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Solving Nonlinear Ordinary Differential Equations Using the Invariant Manifolds
and Koopman Eigenfunctions\ast 
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Abstract. Nonlinear ODEs can rarely be solved analytically. Koopman operator theory provides a way to
solve two-dimensional nonlinear systems, under suitable restrictions, by mapping nonlinear dynam-
ics to a linear space using Koopman eigenfunctions. Unfortunately, finding such eigenfunctions is
difficult. We introduce a method for constructing Koopman eigenfunctions from a two-dimensional
nonlinear ODE's one-dimensional invariant manifolds. This method, when successful, allows us to
find analytical solutions for autonomous, nonlinear systems. Previous data-driven methods have
used Koopman theory to construct local Koopman eigenfunction approximations valid in different
regions of phase space; our method finds analytic Koopman eigenfunctions that are exact and glob-
ally valid. We demonstrate our Koopman method of solving nonlinear systems on one-dimensional
and two-dimensional ODEs. The nonlinear examples considered have simple expressions for their
codimension-1 invariant manifolds which produce tractable analytical solutions. Thus our method
allows for the construction of analytical solutions for previously unsolved ODEs. It also highlights the
connection between invariant manifolds and eigenfunctions in nonlinear ODEs and presents avenues
for extending this method to solve more nonlinear systems.

Key words. ordinary differential equations, dynamical systems, invariant manifolds, Koopman theory, Koop-
man eigenfunctions
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1. Introduction. Aside from a few special cases, there are no general methods for solving
nonlinear ODEs, thus necessitating numerical solution techniques [20, 44]. In contrast, au-
tonomous linear ODEs are very well understood, with analytical solutions easily constructed
from exponential solution forms, i.e., eigen-decompositions [5, 42, 41]. Most of the analysis,
prediction, and control of nonlinear systems, in fact, relies on linearization around the fixed
points of a given system [5] and numerical methods [42, 20, 44, 30]. Indeed, the approximation
of nonlinear systems in terms of local linear systems is one of the few general methods avail-
able for characterizing nonlinear systems. However, linear analysis and numerical methods for
nonlinear systems have limits in terms of their ability to predict and control dynamics. This
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 925

motivates our introduction of an approach for the construction of analytically tractable invari-
ant manifolds which can be used for expressing solutions of nonlinear differential equations.

In 1931 Koopman found that nonlinear Hamiltonian systems could be mapped to an
infinite-dimensional space of observables with linear dynamics [17, 18]. Thus, if one finds
such a mapping, the dynamical system can be solved in the linear space and the solution
can be mapped back to the original nonlinear space. In some instances, a finite number of
Koopman eigenfunctions will form a closed, Koopman-invariant subspace, resulting in a finite
linear model which can be easily solved, unlike infinite-dimensional linear models [6]. The
existence and uniqueness of global Koopman eigenfunctions has been proven for stable fixed
points and periodic orbits [22]. Koopman operator theory provides a way to find analytical so-
lutions of previously unsolved nonlinear systems [28], yet finding the Koopman eigenfunctions
necessary to construct solutions can be very difficult [6, 4]. When finding exact analytical
solutions is impossible, Koopman operator theory still provides a way to analyze, predict,
and control nonlinear systems better than what is possible using linear analysis [6, 16, 19].
Data-driven methods such as dynamic mode decomposition (DMD) [39, 38, 21, 2] and extended
dynamic mode decomposition (EDMD) [46, 47, 21, 1] have provided a method for finding ap-
proximations to Koopman eigenfunctions that map nonlinear dynamics to linear dynamics.
These mappings have been especially useful for applications in control [16, 19, 33]. Other
approaches have divided the domain of nonlinear ODEs into separate ``basins of attraction""
where separate linearization transforms are constructed for different regions [23]. Koopman
methods can also be useful for performing phase-amplitude reductions for nonlinear systems
containing limit cycle oscillators [48, 49].

In this work, we develop a method for finding sets of Koopman eigenfunctions that map
nonlinear dynamics to finite linear systems for certain planar nonlinear dynamical systems;
these eigenfunctions allow us to construct solutions to nonlinear ODEs. Unlike the data-
driven approaches which create approximate eigenfunctions by extending the linearization
around fixed points, we construct exact, global Koopman eigenfunctions from codimension-1
invariant manifolds in the system. In the examples we present, the one-dimensional invariant
manifolds we find have simple, closed-form analytic expressions which allow for closed-form
Koopman eigenfunctions as well as closed-form analytical solutions. For most planar nonlinear
systems, however, closed-form analytical expressions do not exist for their one-dimensional in-
variant manifolds; in these cases numerical methods become necessary to test for and construct
eigenfunctions.

Exact analytical solutions are often preferable to numerical solutions as they do not gen-
erate errors which are inherent in numerical methods. Analytical solutions are also less com-
putationally expensive than numerical solutions and are amenable to analysis techniques and
control strategies that cannot otherwise be applied. Approximate analytical solutions have
these same advantages over numerical solutions although they do contain errors.

Invariant manifolds are recognized as an important structure by which to analyze, reduce,
and control nonlinear systems [12]. In fluid dynamics, Lagrangian coherent structures are
robust structures that shape the patterns that appear in fluid flow [13, 40]. In unsteady
vortical flows, transport is governed by invariant manifold structures in the flow [36]. In
nonlinear systems containing heteroclinic networks, invariant manifolds are the dominant
structures determining the system's behavior; analysis of the system is reduced to analyzing
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926 MEGAN MORRISON AND J. NATHAN KUTZ

the heteroclinic orbits and the system's behavior within a neighborhood of these structures
[12, 31]. Because they often dominate the dynamics, invariant manifolds can be used to
dimension reduce dynamical systems [34, 15]. Model reduction is particularly useful in systems
that have transient dynamics, such as chemical or biochemical systems [37]. Reduced order
models of periodically excited nonlinear systems also utilize the system's invariant manifolds
[11]. In systems with nonhyperbolic fixed points, center manifolds are used to analyze and
reduce the system [12, 9]. In these systems, the nonhyperbolic equilibrium points can be
stabilized by controlling the system's local center manifolds [43]. Following in this tradition of
using invariant manifolds as a framework for understanding and describing dynamical systems,
we extend the usability of invariant manifolds to eigenfunctions.

Our method for solving certain types of planar nonlinear systems is outlined in Figure 1(a).
Figure 1(b) shows the method applied to the dynamical system ( \.x, \.y) = (x  - xy, - x  - y  - 
y2). We begin by finding closed-form analytical solutions for the one-dimensional invariant
manifolds going through the system's fixed points and tangent to the eigenvector directions
of the system linearized at the fixed points. The nonlinear system in this example has three
invariant manifolds that fit this description (red lines). We then construct ``M -functions""
from the invariant manifold functions and use the M -functions to construct two globally valid
Koopman eigenfunctions, \varphi 1(x, y) and \varphi 2(x, y), both of which have linear dynamics. Once
we have a linearly independent set of eigenfunctions we solve for the state variables (x, y)
in terms of the eigenfunctions, solve the linear dynamical system the state variables have
been mapped to via the eigenfunctions, and then substitute the linear solutions into the state
variable solutions to obtain analytical expressions for the state variables in terms of the initial
conditions (x0, y0) and time t (Figure 1(d)). This example highlights how an algorithmic
approach may be used to determine solutions to nonlinear systems of differential equations in
select cases.

The manuscript is organized as follows. Section 2 provides an overview of Koopman the-
ory, Koopman eigenfunctions, and the codimension-1 invariant manifolds of one-dimensional
and two-dimensional nonlinear ODEs. Section 3 states necessary but not sufficient conditions
for the construction of eigenfunctions from codimension-1 invariant manifolds. When eigen-
functions of the form we consider do exist we provide formulas for the eigenvalue-eigenfunction
pairs. This section also considers the conditions necessary to obtain analytical solutions from
sets of eigenfunctions once they are found. Section 4 outlines the Koopman eigenfunction
approach to solving one-dimensional ODEs and provides several examples. Section 5 outlines
the Koopman eigenfunction approach to solving two-dimensional ODEs and demonstrates the
method with multiple examples. Section 6 discusses the method's limitations, possible exten-
sions, and ramifications for data-driven discovery of eigenfunctions. Section 7 concludes the
manuscript.

2. Background. We consider how to construct solutions to nonlinear, autonomous, ODEs
by using Koopman theory to map nonlinear dynamics to a space that has linear dynamics.
We produce the nonlinear-to-linear mapping with Koopman eigenfunctions that we construct
from the nonlinear ODE's invariant manifolds.

2.1. Koopman theory. Consider the ODE

d\bfx 

dt
= F (\bfx ), \bfx \in \BbbR n,(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 2

16
.1

65
.9

5.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 927

Figure 1. (a) Outline of method for solving certain types of nonlinear ODEs in \BbbR 2. (b) Example ODE with
multiple fixed points and real invariant manifolds (red). (c) Global Koopman eigenfunctions are constructed from
theM-functions. The state variables (x, y) can be solved for from the system of eigenfunctions. Solving the linear
dynamics of the eigenfunctions and substituting the solutions into the state variable functions produces a solution
for the original nonlinear ODE. (d) Analytical solution constructed from the global Koopman eigenfunctions.

with the autonomous vector field F :\BbbR n \rightarrow \BbbR n that operates on the state vector \bfx . The flow
associated with (2.1) for each t \in \BbbR is the function \bfx (t) := St(\bfx 0) for a trajectory starting
at \bfx (0) = \bfx 0 \in \BbbR n. The Koopman operator describes the dynamics of ``observables"" or
measurements of the state vector along its flow [17, 28, 8, 3]. The observable measurements
g : \BbbR n \rightarrow \BbbC are elements of a space of observable functions \scrF . The Koopman operator
\scrK t : \scrF \rightarrow \scrF is an infinite-dimensional linear operator that propogates observables g of the
state vector \bfx forward in time along trajectories of (2.1),

\scrK t[g](\bfx ) = g \circ St(\bfx ).(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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928 MEGAN MORRISON AND J. NATHAN KUTZ

The left-hand side of (2.2) states that the Koopman operator \scrK t pushes the observables g of
the state vector \bfx forward in time t. The resulting value is equivalent to the right-hand side of
the equation, which states that the original variable \bfx is pushed forward in time t according to
flow St of (2.1) and then observed by g. Figure 2(a) illustrates the Koopman operator pushing
observables g forward in time and how the result is equivalent to taking measurements of \bfx 
along its flow.

