense in C! unless 0 is the only point in d»(C), which is precisely the case of an isotropic line. Thus,
in all other cases, dimd,(C) = 1. For larger n, consider the projection d,(C) — d,—1(C). The fibers
of this map will be 1-dimensional, except once again in the case that C is an isotropic line. Hence
dimd,(C) > dimd,—1(C)+1. O

Our proof of Theorem 2.24 makes repeated use of the simple fact that the squared distances
separate orbits of the induced &£, (C) action on generic 3-tuples and 4-tuples. This is the content of
Proposition 2.26, which we prove with an algebraic analogue of the moving frame method. We state
sufficient conditions for genericity more precisely by defining W, c (C%)" to be the Zariski-open set
where none of the inter-point distances vanish:

Wy ={(p1,..., Pn) € (C*"|djx(p) #0 for j <kand j ke (1,...,n}},

where W; = C2 by convention. Thus, for example, we have ((0, 0), (1,1)) ¢ W».

Proposition 2.26. For n > 2, the £,(C)-orbit of any (p1, ..., pn) € Wy, consists of all (q1, ..., qn) € (CH)"
such that dy(p1, ..., pn) =dn(qn, - - ., qn)-
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Proof. Suppose d,(p1,..., Pn) =dn(@n, ..., qn). We will show that (pq, ..., pn) and (q1,...,qn) are in
the same orbit. The converse, that points in the same orbit have the same image under d;, is easily
verified.

Without loss of generality, we may assume that p; = ¢q; = (0,0) and p2 = ¢q2 = (0, y2) by ap-
plying to each of the n-tuples a suitable translation and rotation. For instance, if p; = (0,0) and
p2 = (¥, y5), we act with the rotation

T\ ¥ B
/x/22 +y/22 b Y

and hence we also have that y, = x/z2 + y/22 = 4/dy # 0. For the remaining points py, qx with k > 3,

we write py = (x¢, y;) and gy = (x{, y}) and consider the two equations d1x(p) = d1x(q) and do(p) =
daw(q):

D+ D =)+ (vh?
G+ 2=y =D+ (2 — ¥
Subtracting these and dividing by y,, we obtain y, —2y} = y2 —2y|. Hence for all k we have y} = y{,
which in turn implies that (x,’:)2 = (xz)z. We are done if x,f :XZ for all k; otherwise, we may choose k

minimal such x,f = —xZ # 0. Reflecting about the y-axis leaves pq,..., Pk-1,91, ..., qk—1 unchanged,
but with py = q,. Moreover, for any j > k, we now have

X — %)% + k= ¥)? = = XD + e — y 2,

which simplifies to —2x,x] = —2x.x], and hence x¥ =xJ. O

Any two points in the same & (C)-orbit will have conjugate stabilizer subgroups. Arguing as in
the previous proof, we may characterize a generic stabilizer under the induced action.

Proposition 2.27. For n > 2, the subgroup of £ (C) that stabilizes (p1,...,pn) € Wy is trivial unless
D1, ..., Dn are collinear, in which case it is generated by reflection through the line p1p3.

Proof. As in the previous proof, we may assume p; = (0, 0) and p; = (0, y») with y; # 0. A short cal-
culation shows, for g defined by parameters (a, b, ¢, s) as in Example 2.21, that g - (p1, p2) = (p1, P2)
implies immediately that a = b = 0 (no translation), and moreover sy, = 0, which in turn forces
(c, s) = (£1, 0). Thus, the stabilizer of (p1, p2) is generated by reflection about the y-axis. The rest of
the proposition follows from considering the action on the remaining points p3,...,py. O

To apply Proposition 2.26 in the case where (p1, ..., pn) € C", we must verify that the intersection
C" N Wy, is nonempty. This turns out to be true for all irreducible C except for the isotropic lines.

Lemma 2.28. Suppose C C C?2 is an irreducible algebraic curve which is not an isotropic line. For any fixed
n > 1, the intersection C™ N Wy, is nonempty. In fact, for any fixed (p1, ..., pn—1) € C*~1 N W,_1, we have
(p1, ..., pn) € C"N W, for generic p, € C.

Proof. The claim is vacuous for n = 1. For larger n, fix (p1,...,Pn-1) € C" 1N W,_; and consider
the Zariski open sets Uq,...,Up—1 C C defined by U; = {p € C | d(pi, p) # 0}. If any of the sets C N U;
were empty, then C would be contained in the union of two isotropic lines, namely

{(x. ) € C* | ((x—x) +i(y — yi)) (x — x)) — i(y — yi)) =0}
Since C is irreducible, this would imply that C is one of these lines; thus C NU; # @ for each i =
1,...,n— 1. This gives us that (p1,...,pn) €C"NWy forall p,eCNUN---NUp1 #@. O
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To prove Theorem 2.24, we align two curves with the same joint signature by applying the moving
frame method to suitably generic triples of points, and then conclude that the aligned curves are
equal by applying the following lemma.

Lemma 2.29. Let Cg, C1 C C2 be irreducible algebraic curves which are not isotropic lines. For n > 3, suppose
there exists (p1, ..., Pn_1) € Cg_l N C’f‘l such that

dn(p1 X --- X pp—1 X Co) =dn(p1 X -+ X pp—1 x C1).
Then Cq and Cq are & (C)-equivalent.

