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Abstract

Information disclosure can compromise privacy when revealed in-
formation is correlated with private information. We consider the
notion of inferential privacy, which measures privacy leakage by
bounding the inferential power a Bayesian adversary can gain by
observing a released signal. Our goal is to devise an inferentially-
private private information structure that maximizes the informative-
ness of the released signal, following the Blackwell ordering princi-
ple, while adhering to inferential privacy constraints. To achieve
this, we devise an efficient release mechanism that achieves the
inferentially-private Blackwell optimal private information struc-
ture for the setting where the private information is binary. Ad-
ditionally, we propose a programming approach to compute the
optimal structure for general cases given the utility function. The
design of our mechanisms builds on our geometric characteriza-
tion of the Blackwell-optimal disclosure mechanisms under privacy
constraints, which may be of independent interest.
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1 Introduction

Information disclosure is essential to enabling cooperation between
entities. However, the information an agent reveals can be corre-
lated with private information that should not be revealed. For ex-
ample, publicly-traded companies are required to release quarterly
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earnings reports. These earnings reports are closely correlated to
the company’s business strategy, which may be considered private.
Hence, businesses may be incentivized to tailor the information in
their earnings report to maximize the signal (the state of their over-
all finances) while minimizing disclosure about private information
(their business strategy) [11]. In another example, the Web analytics
ecosystem currently uses detailed user data to serve relevant ads.
However, users may wish to provably hide sensitive or protected
attributes (e.g., health data) from advertisers, while sharing non-
sensitive preference information. More generally, privacy concerns
stemming from information disclosure are a pervasive problem that
inhibits data sharing and disclosure [20].

In such scenarios of information disclosure, it is natural to ask
how much information an observer can infer about private infor-
mation. Inferential privacy captures precisely this notion [8, 12].
Roughly, inferential privacy requires that the adversary’s posterior
over the secret values is within some bounded ratio of the adver-
sary’s prior (a formal definition is provided in §2). Hence natural
questions include: how should one release information subject to an
inferential privacy guarantee? What mechanism should one use? Can
we find mechanisms that release some state subject to an inferential
privacy constraint, while also maximizing the utility of a downstream
decision maker who sees only the released information?

We study these questions under the following setting. Consider
arandom variable Y € {0, 1}, also called the state, which represents
the information we want to release (e.g., whether quarterly earnings
are good or bad). We also consider a sensitive random variable (or
secret) S € S, where S is a finite set. In our earlier example, S might
represent the company’s business strategies, which should remain
private. The state Y and the private information S are correlated:
they are jointly drawn from a distribution P (S, Y), which is assumed
to be known to both the data holder (e.g., the company) and the
observer (e.g., viewers of the earnings report). We aim to design an
information disclosure mechanism that releases an output signal
random variable T € 7~ for some (possibly infinite) set 7~ of output
signals. T should be informative about Y, without revealing too
much information about S. More precisely, we assume there is
a reward function r over the state Y and the decision maker’s
corresponding action A, and our utility u over the output signal
T is defined as the expected reward maximized over the decision
maker’s actions, under a certain output signal. Hence, our goal is
to design an information structure (which corresponds to a joint
distribution P (S, Y, T)) that maximizes expected utility over output
signal T, subject to an inferential privacy constraint.
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Recently, He et al. [14] studied a special case of this problem
under a "perfect” inferential privacy constraint (0-inferential pri-
vacy as in Definition 2.1); that is, they constrain their information
structure to not leak any information about S. In other words, the
observer’s posterior over the secret S should be the same as their
prior. Their privacy constraint can be viewed as a special, extreme
case of inferential privacy. He et al. [14] demonstrate a closed-form
information structure that simultaneously achieves perfect privacy
and Blackwell-optimality (§2), which is also proved to achieve max-
imal utility. Their information structure is optimal in the sense
that no information structure can be more informative without
revealing information about the sensitive information S.

In this work, we generalize the formulation of He et al. [14]
to accommodate the more general inferential privacy constraint,
rather than requiring perfect privacy. In particular, the parametric
definition of inferential privacy enables us to explore a broader
spectrum of privacy-utility trade-offs. As the inferential power of
the adversary varies, so does the utility for the decision maker.
We find instances where the decision maker’s utility significantly
increases by merely loosening the perfect privacy constraint to
a stringent inferential privacy level. Specifically, we demonstrate
that at any given (nonzero) level of inferential privacy, there is
an instance where the difference in utility between mechanisms
ensuring perfect privacy and those optimizing utility under the
inferential privacy constraint can be arbitrarily large (Prop. H.1).
Note that under our formulation, inferential privacy can be viewed
as a special case of other recent formulations for private information
disclosure [24]. We discuss our choice of privacy metric in §2.

Our main results are:

(1) Geometric characterization of Blackwell-optimal solu-
tions: We provide a geometric characterization of Blackwell-
optimal information structures subject to the inferential pri-
vacy constraint. A direct implication of our characterization
is a bound on the number of signals required to satisfy the
privacy constraint. While in principle, the number of possible
output signals (i.e., the cardinality of 7°) required by the opti-
mal structure can be unbounded, we show that it suffices to
have at most |77| = 3|S| + 1 possible signals to achieve Black-
well optimality. As a result, a Blackwell-optimal, inferentially
private information structure is exactly computable; when the
number of possible secrets is constant, it is computable in poly-
nomial time. Our geometric characterization involves tiling a
two-dimensional space with |S]| - |77 cells, each of which has
its width and length and is associated with a positive state (i.e.,
the true state has value Y = 1) or a negative one (i.e., Y = 0). A
particular tiling of these cells fully determines the joint distri-
bution over the state, secret, and output signal P (Y, S, T). We
show that a Blackwell-optimal solution must always have an
“upper-left" property—that is, the tiles associated with a positive
state are located in the upper left region of this two-dimensional
space. This upper-left characterization is a generalization of the
result in [14], which does not require this condition. Our char-
acterization further constrains the ratio of the widths of cells
that are stacked on top of each other in the two-dimensional
space based on the inferential privacy condition. This structural
result enables us to substantially reduce the solution space.

2580

Shuaiqi Wang, Shuran Zheng, Zinan Lin, Giulia Fanti, and Zhiwei Steven Wu

(2) Closed-form solution for binary secrets: We obtain a closed-
form expression for an inferentially-private, Blackwell-optimal
information structure when the secret is binary, i.e., |S| = 2.
Notably, by virtue of Blackwell optimality, this information
structure universally optimizes any decision-theoretic prob-
lem with a utility function convex in the posterior P (Y|T).
Our analysis first makes the observation that an informative
information structure will choose to maximize a subset of con-
ditional probabilities P (T|S). Then to derive the optimal in-
formation structure, we analyze the dominant point of these
conditional probabilities (in the sense that their values are max-
imized simultaneously, subject to the inferential privacy con-
straint, which constrains each conditional probability individu-
ally). We demonstrate that under inferential privacy constraints
and Blackwell optimal structure, this dominant point exists,
which enables us to derive the closed-form optimal solution
and to show its uniqueness up to equivalent transformations.
Lower bound on utility gains under inferential privacy
(binary secrets): When secrets are binary, we show that under
a nonzero inferential privacy constraint, there exists a convex
utility function such that the expected optimal utility can be
arbitrarily larger than that under perfect privacy (Prop. H.1).
We demonstrate utility gains for common utility functions (e.g.,
quadratic), showing that by relaxing privacy constraints from
perfect privacy to € ~ 1, we can increase utility by up to 2x.
Program to compute optimal solution for non-binary se-
crets: When there are more than two secrets (i.e., |S| > 2), we
provide a programming approach to compute the inferentially
private information structure that is optimal for any specified
utility function in the downstream decision-making problem.
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Related works. Our work uses the definition of Inferential privacy
that was formulated in Ghosh and Kleinberg [12], which measures
how much information about the secret an adversary can infer
from a disclosed correlated signal (precise definition in §2.1). This
privacy notion is also studied in many previous works under dif-
ferent names, e.g, Bhaskar et al. [3], Dalenius [8], Dwork et al.
[10], Kasiviswanathan and Smith [17].

Optimal information disclosure without privacy constraints has
been explored extensively in the literature of Bayesian persua-
sion [2, 9, 15, 16]. More recently, a line of research has started the
investigation of optimal information disclosure under privacy con-
straints. Under the perfect privacy constraint, He et al. [14] studied
the informativeness of the private private signal and designed an
maximally informative structure for information disclosure. Strack
and Yang [23] extended He et al. [14] by considering multiple states
and agents, and adopting the same form of privacy notion that
requires strict independence between the output signal and secrets
(albeit conditioned on auxiliary information). Their extension is
complementary to ours; combining the two generalizations may
be an interesting direction for future work. The perfect privacy
constraint is also adopted in the worst-case information structure
for auctions [1, 7]. Under differential privacy constraints [10], sev-
eral works studied information disclosure [6, 13, 21]. They consider

'We use the term equivalent transformation to refer to transformations that split or
merge equivalent signals in terms of the posteriors P (Y|T) and P (S|T). A formal
definition is provided in Definition 4.2.
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the scenarios where a third party aims to disseminate information
about data collected from a number of data contributors, while
protecting individual privacy, which is different to our settings.
Our work shares a similar motivation to prior work on pufferfish
privacy [18, 22], which aims to study the privacy of correlated data,
while they assume the prior distribution P (S, Y) is unknown to the
adversary. Specifically, when the prior P (S, Y) is given, we show
that pufferfish privacy is equivalent to inferential privacy in §2.

Relation to He et al. [14]. Generalizing the results of He et al. [14]
to accommodate an inferential privacy guarantee is not straight-
forward. With the generalized privacy constraints, the space of all
possible information structures becomes much larger, and finding
the optimal correlation between the state, the sensitive informa-
tion, and the revealed signal becomes much more challenging. Our
characterization only provides necessary conditions for the optimal
structure, and can be viewed as an extension of the upward-closed
set representation in [14] in the discrete setting. The relaxation
of perfect privacy prevents us from using the classical result of
Lorentz [19] about “sets of uniqueness", as in [14]. Hence, finding
sufficient conditions for optimality is more challenging and Lemma
4.3 is based on entirely new techniques (details in §4.3).

