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We apply numerical algebraic geometry to the invariant-theoretic 
problem of detecting symmetries between two plane algebraic 
curves. We describe an efficient equality test which determines, 
with “probability-one”, whether or not two rational maps have 
the same image up to Zariski closure. The application to invariant 
theory is based on the construction of suitable signature maps 
associated to a group acting linearly on the respective curves. We 
consider two versions of this construction: differential and joint 
signature maps. In our examples and computational experiments, 
we focus on the complex Euclidean group, and introduce an 
algebraic joint signature that we prove determines equivalence of 
curves under this action and the size of a curve’s symmetry group. 
We demonstrate that the test is efficient and use it to empirically 
compare the sensitivity of differential and joint signatures to 
different types of noise.
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1. Introduction

The study of plane curves under linear group actions is a classical subject of both differen-
tial (Guggenheimer, 1963) and algebraic geometry (Olver, 1999) with applications to image science 
(Mundy et al., 1994). In particular, an important problem is to determine whether two curves are 
equivalent under such a group action, which is more difficult when there is a significant level of 
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Fig. 1. Two E2(C)-equivalent curves and their differential signature curve in red. A line and its pullback under the respective 
signature maps in blue. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

noise. For instance, when the transformation group is the group of rigid motions, this can translate 
to deciding whether two contours represent the same object in different positions, or, in the case of 
affine and projective transformations, whether two contours might correspond to different projections 
of the same 3D object. For plane algebraic curves, we state the group equivalence problem as follows 
(• denotes Zariski closure):

Problem 1. Given a positive dimensional algebraic group G ⊂ PGL3(C) acting linearly on C2 and two 
plane algebraic curves C0, C1 ⊂C2, decide if there exists g ∈ G such that C0 = g · C1.

There exist many different symbolic algorithms to determine equivalence under a particular group 
of algebraic transformations. For instance, one can directly use elimination algorithms to determine 
whether there exists such a group element. One can also use invariants, for example by constructing a 
set of rational invariants that characterize the orbits of the action on the coefficients of curves of fixed 
degree d (Derksen and Kemper, 2015; Hubert and Kogan, 2007; Sturmfels, 2008) or by constructing a 
pair of rational differential invariants which define a signature polynomial on a curve characterizing 
its equivalence class (Burdis et al., 2013; Kogan et al., 2020).

In the analogous setting of smooth curves in R2, the Fels-Olver moving frame method (Fels and 
Olver, 1999), based on Cartan’s method of moving frames, associates to each curve a differential signa-
ture curve, defined in terms of smooth invariants, which is classifying for the group action. In greater 
generality, differential signatures may be constructed for smooth submanifolds of some ambient space 
equipped with a Lie group action. The differential signature locally characterizes the manifold’s equiv-
alence class under the action, meaning that manifolds with the same signature are locally equivalent 
under the Lie group (Fels and Olver, 1999). Differential signatures of curves have been successfully 
applied to object recognition under noise, where it seems that curves that are “almost” equivalent 
have “close” signatures. Specific applications range from jigsaw puzzle reconstruction (Hoff and Olver, 
2014) to medical imaging (Grim and Shakiban, 2017). They have also been used to solve classical 
invariant theory problems such as determining equivalence of binary and ternary forms (Berchenko 
(Kogan) and Olver, 2000; Kogan and Moreno Maza, 2002; Olver, 1999).

Differential signatures were adapted from the smooth setting in order to construct explicit alge-
braic invariants in Hubert and Kogan (2007) and rational invariants in Kogan et al. (2020) for plane 
algebraic curves. In Burdis et al. (2013) the notion of a signature polynomial was introduced to deter-
mine equivalence of plane algebraic curves, and in Kogan et al. (2020) it is shown that this reduction 
to Problem 2 can always be done. For our purposes, the differential signature curve of an affine 
curve C ⊂ C2 with respect to some group action will always be the image of some rational map 
! : C !!"C2.

Example 1.1. In Fig. 1, the red curve on left depicts real points (x, y) satisfying the cubic equation 
8x3 − 20xy + 2y2 + 5x − 10 = 0. Applying a real rotation and translation yields the red curve in the 
middle. Theorem 2.18 tells us that they have the same differential signature curve. This is a degree 
48 curve, depicted in red on the right.
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In the setting of Problem 1, Kogan et al. (2020) observed that local equivalence implies global 
equivalence, reducing Problem 1 to a special case of Problem 2 below.

Problem 2. Given two irreducible algebraic varieties, X0 ⊂ Cn0 and X1 ⊂ Cn1 , and rational maps, 
!0 : X0 !!"Cm and !1 : X1 !!"Cm , decide if im!0 = im!1.1

In the smooth setting, the reduction of Problem 1 to Problem 2 can also be achieved through 
the use of joint signatures (introduced in Olver, 2001) which are obtained by constructing maps using 
joint invariants of the induced action of G on the product C2 × . . . × C2. The joint signatures may 
be interpreted as 0-th order differential invariants, and are considered to be more noise-resistant in 
applications. This further motivates our interest in studying Problem 2 in full generality.

In this paper, we study the group equivalence problem for the complex Euclidean group E2(C) via 
differential and joint signatures. As a theoretical contribution, we complement the results of Kogan et 
al. (2020) (summarized in Section 2.2) with a rigorous analysis of Euclidean joint signatures, which 
characterize E2(C)-equivalence in our algebraic setting (Theorem 2.24). Another main contribution is 
our use of numerical algebraic geometry. This allows us to study the joint signature for curves of higher 
degree than symbolic methods would allow; as an upshot, we obtain a conjectural formula for the 
degree of the joint signature of a generic curve (see Conjecture 4.2). Numerical algebraic geometry 
also gives us a novel approach to Problem 2 (and hence also Problem 1) based on witness sets. 
To accommodate the many variations on the signature construction, we state a general algorithm 
for Problem 2; this equality test is a variation on the standard membership tests from numerical 
algebraic geometry. Admittedly, this approach is far less straightforward than the direct approach to 
Problem 1 in which the group element g is solved for directly. Our interest in numerical algebraic 
geometry is partially motivated by the potential viability of numerical methods in noisy settings. As 
a third contribution, we experimentally investigate the potential of the equality test for signatures to 
measure of “near-equivalence” of curves.

A previous version of this work appeared in the conference proceedings of ISSAC 2020 (Duff and 
Ruddy, 2020). In this version we have made significant revisions, with simpler proofs of the main re-
sults on joint signatures. We also include new results relating the curve’s symmetry group to the joint 
signature (Proposition 2.31), which mirror previous results of Kogan et al. (2020) for the differential 
signature map. We conduct several new experiments on the sensitivity of the numerical equality test 
to noise, now involving the equi-affine group as well as curves computed from noisy samples. Finally, 
we include several new examples.

The paper is organized as follows. Section 2 gives a general overview of signatures and their rela-
tion to the group equivalence problem. In 2.2, we recall the results of Burdis et al. (2013), Kogan et 
al. (2020), where the differential signature for a plane algebraic curve is constructed using a classify-
ing pair of differential invariants. In 2.3 we describe how joint signatures can be used to determine 
equivalence of plane curves using lower order differential invariant functions, and mirror these pre-
vious results for the particular case of the complex Euclidean group E2(C). In Section 3, we review 
some notions from numerical algebraic geometry, before stating a general solution to Problem 2 (Al-
gorithm 1) in Section 3.2, with additional comments relevant to the application to signatures in 3.3. 
In Section 4, we describe an implementation in Macaulay2 (Grayson and Stillman, 1997). Our ex-
periments demonstrate that computing witness sets for plane curves of relatively high degree is 
feasible and that, for precomputed witness sets, the online equality test gives a fast alternative to 
symbolic methods for signatures, and that Finally, we observe our numerical approach is robust in 
a certain, moderate regime of noise in which we subject the curves to different types of pertur-
bations. The experiments were conducted using version 1.17 of Macaulay2 (Grayson and Stillman, 
1997); our implementation and scripts for running experiments may be obtained via the url https://
github .com /timduff35 /NumericalSignatures.

1 In Problem 2, im !i denotes the Zariski closure of the image of !i . We do not address the more delicate problem of 
deciding equality of the constructible sets im!i .
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2. Signatures of curves

2.1. Invariants of plane curves

Invariants and the classification of differentiable curves in R2 with respect to rigid motions are 
classical subjects in differential geometry (Guggenheimer, 1963). This can be seen as a variant on 
what we defined as Problem 1.

Definition 2.1. Two curves C0, C1 are said to be G-equivalent, denoted C0 ∼=G C1, if there exists an 
element g in the group of transformations G such that C0 = g · C1.

Remaining purposefully agnostic about what constitutes a “curve” and a “group of transforma-
tions,” we can define the Group equivalence problem for curves as: given two curves and a group of 
transformations G decide if they are G-equivalent. In this context both classical questions about ge-
ometry of real curves and Problem 1 are both specific instances of a larger class of problems. In this 
subsection, we discuss how previous work on the group equivalence problem for differentiable curves 
in R2 connects to our approach to Problem 1 for algebraic curves in C2.

For now let C refer to the image of a smooth2 map γ = (x(t), y(t)) where γ : I → R2 for some 
interval I ⊂R. We denote SE2(R) as the special Euclidean group, the transformation group of rotations 
and translations of R2. A classical invariant of curves under rigid motion is the Euclidean curvature 
function κ(t), defined below in (1), meaning that the value of curvature at a particular point of a 
curve does not change when the curve transformed by SE2(R).

