2024 IEEE 63rd Conference on Decision and Control (CDC) | 979-8-3503-1633-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/CDC56724.2024.10886068

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Coordinating Planning and Tracking in Layered Control Policies via
Actor-Critic Learning

Fengjun Yang and Nikolai Matni

Abstract— We propose a reinforcement learning (RL)-based
algorithm to jointly train (1) a trajectory planner and (2) a
tracking controller in a layered control architecture. Our algo-
rithm arises naturally from a rewrite of the underlying optimal
control problem that lends itself to an actor-critic learning
approach. By explicitly learning a dual network to coordinate
the interaction between the planning and tracking layers,
we demonstrate the ability to achieve an effective consensus
between the two components, leading to an interpretable policy.
We theoretically prove that our algorithm converges to the
optimal dual network in the Linear Quadratic Regulator (LQR)
setting and empirically validate its applicability to nonlinear
systems through simulation experiments on a unicycle model.

I. INTRODUCTION

Layered control architectures [1], [2] are ubiquitous in
complex cyber-physical systems, such as power networks,
communication networks, and autonomous robots. For ex-
ample, a typical autonomous robot has an autonomy stack
consisting of decision-making, trajectory optimization, and
low-level control. However, despite the widespread presence
of such layered control architectures, there has been a lack
of a principled framework for their design, especially in the
data-driven regime.

In this work, we propose an algorithm for jointly learning
a trajectory planner and a tracking controller. We start from
an optimal control problem and show that a suitable relax-
ation of the problem naturally decomposes into reference
generation and trajectory tracking layers. We then propose
an algorithm to train a layered policy parameterized in
a way that parallels this decomposition using actor-critic
methods. Different from previous methods, we show how
a dual network can be trained to coordinate the trajectory
optimizer and the tracking controller. Our theoretical analysis
and numerical experiments demonstrate that the proposed
algorithm can achieve good performance in various settings
while enjoying inherent interpretability and modularity.

A. Related Work

1) Layered control architectures: The idea of layering has
been studied extensively in the multi-rate control literature
[3], [4], through the lens of optimization decomposition [2],
[5], and for specific application domains [6]-[8]. Recently,
Matni et al. [1] proposed a quantitative framework for the
design and analysis of layered control architectures, which
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has since been instantiated to various control and robotics
applications [9]-[11]. Within this framework, our work is
most related to [10], [11], which seek to design trajectory
planners based on past data of a tracking controller. However,
we consider the case where the low-level tracking controller
is not given and has to be learned with the trajectory planner.
We also provide a more principled approach to coordinating
planning and tracking that leverages a dual network.

2) Hierarchical reinforcement learning: Recently, rein-
forcement learning-based methods have demonstrated im-
pressive performance on highly complex dynamical systems
[12], [13]. Within the RL literature, our approach is most
closely related to the idea of goal-conditioned reinforcement
learning [14]-[19]. In this framework, an upper-level agent
periodically specifies a goal for the lower-level agent to
execute. However, the “intrinsic” reward used to train the
lower-level agent is usually heuristically chosen. Nachum et
al. [19] derived a principled objective for the lower-level
agent based on a suboptimality bound introduced by the
hierarchical structure, but they focus on the case where the
goal is specified as a learned low-dimensional representation.
We focus on the case where the dynamics are deterministic
and derive a simple quadratic objective for the lower-level
agent (tracking layer). We also structure our upper-level
agent (planning layer) to generate full trajectories instead
of single waypoints.

3) Actor-critic methods: The actor-critic method [20]-
[22] describes a class of reinforcement learning algorithms
that simultaneously learn a policy and its associated value
function. These algorithms have achieved great success with
continuous control tasks and have found various applications
in the controls and robotics community [23], [24]. In this
paper, we use actor-critic methods to learn a tracking con-
troller and its value function, where the latter is used to help
the trajectory planner determine how difficult a generated
trajectory is for the tracking controller to follow.

B. Statement of Contributions

Our contribution is three-fold. First, we propose a novel
way of parameterizing layered policies based on a principled
derivation. In this parameterization, we introduce a dual
network to coordinate the trajectory planner and the tracking
controller. We show how this dual network can be trained
jointly with other components in the layered policy in an
RL fashion. Secondly, we show theoretically and empirically
that our algorithm for updating the dual network can recover
the optimal dual network parameters for unconstrained linear
quadratic regulator (LQR) problems. Finally, we evaluate
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our method empirically on constrained LQR problems and
the unicycle environment to demonstrate its potential to be
applied to more complex systems.

