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Abstract— Robot grasping is an actively studied area in
robotics, mainly focusing on the quality of generated grasps
for object manipulation. However, despite advancements, these
methods do not consider the human-robot collaboration settings
where robots and humans will have to grasp the same objects
concurrently. Therefore, generating robot grasps compatible
with human preferences of simultaneously holding an object
becomes necessary to ensure a safe and natural collaboration
experience. In this paper, we propose a novel, deep neural
network-based method called CoGrasp that generates human-
aware robot grasps by contextualizing human preference mod-
els of object grasping into the robot grasp selection pro-
cess. We validate our approach against existing state-of-the-
art robot grasping methods through simulated and real-robot
experiments and user studies. In real robot experiments, our
method achieves about 88% success rate in producing stable
grasps that also allow humans to interact and grasp objects
simultaneously in a socially compliant manner. Furthermore,
our user study with 10 independent participants indicated our
approach enables a safe, natural, and socially-aware human-
robot objects’ co-grasping experience compared to a standard
robot grasping technique.

I. INTRODUCTION

Co-grasping is an essential part of human-robot collabo-

ration tasks where a human and robot simultaneously grasp

an object during manipulation. The need for collaborative

robot systems has become evident from the lack of available

skilled workforce in hospitals, factory floors, and at home to

assist people in their daily lives [1]. For instance, at hospitals,

robots with co-grasping skills can assist in passing various

equipment to and from surgeons during surgery or passing

medicines to maintain a safe distance between healthcare

workers and patients concerning contagious diseases like

CoVID-19. Likewise, at factory floors, the tasks for assistive

robots could include fetching and handing over various

tools to and from their human collaborator in the loop or

performing complex assembly tasks through human-machine

teaming, which can significantly improve the overall work

efficiency and throughput. Similarly, at home, our elderly

often struggle to fetch various objects. Therefore, robots with

co-grasping skills can assist them by bringing and handing

over different daily-life things, such as utensils, keys, tv

remotes, etc.

Although several methods for robot grasp generation exist

[2]–[10], ranging from geometric to data-driven strategies,

they are human-agnostic and provide robot-centric algo-

rithms, i.e., observing an object and selecting a gripper’s pose

to pick an object without considering collaborating human

partners. Generally, in human-robot collaboration, we would
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(a) Human-aware Grasping (b) Human-unaware grasping

Fig. 1. CoGrasp generates human-aware robot grasps (a) compared to
traditional methods (b) that do not consider humans in the loop.

expect our robot to grasp things that are also comfortably

graspable by their interacting partners during cooperation.

For instance, consider a scenario in Fig. 1. Both grasps

in Fig. 1a and Fig. 1b would be considered valid for the

robot by the existing approaches. However, the grasps in

Fig. 1b are inherently invalid as they point sharp ends toward

humans, which would be considered unsafe for collaboration.

Similarly, in other situations with no sharp objects, the robot

would be expected to leave sufficient space for humans to

co-grasp objects simultaneously.

In this paper, we propose a human-aware robot grasp

generation pipeline called CoGrasp that considers both robot

grasp quality and human-in-the-loop for safe and com-

pliant collaboration. Our approach accomplishes human-

aware grasping from a raw partial 3D object point cloud

by optimizing robot grasp generation using a deep neural

network-based object shape completion network, a socially-

compliant human grasp prediction network, and a pruning

network. Our pruning network builds on our novel co-grasp

evaluation algorithm to select stable robot grasps compat-

ible with predicted human grasps for a given object. The

overview of our pipeline is shown in Fig. 2. Our approach

demonstrates producing grasps appropriate for robot-human

collaborative object manipulation, which also works in real-

world experiments (Fig. 1). The main contributions of our

paper are summarized as follows:

• A novel and, to the best of our knowledge, the first

end-to-end human-aware 6-DoF robot grasp generation

method that works in both simulation and real-world

environments.20
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• An algorithm that computes grasp quality scores us-

ing the geometric information (approach direction and

spatial representation) from interactions between the

objects, human hand, and robot gripper.

• A neural model for fast and parallel evaluation of

various robot grasp candidates for human friendliness

and stability.

• A new set of metrics that evaluate the quality of grasps

based on their safety, human friendliness, and efficiency

for human-robot collaboration tasks.

