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Abstract. Understanding how novices acquire and hone visual search 
skills is crucial for developing and optimizing training methods across 
domains. Network analysis methods can be used to analyze graph rep-
resentations of visual expertise. This study investigates the relationship 
between eye-gaze movements and learning outcomes among undergradu-
ate dentistry students who were diagnosing dental radiographs over mul-
tiple semesters. We use network analysis techniques to model eye-gaze 
scanpaths as directed graphs and examine changes in network metrics 
over time. Using time series clustering on each metric, we identify dis-
tinct patterns of visual search strategies and explore their association 
with students’ diagnostic performance. Our findings suggest that the 
network metric of transition entropy is negatively correlated with per-
formance scores, while the number of nodes and edges as well as average
PageRank are positively correlated with performance scores. Changes
in network metrics for individual students over time suggest a develop-
mental shift from intermediate to expert-level processing. These insights
contribute to understanding expertise acquisition in visual tasks and can
inform the design of AI-assisted learning interventions.

Keywords: Eye-gaze Movement · Time Series Clustering · Network
Analysis

1 Introduction 

Eye tracking is an established method for studying the allocation of experts’ 
and novices’ visual attention in a wide range of domains, e.g., medicine [1], 
sports [39], transportation [45], and education [16]. At the same time, datasets 
capturing longitudinal eye tracking data that allow for studying how expertise 
develops over time are rare, which limits our knowledge about changes in eye-
gaze patterns and related learning outcomes. Eye t racking studies often rely on
aggregated metrics such as time spent in each Area of Interest (AOI) [30]  or  the  
number of fixations per AOI [26]. Some studies have also applied n etwork analysis
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methods to study characteristics of the entire scan path and their relationship 
with various outcomes, such as performance in flight training simulations [19]. 

The network metric of the number of nodes, also known as network size, 
quantifies the number of Areas of Interest (AOIs) fixated on. When applied to 
eye tracking scanpaths, network size is an indicator of the cumulative number 
of A OIs that a student has visited. For example, network size is higher for der-
matologists trained to do more thorough examinations for skin cancer [10]. 

The number of edges quantifies the number of saccades (moves) from any AOI 
to another AOI. When applied to eye tracking, the number of edges indicates 
the number of moves/transitions/switches that a student has made among A OIs.
More transitions between mathematics questions and the representations needed
to answer them are associated with higher test scores [44]. 

The network diameter quantifies the longest yet most graph-efficient distance 
jumped across AOIs in the scanpath. When applied to eye tracking, the diameter 
represents the total distance in AOI ‘jumps’ across the entire stimulus set. The 
netw ork diameter is significantly positively related to growth in test scores on
written answers over time [21]. 

Degree centrality quantifies the number of edges (saccade) per node (AOI) 
across all AOIs. When applied to eye tracking, degree centrality indicates how 
many pieces of visual information (represented as nodes), e.g., AOIs, a node is
directly linked to. Higher degree centrality in eye tracking has been associated
with better student performance [9]. 

Eigenvector centrality is a recursive function of degree centrality, thereby 
indicating the influence of an AOI by considering the degree centrality of a 
node’s neighbors (in our case, other AOIs, in network terms also called alters, 
that are directly connected to an ego AI). Higher eigencentrality in eye tracking
has been associated with better task performance on a web search task [28]. 

Stationary entropy in networks measures the amount of uncertainty in the 
spatial distribution of a sequence of fixations. This metric is correlated with
expertise in educational development: [7] discovered that stationary gaze entropy 
(SGE) decreases as students’ expertise increases from novice to intermediate and 
from intermediate to expert in problem solving in physics. Network transition 
entropy measures t he unpredictability of visual scanning patterns. Higher tran-
sition entropy suggests a more random pattern of scanning behaviors: [37] found 
that gaze transition entropy (GTE) is lower for older drivers when completing 
a subsidiary loading task while driving on a two-lane rural highway. The men-
tioned studies suggest that entropy-based measures may be relevant for assessing
expertise levels in visually demanding tasks.