II. PROBLEM FORMULATION

We consider a discrete-time finite-horizon optimal control
problem with state x; € R4 and control input u; € Rw:

minimize E¢op, [C(zo.7) + D(uo.r-1)]
Zo:T,U0:T—1
subject to  xyy1 = f(xy,uy), VE=0,1,.,7—-1, (1
zo.r € X, ugr—1 €U, x0=E&.
Here, T € Z* is a fixed time horizon, zo.7 = [z] ,..., 2]

and up.r—1 = [ug ,...,u]_] ' respectively denote the state
and control trajectory. C(xg.r) and D(ug.r—1) are the state
and control costs, respectively. We assume that the input cost
and the state and input constraints decouple across time, and
denote t?em respectively byT D(ug.r—1) = Z:01 Di(uy),
X = [[;_ & and U = [],_,U. The initial condition &
is sampled i.i.d. from a possibly unknown distribution D.

As per the reinforcement learning convention, we assume
that we only have access to the dynamics via a simulator, i.e.,
that we do not know f(xy,u;) explicitly, but can simulate
the dynamics for any z; and u;. However, we do assume
that we have access to the cost functions C, D, as they are
usually designed by the users, instead of being an inherent
hidden part of the system. We also assume that we know the
constraints X' and U/ for the same reason.

Our goal is to learn a layered policy 7 = (mP'an, gtrack)
that consists of 1) a trajectory planner

,/Tplan : Rdw N Rle'

that takes in an initial condition ¢ € R?% and outputs a
reference trajectory ro.p € X, and 2) a tracking controller

ﬂ_track . Rdm X RTd:c N Rdu

that takes in the current state and a reference trajectory to
output a control action to best track the given trajectory.
We now decompose problem (1) such that it may inform
a suitable parameterization for the planning and tracking
policies, P12 and strack,

III. LAYERED APPROACH TO OPTIMAL CONTROL

We first consider a variation of problem (1) with a fixed
initial condition &, and rewrite it into a form that has a
natural layered control architecture interpretation. For ease
of notation, we use unsubscripted letters x,u,r to denote
the respective trajectories stacked as a column vector

X = ToT, U:=U0T-1, T:=T0:T-

We begin the rewrite of problem (1) by introducing a
redundant variable » = x to get an equivalent problem
minimize C(r) + D(u)
T,T,U
vt=0,1,..,T—-1, @

1'0:57

subject to xyy1 = f(xg, uy),

reX, uel, r=ux,

where we use the fact that » = = to move the state cost and
constraint from z onto r. Defining the indicator functions

To = 57
i1 = f(wg,ue),u €U,
00, otherwise

0, reX
]Istate(r) - {

Lgyn (z,u) =

. b
00, otherwise

we write the partial augmented Lagrangian of problem (2)
in terms of the (scaled) dual variable v

Ly(r,z,u,v) = C(r)+D(u) + Layn(z, u) + Ls(r)+

p p &)
;V+V*ﬂ@*§Wﬁ-

Applying dual ascent to this augmented Lagrangian, we
obtain the following method-of-multiplier updates

(2t ut) = argmin C(r) + D(u) + Slr +v — 23
S.t. Ti41 = f(a:t, Ut), Vt,
reX,uel, rg=¢
“)

v =v+ (ot —ath), )

which will converge to locally optimal primal and dual vari-
ables r*, z*,u*, v* given mild assumptions on the smooth-
ness and convexity of C, D and the constraints in the neigh-
borhood of the optimal point (See [25, §2]).

For a layered interpretation, we note that the primal update
(4) can be written as a nested optimization problem

7T = minimize C(r) + p*(r + v; &)
" (6)
st. redX
where p*(r+v; ) is the locally optimal value of the (z, u)-
minimization step

p(r+vi€) =min D)+ Llr +v -3
st xp1 = fag,ug), uw €U, VE, )
ZTo :E.

We immediately recognize that optimal control problem (7)
is finding the control action u to minimize a quadratic
tracking cost for the reference trajectory

ri=r4u.