2 Problem Formulation

We want to maximize information disclosure about a random vari-
able of interest Y while minimizing information disclosure about a
sensitive random variable S. The random variable of interest and
the sensitive random variable are jointly drawn from a prior distri-
bution P (S, Y), which is commonly known. In this work, we focus
on a binary Y € {0, 1}.

We aim to disclose an output signal that reveals information
about Y. The output signal T can be represented as a random vari-
able that is correlated with Y. Our goal is to design an informa-
tion structure, which we define as the joint probability distribution
P (S,Y,T). This information structure has a one-to-one correspon-
dence with our information disclosure mechanism, which we define
as P(T|Y, S). We next present our privacy and utility metrics.

2.1 Privacy Metric

An important principle in the study of information disclosure is
that “access to a statistical database should not enable one to learn
anything about an individual that could not be learned without
access” [8]. This qualitative notion is formalized in the definition
of inferential privacy (IP) [12] as follows.

DEFINITION 2.1 (INFERENTIAL Privacy (IP)). An information
structure P (S, Y, T) is e-inferentially-private about S if

P(S=s|T=1t) < E-P(S=Sl)

s , Yss2€8te7. (1
PS=sT=0) ¢ P@B=s) 0% )
This definition can equivalently be written as
P(T=t|S=
T=tS=s1) _ e vy s eSteT @)

P(T=tlS=sp) _ °°
Relation to pufferfish privacy. The notion of pufferfish privacy

[18] was proposed to measure information disclosure about a secret
random variable. It is defined as for all 51,52 € S,t € 7,0 € ©:

P(T =t|S =51,0) < P (T =t|S = s32,6) + 6, (3)
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where © represents the set of possible distributions P (S, Y). Built
upon pufferfish privacy, several privacy notions, such as attribute
privacy [24], are proposed by specifying S and ©. As we assume
P (S,7Y) is fixed and known, O is a singleton set. Under this con-
dition, we note that pufferfish privacy and attribute privacy are
equivalent to inferential privacy when é = 0. However, in general,
pufferfish privacy can accommodate a set of distributions © that is
not a singleton; in this case, pufferfish privacy is a stronger privacy
notion than inferential privacy.

2.2 Informativeness and Utility

Drawing from the formulation of [14], we measure the informative-
ness of T about Y using the notion of Blackwell ordering [4].

DEFINITION 2.2 (BLACKWELL ORDERING). A random variable Ty
is more informative than T, about Y if Y — Ty — T forms a Markov
chain. In this case, we say information structure P (Y, T;) Blackwell
dominates information structure P (Y, Tz), and denote this condition
asP(Y,T1) = P(Y, ).

Blackwell ordering has several useful properties, which are out-
lined in the following result.

THEOREM 2.1 (PROPERTIES OF BLACKWELL ORDERING [4, 5]). When
Y € {0, 1} is binary, let random variable Q1 =P (Y = 1|T1) € [0,1]
be the posterior about Y = 1 after observing Ti. Similarly, we define
Q2 =P (Y = 1|T3). Then the following statements are equivalent:

(1) Information structure P (Y, T1) Blackwell dominates informa-
tion structure P (Y, T»).

(2) Q; is a mean-preserving spread of Qy, i.e., the distribution of
Q1 can be derived by first taking a draw from the distribution
of Q2 and then adding mean-0 noise, which can depend on the
draw.

(3) For any convex function u, E[u(Q1)] > E[u(Q2)].

From the definition of Blackwell ordering, we define e-inferentially-
private Blackwell optimality as follows.

DEFINITION 2.3 (¢-INFERENTIALLY-PRIVATE BLACKWELL OPTIMAL-
1TY). Given P(Y,S), an information structure P (Y,S,T) is an ¢-
inferentially-private Blackwell optimal information structure if there
exists no other e-inferentially-private P (Y, S, T') that hasP (Y,T’) =
P(Y,T).

Additionally, P (Y,T’) and P (Y,T) are equivalent if P (Y, T’) =
P(Y,T) andP (Y,T) = P(Y,T").

He et al. [14] show that for 0-inferential privacy with a binary
secret, there exists a unique (up to equivalent transformations)
Blackwell-optimal information structure, and they provide a closed-
form expression for it (details in §3).

Utility. We consider a decision-theoretic formulation in which
the decision maker receives a reward r (y, a) under the state y and
their corresponding action a. The binary state Y can be inferred
from the output signal T by the posterior Py|r. We let ¢ = P(Y =
1|T = t). Under a certain output signal ¢, we denote the utility as
the maximal expected reward the decision maker can get, i.e.,

u(qe) :mgx]Ey [r(y,a)] = max {g: -r(1,a)+(1—-q:)r(0,a)}. (4)

Since under a fixed action a, rewards r (1, a) and r (0, a) are fixed,
u (q:) is a convex piecewise linear function over gq;. The goal of
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signal release mechanism design is to maximize the expected utility,
i.e., Bt [u(g¢)], for the decision maker with any reward function.

Since Eq. (4) is convex, the result of Thm. 2.1 implies that iden-
tifying a Blackwell-optimal information structure also helps in
finding a utility-maximizing structure. Indeed, we will show in §5
that when the secret is binary, the inferentially-private Blackwell-
optimal structure universally maximizes the expected utility under
any convex function.

3 Geometric Visualization of Information
Structures

As in prior work [14], we will use a visual representation of infor-
mation structures to clarify the meaning of our geometric char-
acterization. An information structure P (S, Y, T) can be drawn as
a grid, where each column corresponds to a value of the output
signal T, and each row corresponds to a value of the secret S. The
color of each point in this plot denotes the posterior probability
P (Y = 1|S,T), with white denoting P (Y = 1|5, T) = 0 and dark yel-
low denoting P (Y = 1|, T) = 1 (light yellow denotes “in between"
real values in (0, 1)). For example, Fig. 1 below illustrates one pos-
sible information structure with S = {so,s1} and 7 = {t1, t2, t3}.
Fig. 1 fully defines the information structure: P (Y = y|S =5, T = t)

is determined by the color of each cell, P (S = s) is determined by
the height of row s, and P (T = t|S = s) is determined by the width
of the (s, t) cell. These quantities jointly determine the full distri-
bution P (Y, S, T), since P(S,Y,T) = P(Y|S, T) - P(T|S) - P(S). From
the information structure, we can in turn determine the disclosure
mechanism represented by P (TS, Y) because P(T|S,Y) = %
and P (S, Y) is known. Since P (S) is known, it suffices to use P (’T|S)
and P (Y|S, T) to characterize a policy.

P(t1]s9) P(tzlse) P(ts]so)

1 r 1T 1 T 1
SO D }]P(So)
S1 — | Ptlsy) |P(tals)|P(tslsy) }P(sl)

R S A

ty t, 3

Figure 1: Information structure of P (S, Y, T). We use the term
“column"” to denote a set of cells with fixed output signal
t € 7; in our terminology, each column need not be a single
rectangle, as shown in the column outlined in red for t;.
Each row corresponds to a secret s € S. For each cell, the
color represents the posterior probability P (Y = 1|5, T) (dark
yellow is 1, light yellow is some value between 0 and 1, and
white is 0). The height of each row represents P (S), and the
width of each cell represents P (T|S).

Interpretation of privacy constraints. Notice that to satisfy an
B(T=t|S=s1) . ,¢ for

e-inferential privacy guarantee, we need that P(T=t|5=52)
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all t € 7. This means that in any column of the figure, the ratio
of cell widths must lie in the range [e™%, e°]. Consequently, for a
0-inferential privacy constraint (as in He et al. [14]), we require
that in a column, all cells have the same width; this implies that
each column is a rectangle.

Blackwell-optimal structure from [14]. For a binary secret and
binary state Y, [14] provides the Blackwell-optimal information
structure under a perfect privacy constraint, i.e., 0-inferential pri-
vacy, as shown in Thm. 3.1. We introduce the notation g5 to denote
the probability that the signal Y = 1 given the secret signal S = s:

s =P(Y=1|S=5).
Note that g; is given by the prior, and can be viewed as a constant.

THEOREM 3.1 ([14]). With binary state Y € {0,1} and binary
secret S € {so,s1}, whereP (Y = 1|S =sp) > P(Y = 1|S = 51), given
the joint distribution P (S, Y), the O-inferentially-private Blackwell
optimal information structure is unique up to equivalent transforma-
tions: T = {t1, t2, t3},

P(T=t1|S=s0) =P (T = t11S = 51) = g5,

P(T = 1215 = s0) =P (T = 12|S = s1) = G5, — G
P(T = t3|S = 50) = P(T = t3]|S = 51) = 1 — g5,
P(Y=1T=t1)=P(Y=1|S=5s0,T=1t2) =1,
P(Y=1T=t3)=P(Y=1S=5,T=1t) =0.

The optimal structure is visualized in Fig. 2. Under the optimal
information structure, P (Y|S, T) is either 0 or 1, i.e., each cell is
either dark yellow or white, and the dark yellow cells are in the
upper left corner of the grid (we formally define ‘upper left’ in
Definition 4.1). In this information structure, observe that the prob-
ability P (T = ¢t|S = s) is the same for all values of s. In other words,
each “column" is a rectangle in the perfect privacy setting, whose
width is equal to P (T = t|S = s). Also note that in this example,
signals #; and t3 deterministically reveal Y: if T = #;, then Y =1
with probability 1, whereas if T = t3, then Y = 0 with probability 1.

P(t21s0) = qs, — qs,

P(t1ls0) = qs, P(tslso) =1 —gs,
1 AP — —
qs = P(Y = 1|5 =)
}P(so)

} P(s1)

Figure 2: Blackwell-optimal structure with perfect privacy
constraint. 7 = {t1, 3, t3}. The width of each cell is deter-
mined by the P (Y = 1|S), and each cell is either dark yellow
or white, indicating P (Y|S,T) € {0, 1}.