In this paper, we apply network analysis metrics to an eye tracking data 
set collected from undergraduate dental students who visually inspected dental 
X-rays over a semester (with some participating for multiple semesters) and 
investigate the relationship between characteristics of the scanpath and students’
performance on a dental anomaly detection task.
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2 Background 

2.1 Analyzing Developmental Data 

Studying the development of learning—including its component skills, and other 
learning-related variables such as different aspects of motivation—is usually done 
by using growth curve modeling, which considers the shape of change in learning-
related variables (increasing, decreasing, linear, curvilinear, discontinuous) and
predictors of students’ initial scores and rates of change [40]. The scores whose 
change is modeled over time might represent reading comprehension [32], answers 
to interest questionnaires [34], or other typical summed scales. Researchers have 
used this approach to analyze changes in physical (e.g., a child’s height; [3]) or 
physiological (e.g., heart rate; [18]) variables. In the present work, we model the 
change in selected network analytic metrics that capture aspects o f a learner’s
eye tracking scanpaths over time.

We also hypothesize subsets of students with different patterns of change [32] 
via grouping or clustering methods. These learning patterns are often modeled 
using a specialized type of growth curve modeling called growth mixture model-
ing [43]. For example, one subset of students might show positive linear growth 
on a variable, and a different subset of students might show positive quadratic 
growth on the same variable, even though these two groups at the final testing 
point might have (statistically) similar or different scores. Different patterns of 
change can suggest educational implications, such as fostering a more adaptive 
trajectory of change or helping instructors understand that different trajectories 
can result in the same adaptive outcomes, depending on the findings. In other 
studies, differing growth curves might relate to different student clusters, which
indicates that eye-gaze patterns correlate with differences in learning outcomes.
In the present research, we test for different trajectories of change in network
analysis metrics, which capture aspects of a learner’s eye tracking scanpaths.

2.2 Applying Network Analysis to Developmental Data 

Despite its limited application in educational research, network analysis has 
been used to quantify behavioral patterns. [44] found no significant differences in 
network density or reciprocity between high- and low-performing math-solving 
groups but identified three triadic structures (003, 021D, and 111U) that sig-
nificantly differed between the groups. More recently, [29] demonstrated that 
network metrics—including density, centrality, small-worldness, transitivity, and 
global efficiency—differentiated scanpath networks of low- and high-ability read-
ers. On the other hand, current studies primarily employ netw ork analysis for
between-subject comparisons, using statistical methods such as t-tests [29, 44]  to  
establish correlations between network metrics and learning performance. In the 
present study, we synthesize existing research to evaluate the predictive power 
of network metrics in X-ray reading performance. This work advances education
performance analysis by incorporating time-series modeling to capture dynamic
learning processes.
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3 Research Questions 

Based on our review of network metrics applied to visual processing, with a 
focus on expertise development and considering the context of undergraduate 
dentistry students looking for anomalies in dental X-rays over multiple semesters,
we address the following questions:

1. What can we learn about expertise development from the shape of change in 
various network analysis metrics applied to the students’ scanpaths data over
time?

2. Are there subsets or clusters of students who show different patterns of change 
(i.e., different developmental routes)? If so, how do these clusters relate to
student performance?

3. What do the patterns of change in network analysis metrics suggest about 
the nov ice-intermediate-expert developmental continuum?

This research advances the generally available and validated set of methods 
and metrics for studying the impact of visual attention allocation on learning 
outcomes. It also improves our understanding of the potential capabilities of 
AI technologies for analyzing X-rays: Humans reading X-rays is an instance of
a qualitative analysis method applied to qualitative data; a task that requires
substantial and domain-specific training to lead to reliable results [2]. How good 
can AIs be at this task? If human learners advance in their ability to interpret 
X-rays with continued training and achieve more correct results over time, then 
using such data to train AI models for X-ray assessment has a chance to result 
in models that lead to potentially reliable results. If, however, training humans 
does not lead to sustained improvements in their ability to r ead X-rays correctly,
then we should not assume that AIs such as large vision models have or develop
this ability after being trained on any scale of prior data. Our paper also sheds
light on this question.

