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Abstract— Non-monotone object rearrangement planning in
confined spaces such as cabinets and shelves is a widely
occurring but challenging problem in robotics. Both the robot
motion and the available regions for object relocation are
highly constrained because of the limited space. This work
proposes a Multi-Stage Monte Carlo Tree Search (MS-MCTS)
method to solve non-monotone object rearrangement planning
problems in confined spaces. Our approach decouples the
complex problem into simpler subproblems using an object
stage topology. A subgoal-focused tree expansion algorithm
that jointly considers the high-level planning and the low-level
robot motion is designed to reduce the search space and better
guide the search process. By fitting the task into the MCTS
paradigm, our method generates short object rearrangement
sequences by balancing exploration and exploitation. The
experiments demonstrate that our method outperforms the
existing methods in terms of the planning time, the number
of steps, the object moving distance and the gripper moving
distance. Moreover, we deploy our MS-MCTS to a real-world
robot system and verify its performance in different scenarios.

I. INTRODUCTION

Object rearrangement planning in narrow, confined spaces

such as cabinets, shelves, and fridges is essential for robots

working in such environments. For example, robots must re-

arrange objects by grouping the same type for maintenance

needs and create particular patterns to use the confined space

better. Object rearrangement planning is generally known as

NP-hard [1], [2] because the planner needs to figure out the

moving order of the objects and the intermediate relocation

regions. This problem can further be categorized as follows

based on the moving count of objects and robot actions.

The monotone instances, where each object can be relocated

at most once, and the non-monotone instances, where they

can be relocated multiple times in the scene. Regarding

robot movements, the prehensile instances consider robot

pick-and-place actions, whereas non-prehensile instances

use push actions.

This work focuses on prehensile non-monotone object

arrangement planning problems in narrow, confined spaces.

The confined setting introduces an extra constraint on the

robot’s motion compared to tabletop environments. In table-

top environments, robots can grasp objects from the top

and use the space above the objects to avoid collisions

during relocation. However, in confined environments with
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Fig. 1: The figure shows a four objects flipping case with

complex object dependency relations. Our method solves it

in 8 steps without redundant robot actions.

a covered top and a side opening, the objects can only

be accessed from the side. Hence, robots always occupy

a certain amount of space during the motion, resulting in

fewer regions for objects to be placed and a high chance of

object-to-object and object-to-robot collisions.

Most existing works solve the non-monotone rearrange-

ment planning problem using diverse tree search variations.

The general method treats the start arrangement as the root,

and the tree keeps growing until the goal arrangement is

achieved. The parent and child tree nodes are linked with

a single object movement, i.e., an object is relocated to

another region by the robot in a collision-free manner. Once

the goal arrangement is found, the algorithm backtracks and

recovers the entire plan. Due to the elevated complexity

of the non-monotone cases, intelligent search algorithms

are developed to solve them in a reasonable time budget

[3]. However, most of these approaches only aim to find a

feasible solution, while the quality of the result, such as the

number of steps and distance traveled by the robot, are not

optimized.

Therefore, in this paper, we propose an efficient Multi-

Stage Monte Carlo Tree Search (MS-MCTS) approach

that solves prehensile non-monotone object rearrangement

planning problems in narrow, confined spaces with a higher

success rate and fewer steps and less distance traveled than

any existing methods. We also deploy the method to real-

world scenarios and verify its sim-to-real generalization

abilities. In summary, the main contributions of the proposed

work are listed as follows:
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• A non-monotone object rearrangement planner that

finds high-quality solutions by fitting the problem into

the MCTS paradigm. Our method suits real-world

robotics systems of different configurations.

• A specially designed subgoal-focused tree expansion

algorithm that jointly considers the high-level relo-

cation planning and low-level robot motion planning,

which constrains the search within a limited sub-space.

• A novel object relocation order heuristic helps the

planner decouple the complicated problem into simpler

sub-problems, which is proven suitable for the narrow,

confined spaces setting.

• A computationally efficient robot motion planner that

minimizes the swept volume of the robot actions and

further leads to higher chances of finding valid plans.