Proof. Pick p, € Cp satisfying the genericity conditions of Lemma 2.28; by assumption, there ex-
ists p, € C; with d(p1, ..., pn) =d(p1,...,p,). By Proposition 2.26, we have that (p1,...,pn) =
g-(p1,...,p,) for some g e &(C). This implies that g stabilizes (p1,...,pn—1), so by Proposi-
tion 2.27 it follows that g is either the identity or a reflection about the line pip3. Thus, Co and
gCq intersect in infinitely many points, and we may conclude that Co = gC;. O

Proof of Theorem 2.24. Let J be the joint signature of irreducible curves C; and C,. Without loss of
generality, assume that neither curve is an isotropic line, in which case the statement is trivial. Fix
generic p1, p2, p3 € C1. By Proposition 2.26, we may assume p1, p2, p3 € C2 by acting on C, with an
appropriate & (C) element. Let 7’ be the intersection of 7 with the coordinate hyperplanes d;j =
d(pi, pj) for 1 <i < j < 3. Although dim J may be either 3 or 4, the genericity of p1,..., p3 implies
that J’ is a curve in either case, by an argument analogous to that given in Proposition 2.25. Indeed,
the image of the map C > ps +> (p1,...,pa) € J' is an irreducible variety of dimension at most 1,
which contains two distinct points since C is not an isotropic line. Thus the image has dimension 1,
implying the same for J’.

Now, for generic ps € C;, we have that d4(p1, p2,p3,psa) is a smooth point on [J’. Fixing
generic p4, there exists pj, € C; with d4(p1, p2, p3, pa) = da(p1, p2, p3, py;). Thus, the irreducible
curves dq(p1 X p2 x p3 x C1) and dg4(p1 X p2 x p3 x Cp) intersect in a smooth point. We conclude
d4(p1 x p2 x p3 x C1) =da(p1 x p2 x p3 x C2), and hence Co =¢, () C1 by Lemma 2.29. O

We now state and prove the analogue of Theorem 2.20 for joint signatures.

Lemma 2.30. Let C be an irreducible algebraic curve. The group of Euclidean symmetries of C has the same
cardinality as the fiber over a generic point in its joint signature: that is, for generic p1, ..., pa € C,

| L (da(p1. p2. P3. Pa))| = ISym(C, £2(C)).

Proof. Once again we may assume C is not an isotropic line so that there exists (p1, ..., ps) € C*N
W 4. By Proposition 2.26, the fiber d;l(d4(p1 , P2, D3, P4)) is exactly the orbit of (p1, p2, p3, p4) under
&> (C). First suppose that C is a (non-isotropic) line. Then there is a translational subgroup of & (C)
along the line, also a subgroup of Sym(C, & (C)), which preserves the distances between the 4-tuple
of points as they move along the curve. Thus the fiber and symmetry group are both infinite.

For C of degree greater than 2, a generic 4-tuple of points is non-collinear and has trivial stabilizer
under &£,(C) by Proposition 2.27. Thus each element of Sym(C, & (C)) sends (p1, p2, p3, ps) to a
distinct 4-tuple in the fiber, implying that

’dzﬂlc(dzx(m, p2. 3, p4))| = |Sym(C, £(C)).

Now fix (q1,...,q4) € di}(d4(p1,p2,p3,p4)). so that there exists a g € £(C) such that g -
(p1, P2, P3, P4a) = (q1, 92,93, qs); note, moreover, that distinct points in the fiber produce distinct
group elements. Consider the curve C’ = g - C. Clearly C’ has the same joint signature as C, and
hence we satisfy the hypothesis of Theorem 2.24. Thus the proof of Theorem 2.24 implies that
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da(p1 x p2 x p3 x C) =da(p1 x p2 x p3 x C').

Finally the proof of Lemma 2.29 implies that C and C’ must be related by either the identity element
of £ (C) or a reflection. However, since (p1, p2, p3, p4) are non-collinear, the stabilizer is non-trivial
and C = C’. Thus each element of the fiber gives rise to a unique element of Sym(C, &(C)) implying
that

¢ da(p1, p2, 3, pa)| < ISym(C, E(C)),

proving the lemma. O

Proposition 2.31. For an irreducible algebraic curve C different from an isotropic line, the following are equiv-
alent.

(1) dim(Jc) = 4.
(2) The symmetry group |Sym(C, & (C))| =n < oo.
(3) The map dg is genericallyn : 1.

Proof. Lemma 2.30 immediately implies that statements (2) and (3) are equivalent. The dimension of
the joint signature is four (the dimension of C*) if and only if a generic fiber of the map is of finite
cardinality (see e.g. Shafarevich, 1994, Ch. 1, Sec. 6.3, Thm 1.25), and hence statements (1) and (2) are
equivalent. O

The next proposition immediately follows by Proposition 2.25.

Proposition 2.32. For an irreducible algebraic curve C different from an isotropic line, dim(J¢) = 3 if and
only if the symmetry group Sym(C, £,(C)) is infinite.

As in the case of differential signature, the dimension of the joint signature drops when the curve
has an infinite symmetry group under £, (C). In the event the symmetry group is finite, the size of
this subgroup is exactly the size of a generic fiber of the joint signature map.

Example 2.33. A classical result from differential geometry states that the only smooth plane curves
of constant curvature are circles and lines. This is mirrored by the fact that the joint signatures of
these curves have dimension 3 instead of 4; equivalently, by Proposition 2.25, the image of the map
dz|c is a surface in C3. When C is a non-isotropic line, the equation of this surface is

d?, — 2d1ad13 + 35 — 2d12dp3 — 2d13das +d3; =0

and when C is a unit circle, it is given by the Heron polynomial

diadi3das + d%z —2dq2d13 + d% — 2d12d23 — 2dq3da3 + d%3 =0.