κ(t) = x′(t)y′′(t) − y′(t)x′′(t)
(x′(t)2 + y′(t)2)3/2 (1)

Euclidean curvature at a point on a curve can be defined in many “geometrically-satisfying” ways, 
as the multiplicative inverse of the radius of the osculating circle, or norm of the tangent vector when 
the curve is parameterized by arc length. Euclidean curvature also provides a way to solve the group 
equivalence problem for curves under SE2(R). The following theorem appears in many places, for 
instance (Guggenheimer, 1963), and is sometimes referred to as the “Fundamental theorem for planar 
curves.”

Theorem 2.2. If two smooth curves have the same Euclidean curvature as a function of arc length, then they 
are SE2(R)-equivalent.

Thus κ(s), Euclidean curvature when C is parameterized by the arc length parameter s, completely 
determines a curve up to SE2(R). In practice comparing curves’ curvature functions to determine 
SE2(R)-equivalence is difficult as this comparison depends on the parameterization and the starting 
point when the curve is closed. In this sense, a single curve can have infinitely many different cur-
vature functions. Motivated by applications to object recognition, the authors of Calabi et al. (1998)
proposed the use of the Euclidean signature curve to determine SE2(R)-equivalence of smooth curves.

Definition 2.3. The Euclidean signature curve of a smooth curve C is the image of C under the map 
S : C → R2 defined by S = (κ, κs), where κs is the function representing the derivative of κ with 
respect to arc length.

Theorem 2.4 (Theorem 2.3 in Calabi et al., 1998). If two smooth curves, C0, C1 have the same Euclidean sig-
nature curve, then they are locally equivalent under SE2(R).

2 Here smooth refers to a map defined by infinitely differentiable functions. For simplicity we require smooth functions, 
though for the results and constructions referenced, this restriction can be loosened to n-differentiable for an appropriate 
choice of n.
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Here locally equivalent means that around each point of C0, there exist open subsets U0 ⊂ C0 and 
U1 ⊂ C1 such that U0 = g · U1 for some g ∈ SE2(R). Thus the local geometry of a curve is deter-
mined by the relationship between Euclidean curvature and another differential invariant function, 
the derivative of κ with respect to arc length. For closed curves this relationship is invariant with 
respect to parameterization and starting point. Intuitively this produces an object, the Euclidean sig-
nature, where curves with local geometries that are “close” have “close” signatures. The word “close” 
appears here in quotations as there is no rigorous statement to this effect, and a good definition of 
“close” in this context needs further investigation. Nevertheless this idea still led to subsequent works 
where the Euclidean signature curve is used for a curve matching algorithm (Hoff and Olver, 2013) 
and then applied to automatic jigsaw puzzle reassembly (Hoff and Olver, 2014).

The authors of Calabi et al. (1998) also note that this procedure generalizes to plane curves under 
other transformation groups of R2. For most Lie group actions of G on R2 there exists a notion of 
G-invariant curvature κ and G-invariant arc length s such that if curves have the same image, or 
differential signature, under (κ, κs) then they are locally equivalent under G (Calabi et al., 1998, Thm 
5.2). Moreover a pair of such differential invariants can be constructed explicitly by the Fels-Olver 
moving frame method (Fels and Olver, 1999), giving a practical method to locally solve the group 
equivalence problem for smooth curves.

Turning attention back to Problem 1, for algebraic curves local equivalence under a group G imme-
diately implies global G-equivalence as in Definition 2.1. Thus the differential signature characterizes 
algebraic curves under a transformation group G . In Burdis et al. (2013) the authors connect the 
differential signature to symbolic methods by noticing that when the differential invariants can be 
expressed as a rational map on the curve, two algebraic curves’ differential signatures can be com-
pared by computing their implicit equations, connecting Problem 2 to the group equivalence problem 
for algebraic curves over R2.

In Kogan et al. (2020) it is shown that for any subgroup of PGL3(C) there exists a pair of ratio-
nal differential invariants which can reduce Problem 1 to Problem 2. Thus the differential signature 
can be used to solve questions of classical invariant theory in a way that uses the same invariants 
regardless of the degree of the algebraic curves in question. Moreover these differential invariants can 
be interpreted as generators of a field of rational invariants, meaning that they can be computed by 
symbolic methods such as those in Derksen and Kemper (2015) or the cross-section method in Hu-
bert and Kogan (2007) inspired by the previously mentioned moving frame method. Thus Problem 1
can be solved end-to-end by symbolic computation in this way.

In practice, these methods can be quite slow for computing implicit equations of differential 
signatures (see Ruddy (2019, Ex. 3.2.13) for instance), which is our motivation to further extend 
the connection between Problem 1 to Problem 2 by leveraging numerical algorithms for computing 
pseudo-witness sets to compare differential signatures of algebraic curves. In Section 2.2 we explain, 
in greater detail, the reduction of Problem 1 to Problem 2 along with examples.

In addition to differential invariants, a similar approach has been taken using joint differential 
invariants to solve the group equivalence problem for smooth curves in Olver (2001), which are in 
theory more robust to noise and perturbations. In Section 2.3 we consider for the first time using the 
joint signature in a completely algebraic approach to Problem 1, proving in the case of E2(C) that the 
Euclidean joint signature characterizes equivalence classes of algebraic curves.

In the next two sections, we assume that plane curves are complex algebraic, irreducible, and of 
degree greater than one. The degree restriction removes from consideration lines, on which not all 
transformations g ∈ G may not be defined.

2.2. Differential signatures

For algebraic curves, we tweak Definition 2.1 to the following definition, which allows for the 
image of a curve under the action of G to not be closed.

Definition 2.5. Two algebraic curves C1 and C2 are G-equivalent if there exists g ∈ G such that C1 =
g · C2.
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We assume that the group G ⊂ PGL3(C) is a positive dimensional algebraic group acting linearly 
on C2 with action g · (x, y) = (x, y).

Definition 2.6. The projective group PGL3(C) is the group of invertible matrices modulo scaling, i.e. 
PGL3(C) ∼= GL3(C)!λI . The linear action on C2 is defined by the map ! : PGL3(C) × C2 !!"C2

where for A ∈ PGL3(C) and p = (x, y) ∈C2,

!(A, p) =
(

a11x + a12 y + a13

a31x + a32 y + a33
,

a21x + a22 y + a23

a31x + a32 y + a33

)
.

We consider a few classical subgroups of PGL3(C).

Definition 2.7. The Euclidean group E2(C) is the subgroup of PGL3(C) given by matrices of the form



αc αs a
−s c b
0 0 1





where a, b, c, s ∈C, α ∈ {−1, 1}, and c2 + s2 = 1.

Definition 2.8. The special Euclidean group SE2(C) is the subgroup of E2(C) consisting of determinant 
one matrices.

Definition 2.9. The equi-affine group SA2(C) is the subgroup of PGL3(C) given by matrices of the 
form




a11 a12 a13
a21 a22 a23
0 0 1





with entries in C and a11a22 − a12a21 = 1.

A differential signature that determines G-equivalence of algebraic curves can be constructed from 
a set of classifying invariants (Definition 2.15). We let Jn denote the nth order jet space, a complex 
vector space of dimension (n + 2) with coordinates (x, y, y(1), . . . , y(n)). Letting &( Jn) denote the set 
of complex-differentiable functions from Jn to C, the total derivative operator d

dx : &( Jn) → &( Jn+1)

is the unique C-linear map satisfying the product rule and the relations d
dx (x) = 1, d

dx (y(k)) = y(k+1)

for k ≥ 0, cf. Olver (1995, Ch. 7). The prolonged action of G on Jn is given by

g · (x, y, y(1), . . . , y(n)) = (x, y, y(1), . . . , y(n))

where

y(1) =
d

dx [y(g, x, y)]
d

dx [x(g, x, y)]
, y(k+1) =

d
dx

[
y(k)(g, x, y, y(1), . . . , y(k))

]

d
dx [x(g, x, y)]

for k = 1, . . . ,n − 1.

Definition 2.10. A differential invariant for the action of G is a function on Jn that is invariant under 
the prolonged action of G on Jn . The order of a differential invariant is the maximum k such that the 
function depends explicitly on y(k) .

Definition 2.11. The n-th jet of an algebraic curve C is the image of the map jn
C : C !!" Jn given (where 

defined) by
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(x, y) )→ (x, y, y(1)
C (x, y), y(2)

C (x, y), . . . , y(n)
C (x, y)),

where y(k)
C (x, y) is the k-th derivative of y with respect to x at the point (x, y) ∈ C .

The prolonged action of G is defined such that

g · jn
C (C) = jn

g·C (g · C).

Definition 2.12. The restriction of a differential invariant K of order n to a curve C is the map K |C :
C !!"C2 given by K |C = K ◦ jn

C .

The coordinates of the n-th jet map jn
C are rational functions of x and y that can be computed via 

implicit differentiation:

y(1)
C = −∂x F

∂y F
and y(k+1)

C = ∂x y(k)
C + ∂y y(k)

C y(1)
C , (2)

where IC = +F 〉. Thus, if K is a rational differential invariant of order n, meaning it is a rational 
function in the coordinates of Jn , then K |C is a rational function in x and y.

Definition 2.13. We say that a set of differential invariants I separates orbits for the prolonged action 
on a nonempty Zariski-open W ⊂ Jn if, for all p, q ∈ W ,

K (p) = K (q) ∀K ∈ I ⇔ ∃g ∈ G such that p = g · q.

Example 2.14. The prolonged action of E2(C) on J 2 is given by

g · (x, y, yx, yxx) =
(
α(cx + sy) + a,−sx + cy + b,α

cyx − s
syx + c

,
αyxx

(syx + c)3

)
,

where yx = y(1) and yxx = y(2) . The Euclidean curvature function3 in (1) can be written in the coor-
dinates of J 2 as

κ(x, y, yx, yxx) = yxx
(
1 + y2

x
)3/2 .