Eigenfunctions \varphi \in \scrF of the Koopman operator are special observables that have exponen-
tial time dependence [3]. An eigenvalue-eigenfunction pair (\lambda ,\varphi ) of \scrK t satisfies the equation

\scrK t[\varphi ](\bfx ) =\varphi (\bfx )e\lambda t.(2.3)

\varphi (t;\bfx ) has exponential dynamics with eigenvalue (growth constant) \lambda and initial condition
\varphi (\bfx ) under the operator \scrK t. Eigenfunctions have linear dynamics and satisfy the following
equation:

d

dt
\varphi (\bfx ) = \lambda \varphi (\bfx ).(2.4)

Differentiating the left-hand side produces the linear first-order PDE

\nabla \bfx \varphi (\bfx ) \cdot 
d\bfx 

dt
=\nabla \bfx \varphi (\bfx ) \cdot F (\bfx ) = \lambda \varphi (\bfx ).(2.5)

Solutions to (2.4) are eigenfunctions of \scrK t [3, 4]. Figure 2(b) illustrates that eigenfunctions
under the Koopman operator have linear dynamics with the closed-form solution

\varphi (t;\bfx 0) =\varphi (\bfx 0)e
\lambda t.(2.6)

Koopman eigenfunctions are extremely useful as they can be used to construct analytical
solutions for nonlinear ODEs. There is no known method for finding analytical solutions
for most nonlinear ODEs; finding eigenfunctions for such ODEs is a promising method for
obtaining solutions. Unfortunately, despite the growing interest and usefulness of Koopman
eigenfunctions, there are few methods available to discover explicit, closed-form expressions
for Koopman eigenfunctions [4, 16, 3, 32].

Figure 2. (a) The Koopman operator \scrK t pushes observables g forward in time. (b) Eigenfunctions \varphi are
special observables with linear dynamics, \.\varphi = \lambda \varphi .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 929

We show that, when certain conditions are met, closed-form expressions for Koopman
eigenfunctions can be constructed from invariant manifold generating functions. These are
the first examples of combining multiple invariant manifolds to construct eigenfunctions that
are rational expressions. These are also among the first examples of finding eigenfunctions for
nonlinear ODEs that have multiple fixed points and that are not Hamiltonian.

Another way in which we deviate from previous methods is that upon finding eigenfunc-
tions, we do not construct solutions for \bfx (t) by using a linear combination of eigenfunctions.
Rather, the closed-form solution for \bfx (t) is constructed using a nonlinear combination of eigen-
functions which we find by inverting the eigenfunctions. This method allows for closed-form
analytical solutions for \bfx (t) that were previously not possible.

2.2. Invariant manifolds of ordinary differential equations. Our method for obtaining
eigenfunctions for two-dimensional nonlinear ODEs requires finding one-dimensional invariant
manifolds that go through the system's fixed points. An invariant manifold of a dynamical
system is a topological manifold that is invariant under the actions of the dynamical system
[10, 45, 44].

Definition 2.1 (invariant set). A set of states \Lambda \subseteq \BbbR n of (2.1) is called an invariant set of
(2.1) if for all \bfx 0 \in \Lambda , and for all t\in \BbbR , \bfx (t)\in \Lambda .

We aim to define the invariant manifolds that go through the system's fixed points that are
tangent to the eigenvector directions of the system linearized at the fixed points (Figure 3).
Sometimes the invariant manifolds that go through a system's fixed points can be represented
with closed-form analytical functions, y = mi(x) or x = mi(y). In section 5 we focus on
nonlinear ODEs that have one-dimensional invariant manifolds that can be represented by
closed-form analytical functions. This is a narrow focus; however, with this restriction we
demonstrate how our method can produce exact analytical solutions without resorting to
numerical methods if the invariant manifolds can be defined with closed-form solutions. In
Appendix D we consider systems whose invariant manifolds can only be defined numerically
and use regression to test for eigenfunctions.

A one-dimensional invariant manifold of a two-dimensional ODE, \.\bfx = F (\bfx ), \bfx \in \BbbR 2, can
be defined by an implicit function \Lambda = \{ (x, y) :M(x, y) = 0\} . Consider an invariant set defined

Figure 3. (a) One-dimensional invariant manifolds of a two-dimensional nonlinear ODE defined by func-
tions x = m1(y), y = m2(x), and y = m2(x). These functions go through the system's fixed points, \scrP 1 and
\scrP 2, and are tangent to the eigenvectors of the system, (\vec{}v1,\vec{}v2) and (\vec{}u1, \vec{}u2), linearized at the fixed points. (b)
M-functions constructed from the invariant manifolds have zero level sets along the invariant manifolds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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930 MEGAN MORRISON AND J. NATHAN KUTZ

by the curve M(x, y) = 0. The flow \bfx (t) = St(\bfx 0) will stay on the curve M(x, y) = 0 for all
time if the initial condition \bfx 0 is on the curve. While there are many functions M(x, y) that
have a zero level set along a given curve defining an invariant manifold y=m(x), the simplest
function that has this curve as its zero level set is M(x, y) = y - m(x).

Definition 2.2 (invariant manifold generating function (M -function)). A function M :\BbbR 2 \rightarrow \BbbR 
M(x, y) = y - m(x) is called an M -function of the ODE \.\bfx = F (\bfx ), \bfx \in \BbbR 2, if y=m(x) defines
a one-dimensional invariant manifold of the ODE.

By definition, the zero level set of an M -function defines a one-dimensional invariant
manifold of the nonlinear system. Note that a function of the form x=m(y) can also define
a one-dimensional invariant manifold; its corresponding M -function, in this case, would be
M(x, y) = x  - m(y), which is also a valid form for the M -function and does not change
the ensuing analysis. The invariant manifold generating functions (M -functions) of a two-
dimensional ODE are the building blocks that we use for constructing eigenfunctions.

For two-dimensional nonlinear ODEs, we can use the fixed points \scrP i and the eigenvector
directions to begin solving for the closed-form expressions of the invariant manifolds, y=mi(x)
or x = mi(y), tangent to the eigenvectors [35, 14]. Figure 3(a) illustrates three invariant
manifolds, (x=m1(y), y =m2(x), and y =m3(x)), emanating from the fixed points (\scrP 1 and
\scrP 2) of a system in \BbbR 2. Figure 3(b) shows the M -functions we construct from the functions
defining the invariant manifolds.

The M -functions of a two-dimensional ODE have corresponding N -functions that tell us
how the M -functions must be combined in order to generate eigenfunctions for the system.
We solve for these N -functions by differentiating M(\bfx ):

N(\bfx ) =
d
dtM(\bfx )

M(\bfx )
.(2.7)

N(\bfx ) is the corresponding N -function of M(\bfx ). The M -functions and their corresponding N -
functions have the following interesting properties that aid us in constructing eigenfunctions.

Observation 1. If d
dtM1(\bfx ) = M1(\bfx )N1(\bfx ) and d

dtM2(\bfx ) = M2(\bfx )N2(\bfx ), then
d
dt(M1(\bfx )M2(\bfx )) = (N1(\bfx ) +N2(\bfx ))M1(\bfx )M2(\bfx ).

Observation 2. If d
dtM1(\bfx ) =M1(\bfx )N1(\bfx ) and

d
dtM2(\bfx ) =M2(\bfx )N2(\bfx ), then

d
dt(

M1(\bfx )
M2(\bfx )

) =

(N1(\bfx ) - N2(\bfx ))(
M1(\bfx )
M2(\bfx )

).

Notice that if N1(\bfx ) + N2(\bfx ) equals a constant, then M1(\bfx )M2(\bfx ) is an eigenfunction

with corresponding eigenvalue N1(\bfx )+N2(\bfx ). If N1(\bfx ) - N2(\bfx ) equals a constant, then M1(\bfx )
M2(\bfx )

is an eigenfunction with corresponding eigenvalue N1(\bfx )  - N2(\bfx ). We will generalize this
observation in the next section by using M -functions and N -functions to solve for eigenvalue-
eigenfunction pairs of the Koopman operator \scrK t. We construct eigenvalues from the N -
functions and eigenfunctions from the M -functions.

3. Constructing eigenfunctions from invariant manifolds. Notice that if N(\bfx ) = c \in \BbbR ,
a constant, then M(\bfx ) is an eigenfunction of \.\bfx = F (\bfx ). If N(\bfx ) is not a constant, then M(\bfx )
cannot be an eigenfunction. Nonetheless, a combination of manifold generating functions,
M1(\bfx ) andM2(\bfx ), may still create an eigenfunction so long as their corresponding N -functions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 931

can linearly combine to produce a constant. Theorem 3.1 allows us to construct eigenfunctions
given there exists some linear combination of N -functions that results in a constant.

Theorem 3.1. Let M1(\bfx ) and M2(\bfx ) be invariant manifold generating functions of \.\bfx =
F (\bfx ), \bfx \in \BbbR 2, with corresponding N -functions N1(\bfx ) and N2(\bfx ). \varphi (\bfx ) = Mp

1 (\bfx )M
q
2 (\bfx ),

p, q \in \BbbC , is an eigenfunction of \.\bfx = F (\bfx ) if and only if pN1(\bfx )+qN2(\bfx ) = \lambda for some constant
\lambda \in \BbbC .