4 Methods 

4.1 Data 

The dataset we use was collected and made publicly available by a research 
team headed by Fabian Huettig and Constanze Keutel [4] with funding from the 
Leibniz-WissenschaftsCampus program Cognitive Interfaces. We downloaded the
data from PsychArchives from http://dx.doi.org/10.23668/psycharchives.5681 
and additional code from https://github.com/conradborchers/visualsearchopt. 
Additional clarification was provided by Conrad Borchers (personal communi-
cation on June 12 and August 26, 2024).

http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
http://dx.doi.org/10.23668/psycharchives.5681
https://github.com/conradborchers/visualsearchopt
https://github.com/conradborchers/visualsearchopt
https://github.com/conradborchers/visualsearchopt
https://github.com/conradborchers/visualsearchopt
https://github.com/conradborchers/visualsearchopt
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4.2 Participants and Educational Context 

Participants were 107 undergraduate dentistry students from the University of 
Tuebingen in Germany in 2017–2018. They took part in 90-minute-long ses-
sion(s) during one or more semesters as early as their 6th semester (middle of 
3rd year in the degree program) to as late as their 10th (graduating) semester in 
the program. A t their first time of participation, their average age was 25.25 and
they were 64% female. They were paid 15 Euros for each eye tracking session
that they participated in [4]. 

As part of their regular sequence of courses, all students in this program took 
a 6th-semester course in radiology that involved learning how to read dental X-
rays and also included practice reading 100 dental X-rays that did not include 
the stimuli used in the dataset w e analyzed. The general approach to teaching
reading of X-rays is top-left to top right (on the X-ray), then bottom right to
bottom left [8]. Students might be considered novices at the b eginning of the
research study [12]. They might be considered intermediates when they had at 
least five previous semesters of learning about dental anatomy and dental health, 
including photographic images of healthy gums and teeth, as well as images of
gum disease or dental caries, and were taking- or had taken- a radiology course.

4.3 Stimuli Presented to Participants and Performance Task 

In each session, students saw a series of ten dental X-rays, were asked to look 
for dental anomalies in each X-ray, such as evidence of gum disease or dental 
caries (e.g., cavities), and were eye tracked while examining the X-rays. Students 
were later asked to use their computer mouse to circle each anomaly in turn. 
In this paper, we analyze the anomaly detection scores provided in the dataset, 
and do not use the eye tracking from the marking session. Each anomaly was
pre-defined as an AOI in the dataset. Since each X-ray might feature a different
number of AOIs, we normalized the performance scores (e.g., finding 50% of the
possible anomalies in a particular X-ray) for each X-ray.

4.4 Eye Tracking Methods, Equipment, and Data Collection 

The SensoMotoric Instruments RED 250 eye tracker and SMR BeGaze software 
were are described in detail in the team’s publications [4, 12– 14, 33]. After cali-
bration on the mobile eye tracking equipment, each participant’s eye gazes were 
recorded for the duration of the X-ray task session. Data were excluded by the
original research team if the tracking rate was below 80%.

4.5 Procedures 

After participants provided informed consent, they were seated in front of a com-
puter, put on a pair of eye tracking glasses, and completed the manufacturer’s
calibration check. They received instructions on how to mark any anomalies they
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detected. They were then shown the X-rays one at a time, with a 90-second free-
exploration phase and a subsequent untimed marking anomalies phase. Subse-
quently, participants completed a dental conceptual knowledge test and a demo-
graphics form, which are not analyzed here.

4.6 Data Analysis 

How We Applied Network Analysis Metrics to Scanpaths. Network 
Analysis is used to represent relational data in a network format (e.g., a graph) 
and apply network metrics and algorithms to the data. A first step in a network 
analysis project is to construct a network based on the analytical goals. To this 
end, we constructed ego networks (one per person per trial) by con verting partic-
ipants’ eye-gaze movement data into network representations. In our data, nodes
represent participants’ focus on individual AOIs (Areas of Interest) as predefined
by [4] and edges represent movements or transitions (saccades) between AOIs. 
Given that prior research has often observed back-and-forth movements between 
nodes, we used multi-edge directed graphs weighted by cumulative frequency of 
eye-gaze movements to model these networks. The constructed networks r epre-
sent the movement of eye-gazing across objects and may provide insights into
cognitive processes during tasks. Figure 1 illustrates three network representa-
tions for one participant on subsequent study trials. Network representations 
capture transitions and the temp oral order of movements between AOIs.