Though κ is not a rational differential function on J 2, the function κ2 is. Thus κ2 is a rational 
differential invariant function for the action of E2(C). In fact one can show that κ2 separates orbits 
for the prolonged action of E2(C) on J 2. For a particular algebraic curve C defined by F (x, y) = 0, we 
can restrict κ2 to C to obtain the map κ2|C : C →C defined by

(
−Fxx F 2

y+2Fxy Fx F y−F yy F 2
x

F 3
y

)2

(
1 +

(
Fx
F y

)2
)3 =

(
−Fxx F 2

y + 2Fxy Fx F y − F yy F 2
x
)2

(
F 2

x + F 2
y
)3 .

Definition 2.15. Let an r-dimensional algebraic group G act on C2. A pair of rational differential 
invariants I = {K1, K2} is said to be classifying if K1 separates orbits on a Zariski-open subset Uk ⊂ J k

for some k < r and I separates orbits on a Zariski-open subset Ur ⊂ J r .

3 Note that in this formulation of Euclidean curvature, κ is a local invariant, and a 180-degree rotation of the curve will 
change the sign of κ(x, y, yx, yxx). Unlike (1), κ in this case does not take into account orientation of the curve, as y is locally 
parameterized with respect to x. See Olver (2001, Example 4.8) for more details.
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For a particular action of G , such a pair of classifying invariants always exists, and one can explicitly 
construct a pair by computing generators for the field of rational invariants for the prolonged action 
of G (Kogan et al., 2020, Thm 2.20), using algorithms such as those found in Derksen and Kemper 
(2015) and Hubert and Kogan (2007). It should be noted that I is not unique, and different choices 
can lead to different differential signatures.

Definition 2.16. For a pair of classifying invariants I = {K1, K2}, an algebraic curve C is said to be 
non-exceptional if all but finitely many points on p ∈ C satisfy

jk
C (p) ∈ Uk, jr

C (p) ∈ Ur, and
∂ K1

∂ y(k)
,

∂ K2

∂ y(r)
0= 0 at jr

C (p),

where Uk, Ur are defined in Definition 2.15 for a classifying pair I .

A generic curve of degree d where 
(d+2

2

)
− 2 ≥ r is non-exceptional with respect to a given classifying 

set (Kogan et al., 2020, Thm 2.27).

Definition 2.17. Let I = {K1, K2} be a pair of classifying invariants for the action of G on C2 and C a 
non-exceptional algebraic curve with respect to I . The map (C : C →C2 defined by (C = (K1|C , K2|C )
is the differential signature map for C and its image is the differential signature of C , denoted SC .

The following appears as Theorem 2.37 in Kogan et al. (2020).

Theorem 2.18. If algebraic curves C0, C1 are non-exceptional with respect to a classifying set of rational dif-
ferential invariants I = {K1, K2} under an action of G on C2 then

C0 ∼=G C1 ⇔ SC0 = SC1 .

Since the Zariski-closure of the differential signature of an algebraic curve SC characterizes its equiv-
alence class under G , so does the polynomial vanishing on SC , referred to as the signature polynomial
of C and denoted SC (κ1, κ2). Thus to determine if curves C1 and C2 are G-equivalent we can compare 
signature polynomials SC1 and SC2 . The differential signature map also characterizes the size of the 
symmetry group of C under G .

Definition 2.19. The symmetry group of C under G is the subgroup of G defined by

Sym(C, G) = {g ∈ G | C = g · C}.

The following follows from Lemma 2.34 and Theorem 2.38 in Kogan et al. (2020).

Theorem 2.20. For an algebraic curve, non-exceptional with respect to I = {K1, K2}, the symmetry group 
Sym(C, G) is of cardinality n < ∞ if and only if the map (C is generically n : 1. Furthermore Sym(C, G) is 
infinite if and only if SC is a single point.

Example 2.21. Consider the action of the Euclidean group E2(C) on curves in C2 (defined in Defini-
tion 2.7). In Example 2.14 we saw that κ2 is rational invariant for the prolonged action of E2(C) on 
J 2. Similarly the function

κ2
s =

(
yxxx

(
1 + y2

x
)
− 3yx y2

xx
)2

(
1 + y2

x
)6 ,

representing the square of the derivative of curvature with respect to arc length, is also a rational 
invariant for this action. Together the pair I = {κ2, κ2

s } is a classifying set of rational differential 
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invariants for the action of E2(C) on curves in C2. Moreover, there are no I-exceptional algebraic 
curves—for details see Ruddy (2019, Sec. 4.1). By Theorem 2.18, the equivalence class of an algebraic 
curve C under E2(C) is completely determined by SC .

Consider the two ellipses C1 and C2 defined by the zero sets of

F1(x, y) = x2 + y2 + xy − 1

F2(x, y) = x2 + y2 − xy − 5x + y + 6,

respectively. The signature maps (C1 , (C2 are rational maps on C1, C2 defined by

(C1(x, y) =
(
κ2|C1 ,κ

2
s |C1

)
=

(
36 (F1(x,y)+1)2

(5x2+8xy+5y2)3 , 2916 (x−y)2 (x+y)2 (F1(x,y)+1)2

(5x2+8xy+5y2)6

)
,

(C2(x, y) =
(
κ2|C2 ,κ

2
s |C2

)
=

(
36 (F2(x,y)+1)2

(5x−8xy+5y2−22x+14y+26)3 , 2916 (x−y−2)2 (x+y−4)2 (F2(x,y)+1)2

(5x−8xy+5y2−22x+14y+26)6

)
.

From the above, we see that each map (Ci has an equivalent expression modulo ICi where the total 
degrees drop by 4.4 Both ellipses C1 and C2 have symmetry groups under E2(C) of cardinality 4 
(generated by a reflection and 180◦-degree rotation). Thus, by Theorem 2.20, the above maps are 
generically 4 : 1. We can directly compute the signature polynomials SC1 and SC2 using elimination:

SC1(κ1,κ2) = SC2(κ2,κ2)

= 2916 k6
1 − 13608 k5

1 + 972 k4
1k2 + 2187 k4

1 + 1944 k3
1k2 + 108 k2

1k2
2 + 4 k3

2.

Since these two curves have the same signature polynomial, the Zariski-closure of their images are 
equal, i.e. SC1 = SC2 . Thus by Theorem 2.18 the two curves are E2(C)-equivalent.

Example 2.22. For the action of the equi-affine group SA2(C) on curves in C2 (defined in Defini-
tion 2.9), we can again construct a differential signature map from rational differential invariants. The 
following pair

(K1, K2) =





(
3y(4) y(2) − 5

(
y(3)

)2
)3

(
y(2)

)8 ,
9y(5)

(
y(2)

)2 − 45y(4) y(3) y(2) + 40
(

y(3)
)3

(
y(2)

)4





forms a classifying set of rational differential invariants. Here K1 = µ3 where µ is classical affine 
curvature (Guggenheimer, 1963). For details on classifying sets of rational differential invariants for 
SA2(C) and other classical linear groups see Ruddy (2019, Sec. 4.1).

2.3. Joint signatures

For any integer n ≥ 1 and G acting on C2 as before, there is an induced action of G on the n-fold 
Cartesian product (C2)n given by

g · ((x1, y1), . . . , (xn, yn)) = (g · (x1, y1), . . . , g · (xn, yn)) .

On one hand, the group-equivalence problem for products of curves gives us nothing new; two plane 
curves C0, C1 are G-equivalent if and only if Cn

0, Cn
1 are G-equivalent under this induced action. On the 

other hand, it is often possible to construct classifying invariants for the induced action which involve 
lower-order jets than would be needed when n = 1. Although the number of invariants required 
may increase with n, the lower-order invariants are of interest in applications, as they may be more 
noise-resistant. Of special interest are the invariants of order zero, giving rise to the joint signatures, 

4 We detect this automatically with an implementation of rational function simplification from Monagan and Pearce (2006)
in Macaulay2 (Grayson and Stillman, 1997).
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which were introduced in Olver (2001) and studied for many of the classical groups in the smooth 
setting.

In this section, we study joint signatures for the Euclidean group in the algebraic setting of this 
paper. We define for n ≥ 2 the regular map

dn : (C2)n → Cn(n−1)/2

(x1, y1, . . . , xn, yn) )→ (d12,d13, . . . ,d1n, . . . ,d(n−1)n),

whose coordinate functions are the squared inter-point distances

d jk = (x j − xk)
2 + (y j − yk)

2.

Abusing notation, we write dn(C) for the restriction of dn to the n-fold Cartesian product Cn for 
any algebraic curve C ⊂C2.

Definition 2.23. The Euclidean joint signature JC = d4(C) is the image of the map C4 → C6 obtained 
by restricting d4.

Since d4 is invariant under the induced action of E2(C) on (C2)4, it is clear that if two curves are 
E2(C)-equivalent, then they will have the same joint signature. We will show that the converse also 
holds.

Theorem 2.24. Two irreducible plane curves C0, C1 ⊂C2 are E2(C)-equivalent if and only if JC0 = JC1 .

The hypothesis of irreducibility cannot simply be dropped—for instance, the joint signature does 
not distinguish an irreducible curve from its union with any number of isotropic lines. Here, we define 
an isotropic line to be any curve which is E2(C)-equivalent to the line {(x, y) ∈C2 | x = iy}, where i
is the imaginary unit. In all that follows, we let C ⊂C2 be an irreducible affine plane curve.

We begin with nearly-matching upper and lower bounds on the dimensions of dn(C).

Proposition 2.25. For all n ≥ 2, we have dim dn(C) ≤ n. If C is not an isotropic line, we also have dimdn(C) ≥
n − 1; in particular, 2 ≤ dim d3(C) ≤ 3, and 3 ≤ dim d4(C) ≤ 4.