We end this section with a discussion about joint signatures for other algebraic group actions.
In Olver (2001), the author presents a smooth characterization of joint invariants for many of these
groups over R. For instance, consider the action of S.A;(R) on n-tuples of R2. The fundamental joint
invariant is given by the signed area functions v(i, j, k) for 1 <i < j <k <n (Olver, 2001, Thm 3.3)
where

v(, j, ) =x(yj — Yi) = Xj(Vi — Vi) + X (Vi — ¥j)-

Though the number of such invariants increases in size rapidly as n grows, there exist many linear
syzygies between these functions. In particular the invariants v(1, 2,k), v(1,3,k) for k=2, ...,n gen-
erate the other invariants (Olver, 2001, Thm 8.8). Thus for curves under SA;(C) we can define the
map vg: (C%)% - C7 by
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(X1, Y1, ..., X5, Y6)
— (v(1,2,3),v(1,2,4),v(1,2,5),v(1,2,6),v(1,3,4),v(,3,5),v(,3,6)). (3)

Mirroring the construction for real curves under SA;(R) in Olver (2001, Ex. 8.6), we can define the
equi-affine joint signature of a curve C to be JgSA = v(C®). Though there are fundamental invariants
for n as low as 3, it is necessary to consider 6-tuples of points on curves since all curves have the
same image under the map v, (defined as above) when n < 6. For other groups, the fundamental joint
invariants presented in Olver (2001) similarly yield sets of algebraic invariants. It would be interesting
to construct general conditions for sets of joint invariants to characterize orbits of curves.

Remark 2.34. While we conduct experiments in Section 4 comparing the equi-affine joint signature
to the equi-affine differential signature, we do not explicitly prove that JCSA characterizes orbits
of curves under SA,(C), as we do for the Euclidean joint signature. However, as the seven area
invariants defining vg generate the other fundamental area invariants through linear relations, it is
likely that they separate orbits and that one can prove this characterization using an argument similar
to that in this section.

3. Witness sets for signatures
3.1. Background

A comprehensive overview of numerical algebraic geometry may be found in the survey (Sommese
et al., 2005) or books (Wampler et al., 2005; Bates et al., 2013). Here we develop the notions that we
need, illustrated by several examples related to the previous section.

The main data structures in numerical algebraic geometry are variations on the notion of a wit-
ness set. The overarching idea is to represent an irreducible variety Y C C" by its intersection with a
generic affine linear subspace of complementary dimension. The number of points in such an intersec-
tion is the degree degY, which may be understood as the degree of the projective closure of Y under
the usual embedding C™ > (X1, ..., Xm) — [X1 : -+ X : 11 € P(C™1). We define a c-slice in C™ to
be a polynomial system consisting of ¢ affine hyperplanes, L = (1, ...,l) with [; € C[x1,..., Xm]<1.
For convenience we write L or L® in place of its vanishing locus V (L(x)), an affine linear space of
codimension c. For Y an irreducible variety of dimension d and a generic slice L%, the intersection
Y N L% is transverse, consisting of degY isolated, nonsingular points.

The notion of a pseudo-witness set, first appearing in Hauenstein and Sommese (2010), allows us
to represent the closed image of a rational map Y = im® without knowing its implicit defining
equations. Our Definition 3.1 differs slightly from that used in the standard references (Hauenstein
and Sommese, 2010, 2013; Bates et al., 2013); to distinguish our setup, we provisionally use the term
weak pseudowitness set.

Definition 3.1. Let f = (fi,..., fn) so that V(f) c C" is Zariski-closed, X C V(f) be one of its ir-
reducible components, and & : X --» C™ be a rational map. Set ¢ = codim V(f), d = dimim ®. A
weak pseudowitness set for ® is a quadruple (f, @, (LIL), {wq,..., we}), where L is a generic affine
d-slice of im®, L’ is a generic affine (n — c — d)-slice of X, and such that w1, ..., w, are points in
X NL where ®(wq),...,d(w,) are all defined and such that im® N L = {®(wq),..., (W)} and
e =degim ®.

For all examples considered in our paper, the map & will have generically finite fibers, so that
n — ¢ =d. In particular, for the differential signatures we will always have (n,c,d,m) = (2,1,1,2),
whereas for the joint signatures we have (n,c,d, m) = (8, 4,4, 6). Consequently, the linear space L’
does not play a role in our experiments; nevertheless, we consider it in Algorithm 1 for the sake of
full generality.

Example 3.2. Consider again the ellipses from Example 2.21. We represent Y =imoc, =imoc, not
by the signature polynomial, but rather by its intersection with a generic slice in the codomain:
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L' = {lix + Ly + I3 = 0}. For the particular choice of (I, ,l3) = (1, -2, 1), we have that imoc, N L!
consists of 6 points (x;, y;) € C%:

Xi Yi
—.120636 — .0158199i  .439682 — .00790993 i
—.120636 + .0158199i 439682 + .00790993 i

.0305676 — .0677494 i .515284 — .0338747i
.0305676 +.0677494 i .515284 + .0338747i
.501814 .750907
4.17832 2.58916

Compared to the more standard definition of a witness set, in Definition 3.1 we allow that the
containment {w1,...,w.} CL'N®~! (im®NL) may be proper. When & is the signature of a curve

with many symmetries, this may be preferable, since fewer points need to be stored due to Theo-
rem 2.20 and Proposition 2.31. The data in Definition 3.1 are already sufficient for testing queries of
the form y € im ®, as noted in Hauenstein and Sommese (2010, Remark 2). For testing, y € im® and
other applications, the stronger notion is required (Hauenstein and Sommese, 2013). Further applica-
tions of pseudowitness sets may be found in the references (Chen and Kileel, 2019; Brysiewicz, 2018;
Hauenstein and Regan, 2020; Hauenstein and Sottile, 2014).