II. RELATED WORK

Object rearrangement planning in various environments

is an active and widely researched problem in robotics,

which is also a frequently occurring instance in the field of

Navigation Among Movable Obstacles (NAMO) [4], [5] and

Task And Motion Planning (TAMP) [6], [7]. Since it needs

to consider both the high-level task planner and the low-level

motion planner in environments with movable objects, the

problem is generally considered NP-hard [2]. Existing works

solve the rearrangement planning problem under different

settings. [8]–[10] solves monotone instances by checking all

the permutations of the object relocation order in a reverse-

time manner. [11]–[16] perform the planning on tabletop

environments utilizing tree search with modified growing

strategies or search hierarchy followed by backtracking.

Others [17]–[21] put the recent advancement of the deep

neural network into play and let the planning agent learn

the underlying logic of various moves using the collected

dataset. Aside from the open workspace, [3], [22]–[24]

assume more constrained environments like the cabinets or

other confined spaces with only one opening in the front,

which are more common in real-world scenarios. Their

strategies include performing intelligent expansions or pre-

pruning the search trees so that invalid actions can be filtered

out at early stages. These moves shrink the search space and

increase efficiency. Compared with our method that finds

solutions involving critical moves only, most of them aim

to find a valid solution in a depth-first search manner without

focusing on the quality of the resulting plans.

In order to find high-quality solutions regrading various

objectives, the Monte Carlo Tree Search (MCTS) [25]

has recently been applied to the rearrangement planning

problems. As a best-first search method, MCTS does not

require a positional evaluation function to guide the search.

Instead, it explores the search space randomly and gradually

becomes better at estimating the quality of the best move

[26]. MCTS has been proven to be a general algorithm

which requires little or no domain knowledge while it is ex-

tremely useful in balancing the exploration and exploitation

during the search process, resulting in strong performances

[27]. The AlphaGo, AlphaZero [28]–[30] took advantage

of MCTS and beat the top-ranked human go player in

2016. In rearrangement planning problems, work [31] use

MCTS to achieve both efficiency and scalability in tabletop

environments. In addition, others [32], [33] fit the non-

prehensile object rearranging and sorting tasks into the

MCTS paradigm to achieve decent performance. Different

from these works, we use the MCTS in the confined spaces

setting with specially designed algorithms to guide the

expansion and simulation process, resulting in improved

performances in the runtime and the plan quality.

III. PROBLEM FORMULATION

Let a confined workspace with one narrow opening at the

front be denoted as W ⊂ R
3. In this confined space, n ∈ N

identical but uniquely labeled cylindrical objects, with radius

b, are denoted as O = {o1, . . . , on}. The ground surface of

the workspace has dimension of (dx, dy) in the X,Y axes,

respectively. Each object can be placed at a random location

p = (xp, yp) ∈ P ⊂ R
2 on the workspace surface as long

as it is collision-free. The placement locations associated

with all objects at step t form the object arrangement

at = {pt1, . . . , p
t
n} ⊂ A, where A is the arrangement

space. The at[oi] = pti denotes that object oi locates at

region pti in arrangement at. A robot armM equipped with

a gripper is placed in front of the workspace opening at

location pm to perform prehensile object relocation actions.

One relocation action rt = (rtpick, r
t
place) at step t involves

both picking a certain object at its current region and placing

it at the next region, resulting in a new object arrangement

at+1. While performing such actions, the robot follows a

certain manipulation path π(rt) = {qt0, ..., q
t
k}, where each

qi ∈ Q ⊂ R
d is an instance in the d-dimensional arm

configuration space. The volume occupied by the robot arm

during a relocation action is represented as V (π(rt)). A

relocation action involving object ok at step t is valid if

it satisfies the collision constraint, written as V (π(rt)) ∩
V (at\at[ok]) = ∅, where the term, V (at\at[ok]), is the

space occupied by all other objects except the one that is

currently being relocated.