Fig. 1. Network representations of one participant’s eye-gaze movements.

Using this definition and representation of eye-gaze networks, we applied 
mixed linear models to test for correlations between network metrics and mea-
sured variables. Figure 1 shows how network representations may correlate with 
students’ performance. The anomaly detection score (normalized BFD score, 
where BFD refers to “Befund” in German) refers to an adjusted percentage score, 
scaled from 0 to 1 (lowest to highest performance), which reflects students’ per-
formance on the same OPT task that they repeated three times within the same
semester. This allows us to form hypotheses, such as whether the number of
edges in a network correlates with normalized BFD scores or not.
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Based on a literature review [38] of network analysis metrics applied to eye-
gaze data such as shifts among AOIs in eye tracking data, shifts between geospa-
tial location by pedestrians, or switches among different tools in virtual environ-
ments, we selected the following four categories o f network analysis metrics: basic
(node and edge count) measures, centrality measures, network-level structural
measures, and entropy measures.

Basic measures refer to the number of nodes and edges per network. The 
number of nodes represents the AOIs a student has explored; the number of 
edges represents each student’s total movements across AOIs. Existing research
has shown that a decrease in the number of nodes may suggest higher learning
efficiency [41] and a positive correlation between the number of edges with the 
performance of 8th-grade students during problem solving [44]. 

Node centralities refer to a collection of metrics that capture different 
dimensions of the structural importance of individual no des. Following existing
research, we selected degree centrality [9], betweenness centrality [22], closeness 
centrality [22], eigenvector centrality [35], and pagerank centrality [24]. 

Structural measures tap characteristics of a network overall, such as the over-
all interconnectedness of nodes. For example, density, a measure of actual edges 
in a graph as a proportion o f all possible edges, was reported to be positively
related to learning outcomes [42]. Reciprocity, a measure of the ratio of back-
and-forth movement, can be correlated with better outcomes when it r epresents
integrating information between different sources or locations [27]. Node con-
nectivity is equal to the minimum number of nodes that must be removed to 
disconnect the parts of a network or render it a disconnected graph [5, 15]. 

Entropy measures [25] are less frequently used than the other mentioned met-
rics. Prior work has shown that entropy measures are predictiv e of pilot training
performance [11] and correlated with learning under time pressure in an ESL
learning context [23]. The present research expands the use of entropy metrics 
to a longitudinal context. Stationary entropy quantifies aspects of the typical 
heat map representations of eye tracking by capturing the distribution of eye 
gazing across different AOIs. Transition entropy measures unpredictability or 
randomness in the sequence of transitions. Eye t racking research in medical edu-
cation with intermediate learners and experts has shown that transition entropy
decreases with expertise, as does stationary entropy [31]. 

Analysis of Time Series Data and Data Visualization. When analyzing 
longitudinal data, methodologists emphasize the importance of inspecting p at-
terns of change visually [40] or quantitatively. In our data, visual inspection of 
time series plots of all network analysis metrics suggested 1) a general decreasing 
trend for each metric within each session (examining ten X-rays also known as 
OPTs), suggesting that eye-gaze patterns were becoming simpler, and 2) increas-
ing trendings of metrics across sessions, indicating that eye-gaze patterns were 
reverting to more complex patterns, with a great deal of variability in the data.
Thus, we decided to use time series analysis to deal with large within-person vari-
ability in network metrics at closely spaced measurement times [20]. To imple-
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ment that, we used a k-means-based time series clustering method to analyze 
longitudinal eye-gaze data. The k-means-based approach encompasses a family 
of machine learning algorithms designed to group data points into distinct clus-
ters based on similarity. Each cluster is represented by a “centroid,” which is the 
average position of all points in the group. The k-means-based approach has been
widely used for both classification and clustering tasks, demonstrating reliable
performance in analyzing behavioral data such as physical exercise and study
time [6]. Since our objective is to test for latent classes within time series data, 
we used unsupervised k-means clustering algorithms to identify groups within 
the dataset. Specifically, we leverage the tslearn library in Python for time series 
clustering. Given that our dataset includes time series of varying lengths, we 
adopt the dynamic time warping (DTW) distance metric to compute averages
across participants. DTW has been shown to provide more accurate similarity
measurements for time series data than traditional Euclidean distance metrics.