Proof. Let d
dtM1(\bfx ) =M1(\bfx )N1(\bfx ) and

d
dtM2(\bfx ) =M2(\bfx )N2(\bfx ) for \.\bfx = F (\bfx ), \bfx \in \BbbR 2. Let

\varphi (\bfx ) =Mp
1 (\bfx )M

q
2 (\bfx ) and \lambda = pN1(\bfx ) + qN2(\bfx ).

d

dt
\varphi (\bfx ) =

d

dt
[Mp

1 (\bfx )M
q
2 (\bfx )]

=Mp
1 (\bfx )

d

dt
M q

2 (\bfx ) +M q
2 (\bfx )

d

dt
Mp

1 (\bfx )

=Mp
1 qM

q - 1
2

d

dt
M2 +M q

2pM
p - 1
1

d

dt
M1

=Mp
1 qM

q - 1
2 M2N2 +M q

2pM
p - 1
1 M1N1

=Mp
1 qM

q
2N2 +M q

2pM
p
1N1

= (pN1 + qN2)M
p
1M

q
2

= \lambda \varphi (\bfx ).

\varphi (\bfx ) is an eigenfunction if and only if \lambda \in \BbbC . Therefore, if \lambda \in \BbbC , then \varphi (\bfx ) =Mp
1 (\bfx )M

q
2 (\bfx ),

p, q \in \BbbC , is an eigenfunction of \.\bfx = F (\bfx ) with corresponding eigenvalue \lambda = pN1(\bfx ) +
qN2(\bfx ).

Theorem 3.1 says that if there exists a linear combination of N1(\bfx ) and N2(\bfx ) that results
in a constant \lambda , then we can construct eigenfunctions from the corresponding M -functions.
\lambda is the eigenvalue that corresponds to the resulting eigenfunction, producing the eigenvalue-
eigenfunction pair (\lambda ,\varphi (\bfx )). We note that if there exists a p and q such that pN1(\bfx )+qN2(\bfx ) =
\lambda , where \lambda is a constant, then c(pN1(\bfx ) + qN2(\bfx )) = c\lambda , where c\lambda is also a constant for any
c \in \BbbC . This tells us that from the single eigenvalue-eigenfunction pair (\lambda ,\varphi (\bfx )), we can
generate a family of eigenvalue-eigenfunction pairs (c\lambda ,\varphi c(\bfx )), where c\in \BbbC . We observe from
this eigenvalue-eigenfunction family that we may set any complex number to be the eigenvalue;
however, the resulting corresponding eigenfunction may be quite complicated. Therefore, in
the following examples we choose eigenvalues that will result in eigenfunctions that have
simple expressions. Note that setting p= 0 and q= 0 results in the constant \lambda = 0, producing
the trivial eigenvalue-eigenfunction pair \lambda = 0 and \varphi (\bfx ) = 1. While the trivial solution is
technically an eigenvalue-eigenfunction pair, it is not useful for solving the ODE.

Theorem 3.1 can be extended to include more invariant manifolds than simply two. Non-
linear systems may contain more than two invariant manifolds and a linear combination of
N -functions from more than two of these invariant manifolds may be required to produce a
constant.

Theorem 3.2. Let \{ Mi(\bfx )\} ki be a set of invariant manifold generating functions of \.\bfx =

F (\bfx ), \bfx \in \BbbR 2, with corresponding N -functions \{ Ni(\bfx )\} ki . \varphi (\bfx ) =
\prod k

i M
pi

i (\bfx ), pi \in \BbbC , is an

eigenfunction of \.\bfx = F (\bfx ) if and only if
\sum k

i piNi(\bfx ) = \lambda for some constant \lambda \in \BbbC .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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932 MEGAN MORRISON AND J. NATHAN KUTZ

Proof. Let d
dtMi(\bfx ) = Mi(\bfx )Ni(\bfx ), i \in \{ 1, . . . , k\} , for \.\bfx = F (\bfx ), \bfx \in \BbbR 2. Let \varphi (\bfx ) =\prod k

i M
pi

i (\bfx ) and \lambda =
\sum k

i piNi(\bfx ).

d

dt
\varphi (\bfx ) =

d

dt

\Biggl( 
k\prod 

i=1

Mpi

i (\bfx )

\Biggr) 

=
d

dt
Mp1

1

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 
+Mp1

1

d

dt

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 

= p1M
p1

1 N1

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 
+Mp1

1

d

dt

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 

= p1N1

\Biggl( 
k\prod 

i=1

Mpi

i

\Biggr) 
+Mp1

1

d

dt

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 

= p1N1

\Biggl( 
k\prod 

i=1

Mpi

i

\Biggr) 
+Mp1

1

\Biggl( 
p2N2

\Biggl( 
k\prod 

i=2

Mpi

i

\Biggr) 
+Mp2

2

d

dt

\Biggl( 
k\prod 

i=3

Mpi

i

\Biggr) \Biggr) 

= p1N1

\Biggl( 
k\prod 

i=1

Mpi

i

\Biggr) 
+ p2N2

\Biggl( 
k\prod 

i=1

Mpi

i

\Biggr) 
+Mp1

1 Mp2

2

d

dt

\Biggl( 
k\prod 

i=3

Mpi

i

\Biggr) 

=

\Biggl( 
k\sum 

i=1

piNi

\Biggr) \Biggl( 
k\prod 

i=1

Mpi

i

\Biggr) 

=

\Biggl( 
k\sum 

i=1

piNi(\bfx )

\Biggr) 
\varphi (\bfx )

= \lambda \varphi (\bfx ).

\varphi (\bfx ) is an eigenfunction if and only if \lambda \in \BbbC . Therefore, if \lambda \in \BbbC , then \varphi (\bfx ) =
\prod k

i M
pi

i (\bfx )

is an eigenfunction of \.\bfx = F (\bfx ) with corresponding eigenvalue \lambda =
\sum k

i piNi(\bfx ).

We use the previous theorems to construct eigenfunctions for two-dimensional nonlinear
ODEs by (1) finding closed-form expressions for the invariant manifolds, (2) solving for the
corresponding N -functions, and (3) finding linear combinations of N -functions that reduce
to a constant. Once we have solved for the N -function weights, pi, we use these weights as
exponents in the M -function product, producing an eigenfunction for the nonlinear ODE.

3.1. Obtaining independent eigenfunctions. To obtain solutions for two-dimensional
ODEs, we must construct at least two independent eigenfunctions, \varphi 1(\bfx ) and \varphi 2(\bfx ) that
have different level sets---that is, they cannot belong to the same ``family"" or equivalence
class of eigenfunctions. Without two independent eigenfunctions we cannot create a unique
mapping from the two eigenfunctions back to the original variables. An equivalence class of
Koopman eigenvalue-eigenfunction pairs, (\lambda ,\varphi (\bfx )), have level sets that match between func-
tions (although the level sets need not match to the same levels). Exponentiations of an
eigenfunction belong to the same equivalence class [3, 8],

\{ (p\lambda ,\varphi p(\bfx )), p\in \BbbR \} \subset (\lambda ,\varphi (\bfx )).(3.1)
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 933

Multiples of an eigenfunction also belong to the same equivalence class,

\{ (\lambda ,\alpha \varphi (\bfx )), \alpha \in \BbbR \} \subset (\lambda ,\varphi (\bfx )).

If one of our eigenfunctions constructed from invariant manifolds is not an exponentiated
multiple of the other, then the two eigenfunctions belong to different equivalence classes and
we may use the pair of independent eigenfunctions to solve the ODE. However, we do not
guarantee a unique analytical solution in all cases where a pair of independent eigenfunctions
is found. We can use the following theorem to identify eigenfunctions that belong to different
equivalence classes.

Theorem 3.3. Let \lambda 1 =
\sum k

i piNi(\bfx ) and \lambda 2 =
\sum k

i qiNi(\bfx ) be the eigenvalues corresponding

to eigenfunctions \varphi 1(\bfx ) =
\prod k

i M
pi

i (\bfx ) and \varphi 2(\bfx ) =
\prod k

i M
qi
i (\bfx ), where the weights for the linear

combination of N -functions are the vectors \bfp = [p1 p2 \cdot \cdot \cdot pk]
T and \bfq = [q1 q2 \cdot \cdot \cdot qk]

T .
Additionally, let \{ log(Mi(\bfx ))\} ki be a linearly independent set of functions. The eigenfunctions
\varphi 1(\bfx ) and \varphi 2(\bfx ) belong to different equivalence classes if \bfp and \bfq are linearly independent
vectors, that is, \bfp \not = \alpha \bfq for any \alpha \in \BbbC .

Proof. If \varphi 1(\bfx ) and \varphi 2(\bfx ) are in the same equivalence class, then

k\prod 
i

Mpi

i (\bfx ) =

\Biggl( 
k\prod 
i

M qi
i (\bfx )

\Biggr) \alpha 

=

k\prod 
i

M\alpha qi
i (\bfx ) for some \alpha \in \BbbR .

Therefore, 1 =
\prod k

i M
\alpha qi - pi

i (\bfx ). Taking the log of both sides results in 0 =
\sum k

i (\alpha qi  - 
pi) log(Mi(\bfx )). If the set of functions \{ log(Mi(\bfx ))\} ki is linearly independent, then the only
solution for the weights is \alpha qi - pi = 0 for all i\in \{ 1,2, . . . , k\} . This implies that pi = \alpha qi for all
i \in \{ 1, . . . , k\} . However, \bfp \not = \alpha \bfq for any \alpha \in \BbbC . Therefore, \varphi 1(\bfx ) \not = (\varphi 2(\bfx ))

\alpha for any \alpha ; \varphi 1(\bfx )
and \varphi 2(\bfx ) are not in the same equivalence class.

Theorem 3.3 says that if the weighting vectors for the N -functions are linearly indepen-
dent, then the eigenfunctions constructed from the M -functions are independent (in dif-
ferent equivalence classes). In order to use this test for independent eigenfunctions, we
must first determine that the set of functions \{ log(Mi(\bfx ))\} ki is linearly independent, which
can be determined by computing the generalized Wronskians of the list of functions \phi =
(log(M1(x, y)), . . . , log(Mk(x, y))) [50]. Reference [50] states that if a set of functions is lin-
early dependent, then all generalized Wronskians must vanish identically. Therefore, if any
of the generalized Wronskians is not identically equal to zero, then the set of multivariable
functions is linearly independent.