• A validation of our CoGrasp approach through real-

robot experiments, demonstrating our method achieves

a 88% success rate in generating stable robot grasps

while leaving socially compliant space on the object

for humans to co-grasp concurrently.

• A validation of our approach through a user study with

10 participants, indicating our method achieves 22%

higher scores on various metrics of CoGrasp’s social

compliance and safety than a traditional robot-centric

method [6].

II. RELATED WORK

This section discusses various techniques that generate

collision-free, stable robot grasps for object manipulation.

We divide these methods into three categories, i.e., classical,

data-driven, and contextual, as described in the following.

A. Classical Method

The study of robot grasp generation goes very back,

starting from attempting to handle objects using a robot

hand with elastic fingers [11]. It gave rise to geometric-based

approaches [12]–[14] for producing grasps using the contact

points’ classification as frictionless, friction, or soft contact

to identify parts on the object for a successful grasping.

Another line of work, like [15], studied the number of contact

points needed for stable grasping. The contact points are

essential for grasp stability, but the current techniques only

look into these for identifying suitable regions from the

robot’s perspective. In a similar vein, [16], [17] demonstrated

that grasping an object results in a pull force and overcoming

that wrench is an essential aspect of stability. [18]–[20]

includes studying complex kinematics of the object and the

hand motion involved during an interaction, displaying the

movement of an approaching hand or the gripper to be

critical for grasping. Following the formulations of stable

grasping, geometry-based techniques [5], [21]–[24] were

proposed that rely directly on the object shape to generate a

suitable grasp. However, such methods do not generalize to

real-world scenarios where object models are often unknown.

Modern methods [3] tend to account for surface normals

to evaluate the quality of grasps and use them to compute

a safe distance for a stable grasp. [25] models the mean

axis of an object by running PCA and empirically choosing

a safe space from a normal plane to that axis. Despite

progress in stable robot grasping, these geometric approaches

do not consider human-in-the-loop and solely rely on having

one manipulator; thus do not apply to collaboration tasks

requiring the co-grasping of the objects.

B. Data-Driven Method

With the advancement in computational resources and

deep neural models, data-driven methods have emerged

significantly for generating grasps. In emerging scenarios

where input is only available from visual sensors, the ex-

isting methods lean on computing the object models and

their 6DoF poses [26] before deploying traditional grasping

methods. Furthermore, when the complete 3D object models

are unavailable, learning-based shape reconstruction [27]

from inference or multiple views [28] are proposed to fill

in the gap. Many reinforcement learning techniques have

also come up, which learn gripper poses using exploration

[29] and learn policies for manipulation [30]. They help

identify dynamic responses to disturbances while grasping.

Still, such perturbations are only based on gripper-object and

environment interaction. Nevertheless, 3D reconstruction and

exploring the large 6-DoF state space suffer from storing a

huge amount of data that consists exclusively of the gripper

and object relative poses.

Since contact points are crucial in grasping, methods

like PointNet++ [31] are used to learn patterns from point

clouds. For instance, [6], [32], [33] utilizes PointNet++ to

learn geometric forms between grippers and objects from

the contact points data available in grasping datasets like

ACRONYM [34]. To extend the point space that is not

limited to the contact points, learning-based methods like

Dexnet [35]–[37] directly learn the orientations and the

approach direction of the gripper. There are also methods

[38], [39] that tend to produce a grasp score for each point in

the space when contact information is not present. However,

the contact information and orientations that are looked upon

come only from the gripper and the object. Some other neural

sampling-based methods [40], [41] use different grasp quality

metrics as objective functions. These metrics depending on

the gripper orientations and surface areas, only relate to the

overall stability rather than human awareness.

C. Contextual Grasping

Contextual grasping refers to grasp generation with some

context about the objects and their underlying tasks. This

problem often involves encoding contextual information like

the semantic representation or the object properties into

the network inputs. For example, [9] encodes the target

candidate’s visual, tactile, and texture information while

performing tasks like picking, lifting, or pouring. [10] also

considers encoding the relationships of objects in the scene,

which allows reasoning about invisible points, enabling

collision-free grasp. However, the enhanced reliabilities of

grips come from the extensive cost when acquiring hand-

labeled training data. In addition, these works focus more on

producing human-like grasps or moving the object of interest

to the target position, which involves no human actions.