4 Geometric characterization of IP
Blackwell-Optimal Solutions

In this section, we provide a geometric characterization of Blackwell-
optimal information structures that also guarantee inferential pri-
vacy (IP). Even though the space of possible information structures
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is uncountably infinite, our characterization can be used to signifi-

cantly limit the search space. For example, we will use the charac-

terization to conclude that we only need to consider information

structures with |77| < 3|S| + 1 output states (Thm. 4.1).

This characterization has three components:

(1) For any Blackwell-optimal information structure, it must hold
thatP (Y = 1|S=5,T =t) € {0, 1}. In other words, as in He et al.
[14], all cells in our visualization are either white or yellow.

(2) For any output signal t € 7 such that P (Y = 1|T =t) # {0, 1},

% € {1,¢e,e7%},
and the values e and e™¢ can be reached by some (s1, s2) pairs.
In other words, if a column is not all yellow or all white, then
there are exactly two cell widths in the column, and their ratio
is either e® or ¢, so the IP constraint is met with equality.

(3) ABlackwell-optimal structure should be “upper-left” and “lower-
right”, which roughly means that the yellow cells are adjacent
and located in the top left corner of the visualization, and the

and for any s1, sz € S, it must hold that

cells with larger width, i.e, P (T = t|S = s) = maxy P(T = ¢|S = ")

are adjacent and located in the top left or bottom right corners
of the visualization. (We state this more precisely in §4.3.)
We next discuss each of these in greater detail.

4.1 Geometric characterization of P (Y|S,T)

We first show that P (Y = 1|S =5, T = t) can only be 0 or 1 for any
inferentially-private Blackwell optimal information structure.

LEmMA 4.1. ForanyP (Y, S) ande, an e-inferentially-private Black-
well optimal information structure P (Y, S, T) must satisfy that for
alls e S,t e T:P(Y=1|S=5s,T=t) € {0,1}.

The proof is in App. A. As illustrated in Fig. 3, each cell cor-
responds to a pair of secret s and output ¢, and yellow cells indi-
cate that P (Y = 1|S =5, T = t) = 1, while white cells indicate that
P(Y =1|S =s,T =t) = 0. This condition also holds for the perfect
privacy setting, a special case of inferential privacy (Thm. 3.1).

1

So —

S1 —

Figure 3: Under an inferentially-private Blackwell optimal
information structure,P (Y = 1|S=5,T=1t) € {0,1},Vs € S,t €
7. Le., every cell in the visualization is white or dark yellow.

4.2 Geometric characterization of P (T|S)

We first define 7 as 7 = {t :P(Y=1T=1t) ¢ {0,1}}. For any
t € 7, we analyze the relationship of P (T = t|S = s) for all s.

LEmMA 4.2. ForanyP (Y, S) ande, an e-inferentially-private Black-
well optimal information structure P (Y, S, T) must have the inferen-
tial privacy constraints binding for any t € T . Specifically, for any
teT, letL; = ming P (T = t|S =s) and H; = maxs P (T = t|S = s).
We have H; = €° - Ly, and P (T = t|S = s) is either L; or Hy for all s.
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The proof is in App. B. As illustrated in Fig. 4, when a column
associated with output ¢ € 7 is neither all-yellow nor all-white, we
have P(T =t|S =s) € {L;,H;},Vs € S. In other words, there are
only two possible cell widths in the column, which we call “wide"
and “narrow". We illustrate wide cells with red outlines to represent
secret-output pairs (s, t) with P (T = t|S = s) = H;, and use narrow
cells with blue outlines to represent secret-output pairs (s, t) with
P(T=t|S=s)=L.

Figure 4: Under an inferentially-private Blackwell-optimal
information structure with S {s0,s1} and T =
{ta.t3,ta}, P(T=1t2|S=s1) = Hyp, P(T=13|S=s0) Hy,,
P (T = t4]S = s1) = Hy,, illustrated by cells with red outlines,
P(T =121S = s0) = Lt,, P(T =13]S = 51) = Ly, P(T = 14]S = 50) =
Ly,, illustrated by cells with blue outlines, and H; = e®-L;, Vt €

{t2, 13, t4}.

4.3 Upper left characterization

Based on Lemmas 4.1 and 4.2, we define regions A, B, C as follows.
A={(st):P(Y=1S=5,T=t)=1s€S,t €T}
B={(s): (s;,t) €A, P(T=t|S=s)=Hpse€S,t T}
C={(st): (s;) ¢ A, P(T=t|S=s)=Hp,se€S,t T}

We next characterize upper-left and lower-right regions:

DEFINITION 4.1. A region A is T -upper-left if for any (s;, tj) € A,

(S, t]) €A, Vk<i,l<j s €8 yeT.
A region C is 7~“-lower-right if for any (sg, t;.) € C,
(spt1) €C, Vk=i,l>j, s €8, tle‘7~’.

Intuitively, upper-left means that starting from any cell in the
region, every cell above it and/or to the left is also part of the region.
Similarly, lower-right means that for any cell in the region, all cells
below and/or to the right of the cell are also in the region.

LEMMA 4.3. Consider any e-inferentially-private Blackwell optimal
information structure P (Y, S, T). Suppose s1, . ..,sn € S are ordered
in decreasing order of P (Y = 1|S =s), and t1,...,t, € T are ordered
in decreasing order of P (Y = 1|T = t). Then the region A is T -upper-
left, region B is T -upper-left, and region C is 7~“-lower-right.

The proofis in App. C. An example is shown in Fig. 5; the yellow
cells form the region A, the cells in yellow with red outlines form
the region B, and cells in white with red outlines form the region C.
The region A is 7 -upper-left, region B is T -upper-left, and region
Cis 7~“-Iower-right. The upper-left characterization of region A is
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Figure 5: Under an inferentially-private Blackwell optimal
information structure with S = {sq, s2,s3} and T = (t2, t3, t4),
region A is illustrated as the yellow cells, region B is illus-
trated as the yellow cells with red outlines, and region C is
illustrated as the white cells with red outlines. The region
A is 7 -upper-left, region B is ‘7~“-upper-left, and region C is
‘7~‘-lower-right.

also true in the perfect privacy setting, while the characterizations
of regions B and C are specific to the inferential privacy setting.

Remark on proof techniques. Lemma 4.3 can be viewed as an ex-
tension of the upward-closed set representation in [14, Theorem
3] in the discrete setting. The relaxation of the privacy constraint
(¢ > 0) introduces a fundamental difference to the underlying ge-
ometry and the previous technique of He et al. [14] for the perfect
privacy setting, which uses the classical result on sets of unique-
ness by Lorentz [19], can no longer be applied. As a result, finding
the sufficient condition for optimality is much more challenging
and Lemma 4.3 is based on entirely new techniques. The key idea
is to identify “microstructures” that cannot appear in an optimal
structure. We prove that information structures without such “mi-
crostructures” must have S and T that can be reordered to exhibit a
structure that can be represented by three upward-closed sets, as
opposed to one in the perfect privacy case.

4.4 Cardinality of the Output Signal Set

The geometric characterization of the e-inferentially-private Black-
well optimal information structure allows us to upper bound the
number of outputs needed to construct an optimal information
structure.? We first define the equivalent transformation as follows.

DEFINITION 4.2 (EQUIVALENT TRANSFORMATION). The equivalent
transformation of an information structure P (S, Y, T) consists of one

or multiple operations shown as follows. Denote P (Y, S, f‘) as the

information structure after transformation.

ZNote that the analysis of the geometric characterization in Lemmas 4.1 to 4.3 does
not rely on the existence of a finite-size Blackwell optimal structure.

2584

Shuaiqi Wang, Shuran Zheng, Zinan Lin, Giulia Fanti, and Zhiwei Steven Wu

o Split. Split an output signal t; into a set of equivalent signals
9; that share the same geometric pattern:
ted;
P(Y=1|T = ¢) =P(Y= 1|T=f), Vi e f,
P(S=s|T=t) =1f>(s=s|T=f), VseS, tedr
o Merge. Merge a set of signals T; to an equivalent signal f; that

shares the same geometric pattern:

). vteT;

Ai), VseS8, teT;.

We say that P (Y, S, f‘) is an equivalent information structure to

P (Y,S,T) if it can be obtained by equivalent transformation.

THEOREM 4.1. GivenP (S,Y) and ¢ > 0, for any e-inferentially-
private Blackwell optimal information structure, there exists an equiv-
alent information structure P (Y, S, T) that has |T| < 3|S| + 1.

The proof is shown in App. D.

5 Mechanism Design: Binary Secret

The geometric characterization of inferentially-private Blackwell
optimal information structures significantly reduces the search
space for solutions. However, it does not allow us to trivially deter-
mine a Blackwell-optimal solution in general. We next design an
information disclosure mechanism that achieves an e-inferentially-
private Blackwell optimal information structure when the secret is
binary, i.e., 8 = {so, s1}. We provide an optimal disclosure mecha-
nism that is closed-form, only uses 4 output signals, and is unique
up to equivalent transformations. The designed mechanism uni-
versally maximizes the expected utility E; [u (q¢)], where g;
P (Y = 1|T =t), of the decision maker under any reward function.

We defer the analysis of general secrets with n > 2 possible
values, ie., S = {s1,...,8n}, to App. I. Our main result derives a set
of programs that lead to an optimal solution for any given utility
function in the downstream decision-making problem. The design
of the programs depends on our geometric characterization, which
ensures that each program is linear.

5.1 Geometric characterization: binary secret

We first start by presenting the geometric characterization under
the special case of a binary secret. Let gs = P(Y = 1S =5), ¢+ =
P(Y = 1|T = t) and p; = P(T = ¢). Denote I/ = B(T = 1;|$ =

sj), where j € {0,1},and I = {li(])}ie|7'|,je{0,1}
ll.(J ) is the width of the cell in the ith column and the jth row. As
discussed in §3, we can fully determine the information structure of
P (S, Y, T) by specifying the values of li(J ) and P (Y|S,T), and in turn
determines the disclosure mechanism. The following lemma shows
the characterization of a Blackwell-optimal information structure

. In other words,
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P (Y, S, T) by specifying the constraints on values of li(j ), which in
turn can specify P (Y|S, T) together with Lemmas 4.1 and 4.3.