Thus, this nested rewrite can be seen as breaking the primal
minimization problem (4) into a trajectory optimization prob-
lem (6) that seeks to find the best reference r and a tracking
problem (7) that seeks to best track the perturbed trajectory
7. A subtlety here is that the planned trajectory, r, and the
trajectory sent to the tracking controller, 7, are different. To
understand this discrepancy, let us first consider a similar,
but perhaps more intuitive, reference optimization problem:

minimize C(r) + p*(r;€)
T ®)
s.t. reX.
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This heuristics-based approach, employed in previous works
such as [10], [11], seeks to find a reference that balances min-
imizing the nominal cost C(r) and not incurring high tracking
cost p*(r;€). In these works, the solution r is then sent
to the tracking controller unperturbed. A problem with this
approach is that unless the tracking controller can execute the
given reference perfectly, the executed trajectory x will differ
from the planned reference r. One can mitigate this deviation
by multiplying the tracking cost with a large weight, but this
can quickly become numerically ill-conditioned, or bias the
planned trajectory towards overly conservative and easy-to-
track behaviors.

Returning to the method-of-multiplier updates (4) and (5),
we note that, under suitable technical conditions, solving the
planning layer problem (6) using the locally optimal dual
variable v* leads to the feasible solution satisfying r* = x*.
In particular, the perturbed reference trajectory 7* = r* +v*
is sent to the tracking controller defined by problem (7), and
this results in the executed state trajectory x* matching the
reference x* = r*. This discussion highlights the role of the
locally optimal dual variable as coordinating the planning
and tracking layers, and motivates our approach of explicitly
modeling this dual variable in our learning framework.

Following this intuition, in the next section, we show how
to parameterize 7P'*" and 7%2 to approximately solve (6)
and (7), respectively. In practice, finding v* with the iterative
update in (5) can be prohibitively expensive. To circumvent
this issue, we recognize that any locally optimal dual variable
v* can be written as a function of the initial condition &. We
thus seek to learn an approximate map to predict this locally
optimal dual variable »* from the initial condition &.!

We close this section by noting that the above derivation
assumes that the reference trajectory is of the same dimen-
sion as the state, i.e., that r; = x;. However, if the state cost
C and constraints X only require a subset of the states, i.e., if
they are defined in terms of z; = g(z;) € R%, with d, < d,,
then one can modify the discussion above by replacing the
redundant constraint = r with z = r, so that the reference
only needs to be specified on the lower dimensional output z.
We refer the readers to Appendix D of the extended version
[27] for the details.

IV. ACTOR-CRITIC LEARNING IN THE LAYERED
CONTROL ARCHITECTURE

A. Parameterization of the Layered Policy

We parameterize our layered policy 7 = (7Plan, track)

so that its structure parallels the dual ascent updates (6) and
(7). The tracking controller Wgad‘ : Ride x RTde 5 Ru,
specified by learnable parameters ¢, seeks to approximate
a feedback controller that solves the tracking problem (7).

'We have been somewhat cavalier in our assumption that such a locally
optimal dual variable v* exists. We note that notions of local duality theory,
see for example [26, Ch 14.2], guarantee the existence of such a locally
optimal dual variable under mild assumptions of local convexity.

2The finite-horizon nature of (7) calls for a time-varying controller. Thus,
the correct 72k and associated value function p™ need to be conditioned
on the time step ¢. In our experiments, we show that approximating this with
a time-invariant controller works well for the time horizons we consider.

The trajectory generator w(l;’la“ seeks to approximately solve

the planning problem (6). It has learnable parameters 6 and
1 and is defined as the solution to the optimization problem

Wg}zn(g) = minignize C(r)+ pzmk (r+ve(£);€) ©)
s.t. reX.

Thus 7P!a" generates a reference trajectory from initial
condition ¢ by solving problem (9). The objective of this op-
timization problem contains two learned components, vg and
pgjtrm{, specified by parameters 6 and ), respectively. First,
vg : R% — RT9 s a dual network that seeks to predict
the locally optimal dual variable »* from initial condition &.
Then, the tracking value function pgmk :RTd= x R 5 R
takes in an initial state £ and a reference trajectory r and
learns to predict the quadratic tracking cost (7) that the policy
w2k will incur on this reference trajectory. Summarizing,
our layered policy consists of three learned components: the

dual network vy, the low-layer tracking policy wfbr“k, and its

. . rack .
associated value function pgj . In what follows, we explain

how we learn the tracking value function pgtmk and policy
wfbr“k jointly via the actor-critic method, and how to update
the dual network vy in a way similar to dual ascent.

