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Abstract—Robot grasping is an actively studied area in
robotics, mainly focusing on the quality of generated grasps
for object manipulation. However, despite advancements, these
methods do not consider the human-robot collaboration settings
where robots and humans will have to grasp the same objects
concurrently. Therefore, generating robot grasps compatible
with human preferences of simultaneously holding an object
becomes necessary to ensure a safe and natural collaboration
experience. In this paper, we propose a novel, deep neural
network-based method called CoGrasp that generates human-
aware robot grasps by contextualizing human preference mod-
els of object grasping into the robot grasp selection pro-
cess. We validate our approach against existing state-of-the-
art robot grasping methods through simulated and real-robot
experiments and user studies. In real robot experiments, our
method achieves about 88% success rate in producing stable
grasps that also allow humans to interact and grasp objects
simultaneously in a socially compliant manner. Furthermore,
our user study with 10 independent participants indicated our
approach enables a safe, natural, and socially-aware human-
robot objects’ co-grasping experience compared to a standard
robot grasping technique.

I. INTRODUCTION

Co-grasping is an essential part of human-robot collabo-
ration tasks where a human and robot simultaneously grasp
an object during manipulation. The need for collaborative
robot systems has become evident from the lack of available
skilled workforce in hospitals, factory floors, and at home to
assist people in their daily lives [1]. For instance, at hospitals,
robots with co-grasping skills can assist in passing various
equipment to and from surgeons during surgery or passing
medicines to maintain a safe distance between healthcare
workers and patients concerning contagious diseases like
CoVID-19. Likewise, at factory floors, the tasks for assistive
robots could include fetching and handing over various
tools to and from their human collaborator in the loop or
performing complex assembly tasks through human-machine
teaming, which can significantly improve the overall work
efficiency and throughput. Similarly, at home, our elderly
often struggle to fetch various objects. Therefore, robots with
co-grasping skills can assist them by bringing and handing
over different daily-life things, such as utensils, keys, tv
remotes, etc.

Although several methods for robot grasp generation exist
[2]-[10], ranging from geometric to data-driven strategies,
they are human-agnostic and provide robot-centric algo-
rithms, i.e., observing an object and selecting a gripper’s pose
to pick an object without considering collaborating human
partners. Generally, in human-robot collaboration, we would
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(a) Human-aware Grasping

(b) Human-unaware grasping

Fig. 1. CoGrasp generates human-aware robot grasps (a) compared to
traditional methods (b) that do not consider humans in the loop.

expect our robot to grasp things that are also comfortably
graspable by their interacting partners during cooperation.
For instance, consider a scenario in Fig. 1. Both grasps
in Fig. la and Fig. 1b would be considered valid for the
robot by the existing approaches. However, the grasps in
Fig. 1b are inherently invalid as they point sharp ends toward
humans, which would be considered unsafe for collaboration.
Similarly, in other situations with no sharp objects, the robot
would be expected to leave sufficient space for humans to
co-grasp objects simultaneously.

In this paper, we propose a human-aware robot grasp
generation pipeline called CoGrasp that considers both robot
grasp quality and human-in-the-loop for safe and com-
pliant collaboration. Our approach accomplishes human-
aware grasping from a raw partial 3D object point cloud
by optimizing robot grasp generation using a deep neural
network-based object shape completion network, a socially-
compliant human grasp prediction network, and a pruning
network. Our pruning network builds on our novel co-grasp
evaluation algorithm to select stable robot grasps compat-
ible with predicted human grasps for a given object. The
overview of our pipeline is shown in Fig. 2. Our approach
demonstrates producing grasps appropriate for robot-human
collaborative object manipulation, which also works in real-
world experiments (Fig. 1). The main contributions of our
paper are summarized as follows:

e A novel and, to the best of our knowledge, the first
end-to-end human-aware 6-DoF robot grasp generation
method that works in both simulation and real-world
environments.
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e An algorithm that computes grasp quality scores us-
ing the geometric information (approach direction and
spatial representation) from interactions between the
objects, human hand, and robot gripper.

e A neural model for fast and parallel evaluation of
various robot grasp candidates for human friendliness
and stability.