Proof. The first statement follows easily since dim dn(C) ≤ dim(Cn). For the second statement, note 
first that d2(C) is an irreducible subvariety of C1 and that 0 ∈ d2(C). Thus, d2(C) will be Zariski 
dense in C1 unless 0 is the only point in d2(C), which is precisely the case of an isotropic line. Thus, 
in all other cases, dim d2(C) = 1. For larger n, consider the projection dn(C) → dn−1(C). The fibers 
of this map will be 1-dimensional, except once again in the case that C is an isotropic line. Hence 
dim dn(C) ≥ dim dn−1(C) + 1. !

Our proof of Theorem 2.24 makes repeated use of the simple fact that the squared distances 
separate orbits of the induced E2(C) action on generic 3-tuples and 4-tuples. This is the content of 
Proposition 2.26, which we prove with an algebraic analogue of the moving frame method. We state 
sufficient conditions for genericity more precisely by defining Wn ⊂ (C2)n to be the Zariski-open set 
where none of the inter-point distances vanish:

Wn = {(p1, . . . , pn) ∈ (C2)n |d jk(p) 0= 0 for j < k and j,k ∈ {1, . . . ,n}},
where W1 =C2 by convention. Thus, for example, we have ((0,0), (1, i)) /∈ W2.

Proposition 2.26. For n ≥ 2, the E2(C)-orbit of any (p1, . . . , pn) ∈ Wn consists of all (q1, . . . , qn) ∈ (C2)n

such that dn(p1, . . . , pn) = dn(qn, . . . , qn).
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Proof. Suppose dn(p1, . . . , pn) = dn(qn, . . . , qn). We will show that (p1, . . . , pn) and (q1, . . . , qn) are in 
the same orbit. The converse, that points in the same orbit have the same image under dn , is easily 
verified.

Without loss of generality, we may assume that p1 = q1 = (0, 0) and p2 = q2 = (0, y2) by ap-
plying to each of the n-tuples a suitable translation and rotation. For instance, if p1 = (0, 0) and 
p2 = (x′

2, y
′
2), we act with the rotation

1
√

x′2
2 + y′2

2

·
(

y′
2 −x′

2
x′

2 y′
2

)
,

and hence we also have that y2 =
√

x′ 2
2 + y′ 2

2 = √
d2 0= 0. For the remaining points pk, qk with k ≥ 3, 

we write pk = (xp
k , yp

k ) and qk = (xq
k, y

q
k) and consider the two equations d1k(p) = d1k(q) and d2k(p) =

d2k(q):

(xp
k )2 + (yp

k )2 = (xq
k)

2 + (yq
k)

2

(xp
k )2 + (y2 − yp

k )2 = (xq
k)

2 + (y2 − yq
k)

2.

Subtracting these and dividing by y2, we obtain y2 −2yp
k = y2 −2yq

k . Hence for all k we have yp
k = yq

k , 
which in turn implies that (xp

k )2 = (xq
k)

2. We are done if xp
k = xq

k for all k; otherwise, we may choose k
minimal such xp

k = −xq
k 0= 0. Reflecting about the y-axis leaves p1, . . . , pk−1, q1, . . . , qk−1 unchanged, 

but with pk = qk . Moreover, for any j > k, we now have

(xk − xp
j )

2 + (yk − y j)
2 = (xk − xq

j)
2 + (yk − y j)

2,

which simplifies to −2xkxp
j = −2xkxq

j , and hence xp
j = xq

j . !

Any two points in the same E2(C)-orbit will have conjugate stabilizer subgroups. Arguing as in 
the previous proof, we may characterize a generic stabilizer under the induced action.

Proposition 2.27. For n ≥ 2, the subgroup of E2(C) that stabilizes (p1, . . . , pn) ∈ Wn is trivial unless 
p1, . . . , pn are collinear, in which case it is generated by reflection through the line p1 p2 .

Proof. As in the previous proof, we may assume p1 = (0, 0) and p2 = (0, y2) with y2 0= 0. A short cal-
culation shows, for g defined by parameters (a, b, c, s) as in Example 2.21, that g · (p1, p2) = (p1, p2)
implies immediately that a = b = 0 (no translation), and moreover s y2 = 0, which in turn forces 
(c, s) = (±1, 0). Thus, the stabilizer of (p1, p2) is generated by reflection about the y-axis. The rest of 
the proposition follows from considering the action on the remaining points p3, . . . , pn . !

To apply Proposition 2.26 in the case where (p1, . . . , pn) ∈ Cn , we must verify that the intersection 
Cn ∩ Wn is nonempty. This turns out to be true for all irreducible C except for the isotropic lines.

Lemma 2.28. Suppose C ⊂ C2 is an irreducible algebraic curve which is not an isotropic line. For any fixed 
n ≥ 1, the intersection Cn ∩ Wn is nonempty. In fact, for any fixed (p1, . . . , pn−1) ∈ Cn−1 ∩ Wn−1 , we have 
(p1, . . . , pn) ∈ Cn ∩ Wn for generic pn ∈ C.

Proof. The claim is vacuous for n = 1. For larger n, fix (p1, . . . , pn−1) ∈ Cn−1 ∩ Wn−1 and consider 
the Zariski open sets U1, . . . , Un−1 ⊂ C defined by Ui = {p ∈ C | d(pi, p) 0= 0}. If any of the sets C ∩ Ui

were empty, then C would be contained in the union of two isotropic lines, namely

{(x, y) ∈ C2 | ((x − xi) + i(y − yi)) ((x − xi) − i(y − yi)) = 0}.
Since C is irreducible, this would imply that C is one of these lines; thus C ∩ Ui 0= ∅ for each i =
1, . . . , n − 1. This gives us that (p1, . . . , pn) ∈ Cn ∩ Wn for all pn ∈ C ∩ U1 ∩ · · · ∩ Un−1 0= ∅. !
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To prove Theorem 2.24, we align two curves with the same joint signature by applying the moving 
frame method to suitably generic triples of points, and then conclude that the aligned curves are 
equal by applying the following lemma.

Lemma 2.29. Let C0, C1 ⊂C2 be irreducible algebraic curves which are not isotropic lines. For n ≥ 3, suppose 
there exists (p1, . . . , pn−1) ∈ Cn−1

0 ∩ Cn−1
1 such that

dn(p1 × · · · × pn−1 × C0) = dn(p1 × · · · × pn−1 × C1).

Then C0 and C1 are E2(C)-equivalent.

Proof. Pick pn ∈ C0 satisfying the genericity conditions of Lemma 2.28; by assumption, there ex-
ists p′

n ∈ C1 with d(p1, . . . , pn) = d(p1, . . . , p′
n). By Proposition 2.26, we have that (p1, . . . , pn) =

g · (p1, . . . , p′
n) for some g ∈ E2(C). This implies that g stabilizes (p1, . . . , pn−1), so by Proposi-

tion 2.27 it follows that g is either the identity or a reflection about the line p1 p2. Thus, C0 and 
gC1 intersect in infinitely many points, and we may conclude that C0 = gC1. !

Proof of Theorem 2.24. Let J be the joint signature of irreducible curves C1 and C2. Without loss of 
generality, assume that neither curve is an isotropic line, in which case the statement is trivial. Fix 
generic p1, p2, p3 ∈ C1. By Proposition 2.26, we may assume p1, p2, p3 ∈ C2 by acting on C2 with an 
appropriate E2(C) element. Let J ′ be the intersection of J with the coordinate hyperplanes dij =
d(pi, p j) for 1 ≤ i < j ≤ 3. Although dim J may be either 3 or 4, the genericity of p1, . . . , p3 implies 
that J ′ is a curve in either case, by an argument analogous to that given in Proposition 2.25. Indeed, 
the image of the map C 6 p4 )→ (p1, . . . , p4) ∈ J ′ is an irreducible variety of dimension at most 1, 
which contains two distinct points since C is not an isotropic line. Thus the image has dimension 1, 
implying the same for J ′ .

Now, for generic p4 ∈ C1, we have that d4(p1, p2, p3, p4) is a smooth point on J ′ . Fixing 
generic p4, there exists p′

4 ∈ C2 with d4(p1, p2, p3, p4) = d4(p1, p2, p3, p′
4). Thus, the irreducible 

curves d4(p1 × p2 × p3 × C1) and d4(p1 × p2 × p3 × C2) intersect in a smooth point. We conclude 
d4(p1 × p2 × p3 × C1) = d4(p1 × p2 × p3 × C2), and hence C0 ∼=E2(C) C1 by Lemma 2.29. !

We now state and prove the analogue of Theorem 2.20 for joint signatures.

Lemma 2.30. Let C be an irreducible algebraic curve. The group of Euclidean symmetries of C has the same 
cardinality as the fiber over a generic point in its joint signature: that is, for generic p1, . . . , p4 ∈ C ,

∣∣d−1
4|C (d4(p1, p2, p3, p4))

∣∣ = |Sym(C,E2(C))|.

Proof. Once again we may assume C is not an isotropic line so that there exists (p1, . . . , p4) ∈ C4 ∩
W4. By Proposition 2.26, the fiber d−1

4 (d4(p1, p2, p3, p4)) is exactly the orbit of (p1, p2, p3, p4) under 
E2(C). First suppose that C is a (non-isotropic) line. Then there is a translational subgroup of E2(C)
along the line, also a subgroup of Sym(C, E2(C)), which preserves the distances between the 4-tuple 
of points as they move along the curve. Thus the fiber and symmetry group are both infinite.