B. Learning the Tracking Controller via Actor-Critic Method

We use the actor-critic method to jointly learn the tracking
value function patmk and policy 7T<t;a6k. We are learning a
deterministic policy and its value function, a setting that has
been extensively explored and for which many off-the-shelf
algorithms exist [20]-[22]. In what follows, we specify the
RL problem for learning the tracking controller and treat the
actor-critic algorithm as a black-box solver for finding our
desired parameters ¢ and ).

We define an augmented system with the state z;"? =
(24, rt)T e RHE+Dds which concatenates z; with a H-step
reference trajectory r, = (r] r] T g_1) !, where
H € Z™ specifies the tracking controller’s horizon of look-
ahead. The augmented state transitions are then given by

2 — [f(zt’“t)} t=1,..T,

Zrt (10)

where Z is a block-upshift operator that shifts the refer-
ence trajectory forward by one timestep. The cost of the
augmented system c®“9 is chosen to match the tracking
optimization problem (7), i.e., we set

9 (@, ur) = Elloen = resally + Dolue).

(1)

The initial condition z5*? is found by first sampling £ ~

D¢, and then setting r to the first I steps of the reference

generated by P27 (¢). We then run the actor-critic algorithm
: o . rack

on this augmented system to jointly learn pgt and ﬂ'gaCk.

C. Learning the Dual Network

We design our dual network update as an iterative pro-
cedure that mirrors the dual ascent update step (5), which
moves the dual variable in the direction of the mismatch
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between reference r™ and execution zT. At each iteration,
we sample a batch of initial conditions {¢;}2 ;, and for each
&;, we solve the planning problem (9) with current parameters
¢ and 0 to obtain reference trajectories 7; = 71913(1,":”)[17 » (£). We
then send the perturbed trajectories 7; = r; + vg(&;) to the

tracking controller to obtain the executed trajectories
k ~
:f(xl t7ﬂ-2:'m (xi,tari,t))7 t:O77T

Similar to the dual ascent step, we then perform a gradient
ascent step in 6 to move vyx) (€;) in the direction of r; —x;:

B
0t —60+n (Ve Z % (ry — ;)" va(ﬁt))
(12)

i t+1

=1

B
=9+WZ§(
=1

where J, ¢ denotes the Jacobian of v w.r.t. . Note that even
though r; and z; implicitly depend on 6, similar to the dual
ascent step (5), we do not differentiate through these two
terms when computing this gradient. In the next section, we
show that for the case of linear quadratic regulators, this
update for the dual network parameter 6 converges to the
vicinity of the optimal parameter 6* if the tracking problem
is solved to sufficient accuracy.

ri— i) oo 0),

D. Summary of the Algorithm

We summarize our algorithm in Algorithm 1. The outer
loop of the algorithm (Line 1-9) corresponds to the dual
update procedure described in Section IV-C. Within each iter-
ation of the outer loop, we also run the actor-critic algorithm
to update the tracking policy w;r(iﬁk and its value function
Py, (Line 5-8). Note that we do not wait for the tracking
controller to converge before starting the dual update. In
Section VI, we empirically validate that dual learning can
start to make progress even when the tracking controller
is still suboptimal. After the components are learned for
the specified iterations, we directly apply the learned policy
gPlan qtrack for any new initial condition &.

Algorithm 1: Layered Actor-Critic

Result: Policy parameters ¢, v, 0

1fork=1,...,K do
2 Sample a batch of initial conditions {£ (k)}Z ™
3 Predict the optimal dual variables

7 = s (6
B

4 Solve (9) to find reference trajectories {r (k) i1

5 | Construct augmented state a7 7 = &, T PIT,

6 for t =0,. —1do

7 Roll augmented dynamics forward with Wg(i?k
to get {xz 41 f;l;

8 Update 71'traLCk and pj; with observed

transition using actor-critic algorithm;

9 | Update the dual network parameter per (12);

V. ANALYSIS FOR LINEAR QUADRATIC REGULATOR

In this section, we consider the unconstrained linear
quadratic regulator (LQR) problem and show that our method
learns to predict the optimal dual variable if we solve the
tracking problem well enough. We focus on the dual update
because the tracking problem (7) reduces to standard LQR,
to which existing results [28], [29] are readily applicable. In
what follows, we define the problem we analyze, and first
show that dual network updates of the form (12) converge
to the optimal dual map if one perfectly solves the planning
(6) and tracking problem (7). We then present a robustness
result which shows that the algorithm will converge to the
vicinity of the optimal dual variable if we solve the tracking
problem with a small error.