« A new set of metrics that evaluate the quality of grasps
based on their safety, human friendliness, and efficiency
for human-robot collaboration tasks.

o A validation of our CoGrasp approach through real-
robot experiments, demonstrating our method achieves
a 88% success rate in generating stable robot grasps
while leaving socially compliant space on the object
for humans to co-grasp concurrently.

o A validation of our approach through a user study with
10 participants, indicating our method achieves 22%
higher scores on various metrics of CoGrasp’s social
compliance and safety than a traditional robot-centric
method [6].

II. RELATED WORK

This section discusses various techniques that generate
collision-free, stable robot grasps for object manipulation.
We divide these methods into three categories, i.e., classical,
data-driven, and contextual, as described in the following.

A. Classical Method

The study of robot grasp generation goes very back,
starting from attempting to handle objects using a robot
hand with elastic fingers [11]. It gave rise to geometric-based
approaches [12]-[14] for producing grasps using the contact
points’ classification as frictionless, friction, or soft contact
to identify parts on the object for a successful grasping.
Another line of work, like [15], studied the number of contact
points needed for stable grasping. The contact points are
essential for grasp stability, but the current techniques only
look into these for identifying suitable regions from the
robot’s perspective. In a similar vein, [16], [17] demonstrated
that grasping an object results in a pull force and overcoming
that wrench is an essential aspect of stability. [18]-[20]
includes studying complex kinematics of the object and the
hand motion involved during an interaction, displaying the
movement of an approaching hand or the gripper to be
critical for grasping. Following the formulations of stable
grasping, geometry-based techniques [5], [21]-[24] were
proposed that rely directly on the object shape to generate a
suitable grasp. However, such methods do not generalize to
real-world scenarios where object models are often unknown.
Modern methods [3] tend to account for surface normals
to evaluate the quality of grasps and use them to compute
a safe distance for a stable grasp. [25] models the mean
axis of an object by running PCA and empirically choosing
a safe space from a normal plane to that axis. Despite
progress in stable robot grasping, these geometric approaches
do not consider human-in-the-loop and solely rely on having

one manipulator; thus do not apply to collaboration tasks
requiring the co-grasping of the objects.

B. Data-Driven Method

With the advancement in computational resources and
deep neural models, data-driven methods have emerged
significantly for generating grasps. In emerging scenarios
where input is only available from visual sensors, the ex-
isting methods lean on computing the object models and
their 6DoF poses [26] before deploying traditional grasping
methods. Furthermore, when the complete 3D object models
are unavailable, learning-based shape reconstruction [27]
from inference or multiple views [28] are proposed to fill
in the gap. Many reinforcement learning techniques have
also come up, which learn gripper poses using exploration
[29] and learn policies for manipulation [30]. They help
identify dynamic responses to disturbances while grasping.
Still, such perturbations are only based on gripper-object and
environment interaction. Nevertheless, 3D reconstruction and
exploring the large 6-DoF state space suffer from storing a
huge amount of data that consists exclusively of the gripper
and object relative poses.

Since contact points are crucial in grasping, methods
like PointNet++ [31] are used to learn patterns from point
clouds. For instance, [6], [32], [33] utilizes PointNet++ to
learn geometric forms between grippers and objects from
the contact points data available in grasping datasets like
ACRONYM [34]. To extend the point space that is not
limited to the contact points, learning-based methods like
Dexnet [35]-[37] directly learn the orientations and the
approach direction of the gripper. There are also methods
[38], [39] that tend to produce a grasp score for each point in
the space when contact information is not present. However,
the contact information and orientations that are looked upon
come only from the gripper and the object. Some other neural
sampling-based methods [40], [41] use different grasp quality
metrics as objective functions. These metrics depending on
the gripper orientations and surface areas, only relate to the
overall stability rather than human awareness.

C. Contextual Grasping

Contextual grasping refers to grasp generation with some
context about the objects and their underlying tasks. This
problem often involves encoding contextual information like
the semantic representation or the object properties into
the network inputs. For example, [9] encodes the target
candidate’s visual, tactile, and texture information while
performing tasks like picking, lifting, or pouring. [10] also
considers encoding the relationships of objects in the scene,
which allows reasoning about invisible points, enabling
collision-free grasp. However, the enhanced reliabilities of
grips come from the extensive cost when acquiring hand-
labeled training data. In addition, these works focus more on
producing human-like grasps or moving the object of interest
to the target position, which involves no human actions.