For C of degree greater than 2, a generic 4-tuple of points is non-collinear and has trivial stabilizer 
under E2(C) by Proposition 2.27. Thus each element of Sym(C, E2(C)) sends (p1, p2, p3, p4) to a 
distinct 4-tuple in the fiber, implying that

∣∣d−1
4|C (d4(p1, p2, p3, p4))

∣∣ ≥ |Sym(C,E2(C))|.

Now fix (q1, . . . , q4) ∈ d−1
4|C (d4(p1, p2, p3, p4)), so that there exists a g ∈ E2(C) such that g ·

(p1, p2, p3, p4) = (q1, q2, q3, q4); note, moreover, that distinct points in the fiber produce distinct 
group elements. Consider the curve C ′ = g · C . Clearly C ′ has the same joint signature as C , and 
hence we satisfy the hypothesis of Theorem 2.24. Thus the proof of Theorem 2.24 implies that
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d4(p1 × p2 × p3 × C) = d4(p1 × p2 × p3 × C ′).

Finally the proof of Lemma 2.29 implies that C and C ′ must be related by either the identity element 
of E2(C) or a reflection. However, since (p1, p2, p3, p4) are non-collinear, the stabilizer is non-trivial 
and C = C ′ . Thus each element of the fiber gives rise to a unique element of Sym(C, E2(C)) implying 
that

|d−1
4|C (d4(p1, p2, p3, p4))| ≤ |Sym(C,E2(C))|,

proving the lemma. !

Proposition 2.31. For an irreducible algebraic curve C different from an isotropic line, the following are equiv-
alent.

(1) dim(JC ) = 4.
(2) The symmetry group |Sym(C, E2(C))| = n < ∞.
(3) The map d4 is generically n : 1.

Proof. Lemma 2.30 immediately implies that statements (2) and (3) are equivalent. The dimension of 
the joint signature is four (the dimension of C4) if and only if a generic fiber of the map is of finite 
cardinality (see e.g. Shafarevich, 1994, Ch. 1, Sec. 6.3, Thm 1.25), and hence statements (1) and (2) are 
equivalent. !

The next proposition immediately follows by Proposition 2.25.

Proposition 2.32. For an irreducible algebraic curve C different from an isotropic line, dim(JC ) = 3 if and 
only if the symmetry group Sym(C, E2(C)) is infinite.

As in the case of differential signature, the dimension of the joint signature drops when the curve 
has an infinite symmetry group under E2(C). In the event the symmetry group is finite, the size of 
this subgroup is exactly the size of a generic fiber of the joint signature map.

Example 2.33. A classical result from differential geometry states that the only smooth plane curves 
of constant curvature are circles and lines. This is mirrored by the fact that the joint signatures of 
these curves have dimension 3 instead of 4; equivalently, by Proposition 2.25, the image of the map 
d3|C is a surface in C3. When C is a non-isotropic line, the equation of this surface is

d2
12 − 2 d12d13 + d2

13 − 2 d12d23 − 2 d13d23 + d2
23 = 0

and when C is a unit circle, it is given by the Heron polynomial

d12d13d23 + d2
12 − 2 d12d13 + d2

13 − 2 d12d23 − 2 d13d23 + d2
23 = 0.

We end this section with a discussion about joint signatures for other algebraic group actions. 
In Olver (2001), the author presents a smooth characterization of joint invariants for many of these 
groups over R. For instance, consider the action of SA2(R) on n-tuples of R2. The fundamental joint 
invariant is given by the signed area functions v(i, j, k) for 1 ≤ i < j < k ≤ n (Olver, 2001, Thm 3.3) 
where

v(i, j,k) = xi(y j − yk) − x j(yi − yk) + xk(yi − y j).

Though the number of such invariants increases in size rapidly as n grows, there exist many linear 
syzygies between these functions. In particular the invariants v(1, 2, k), v(1, 3, k) for k = 2, . . . , n gen-
erate the other invariants (Olver, 2001, Thm 8.8). Thus for curves under SA2(C) we can define the 
map v6 : (C2)6 →C7 by

464



T. Duff and M. Ruddy Journal of Symbolic Computation 115 (2023) 452–477

(x1, y1, . . . , x6, y6)

)→ (v(1,2,3), v(1,2,4), v(1,2,5), v(1,2,6), v(1,3,4), v(1,3,5), v(1,3,6)). (3)

Mirroring the construction for real curves under SA2(R) in Olver (2001, Ex. 8.6), we can define the
equi-affine joint signature of a curve C to be J SA

C = v6(C6). Though there are fundamental invariants 
for n as low as 3, it is necessary to consider 6-tuples of points on curves since all curves have the 
same image under the map vn (defined as above) when n < 6. For other groups, the fundamental joint 
invariants presented in Olver (2001) similarly yield sets of algebraic invariants. It would be interesting 
to construct general conditions for sets of joint invariants to characterize orbits of curves.

Remark 2.34. While we conduct experiments in Section 4 comparing the equi-affine joint signature 
to the equi-affine differential signature, we do not explicitly prove that J SA

C characterizes orbits 
of curves under SA2(C), as we do for the Euclidean joint signature. However, as the seven area 
invariants defining v6 generate the other fundamental area invariants through linear relations, it is 
likely that they separate orbits and that one can prove this characterization using an argument similar 
to that in this section.

3. Witness sets for signatures

3.1. Background

A comprehensive overview of numerical algebraic geometry may be found in the survey (Sommese 
et al., 2005) or books (Wampler et al., 2005; Bates et al., 2013). Here we develop the notions that we 
need, illustrated by several examples related to the previous section.

The main data structures in numerical algebraic geometry are variations on the notion of a wit-
ness set. The overarching idea is to represent an irreducible variety Y ⊂Cn by its intersection with a 
generic affine linear subspace of complementary dimension. The number of points in such an intersec-
tion is the degree deg Y , which may be understood as the degree of the projective closure of Y under 
the usual embedding Cm 6 (x1, . . . , xm) )→ [x1 : · · · : xm : 1] ∈ P (Cm+1). We define a c-slice in Cm to 
be a polynomial system consisting of c affine hyperplanes, L = (l1, . . . , lc) with li ∈ C[x1, . . . , xm]≤1. 
For convenience we write L or Lc in place of its vanishing locus V (L(x)), an affine linear space of 
codimension c. For Y an irreducible variety of dimension d and a generic slice Ld , the intersection 
Y ∩ Ld is transverse, consisting of deg Y isolated, nonsingular points.

The notion of a pseudo-witness set, first appearing in Hauenstein and Sommese (2010), allows us 
to represent the closed image of a rational map Y = im! without knowing its implicit defining 
equations. Our Definition 3.1 differs slightly from that used in the standard references (Hauenstein 
and Sommese, 2010, 2013; Bates et al., 2013); to distinguish our setup, we provisionally use the term 
weak pseudowitness set.

Definition 3.1. Let f = ( f1, . . . , f N) so that V ( f ) ⊂ Cn is Zariski-closed, X ⊂ V ( f ) be one of its ir-
reducible components, and ! : X !!" Cm be a rational map. Set c = codim V ( f ), d = dim im!. A 
weak pseudowitness set for ! is a quadruple 

(
f ,!, (L|L′), {w1, . . . , we}

)
, where L is a generic affine 

d-slice of im!, L′ is a generic affine (n − c − d)-slice of X , and such that w1, . . . , we are points in 
X ∩ L′ where !(w1), . . . , !(we) are all defined and such that im! ∩ L = {!(w1), . . . , !(we)} and 
e = deg im!.

For all examples considered in our paper, the map ! will have generically finite fibers, so that 
n − c = d. In particular, for the differential signatures we will always have (n, c, d, m) = (2, 1, 1, 2), 
whereas for the joint signatures we have (n, c, d, m) = (8, 4, 4, 6). Consequently, the linear space L′

does not play a role in our experiments; nevertheless, we consider it in Algorithm 1 for the sake of 
full generality.

Example 3.2. Consider again the ellipses from Example 2.21. We represent Y = im(C1 = im(C2 not 
by the signature polynomial, but rather by its intersection with a generic slice in the codomain: 

465



T. Duff and M. Ruddy Journal of Symbolic Computation 115 (2023) 452–477

L1 = {l1x + l2 y + l3 = 0}. For the particular choice of (l1, l2, l3) = (1, −2, 1), we have that im(Ci ∩ L1

consists of 6 points (xi, yi) ∈C2:

xi yi

−.120636 − .0158199 i .439682 − .00790993 i
−.120636 + .0158199 i .439682 + .00790993 i
.0305676 − .0677494 i .515284 − .0338747 i
.0305676 + .0677494 i .515284 + .0338747 i
.501814 .750907
4.17832 2.58916

Compared to the more standard definition of a witness set, in Definition 3.1 we allow that the 
containment {w1, . . . , we} ⊂ L′ ∩ !−1

(
im! ∩ L

)
may be proper. When ! is the signature of a curve 

with many symmetries, this may be preferable, since fewer points need to be stored due to Theo-
rem 2.20 and Proposition 2.31. The data in Definition 3.1 are already sufficient for testing queries of 
the form y ∈ im!, as noted in Hauenstein and Sommese (2010, Remark 2). For testing, y ∈ im! and 
other applications, the stronger notion is required (Hauenstein and Sommese, 2013). Further applica-
tions of pseudowitness sets may be found in the references (Chen and Kileel, 2019; Brysiewicz, 2018; 
Hauenstein and Regan, 2020; Hauenstein and Sottile, 2014).

In our context, equations defining im! are seldom known, so in what follows we may informally 
refer to the objects of Definition 3.1 and their multiprojective counterparts in Definition 3.3 as “wit-
ness sets” without ambiguity. In practice, we can at best hope that our numerical approximations to 
points !(w1), . . . , !(we) lie sufficiently close to im! ∩ L: to clearly distinguish practice from theory, 
we occasionally use the term numerical (weak / pseudo) witness set.