Using the notations above, the non-monotone object

rearrangement planning problem is formally defined as

follows. Given n-objects start arrangement as and goal

arrangement ag , find a short valid robot action sequence

R = {(r0pick, r
0
place), (r

1
pick, r

1
place), · · · } that relocates all

objects from their start to the goal placements, minimizing

the objects and the gripper moving distance.

IV. METHODOLOGY

This section formally introduces the proposed Multi-Stage

Monte-Carlo Tree Search (MS-MCTS) object rearrangement

planner and the related modules in detail.

A. Linear Motion Planner

We design a Linear Motion Planner (LMP) to move the

gripper toward the objects and perform prehensile actions.

In the confined spaces setting, where the robot cannot use

the space on the upper Z axis to perform grasp action
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(a) Linear motion planner
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(b) Object stage topology generation

Fig. 2: (a) The gripper at pm uses the collision-free picking path (blue) and placing path (red) generated from our linear

motion planner to relocate the object at pti. Objects with a black contour are already placed at their goal regions. (b) The

left sub-figure shows the order from the longitude heuristic while the right one illustrates the generation process of the

dependency graph. For example, the goal region of the grey object blocks the turquoise, blue, orange, and pink objects,

which creates four edges toward the grey object in the dependency graph. The final object stage topology is created by

jointly considering the longitude heuristic and the dependency graph.

and avoid collisions, the linear planner minimizes the swept

volume by first aiming the gripper toward the objects and

then moving it linearly in the XY plane while maintaining

a fixed height on the Z axis. The robot configurations for

linear movement π(rt) can be obtained by calculating the

Inverse Kinematics (IK) [34] on the discretized points along

the path. To relocate an object oi from its current region pti
to the next region pt+1

i , the gripper first moves from its

home location pm to pti, picks the object up, and retrieve it

back. Then it goes to pt+1
i , places the object, and returns to

pm. In order to check collisions, the robot’s swept volume

V (π(rt)) during the linear movement is constructed by a

rectangular tunnel with length hq , width wq , tilted at angle

θq shown in Fig. 2 (a). In the rest of the paper, we use

the terms picking path and placing path to denote the swept

volume of the robot’s prehensile actions. The rectangular

path parameters hq and θq that moves the gripper from pm
to an object with radius b located at pti can be calculated by

hq =
∥

∥p
t
i − pm

∥

∥

2
+ b, θq = arccos

(

û·(pt

i
−pm)

∥pt

i
−pm∥

2

)

, where

û is the unit vector on the positive X axis. The parameter

wq is the robot’s maximum width when the gripper moves

linearly. There are three advantages of our linear motion

planner. First, it is a general method that is not specifically

tied to the UR5e we use in the real world experiments.

Second, since the robot always stays in the picking and

placing path during its motion, the linear motion planner

minimizes the swept volume, resulting in a higher proba-

bility of finding valid solutions. Third, the swept volume

associated with the LMP can be easily calculated using the

equations mentioned above and its collision with the objects

can be efficiently checked by the Separating Axis Theorem

[35], which facilitates the searching speed and leads to a

higher success rate in a fixed time budget.

B. Object Stage Topology Generation

We create an object stage topology that defines the desir-

able order to place all objects in their goal regions, which

has the highest chance of solving the instance efficiently

by considering the longitude heuristic and the dependency

graph of goal arrangement jointly. The longitude heuristic

prioritizes objects that are to be placed farther behind

than closer to the robot. Recall the linear motion planner

introduced above. The objects placed at their goal regions

in the front side of the environment are more likely to block

the placing paths for objects further back as shown in the

left image of Fig. 2 (b). This implies that objects with front-

end goals must be relocated to an additional buffer region

before returning, wasting the steps of getting them to the

goal regions in the first place. Thus, it is more appropriate to

relocate objects in the decreasing order of their longitudinal

distances between their goals and the robot. Apart from the

longitude heuristic, the desirable object order should also

obey the acyclic dependency graph of the goal arrangement.