To examine the relationships between network analysis metrics and partici-
pant performance, we use a generalized additive model (GAM) to fit a smooth 
curve to these non-linear data. This approach helps uncover temporal pat-
terns in how network metrics relate to participant performance (i.e., detect-
ing/annotating dental anomalies from the X-rays). GAM extends linear models
to accommodate different data types, and facilitates the differentiation of fixed
from random effects within a single model, providing flexibility and precision in
analyzing complex relationships [17]. 

5 Results 

We first report the time series clustering of students’ network representations 
and the performance on identifying anomalies in the X-rays for students in each 
cluster. We then present our findings from statistical analyses of the relationship 
between network metrics and students’ performance and explore indicators for
varying students’ performance.

5.1 Time Series Clustering of Students’ Eye-Gaze Network Metrics 
over Time 

Figure 2 presents the results of k-means-based clustering of participants’ network 
metric scores for eleven network metrics. Each subplot illustrates the temporal 
evolution of a specific network metrics for participants within each identified 
cluster. The x-axis r epresents observation moments over time, and the y-axis
denotes the normalized values of the respective metric.

Thin black lines in each subplot depict the individual trajectories of partic-
ipants within the cluster, showing variability in their behaviors over time. The 
red line is the cluster-level mean trend for the metric, providing a visualization
of the general pattern for participants in each cluster on each metric.

The results show distinct patterns in network metrics across clusters. For 
example, metrics such as Node Connectivity display trends across the three
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Fig. 2. K-means-based clustering of participants based on elev en network metrics.

clusters: Cluster 1 shows a pattern of decrease over time, Cluster 2 shows an 
increasing trend, and Cluster 3 shows a relative stable trend in Fig. 2.  Clus-
ter numbers are arbitrary and do not imply any ordinal relationship. Similarly, 
variations in the growth of metrics, e.g., for Reciprocity and Density, suggest 
potential differences in participan ts’ diagnostic strategies or task engagement,
which we will show to be related to performance in Sect. 5.3. Metrics such as 
the number of nodes and the number of edges demonstrate more similar trends 
between clusters, but still exhibit observable differences at certain time intervals,
suggesting variations in learning processes.

5.2 BFD Performance Comparison Across Time (ANOVA) 

Following the clustering of students based on network metrics calculated over 
networks representing the students’ scan paths when visually inspecting X-rays,
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we compared their post-experiment performance across eleven metrics using an
ANOVA (see Table 1 for results). Significant differences were observed for node 
connectivity (F = 4.205, p = 0.015) and reciprocity (F = 4.462, p = 0.035), 
indicating that students with better performance may exhibit more sophisticated 
visual exploration strategies and deeper engagement with the task. Specifically, 
Cluster 1 for node connectivity showed a higher BFD score, and Cluster 2 showed 
a higher BFD for reciprocity, suggesting that these metrics may play a role
in differentiating student performance across groups. However, there were no
statistically significant differences between BFD scores among the clusters for
the majority of the metrics we considered (see Table 1). 

Results suggest that while most network metrics do not vary significantly 
between clusters, i.e., both patterns of change are equally adaptive in terms of 
leading to higher BFD scores, structural features such as node connectivity and 
reciprocity may be important indicators of group differences in post-experiment 
performance. Fu rther exploration of the correlations of these metrics with learn-
ing outcomes could provide deeper insights into their relevance in student clus-
tering and performance outcomes.

5.3 Prediction Models of X-ray Reading Performance Based 
on Network Metrics 

We used regression (mixed linear model) to predict students’ BFD scores f rom
network metrics (see Table 2 for results). The analysis included 3,425 obser-
vations nested within 165 participants from the original dataset, with a mean 
group size of 20.8 (range: 10–50). The model successfully converged using the 
Restricted Maxim um Likelihood (REML) estimation method (Log-Likelihood =
−416.1442, Scale = 0.0617) using the statsmodels package in Python.