In summary, none of the abovementioned methods con-

siders a simultaneous human grasp while producing a stable
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Fig. 2. CoGrasp execution pipeline: Given RGBD information of the scene, our method segments objects partial point clouds and infer their missing parts
using the shape completion network. The robot and human hand grasp generators take the completed object point cloud and output the possible robot and
human grasp candidates. Finally, the pruning network selects the proper robot grasp compatible for the co-grasping.

robot grasp configuration. The closest idea to finding a

suitable grasp for simultaneous grasping may be to learn a

policy for ambidextrous grasping [42]. Although this method

trains the policy on a large synthetic dataset under the con-

dition where multiple heterogeneous grippers will interact,

it does not consider a crucial human-robot interaction task.

Furthermore, it can not be directly used for co-grasping as

a human will have a preferred way of holding an object and

hence the robot grasps used need to be socially compliant

for the human to collaborate naturally.

III. PROPOSED METHOD

In this section, we present our CoGrasp framework. Given

a cluttered scene consisting of unknown objects, we aim

to generate robot grasps for all the objects in that scene

such that those grasps also allow humans to grasp objects

simultaneously in a socially compliant manner. Our method’s

execution pipeline is shown in Fig. 2, comprising the four

main components as described in the following. Furthermore,

in this section, we use a notation of a{B} to represent any

arbitrary set a with B number of elements for brevity.

A. Scene Segmentation & Shape Completion

Given a single viewpoint RGBD observation of the scene,

we perform image segmentation and extract each object’s

point cloud by utilizing extrinsic/intrinsic camera parameters.

The extracted partial object point clouds via segmentation

are denoted as PC
p

{k} with k instances. These partial

point clouds are further processed by our shape completion

module, which infers the object’s missing surfaces where

grasps can be generated. The shape completion helps to

maximize the number of potential robot’s grasps with a

single viewpoint observation. We build this module based on

the PoinTr geometry-aware transformer framework [43]. To

make the model better generalize to real-world applications,

several modifications are introduced. In our setup, we do not

assume the object size and its geometric center to be known

beforehand. Instead, we use a constant normalization term

and the geometric center of the detected partial object point

clouds to transfer them into the unit grid before completion.

During the completion process, the partial point cloud is first

down-sampled and converted to local features using DGCNN

[44] before passing to a transformer-based encoder-decoder

module that generates missing points proxies. The completed

point cloud for each object is then obtained by giving the

missing point proxies to the FoldingNet [45]. The rest of our

co-grasp framework utilizes the completed points denoted as

PCc
{k} for robot and human grasp predictions and selections.

B. Robot Grasp Generator

This module is used to produce a diverse set of robot

grasps Gr for the completed object point clouds PCc
{k}.

In our setup, we leverage a learning-based method called

Contact-Graspnet [6] to generate m ∈ N number of robot

grasp candidates gr{m} ⊂ Gr on each completed object point

cloud PCc
i . The Contact-Graspnet’s framework consists of

PointNet++ [31] based set abstraction and feature propaga-

tion layers, which help the model generalize to real-world

sensor data. The output of this module represents each grasp

gr using (R, T ) ∈ SE(3) where R ∈ SO(3) represents the

rotation and T ∈ R
3 represents the translation. The training

ACRONYM dataset [34] consists of a diverse set of grasps,

enabling it to generalize to out-of-domain objects as well.

C. Human Hand Predictor

This section presents our human hand grasp prediction

module for completed object point clouds PCc
{k}. In prac-

tice, humans have a position preference for holding different

objects based on social norms, stability, and safety. For

example, we often prefer to hold scissors by the finger rings

and mugs by the handles. In our pipeline, this contextual

information is provided by the human hand predictor module

through learning human hand grasp pose gh on different

objects. We use a Variational Autoencoder (VAE) architec-

ture based on [46]. The VAE comprises an encoder-decoder

structure. The encoder takes the point clouds of the object

(PCc
i ) and the human hand, denoted as PCh

gt, as an input

and outputs the mean µ and sigma σ in latent space to

parametrize the Gaussian Distribution. The decoder takes

the latent encoding z ∼ N (µ,σ) and the object point cloud

PCc
i as input and outputs the MANO model [47] parameters

(β, θ) to represent human hand pose. The hand parameter

β estimates the hand shape while the pose parameter θ

describes the rotation and translation of the hand joints. A

final MANO differentiable layer gives us the human grasp gh
6D pose which we render as point cloud PCh. When training

the network, we use the ground truth hand point cloud PCh
gt

and object point cloud PCc
i from ObMan dataset [48] as

the inputs to produce ˆPCh. The objective is to minimize the

Authorized licensed use limited to: Purdue University. Downloaded on December 30,2025 at 18:40:19 UTC from IEEE Xplore.  Restrictions apply. 