The dependency graph is created by checking if the goal

region of each object oi prevents other objects from being

placed at their goal regions, if so, there will be edges going

from the objects that are blocked by oi. Object oi should

not be placed at its goal region when there are still edges

points to it. The dependency graph is created based on the

underlying motion planner, for our LMP, one example is

illustrated as the right image of Fig. 2 (b). The final object

stage topology is generated by performing the topological
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sort on the dependency graph while respecting the longitude

heuristic for objects that are not dependent on each other.

Algorithm 1: Feasible Buffer Region Generation

Data: oi, ok, {od}, a
t, ag

Result: P r
i = {p1i , . . . , p

m
i }

1 P r
i = ∅

2 V (π(rpick)) = MP(at[ok])
3 V (π(rplace)) = MP(ag[ok])
4 {V (π(rdpick))} = MP(at[{od}])
5 for region candidates pi ∈ P do

6 if collision free(pi, {a
t\at[oi], {V (π(rdpick))},

7 V (π(rpick)), V (π(rplace))})
then

8 V (π(riplace)) = MP(pi)

9 if collision free(V (π(riplace)), a
t\at[oi]) then

10 P r
i .add(pi)

11 if size(P r
i ) = m then

12 break

13 return P r
i

C. Single-Stage MCTS planner

Our Single-Stage MCTS (SS-MCTS) planner aims to

move one specific object ok from its current region at[ok]
to the goal ag[ok]. In other words, the search halts when

the objective at
′

[ok] = ag[ok] is achieved at some step

t′ ≥ t. To better present our ideas, we introduce several new

notations as follows. Assume we are now in the SS-MCTS

planner that focuses on the k-th object ok in the generated

topology, and the current step count is t. All the objects that

have been relocated to their goal regions form a set of static

objects Os = {o1, . . . , ok−1} and the rest are represented

as Or = {ok, . . . , on}. In the SS-MCTS focusing on object

ok, only the objects in Or are subject to be relocated.

The current arrangement at and the goal arrangement ag

contain the most up-to-date information about the objects’

current/goal regions. Inside the tree, the parent and child tree

nodes are linked by robot action rt that relocates a single

object oi in Or from region pti to pt+1
i , forming a new

arrangement at+1. The associated reward function value is

assigned as the negation of the Euclidean distance between

two regions, i.e., −∥ptk− pt+1
k ∥2. The following paragraphs

reveal the details of our SS-MCTS by fitting them into the

standard MCTS paradigm.

Selection: The SS-MCTS planner balances the explo-

ration and exploitation by utilizing the tuned Upper Con-

fidence Bound (UCB) [27]. In the selection process, we

pick a leaf node by going through successive child nodes

maximizing the UCB values starting from the root. If the

selected leaf node has already been visited, the expansion

module introduced below is applied to further grow the tree.

Expansion: We present an efficient subgoal-focused ex-

pansion algorithm that shrinks the search space, which in

Algorithm 2: Expansion

Data: TreeNode Tp(ok, a
t, ag, Or)

Result: TreeNode Tc(ok, a
t+1, ag, Or)

1 Ob = get blocking objects(ok, a
t, ag, Or)

2 if Ob ̸= ∅ then

3 while True do

4 O′
b = ∅

5 for oi ∈ Ob do

6 V (π(ripick)) = MP(at[oi])

7 O
ip
b = collision objs(Or\oi, V (π(ripick)))

8 if O
ip
b = ∅ then

9 for q ← i− 1 to k + 1 do

10 P r
i = new region (oi, ok, o{k+1...q}, a

t, ag)

11 if P r
i then

12 for pri ∈ P r
i do

13 Tp.add child(Tc(a
t+1[oi] = pri ]))

14 break

15 else

16 for oj ∈ O
ip
b do

17 V (π(rjpick)) = MP(at[oj ])

18 if collision free(Or\oj , V (π(rjpick))) then

19 for q ← j − 1 to k + 1 do

20 P r
j =
new region (oj , ok, o{k+1...q,i}, a

t, ag)
21 if P r

j then

22 for prj ∈ P r
j do

23 Tp.add child(Tc(a
t+1[oj ] = prj ]))

24 break

25 else

26 O′
b.add(oj)

27 halting condition()

28 else

29 Tp.add child(Tc(a
t+1[ok] = ag[ok]))

30 return Tp.child[0]

result leads to a higher chance of finding valid solutions. The

objective of the SS-MCTS is carried over to be the subgoal

of the expansion module, i.e., relocating object of interest ok
to its goal region, and the tree expands focusing on it. Note

that this task planning method suits all underlying motion

planning methods. Thus, in the following explanation and

pseudocode, we use the notation MP for the motion planner.