In summary, none of the abovementioned methods con-
siders a simultaneous human grasp while producing a stable
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Fig. 2. CoGrasp execution pipeline: Given RGBD information of the scene, our method segments objects partial point clouds and infer their missing parts
using the shape completion network. The robot and human hand grasp generators take the completed object point cloud and output the possible robot and
human grasp candidates. Finally, the pruning network selects the proper robot grasp compatible for the co-grasping.

robot grasp configuration. The closest idea to finding a
suitable grasp for simultaneous grasping may be to learn a
policy for ambidextrous grasping [42]. Although this method
trains the policy on a large synthetic dataset under the con-
dition where multiple heterogeneous grippers will interact,
it does not consider a crucial human-robot interaction task.
Furthermore, it can not be directly used for co-grasping as
a human will have a preferred way of holding an object and
hence the robot grasps used need to be socially compliant
for the human to collaborate naturally.

III. PROPOSED METHOD

In this section, we present our CoGrasp framework. Given
a cluttered scene consisting of unknown objects, we aim
to generate robot grasps for all the objects in that scene
such that those grasps also allow humans to grasp objects
simultaneously in a socially compliant manner. Our method’s
execution pipeline is shown in Fig. 2, comprising the four
main components as described in the following. Furthermore,
in this section, we use a notation of a(p} to represent any
arbitrary set a with B number of elements for brevity.

A. Scene Segmentation & Shape Completion

Given a single viewpoint RGBD observation of the scene,
we perform image segmentation and extract each object’s
point cloud by utilizing extrinsic/intrinsic camera parameters.
The extracted partial object point clouds via segmentation
are denoted as PCY,, with k instances. These partial
point clouds are further processed by our shape completion
module, which infers the object’s missing surfaces where
grasps can be generated. The shape completion helps to
maximize the number of potential robot’s grasps with a
single viewpoint observation. We build this module based on
the PoinTr geometry-aware transformer framework [43]. To
make the model better generalize to real-world applications,
several modifications are introduced. In our setup, we do not
assume the object size and its geometric center to be known
beforehand. Instead, we use a constant normalization term
and the geometric center of the detected partial object point
clouds to transfer them into the unit grid before completion.
During the completion process, the partial point cloud is first
down-sampled and converted to local features using DGCNN
[44] before passing to a transformer-based encoder-decoder
module that generates missing points proxies. The completed
point cloud for each object is then obtained by giving the

missing point proxies to the FoldingNet [45]. The rest of our
co-grasp framework utilizes the completed points denoted as
PC’fk} for robot and human grasp predictions and selections.

B. Robot Grasp Generator

This module is used to produce a diverse set of robot
grasps G, for the completed object point clouds PCY,,.
In our setup, we leverage a learning-based method called
Contact-Graspnet [6] to generate m € N number of robot
grasp candidates g,,,) C G, on each completed object point
cloud PCY. The Contact-Graspnet’s framework consists of
PointNet++ [31] based set abstraction and feature propaga-
tion layers, which help the model generalize to real-world
sensor data. The output of this module represents each grasp
gr using (R,T) € SE(3) where R € SO(3) represents the
rotation and 7' € R? represents the translation. The training
ACRONYM dataset [34] consists of a diverse set of grasps,
enabling it to generalize to out-of-domain objects as well.

C. Human Hand Predictor

This section presents our human hand grasp prediction
module for completed object point clouds PCY,,. In prac-
tice, humans have a position preference for holding different
objects based on social norms, stability, and safety. For
example, we often prefer to hold scissors by the finger rings
and mugs by the handles. In our pipeline, this contextual
information is provided by the human hand predictor module
through learning human hand grasp pose g on different
objects. We use a Variational Autoencoder (VAE) architec-
ture based on [46]. The VAE comprises an encoder-decoder
structure. The encoder takes the point clouds of the object
(PCy¢) and the human hand, denoted as PCY,, as an input
and outputs the mean p and sigma o in latent space to
parametrize the Gaussian Distribution. The decoder takes
the latent encoding z ~ A (u, o) and the object point cloud
PC? as input and outputs the MANO model [47] parameters
(B, 0) to represent human hand pose. The hand parameter
[ estimates the hand shape while the pose parameter 6
describes the rotation and translation of the hand joints. A
final MANO differentiable layer gives us the human grasp g
6D pose which we render as point cloud PC". When training
the network, we use the ground truth hand point cloud PC;;t
and object point cloud PCY from ObMan dataset [48] as
the inputs to produce PC". The objective is to minimize the
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Fig. 3. A large angle between the approach direction of the robot gripper
and human hand makes the co-grasping socially compliant.