In our context, equations defining im ® are seldom known, so in what follows we may informally
refer to the objects of Definition 3.1 and their multiprojective counterparts in Definition 3.3 as “wit-
ness sets” without ambiguity. In practice, we can at best hope that our numerical approximations to
points ®(w1), ..., ®(we) lie sufficiently close to im® NL: to clearly distinguish practice from theory,
we occasionally use the term numerical (weak / pseudo) witness set.

Following Hauenstein and Rodriguez (2020), Leykin et al. (2018), Hauenstein et al. (2022), we
give a multiprojective generalization of Definition 3.1. For irreducible Y ¢ C™, we fix (mnq,...,my),
an integer partition of m, and consider Y in the affine space C™ x ... x C™_, We consider slices
L€ =Lf1|...|L%, where e = (e, ..., e;) € N¥ is an integral vector such that e; +---+ e, = dimY, and
L is a ej-slice consisting of e; affine hyperplanes in the coordinates of C™i. We say that e is a
multidimension of Y if for generic L® the intersection Y N L€ is a finite set of nonsingular points; the
number of points for such L€ is a constant called the e-multidegree deg, Y. These definitions reflect
the geometry of the multiprojective closure of X under the embedding

Yoo Ym)
o (e ym 1L om0ty 11) € PEMTT) e x P,

Definition 3.3. Let f, X,c,L’, ® be as in 3.1, and e be a multi-dimension of im® corresponding to
some partition of n. An e-weak pseudowitness set for & consists of (f, D, (LE|L), {Wl,...,We}),

such that im® N L¢ = {®(wq), ..., P(w,)} and e = deg, im .

Example 3.4. Continuing as in Example 3.2, we now consider coordinate slices in the codomain of o,
of the form L9 = {l;x + I, = 0}. Specializing to the generic slice (I1, ) = (3, 1) yields now 3 points:

Xi Yi
—.333333 1.53234 +1.11277i

—.333333 1.53234 — 1.11277i
—.333333 —6.06468

The general membership test for multiprojective varieties proposed in Hauenstein and Rodriguez
(2020) uses the stronger notion of a witness collection. This is required since for an arbitrary
point y € Y there may not exist transverse slices L¢ > y for e ranging over all multidimensions of
Y —see Hauenstein and Rodriguez (2020, Example 3.1). This subtlety is not encountered for generic
y €Y; we record this basic fact in Proposition 3.5.
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Proposition 3.5. Fix irreducible Y ¢ C™ x ... x C™ and e some multi-dimension of Y. For y =
(y1,--+, yk) €Y generic, there exists an e-slice L® > y such that dim(Y N L¢) = 0. Moreover, for y ¢ Ying,
we also have that y ¢ (Y N L®)sing for generic L®.

Proof. For generic y; in the image of 7 : Y — C™ we have that the fiber n]’l(x1) has dimension
dimY — dim 1 (Y). Choose such an y; and let L®! 5 y; be generic so that 7r1(Y) N L¢! has dimension
dimq(Y) —eq. It follows that Y NL®! has dimension dimY — eq. This construction holds for all y; on
some Zariski open Uj C r1(Y). Repeating this construction for the remaining factors yields Us, ..., Uy
such that the first part holds for all y € Uy x - - - x Ug. The second part follows from Bertini’s theorems,
e.g. Harris (2013, Thm 17.16). O

3.2. A general equality test

Now let ®g: Xp --» C™ and @4 : X; --» C™ denote two rational maps with each X; c C™ of
codimension c;. Problem 2 from the introduction asks us to decide whether or not their images are
equal up to Zariski closure. We describe a probabilistic procedure (Algorithm 1) which refines the
general membership and equality tests from numerical algebraic geometry, which are summarized
in Wampler et al. (2005, Ch. 13, 15) and (Bates et al., 2013, Ch. 8, 16). As noted in the Introduction,
our setup is motivated by an efficient solution to Problem 1. Following the standard terminology, our
test correctly decides equality with “probability-one” in an idealized model of computation. This is the
content of Theorem 3.6. Standard disclaimers apply, since any implementation must rely on numerical
approximations in floating-point. A thorough discussion of these issues may be found in Bates et al.
(2013, Ch. 3, pp. 43-45).

Algorithm 1 assumes different representations for the two maps. The map & is represented by
a witness set in the sense of Definition 3.1, say (fi, ®1, (L1|L}), {w1, ..., we}). In fact, the only data
needed by Algorithm 1 are the map itself @4, the slice L1, and the points w, ..., we. For the map
®p, we need only a sampling oracle that produces generic points on Xy and cg = codim(Xp)-many
reduced equations vanishing on Xg.

Suppose dimim &y = dimim ®; = d. There is a probabilistic membership test for queries of the
form ®g(xp) € im ®; based on homotopy continuation. The relevant homotopy depends parametrically

on Ly, a d-slice Lo > ®g(xg), a (n — co — d)-slice L{) > Xo, and a regular sequence fo = (fo,1,.-., fo,cy)
which is generically reduced with respect to Xo. The homotopy H is defined by setting
fox)
H(x;t) = Lé)(x) =0. (4)

tL1o®Pg+ (1 —t)Lgo Dy(x)

In simple terms, H moves a slice through ®q(xg) to the slice witnessing im ®; as t goes from 0 to
1. A solution curve associated to (4) is a smooth map x: [0, 1] — C" such that H(x(t),t) = 0 for all
t. For generic parameters Lo, L1, Ly the Jacobian Hy(x,t) is invertible for all t € [0, 1], solution curves
satisfy the ODE