In order to achieve the subgoal, first, the planner finds all

objects Ob currently preventing ok from being relocated to

its goal region using the picking and placing paths based

on the current and goal region of ok. All remaining objects

except ok should be moved to other regions if they are

currently inside the two paths. In addition, because ok
becomes a static object in the following SS-MCTS focusing

on other objects, the planner needs to ensure the remaining

objects can still be accessed after placing ok at its goal
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region. Thus, objects whose picking path intersects with ok
placed at its goal region are added to the blocking object

list Ob as well. Next, we propose Algorithm 1 to generate

feasible buffer region candidates in the continuous space for

the objects oi ∈ Ob. The potential region candidate set P

(line 5) is generated by adding 2D Gaussian offsets with

zero mean and diagonal covariance matrix to the regions in

discreteized workspace. In our tests, the diagonal value in

the covariance matrix and the workspace discreteization unit

are both set to be the radius of the cylindrical objects b. A

helper function called collision free() detects whether there

is a collision between the inputs. Each valid region candidate

pi = (xpi
, ypi

) ⊆ R
2 for object oi should not collide with

the following elements: 1. all the regions currently occupied

by other objects at\at[oi]. 2. the picking and placing paths

regarding object of interest ok. 3. the picking paths of

a dependency objects set {od} (line 6). The dependency

objects are those who need to be relocated to fulfill the

subgoal but it is currently being blocked by oi. 4. Finally, all

region candidates that meet the abovementioned constraints

form the final list of valid regions P r
i if their corresponding

relocation paths are feasible (line 9). During the actual

execution, we sort the potential region candidates P by

the increasing distance to oi so that it better aligns with

the reward function. In addition, an upper tree expansion

threshold is set to prevent the tree from growing too wide

while still maintaining decent performance.

The complete tree expansion algorithm is shown in Al-

gorithm 2 with the aid of an additional helper function.

The collision objs() function (line 7) takes a list of objects

and a robot motion path as inputs and returns all objects in

the list that collide with the input path. Also, the notation

O
ip
b and Oid

b denote all objects that block the picking and

placing paths of object oi, respectively. The algorithm starts

at parent tree node Tp by checking if both the picking and

placing paths for the object of interest ok are collision-free,

if so, only one child tree node Tc that puts ok directly

to its goal region is created, which means the subgoal is

achieved (line 1, 2, 29). Otherwise, the subgoal-blocking

objects oi ∈ Ob are further divided into the following two

categories where different strategies are applied. 1. If only

the picking path for oi is available, valid regions that do not

block the picking path for objects earlier in the topology are

proposed using Algorithm 1 and added to the tree (line 9-

14). 2. If even the picking path for oi is not available, the

algorithm first finds all objects O
ip
b blocking it. For each

object oj ∈ O
ip
b that can be accessed, new regions are

proposed with an additional dependency object setting as

oi so that the picking path of oi can be cleared (line 16-

24). On the other hand, objects that are not accessible will

be added to O′
b as the focus of the next iteration (line 26).

In the halting condition() function, the expansion process

stops if new tree nodes are created, otherwise, the subgoal-

blocking object set Ob will be replaced by O′
b and the

expansion enters the next round. However, if the search

depth reaches a certain threshold without making progress,

Ob is changed to all the feasible objects, aiming to guide

the search out of the stuck node. Finally, the expansion

algorithm returns the first child node found during the

process, from where the simulation starts (line 30). The

high-level ideology of our expansion algorithm is that it

grows the tree by hierarchically moving blocking objects

out of the picking and placing paths for object of interest

ok. Eventually, both paths of ok become collision-free, and

our subgoal is fulfilled. Furthermore, our method can handle

complex non-monotone problems mentioned in work [36]

where ok must be relocated to a buffer region before others

because oj ∈ O
ip
b can potentially be set as ok during the

search process (line 16).