MSE loss given as PCh — PC;; and the KL-divergence

between N (p, o) and N(0,I). Once trained, we use the
decoder network that takes a sampled latent code z ~ (0, I)
and an object point cloud PCY as inputs and outputs the
MANO hand parameters. For each object point cloud PCY,
an n € N number of hand grasps g, are generated to
guide robot grasps selection in the next module.

D. Pruning Network

Our Pruning Network selects robot grasps grip1 C gr{m}
that are compatible for co-grasping with hand predictions
gn{n) for each detected object PCY. Our network consists of
Pointnet++ set abstraction layers which take three point cloud
sets PC9, PC", and PC¢ representing robot gripper, human
hand, and object, respectively, and their feature masks as
input and outputs the confidence score ¢ € [0,1]. The score
¢ indicates the compatibility for a grasp pair (g., gn). Recall
that PCY and PC" are generated by g,,gp, respectively.
Furthermore, we append the feature masks with each point
cloud to enable our network to distinguish between them.
The feature masks are represented with labels -1, 0, and 1
for the robot gripper, object, and human hand, respectively.

To determine the ground truth confidence scores c for

training our pruning network, we define the following two
measures:
Distance Measure (Sg): This is used to get an insight into
how far apart the gripper and hand are during co-grasping.
A more considerable distance ensures the co-grasping can be
performed safely. S; is computed from the average sum of
pairwise Euclidean distance between the PC9 and PC":

> _wepce [T —yll,
yEPCh

Sa(PC?, PC") = |PC9[|PC™|

Angle Measure (S,): To increase the co-grasping success
rate, the angle between the approach vector of the gripper
(ag) and the hand (ar) needs to be sufficiently large. A large
angle assures the robot arm does not collide with the human
partner. As illustrated in Fig. 3a, the gripper orientation is
complementary to the hand for co-grasping where 6 is large.
In contrast, Fig. 3b shows that the wrong approach direction
makes the robot gripper unnecessarily close to the human.
We compute the angle measure S, as the inner product of
the approach vector of the robot and human hand as follows:

Sa(ag,an) = —(ag - an)

To get ag4, we use the representation of g, € G,. We know
gr is represented as (R,T) € SE(3) and its rotation R can
be written as follows:

by X ag a4

which gives us a4 directly; note by represents the normalized
grasp baseline vector. To get ap, we get the set of faces
Fpaim that represents the palm of the MANO [47] hand and
estimate the approach direction by computing the average of
the surface normals from each of these faces.

To train this network, we generate 89,786 pairs of grasps
(gr, gn) in simulation (applying 80%-20% training/validation
split) across all the objects in YCB dataset [49]. We consider
the grasp pair (g, gp) for an object i as a positive label
c = 1if its Sg(PCY9, PC") > N, and S,(ag,an) > A,
otherwise negative ¢ = 0. The thresholds % and A, are
computed as follows. First, we obtain the m robot grasp
candidates g,(,,,; and m human grasp candidates g ()
using our robot and human hand grasp generation modules
for each object point cloud. This constitutes a set of size
n’ = m X n comprising robot and human grasp pairs,
ie., {(gr,9n)0, "+ (gr,gr)n'}. Second, for all pairs of
the robot and human grasp candidates, we compute the
distance (S4) and angle (S,) measures resulting in lists
Sp = {(Sa)os -+ (Sa)u} and Sa = {(Sa)os- -+, (Su)ur}-
Finally, the thresholds A; and )\, are computed as the
median of lists Sp and S 4, respectively. Given the training
dataset with ground truth confidence scores, we train our
pruning network using the Binary Cross Entropy (BCE) loss
between the predicted confidence score ¢ and ground truth
c. During the evaluation, our pruning network allows us to
evaluate predicted grasps in batch, and the final layer being
differentiable allows the possibility of refining the grasps by
using the gradients 88—6.

gr

IV. EXPERIMENTS

We run both simulated and real robot experiments to
test and compare our method with state-of-the-art grasping
methods. The simulations are performed in Isaac Gym [50]
physics simulator. For real experiments, we use a URSe
robot manipulator with a 2F-85 Robotiq gripper and Intel
RealSense D435i camera for scene observation.