4. Koopman eigenfunctions for one-dimensional ODEs. We first consider how to use a
Koopman approach to solve nonlinear, autonomous, first-order ODEs. In the one-dimensional
case, such equations are easily solvable via separation of variables. However, we will consider
the alternative, Koopman approach to solving these differential equations in order to build
an intuition for the method in the two-dimensional case, where separation of variables can no
longer be used to construct a solution. Consider a nonlinear, autonomous, first-order, ODE:

dx

dt
= f(x), x\in \BbbC .(4.1)
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934 MEGAN MORRISON AND J. NATHAN KUTZ

This is a separable, first-order differential equation and so is solvable by separating the vari-
ables and then integrating, \int 

dx

f(x)
=

\int 
dt= t+ c.(4.2)

Instead of solving this ODE directly, we can instead take the Koopman perspective and first
map the nonlinear dynamics of x to a space with linear dynamics, find a solution in the linear
space, and then map the solution back to x. We solve for the eigenfunction \varphi : \BbbC \rightarrow \BbbC that
maps the nonlinear dynamics to a space with linear dynamics,

d

dt
\varphi (x) =

d

dx
\varphi (x)

dx

dt
=\varphi \prime (x)f(x) = \lambda \varphi (x)\int 

\varphi \prime (x)

\varphi (x)
dx=

\int 
\lambda 

f(x)
dx

ln[\varphi (x)] + c1 =

\int 
\lambda 

f(x)
dx

\varphi (x) = c2e
\int 

\lambda 

f(x)
dx
.(4.3)

If f(x) is a polynomial with simple roots, f(x) = c
\prod n

i=1(x - xi), where xi \in \BbbC , then we can
solve further by integrating each of the resulting fractions separately,\int 

\lambda 

f(x)
dx=

\int 
\lambda 

c
\prod n

i=1(x - xi)
dx=

\int n\sum 
i=1

pi
x - xi

dx=

n\sum 
i=1

log[(x - xi)
pi ].

The numerators are determined via the method of partial fractions,

pi =
\lambda 

c
\prod 

j=1:n,j \not =i(xi  - xj)
.(4.4)

Therefore the solution to the eigenfunction is

\varphi (x) = c2e
\int 

\lambda 

f(x)
dx

= c2

n\prod 
i=1

(x - xi)
pi ,(4.5)

where \{ xi\} ni are the simple roots of f(x) and the exponents \{ pi\} ni are the constants generated
by the method of partial fractions (equation (4.4)). Notice that \varphi (x) is a composition of
zeros and singularities and the signs of the pi values determine which xi are zeros versus
singularities. The dynamics of \varphi are linear by construction,

\varphi (t, x0) =\varphi (x0)e
\lambda t.(4.6)

Last, we solve for x as a function of \varphi (t, x0) by inverting \varphi (x) (equation (4.5)). \varphi (x) is often
not invertible, meaning that multiple x map to a single \varphi value. Only by including knowledge
of the initial condition x0 can this ambiguity be resolved, allowing us to create a one-to-one
mapping from (\varphi ,x0) \mapsto \rightarrow x.
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 935

4.1. One-dimensional ODE---Example 1. Let us first consider a nonlinear differential
equation that has been used as an example in previous work on Koopman analysis [16, 4, 3],

dx

dt
= x2, x(0) = x0.(4.7)

The solution derived from separation of variables is

x(t) =
x0

1 - x0t
.(4.8)

Alternatively we can solve for x(t) using the Koopman approach by first mapping x to a linear
space. We choose our eigenvalue to be \lambda = - 1 and solve for the corresponding eigenfunction,

\varphi (x) = e
\int 

\lambda 

f(x)
dx

= e
\int  - 1

x2 dx = e
1

x ,(4.9)

\varphi (t;x0) =\varphi (x0)e
\lambda t = e

1

x0 e - t = e
1 - x0t

x0 .(4.10)

We have freedom in our choice of \lambda . Choosing \lambda =  - 1 results in a simple eigenfunction.
According to property 3.1, any multiple of  - 1 could alternatively be selected as an eigenvalue
which would result in an eigenfunction in the same equivalence class. Solving for x in terms
of \varphi , using (4.9) gives us

x(t) =
1

ln[\varphi (t;x0)]
=

1

ln
\Bigl[ 
e

1 - x0t

x0

\Bigr] = x0
1 - x0t

.(4.11)

Although the Koopman approach is less efficient than solving via separation of variables in
the one-dimensional case, we will use a Koopman approach to solve two-dimensional systems
which cannot be solved directly.

4.2. One-dimensional ODE---Example 2. Suppose we have a nonlinear differential equa-
tion of the form

dx

dt
= - x3 + x, x(0) = x0.(4.12)

The solution can be found using separation of variables, resulting in

x(t) =
sign(x0)e

t\sqrt{} 
 - 1 + e2t + 1

x2
0

.(4.13)

Alternatively, we can also solve for x(t) via the Koopman approach by first mapping x to a
variable that has linear dynamics, solving the linear ODE, and then mapping the solution
back to the nonlinear space. First let us factor the right-hand side of the differential equation,

dx

dt
= - x(x+ 1)(x - 1).(4.14)

The fixed points of the nonlinear ODE are used to construct the solution. The system has
two stable fixed points at x = \pm 1 and a source at x = 0 (Figure 4(a)). We can map both
stable fixed points to the fixed point in the Koopman linear space by setting the eigenvalue
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D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 2

16
.1

65
.9

5.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



936 MEGAN MORRISON AND J. NATHAN KUTZ

to be \lambda = - 1. The unstable fixed point is mapped to infinity (Figure 4(b)). We solve for the
eigenfunction using the steps outlined above,

\varphi (x) = exp

\int 
\lambda 

f(x)
dx

= exp

\int 
 - 1

 - x(x2  - 1)
dx

= exp

\biggl( \int 
 - 1

x
dx+

\int 
x

x2  - 1
dx

\biggr) 
= exp

\biggl[ 
 - ln(x) +

1

2
ln(1 - x2)

\biggr] 
\varphi (x) =

\surd 
1 - x2

x
, \lambda = - 1.(4.15)

The initial condition x0 mapped to the eigenfunction space \varphi (x) is

\varphi (x0) =

\sqrt{} 
1 - x20
x0

.(4.16)

The dynamics of \varphi are linear (Figure 4(c)). Therefore the solution for \varphi (t;x0) is

\varphi (t;x0) =\varphi (x0)e
\lambda t =

\sqrt{} 
1 - x20
x0

e - t.(4.17)

Using (4.15) we solve for x in terms of \varphi ,

x(t) =
sign(x0)\sqrt{} 
1 +\varphi 2(t;x0)

=
sign(x0)\sqrt{} 
1 + 1 - x2

0

x2
0
e - 2t

.(4.18)

The Koopman-derived solution is equivalent to the solution derived using separation of vari-
ables (4.13). In a previous Koopman approach to solving (4.12), separate linearization trans-
forms were computed for each basin of attraction centered at each fixed point [23]. In contrast,
we create a single nonlinear-to-linear mapping that is applicable to the entire domain of the
nonlinear ODE.

The dynamics of nonlinear differential equations can be understood more fully by extend-
ing the dynamics into the complex plane. While all the fixed points of (4.12) are real, other
differential equations have complex fixed points that impact the dynamics. Understanding
the dynamics around fixed points is key to understanding the dynamics as a whole. We allow
x to be a complex variable x = a + ib and solve for the dynamics of the real and complex
component of x,

da

dt
= a - a3 + 3ab2,

db

dt
= b - 3a2b+ b3.

(4.19)

The dynamics in the complex plane is an extension of the dynamics along the real line.
Figure 4(d) shows the dynamics in the complex plane; the linear dynamics of \varphi (x) hold for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 937

Figure 4. (a) Equation (4.12) has nonlinear dynamics. (b) The nonlinear dynamics of x can be mapped to
eigenfunction \varphi (x). (c) The dynamics of \varphi is linear. (d) Dynamics of x= a+ ib viewed in the complex plane
as well as mapping to complex-valued \varphi .

complex values of x. By slicing the dynamics where the imaginary component is zero, b= 0,
we recover the dynamics along the real line (Figure 4(b)). We see that limx\rightarrow \pm 1\varphi (x) = 0 and
limx\rightarrow 0\varphi (x) =\pm \infty .

Appendix A contains two additional examples of one-dimensional ODEs solved via the
Koopman approach.

5. Koopman eigenfunctions for two-dimensional ODEs. We now turn our attention to
solving two-dimensional nonlinear ODEs using Algorithm 5.1. Not all two-dimensional ODEs
can be solved using this method. We must have multiple one-dimensional invariant manifolds,
and we must be able to combine the M -functions in such a manner that the resulting functions
are eigenfunctions. In order to solve a two-dimensional autonomous ODE using the following
method, the ODE must satisfy the following requirements:

1. The ODE must have at least two distinct M -functions, Mi(\bfx ) and Mj(\bfx ), generated
from distinct one-dimensional invariant manifolds, mi(x) \not =mj(x).

2. There must exist at least two linear combinations of corresponding N -functions that
result in nonzero constants.

3. At least two of the weight vectors, \bfp i, corresponding to eigenfunctions \varphi i, must be
linearly independent; this requirement guarantees the eigenfunctions generated from
the M -functions are from different equivalence classes.

4. The nonlinear system composed of the two independent eigenfunctions must be in-
vertible, providing a unique solution to the state variables.
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938 MEGAN MORRISON AND J. NATHAN KUTZ

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffive .\bfone Koopman method for solving nonlinear ODEs in \BbbR 2

1. Find independent eigenfunctions: (x, y) \mapsto \rightarrow (\varphi 1(x, y),\varphi 2(x, y))
2. Solve eigenfunction dynamics: \varphi (t;x0, y0) =\varphi (x0, y0)e

\lambda t

3. Compute initial condition: \varphi 0 =\varphi (x0, y0)
4. Solve for original variables: (\varphi 1,\varphi 2) \mapsto \rightarrow (x(\varphi 1,\varphi 2), y(\varphi 1,\varphi 2))
5. Substitute eigenfunction solutions into solutions for original variables:

x(t) = x(\varphi 1(t;x0, y0),\varphi 2(t;x0, y0)) = x(\varphi 1(x0, y0)e
\lambda 1t,\varphi 2(x0, y0)e

\lambda 2t)

y(t) = y(\varphi 1(t;x0, y0),\varphi 2(t;x0, y0)) = y(\varphi 1(x0, y0)e
\lambda 1t,\varphi 2(x0, y0)e

\lambda 2t)

This is a highly restrictive set of requirements; most planar nonlinear ODEs do not meet all
of these requirements and so cannot be solved via this method. Once we have found a pair
of independent eigenfunctions we can use Algorithm 5.1 to attempt to solve the nonlinear
ODE. In all the examples we consider, closed-form expressions for the invariant manifolds
exist, enabling us to derive closed-form expressions for the eigenfunctions and final solution.
For most ODEs, however, closed-form expressions for one-dimensional invariant manifolds do
not exist. When closed-form expressions do not exist the invariant manifolds may still be
determined numerically and the eigenfunctions tested for numerically. We outline a method
for numerically determining eigenfunctions constructed from M -functions in Appendix D.