Table 1. Comparison of mean BFD scores across groups. N-Mean-1 refers to the mean 
of the normalized value for the corresponding metric in Cluster 1, and BFD-1 refers to
the mean BFD score for Cluster 1. The other columns follow the same rule.

Metric N-Mean-1 N-Mean-2 N-Mean-3 BFD-1 BFD-2 BFD-3 f-stat p-stat 
number of nodes −0.0006 −0.0302 na 0.397 0.408 na 0.582 0.446 
number of edges −0.0097 0.0069 na 0.397 0.409 na 0.740 0.390 
avg degree centrality 0.0007 0.0040 na 0.399 0.411 na 0.614 0.433 
avg closeness centrality 0.0060 0.0014 na 0.403 0.403 na 0.002 0.960 
avg pagerank −0.0003 0.0125 na 0.398 0.407 na 0.385 0.535 
avg betweenness centrality 0.0002 0.0170 na 0.407 0.399 na 0.287 0.592 
density 0.0005 0.0040 na 0.381 0.412 na 3.723 0.054 
node connectivity −0.0040 −0.0092 0.031 0.398 0.381 0.429 4.205 0.015* 
reciprocity 0.0012 0.0078 na 0.419 0.389 na 4.462 0.035* 
stationary entropy −0.0145 −0.0022 na 0.391 0.414 na 2.421 0.120 
transition entropy −0.0027 −0.0003 na 0.397 0.409 na 0.674 0.412
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From the fixed effects portion of the model, we can see that the OPT Task 
Ordered Index (β = −0.030, SE = 0.014, z = −2.209, p = 0.027) and transition 
entropy (β = −0.065, SE = 0.028, z = −2.291, p = 0.022) are significant negative 
predictors of the normalized BFD score, suggesting that students with better 
performance tend to exhibit less random scanning paths when completing tasks. 
Conversely, the number of nodes (β = 0.015, SE = 0.006, z = 2.761, p = 0.006), 
number of edges (β = 0.002, SE = 0.001, z = 3.398, p = 0.001), and average 
PageRank (β = 0.701, SE = 0 .192, z = 3.651, p < 0.001) were significant positive
predictors, suggesting that students with better performance tend to explore
more nodes and connections, and place greater visual emphasis on conceptually
important AOIs. Other potential predictors, including average degree centrality,
density, and reciprocity, were not significant (all p > 0.05).

6 Discussion 

6.1 Is there a Relationship Between Network Metrics and Earning 
Performance? 

We observe mostly linear changes in students’ BFD scores and eye-gaze patterns 
over time. Among the eleven metrics we examined, transition entropy, number of 
nodes and edges, and average PageRank were significantly correlated with stu-
dents’ BFD scores. Changes in network metrics, including the number of nodes

Table 2. Predicting students’ BFD score using n etwork metrics

Coef. Std.Err. z P  >  |  z| [0.025 0.975] 
Intercept 0.203 0.129 1.57 0.116 −0.05 0.457 
Time −0.03 0.014 −2.209 0.027 −0.057−0.003 
Stationary Entropy 0.042 0.022 1.93 0.054 −0.001 0.086 
Transition Entropy −0.065 0.028 −2.291 0.022* −0.12 −0.009 
Number of Nodes 0.015 0.006 2.761 0.006* 0.004 0.026 
Number of Edges 0.002 0.001 3.398 0.001* 0.001 0.003 
Average Degree Centrality −0.256 0.164 −1.563 0.118 −0.577 0.065 
Average Betweenness Centrality 0.115 0.069 1.669 0.095 −0.02 0.251 
Average Closeness Centrality 0.082 0.074 1.109 0.267 −0.063 0.226 
Average PageRank 0.701 0.192 3.651 0.001* 0.324 1.077 
Density 0.509 0.324 1.57 0.117 −0.127 1.145 
Reciprocity 0.069 0.045 1.556 0.12 −0.018 0.157 
Node Connectivity −0.004 0.003 −1.428 0.153 −0.009 0.001 
Participant Var 1.293 0.94 
Participant x Semester Cov −0.181 0.131 
Semester Var 0.026 0.018
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and edges, and average PageRank, suggest that participants are transitioning 
from an intermediate to an expert skill level in reading X-rays. The values of net-
work metrics did not suggest that participants were following the recommended
top-left-to-top-right, bottom-right-to-bottom-left inspection patterns [8]. 