A. Evaluation Metrics

Aside from the distance measure S; and angle measure
S, we also define another metric called the nearest distance
measure denoted as S, to jointly evaluate the level of
human awareness of our method’s final result. The gripper
must not collide with the human hand during the grasping
process. This can be checked by measuring the intersection
of the convex hull between the gripper and the human hand.
Whenever there is an overlap, we set S, to 0; otherwise, to
the nearest distance between the gripper (PCY) and human

hand (PC") point clouds, i.e., S,, = mingecpcs (||z — yll,)-
yepPCh
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(a) Mug (b) Power Drill

Fig. 4.

(c) Scissors

(d) Bleach Cleanser

(e) Clamp

Simulated images for grasps generated by Contact-GraspNet [6] (top row) and CoGrasp (bottom row) for different objects. We can see that

CoGrasp knows how humans will hold an object during collaboration and therefore generates socially compliant robot grasps.

Therefore, a larger S, reflects the more significant distance
between the human and robot grasps for co-grasping.

B. Simulated Experiment

We simulate CoGrasp, and other state-of-the-art grasping
techniques [6], [32] to study large diversified grasping on
92 objects of various categories (Fig. 4). Four different hand
grasp poses gpy4) are computed for each segmented object
PC¢ per simulation scene to evaluate the proposed gripper
poses gyrip) from different methods using Sy, S,, and S,
metrics introduced above. The results are summarized in
Table I, from which we observe better scores for our method
in all three measures. Our result is 41% better than contact-
graspnet [6] while 22% better than PointNetGPD [32] across
all metrics. Overall, the simulation experiments show that
our method generates stable, collision-free, and socially
compliant grasps needed for human-robot collaboration.

TABLE 1
COGRASP PRODUCES HIGHER QUALITY GRASPS IN TERMS OF METRICS
Sa, Sq, AND Sy, COMPARED TO PRIOR GRASPING METHODS.

Sa T Sq 1 Sn T
CoGrasp 0.675 £ 0.21 0.129 £ 0.05 0.037 £ 0..04
Contact-GraspNet [6] 0.527 + 0.24 0.117 £ 0.04  0.029 +£ 0.04
PointNetGPD [32] 0.492 +0.27 0.128 £ 0.03 0.013 £ 0.02

C. Real Robot Experiment

In this section, we study the CoGrasp performance in real
robot setup in terms of grasp stability and leaving socially-
compliant space for humans to co-grasp simultaneously. We
create seven different scenes with 19 objects for grasping.
The objects were everyday household items, mostly with
handles (e.g., screwdriver, scissors, etc.), requiring the robot
to leave the handles empty for humans to co-grasp safely.
We run three trials for each object and record the results as
presented in Table II. To determine the grasp stability, we
let the robot move after grasping and observed if the object

fell from the gripper or not. To evaluate the human-robot co-
grasping suitability, we check whether the standard holding
area of the object (e.g., screwdriver handle) is available for
humans to grasp concurrently. Our results show that our
method exhibits about 88% success rate over multiple trials
in both metrics. The failure cases were mainly related to
small objects such as strawberries and clamps where our
method could not leave sufficient space for human grasping.

D. Ablation Study

To get diverse human-aware robot grasps, we need to
ensure the training data used for Pruning Network is rich
in mixed valid grasps. Thus, we want to verify whether the
current selection method for positive labels c is reliable. We
study the results of our pipeline by selecting different thresh-
olds Az and A, for distance and angle measure, respectively,
for computing Pruning Network’s labels. We want to assure
that the total grasps we can generate for co-grasping are
diverse without drastically affecting the quality metrics. To
test this, we first fix A, as the median of the angle score
and vary Ay to compute the total number of grasps that
are labeled as positive, and then we do the same with A,
by fixing Ag4. The results can be seen in Fig. 5, where we
observe that choosing the median score as thresholds for both
Ag and )\, give the most number of positive grasps required
for Pruning Networks’ robust training.