5.1. Nonlinear example 1---Linear invariant manifolds. We extend the method we used
to solve the linear ODE to nonlinear ODEs. Consider the nonlinear system

\.x= xy,

\.y= y2  - x - 1
(5.1)

with initial conditions x(0) = x0 and y(0) = y0. The fixed points of this system are at
(x, y) = (0,\pm 1), ( - 1,0). Three one-dimensional invariant manifolds go through the fixed points
and are tangent to the eigenvectors of the system linearized at the fixed points. These one-
dimensional invariant manifolds can be defined by the functions x= 0, y= x+1, and y= - x - 1.
The resulting M -functions M1(x, y) = x, M2(x, y) = y  - x  - 1, and M3(x, y) = y + x + 1
define these three invariant manifolds with their zero level sets \Lambda 1 = \{ (x, y) : M1(x, y) = 0\} ,
\Lambda 2 = \{ (x, y) : M2(x, y) = 0\} , and \Lambda 3 = \{ (x, y) : M3(x, y) = 0\} (Figure 5(a)). We can confirm
that these are indeed invariant manifolds of (5.1) by checking that they satisfy d

dtMi(\bfx ) = 0
when Mi(\bfx ) = 0. We use (2.7) to solve for the N -functions.

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

dx
dt

x
=

xy

x
= y,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(y - x - 1)
dt

y - x - 1
=

y2  - x - 1 - xy

y - x - 1
=

(y - x - 1)(y+ 1)

y - x - 1
= y+ 1,

N3(x, y) =
d
dtM3(x, y)

M3(x, y)
=

d(y+x+1)
dt

y+ x+ 1
=

y2  - x - 1 + xy

y+ x+ 1
=

(y+ x+ 1)(y - 1)

y+ x+ 1
= y - 1.

The N -functions corresponding to the M -functions are N1(x, y) = y, N2(x, y) = y + 1,
and N3(x, y) = y  - 1. None of the N -functions are constants, and therefore none of the
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 939

Figure 5. Dynamics in original space and eigenfunction space. (a) Phase plane for (5.1). (b)--(c) Flow lines
projected onto \varphi 1 and \varphi 2. (d) Phase plane of (\varphi 1,\varphi 2). (e)--(f) Flow lines of (\varphi 1,\varphi 2) mapped back to original
variables (x, y). (g) Analytical solution compared to numerical solution produced using ode45. (h) Error in
trajectories over time.

M -functions are eigenfunctions. However, multiple linear combinations of the N -functions
result in constants,

\lambda 1 =N1(x, y) - N3(x, y) = y - (y - 1) = 1,

\lambda 2 =N1(x, y) - N2(x, y) = y - (y+ 1) = - 1,

\lambda 3 =N2(x, y) - N3(x, y) = y+ 1 - (y - 1) = 2.

Therefore, according to Theorem 3.1, we can construct eigenfunctions from the M -function
quotients

\varphi 1(x, y) =
M1

M3
=

x

1 + x+ y
, \lambda 1 = 1,(5.2)

\varphi 2(x, y) =
M1

M2
=

x

1 + x - y
, \lambda 2 = - 1,(5.3)

\varphi 3(x, y) =
M2

M3
=

y - x - 1

y+ x+ 1
, \lambda 3 = 2.(5.4)
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940 MEGAN MORRISON AND J. NATHAN KUTZ

The N -function weighting vectors for \varphi 1, \varphi 2, and \varphi 3 are \bfp 1 = [1 0  - 1]T , \bfp 2 = [1  - 1 0]T , and
\bfp 3 = [0 1  - 1]T since \lambda 1 = 1N1+0N2 - 1N3, \lambda 2 = 1N1 - 1N2+0N3, and \lambda 3 = 0N1+1N2 - 1N3.
Theorem 3.3 states that if the set of functions \{ log(M1(x, y)), log(M2(x, y)), log(M3(x, y))\} 
is linearly independent and a set of \bfp vectors \{ \bfp i,\bfp j\} is linearly independent, then their
corresponding eigenfunctions \varphi i and \varphi j are in different equivalence classes (independent). In
Appendix B we show that the set of functions \{ log(M1(x, y)), log(M2(x, y)), log(M3(x, y))\} is
linearly independent. All pairs of \bfp vectors are linearly independent sets. Therefore, according
to Theorem 3.3, all pairs of eigenfunctions \varphi 1, \varphi 2, and \varphi 3 are in different equivalence classes
and so any pair of these eigenfunctions can be used to solve for \bfx (t). We confirm that these
are eigenvalue-eigenfunction pairs of (5.1) by checking that they satisfy (2.5):

\nabla \bfx \varphi 1(\bfx ) \cdot F (\bfx ) = \lambda 1\varphi 1(\bfx ),\Bigl[ 
1+y

(1+x+y)2
 - x

(1+x+y)2

\Bigr] \biggl[ xy
y2  - x - 1

\biggr] 
=

x

1 + x+ y
,

x

1 + x+ y
=

x

1 + x+ y
,

=\Rightarrow \varphi 1 is an eigenfunction.

\nabla \bfx \varphi 2(\bfx ) \cdot F (\bfx ) = \lambda 2\varphi 2(\bfx ),\Bigl[ 
1 - y

(1+x - y)2
x

(1+x - y)2

\Bigr] \biggl[ xy
y2  - x - 1

\biggr] 
=

( - 1)x

1 + x - y
,

 - x

1 + x - y
=

 - x

1 + x - y
,

=\Rightarrow \varphi 2 is an eigenfunction.

The dynamics on these mappings are linear, giving us solutions in the eigenfunction space,

\varphi 1(t;x0, y0) =\varphi 1(x0, y0)e
\lambda 1t =\varphi 1(x0, y0)e

t,(5.5)

\varphi 2(t;x0, y0) =\varphi 2(x0, y0)e
\lambda 2t =\varphi 2(x0, y0)e

 - t.(5.6)

The initial conditions in the eigenfunction space can be found by mapping the initial conditions
in the (x, y) space, (x0, y0), to the eigenfunction space,

\varphi 1(x0, y0) =
x0

1 + x0 + y0
,(5.7)

\varphi 2(x0, y0) =
x0

1 + x0  - y0
.(5.8)

We now need to map the solution back to the original (x, y) space. We use the system (5.2)
and (5.3) to solve for (x, y). Notice that if these eigenfunctions are not independent we will
not be able to map back to the (x, y) space. This give us

x(\varphi 1,\varphi 2) =
2\varphi 1\varphi 2

\varphi 1 +\varphi 2  - 2\varphi 1\varphi 2
,(5.9)

y(\varphi 1,\varphi 2) =
 - \varphi 1 +\varphi 2

\varphi 1 +\varphi 2  - 2\varphi 1\varphi 2
.(5.10)
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 941

Substituting the analytical solutions for \varphi 1(t;x0, y0) and \varphi 2(t;x0, y0) into the expressions for
x and y gives us analytical solutions for x and y,

x(t) =
2
\Bigl( 

x0

1+x0+y0

\Bigr) \Bigl( 
x0

1+x0 - y0

\Bigr) 
\Bigl( 

x0

1+x0+y0

\Bigr) 
et +

\Bigl( 
x0

1+x0 - y0

\Bigr) 
e - t  - 2

\Bigl( 
x0

1+x0+y0

\Bigr) \Bigl( 
x0

1+x0 - y0

\Bigr) ,(5.11)

y(t) =
 - 
\Bigl( 

x0

1+x0+y0

\Bigr) 
et +

\Bigl( 
x0

1+x0 - y0

\Bigr) 
e - t\Bigl( 

x0

1+x0+y0

\Bigr) 
et +

\Bigl( 
x0

1+x0 - y0

\Bigr) 
e - t  - 2

\Bigl( 
x0

1+x0+y0

\Bigr) \Bigl( 
x0

1+x0 - y0

\Bigr) .(5.12)

Notice that, similarly to the linear case, the solution is constructed from combinations of expo-
nentials originating from the linear eigenfunction solutions. Instead of linear combinations of
exponentials, however, the solution is formed from a nonlinear combination of these exponen-
tials. Figure 5(b)--(c) shows the flow lines in the (x, y) space projected onto the eigenfunctions,
resulting in linear dynamics. The system (\varphi 1,\varphi 2) has simple linear dynamics (Figure 5(d))
which can be projected back to the original space (Figure 5(e)--(f)). The analytical solution
for \bfx (t) initially matches the numerical solution from ode45 (Figure 5(g)); however, the error
in the numerical solution accumulates over time (Figure 5(h)). In addition to the accumula-
tion of errors, ode45 cannot produce a numerical solution past the threshold of its integration
tolerance. The analytical solution shows that the trajectories go to infinity and back in finite
time, which is a phenomena that is unobservable using ode45. This is due to the cessation in
integration when the integration tolerance is met (Figure 5(g)).