Following Hauenstein and Rodriguez (2020), Leykin et al. (2018), Hauenstein et al. (2022), we 
give a multiprojective generalization of Definition 3.1. For irreducible Y ⊂ Cm , we fix (m1, . . . , mk), 
an integer partition of m, and consider Y in the affine space Cm1 × · · · × Cmk . We consider slices 
Le = Le1 | · · · |Lek , where e = (e1, . . . , ek) ∈Nk is an integral vector such that e1 + · · · + ek = dim Y , and 
Le j is a e j-slice consisting of e j affine hyperplanes in the coordinates of Cm j . We say that e is a 
multidimension of Y if for generic Le the intersection Y ∩ Le is a finite set of nonsingular points; the 
number of points for such Le is a constant called the e-multidegree dege Y . These definitions reflect 
the geometry of the multiprojective closure of X under the embedding

Y 6 (y1, . . . , ym)

)→
(
[y1 : · · · : ym1 : 1], . . . , [ym−mk+1 : · · · : ym : 1]

)
∈ P (Cm1+1) × · · · × P (Cmk+1).

Definition 3.3. Let f , X, c, L′, ! be as in 3.1, and e be a multi-dimension of im! corresponding to 
some partition of n. An e-weak pseudowitness set for ! consists of 

(
f , !, (Le|L′), {w1, . . . , we}

)
, 

such that im! ∩ Le = {!(w1), . . . , !(we)} and e = dege im!.

Example 3.4. Continuing as in Example 3.2, we now consider coordinate slices in the codomain of (Ci

of the form L(1,0) = {l1x + l2 = 0}. Specializing to the generic slice (l1, l2) = (3, 1) yields now 3 points:

xi yi

−.333333 1.53234 + 1.11277 i
−.333333 1.53234 − 1.11277 i
−.333333 −6.06468

The general membership test for multiprojective varieties proposed in Hauenstein and Rodriguez 
(2020) uses the stronger notion of a witness collection. This is required since for an arbitrary 
point y ∈ Y there may not exist transverse slices Le 6 y for e ranging over all multidimensions of 
Y —see Hauenstein and Rodriguez (2020, Example 3.1). This subtlety is not encountered for generic 
y ∈ Y ; we record this basic fact in Proposition 3.5.
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Proposition 3.5. Fix irreducible Y ⊂ Cm1 × · · · × Cmk and e some multi-dimension of Y . For y =
(y1, · · · , yk) ∈ Y generic, there exists an e-slice Le 6 y such that dim(Y ∩ Le) = 0. Moreover, for y /∈ Ysing , 
we also have that y /∈ (Y ∩ Le)sing for generic Le .

Proof. For generic y1 in the image of )1 : Y → Cm1 we have that the fiber )−1
1 (x1) has dimension 

dim Y − dim)1(Y ). Choose such an y1 and let Le1 6 y1 be generic so that )1(Y ) ∩ Le1 has dimension 
dim)1(Y ) − e1. It follows that Y ∩ Le1 has dimension dim Y − e1. This construction holds for all y1 on 
some Zariski open U1 ⊂ )1(Y ). Repeating this construction for the remaining factors yields U2, . . . , Uk
such that the first part holds for all y ∈ U1 × · · ·×Uk . The second part follows from Bertini’s theorems, 
e.g. Harris (2013, Thm 17.16). !

3.2. A general equality test

Now let !0 : X0 !!" Cm and !1 : X1 !!" Cm denote two rational maps with each Xi ⊂ Cni of 
codimension ci . Problem 2 from the introduction asks us to decide whether or not their images are 
equal up to Zariski closure. We describe a probabilistic procedure (Algorithm 1) which refines the 
general membership and equality tests from numerical algebraic geometry, which are summarized 
in Wampler et al. (2005, Ch. 13, 15) and (Bates et al., 2013, Ch. 8, 16). As noted in the Introduction, 
our setup is motivated by an efficient solution to Problem 1. Following the standard terminology, our 
test correctly decides equality with “probability-one” in an idealized model of computation. This is the 
content of Theorem 3.6. Standard disclaimers apply, since any implementation must rely on numerical 
approximations in floating-point. A thorough discussion of these issues may be found in Bates et al. 
(2013, Ch. 3, pp. 43–45).

Algorithm 1 assumes different representations for the two maps. The map !1 is represented by 
a witness set in the sense of Definition 3.1, say ( f1, !1, (L1|L′

1), {w1, . . . , we}). In fact, the only data 
needed by Algorithm 1 are the map itself !1, the slice L1, and the points w1, . . . , we . For the map 
!0, we need only a sampling oracle that produces generic points on X0 and c0 = codim(X0)-many 
reduced equations vanishing on X0.

Suppose dim im!0 = dim im!1 = d. There is a probabilistic membership test for queries of the 
form !0(x0) ∈ im!1 based on homotopy continuation. The relevant homotopy depends parametrically 
on L1, a d-slice L0 6 !0(x0), a (n − c0 − d)-slice L′

0 6 x0, and a regular sequence f0 = ( f0,1, . . . , f0,c0)

which is generically reduced with respect to X0. The homotopy H is defined by setting

H(x; t) =




f0(x)
L′

0(x)
t L1 ◦ !0 + (1 − t) L0 ◦ !0(x)



 = 0. (4)

In simple terms, H moves a slice through !0(x0) to the slice witnessing im!1 as t goes from 0 to 
1. A solution curve associated to (4) is a smooth map x : [0, 1] → Cn such that H(x(t), t) = 0 for all 
t . For generic parameters L0, L1, L′

0 the Jacobian Hx(x, t) is invertible for all t ∈ [0, 1], solution curves 
satisfy the ODE

x′(t) = −Hx(x, t)−1 Ht(x, t),

and each of the points w1, . . . , we is the endpoint of some solution curve x with x(0) ∈ X ∩ L′
0. These 

statements follow from more general results on coefficient-parameter homotopy, as presented in Mor-
gan and Sommese (1989) or Wampler et al. (2005, Thm 7.1.1). We assume a subroutine TRACK(H, x0)
which returns x(1) for the solution curve based at x0. In practice, the curve x(t) is approximated 
by numerical predictor/corrector methods (Allgower and Georg, 1990; Morgan, 2009). We allow our 
TRACK routine to fail; this will occur, for instance, when !0(x0) is a singular point on im!0. However, 
it will succeed for generic (and hence almost all) choices of parameters and x0 ∈Cn0 .

Theorem 3.6. For generic x0, L0, L′
0, L1 , Algorithm 1 correctly decides if im!0 = im!1 .
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Algorithm 1. Probability-1 equality test.

Input: Let X0 ⊂ Cn0 , X1 ⊂ Cn1 be irreducible algebraic varieties, and !0 : X0 → Cm , !1 : X1 → Cm be rational maps, repre-
sented via the following ingredients:

1) (L1, {w1, . . . , we}) with im !1 ∩ L1 = {!1(w1), . . . , !e(we)} and e = deg im!1 (cf. Definition 3.1),
2) f0,1, . . . , f0,c0 ∈ C[x1, . . . , xn0 ]: a generically reduced regular sequence such that codim(X0) = c0 and X0 ⊂

V ( f1, . . . , fc0 ),
3) an oracle for sampling a point x0 ∈ X0, and
4) explicit rational functions representing each map !i .

Output: YES if im!0 = im!1 and NO if im !0 0= im !1.
1: sample x0 ∈ X0
2: Tx0 ( f ) ← ker (D f )x0

3: d ← rank (D !0)x0

∣∣
Tx0 ( f )

4: if d 0= dim im !1 then return NO
5: H(x; t) ← the homotopy from equation (4) (L0 generic)
6: x1 ← TRACK (H, x0)

7: if !0(x1) ∈ {!1(w1), . . . , !1(we)} return YES
else return NO

Fig. 2. A general, probabilistic equality test for rational maps.

Remark 3.7. The set of “non-generic” slices in this theorem is dependent on the maps !0 and !1. 
In practice, an oracle for sampling generic points could be provided by either a parametrization or 
by homotopy continuation using known equations for X0. The dimension dim im!1 is implicit in the 
description of the witness set.

Proof. Since x0 is generic and f0 is generically reduced, we may assume that d = dim im!0. Noting 
line 4, we are done unless d = dim im!1. In this case, since the im!i are irreducible,

dim
(

im!0 ∩ im !1

)
= d ⇔ im!0 = im!1. (5)

As previously mentioned, generic slices give that the solution curve x(t) associated to (4) with initial 
value x0 exists and satisfies x(t) ∈ V ( f ) \ V ( f )sing for all t ∈ [0, 1]. The endpoint x1 is, a priori, a point 
of V ( f ). Since X0 \ (X0)sing is a connected component of V ( f ) \ V ( f )sing in the complex topology 
and x0 ∈ X0, so also must x1 ∈ X0. Hence !0(x1) ∈ im!0 ∩ L1. Now if im!0 = im!1, then clearly we 
must have

!0(x1) ∈ im!1 ∩ L1 = {!1(w1), . . . ,!1(we)}, (6)

as is tested on line 7. Conversely, if (6) holds, then

dim(im!0 ∩ im !1 ∩ L1) ≥ 0,

which by (5) and the genericity of L1 implies im!0 = im!1. !

In the multiprojective setting, we may give a similar argument. The only added subtlety is that 
extra genericity may be needed so that the Jacobian Hx(x0, 0) is invertible. This follows from Propo-
sition 3.5.