Most of the participants in the dataset we reused could be clustered into 
one of two or three categories for each of the eleven network metrics, indicating 
different approaches to the task. However, performance mostly did not differ 
between clusters. Only node connectivity and reciprocity show significant differ-
ences in BFD scores across clusters. As reciprocity measures how likely nodes 
are interconnected, high reciprocity may be a signal of confusion in individual 
eye-gaze networks, which aligns with our observation that high reciprocity is
associated with low student BFD scores. Higher node connectivity may indicate
a higher modularity in the network, suggesting learners tend to organize gaze
patterns into well-defined sub-areas of the display.

Transition entropy is low for the very efficient eye-gaze patterns of experts, 
and here we saw how entropy decreases with instruction. That is, the participants 
showed more random, exploratory scanpaths in earlier sessions and more directed
scanpaths in later sessions, indicative of a shift toward having acquired visual
expertise.

6.2 Enabling Personalized Feedback and Learning 

As our study finds that certain gaze-based, network analysis metrics are cor-
related with X-ray reading performance, these metrics could also be adapted 
to actively intervene in students’ learning processes. Without explicit external 
assessments, these metrics could provide self-assessment feedback to students 
during the learning process. Additionally, at different stages of learning, these 
network-based metrics could be used to actively track students’ learning progress
and enable personalized interventions when necessary. Although some studies
have shown that gaze data can be used for AI-generated adaptive interventions
to improve student learning outcomes [36], the integration of such interventions 
into real-time systems remains in its early stages, primarily due to the lack of 
high-quality data collected through non-intrusive and distraction-free methods. 
Our clustering and tracking of metrics over time also indicate that network met-
rics, such as transition entropy, number of nodes, number of edges, and a verage
PageRank, significantly correlate with students’ BFD scores. For domain-specific
visual tasks, similar approaches could be applied to behavioral data to develop
optimized or customized models.

From an instructor’s perspective, such network metrics can also provide com-
plementary evidence that may be invisible through traditional assessments, such 
as tests, to track students’ learning progress in visually oriented tasks. Even out-
side of the context of a specific assignment, changes in students’ visual behaviors
can serve as a valuable source for evaluating learning progress.

Another consideration for personalized feedback is model transparency. Com-
pared to deep learning-based approaches, our method has lower computational 
complexity and greater transparency. Network metrics can be traced back to
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visual network representations, providing an explainable link between NA met-
rics, BFD s cores, and students’ behaviors.

7 Limitations and Future Work 

As far as we know, this study is the first work to apply network analytic metrics 
to relationally represented eye-gaze data in a longitudinal setting. There are 
some improvements to be made in future work. First, we were not able to use 
the whole dataset due to model restrictions on analyzing varying-length time-
series data. Future work should explore a neural temporal encoder approach 
to analyze the whole dataset. Second, lacking information about the difficulty 
level of the X-ray tasks may introduce bias into the analyses. Subsequent work 
should apply IRT scaling to create weights for different OPT tasks. Finally, the 
expertise level of participants is unknown to us, which makes it difficult to make
strong claims in our interpretation of what the changes in network metrics mean.
The data we used were anonymized in the original dataset and hence cannot be
re-identified. More developmental eye-tracking studies are needed to understand
the progression from novice to intermediate to expert.

8 Conclusions 

We demonstrated that network metrics calculated on eye-gazing data, such as 
transition entropy, number of nodes or edges, and average PageRank, are cor-
related with X-ray reading performance and track the development of visual 
expertise in dentistry students. Observed changes in these metrics suggest a shift 
from intermediate to expert-like search patterns, while clustering reveals distinct 
developmental trajectories. Our findings highlight the potential of using gaze-
based metrics for real-time, self-assessment feedback and personalized learning 
interventions in visual learning tasks. 
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