X ()= —Hx(x, )" He(x, 1),

and each of the points wr, ..., we is the endpoint of some solution curve x with x(0) € X N L. These
statements follow from more general results on coefficient-parameter homotopy, as presented in Mor-
gan and Sommese (1989) or Wampler et al. (2005, Thm 7.1.1). We assume a subroutine TRACK(H, xg)
which returns x(1) for the solution curve based at xg. In practice, the curve x(t) is approximated
by numerical predictor/corrector methods (Allgower and Georg, 1990; Morgan, 2009). We allow our
TRACK routine to fail; this will occur, for instance, when ®¢(xg) is a singular point on im ®g. However,
it will succeed for generic (and hence almost all) choices of parameters and xo € C"0,

Theorem 3.6. For generic Xg, Lo, Ly, L1, Algorithm 1 correctly decides if im ®g = im ®1.
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Algorithm 1. Probability-1 equality test.

Input: Let Xo ¢ C", X; ¢ C™ be irreducible algebraic varieties, and ®¢ : Xg — C™, ®; : X; — C™ be rational maps, repre-
sented via the following ingredients:
1) (L1, {w1,..., we}) with im®; N Ly ={P1(wq),..., Pe(We)} and e = degim & (cf. Definition 3.1),
2) fo1,---. fo.co € Clx1,...,xp0]: a generically reduced regular sequence such that codim(Xp) = co and Xo C
V(f1,...s feo)
3) an oracle for sampling a point xp € Xo, and
4) explicit rational functions representing each map ®;.
Output: YES if im ®p =im ®; and NO if im ®¢ # im ®;.
sample xg € Xp
Ty (f) <= ker (D f)x,
d < rank (D ®g)y, ‘Txu(f)

1:
2:
3:
4: if d # dimim ®; then return NO
5:
6:
7:

H(x; t) < the homotopy from equation (4) (Lo generic)
x1 < TRACK (H, Xo)
if ®p(x1) € {®1(w1),..., P1(We)} return YES

else return NO

Fig. 2. A general, probabilistic equality test for rational maps.

Remark 3.7. The set of “non-generic” slices in this theorem is dependent on the maps ®g and ®;.
In practice, an oracle for sampling generic points could be provided by either a parametrization or
by homotopy continuation using known equations for Xy. The dimension dimim & is implicit in the
description of the witness set.

Proof. Since xq is generic and fy is generically reduced, we may assume that d = dimim ®(. Noting
line 4, we are done unless d = dimim ®1. In this case, since the im ®; are irreducible,

dim(imd)oﬂimCI)]):d & Imdy=ima;. (5)

As previously mentioned, generic slices give that the solution curve x(t) associated to (4) with initial
value xg exists and satisfies x(t) € V.(f) \ V (f)sing for all t € [0, 1]. The endpoint x1 is, a priori, a point
of V(f). Since Xo \ (Xo)sing is a connected component of V(f) \ V(f)sing in the complex topology
and xgp € Xp, so also must x; € Xg. Hence ®g(x1) € im®gN L1. Now if im &y = im &1, then clearly we
must have

Do(x1) e imPy N Ly = {DPr(wy), ..., Pr(we)}, (6)

as is tested on line 7. Conversely, if (6) holds, then

dim(im ®p Nim®{ N L) >0,

which by (5) and the genericity of L1 implies im ®p =im®;. O

In the multiprojective setting, we may give a similar argument. The only added subtlety is that
extra genericity may be needed so that the Jacobian Hy(xg, 0) is invertible. This follows from Propo-
sition 3.5.

3.3. Witness sets for signatures

Our implementation of Algorithm 1 treats only the special case where the domain of each ra-
tional map is some Cartesian product of irreducible plane curves, say X; = Cf for some integer k.
For the purpose of our implementation, the various ingredients for the input to Algorithm 1 are
easily provided. Suppose Zc, = (f;) for i =0, 1. The reduced regular sequence we need is simply
(fo(x1,¥1)s .-, fo(Xk, yk)). Sampling from Xy amounts to sampling k times from Co; we sample the
curve Co using homotopy continuation from a linear-product start system (Wampler et al., 2005, Sec.
8.4.3).
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It remains to discuss computation of the witness set for the image of the signature map. To do
this, we compute solutions to parametric systems of equations

fxi,y1:p) == fx yi: p) =1 (P(x, y; p)) =+ =l (P(x, y; p)) =0, (7)
where we allow both the parameters defining the curve p and the parameters defining the slice
L=({y,...,¥) to vary. For instance, a parametric generic plane curve of degree d has the form

f(X, ¥:P) = Po.o+ P1.0X+ Po.1y + P1aXy + -+ po.ay’.

For differential signatures we have k =1, and we could simply write ®(x1, y1; p), whereas for joint
signatures we have k =4 and could write ®(x1,...,X4, ¥1,..., Y4).

Let us now write W, for the (differential or joint) signature map restricted to the curve defined
by particular parameter values p. When p is generic, im ®, of this curve has dimension k; thus, by
generic smoothness, it follows for generic slice L = (¢1, ..., ¢;) there will be finitely many reduced
points in im ®, N L. Moreover, genericity of p implies that the map (x, y) — ®(x, y; p) is generically
finite-to-one. Associated to the system (7) is an incidence correspondence

d+2
Vo ={(X1. ¥1. - Xt Yio Do 1) € (€ x C2) X G | £ (%0, yi, p) =0, D(x, y: p) € L),

where Gy, denotes the Grassmannian of codimension-k affine subspaces of C™. We recall that this
incidence variety V¢ has a unique irreducible component which projects dominantly on the space
of unknowns (C2)¥, referred to as the dominant component (Duff et al., 2019, Remark 2.2). We take
a Zariski-open set U c (C2)¥ such that for any fixed (x, y) € U, the set of solutions to the linear
equations f(x1,y1;p) =---= f(Xk, Yk; p) (7) in the parameters (p, L) has the maximal codimension
k. Letting U’ c (C?)* x c x Gk m denote the preimage of U under coordinate projection, the
dominant component Vo may be defined as the Zariski closure of U’.