(a) Large approach angle θ1 (b) Small approach angle θ2

Fig. 3. A large angle between the approach direction of the robot gripper
and human hand makes the co-grasping socially compliant.

MSE loss given as

∥

∥

∥

ˆPCh − PCh
gt

∥

∥

∥

2

and the KL-divergence

between N (µ,σ) and N (0, I). Once trained, we use the

decoder network that takes a sampled latent code z ∼ (0, I)
and an object point cloud PCc

i as inputs and outputs the

MANO hand parameters. For each object point cloud PCc
i ,

an n ∈ N number of hand grasps gh{n} are generated to

guide robot grasps selection in the next module.

D. Pruning Network

Our Pruning Network selects robot grasps gf{p} ⊂ gr{m}

that are compatible for co-grasping with hand predictions

gh{n} for each detected object PCc
i . Our network consists of

Pointnet++ set abstraction layers which take three point cloud

sets PCg , PCh, and PCc
i representing robot gripper, human

hand, and object, respectively, and their feature masks as

input and outputs the confidence score ĉ ∈ [0, 1]. The score

ĉ indicates the compatibility for a grasp pair (gr, gh). Recall

that PCg and PCh are generated by gr, gh, respectively.

Furthermore, we append the feature masks with each point

cloud to enable our network to distinguish between them.

The feature masks are represented with labels -1, 0, and 1

for the robot gripper, object, and human hand, respectively.

To determine the ground truth confidence scores c for

training our pruning network, we define the following two

measures:

Distance Measure (Sd): This is used to get an insight into

how far apart the gripper and hand are during co-grasping.

A more considerable distance ensures the co-grasping can be

performed safely. Sd is computed from the average sum of

pairwise Euclidean distance between the PCg and PCh:

Sd(PCg, PCh) =

∑

x∈PCg

y∈PCh

∥x− y∥
2

|PCg| |PCh|

Angle Measure (Sa): To increase the co-grasping success

rate, the angle between the approach vector of the gripper

(ag) and the hand (ah) needs to be sufficiently large. A large

angle assures the robot arm does not collide with the human

partner. As illustrated in Fig. 3a, the gripper orientation is

complementary to the hand for co-grasping where θ1 is large.

In contrast, Fig. 3b shows that the wrong approach direction

makes the robot gripper unnecessarily close to the human.

We compute the angle measure Sa as the inner product of

the approach vector of the robot and human hand as follows:

Sa(ag,ah) = −(ag · ah)

To get ag , we use the representation of gr ∈ Gr. We know

gr is represented as (R, T ) ∈ SE(3) and its rotation R can

be written as follows:

R =





| | |
bg bg × ag ag

| | |





which gives us ag directly; note bg represents the normalized

grasp baseline vector. To get ah, we get the set of faces

Fpalm that represents the palm of the MANO [47] hand and

estimate the approach direction by computing the average of

the surface normals from each of these faces.

To train this network, we generate 89,786 pairs of grasps

(gr, gh) in simulation (applying 80%-20% training/validation

split) across all the objects in YCB dataset [49]. We consider

the grasp pair (gr, gh) for an object i as a positive label

c = 1 if its Sd(PCg, PCh) > λi
d and Sa(ag,ah) > λi

a

otherwise negative c = 0. The thresholds λi
d and λi

a are

computed as follows. First, we obtain the m robot grasp

candidates gr{m} and n human grasp candidates gh{n}
using our robot and human hand grasp generation modules

for each object point cloud. This constitutes a set of size

n′ = m × n comprising robot and human grasp pairs,

i.e., {(gr, gh)0, · · · , (gr, gh)n′}. Second, for all pairs of

the robot and human grasp candidates, we compute the

distance (Sd) and angle (Sa) measures resulting in lists

SD = {(Sd)0, · · · , (Sd)n′} and SA = {(Sa)0, · · · , (Sa)n′}.