E. User Study

We conducted a user study to determine if people could
have a more comfortable grasping experience using our
method. 10 participants were recruited to interact with the
robot for co-grasping using seven household items. The par-
ticipants were first given a brief time to get accustomed to the
testing objects and contemplate how they would like to grasp
them. Then the study was divided into two experiments; one
executed the grasps predicted by our method, and another
involved implementing the grasps generated by Contact-
Graspnet [6]. The participants did not know which method
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TABLE I
REAL ROBOT EXPERIMENTS RESULTS OF OUR METHOD’S ROBOT GRASPS FOR BEING STABLE AND SOCIALLY-COMPLIANT FOR CO-GRASPING.

Leaves Human Grabbing Portion Stability
Categories Objects 7 ngls pre Success Rate o T;gls #3 Success Rate

Hammer v v |/ 3/3 v X v 2/3
Tools Screw Driver v v v 3/3 v v v 3/3
Large Clamp v/ 3/3 || 3/3
Medium Clamp v/ 3/3 IV 3/3
Small Clamp v X v 2/3 |/ X 2/3

Overall 14/15 13/15
Sharp Objects Knife I v |/ 3/3 X | Vv 2/3
Scissors v v v 3/3 v v v 3/3
Overall 6/6 5/6
. Mug v | vV |/ 3/3 X |/ 2/3
Household Objects Fork v 303 lv|v 33
Spoon | v/ 3/3 |V X 2/3
Bowl I v |/ 3/3 | VY 3/3

Overall 12/12 10/12
Cracker Box v v v 3/3 v v v 3/3
Miscellaneous Banana v v v 3/3 v v v 3/3
Master-Chef Can | v v v 3/3 v v v 3/3
Fish Can | v |/ 3/3 v |V |/ 3/3
Orange v |/ 3/3 v/ 3/3
Plum vl v |V 3/3 v |V |/ 3/3
Pear v v v 3/3 v v v 3/3
Strawberry X | X | v 1/3 X |V 2/3

Overall 22/24 23/24

— Ag fixed
A; fixed

25000 1

24500 4

24000 +

Total valid Grasp

23500 4

23000

T T
0.4 0.5 0.6
Percentile of Score as Threshold (A, or Aq)

Fig. 5. The plot shows the total number of valid grasps generated when
keeping Ay fixed at the median score and varying A\, or vice versa.

the grasps came from, which enforced the unbiased user
study. In each study, five objects were arbitrarily selected and
used for both experiments. The participants were asked to
access the quality of grasps generated from the two methods.
After completing the experiments, the participants completed
a Likert scale questionnaire describing their overall feedback.

Fig. 6 shows the study results of the two experiments
summarized from all user responses. For the robot grasps
generated by our method, the users could co-grasp all the
objects without facing the situation where the robot touches
the human hand. On average, the users found the grasps from
our method to be socially aware of how human holds the
given object and provided similar feedback where one of
the users commented “I can co-grasp the object very easily
by the part that human normally uses”. The users also felt
there was enough space to grasp the object in the case of our
method compared to [6]. A comment related to that for our
method was “robot left sufficient space for co-grasping”. In

addition, our CoGrasp technique was found safer than [6] as
one of the users commented during the trial with [6] that they
“felt a bit unsafe grabbing the screw-driver from the sharp
side” signifying the importance of user-friendly grasping.

M CoGrasp W Contact-Graspnet

The robot hand left sufficient space on the
object for me to co-grasp quickly

The robot was socially aware of how
humans will grasp various objects

| felt safe taking over objects from the

My overall experience of co-grasping
various objects with the robot went
smoothly

[ 1 2 3 4 5

Score (1-5)

Fig. 6. Results from the Likert scale questionnaire given to the users for the
study. The average scores for CoGrasp were higher than Contact-Graspnet
[6], demonstrating a socially-compliant co-grasping experience.

V. CONCLUSION

In this paper, we present a novel architecture named
CoGrasp that produces the human-aware robot grasps for
unknown objects in cluttered environments. Our method
generates appropriate robot grasps by checking their compat-
ibility with predicted natural human hand grasps using our
novel co-grasping evaluation metrics and pruning function.
The results through simulated and real-robot experiments and
a user study reflect our design is mindful of handling objects
in a socially compliant manner for human-robot collaboration
tasks. In our future work, we aim to extend our approach to
solve human-robot collaborative object manipulation tasks
requiring human-aware robot grasping in the loop.
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