We consider the instantiation of (2) with the dynamics

Tip1 = f(or,us) = Az + Buy (13)
and cost functions .
= ZT:QH =7 Qr
t=0
1 (14)
= Z u] Ru; =: u' Ru,
where Q = O,R > 0, Q = It ®Q and R = Ir_1 ®

R. States and control inputs are unconstrained, i.e., X =
R? 1 = R%. The initial condition ¢ is sampled i.i.d. from
the standard normal distribution A/(0, I).

In this case, strong duality holds, and the optimal dual
variable’ »* is a linear function of the initial condition &.
(See Lemma 2 in Appendix B of the extended version [27].)
We thus parameterize the dual network as a linear map

vg(§) = OF.
A. With Optimal Tracking

We first consider the following update rule, wherein we
assume that the planning (6) and tracking problems (7)
are solved optimally. At each iteration, we first sample a

(k) 1. z d.
2 &P TR N, ),
to predict the optimal dual variable

15)

minibatch of initial conditions {¢*/}12
and use the current O*)

@i(k) = vem (&) = OW¢,.

We assume we perfectly solve the trajectory optimization
problem

(k)

ry = argmm rTOr +p*(r+ oM &), (16)

where p*(-) is the optimal value of the tracking problem

:cgk),ugk) = argmin u' Ru + £||rz(k) + ﬁ§k> — 2|3
zu 2 (17)
St Tiy1 = Axy + Buy, x9= 5

This is a standard LQR optimal control problem, and closed-
form expressions for the optimizers and the value function

31f not further specified, when we refer to v or the dual variable, we
mean the dual variable associated with the constraint » = x in problem (2)
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are readily expressed in terms of the solution to a discrete
algebraic Riccati equation.
After solving (17), we update the dual map © as

ok+l) — gk) ¢

S 1w ) _
Ve Z§<Ti - ) vy (&)

=1
B
PN 1w

A feature of this update rule is that the difference between
the reference r; and the executed trajectory x; can be written
out in closed form as follows.

Lemma 1: Given the update rules (16), (17), the difference
between the updates rgk) and xgk) can be written as a linear
map of the initial condition ¢ as

(18)

r) — 2 = HeWg, + G,

where H and G are matrices of appropriate dimensions that
depend on A, B, Q, R, and H is symmetric negative definite.
See Lemma 3 in Appendix B of the extended version [27]
for definitions of H and G.

We leverage Lemma 1, and that the matrix H is negative
definite, to show that the updates (15)-(18) make progress in
expectation.

Theorem 1: Consider the cost functions (14) and dy-
namics (13), and fix an initial O, Fix a steg size

H)

n= m and mini-batch size B > %

The iterates generated by the updates (15)-(18) satis"fjg/
E[e® - e

)
2

where v € (0,1) is a function of , H, B, and d,.
Proof: See Appendix B of the extended version [27].
|
B. With Suboptimal Tracking

We consider the case where we only have approximate
solutions to the updates (17) and (16). We leverage the
structural properties of the LQR problem, and parameterize
the optimal tracking controller as a linear map, and its value
function as a quadratic function of the augmented state.
Denote F¢ as the open-loop response of initial condition
&, we consider perturbations in the optimal value function
p* as

p(r, &) =p (18 + (7 = FOAp(F = FE),  (19)
and perturbations in the control action as
a7, &) = u (7, ) + Ay pT 4 Ay eg (20)

where u* denotes the w solution of (17). We note that
the perturbations Ap, Ay, Ay z, represent the difference
between learned and optimal policies, and have been shown
to decay with the number of transitions used for training [28],
[29]. Perturbation analysis on Theorem 1 shows that if the
learned controller is close to optimal, the dual map © will
converge to a small ball around ©*, where the radius of the

ball depends on the error of the learned tracking controller.
Due to space constraints, we present an informal version of
this result here, and relegate a precise statement and proof
to Appendix C of the extended version [27].