LEMMA 5.1 (FEASIBILITY CONDITION). GivenP (S,Y) and¢ > 0,
for any e-inferentially-private Blackwell optimal information struc-
ture with S = {so, s1}, there exists an equivalent information structure
P (Y,S,T) that satisfies |7 | < 4 and its associated I values have the
following properties:

. ll(l) and lio) are fixed to be:

1D =g, 19 =14, 6)
o [ ensure the disclosure policy satisfies the IP constraint with:
1@ M
2 3 £
oo
1V e [ e, P e [ e®] o
o [ are valid probabilities:
D=1, viefo1}, ®
i€[4]
19 >0, Viel[4,je{01}. ©)
1 L J L J§ L JJL ]
So i i 2 0= 1-qq,
@) ©6) ©) (©)
1 ‘ lgl);qs] 1 lg'n 1 o 1 151) I
) @
0
N T

P 2 P(T =S =)

Figure 6: Geometric characterization of an ¢-inferentially-
private Blackwell optimal information structure with a bi-
nary secret. There are at most four output signals t1, b2, 13, 145
signals t; and t4 completely reveal the signal Y. For short-
hand, we use ll.(]) to represent P (T = t;|S = s;). Cells with the
same border color correspond to the same output signal T.
The widths of the cells in the bottom-left and top-right cor-
ners are fully determined by Eq. (5) in Lemma 5.1: namely,
ll(l) =gs, and lio) = 1-¢s,. The ratio between the widths of the

(0) (1)
. . . 10
cells with purple or green outlines satisfies =

2
cording to Eq. (6). The widths of the cells in top-left and
bottom-right corners satisfy ll(o) € e_Ell(l),egll(l)] ,lil) €

=¢f, ac-

e ¢ lio), et lio) respectively, according to Eq. (7).

The proof is shown in App. E. The geometric characterization
of the optimal structure with binary secret is illustrated in Fig. 6.
For the cell that corresponds to the secret s; and the output ¢j,
Vi € {0,1},j € [4], the vertical length represents P (S = s;) and
the horizontal length represents l](.l) =P (T =t|S =s;).
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Recall that our geometric characterization of Blackwell-optimal
solutions implies that, as in the case of perfect inferential privacy,
the information structure must satisfy the property that each cell
is either dark yellow or white, i.e., P (Y|S, T) € {0, 1}, and the dark
yellow cells are in the upper left region of the grid. Further, Eq. (5)
implies that the bottom left and top right cells have a width that is
fixed and independent of the IP constraint. Note that, as with the
perfect privacy result of He et al. [14], the outermost signals t; and
t4 fully reveal the state Y. However, recall that the perfect privacy
case required at most three output signals. Lemma 5.1 implies that
four output signals are sufficient; we show in §5.2 that in some
cases, four output signals are also necessary. Moreover, while the
inner columns for t; and t3 have a cell width ratio that is exactly e®
(thus meeting the IP constraint with equality), the first and fourth
columns have a ratio of cell widths that does not necessarily meet
the IP constraint with equality. Hence, the main difficulty of finding
a Blackwell-optimal mechanism is to identify the exact width and
cell width ratio for the first and fourth columns.

5.2 Mechanism design

We split this section into two steps. First, we present our main
result for the binary case, which is a Blackwell-optimal information
structure under an &-IP constraint. Then we demonstrate how this
information structure leads to an information disclosure mecha-
nism. We analyze its utility compared to an optimal mechanism
under a perfect privacy constraint in App. H.

5.2.1 Step 1: Determine the Blackwell-Optimal Solution. Recall that
our geometric characterization in Lemma 5.1 fixed the size of the
bottom left and top right cells of any Blackwell-optimal structure
(i.e., bottom orange cell and top black cell in Fig. 6). Next, we specify
the sizes of the other cells. To maximize utility, we want the top
left and bottom right cells, i.e., 11(0) and lil), to be as wide as pos-
sible, since they deterministically reveal Y. In principle, these two
cell widths could depend on each other. For instance, increasing

ll(o) might force lil) to shrink, for the solution to remain feasible.

However, in this subsection, we show that this is not the case: ll(o)

and ] il) can be maximized simultaneously.

We first show formally that in order to maximize expected utility,
we want ll(o) and lil) to be as large as possible. We define the
feasible dominant point as follows.

DEFINITION 5.1 (FEASIBLE DOMINANT POINT). [ is a feasible dom-
inant point if it satisfies the feasibility constraints in Lemma 5.1 and
if for any point I’ that satisfies the feasibility constraints, it holds that
19> r® gnaiV >y,

The following lemma shows that there exists a unique feasible
dominant point, and it maximizes expected utility under any convex
utility function.

LEMMA 5.2. There exists a unique feasible dominant point. For
any convex utility function u, the objective function E;[u(q;)] is
maximized if and only ifl is the feasible dominant point.

The proof is shown in App. F. Combining with Thm. 2.1, we
know that the inferentially-private Blackwell optimal information
structure is determined by the feasible dominant point. We next
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provide the unique inferentially-private Blackwell optimal infor-
mation structure. This structure is unique up to transformations of
the structure that merge equivalent output signals.

1_
THEOREM 5.1. LetR; = 2 and R, = -3
qs; 1-gs,

tribution P (S,Y) and ¢, the following information structure is the
unique e-inferentially-private Blackwell-optimal information struc-
ture (unique up to equivalent transformations) that universally maxi-
mizes the expected utility under any convex utility function: I satisfies
conditions in Lemma 5.1, and

. Given the joint dis-

When: Then:

Ry < ef, Ry < €f 1Y =1 = 0

R1 <€ Ry > €, or 1D = 0,

Ry > €5, Ry > €5,q5, > i 131) =1-g¢s —e*(1-qs)
Ry > €5,Ry < €, or Q) e %qs, — qs,

R1 > €%, Ry > €f, gsy < # 131) =0

Ry > €5, Ry > €%, q5, > #, 1D = e£1+1 —qs;»

gs, < ﬁ 131) = efqs, — eizjl

The proof is shown in App. G. As illustrated in Fig. 7, there
are six regions of problem parameters, which depend on both the
prior and ¢, that determine how many (and which) signals we need.
When Ry < e, Ry < ¢, ie., the original secret-state structure
P (S, Y) already satisfies the inferential privacy constraint, we can
just release the actual state and therefore T = {t1,t4}. When Ry <
e“,Ry > e or Ry > ¢, Ry < ¢, the original secret-state structure
P (S, Y) satisfies the inferential privacy constraint only when Y =1
or Y =0, and we need to introduce an additional signal to ensure
the inferential privacy constraint is met. When Ry > e, Ry > €%,
i.e., the original secret-state structure P (S, Y) does not satisfy the
inferential privacy constraint, the number of output signal required
depends on the value of g, or gs,. When g5, > 7 +leg orgsy < 1ye=7»
only three signals are required. Otherwise, we need four output
signals to achieve a Blackwell optimal structure under IP.

R,
- 1
: Ifqs, = Tres
i T = {t1,t3,ts4}
- 1
T = i fqs, < =
{t,taty}! T ={tn, bz ta}
| Otherwise:
i T ={ty, ta ts, ta}
PP 2 I N
—
- 1
v T = {t, ta, ta}
{tll t4} :
1
et Ry

Figure 7: Output siginal set 7" with different R;, R;. When R; <
e‘,Ry < €%, P(S,Y) already satisfies the inferential privacy
constraint, and we can just release the actual state with two
output signals. When R; < €¢“,Ry > e or Ry > ¢/,Ry < ¢,
P (S,Y) satisfies the inferential privacy constraint only when
Y =1orY = 0,and an additional signal is required. When R; >
e’, Ry > ¢, the required number of output signals depends

ON gs;> s+
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5.2.2  Step 2: Determine the information disclosure mechanism. Based
on the inferentially-private Blackwell optimal information structure
in Thm. 5.1, and the fact that P(S, Y, T) = P(Y|S, T) - P(T|S) - P(S)
P(S,Y,T
and P(T|S,Y) = W
mechanism, represented by P (TS, Y), as in Corollary 5.1.

we can design the universally optimal

COROLLARY 5.1. Given P (S,Y) and ¢, the universally optimal
e-inferentially-private mechanism that maximizes the objective func-
tion B¢ [u(q;)] under any convex utility function u is unique up to
equivalent transformations:

P(T=t:|S=s,Y=1)=1,

P(T:l’iIS:SO,Yz1)=li(0)/q50, Vi€ {1,2,3},

P(T =t4|S =50, Y =0) =1,

P(T:til.S:sl,Y:O):li(l)/(l—qsl), Vi€{2,3,4},
where the values of l are shown in Thm. 5.1.

The universally optimal mechanism is unique given P (S, Y) and
¢, and fully reveals the state when S =s;,Y =1or S =50, Y =0.

Optimal mechanisms for the ¢ > 0 setting can improve utility
substantially relative to the utility achievable when ¢ = 0. In App. H,
we show that under an inferential privacy constraint of ¢ > 0, there
exists a utility function such that the maximal expected utility is
arbitrarily larger than it would have been under perfect privacy
constraints. We also numerically illustrate utility gains for common
utility functions, showing that by relaxing privacy constraints from
perfect privacy to € = 1, we can increase utility by up to 2x.

6 Conclusion

In this work, we generalize the private private information struc-
tures of He et al. [14] from a perfect privacy constraint to an
inferentially-private privacy constraint. To devise a Blackwell opti-
mal disclosure mechanism under such an inferential privacy con-
straint, we first derive a geometric characterization of the cor-
responding optimal information structure. This characterization
facilitates exact analysis in special cases. In the binary secret set-
ting, we obtain a closed-form expression for an inferentially-private
Blackwell-optimal information structure, which is universally op-
timal in the sense that it maximizes the expected utility under
any convex utility function. We finally provide a programming
approach to compute the optimal solution for a specified utility
function when the secret is nonbinary.