5.2. Nonlinear example 2. Consider another nonlinear ODE that, as in the previous
example, has three real linear invariant manifolds,

\.x= x - xy,

\.y= - x - y - y2
(5.13)

with initial conditions x(0) = x0 and y(0) = y0. Three one-dimensional invariant manifolds
go through the fixed points and are tangent to the eigenvectors of the system linearized at
the fixed points. These one-dimensional invariant manifolds can be defined by the functions
x = 0, y =  - 1

2x, and y =  - x - 1. The M -functions produced from these invariant manifolds
are M1 = x, M2 = x+ 2y, and M3 = 1+ x+ y. The invariant manifolds are generated by the
zero level sets of the M -functions \Lambda 1 = \{ (x, y) : M1(x, y) = 0\} , \Lambda 2 = \{ (x, y) : M2(x, y) = 0\} ,
and \Lambda 3 = \{ (x, y) : M3(x, y) = 0\} (Figure 6(a)). We solve for the corresponding N -functions
using (2.7).

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

dx
dt

x
=

x - xy

x
=

x(1 - y)

x
= 1 - y,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(x+2y)
dt

x+ 2y
=

 - x - xy - 2y - y2

x+ 2y
=

(x+ 2y)( - 1 - y)

x+ 2y
= - 1 - y,

N3(x, y) =
d
dtM3(x, y)

M3(x, y)
=

d(1+x+y)
dt

1 + x+ y
=

 - xy - y - y2

1 + x+ y
=

(1+ x+ y)( - y)

1 + x+ y
= - y.
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942 MEGAN MORRISON AND J. NATHAN KUTZ

The N -functions corresponding to the M -functions are N1(x, y) = 1 - y, N2(x, y) =  - 1 - y,
and N3(x, y) = - y. Multiple differences of the N -functions result in constants,

\lambda 1 =N3(x, y) - N1(x, y) = - y - (1 - y) = - 1,

\lambda 2 =N3(x, y) - N2(x, y) = - y - ( - 1 - y) = 1,

\lambda 3 =N1(x, y) - N3(x, y) = 1 - y - ( - y) = 1,

\lambda 4 =N1(x, y) - N2(x, y) = 1 - y - ( - 1 - y) = 2.

Therefore, according to Theorem 3.1, (5.13) has eigenfunctions

\varphi 1(x, y) =
M3

M1
=

1+ x+ y

x
, \lambda 1 = - 1,(5.14)

\varphi 2(x, y) =
M3

M2
=

1+ x+ y

x+ 2y
, \lambda 2 = 1,(5.15)

\varphi 3(x, y) =
M1

M3
=

x

1 + x+ y
, \lambda 3 = 1,(5.16)

\varphi 4(x, y) =
2M1

M2
=

2x

x+ 2y
, \lambda 4 = 2.(5.17)

The weighting vectors for these eigenfunctions are \bfp 1 = [ - 1 0 1]T , \bfp 2 = [0  - 1 1]T , \bfp 3 = [1 0  - 
1]T , and \bfp 4 = [1  - 1 0]T since \lambda 1 = - 1N1+0N2+1N3, \lambda 2 = 0N1 - 1N2+1N3, \lambda 3 = 1N1+0N2 - 
1N3, and \lambda 4 = 1N1 - 1N2+0N3. The set of functions \{ log(M1(x, y), log(M2(x, y), log(M3(x, y)\} 
is linearly independent because at least one of the generalized Wronskians is not identically
equal to zero [50]. Not all pairs of vectors are linearly independent. For example, \bfp 1 and \bfp 3

are linearly dependent, meaning that the eigenfunction pair (\varphi 1,\varphi 3) cannot be used to solve
for \bfx (t). \bfp 1 and \bfp 2 are linearly independent; we therefore select the corresponding pair of
eigenfunctions (\varphi 1,\varphi 2) to solve for \bfx (t). Using \varphi 1(x, y) and \varphi 2(x, y) to solve for x and y gives us

x(\varphi 1,\varphi 2) =
2\varphi 2

 - \varphi 1  - \varphi 2 + 2\varphi 1\varphi 2
,(5.18)

y(\varphi 1,\varphi 2) =
\varphi 1  - \varphi 2

 - \varphi 1  - \varphi 2 + 2\varphi 1\varphi 2
.(5.19)

Substituting the solutions \varphi 1(t;x0, y0) =\varphi 1(x0, y0)e
\lambda 1t and \varphi 2(t;x0, y0) =\varphi 2(x0, y0)e

\lambda 2t for \varphi 1

and \varphi 2 in the formulas for x and y gives us

x(t) =
2
\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et

 - 
\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et + 2

\Bigl( 
1+x0+y0

x0

\Bigr) \Bigl( 
1+x0+y0

x0+2y0

\Bigr) ,(5.20)

y(t) =

\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et

 - 
\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et + 2

\Bigl( 
1+x0+y0

x0

\Bigr) \Bigl( 
1+x0+y0

x0+2y0

\Bigr) .(5.21)

Simplifying we get
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 943

x(t) =
2
\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et

 - 
\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et + 2(1+x0+y0)2

x0(x0+2y0)

,(5.22)

y(t) =

\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et

 - 
\Bigl( 
1+x0+y0

x0

\Bigr) 
e - t  - 

\Bigl( 
1+x0+y0

x0+2y0

\Bigr) 
et + 2(1+x0+y0)2

x0(x0+2y0)

.(5.23)

Figure 6(b)--(c) shows the flow of (5.13) in the (x, y) space projected onto the eigenfunctions
which have linear dynamics. The flow in the (\varphi 1,\varphi 2) space can be solved and projected
back onto the original variables (Figure 6(d)--(f)). The numerical solutions to \bfx (t) match
the analytical solutions initially, but error does accumulate; when the integration tolerance of
ode45 is met the numerical solution ends (Figure 6(g)--(h)).

Figure 6. Dynamics in original space and eigenfunction space. (a) Phase plane for (5.13). (b)--(c) Flow
lines projected onto \varphi 1 and \varphi 2. (d) Phase plane of (\varphi 1,\varphi 2). (e)--(f) Flow lines of (\varphi 1,\varphi 2) mapped back to
original variables (x, y). (g) Analytical solution compared to numerical solution produced using ode45. (h) Error
in trajectories over time.
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944 MEGAN MORRISON AND J. NATHAN KUTZ

5.3. Nonlinear example 3---Quadratic invariant manifolds. The examples we have con-
sidered thus far all have linear invariant manifolds. We now consider a system with quadratic
manifolds intersecting the system's fixed points,

\.x= x - xy,

\.y= - y+ x2  - 2y2
(5.24)

with initial conditions x(0) = x0 and y(0) = y0. Three one-dimensional invariant manifolds
go through the fixed points and are tangent to the eigenvectors of the system linearized at
the fixed points. These one-dimensional invariant manifolds can be defined by the functions
x= 0, y= - 1

3x
2, and y= 1

2x
2  - 1

2 . The invariant manifold generating functions for (5.24) are
M1 = x, M2 = x2  - 3y, and M3 = 1 - x2 + 2y. We use (2.7) to solve for the N -functions:

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

dx
dt

x
=

x - xy

x
=

x(1 - y)

x
= 1 - y,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(x2 - 3y)
dt

x2  - 3y
=

(x2  - 3y)( - 1 - 2y)

x2  - 3y
= - 1 - 2y,

N3(x, y) =
d
dtM3(x, y)

M3(x, y)
=

d(1 - x2+2y)
dt

1 - x2 + 2y
=

(1 - x2 + 2y)( - 2y)

1 - x2 + 2y
= - 2y.

The N -functions corresponding to the M -functions are N1(x, y) = 1 - y, N2(x, y) = - 1 - 2y,
and N3(x, y) = - 2y. The following differences in the N -functions result in constants:

\lambda 1 =N3(x, y) - N2(x, y) = - 2y - ( - 1 - 2y) = 1,

\lambda 2 =N3(x, y) - 2N1(x, y) = - 2y - (1 - y) - (1 - y) = - 2.

According to Theorem 3.1, we can construct the following eigenfunctions from theM -functions:

\varphi 1(x, y) =
 - 3M3

M2
=

 - 3(1 - x2 + 2y)

x2  - 3y
, \lambda 1 = 1,

\varphi 2(x, y) =
M3

M2
1

=
1 - x2 + 2y

x2
, \lambda 2 = - 2.

The set of functions \{ log(M1(x, y), log(M2(x, y), log(M3(x, y)\} is linearly independent because
at least one of the generalized Wronskians is not identically equal to zero [50]. The weight
vectors for \varphi 1 and \varphi 2, \bfp 1 = [0  - 1 1]T and \bfp 2 = [2 0 1]T , are linearly independent, and
therefore (\varphi 1,\varphi 2) can be used to solve for \bfx (t). Solving for x and y gives us two solutions this
time,

x=
\pm 
\surd 
3\varphi 1\surd 

\varphi 1  - 6\varphi 2 + 3\varphi 1\varphi 2
,(5.25)

y=
\varphi 1 + 3\varphi 2

\varphi 1  - 6\varphi 2 + 3\varphi 1\varphi 2
.(5.26)
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 945

The correct sign for x is resolved by taking the sign of the initial condition, x0, resulting in
the solution

x(t) =
sign(x0)

\sqrt{} 
9( - 1+x2

0 - 2y0)
x2
0 - 3y0

et\sqrt{} 
3( - 1+x2

0 - 2y0)
x2
0 - 3y0

et  - 6(1 - x2
0+2y0)
x2
0

e - 2t + 9( - 1+x2
0 - 2y0)(1 - x2

0+2y0)
(x2

0 - 3y0)x2
0

e - t
,(5.27)

y(t) =

3( - 1+x2
0 - 2y0)

x2
0 - 3y0

et + 3(1 - x2
0+2y0)
x2
0

e - 2t

3( - 1+x2
0 - 2y0)

x2
0 - 3y0

et  - 6(1 - x2
0+2y0)
x2
0

e - 2t + 9( - 1+x2
0 - 2y0)(1 - x2

0+2y0)
(x2

0 - 3y0)x2
0

e - t
.(5.28)

Figure 7(a) shows the flow lines of (5.24) and the system's quadratic invariant manifolds. The
nonlinear trajectories are projected onto the eigenfunction space, resulting in linear dynamics
(Figure 7(b)--(c)). The linear system can be solved and the trajectories projected back to
the original space (Figure 7(d)--(f)). The numerical solution matches the analytical solution
initially with growing error over time (Figure 7(g)--(h)).