Simulation: This part follows the standard MCTS

pipeline [27]. A rollout process grows a pathological tree

from the chosen node in the selection or expansion module

until the object of interest ok is relocated to its goal region.

During the process, the relocation region for the object is

randomly selected from the result returned by Algorithm 1.

Back-propagation: We set the reward function to be the

negation of the accumulated Euclidean object relocation

distance when the simulation ends. All tree nodes from the

leaf where the simulation starts until the root receive the

reward and one visited count during the backpropagation

process.

The SS-MCTS planner halts when the current tree node

achieves the objective. The sub-plan {rt, . . . , rt+q} can be

recovered by backward tree traversal.

D. Multi-Stage MCTS planner & Post Optimization

The MS-MCTS planner comprises n ordered SS-MCTS.

The SS-MCTS at index i sets its object of interest as oi
from the generated object stage topology introduced above.

By extracting and combining all the sub-plans from the

SS-MCTS planners, we get the initial global plan R′ =
{(r0pick, r

0
place), (r

1
pick, r

1
place), · · · } that moves all objects

from the start arrangement as to the goal arrangement ag .

The goal plan R′ then goes through two post optimization

steps. In the first step, continuous action segments involving

the same object {(rtpick, r
t
place), · · · , (r

t+k
pick, r

t+k
place)} will be

combined to one single action {(rtpick, r
t+k
place)}. The second

step checks all non-adjacent action pairs (rt, rt+k) concern-

ing the same object and changes it to (rt = (rtpick, r
t+k
place))

if the actions in between {rt, · · · , rt+k} can be still be

performed without collision. These two optimization steps

shrink the length of the original plan and result in the

final global plan R. In addition, for each robot action rt,

instead of strictly following the rectangular path used in the

planning process, the robot figures out the minimal object

retrieval distance in the picking path before rotating the

base and sending it to the desired region along the placing

path. This design makes the plan execution faster and more

intelligent.
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Rearrangement Task planner Easy & Medium cases

Success rate (%) ↑ Planning time (s) ↓ Number of steps ↓ Relocation distance ↓ Gripper distance ↓

BiRRT(mRS) 97.92 5.55±11.22 19.25±10.53 224.23 ± 113.17 504.38 ± 263.43

PERTS(CIRS) 80.42 1.15 ± 5.62 36.54 ± 67.97 410.95 ± 754.01 856.88 ± 1574.2

MS-MCTS (ours) 100.00 1.09±1.46 8.04±2.47 86.92±32.32 198.18±65.53

Rearrangement Task planner Hard cases

Success rate (%) ↑ Planning time (s) ↓ Number of steps ↓ Relocation distance ↓ Gripper distance ↓

BiRRT(mRS) 4.38 28.99±18.22 22.00±7.87 273.58±88.19 583.93±190.17

PERTS(CIRS) 44.38 3.87±7.09 73.44±61.51 810.25±673.95 1682.51±1398.51

MS-MCTS (ours) 100.00 5.29±7.04 14.65±2.54 156.86±41.08 355.43±77.01

TABLE I: Experiments results reflect that our MS-MCTS outperforms the baseline methods by a large margin.

Fig. 3: Our MS-MCTS method has higher success rates and

fewer steps than the baselines across all difficulty levels.

V. EXPERIMENTS

A. Simulation Setup

We create randomly generated start and goal arrange-

ments of five increasing difficulty levels to examine the per-

formance of our MS-MCTS. The surface of the environment

has a dimension of 20 by 20 units with 4-8 objects randomly

placed inside. All objects are presented by circles with a

radius 1 unit and they are placed with a minimal distance

of 4 units between the centers to leave some grasping space

for the gripper. The picking and placing rectangular path

width of our linear motion planner is set to be 4 units.