The construction of the dominant component described above holds for other linear systems of
curves. We often have that Vo = Vg, since Vo can be expressed as the graph of a rational map
between affine spaces; for instance, in the case of the joint signatures of generic curves, we have
k =4 and may express certain parameters as rational functions in (x, y) and the other parameters by
solving linear equations in p:

Po,o=—(X2p1,0 + Y2P0.1 ++-*)

Pro=(x1 —x2)"! ((y1 —Y2)Po1+ (X% —X%) P20+ )
Po1=--

pri=--

For other families of curves, we caution that there might well be additional components of V¢
when the general member of the system is reducible, as is the case for the family of curves

f (%, y; p) = x(p1¥* + p2y + € + p3x + pay? + ps).

The incidence variety {(x1,...,X4,Y1,...,Y4,P) | f(X1,¥1;p) = --- = f(X4, Yk; p) = 0} has 16 irre-
ducible components, each uniquely determined by the vanishing of some subset of {x1, x2, X3, X4}. The
dominant component of V¢ corresponds to the empty subset: its degree as a branched cover over
C> x G4 is 168, and the generic fiber gives a pseudowitness set for the conic p1x*>+ p2y +c+ p3x+
pay? + ps. For this example, we may take U to be the set of 4-tuples of points (X1, y1), ..., (X4, Y4)
which impose independent condition on conics and such that x; # 0 for all i.

In general, the projection 7 : \7; — C(d?) x Gy, m is a branched cover of irreducible varieties, and
thus, for generic (p, L), the associated monodromy group acts transitively on the fiber 7~ (p, L). The
fiber gives a pseudowitness set for im . Let N denote the degree of the branched cover 7 (i.e. N=
d(d — 1) for differential signatures, and N = 12d(d® — 1) for joint signatures), so that the monodromy
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group M(®; p,L) may be viewed as a subgroup of the symmetric group Sy. For differential and
joint signatures of generic degree-d curves, these monodromy groups are full symmetric for d > 2. For
more structured families of curves, or the multiprojective witness sets considered in our experiments,
the corresponding monodromy group will be a subgroup of the wreath product Sy, ¢ Sn,, where Ny
is the size of the generic symmetry group and N, = degim ®,. The monodromy group is said to be
imprimitive; for Ny > 1, the decomposable monodromy technique from Améndola et al. (2021) may be
used to speed up witness set computation.

Example 3.8. Consider the family of quadrifolia, or rose curves, given by

fxy) =02 +y*3 - ply*=o0.

The symmetry group for generic p is the dihedral group Dg, and thus the joint signature map for a
generic curve in this family is generically 8 : 1 by Proposition 2.31. The branched cover 7 associated
to generic slices of these curves’ joint signatures has degree 7584, as opposed to the expected 15480
for generic sextics (see Conjecture 4.2). The monodromy group is a subgroup of Dg: Sgsg. We may
compute a witness set by collecting one point in each of the 948 disjoint fibers of ®, over generic p.

’

d2Y

For this family of curves, it is also interesting to consider multiprojective witness sets with mul-
tidimension e; as in Conjecture 4.2. This means taking coordinate slices where the distances
diz,d13,dq4,d>3 are fixed. The associated branched cover has degree 3712 (as opposed to the ex-
pected 10080), and the monodromy group is a subgroup of Dg: (Sg: Ssg). The second level of
imprimitivity may be explained as follows. For d4(p1, ..., pa) = (d12,d14, ...,d3a) generic, there is
a circle centered at p; of radius /di4 which intersects f(x, y; p) =0 in 8 points, as shown in the
figure above. Thus, to compute a witness set for the joint signature, it is sufficient to enumerate the
fibers of 7t first by computing 58 witness points up to both the Dg-symmetry and the grouping of
points (p1,..., p4) with (pq,...,p3) equal, and then compute the remaining intersection points of
the given curve with the 58 circles.

. .1 . . d+2
Finally, we specialize from the case of a generic curve to that of any curve given by p; € c)
whose signature variety has the expected dimension k. We may then compute a pseudo-witness set
for the signature ®; = ®(--- ; p1) using the following steps, which are standard in numerical algebraic
geometry:

1) Fix generic (X, yo) € C?, and find (po, Lo) so that (x, y, po, Lo) € Vo by solving linear systems of
equations: first in p, then in the parameters defining L.

2) Using the transitivity of the monodromy group, complete (xg, Yo) to a pseudowitness set for the
curve given by po by tracking solution curves along random loops based at (po, Lo).
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3) By general parameter continuation (Wampler et al., 2005, Theorem 7.1.1 (5)), the pseudowitness
set for p; will consist of finite, nonsingular endpoints as t — 1 of the homotopy

fro..&x, y;tp1 + (1 —)po)
Hy(x;t) = =0. 8
p(:0) (Lod><x,y;tp1+(1—r>po> ®)
The same strategy will for more general families, provided that V¢ is irreducible. For computing
witness sets of particular signature maps within a particular family of curves satisfying this condition,
we note that Steps 1-2) only need to be performed once.