5.4. Eigenfunctions from invariant manifolds in previous work. Eigenfunctions con-
structed from a system's invariant manifolds can be found in previous work [6, 4]. In [6]
the nonlinear ODE

\.x= - 0.05x,

\.y= - (y - x2)
(5.29)

has eigenfunctions \varphi 1 =M1 = x and \varphi 2 =M2 = y - 10
9 x

2 with corresponding eigenvalues \lambda 1 =
N1 = - 0.05 and \lambda 2 =N2 = - 1. Both of these eigenfunctions are invariant manifold generating
functions with zero level sets that go through the fixed point at the origin. Eigenfunctions
could be constructed from individual M -functions because the corresponding N -functions are
constants, making them eigenvalues.

In [4] the nonlinear ODE

dx

dt
= - 2y(x2  - y - 2xy2 + y4) + (x+ 4x2y - y2  - 8xy3 + 4y5),

dy

dt
= 2(x - y2)2  - (x2  - y - 2xy2 + y4)

(5.30)

was found to have eigenfunctions \varphi 1 = M1 = x  - y2 and \varphi 2 = M2 =  - x2 + y + 2xy2  - y4

with corresponding eigenvalues \lambda 1 = N1 = 1 and \lambda 2 = N2 = 1. Once again, these eigenfunc-
tions are M -functions whose zero level sets describe invariant manifolds that go through the
system's fixed points. The corresponding N -functions are constants, once again allowing the
M -functions to be eigenfunctions.

6. Discussion. We present a novel method for solving planar nonlinear ODEs when certain
restrictive criteria are met. The crux of our method relies on finding explicit, globally valid
expressions for eigenfunctions by composing invariant manifold generating functions in the
manner outlined in Theorems 3.1 and 3.2. We demonstrate our method by finding analytical
solutions for two-dimensional nonlinear ODEs that were previously analytically intractable.

This method only applies to a restrictive subset of planar ODEs. First, the ODE must
have one-dimensional invariant manifolds that can be described by functions of the form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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946 MEGAN MORRISON AND J. NATHAN KUTZ

Figure 7. Dynamics in original space and eigenfunction space. (a) Phase plane for (5.24). (b)--(c) Flow
lines projected onto \varphi 1 and \varphi 2. (d) Phase plane of (\varphi 1,\varphi 2). (e)--(f) Flow lines of (\varphi 1,\varphi 2) mapped back to
original variables (x, y). (g) Analytical solution compared to numerical solution produced using ode45. (h) Error
in trajectories over time.

y =mi(x) or x=mi(y) that go through the system's fixed points. If closed-form expressions
for these functions cannot be obtained, then the eigenfunctions must be generated numeri-
cally (Appendix D). Second, according to Theorem 3.2, the variables in the N -functions must
be cancelable, producing a nonzero constant. This is not guaranteed to be the case, even
with a closed-form expression for the invariant manifolds. Third, at least two independent
eigenfunctions must be attainable to map from the eigenfunction space back to the original
state variables. Fourth, the system of eigenfunctions must be invertible, resulting in a unique
solution for the state variables (x(t), y(t)). These conditions are restrictive, and few nonlin-
ear ODEs meet this criteria. However, for those that do, we have shown that a method for
obtaining an analytical solution exists.

6.1. Extensions to a larger class of two-dimensional ODEs. There are several ways in
which it may be possible to generalize the method to a larger class of ODEs. One avenue for
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 947

extending the method to more systems of ODEs is to allow the M -functions to have a less
restrictive form while maintaining a zero level set along the one-dimensional invariant manifold
of interest. We restrict our invariant manifold generating functions to have the form M(x, y) =
y  - m(x), where the zero level set of M(x, y) is the one-dimensional invariant manifold y =
m(x); however, a broader class of M -functions of the form M(x, y) = (y  - m(x))g(x, y) also
have a zero level set along the curve y = m(x), for example, M(x, y) = (y  - m(x))(1 + x2).
M -functions of this more general form may produce eigenfunctions when M -functions of the
restrictive form fail to do so. In addition to this, many planar systems of ODEs have one-
dimensional invariant manifolds that can only be described by implicit functions m(x, y) = 0.
The M -functions could be generalized to take this form as well, M(x, y) =m(x, y). Another
restriction we set is how the M -functions can be combined to form eigenfunctions. Relaxing
this restriction may also expand the class of eigenfunctions that can be represented.

6.2. Complex-valued eigenfunctions. In the one-dimensional case, mapping an ODE in
\BbbR to a space with linear dynamics sometimes requires the eigenfunction to be complex-valued,
\varphi :\BbbR \rightarrow \BbbC (section 4.2, Appendix A). This is unequivocally the case when the ODE contains
complex fixed points, (A.1, A.6), but also can occur when the ODE contains only real fixed
points, (4.12). Just as in the one-dimensional case, we expect that for two-dimensional nonlin-
ear ODEs, complex-valued eigenfunctions will sometimes be necessary to obtain linear dynam-
ics, \varphi : \BbbR 2 \rightarrow \BbbC . Eigenfunctions may be able to be constructed from complex-valued invari-
ant manifolds and manifolds eminating from complex-valued fixed points in two-dimensional
ODEs. We already have an example of this in the linear case. Linear systems in \BbbR 2 that
are spiral sinks or sources do not have real invariant manifolds that are tangent to the fixed
point eigenvectors, and yet these systems can be solved using complex-valued eigenvalues and
eigenfunctions, \varphi :\BbbR 2 \rightarrow \BbbC , constructed from complex-valued invariant manifolds. We aim to
investigate how to find and construct complex-valued invariant manifolds as well as how they
may be composed to produce eigenfunctions.

6.3. Ramifications for data-driven approximations of eigenfunctions. When analytical
solutions are not possible, our method highlights an alternative approach for approximating
eigenfunctions and the ensuing solutions to ODEs. Approximate analytical solutions can
be preferable to numerical integration as they are less computationally expensive, can be
analyzed, and expand the number of control techniques that can be used for the ODE [20, 7].
M -functions may be an excellent set of functions for approximating eigenfunctions in certain
cases. The basis chosen for a given approximation can have a significant impact on the quality
of the approximation and its accuracy, stability, and simplicity. UsingM -functions to focus the
search for eigenfunctions may result in simpler functional forms and more accurate predictions.

Polynomials or other smooth continuous functions are often used as basis functions for the
data-driven discovery of eigenfunctions [46, 21, 16, 6, 25, 24]. Choosing smooth and contin-
uous basis functions for data-driven discovery assumes the resulting eigenfunctions, linearly
composed from the basis functions, are smooth and continuous. Many of the eigenfunctions
found in this work are not continuous; it is impossible to generate continuous eigenfunctions
that are globally valid for some ODEs. In these instances, forcing the approximate eigen-
functions to be continuous by using smooth continuous basis functions would result in a poor
approximation, particularly around discontinuities.
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948 MEGAN MORRISON AND J. NATHAN KUTZ

Deriving globally valid eigenfunctions or exact expressions may not be necessary depend-
ing on the desired use for the eigenfunctions. Nonlinear dynamics can be linearized for certain
regions around fixed points with continuous approximate eigenfunctions [23, 26, 32, 25]; these
methods, in essence, create approximate local eigenfunctions for different regions of the do-
main that extend farther and are more accurate than the simple approximate eigenfunctions
obtained through linearization using the Jacobian [42, 6, 16]. DMD methods are often used
to approximate eigenfunctions and produce different subspaces of observables for the region
around each fixed point in the dynamical system [21, 32, 16, 4]. Our method, in contrast,
produces a single set of observables for the entire space. If approximate solutions and control
are desired only for a region around a particular fixed point, then using smooth functions to
approximate eigenfunctions for a particular region may be suitable. Otherwise, data-driven
discovery of eigenfunctions that allow for the discovery of rational eigenfunctions and eigen-
functions that have discontinuities may be useful in finding globally valid eigenfunctions and
more exact and simpler mappings between spaces with nonlinear and linear dynamics. In
Appendix D we outline and implement a numerical method for finding approximate eigen-
functions that are compositions of M -functions. This method can be applied to approximate
eigenfunctions when closed-form expressions for the one-dimensional invariant manifolds do
not exist. We aim to investigate the usefulness of this alternative means of constructing
approximate eigenfunctions.

6.4. Comparison to the method of characteristics solution for eigenfunctions. The
eigenfunctions of a nonlinear ODE, (2.1), are solutions to (2.5), a linear PDE which is solvable
via the method of characteristics [4, 3, 27]. The method of characteristics propagates an initial
condition curve, \Gamma , forward in time creating an integral surface that is a solution to the PDE
[27]. In general, the method of characteristics does not produce simple, closed-form solutions.
The \Gamma chosen to be the initial condition curve must traverse the flow. As there is an infinite
number of curves that can be chosen for the initial condition, there is an infinite number of
resulting eigenfunctions [4]. Most of the transverse flows chosen to be initial conditions will
result in eigenfunctions that do not have simple expressions. The eigenfunctions with simple
analytical expressions found in this manuscript correspond to a method of characteristics
solution for a specially chosen initial conditions curve \Gamma . We have not solved for these curves,
and it remains an open question how to select \Gamma such that the resulting eigenfunction will
have a simple closed-form expression. This line of questioning is not addressed in this paper
and is an avenue for further investigation.

7. Conclusion. We solve two-dimensional nonlinear ODEs that have closed-form expres-
sions for some of their one-dimensional invariant manifolds by finding Koopman eigenfunc-
tions, from which we can construct solutions. Koopman eigenfunctions are generally difficult
to find; we outline how Koopman eigenfunctions can be constructed from a system's invari-
ant manifolds when certain conditions are met. We provide formulas for sets of eigenvalue-
eigenfunction pairs which can then be used to solve the nonlinear system. We demonstrate
the Koopman eigenfunction method of solving nonlinear ODEs on one-dimensional and two-
dimensional ODEs. This method solves nonlinear ODEs in \BbbR 2 that thus far had no known
analytical solution. It is possible this method may be extended to solve a larger class of non-
linear ODEs and we offer several avenues for improvement; our method may also prove useful
for the data-driven discovery of eigenfunctions.
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 949

Building exact or approximate eigenfunctions from invariant manifolds may be a useful
framework for further solving nonlinear systems and approximating solutions. Invariant man-
ifolds are well established as important underlying structures in dynamical systems that can
be used for analysis, dimension reduction, and control; the method and ideas we explore re-
veal another way in which invariant manifolds are a useful framework for understanding and
solving nonlinear systems.