Finally, the thresholds λd and λa are computed as the

median of lists SD and SA, respectively. Given the training

dataset with ground truth confidence scores, we train our

pruning network using the Binary Cross Entropy (BCE) loss

between the predicted confidence score ĉ and ground truth

c. During the evaluation, our pruning network allows us to

evaluate predicted grasps in batch, and the final layer being

differentiable allows the possibility of refining the grasps by

using the gradients ∂c
∂gr

.

IV. EXPERIMENTS

We run both simulated and real robot experiments to

test and compare our method with state-of-the-art grasping

methods. The simulations are performed in Isaac Gym [50]

physics simulator. For real experiments, we use a UR5e

robot manipulator with a 2F-85 Robotiq gripper and Intel

RealSense D435i camera for scene observation.

A. Evaluation Metrics

Aside from the distance measure Sd and angle measure

Sa, we also define another metric called the nearest distance

measure denoted as Sn to jointly evaluate the level of

human awareness of our method’s final result. The gripper

must not collide with the human hand during the grasping

process. This can be checked by measuring the intersection

of the convex hull between the gripper and the human hand.

Whenever there is an overlap, we set Sn to 0; otherwise, to

the nearest distance between the gripper (PCg) and human

hand (PCh) point clouds, i.e., Sn = minx∈PCg

y∈PCh

(∥x− y∥
2
).
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(a) Mug (b) Power Drill (c) Scissors (d) Bleach Cleanser (e) Clamp

Fig. 4. Simulated images for grasps generated by Contact-GraspNet [6] (top row) and CoGrasp (bottom row) for different objects. We can see that
CoGrasp knows how humans will hold an object during collaboration and therefore generates socially compliant robot grasps.

Therefore, a larger Sn reflects the more significant distance

between the human and robot grasps for co-grasping.

B. Simulated Experiment

We simulate CoGrasp, and other state-of-the-art grasping

techniques [6], [32] to study large diversified grasping on

92 objects of various categories (Fig. 4). Four different hand

grasp poses gh{4} are computed for each segmented object

PCc
i per simulation scene to evaluate the proposed gripper

poses gf{p} from different methods using Sd, Sa, and Sn

metrics introduced above. The results are summarized in

Table I, from which we observe better scores for our method

in all three measures. Our result is 41% better than contact-

graspnet [6] while 22% better than PointNetGPD [32] across

all metrics. Overall, the simulation experiments show that

our method generates stable, collision-free, and socially

compliant grasps needed for human-robot collaboration.

TABLE I

COGRASP PRODUCES HIGHER QUALITY GRASPS IN TERMS OF METRICS

Sa , Sd , AND Sn COMPARED TO PRIOR GRASPING METHODS.

Sa ↑ Sd ↑ Sn ↑

CoGrasp 0.675 ± 0.21 0.129 ± 0.05 0.037 ± 0..04

Contact-GraspNet [6] 0.527 ± 0.24 0.117 ± 0.04 0.029 ± 0.04
PointNetGPD [32] 0.492 ± 0.27 0.128 ± 0.03 0.013 ± 0.02

C. Real Robot Experiment

In this section, we study the CoGrasp performance in real

robot setup in terms of grasp stability and leaving socially-

compliant space for humans to co-grasp simultaneously. We

create seven different scenes with 19 objects for grasping.

The objects were everyday household items, mostly with

handles (e.g., screwdriver, scissors, etc.), requiring the robot

to leave the handles empty for humans to co-grasp safely.

We run three trials for each object and record the results as

presented in Table II. To determine the grasp stability, we

let the robot move after grasping and observed if the object

fell from the gripper or not. To evaluate the human-robot co-

grasping suitability, we check whether the standard holding

area of the object (e.g., screwdriver handle) is available for

humans to grasp concurrently. Our results show that our

method exhibits about 88% success rate over multiple trials

in both metrics. The failure cases were mainly related to

small objects such as strawberries and clamps where our

method could not leave sufficient space for human grasping.