Our work leaves several important questions unanswered. For
example, in the case of general (non-binary) secrets, it is unclear
how to derive a closed-form expression for a Blackwell-optimal
mechanism. Another important assumption we have made is that
the prior P (Y, S) is known a priori. Understanding how to relax
this assumption (thereby approaching a privacy definition akin to
pufferfish privacy) while still providing optimality guarantees is an
interesting direction.
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Appendix

A

Proof of Lemma 4.1

Proor. ForadistributionP (Y, S, T) thathasP (Y =1|S=5s,T =1t)
=k € (0,1) for some s and t, we can split ¢ into two signals #; and
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ty such that
Phew(Y=1|S=5T=1t1) =1,
Phew(Y =1|S=5,T =t2) =0,
Prew(Y =1|S=5",T = t1) = Prew(Y = 1|S =5, T = t2)
=P(Y=1|S=s",T=t), Vs #s,
while keeping the posterior of S after seeing t; or ¢, the same as
P (S|T =t) by letting
Phew(S=sT=1)
P(S=sT=t) ’
Phew(S=s,T =t2)
P(S=sT=t)

Prew(S=s'T=t;)=P(S=5,T=t)-

Prew(S=5'T=t)=P(S=5,T=t)-

We can get that
Phew (Y =1T =t1) =Prew(Y = 1|S =5, T =t1) - Ppew (S = s|T = t1)
+ Z IEJ)new(Y = 1|S = SI,T = tl) 'Pnew(s = S/lT = tl)
s'#s
=P(S=s|T=t)+Z]P’(Y= 1US=s,T=t)-P(S=5T=1t)
s'#s
=P(Y=1T=)+(1-k)P(S=s|T=1t)
>P(Y=1T=t),
as well as
Pnew (Y = 1T = t2) = Prew(Y = 1|S =5, T = t2) - Pnew (S = s|T = t2)
+ Z Prew(Y = 11S =5",T = t2) - Prew (S = §'|T = t2)
s'#s
=Y P(Y=1s=¢,T=t)-P(S=5IT=1)
s'#s
=P(Y=1T=t)-k-P(S=s|T=1t)
<P(Y=1T=1t).

Therefore, Prew (Y = 1|T) is a mean-preserving spread of P (Y = 1|T).
From Thm. 2.1, we know that the new Ppew (Y, Thew) Blackwell dom-
inates P (Y, T), but the reverse is not true; and the privacy guarantee
is preserved as the posterior of S after seeing t; or t; is the same as
P (S|T = t). Therefore a distribution withP(Y =1|S=5T=1t) €
(0, 1) cannot be an inferentially-private Blackwell optimal informa-
tion structure. m}

B Proof of Lemma 4.2

Proor. Based on inferential privacy constraint, we know that
P(T=t|S=s;)
B(T=t|S=s;)

H; _ m?XsP(T= t|S=s) c [1,38] _
Ly mingP(T=t|S=5s)
Suppose there exists t withP (Y = 1|T =t) € (0,1) andP (T = ¢|S = s)
€ (L, €°Ly) for some s, we can split ¢t into two signals #; and t;
such that

Vt, s1,52, € [e7%, ef]. Therefore, we can get that

Prew(T =t1|S=5) = 1P (T =t|S =5) +§,
Prew(T =1|S=5) = 1P (T =t|S=5) - 4,
Vs’ £5s:
Prew(T=111S =) = Ppew(T = 1S =5') = 3P (T =t|S = ¢'),
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where 5 € (o, min{%P(T =t|S=5)—1L,CL, - IP(T=t|s= s)}]
We can easily check that the constructed structure Ppew (Y, S, T)
satisfies the inferential privacy constraints. Based on Lemma 4.1,
we know that Vsg € & : P(Y=1|T=¢t,S=5)) = Ppew(Y =
1UT = t1,S = s9) = Ppew(Y = 1T = t5,S = s9) € {0,1}. Since
P(Y=1T=t) € (0,1), whenP(Y =1|T=t,S=5s) = 1, we can
get that

Pew (Y =1|T = tl)
Phew (T =t1|S=5) -P(S=5)

=Phew(Y=1|S=5T=1;) -
new (Y =11S=5T=1) Tspes Prew (T = 11]S = 50) - P (S = 50)

Poew (T = #1]S=5') - P(S=5)
+ ) Prew(Y=1|S=5,T=1t)- new
ZJ mew (¥ = 1] D S s Pan (T =015 = 5) - B (S = 50)

IP(T=tS=s)-P(S=5)+6P(S=s)
IP(T=1t)+8P(S=s)
IP(T=t|S=s)-P(S=+)
IP(T=t)+5P(S=5s)
P(T=1t) 26 -P(S=s)
P(T=1)+26 P(S=s) P(T=10)+20 - P(S=9)

=P(Y=1S=sT=1t)

+ Y P(Y=1S=5,T=1)-

s'#s

=P(Y=1|T=t)-

>P(Y=1|T=1),
as well as
Ppew (Y =1|T = tZ)
Phew (T =£2|S=5) -P(S=5)
ZsoES Pnew(T =5|S=s5) -P(S :50)
Prew (T = 1S =5") -P(S=5")

=Prew(Y=1|S=5T=1) -

+$,Z¢SIPnEW(Y:1|S:S’,T:tZ) ‘ Zsoespnew(T:QlS:so) -P(S=s)
IP(T=tS=s)-P(S=5s)-6P(S=5s)
IP(T=1t)-8P(S=s)
IP(T=t|S=s)-P(S=+)
iP(T=t)-6P(S=s)
P(T=t) B 256 -P(S=s)
P(T=t)-25-P(S=s) P(T=t)-25-P(S=s)

=P(Y=1S=s5T=t)-

+ Y P(Y=1S=5,T=1)-

s'#s

=P(Y=1T=¢)-

<P(Y=1T=1).
When P (Y = 1|T =t,§ =s) = 1, similarly, we can get that
Prew (Y =1|T =1;)

=Y P(Y=1s=¢,T=1)

s'#s

IP(T=t|S=5")-P(S=5+)
IP(T=1t)+3P(S=5)
P(T=1t)
P(T=t)+25-P(S=5s)

=P(Y=1T=t)-
<P(Y=1T=1),

as well as

Ppew (Y = 1T = t3)

=Y P(Y=1s=5,T=1t)-

s'#s

Ip(T=t)s=5) P(S=s)
P(T=1)-0P(S=5s)
P(T=t)
P(T=1t)-25-P(S=5s)

=P(Y=1T=t)-
SP(Y=1T=t).

Therefore, Ppew (Y = 1|T) is a mean-preserving spread of P (Y = 1|T),
and thus, the new Ppew (Y, T) Blackwell dominates P (Y, T), but the
reverse is not true. ]
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C Proof of Lemma 4.3

Proor. We first define sets A;, By, and C; as follows. For each
t € T, define A, tobe the setof s € SthathasP (Y =1|S=5T =1¢)
= 1, and define B; to be the set of s € A; thathas P (T =t|S =s) =
Hy, and define C; to be the set of s ¢ A; that has P (T =¢t|S =s) =
Ht-

Similar to the definition of A;, B, and C;, we define Ds to be
the set of t € 7 that has P (Y=1|S=5T=1t) =1, and define &;
to be the set of t € Dy that has P (T = ¢t|S = s) = Hy, and define
to be the set of t ¢ Ds that has P (T = t|S =s) = H;.

We introduce 0-1 crossing blocks and H-L crossing blocks, and
show that both types of crossing blocks cannot exist in a Blackwell
optimal information structure.

DEFINITION C.1 (0-1 CROSSING BLOCKS). A 0-1 crossing block is
defined by s1,s2 € S and t1,t2 € T with

P(Y =1|s, 1) =0,
P(Y =1ls2,t1) =1,

P(Y =1s1,t2) = 1,

P(Y = 1sg,t2) = 0.
In other words, we have sy € Ay, s1 € Ap,, 2 € Ay, and sy ¢ Ay,.
DEeFINITION C.2 (H-L CROSSING BLOCKS). An H-L crossing block

is defined by s1,s2 € S and t1,tp € T with either (1) or (2),
(1) it holds that s1 € By,,s1 € Ay, \ Bty, 52 & Ay, 52 € Ay, in

other words, we have

P(Y=1|s;,t1) =1,
P(Y=1|s1,52) =1,
P(Y =1|sz, 1) =0,

P (T = t1]s1) = Hy,,

P(T = t3]s1) = Ly,,

P(Y =1]sp, t5) = 1.

(2) it holds that s, € ﬁtl \ Ct,»81 € Cty, 82 & Apy, 52 € Ay, in

other words, we have

P(Y =1|s;,t1) =0,
P(Y =1|s,22) =0,
P(Y =1|sz, 1) =0,

P(T =t1]s1) = Ly,,
P (T = t2|s1) = Hy,,
P(Y =1]sp, t5) = 1.

LemMma C.1. A Blackwell optimal information structure must not
have a 0-1 crossing block or an H-L crossing block.

Proor. We first prove that a “0-1 crossing block” cannot exist.
For simplicity we write pj; = P (S = 51, T = t1) and p12, p21, P22 sim-
ilarly. Suppose a distribution P (Y, S, T) has a “0-1 crossing block”.
We show that we can slightly change P (Y, S, T) to P (Y,S,T) so that
P (Y, T) Blackwell dominates P (Y, T), while preserving the mar-
ginal distribution P (Y, S) and P (S, T). We change the conditional
distribution as follows

P(Y =1s;,11) = &, ﬁ(Y=1|s1,tz)=1—%~51,
12

P11

P(Y=1|s3,t1) =1- — - &, Pu
P21

P(Y=1ls1) == - &y,
p22

where J1, 52 € (0,1) will be determined later. We keep P (S, T) the

same and it is not difficult to see that P (Y,S) is preserved. We

set 81,02 in a way that P(Y=1|T)isa mean-preserving spread

of P (Y = 1|T), i.e., the posteriors after observing T are only more



Inferentially-Private Private Information

“extreme”. By simple calculation, we have
P(Y=1T=t)
= Zﬂﬁ(y= L,T=t,S=s)
S

=P(Y=1,T=t,S=8))+P(Y=1,T=1,S=s57)
+P(Y=1,T=14,S # s1,52)

=p21+p11(61 —82)+P(Y =1,T=1,S # s1,52)

= p11(d1 -&)+P(Y=1,T=t).