3.3. Witness sets for signatures

Our implementation of Algorithm 1 treats only the special case where the domain of each ra-
tional map is some Cartesian product of irreducible plane curves, say Xi = Ck

i for some integer k. 
For the purpose of our implementation, the various ingredients for the input to Algorithm 1 are 
easily provided. Suppose ICi = + f i〉 for i = 0, 1. The reduced regular sequence we need is simply 
( f0(x1, y1), . . . , f0(xk, yk)). Sampling from X0 amounts to sampling k times from C0; we sample the 
curve C0 using homotopy continuation from a linear-product start system (Wampler et al., 2005, Sec. 
8.4.3).
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It remains to discuss computation of the witness set for the image of the signature map. To do 
this, we compute solutions to parametric systems of equations

f (x1, y1; p) = · · · = f (xk, yk; p) = *1(!(x, y; p)) = · · · = *k(!(x, y; p)) = 0, (7)

where we allow both the parameters defining the curve p and the parameters defining the slice 
L = (*1, . . . , *k) to vary. For instance, a parametric generic plane curve of degree d has the form

f (x, y; p) = p0,0 + p1,0x + p0,1 y + p1,1x y + · · · + p0,d yd.

For differential signatures we have k = 1, and we could simply write !(x1, y1; p), whereas for joint 
signatures we have k = 4 and could write !(x1, . . . , x4, y1, . . . , y4).

Let us now write +p for the (differential or joint) signature map restricted to the curve defined 
by particular parameter values p. When p is generic, im!p of this curve has dimension k; thus, by 
generic smoothness, it follows for generic slice L = (*1, . . . , *k) there will be finitely many reduced 
points in im!p ∩ L. Moreover, genericity of p implies that the map (x, y) )→ !(x, y; p) is generically 
finite-to-one. Associated to the system (7) is an incidence correspondence

V! = {(x1, y1, . . . , xk, yk, p, L) ∈ (C2)k ×C(d+2
2 ) ×Gk,m | f (xi, yi, p) = 0,!(x, y; p) ∈ L},

where Gk,m denotes the Grassmannian of codimension-k affine subspaces of Cm . We recall that this 
incidence variety V! has a unique irreducible component which projects dominantly on the space 
of unknowns (C2)k , referred to as the dominant component (Duff et al., 2019, Remark 2.2). We take 
a Zariski-open set U ⊂ (C2)k such that for any fixed (x, y) ∈ U , the set of solutions to the linear 
equations f (x1, y1; p) = · · · = f (xk, yk; p) (7) in the parameters (p, L) has the maximal codimension 
k. Letting U ′ ⊂ (C2)k × C(d+2

2 ) × Gk,m denote the preimage of U under coordinate projection, the 
dominant component V̂! may be defined as the Zariski closure of U ′ .

The construction of the dominant component described above holds for other linear systems of 
curves. We often have that V! = V̂! , since V! can be expressed as the graph of a rational map 
between affine spaces; for instance, in the case of the joint signatures of generic curves, we have 
k = 4 and may express certain parameters as rational functions in (x, y) and the other parameters by 
solving linear equations in p:

p0,0 = −(x2 p1,0 + y2 p0,1 + · · · )
p1,0 = (x1 − x2)

−1
(
(y1 − y2) p0,1 +

(
x2

1 − x2
2

)
p2,0 + · · ·

)

p0,1 = · · ·
p1,1 = · · ·

For other families of curves, we caution that there might well be additional components of V!

when the general member of the system is reducible, as is the case for the family of curves

f (x, y; p) = x (p1x2 + p2 y + c + p3x + p4 y2 + p5).

The incidence variety {(x1, . . . , x4, y1, . . . , y4, p) | f (x1, y1; p) = · · · = f (x4, yk; p) = 0} has 16 irre-
ducible components, each uniquely determined by the vanishing of some subset of {x1, x2, x3, x4}. The 
dominant component of V! corresponds to the empty subset: its degree as a branched cover over 
C5 ×G4,6 is 168, and the generic fiber gives a pseudowitness set for the conic p1x2 + p2 y +c + p3x +
p4 y2 + p5. For this example, we may take U to be the set of 4-tuples of points (x1, y1), . . . , (x4, y4)
which impose independent condition on conics and such that xi 0= 0 for all i.

In general, the projection ) : V̂! →C(d+2
2 ) ×Gk,m is a branched cover of irreducible varieties, and 

thus, for generic (p, L), the associated monodromy group acts transitively on the fiber )−1(p, L). The 
fiber gives a pseudowitness set for im!p . Let N denote the degree of the branched cover ) (i.e. N =
d(d − 1) for differential signatures, and N = 12d(d3 − 1) for joint signatures), so that the monodromy 
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group M(!; p, L) may be viewed as a subgroup of the symmetric group SN . For differential and 
joint signatures of generic degree-d curves, these monodromy groups are full symmetric for d ≥ 2. For 
more structured families of curves, or the multiprojective witness sets considered in our experiments, 
the corresponding monodromy group will be a subgroup of the wreath product S N1 8 SN2 , where N1

is the size of the generic symmetry group and N2 = deg im!p . The monodromy group is said to be 
imprimitive; for N1 > 1, the decomposable monodromy technique from Améndola et al. (2021) may be 
used to speed up witness set computation.

Example 3.8. Consider the family of quadrifolia, or rose curves, given by

f (x, y) = (x2 + y2)3 − px2 y2 = 0.

The symmetry group for generic p is the dihedral group D8, and thus the joint signature map for a 
generic curve in this family is generically 8 : 1 by Proposition 2.31. The branched cover ) associated 
to generic slices of these curves’ joint signatures has degree 7584, as opposed to the expected 15480
for generic sextics (see Conjecture 4.2). The monodromy group is a subgroup of D8 8 S948. We may 
compute a witness set by collecting one point in each of the 948 disjoint fibers of !p over generic p.

For this family of curves, it is also interesting to consider multiprojective witness sets with mul-
tidimension e1 as in Conjecture 4.2. This means taking coordinate slices where the distances 
d12, d13, d14, d23 are fixed. The associated branched cover has degree 3712 (as opposed to the ex-
pected 10080), and the monodromy group is a subgroup of D8 8 (S8 8 S58). The second level of 
imprimitivity may be explained as follows. For d4(p1, . . . , p4) = (d12, d14, . . . , d34) generic, there is 
a circle centered at p1 of radius 

√
d14 which intersects f (x, y; p) = 0 in 8 points, as shown in the 

figure above. Thus, to compute a witness set for the joint signature, it is sufficient to enumerate the 
fibers of ) first by computing 58 witness points up to both the D8-symmetry and the grouping of 
points (p1, . . . , p4) with (p1, . . . , p3) equal, and then compute the remaining intersection points of 
the given curve with the 58 circles.

Finally, we specialize from the case of a generic curve to that of any curve given by p1 ∈ C(d+2
2 )

whose signature variety has the expected dimension k. We may then compute a pseudo-witness set 
for the signature !1 = !(· · · ; p1) using the following steps, which are standard in numerical algebraic 
geometry:

1) Fix generic (x0, y0) ∈C2k , and find (p0, L0) so that (x, y, p0, L0) ∈ V! by solving linear systems of 
equations: first in p, then in the parameters defining L.

2) Using the transitivity of the monodromy group, complete (x0, y0) to a pseudowitness set for the 
curve given by p0 by tracking solution curves along random loops based at (p0, L0).
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3) By general parameter continuation (Wampler et al., 2005, Theorem 7.1.1 (5)), the pseudowitness 
set for p1 will consist of finite, nonsingular endpoints as t → 1 of the homotopy

H p(x; t) =
(

f1,...,k(x, y; tp1 + (1 − t)p0)
L ◦ !(x, y; tp1 + (1 − t)p0)

)
= 0. (8)

The same strategy will for more general families, provided that V! is irreducible. For computing 
witness sets of particular signature maps within a particular family of curves satisfying this condition, 
we note that Steps 1–2) only need to be performed once.

4. Implementation, examples, and experiments

We run a variety of tests in this section to investigate the numerical stability of our implementa-
tion of Algorithm 1. The purpose behind this is two-fold. First we confirm that the implementation 
will correctly conclude, in most cases, when two curves have the same signature. Secondly we want 
to answer the question, “What level of perturbation of the curve, or any equivalent curve, will induce 
a negative result?” Negative here means that the algorithm concludes that the curves have differ-
ent signatures and thus are not equivalent. As mentioned in the introduction, our experiments are 
motivated by applications in curve-matching where, at best, two curves are only “almost” equivalent 
under some group action.

Our results showcase features of the NumericalAlgebraicGeometry ecosystem in Macaulay2 
(aka NAG4M2, see Leykin (2011, 2018) for an overview). We rely extensively on the core path-tracker 
and the packages SLPexpressions and MonodromySolver. All of our examples and experiments 
deal with differential and joint signatures for either the Euclidean or equi-affine group.5 However, the 
current functionality should make it easy to study other group actions and variations on the signature 
construction in the future.

The differential signatures for curves under E2(C) and SA2(C) are defined in Examples 2.21 and 
2.22 respectively, and the joint signatures are defined in Definition 2.23 and in (3). To distinguish 
between the two groups, for a curve C , we denote the Euclidean differential and joint signatures of 
C as J E

C and SE
C respectively. Similarly we denote the equi-affine differential and joint signatures 

of C as J SA
C and SSA

C . We caution that we do not explicitly prove that J SA
C characterizes the 

equivalence class of C under SA2(C), as we do for the Euclidean joint signature. However as we 
explain in Remark 2.34 it is likely that it does.