D. Ablation Study

To get diverse human-aware robot grasps, we need to

ensure the training data used for Pruning Network is rich

in mixed valid grasps. Thus, we want to verify whether the

current selection method for positive labels c is reliable. We

study the results of our pipeline by selecting different thresh-

olds λd and λa for distance and angle measure, respectively,

for computing Pruning Network’s labels. We want to assure

that the total grasps we can generate for co-grasping are

diverse without drastically affecting the quality metrics. To

test this, we first fix λa as the median of the angle score

and vary λd to compute the total number of grasps that

are labeled as positive, and then we do the same with λa

by fixing λd. The results can be seen in Fig. 5, where we

observe that choosing the median score as thresholds for both

λd and λa give the most number of positive grasps required

for Pruning Networks’ robust training.

E. User Study

We conducted a user study to determine if people could

have a more comfortable grasping experience using our

method. 10 participants were recruited to interact with the

robot for co-grasping using seven household items. The par-

ticipants were first given a brief time to get accustomed to the

testing objects and contemplate how they would like to grasp

them. Then the study was divided into two experiments; one

executed the grasps predicted by our method, and another

involved implementing the grasps generated by Contact-

Graspnet [6]. The participants did not know which method
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TABLE II

REAL ROBOT EXPERIMENTS RESULTS OF OUR METHOD’S ROBOT GRASPS FOR BEING STABLE AND SOCIALLY-COMPLIANT FOR CO-GRASPING.

Categories Objects
Leaves Human Grabbing Portion Stability

Trials
Success Rate

Trials
Success Rate

#1 #2 #3 #1 #2 #3

Tools
Hammer ✓ ✓ ✓ 3/3 ✓ ✗ ✓ 2/3

Screw Driver ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Large Clamp ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Medium Clamp ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Small Clamp ✓ ✗ ✓ 2/3 ✓ ✓ ✗ 2/3

Overall 14/15 13/15

Sharp Objects
Knife ✓ ✓ ✓ 3/3 ✗ ✓ ✓ 2/3

Scissors ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Overall 6/6 5/6

Household Objects
Mug ✓ ✓ ✓ 3/3 ✗ ✓ ✓ 2/3
Fork ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Spoon ✓ ✓ ✓ 3/3 ✓ ✓ ✗ 2/3
Bowl ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Overall 12/12 10/12

Miscellaneous
Cracker Box ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Banana ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Master-Chef Can ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Fish Can ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Orange ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Plum ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3
Pear ✓ ✓ ✓ 3/3 ✓ ✓ ✓ 3/3

Strawberry ✗ ✗ ✓ 1/3 ✓ ✗ ✓ 2/3
Overall 22/24 23/24

Fig. 5. The plot shows the total number of valid grasps generated when
keeping λd fixed at the median score and varying λa or vice versa.

the grasps came from, which enforced the unbiased user

study. In each study, five objects were arbitrarily selected and

used for both experiments. The participants were asked to

access the quality of grasps generated from the two methods.

After completing the experiments, the participants completed

a Likert scale questionnaire describing their overall feedback.

Fig. 6 shows the study results of the two experiments

summarized from all user responses. For the robot grasps

generated by our method, the users could co-grasp all the

objects without facing the situation where the robot touches

the human hand. On average, the users found the grasps from

our method to be socially aware of how human holds the

given object and provided similar feedback where one of

the users commented “I can co-grasp the object very easily

by the part that human normally uses”. The users also felt

there was enough space to grasp the object in the case of our

method compared to [6]. A comment related to that for our

method was “robot left sufficient space for co-grasping”. In

addition, our CoGrasp technique was found safer than [6] as

one of the users commented during the trial with [6] that they

“felt a bit unsafe grabbing the screw-driver from the sharp

side” signifying the importance of user-friendly grasping.

Fig. 6. Results from the Likert scale questionnaire given to the users for the
study. The average scores for CoGrasp were higher than Contact-Graspnet
[6], demonstrating a socially-compliant co-grasping experience.

V. CONCLUSION

In this paper, we present a novel architecture named

CoGrasp that produces the human-aware robot grasps for

unknown objects in cluttered environments. Our method

generates appropriate robot grasps by checking their compat-

ibility with predicted natural human hand grasps using our

novel co-grasping evaluation metrics and pruning function.

The results through simulated and real-robot experiments and

a user study reflect our design is mindful of handling objects

in a socially compliant manner for human-robot collaboration

tasks. In our future work, we aim to extend our approach to

solve human-robot collaborative object manipulation tasks

requiring human-aware robot grasping in the loop.
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