Theorem 2: (informal) Consider the dynamics (13) and
cost (14). Consider the update rules (15)-(18) with the per-
turbations (19) and (20). Denote the size of the perturbations
as ep = ||Ap|,eur = [|Aurll, €ue = ||Auell. Given any
0O if the perturbations €p, €, , are sufficiently small, there
exist step size 1 and batch size B such that

EHG)(’“) —of <

171@
Jr1

e(ePa €u,rs Gu,E),

VR H@<0> — e

where 0 < v < 1, e(ep, €y, €4,¢) is an error term depending
polynomially on its arguments.

VI. EXPERIMENTS

We now proceed to evaluate our algorithm numeri-
cally on LQR and unicycle systems. For all the ex-
periments, we use the CleanRL [30] implementation of
Twin-Delayed Deep Deterministic Policy Gradient (TD3)
[22] as our actor-critic algorithm. All code needed to
reproduce the examples found in this section are avail-
able at the following repository: https://github.com/
unstable-zeros/layered-ac.

A. Unconstrained LOR

a) Experiment Setup: We begin by validating our al-
gorithm on unconstrained LQR problems and show that
our algorithm achieves near-optimal performance and near-
perfect reference tracking. We consider linear systems (13)
with dimensions d, = d, = 2,4,6,8 and horizon T = 20.
For each system size, we randomly sample 15 pairs of
dynamics matrices (A, B)* and normalize A so that the
system is marginally stable (p(A) = 1). For all setups, we
consider a quadratic cost (14) with Q = I5,, R = 0.0114,.
We have X = Rdﬂu = R%_ and the initial state & ~
N(0,14,). We leverage the linearity of the dynamics to
parameterize the tracking controller 7t"°¥ to be linear, and
the value function p™ to be quadratic in the augmented state
(10). Since p™ is quadratic, the optimization problem for
the trajectory planner (9) is a QP, which we solve with
CVXPY [31]. We parameterize the dual network to be a
linear map as in (15). We train the tracking policy and the
dual network jointly for 100, 000 transitions (5, 000 episodes)
with dual batch size B = 5, before freezing the tracking
policy and just updating the dual network for another 5, 000
transitions (250 episodes). We specify the detailed training
parameters in Table VI in the Appendix of the extended
version [27]. During training, we periodically evaluate the
learned policy by applying it on 50 initial conditions. We then
record the cost it achieved and the average tracking deviation
% 23:1 |ry — x;|. We report relative costs normalized by the
optimal cost of solving (2) directly with the corresponding

4Each entry is sampled i.i.d from the standard normal distribution.
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true dynamics and cost function. Thus, a relative cost of 1
is optimal. The results are summarized below.

dg,dy | Relative Cost () | Mean Tracking Deviation (J)
2 1.004 0.002
4 1.009 0.003
6 1.020 0.008
8 1.031 0.009

TABLE I
LQR RESULTS ON VARYING SYSTEM SIZES.

b) Varying System Sizes: In Table I, we summarize the
cost and mean tracking deviations evaluated at the end of
training.> We first note that the learned policy achieves near-
optimal cost and near-perfect tracking for all the system sizes
considered. Figure 2 shows a representative sample trajectory
that has a mean tracking deviation of 0.005. This shows that
our parameterization and learning algorithm are able to find
good policies with only black-box access to the underlying
dynamics. We note that the performance degrades slightly as
the size of the system grows. This is likely because learning
the tracking controller becomes more difficult as the size
of the state space increases. However, even for the largest
system we considered (d, = 8), the cost of the learned
controller is still only 3% above optimal.

Distance to Optimal Dual Network

— N=2

N=4

— N=6

1094 — N=8
=
o}
I
°

1071 4
0 1000 2000 3000 4000 5000
Number of Episodes
Fig. 1. Training progress for the dual map parameter ©. Here, the solid

lines are the median over 15 random LQR instances, and the shaded regions
represent the 25t to 75" percentile.

c) Visualization of Dual Learning: We visualize the
algorithm’s progress for learning the dual map in Figure
1. Recall that our theory suggests that in the unconstrained
LQR case, the dual map weight © will converge to the
neighborhood of the optimal dual map ©*, where the radius
of the neighborhood depends on the quality of the learned
controller. This is indeed the case shown in Figure 1, where
the norm of the difference © — ©* first decays exponentially
before reaching a plateau. We note that this plot also validates
our choice to start learning the dual network before the

5The reported numbers are their respective medians taken over 15 random
LQR instances.