The last equality holds because P(Y =1,T =#,S=s1) = 0 and
P(Y =1T =t1,S = s3) = p21. Therefore

™ —_— — _— 7p11 . —_— 3 -

P(Y=1T=t)= P(T=1) (61-62)+P(Y=1T=t1).
Similarly,

™ P — — _7P11 . —_— 3 1

P(Y=1T=t)= P(T=1) (61 -62)+P(Y =1T =t2).

By our assumption that P (s,#) > 0 for all s, ¢, we have p;; > 0
and P(Y =1|T =t1),P(Y =1|T = t2) € (0,1). Then by choosing
61 > 6o whenP(Y=1T=t) > P(Y=1T=1t) and 8; < &
whenP (Y = 1|T =t;) < P(Y = 1|T = t2), we make the posteriors
more extreme. The new distribution P preserves the inferential
privacy constraint because the marginal distribution of S and T
keeps the same, i.e., P (5, T)=P(S,T).

Similarly, we can prove that a “H-L crossing block” cannot exist
either. Suppose P (Y, S, T) has a “H-L” crossing block of the first
type. (The proof for the second type is entirely similar.) Let p; =
P (S = 31),1)21 =P (S =5, T = l’1), arldPZZ =P (S =s9,T = tg). We
again slightly change P (Y,S,T) to P (Y, S,T) by

- o
IEJ’(T=t1|5=81)=]P’(T=t1|5=81)—p—1,
1

> 1)
P(T=l’z|5=sl)=P(T=t2|5=sl)+_l,
p1
= 1
P(Y =1|s2, 1) = — - &2,
P21
= 1
P(Y=1|s2,t2) =1-—-&
P22

Again, by simple calculation we have P (Y = 1|T = t;) =
(61 -6)+P(Y=1T=t) and P(Y=1T=1t2) = ~pepy -
(81 — 82) + P (Y = 1|T = tp). Therefore by choosing §; > § when
P(Y=1T=t)>P(Y=1T=t)andd; < § whenP (Y =1|T =
< P (Y =1|T = t2), we make the posteriors more extreme. The new
distribution P will preserve the inferential privacy constraint when
we choose small enough §; and ;. Because (1) by the definition
of “H-L crossing blocks” and B;, we have P (T = t1|S = s1) = Hy,
P (T = t2|S = s1) = Ly, so by slightly decreasing P (T = #1|S = 51) =
H; and increasing P (T = t2|S = s1) = Ly, the inferential privacy
constraint is still satisfied; (2) we do not change the the marginal
distribution of P (S, T) when S = sy, i.e., P (s2,t1) = P(s2,t1) and
P (s2,t2) = P (s2, t2).

1 .
P(T=t;)

O

If an information structure P (Y, S, T) does not have a “0-1 cross-
ing block”, then for any pair of 1, ts € 7, we either have A;, C A,

t1)
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or Ay, C Ay,. (Otherwise, an arbitrary s; € Ay, \ Ay, and an ar-
bitrary sy € Az, \ Ay, and t1, t2 will form a “0-1 crossing block™.)
Similarly, for any pair of s1,s2 € S, we either have Ds, C D, or
Dy, C Dy,

LEmMmA C.2. Consider any Blackwell optimal information structure
P(Y,S,T). For any pairt, t3 € ‘7~“, if Ay, C Ay,, then we must have
By, C By, and Gy, C Cy,. For any pair of s1,s2 € S, if Ds, C Ds,,
then we must have Es; C Es, and s, C Fs,.

Proor. We prove that for any pair #1, tz € ‘7~“, if Ay, C Ay, then
we must have By, C B;, and Gy, C Cy,. The proof for D, &, F is
entirely similar.

Consider any t1,t2 € T with A, C Ayp,. We first prove that we
must have B;, C B;,. Suppose to the contrary, By, is not a subset of
Bs,, we claim that there must exist an “H-L crossing” block. We first
find a valid s1. Since By, is not a subset of B;,, we can find s; with
s1 € By, and s1 ¢ B;,. By definition, B;, C Ay, , and by assumption,
A, C Ay, therefore it is guaranteed that s; € By, C Ay, C Ap,.
So we find an s; with s; € By, and 51 € Ay, \ By,. We then find
a valid s;. Since Ay, C Ay, we can find s; with s, € A;, and
sz € Ay,. Then by definition, sy, s2, t1, £z form an “H-L crossing”
block. Therefore, we must have B;, C By,.

Next, we show that for any t1, ¢ € T with Ay, C Ay, we must
have C;, € Cy,. Suppose to the contrary, Cy, is not a subset of Cy,,
we claim that there must exist an “H-L crossing” block. We first
find a valid s;. Since Cy, is not a subset of C;,, we can find s; with
s1 € Gy, and s1 ¢ Cy,. By our definition and our assumption, C;, C
ﬁtz C ﬁh, therefore it is guaranteed that s; € C;, ﬁtz c ﬁtl.
So we find an s; with s; € Cy, and 51 € ﬁn \ Ct,. We then find
a valid sp. Because A;, € Ay,, we can find s with s, € A;, and
s2 & Ay, Then by definition, s1, s2, t1, £2 form an “H-L crossing”
block. Therefore we must have C;, € Cy,. m]

Now we are ready to prove Lemma 4.3. Suppose we sort s € S
from largest D; to smallest Ds, and sort ¢ € T from largest A; to
smallest A;. Then we must have the region of A; being an upper-
left region. Otherwise, it will conflict the ordering A, C A;; or
Dy, € Ds;. According to Lemma C.2, we have B;, C B;; and
&, € &s, for any j < k. Therefore region B must be upper-left as
well. In addition, according to Lemma C.2, we must have Cy, C Cy;
and &, C &s; for any j > k. Then for the same reason, region C
must be lower-right. We thus prove the lemma. m]

D Proof of Theorem 4.1

ProoF. Suppose sq,...,s, € S are ordered in decreasing order
of P (Y = 1|S = s). For any ¢-inferentially-private Blackwell optimal

information structure P (Y, s, T), suppose there are k unique values
of P (Y = 1|T), denoted as vy, . .., 0. Suppose v1 > ... > vy with-

out loss of generality, and denote 7; = {f €T :P (Y =1|T = f) = vi}

where i € [k]. Based on Lemmas 4.2 and 4.3, we can get that
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We can construct an information structure P (S, Y, T) such that

VseS: P(T=t]S=s)= ZP(T:ﬂs:s).
ied;

With simple calculations, we can get that P (T = t;) = X, o P ('f‘ = f),

P(Y=1T=t) =o,and P(S=s|T=t) = B(s=sf =), Vi e
[k],s€S,fe ;. Therefore, P (S,Y,T) is an equivalent information
structure to P S, Y, T), and tq, .
orderof g =P (Y =1|T =t).
Intuitively, P (S, Y, T) is a compressed version of P (S, Y, T), by

merging the columns that share the same geometric characteriza-
tion. As illustrated in Fig. 8, the columns corresponding to #3 and

.., tx € T are ordered in decreasing

iy in P (S, Y, f‘) shares the same geometric pattern, and thus can be

merged as a single column (corresponding to t3) in P (S, Y, T).

So_

S1 —

L, i i3 ty ts
1
SOQ—
Sl'_
| | | !
ty b t3 ty

Figure 8: Information structure of P (S, Y, T) (left) and
P(S,Y,T) (right) with binary secret S € {sp,s1}. In P (S, Y, T),

the columns corresponding to 3 and {4 has the same geo-
metric pattern. In P (S, Y, T), those columns are merged as a
single column (the column corresponding to ¢3).

For any convex utility function u, we have

E:[u(g)] = ), P(T=t)ul(g)

i€[k]

= > YE(f=t)ue
ie[k] teg;

= ZP(T:f)u(q;)

Therefore, from Thm. 2.1, we know that P (S,Y,T) is an optimal

information structure equivalent to P (S, Y, f‘)
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For each t € T, define A; to be the set of s € S that has
P(Y=1|S=s5T=t) = 1, and define B; to be the set of s € A;
that has P (T = ¢t|S = s) = Hy, and define C; to be the set of s ¢ A
that has P (T = ¢t|S = s) = H;. From Lemma 4.3, we know that for
any i € {2,---,k—1}, we have Ay, = {s1,...,84,} and By, =
{s1,...,sp,} and Cy; = {sc;, ..., sn} for some a;, b;, c; with

1<a;j<n 0<b;j<n,

biv1 < bj < bj-1,

1<c¢;i<n+1,

ai+1 < a;i < aj-1, ci+1 < ¢i < Cj—1,

where B;, = 0 when b; = 0 and C;; = 0 when ¢; = n + 1. Since
(aj, b, c;) and (ajt+1, bit1, ci+1) differ for at least one element in
P(S,Y,T), wehavek—2<n—-1+n+n=3n-1,ie,|7|=k <
3n+1=3|8|+1. o

Note: Our general bound on the number of signals is not tight
for the binary secret case since we derive the bound mainly from
Lemma 4.3 and do not consider the geometric constraints presented
by Lemma 4.2, in order to keep the expression simple and clear.
Specifically, in the last paragraph of the proof, we upper bound
the number of output signals by letting index triples (a;, bj, c;)
and (a;j4+1, bit1, ci+1) only differ for one element for all i. However,
although this upper bound is achievable for non-binary secrets, it
is not the case for binary secrets due to the constraints posed by
Lemma 4.2: B; and C; cannot be empty sets simultaneously and
B; U Cy cannot be equal to S for any .