4. Implementation, examples, and experiments

We run a variety of tests in this section to investigate the numerical stability of our implementa-
tion of Algorithm 1. The purpose behind this is two-fold. First we confirm that the implementation
will correctly conclude, in most cases, when two curves have the same signature. Secondly we want
to answer the question, “What level of perturbation of the curve, or any equivalent curve, will induce
a negative result?” Negative here means that the algorithm concludes that the curves have differ-
ent signatures and thus are not equivalent. As mentioned in the introduction, our experiments are
motivated by applications in curve-matching where, at best, two curves are only “almost” equivalent
under some group action.

Our results showcase features of the NumericalAlgebraicGeometry ecosystem in Macaulay2
(aka NAG4M2, see Leykin (2011, 2018) for an overview). We rely extensively on the core path-tracker
and the packages SLPexpressions and MonodromySolver. All of our examples and experiments
deal with differential and joint signatures for either the Euclidean or equi-affine group.” However, the
current functionality should make it easy to study other group actions and variations on the signature
construction in the future.

The differential signatures for curves under £, (C) and SA,(C) are defined in Examples 2.21 and
2.22 respectively, and the joint signatures are defined in Definition 2.23 and in (3). To distinguish
between the two groups, for a curve C, we denote the Euclidean differential and joint signatures of
C as jcg and Sg respectively. Similarly we denote the equi-affine differential and joint signatures
of C as ngA and S‘CSA. We caution that we do not explicitly prove that jCSA characterizes the
equivalence class of C under SA,(C), as we do for the Euclidean joint signature. However as we
explain in Remark 2.34 it is likely that it does.

Our initial attempts to compute witness sets for the both signatures with off-the-shelf tools did
not result in consistent monodromy runs for curves of even low degree. Thus, certain choices in our
implementation which led to consistent runs, and improved numerical stability, deserve emphasis.
Among these choices, a key feature is that polynomials and rational maps are given by straight-
line programs as opposed to their coefficient representations. This is especially crucial in the case of
differential signatures, where we can do efficient evaluation using the formulas in equation (2); we
note that expanding these rational functions in the monomial basis involves many terms and does not
suggest a natural evaluation scheme. We also homogenize the equations of our plane curves and work
in a random affine chart; the normalizing effect of lifting solutions into projective spaces is known
in numerical algebraic geometry, see Bates et al. (2013, Sec. 4.7) for an explanation. Finally, in our
sampling procedure we discard samples which map too close to the origin in the codomain of our
maps, as these tend to produce nearly-singular points on the image.

Example 4.1. The code below computes a witness set for the Euclidean differential signature of a
“generic” quartic (whose coefficients are random complex numbers of modulus 1).

(d, k) = (4, 1);
dom = domain(d, k);

5 For details we refer to the code: https://github.com/timduff35/NumericalSignatures.
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d degS® time(s) degqg SE  time (s)
2 6 0.3 3 0.1

3 72 2 36 0.5

4 144 9 72 2

5 240 21 120 4

6 360 55 180 7

Fig. 3. Degrees and monodromy timings for differential signatures.

d degJg® time(s) deg,, JE time(s) deg, JE  time (s)
2 42 4 24 2 26 2

3 936 33 576 17 696 16

4 3024 139 1920 57 2448 87

5 7440 463 4800 206 6320 276

6 15480 1315 10080 748 13560 791

Fig. 4. Degrees and monodromy timings for joint signatures (see Conjecture 4.2).

Map = diffEuclideanSigMap dom;
H = witnessHomotopy (dom, Map) ;
W = runMonodromy H;

To compute a witness set for the differential signature of the Fermat quartic V (x* 4+ y*+z%) c P(C?),
we use the previous computation.

R = QQlx,y,z];
f=x"4+y™4+274;
Wf = witnessCollect (f, W)

The output resulting from the last line reads
witness data w/ 18 image points (144 preimage points)

indicating that the Euclidean differential signature map is generically 8 to 1, which is equivalent
to the Fermat curve having eight Euclidean symmetries (Kogan et al., 2020, Thm 2.38). We timed
these witness set computations at 5 and 0.5 seconds, respectively. For joint signatures, the analogous
computations were timed at 95 and 17 seconds.

Figs. 3 and 4 give degrees and single-run timings for monodromy computations on curves up to
degree 6 under the Euclidean differential and joint signatures. We also considered multiprojective
witness sets for S€ ¢ C! x C! and J€ c (C")®, where fewer witness points are needed. For the dif-
ferential signatures, we considered (1, 0)-slices which fix the value of the squared curvature Ky. For
Euclidean joint signatures, there are two combinatorially distinct classes of (C')® witness sets deter-
mined by which d; ; are fixed; the undirected graph of fixed distances must either be the 3-pan (a
3-cycle with pendant edge) or the 4-cycle. We fix corresponding multidimensions e; = (1,1,1,1, 0, 0)
and e; =(0,1,1,1,1,0).

Our monodromy computations suggested formulas for the degrees and multidegrees of Euclidean
joint signatures. To complement the degrees of differential signature curves reported in Kogan et
al. (2020), we state these formulas as conjectures. In fact, we have verified these conjectures for d
as large as 10, although this was prohibitive in the experimental setup that produced Fig. 4. These
formulas for d =2 are corrected by a factor of 4, which counts the Euclidean symmetries of a generic
conic.