tracking controller training has converged, as progress is
made starting at the very beginning of the training.

dg,dy | Relative Cost () | Mean Tracking Deviation (J)
2 1.012 (+0.7%) 0.046 (+2,300%)
4 1.028 (+1.8%) 0.045 (+1,500%)
6 1.036 (+1.5%) 0.061 (+763%)
8 1.052 (+2.0%) 0.062 (+689%)
TABLE 1T

LQR RESULTS WITHOUT DUAL LEARNING. NUMBERS IN PARENTHESES
DENOTE THE PERCENTAGE DIFFERENCE FROM THE APPROACH WITH
DUAL LEARNING.

d) Comparison to heuristic approach: We now com-
pare our approach to the heuristic approach of generating
trajectories without using the learned dual variable [10], [11],
summarized in equation (8). We use the same parameters
to train a tracking controller and a value function, with
the only difference being that 7P'*" solves (8) instead of
(9). We show the results in Table II. First, the heuristic
policy is outperformed by our approach both in terms of cost
and tracking deviation across all the different system sizes,
showing the value of learning to predict the dual variable. We
note that the difference is especially pronounced for tracking
deviation. Since the dual network learned to preemptively
perturb the reference to minimize tracking error, it achieves
near-perfect tracking and an order of magnitude lower track-
ing error. This suggests that learning the dual network is
especially important in achieving good coordination between
the trajectory planner and the tracking controller.

o 05 I 2 7 8

Relative Cost (1) | 2.04 | 124 | LIl | 1.I0 | LI9

Mean Deviation (J) | 0.039 | 0.01 | 0.005 | 0.003 | 0.003
TABLE III

LQR RESULTS ON VARYING HYPERPARAMETER p

e) The role of p: Finally, we note that the penalty
parameter p is a hyperparameter that needs to be tuned
when implementing Algorithm 1. Since p directly affects
the objective of the tracking problem, it begs the question of
whether the choice of p significantly affects the performance
of our algorithm. We test this hypothesis on 15 randomly
sampled underactuated systems where d, = 4 and d, = 2.
We use the same set of hyperparameters as above except for
p. We report the results in Table III. From Table III, we see
that algorithm behavior is robust to the choice of p, so long
as it is large enough; indeed, only the case of p = 0.5 leads
to significant performance degradation.

B. LOR with State Constraints

In the unconstrained case, the map from the initial con-
dition £ to the optimal dual variable v* is linear. In this
section, we consider the case where inequality constraints
are introduced and this map is no longer linear. We show
that by parameterizing the dual map vy(&) as a neural net-
work, we can learn well-performing policies that respect the
constraints. Similar to the experiments above, we randomly
sample 10 LQR systems where d, = d, = 2. Here we
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consider stable systems with p(A) = 0.995. The time horizon
is fixed to T" = 20 and cost matrices are () = I, R = 0.011.
We add the constraint that

X = {xoq |2 > —0.05, 1<t<20,i=1,2},

i.e., that we restrict all states except for the initial state to
be above —0.05. Since the additional constraint does not
affect the tracking problem, we still parametrize the actor and
critic as linear and quadratic, respectively. Since the optimal
dual map is no longer linear, we parameterize the dual map
as a neural network with a single hidden layer with ReLU
activation. Note that the optimization problem for trajectory
planning (9) is still a QP as it does not depend on the form of
the dual network. To account for the nonlinearity of the dual
network, we increase the dual batch size to 40 trajectories,
and train the policy and dual network for 150, 000 transitions,
before freezing the tracking controller and training the dual
network for another 600, 000 transitions (30,000 episodes).
We specify the detailed training parameters in Table VII
in the extended version [27]. We report the relative cost
and mean constraint violation® in Table IV and show a
representative sample trajectory in Figure 2.

Method Relative Cost (J) | Mean Constraint Violation ({)

Ours 1.011 0.0002

No Dual (8) 1.014 0.002

TABLE IV
CONSTRAINED LQR RESULTS
0.0 JY,#T+++++:—-4=&=¢=*+++*T-,-T
. -02 —— Optimal
X o4 Executed x
+ Reference r
-0.6 —— Constraint
+

00 25 50 7.5 100 125 150 175 20.0
s S
0.0 f‘-—‘thduf'—-'—-kv-t—f—# + ~

-0.1

~ = Optimal
< _0.2 Executed x
+ Reference r
—0.3 —— Constraint

4
0.0 2.5 5.0 7.5

10.0 12,5 15.0 17.5 20.0
t

Fig. 2. A Representative Sample Trajectory for Constrained LQR.