E Proof of Lemma 5.1

Proor. Without loss of generality, we let P(Y =1|S=s1) <
P (Y =1|S = sp). From the proof of Thm. 4.1, we know that there
is an e-inferentially-private Blackwell optimal information struc-

ture P (S, Y, 'f‘) where there is only one output, denoted as t; and
tx, that satisfies P (Y =1|T = fl) =1andP (Y =1|T = fk) =0 re-
spectively. Then we can get that P (Y =1S=s,T= f) =0,Vi #

f; and P (Y =1S=s0,T = f) = 1,Vi # i, because otherwise,

based on Lemma 4.3, we have P (Y = 1|T = f) 1,3f # & or
P (Y = 1|'f‘ = f) =0,3f # tpy1. With simple calculation, we can get

that P ('f‘ =S = sl) = g5, and P (T =H|S= so) =1-—gqs,. Based
on Lemmas 4.2 and 4.3, we can get that 31 < iy < k :

N Hp, 1<i<ip
P(T= i|5=so)= i ,
Lfi’ ip<i<k
N H:, ip<i<k
B(T=hls=st)={ 0 0155
Lfi’ 1<i<ip
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We can construct an information structure P (S, Y, T) where Vj €

{0,1} :

l1(j) =]P(T =t|S :gj) =P(T = f1|s =Sj),

lz(]) =P(T=t2|5=gj)= Z I@’(T:MS:Sj),
1<i<iy

léj)=P(T=t3|5=3j)= P(T:}IS:sj),
ip<i<k

li]) = ]P(T =1|S = Sj) = ]f’(f‘ = fkls = Sj) .

With similar analysis of the proof of Thm. 4.1, we can verify that
P (S, Y, T) is an optimal information structure equivalent to P (S, Y, T)
Wehavell(l) =p (T =f|S= Sj) =(s, andlio) =p

1 — gs,. Following the inferential privacy constraints, we have

ll(o)/ll(l) € [e7¢, €] ,lio)/lil) € [e7%, ef]. Besides, we can get that
lz(o) _ Zi<isiy P (T =S = s0) _ Dacisio Hy, o
lz(l) 21<,<,0P(T= f =31) Zl<i<zo L; '
Q _ Zio<z< ]f» (T = f | = 51) Zlg<i<k Ht — et
léo) Dig<i<k ]f”( =1f|S = so) Zi0<i<kL

Finally, we have Vj € {0, 1} : ¥;e[4] li(j) =Yic[a) P(T =tilS =55) =
1. O

F Proof of Lemma 5.2

Proor. We first prove that there exists a unique feasible dom-
inant point. According to Lemma 5.1, we have l(l) = gsply © _
1- g, 1 = 110 = e 10 311190 = B 1¢ o1
Therefore, we can represent 12(1), 13(1) by ll(o) and lil) based on the
following two equations:

IS
e_glél)

qs, + + lil) =1,

ll(o) + eflz(l) + +1-gs =1
We can get that

—efll(o) + lil) +efqs, +qs, — 1

(1) _

M = o , (10)
W _ e B el —gq gy +ef

1D = e o (11)

Based on the constraints that Vi € [4],j € [2] : li(j) >0, 11(0) €

e_fll(l), efll(l)], and lil) € [e_glio), eflio)], we have

- egll(o) + lil) +e°qs, +qs; — 120,
10 _ ey ()

eqs, = ll(o)

e (1-g5) 2 1V > e (1-gs,) .

—qs, —€°qs, +€° 20,

—£&
>e “gs,
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LetR; = qs" ,and Ry = qsl . Then we can get that
9sys Ri <e NRy <é€f
ll(o) < {efqs,, Ri>efN(R; <efU(Ry>efNgs < ﬁ)) R
1-e¢(1-gqy), Rz>eeﬂ(R1Se‘U(R1>e£ﬂqslZﬁ)}
1-gs,, Ry <ef NR, < ef
lil) <{l-efqy, Ri>efN(Ry<efU(Ry>efNgs < 1Jre%)) R
ef (1-gqs), R2>e6r\(R1SEEU(R1>eEﬂqSU>#))

(12)
and the upper bounds of l(o) and l(l) can be achieved simultane-
ously, i.e., there exists a unique fea51ble dominant point.

To prove the feasible dominant point universally maximizing the
objective function, we first prove the following two inequalities for
any convex utility function u:

Ps; + € Ps, ps, +€°ps
psit(qr) + 1—_1 u(gr) > #u(q@) (13)
+ Ps “psy +€°Ps
Psou(qh) + 70 (q ) = #u(qh) (14)
: 5" ps, Py,
Since we have g, = 1,q, = 0, g1, = lz(g)pso+lz(l)psl = Tpatpe
— 13(0)1’50 I )
U = o, W, Patepy Ve AN get that
Ps; + egpso _ egpso _ eZEPSI + egpso
Ps,qt, + o26 _ 1 t = o2 _1 o2 _ 1 qt;»
egp51 + Pso _ eZsps() _ ezgpso + egpsl
Psoqt; + o2 _ 1 qr; = o2 _1 e26 _ 1 9,

Since u is a convex function, we can easily get that Egs. (13) and (14)
hold based on Jensen’s inequality.

Then we prove that if we fix the value of ll(o) and reduce [ ‘El), the
value of objective function decreases. For a feasible set of values

{l.(j )} , where 12(1) > 0, let U be the value of objective
ic[4].jel2]

1
function, ie, U = X;e[4] pt; - 4(qs;)- Suppose we fix ll(o) and de-
crease lil) tozil) = lil) Al, then based on Egs. (10) and (11), we

havefz(l) =1 ezéil,f(l) l(l) :ZgAi Therefore, based on
Eq. (13), we have
U= Py -u(qs)
ic[4]
= Z Pt; 'u(qti) + Z [(7]('0) - l]('O))P + (.(1) l]('l))p$1]u(qtj)
ic[4] Jje{23.4}
e*ps, +ep s, +€p
=U+ ;215 1 %0 u(qtg) - SLZE — 1$0 “(qtz) _pslu(qt4)
<U.

Similarly, based on Eq. (14), we can prove that if we fix the value

of | il) and reduce ll(o), the value of objective function decreases.
Above all, we know that a necessary condition of the objective

function E;[u(q;)] being maximized is that ll(o) and [ il) are on the

Pareto frontier maximizing each of these quantities individually.

[m]
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G Proof of Theorem 5.1

Proor. When ll(o) and il) achieve their feasible maximal val-
ues simultaneously, based on Eq. (12) and feasibility conditions in
Lemma 5.1, we can easily get that

e When R; < €, R; < e*:
O 2 1lg 10 Zg 102 g
e When Ry < €%,Ry > ef or Ry > €5,Ry > ef,qs, > ﬁ:
l(l) =ef(1—qs,) l(o) =1-e"4(1-qs,) l(l) =0
4 so/s 4 si)s f
1—-qs, — (1 —gs,)-
e When Ry > e,Ry < ef or Ry > €, Ry > €%, g5, < #:

(1) _
L7 =

1 - 0 1 - 1
li ) = 1-e Eqso’ 11( ) = egqsv lz( ) = quo_qsl’ l3( ) =
0.
e When Ry > €%, Ry > €%, g5, > #,qsl < 1:7:
l(l) = eg(l qsy)s ll(o) = e°qs,, lz(l) = e51+1 ~Gs,» lél) =

eqs — ef +1°
From Lemma 5.1, we know that this Blackwell optimal informa-
tion structure is unique up to equivalence.
]

1
; ; T - T—
et —

51 lil) 1- lil) _ l‘(}l) [5{1)
0
0 1
1
] - ] [E— r— (—
So lio) _ l?n) lgo) lgo) L(}D)
Te— — . ] [e—
51 i i i§0 1P =id
0
o | | -
t t; 3 ty
)
Figure 9: When Ry,R; > e and R = 1(0) - € (e74,¢) (i-e.,
110 -
—L_ and both 1) and 1" hieve thei
dsy > T3e=r Al Gsi < 1Jreg), o can achieve their

upper bounds l(o) and [, @ , and we can get feasible positive

values of 12(1) and 13(1) based on Lemma 5.1.

We give an intuitive explanation of the optimal information struc-
ture under the case where Ry, Rz > €, i.e, the inferential privacy
property does not hold in the original secret-state structure P (S, Y).

Let ll(o) = egl(l) and l(l) = eflio). From Lemma 5.1, we know
OOl

that ll(o) (0) and l(l) (1), and denote Ras R = %
1-10 -1

When g5, > 1+£_g and g5, < ﬁ, we have R € (e7¢, €°), and both
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1
; ; i . T: ]
So 1@ 110 -1 1
51 (1ol -1 1
0
0 1
1
10) (0) (0)
So e 1 I\
N - T . T ;
S1 i i§P z“) i
0
: |
t 3 ty
1-10 [
Figure 10: When R;,R; > e and R = ﬁ > éf (ie.,
1-1,7 -1

ds, = iz +e£ »l () can achieve its upper bound l( ). To ensure

ll(o) to achieve its feasible maximal value, lz(o) and lz(l) should
be set as 0.

ll(o) and ] il) can achieve their upper bounds ll(o) and ] il). This is
(1) (1)
because in this case, R = I(O)Jris(o) € (e7¢, €f), and combining with

Eq. (6), we can get feasible positive values of lz(l) and 13(1). When

qs, < # orgs > #, ie.,whenR < e ¢ or R > €%, to ensure

both ll(o) and l(l) reach their feasible maximal values, we have
1_1(1) _l(l) l(1)+l(1)
oo = oo €75
110 194
set as 0. The 1llustrat10ns in Figs. 9 and 10 show the cases where
Re (e7%,ef) and R > €.
Furthermore, under different P (S, Y), we illustrate the e-inferentially-
private Blackwell optimal information structure in Fig. 11. With
different values of Ry, Rz, gs,. gs, » the output signal set 7~ varies.