One example depicting the testing configurations is shown

in Fig. 2 (b). The 4 objects cases are considered to be

easy, 5-6 to be medium, and 7-8 to be hard. For each level

involving different number of objects, 80 valid instances

are randomly generated to test the method’s performance

comprehensively. Aside from our MS-MCTS, two additional

prevailing non-monotone planner baselines, BiRRT(mRS)

[10], [11] and PERTS(CIRS) [3], are implemented to com-

pare against our method. BiRRT(mRS) follows the BiRRT

algorithm with tree nodes denoting different arrangements.

The mRS monotone solver connects different tree nodes and

finally forms the complete plan. PERTS(CIRS) divides the

hard non-monotone case into a sequence of monotone cases.

It utilizes perturbations to find valid buffer regions when the

tree cannot grow further with the CIRS monotone solver. For

all the methods, the underlying motion planner is set to be

the LMP we introduced in the method section to increase the

probability of finding valid solutions and enforce fairness.

To evaluate the performance, we use the following metrics

for quantitative evaluation:

• Success rate: Success rate tracks the percentage of

successfully solved instances. Cases that are not solved

within a 60 seconds time budget are considered as failures.

• Planning time: The planning time stores the time con-

sumption for the task planner to return a solution.

• Number of steps: The number of steps measures the

amount of object relocation actions needed to achieve the

goal arrangement.

• Relocation distance: The relocation distance records the

sum of the length that all the objects moved by the gripper.

• Gripper distance: The gripper distance calculates the

sum of the length that the gripper moves to relocate all

the objects to finish the task.

B. Simulation Results

Detailed visual comparisons of the success rate and the

number of steps are shown in Fig. 3 while Table I lists

all the quantitative results. All the metric items other than

the success rate are averaged across all successfully solved

testing instances. In the table, we separate the difficulty

levels to better showcase the strong performance of our

method. Under the easy plus medium settings, our method

beasts the baselines in all metrics. With a 100% success

rate, our approach is fast in planning while still maintaining

a decent solution quality that is at least three times better

than the other methods in terms of the number of steps, the

object relocation distance, and the gripper moving distance.

When it comes to the difficult setting, our MS-MCTS still

succeeded in solving all the instances due to the object

topology order which shrinks the search space significantly

by decoupling the complex problem into simple pieces while

the next-best planner can only handle less than half of them.

In addition, the subgoal-focused strategy allows our method

to make only necessary moves to achieve the goal, which

can be demonstrated by the low value in the last three metric

items. The PERTS baseline beats us in the planning time be-

cause it is an average of the relatively manageable cases. The

time consumption for the hardest cases is never recorded for

PERTS as it fails in most of them, which can be seen from

Fig. 3. In all, our approach achieves the highest success rate,
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Rearrangement Task planner Easy & Medium cases

Success rate (%) ↑ Planning time (s) ↓ Number of steps ↓ Relocation distance ↓ Gripper distance ↓

MS-MCTS 100.00 1.09±1.46 8.04±2.47 86.92±32.32 198.18±65.53

MS-MCTS w/ Discrete buffer region 100.00 1.48±2.4 7.98±2.39 87.4±31.96 198.21±63.82

MS-MCTS w/o Object topo order 88.75 1.8±4.98 7.95±2.5 96.93±38.39 215.72±77.51

MS-MCTS w/o Post optimization 100.00 0.64±0.91 8.68±2.54 90.45±32.63 208.43±66.07

Rearrangement Task planner Hard cases

Success rate (%) ↑ Planning time (s) ↓ Number of steps ↓ Relocation distance ↓ Gripper distance ↓

MS-MCTS 100.00 5.29±7.04 14.65±2.54 156.86±41.08 355.43±77.01

MS-MCTS w/ Discrete buffer region 98.75 6.54±8.30 14.59±2.56 157.41±37.77 356.54±75.09

MS-MCTS w/o Object topo order 57.50 9.38±12.58 14.62±2.59 179.35±42.94 397.84±82.27

MS-MCTS w/o Post optimization 100.00 4.21±7.62 15.5±2.73 161.77±38.38 372.29±75.26

TABLE II: Ablation study results reveal the impact of the continuous buffer region proposal, the object stage topology

order, and the post optimization on the performance. We can see that all the abovementioned design choice helps to boost

the overall result quality.

the lowest time consumption, and the best result quality.