As seen in Table IV and the sample trajectories Figure
2, we can learn to generate reference trajectories satisfying
the constraints. The planned trajectory is well-adapted to the
learned tracking controller so that the executed trajectory
also avoids constraint violations. This shows empirically
that our algorithm can effectively learn to predict the dual
variable even when the desired dual map is nonlinear. We
again compare the results with solving for the reference
without learning a dual network (8), and observe that learning

6We measure the constraint violation as maz(0.05 — xti),O),t =
1,...,20. Reported values are the medians over the 10 systems.

the dual network results in better coordination between the
planner and the tracking controller. As a result, the approach
with dual learning achieves better constraint satisfaction
rates. We conclude this subsection by noting that in practice,
one can tighten the constraints * € X to ensure constraint
satisfaction, even when there is tracking error. How to lever-
age the learned dual network to inform constraint tightening
is an interesting direction of future work.

C. Unicycle

Finally, we apply our algorithm to controlling a nonlinear
unicycle system with state and control input

pz,t
_ Pyt R4 _ | R2
T et S I Ut |:wt:| € )
Ut

where p;,p, are the x and y positions, 6 the heading angle,
and v the velocity of the unicycle. The two control inputs
are the acceleration a and the angular velocity (steering) w.
We consider the discrete-time nonlinear dynamics given by

Dzt cos(6s) vy

sin(60;)v

Top1 = [z, u) = pgt’t +0.1 (w:) ¢
Ut ay

We consider the problem of steering the vehicle to the
origin, specified by the quadratic objective (14) with @) =
diag([1,1,0,0]), and R = 0.01I5. The initial condition & is
sampled uniformly on the unit circle. We take 7" = 20. The
trajectory planner 7P'*" learns to generate references only
for the positions (p,,p,) instead of the full state.

The nonlinearity of the dynamics presents several chal-
lenges. First, we can no longer assume the form of the
optimal tracking controller and its value function and have
to parameterize both as neural networks. As a result of this
non-convex parameterization of p™, the reference generation
problem (9) becomes nonconvex. We use gradient descent
to find reference trajectories that are locally optimal for the
trajectory planning problem. Secondly, the nonlinear nature
of the dynamics makes the learning of a tracking controller
more difficult. To address this, we warmstart the tracking
controller by training on simple line trajectories before run-
ning Algorithm 1 in full with reference trajectory generated
by solving (9).This overcomes the difficulty that (9) tends to
generate bad trajectories when p™ is randomly initialized. We
train the tracking controller on simple references for 100, 000
transitions (5,000 episodes) as a warmstart, and then run
Algorithm 1 for 500, 000 transitions (25,000 episodes). We
run the experiment both with and without training the dual
network and report our results in Table V. To make the
result interpretable, we normalize the cost against iLQR as
a baseline.”

First, we see that our learned policy achieves performance
comparable to that of iLQR—we however emphasize that

7For each initial condition, we run iLQR with two random dynamically
feasible initial trajectories. We take the lesser cost as iLQR’s cost.
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our policy is trained without explicit knowledge of the
dynamics of the system. We note that the costs achieved
by the policy learned with and without a dual network are
similar. This could be due to the the trajectory generation
problem (9) not being solved exactly. However, learning with
a dual network again leads to significantly better tracking
performance, highlighting the importance of dual networks
in coordinating the planning and tracking layers.

Method | Relative Cost () | Mean Tracking Deviation (J)
iLQR 1 -
Ours 1.04 0.02

No Dual 1.04 0.05

TABLE V
UNICYCLE RESULTS

VII. CONCLUSION

We proposed a principled way of parameterizing and
learning a layered control policy composed of a trajectory
planner and a tracking controller. We derived our parameter-
ization from an optimal control problem and showed that a
dual network emerges naturally to coordinate the two com-
ponents. We showed that our algorithm can learn to predict
the optimal dual variable for unconstrained LQR problems
and validated this theory via simulation experiments. Further
simulation experiments also demonstrated the potential of
applying this method to nonlinear control problems. Future
work will explore using the dual network to inform constraint
tightening and parameterizing the planner (9) directly as a
neural network to reduce online computation.
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