—E& L€

ef}, and thus lz(l) or 13(1) should be

H

In general, relaxing perfect privacy to -IP can lead to significant
utility gains. We can show that under an inferential privacy con-
straint of ¢ > 0, there exists a Lipschitz-continuous, convex utility
function such that the maximal expected utility is arbitrarily larger
than it would have been under perfect privacy constraints, i.e., with
IP level ¢ = 0

Utility gains under inferential privacy

ProrosiTION H.1. Denote the maximal achievable expected utility
under perfect privacy constraint as Uy, and the maximal achievable
expected utility under inferential privacy constraint ¢ > 0 as Ug. For
any e > 0, A € R, there exists a joint distribution P (S,Y) and a

L-Lipschitz convex utility function u, where L < 3A (1 + ﬁ), such
that U, — Uy > A.
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Figure 11: For any P (S,Y), we can construct a unique ¢-
inferentially-private Blackwell optimal information struc-
ture P (S, Y, T), where the output signal set 7 has four possible
choices, depending on Ry, Ry, g5, gs, -
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ProoF. Consider a utility function

u(qe) = {

and a joint distribution P (S,Y) where P (S =s9) =P (S =s1) = %,

<

If“ -Lq:, qt<

—% +th, qt >

D= pol=

Gsy = Tegzrqs, = ﬁ. From Corollary 5.1, we know that the
optimal mechanism contains two output signals #1, ¢4, and satisfies
Py, =Py = %, 4y, = 1,9z, = 0. Then we can get that U, = %u(O) +
%u(l) = % Under the perfect privacy constraint, from Thm. 3.1, we
know that the optimal mechanism contains three outputs ¢/, té, té,

= i+_e£1’ 9y = 1,95 =0,q5, = % Then

1
where Pt =P = 1+e5’Pf2

we can get that Up = ﬁ (u(0) +u(1)) + ‘ii_eglu (% = 1+Leg. Let
L(ef-
L=3A(1+ﬁ),wehaveUg—U0=%ZA. [m]

2.0
ctf
©
O1l6
>
=W . . . L
= —— piecewise linear utility
> 151 quadratic utility

' negative binary
entropy utilit
1.0 py y
0 In3 2In3 3In3
&
(@) gs, =0.75,q5, =0.25

5.0

4.5
£40
& 3.5
>3.0
i
=25 ] - p
] —— piecewise linear utility
D 2.09 quadratic utility

1.5 negative binary

1.0 T entropy utility

In3 2In3 3In3

3

(b) g5y =0.9,9s; =0.1

Figure 12: Expected utility gain under the optimal mech-
anism for three utility functions and inferential privacy
constraints ¢. By relaxing ¢ to In 3 or 21n 3, the utility of the
optimal mechanism at ¢ = 0 can be improved by up to 5X,
depending on the data distribution.

We illustrate the utility gain of relaxing a perfect privacy con-
straint to an &-IP constraint for some examples in Fig. 12. We define
utility gain as the ratio of the maximal expected utility under in-
ferential privacy constraint ¢ to the utility under a perfect privacy
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constraint, i.e., ¢ = 0. We set P (S = s9) = P (S = s1) = 0.5 and vary
qsy» s, in Figs. 12(a) and 12(b). We consider three convex utility
functions u(q;) including piecewise linear u(q;) = |2¢; — 1|, qua-
dratic u(g;) = (2¢; — 1)?, and the (shifted) negative binary entropy
function u(q:) = qslogq: + (1 — q¢) log (1 — q¢) + 1.

Figure 12 shows that when g5 is imbalanced, relaxing inferential
privacy to a level of ¢ = In3 (left) or ¢ = 2In3 (right) can give
utility gains of 2X and 5X, respectively. In other words, even under
relatively strong privacy parameters, a small relaxation in privacy
can give a significant gain in utility.

I Mechanism Design for n > 2 Secrets

In this section, we focus on general secrets with n (n > 2) possible
values, i.e., S = {s1,...,5n}. The main result is to derive a set of
programs that lead to an optimal solution for any given utility
function in the downstream decision-making problem. The design
of the programs depends on our geometric characterization, which
ensures that each program is linear.

We first capture the inferentially-private Blackwell optimal in-
formation structure as follows. Without loss of generality, we
suppose $1,...,Sn € S are ordered in decreasing order of g5 =
P(Y=1|S=s).Letq; = P(Y = 1T = t), pr = P(T = t), and
ll.(]) =P (T = t;|S = si). From Thm. 4.1 and its proof, we know that
any ¢-inferentially-private Blackwell optimal information struc-
ture has an equivalent structure P (S, Y, T) where the number of
output signals is at most 3n + 1, and there is only one output, de-
noted as t; and t,41, that satisfies g;, = P(Y =1|T =¢;) = 1 and
qt,.; =P (Y = 1|T = ty41) = Orespectively. Using a similar analysis
to the proof of Lemma 5.1, we can get that

P(T =t1]S = sn) =P (Y = 1|S = sp) = gs,, (15)
P(T = tn+11S =51) =P (Y = 0|S = 51) = 1 — g5,.

From Lemma 4.1, we know thatP (Y =1|S=s,T =t) € {0,1}, Vs
€ S,t € 7. Denote set 7; = {tik}ke[K]’ where i € {2,...,n} and
the value of K is specified later, such that P (Y =1|S = sp42-i, T = tik)
=0,Vt;, € 7;,andP (Y =1|S=sp+1-i, T = tik) = 1.From Lemma 4.3,
we know that the region A is in 7 -upper-left, and therefore, we
can getthatVie {2,...,n},t;, €7,

P(Y=1S=s;T=t;)=1 iffje[n+1-i]. (16)
We set K = 3n to ensure that {tl, th+t, tik}ie{z ..n}, ke[K] €N cap-
ture any ¢-inferentially-private Blackwell optimal information struc-
ture with at most 3n + 1 output signals.

We then show that given a convex utility function u and a joint
distribution P(S,Y), we can find an e-inferentially-private infor-
mation structure P(Y,S,T) that maximizes the expected utility
by a set of linear programs with different instantiations of cl(,f ),
o)
ik
associated with a wide cell with red outline (¢
)
ik
know that under a Blackwell optimal structure, the values of ¢

represents whether a secret-output pair (s s tik) is
©)
i

= €f) in Fig. 4. From Lemma 4.3, we
)

i

Roughly, ¢
= 1) or a narrow

cell with blue outline (c
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satisfy Vi € {2,...,n},k € [3n]:

0)

Clk

<), Viem+1-il, i < i}, S
’ 17)

D <) viem\n+1-il, j 2 ) i, = ik,
k i,

where i}, X i if i’ <iork’ < kwheni’ =i, and i}, = i ifi’ > i
ork’ > k wheni’ =i. )

With the predefined values cl(li ) ¢ {1, e}, each program maxi-
mizes the expected utility E; [u (q:)] under the geometric character-
izations of the e-inferentially-private Blackwell optimal information
structure.® The program is shown below. Specifically, conditions
19,20,23, and 24 calculate pr, g7 by P (S), P (T|S) based on Eq. (16).
Conditions 21 and 22 introduce the inferential privacy constraints

for outputs #; and t,41 based on Eq. (15). Condition 25 calculates
ll.(J) =P (T =t;|S=sj), Vi € {2,...,n},k € [3n] based on the
k

predefined value clgj ) € {1, e¢}. Conditions 26 and 27 introduce
constraints on the value of P (T'|S) based on Eq. (16). The variables
in the program are rl(j) (Ge[n-1]), rr(li)l (je{2...,n}),and ll.(kn)
(i € {2,...,n},k € [3n]). Based on con(?}i_)tion 25, we can rewrite
condition 23 as q;, = Zycinsi-i P(S:sj)éc.)ik
* st[n]]P’(stj)'ci,Jc

program. Therefore, our program is linear.

, which is fixed in each

Finally, we provide a mechanism that maximizes the expected
utility under utility function u in Alg. 1. To design an optimal mech-
anism, we first enumerate all feasible cl(,f ) based on constraints in
Eq. (17). The number of enumerations is exponential with respect
to the number of secret n. The most straightforward way to obtain
all feasible Cz(,f ) is to first enumerate the entire value space and then
filter according to Eq. (17). Exploring more efficient enumeration
methods may be an interesting direction for future work and could
be of independent interest. For each enumeration, we solve the
optimization described above. We can get an optimal structure—in
the sense of maximizing expected utility under the utility function
u—represented by il(] ), ir(:i)l’ ) l(k] ), based on the optimization achiev-
ing the maximal expected utility. Finally, based on the fact that

B(S,Y,T) = B(Y|S,T) - B(T|S) - P(S) and P(T|S, Y) = Pléf’syf))
can design the optimal mechanism, represented by P (TS, Y), that

maximizes the expected utility under utility function u.

, we

3According to Thm. 2.1, the information structure that maximizes the expected utility
under function u must follow the geometric characterizations of the Blackwell optimal
structure.
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Pry (G + Pty u (@) + D Py - 4(dr,)

max
W) 0

UL i i€{2,...,n}
Vie{2,...,n}, je[n], ke([3n]
ke[3n]
(18)
subjectto gy =1, py = Z P(S=sj) ~ll(j), (19)
Jjeln]
G =0 Pran= D, B(S=5) 1JN @)
Jjeln]
Vjie[n-1]:
19 =70, " =g, 1P e [e €],
(21)
Vje{2...,n}:
j j 1 1 j -
lr(;{r)l = ’r(;{r)l ’ lr(ﬁ-)l’ lr(1+)1 =1-gs, rp(zj+)1 € [e™% €],
(22)
Vie {2,...,n},k € [3n]:
Sjepnn-nB(S=s)) - 1) (23)
q;, = :
Sem B(S=5)) 1
P = D, P(S=5;)- 17, (24)
Jjeln]
o0
) — & g (n) ; _
I =g P 20, Vieln-1l,  (@29)
o
vielnl: 1P+10+ > 10 =1, (26)
i€{2,...,n}
ke([3n]
1+ 3 1D =g 27)
ie{2,...,n+1—j}
ke([3n]

-

'S
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ALGORITHM 1: Information disclosure mechanism maximizing the
expected utility for non-binary secrets.

Input : utility function u, distribution P (S, Y), inferential privacy level
£
Enumerate CE,{) € {1,e},Vie {2,...,n},j € [n],k € [3n],
subject to the constraints in Eq. (17);
Ej ), solve the optimization above;
N6 ®)) [ORT6) 0]
D7 s b < 17 s Ly

for each instantiation ¢

that corresponds to the optimization

achieving the maximal objective value;

Output the mechanism with
18)
P(T=#t|S=s,Y=1)=2—, Vje[n],
sj
i
P(T=t;|S=s,Y=1) =~
ds;
Viel[n-1],ie{2,...,n+1—-j}, k € [3n],
i)
P(T:tn+1|S:sj,Y:0):1"—+1, Vje[n],
~ s,
i
ik
P(T=t,|S=s,,Y=0)= )
(T =ty 15 =537 =0) = 75

Vje[n]\{1},ie{n+2-j,...,n},k €[3n].
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