Conjecture 4.2. Let Jdg denote the Euclidean joint signature for a generic plane curve of degree d. For d > 3:
deg J€ =12d(d3 — 1)
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d track time (ms) lookup time (ms)  track K lookup Kq
2 191 0.35 127 0.25
3177 0.37 121 0.31
4 276 0.42 145 0.36
5 472 0.39 203 0.43
6 597 0.40 284 0.37

Fig. 5. Equality test timings for Euclidean differential signatures S€, divided by path-tracking time and time to perform the
lookup in line 7 of Algorithm 1. The rightmost columns give the same timings for multiprojective witness sets which fix the
first coordinate of the differential signature map.

d track time (ms)  lookup time (ms)  track eq lookup eq
2 230 0.36 208 0.34
3 283 0.38 213 0.35
4 335 0.39 288 0.40
5 409 0.32 357 0.32
6 507 0.32 462 0.33

Fig. 6. Equality test timings for Euclidean joint signatures 7.

dege, JF =8d?(d? — 1)
dege, Jf =4d(d — 1)(3d*> +d — 1).

To assess the speed and robustness of the online equality test, we conducted an experiment where,
for degrees d =2,...,6, curves Cq,...,Ci9 were generated with coefficients drawn uniformly from
the unit sphere in R@+2@+1D/2 For each C;, we computed a witness set via parameter homotopy
from a generic degree d curve. We then applied 20 random transformations from £, (R) to the C; and
perturbed the resulting coefficients by random real € with ||€]l, € {0,1077,1076, ..., 103}, thus ob-

taining curves C/,TG, ..., Ci20,e. Thus two curves are “close” if they are close in the space of algebraic
curves of fixed degree with respect to || - ||, and the curves C; and C; are “almost” equivalent if C;
is & (R)-equivalent to a curve that is “close” to C;. With all numerical tolerances fixed, we ran the

equality test for each E,—j/e against each C;.

Figs. 5 and 6 summarize the timings for the equality tests in this experiment. Overall, these tests
run on the order of sub-seconds. Most of the time is spent on path-tracking. The tracking times
reported give the total time spent on lines 1 and 6 of Algorithm 1. The only other possible bottleneck
is the lookup on line 7. This is negligible, even for large witness set sizes, if an appropriate data
structure is used. The runtimes for all cases considered seem comparable, although using differential
signatures and multiprojective slices appear to give a slight edge over the respective alternatives.

The plots in Fig. 7 illustrate the results of our sensitivity analysis. The respective axes are the
magnitude of the noise € and the percentage of C; ;. deemed to be not equivalent to C;. Note that
the horizontal axis is given on a log scale, and excludes the noiseless case € = 0; for this case, among
all tests in the experiment, only one false negative was reported for the differential signatures with
d = 6. We include a trend line to make the plots more readable. In general, we observe a threshold
phenomenon, where most tests are positive for sufficiently low noise and are negative for sufficiently
high noise. Besides the multiprojective differential signature (depicted in the bottom-left), we observe
a similar stability profile for this type of random perturbation.

Remark 4.3. The thresholds in these experiments clearly depend on the numerical tolerances used
(for this experiment, defaults are provided by NAG4M2), the type of map, and the type of witness set.

In Fig. 8, we reproduce the previous experiment for curves of degrees d =3, 4,5 under SA,(C).
Perhaps unsurprisingly due to the higher degree of the image and the complexity of evaluating the
signature maps, the equality test in this case is much more sensitive to small perturbations. Here we
observe a significant difference in the sensitivity between the equi-affine joint and differential equality
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Fig. 7. Sensitivity of the equality test on Euclidean signatures to noise.

tests. In contrast to the Euclidean case, the joint signature appears to be far less sensitive. We also now
observe in around 2% of cases overall that there are failures due to path-tracking, resulting in neither
an equivalent nor inequivalent outcome. We again exclude the noiseless case € =0 in these graphs
where the false negative rate was less than 1%. Surprisingly, we also observed a non-negligible rate of
“false-positives” for the SA,(C) joint signature, wherein some C; and C; are declared equivalent. We
also note that we do not have an analogue of Conjecture 4.2 for J SA leaving us less certain about
the completeness of the witness sets collected.

In our previous experiments we perturbed curves in the space of algebraic curves of fixed de-
gree. Here we conduct a similar experiment for the Euclidean differential and joint signatures under
a different scheme of noise inspired by applications such as curve-matching (Hoff and Olver, 2013).
d+2

2
C1, ..., Cio, perturb these points by € € R? with |€| =€, and then reconstruct a new algebraic curve
of the same degree through interpolation before applying a random transformation from &, (R). Specif-
ically, the equation defining our interpolated curve comes from singular vectors of the Vandermonde

Instead of perturbing the coefficients of the algebraic curve, we sample ( ) + 1 points on curves
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Fig. 8. Sensitivity of the equality test on equi-affine signatures to noise.
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Fig. 9. Sensitivity of the equality test for Euclidean signatures of curves computed from noisy samples.

matrix of all degree-< d monomials evaluated at the samples, as in Breiding et al. (2018). Now a
curve C; is “close” to C; if the samples taken from C; nearly lie on C;, and the curves C; and C; are
“almost” equivalent if C; is & (R)-equivalent to a curve that is “close” to C;. We emphasize that the
coefficients of the perturbed curves have a more complicated dependence on € in this experiment.
Moreover, we caution that our results may also depend on the number of points sampled from each
curve. Still, we find that the observations from this new experiment, with a more meaningful model
of noise, and our original experiment are roughly consistent. (See Fig. 9.)

In closing, we have shown that numerical algebraic geometry is a novel and effective tool for
studying signatures and the group valence problem. Our results suggest new avenues of mathemat-
ical research and our experimental results contribute to the ongoing study of signatures of curves
under noise. In general, we found that using numerical algebraic geometry and signatures to deter-
mine equivalence of algebraic curves can be sensitive to a moderate amount of noise. However, we
have only taken first steps towards exploring this topic and its applications, and we hope our efforts
motivate future work.
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