Compared with the sampling-based methods used in the

other two baselines, our subgoal-focused planning strategy

only proposes necessary moves to fulfill the objective. As a

result, the results generated from our method not only have

the lowest time and execution consumption but also have a

relatively low standard deviation in the same difficulty level.

C. Ablation Studies

We conduct ablation studies to justify the design choice

of our continuous buffer region proposal, the object stage

topology order, and the post optimization. The results are

summarized in Table II. Since each of the designs has its

pros and cons, we do not highlight the best performance of

the metrics in the table.

1) Continuous buffer region proposal: The success rate

of the hard cases drops a little when we use the discrete

region proposal using the object radius as the discretization

unit. The planning time and the moving distance also

increased by a small margin. In contrast, the continuous

space proposal allows the planner to explore all the possi-

ble relocation regions, leading to high chances of finding

optimal results in terms of total object relocation distance.

Thus, choosing the continuous buffer region proposal is a

better choice.

2) Object stage topology order: We replace our object

order with a randomly generated counterpart. Without our

object order, the success rate drops while the planning

time increases significantly, especially in hard cases. Even

considering the solved cases only, the object and gripper

moving distance is worse than our complete algorithm.

These results confirm that our object order is necessary for

solving the complex object rearrangement tasks.

3) Post optimization: From the table, we can see that the

number of steps, as well as the relocation/gripper moving

distance increase without this module. Although the post

optimization adds slight time consumption, it improves the

overall quality of the resulting task plans.

D. Real Robot Experiments

We deploy our MS-MCTS method on a UR5e robot arm

manipulator equipped with a Robotiq 2F-85 gripper to solve

various rearrangement planning problems in a confined

environment with maximum dimensions of (140 cm, 70 cm,

38 cm). To better observe the robot motion from a top-down

view, the testing space is constructed on a table surrounded

by cardboard blocks on the three sides and a transparent

”ceiling”. The front end of the ceiling is represented by

a bar attached to the top of both sides. This leaves one

opening at the front for the robot to access the objects inside.

The objects in the scene are cylindrical tubes with colored

coating to help distinguish between them.

We set up four real-world scenarios of two medium and

two hard configurations with structured patterns in goal

arrangements. The medium cases contain an average of 5

objects, while the hard ones have an average of 8.5 objects.

Our MS-MCTS planner takes as, ag as inputs, figures out

the plan, and sends it to the robot arm manipulator for

execution. During the experiment, our planner succeeded in

finding valid plans for all test scenarios within 10 seconds.

In the medium cases, the average number of steps is 8, and

the average gripper moving distance is 5.56 m. While for the

hard instances, the average number of steps is 16.5, and the

average gripper moving distance is 11.45 m. Fig. 1 shows a

successfully performed medium level four objects flipping

case within a small workspace. We can clearly observe that

the planner only generates the necessary moves to fulfill

the goal arrangement. Also, the objects are relocated to a

buffer region that is close to their current locations in order

to minimize the gripper moving distance. The experiments

of other scenarios are available in our supplementary videos.

VI. CONCLUSION

This paper presents our Multi-Stage MCTS algorithm

that solves non-monotone object rearrangement planning

tasks in narrow, confined spaces. Our method decouples the

generally considered NP-hard problems into a sequence of

ordered stages, with each one focusing only on a specific

object, which reduces the search space by a considerable

amount. During relocation actions, the use of a linear

motion planner minimizes the swept volume in the limited

space and further leads to a higher chance of finding valid

solutions. We fit the problem into the MCTS paradigm
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with customized designed functions to achieve high-quality

results. The performance of our method is verified on

various simulation cases with diverse difficulty levels and

on the real robot. For future works, we seek to extend the

planner into the 3D space with unknown, arbitrary objects

to make it even more practical for real-world deployment.
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