Our initial attempts to compute witness sets for the both signatures with off-the-shelf tools did 
not result in consistent monodromy runs for curves of even low degree. Thus, certain choices in our 
implementation which led to consistent runs, and improved numerical stability, deserve emphasis. 
Among these choices, a key feature is that polynomials and rational maps are given by straight-
line programs as opposed to their coefficient representations. This is especially crucial in the case of 
differential signatures, where we can do efficient evaluation using the formulas in equation (2); we 
note that expanding these rational functions in the monomial basis involves many terms and does not 
suggest a natural evaluation scheme. We also homogenize the equations of our plane curves and work 
in a random affine chart; the normalizing effect of lifting solutions into projective spaces is known 
in numerical algebraic geometry, see Bates et al. (2013, Sec. 4.7) for an explanation. Finally, in our 
sampling procedure we discard samples which map too close to the origin in the codomain of our 
maps, as these tend to produce nearly-singular points on the image.

Example 4.1. The code below computes a witness set for the Euclidean differential signature of a 
“generic” quartic (whose coefficients are random complex numbers of modulus 1).

(d, k) = (4, 1);
dom = domain(d, k);

5 For details we refer to the code: https://github .com /timduff35 /NumericalSignatures.
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d deg SE time (s) deg(1,0) SE time (s)

2 6 0.3 3 0.1
3 72 2 36 0.5
4 144 9 72 2
5 240 21 120 4
6 360 55 180 7

Fig. 3. Degrees and monodromy timings for differential signatures.

d degJ E time (s) dege1 J E time (s) dege2 J E time (s)

2 42 4 24 2 26 2
3 936 33 576 17 696 16
4 3024 139 1920 57 2448 87
5 7440 463 4800 206 6320 276
6 15480 1315 10080 748 13560 791

Fig. 4. Degrees and monodromy timings for joint signatures (see Conjecture 4.2).

Map = diffEuclideanSigMap dom;
H = witnessHomotopy(dom, Map);
W = runMonodromy H;

To compute a witness set for the differential signature of the Fermat quartic V (x4 + y4 + z4) ⊂P (C3), 
we use the previous computation.

R = QQ[x,y,z];
f=x^4+y^4+z^4;
Wf = witnessCollect(f, W)

The output resulting from the last line reads

witness data w/ 18 image points (144 preimage points)

indicating that the Euclidean differential signature map is generically 8 to 1, which is equivalent 
to the Fermat curve having eight Euclidean symmetries (Kogan et al., 2020, Thm 2.38). We timed 
these witness set computations at 5 and 0.5 seconds, respectively. For joint signatures, the analogous
computations were timed at 95 and 17 seconds.

Figs. 3 and 4 give degrees and single-run timings for monodromy computations on curves up to 
degree 6 under the Euclidean differential and joint signatures. We also considered multiprojective 
witness sets for SE ⊂C1 ×C1 and J E ⊂ (C1)6, where fewer witness points are needed. For the dif-
ferential signatures, we considered (1, 0)-slices which fix the value of the squared curvature K1. For 
Euclidean joint signatures, there are two combinatorially distinct classes of (C1)6 witness sets deter-
mined by which di, j are fixed; the undirected graph of fixed distances must either be the 3-pan (a 
3-cycle with pendant edge) or the 4-cycle. We fix corresponding multidimensions e1 = (1, 1, 1, 1, 0, 0)
and e2 = (0, 1, 1, 1, 1, 0).

Our monodromy computations suggested formulas for the degrees and multidegrees of Euclidean 
joint signatures. To complement the degrees of differential signature curves reported in Kogan et 
al. (2020), we state these formulas as conjectures. In fact, we have verified these conjectures for d
as large as 10, although this was prohibitive in the experimental setup that produced Fig. 4. These 
formulas for d = 2 are corrected by a factor of 4, which counts the Euclidean symmetries of a generic 
conic.

Conjecture 4.2. Let J E
d denote the Euclidean joint signature for a generic plane curve of degree d. For d ≥ 3:

degJ E
d = 12d(d3 − 1)
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d track time (ms) lookup time (ms) track K1 lookup K1

2 191 0.35 127 0.25
3 177 0.37 121 0.31
4 276 0.42 145 0.36
5 472 0.39 203 0.43
6 597 0.40 284 0.37

Fig. 5. Equality test timings for Euclidean differential signatures SE , divided by path-tracking time and time to perform the 
lookup in line 7 of Algorithm 1. The rightmost columns give the same timings for multiprojective witness sets which fix the 
first coordinate of the differential signature map.

d track time (ms) lookup time (ms) track e1 lookup e1

2 230 0.36 208 0.34
3 283 0.38 213 0.35
4 335 0.39 288 0.40
5 409 0.32 357 0.32
6 507 0.32 462 0.33

Fig. 6. Equality test timings for Euclidean joint signatures J E .

dege1 J E
d = 8d2(d2 − 1)

dege2
J E

d = 4d(d − 1)(3d2 + d − 1).

To assess the speed and robustness of the online equality test, we conducted an experiment where, 
for degrees d = 2, . . . , 6, curves C1, . . . , C10 were generated with coefficients drawn uniformly from 
the unit sphere in R(d+2)(d+1)/2. For each Ci , we computed a witness set via parameter homotopy 
from a generic degree d curve. We then applied 20 random transformations from E2(R) to the Ci and 
perturbed the resulting coefficients by random real 9, with :9,:2 ∈ {0, 10−7, 10−6, . . . , 10−3}, thus ob-
taining curves C̃i,1,, , . . . , C̃i,20,, . Thus two curves are “close” if they are close in the space of algebraic 
curves of fixed degree with respect to || · ||2, and the curves Ci and C j are “almost” equivalent if Ci
is E2(R)-equivalent to a curve that is “close” to C j . With all numerical tolerances fixed, we ran the 
equality test for each C̃i, j,, against each Ci .

Figs. 5 and 6 summarize the timings for the equality tests in this experiment. Overall, these tests 
run on the order of sub-seconds. Most of the time is spent on path-tracking. The tracking times 
reported give the total time spent on lines 1 and 6 of Algorithm 1. The only other possible bottleneck 
is the lookup on line 7. This is negligible, even for large witness set sizes, if an appropriate data 
structure is used. The runtimes for all cases considered seem comparable, although using differential 
signatures and multiprojective slices appear to give a slight edge over the respective alternatives.

The plots in Fig. 7 illustrate the results of our sensitivity analysis. The respective axes are the 
magnitude of the noise , and the percentage of Ci, j,, deemed to be not equivalent to Ci . Note that 
the horizontal axis is given on a log scale, and excludes the noiseless case , = 0; for this case, among 
all tests in the experiment, only one false negative was reported for the differential signatures with 
d = 6. We include a trend line to make the plots more readable. In general, we observe a threshold 
phenomenon, where most tests are positive for sufficiently low noise and are negative for sufficiently 
high noise. Besides the multiprojective differential signature (depicted in the bottom-left), we observe 
a similar stability profile for this type of random perturbation.

Remark 4.3. The thresholds in these experiments clearly depend on the numerical tolerances used 
(for this experiment, defaults are provided by NAG4M2), the type of map, and the type of witness set.

In Fig. 8, we reproduce the previous experiment for curves of degrees d = 3, 4, 5 under SA2(C). 
Perhaps unsurprisingly due to the higher degree of the image and the complexity of evaluating the 
signature maps, the equality test in this case is much more sensitive to small perturbations. Here we 
observe a significant difference in the sensitivity between the equi-affine joint and differential equality 
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Fig. 7. Sensitivity of the equality test on Euclidean signatures to noise.

tests. In contrast to the Euclidean case, the joint signature appears to be far less sensitive. We also now 
observe in around 2% of cases overall that there are failures due to path-tracking, resulting in neither 
an equivalent nor inequivalent outcome. We again exclude the noiseless case , = 0 in these graphs 
where the false negative rate was less than 1%. Surprisingly, we also observed a non-negligible rate of 
“false-positives” for the SA2(C) joint signature, wherein some Ci and C j are declared equivalent. We 
also note that we do not have an analogue of Conjecture 4.2 for J SA , leaving us less certain about 
the completeness of the witness sets collected.

In our previous experiments we perturbed curves in the space of algebraic curves of fixed de-
gree. Here we conduct a similar experiment for the Euclidean differential and joint signatures under 
a different scheme of noise inspired by applications such as curve-matching (Hoff and Olver, 2013). 

Instead of perturbing the coefficients of the algebraic curve, we sample 
(

d + 2
2

)
+ 1 points on curves 

C1, . . . , C10, perturb these points by 9, ∈R2 with |9,| = , , and then reconstruct a new algebraic curve 
of the same degree through interpolation before applying a random transformation from E2(R). Specif-
ically, the equation defining our interpolated curve comes from singular vectors of the Vandermonde 
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Fig. 8. Sensitivity of the equality test on equi-affine signatures to noise.

Fig. 9. Sensitivity of the equality test for Euclidean signatures of curves computed from noisy samples.

matrix of all degree-≤ d monomials evaluated at the samples, as in Breiding et al. (2018). Now a 
curve C j is “close” to Ci if the samples taken from Ci nearly lie on C j , and the curves Ci and C j are 
“almost” equivalent if C j is E2(R)-equivalent to a curve that is “close” to Ci . We emphasize that the 
coefficients of the perturbed curves have a more complicated dependence on , in this experiment. 
Moreover, we caution that our results may also depend on the number of points sampled from each 
curve. Still, we find that the observations from this new experiment, with a more meaningful model 
of noise, and our original experiment are roughly consistent. (See Fig. 9.)

In closing, we have shown that numerical algebraic geometry is a novel and effective tool for 
studying signatures and the group valence problem. Our results suggest new avenues of mathemat-
ical research and our experimental results contribute to the ongoing study of signatures of curves 
under noise. In general, we found that using numerical algebraic geometry and signatures to deter-
mine equivalence of algebraic curves can be sensitive to a moderate amount of noise. However, we 
have only taken first steps towards exploring this topic and its applications, and we hope our efforts 
motivate future work.
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