Appendix A. Koopman eigenfunctions for 1-dimensional ODEs---More examples.

A.1. One-dimensional ODE---Example 3. Suppose we take (4.12) and add two more fixed
points to the system but on the imaginary axis, still resulting in a real-valued ODE,

dx

dt
= - x5 + x, x(0) = x0,(A.1)

dx

dt
= ( - x3 + x)(x2 + 1),

dx

dt
= - x(x+ 1)(x - 1)(x+ i)(x - i).

We use the eigenvalue \lambda =  - 1 to map all stable fixed points, x = \pm 1,\pm i, to the stable fixed
point in the eigenfunction space \varphi = 0 (Figure 8(a)--(b)). We map the unstable fixed point,
x= 0, to unstable fixed point \varphi =\infty ,

\varphi (x) = x - 1(x - 1)
1

4 (x+ 1)
1

4 (x - i)
1

4 (x+ i)
1

4 =
(x4  - 1)

1

4

x
.(A.2)

The initial condition x0 mapped to \varphi (x) is \varphi 0 =
(x4

0 - 1)
1
4

x0
. The solution for \varphi (t;x0) is

\varphi (t;x0) =\varphi (x0)e
\lambda t =

(x40  - 1)
1

4

x0
e - t.(A.3)

Using (A.2) we solve for x in terms of \varphi ,

x(t) =
1

1

4

(1 - \varphi 4)
1

4

=
1

1

4\Biggl( 
1 - 

\biggl( 
(x4

0 - 1)
1
4

x0
e - t

\biggr) 4
\Biggr) 1

4

.(A.4)

Figure 8(b)--(c) shows that the nonlinear mapping of the eigenfunction \varphi (x) generates linear
dynamics for \varphi (t;x0). The dynamics when x\in \BbbC , where x= a+ ib, can be written as

da

dt
= a - a5 + 10a3b2  - 5ab4,

db

dt
= b - 5a4b+ 10a2b3  - b5.

(A.5)

We observe that (A.1) must map to a complex-valued eigenfunction in order to obtain linear
dynamics. If \.x= f(x) has complex fixed points, then \varphi (x) will be a complex-valued function
even for real inputs x \in \BbbR . Figure 8(d)--(e) shows x = \Re (x) + i\Im (x) mapped to the real and
imaginary components of the eigenfunction \varphi (x) =\Re (\varphi ) + i\Im (\varphi ).
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950 MEGAN MORRISON AND J. NATHAN KUTZ

Figure 8. (a) Equation (A.1) has nonlinear dynamics. (b) x mapped to complex-valued eigenfunction
\varphi (x). (c) The dynamics of \varphi is linear. (d)--(e) Dynamics of x = a + ib viewed in the complex plaine as
well as mapped to complex-valued \varphi .

A.2. One-dimensional ODE---Example 4. Consider the following nonlinear differential
equation and its factored form:

dx

dt
= x3 + 2x2 + 2x, x(0) = x0,(A.6)

dx

dt
= x(x - ( - 1 - i))(x - ( - 1 + i)).

Set \lambda = 1, and then using (4.5) we get

\varphi (x) = x
1

2 [x - ( - 1 - i)]
1

 - 2+2i [x - ( - 1 + i)]
1

 - 2 - 2i =
e - 

1

2
\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}(1+x)\surd x

(2 + 2x+ x2)
1

4

.(A.7)
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 951

The dynamics of \varphi are \varphi (t;x0) =\varphi (x0)e
t with initial condition

\varphi (x0) =
e - 

1

2
\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}(1+x0)\surd x0

(2 + 2x0 + x20)
1

4

.(A.8)

The mapping from x to \varphi , (A.7), does not have a nice inverse; we cannot find an explicit
solution for x, only an implicit solution. The solution for x(t) is the implicit solution to

e - 
1

2
\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}(1+x0)\surd x0

(2 + 2x0 + x20)
1

4

et =
e - 

1

2
\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}(1+x(t))

\sqrt{} 
x(t)

(2 + 2x(t) + x(t)2)
1

4

.(A.9)

Implicit solutions can be solved using a numerical method.

Appendix B. Testing the linear independence of multivariable functions with gen-
eralized Wronskians. Reference [50] states that if a set of functions \{ gi(x, y)\} ki is linearly
dependent, then all generalized Wronskians of the list of functions (g1(x, y), . . . gk(x, y)) must
be identically equal to zero. We test the set of log(M)-functions from Example 5.1 for linear
independence.

(g1(x, y), g2(x, y), g3(x, y)) = (log(M1(x, y)), log(M2(x, y)), log(M3(x, y)))

= (log(x), log(y - x - 1), log(y+ x+ 1)).

We compute one of the generalized Wronskians and find that it is not identically equivalent
to zero.

W =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
g1(x, y) g2(x, y) g3(x, y)
\partial g1(x,y)

\partial x
\partial g2(x,y)

\partial x
\partial g3(x,y)

\partial x
\partial g1(x,y)

\partial y
\partial g2(x,y)

\partial y
\partial g3(x,y)

\partial y

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
log(x) log(y - x - 1) log(y+ x+ 1)

1
x

 - 1
y - x - 1

1
y+x+1

0 1
y - x - 1

1
y+x+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (B.1)

=
 - 2 log(x)

(y+ x+ 1)(y - x - 1)
 - log(y - x - 1)

x(y+ x+ 1)
+

log(y+ x+ 1)

x(y - x - 1)
\not \equiv 0.(B.2)

Therefore, \{ log(x), log(y - x - 1), log(y+ x+ 1)\} is a linearly independent set of functions.

Appendix C. Koopman eigenfunctions for two-dimensional ODEs---More examples.

C.1. Linear systems. Linear systems have well-known analytical solutions and are used
ubiquitously in the applied sciences for prediction and control [10, 42, 41]. Although solutions
to linear systems are well-known, we will revisit the method here in a way that highlights
the Koopman eigenfunctions and invariant manifolds and their connection to the ensuing
solution. Previous work has considered linear systems from a Koopman perspective [8, 3, 29];
we consider linear systems here once again as an introduction for solving nonlinear systems.

The solution to a linear ODE \.\bfx =\bfA \bfx is \bfx (t) = exp(\bfA t)\bfx 0. The solution is typically con-
structed by finding the eigenvalues and eigenvectors and then linearly composing them [42, 10].
We will instead use the Koopman approach, Algorithm 5.1, to find a solution. Consider the
two-dimensional linear ODE

\.x= x - y,

\.y= - 2x
(C.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 2

16
.1

65
.9

5.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



952 MEGAN MORRISON AND J. NATHAN KUTZ

with initial conditions x(0) = x0 and y(0) = y0. This system can be written as

\.\bfx =\bfA \bfx ,(C.2) \biggl[ 
\.x
\.y

\biggr] 
=

\biggl[ 
1  - 1
 - 2 0

\biggr] \biggl[ 
x
y

\biggr] 
.(C.3)

The eigenvalues and eigenvectors of \bfA are \lambda 1 = 2, \lambda 2 = - 1, v1 = [ - 1 1]T , and v2 = [1 2]T . We
use the eigenvectors to construct two invariant manifold generating functions, M1 = y+x and
M2 = y  - 2x, that are zero along the eigenvector directions; \Lambda 1 = \{ (x, y) :M1(x, y) = 0\} and
\Lambda 2 = \{ (x, y) :M2(x, y) = 0\} are the two one-dimensional invariant manifolds of (C.1) that pass
through the fixed point at the origin (Figure 9(a)). We use (2.7) to solve for the N -functions,

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

d(y+x)
dt

y+ x
=

 - 2x+ x - y

y+ x
= - y+ x

y+ x
= - 1,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(y - 2x)
dt

y - 2x
=

 - 2x - 2(x - y)

y - 2x
= 2

y - 2x

y - 2x
= 2.

Because N1 and N2 are both constants, M1(x, y) and M2(x, y) are both eigenfunctions of the
linear system (C.1) with eigenvalues \lambda 1 =N1(x, y) = - 1 and \lambda 2 =N2(x, y) = 2,

\varphi 1(x, y) = y+ x, \lambda 1 = - 1,(C.4)

\varphi 2(x, y) = y - 2x, \lambda 2 = 2.(C.5)

Figure 9(b)--(c) shows eigenfunctions \varphi 1 and \varphi 2 with the dynamics in the (x, y) space projected
onto the eigenfunction surfaces. The dynamics in the eigenfunction space are linear. The
weight vector of the N -functions for \varphi 1 is \bfp 1 = [1 0]T since \lambda 1 = 1N1+0N2, while the weight
vector for \varphi 2 is \bfp 2 = [0 1]T since \lambda 2 = 0N1 + 1N2. \bfp 1 and \bfp 2 are linearly independent;
therefore, according to Theorem 3.3, \varphi 1 and \varphi 2 belong to different equivalence classes and
can be used in conjunction to solve for \bfx (t). We can confirm that these are in fact eigenvalue-
eigenfunction pairs of (C.1) by checking that they satisfy (2.5).

\nabla \bfx \varphi 1(\bfx ) \cdot F (\bfx ) = \lambda 1\varphi 1(\bfx ),\bigl[ 
1 1

\bigr] \biggl[ x - y
 - 2x

\biggr] 
= - 1(y+ x),

 - y - x= - y - x

=\Rightarrow \varphi 1 is an eigenfunction.

\nabla \bfx \varphi 2(\bfx ) \cdot F (\bfx ) = \lambda 2\varphi 2(\bfx ),\bigl[ 
 - 2 1

\bigr] \biggl[ x - y
 - 2x

\biggr] 
= 2(y - 2x),

2y - 4x= 2y - 4x

=\Rightarrow \varphi 2 is an eigenfunction.

According to (2.6), the eigenfunction solutions are
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SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 953

Figure 9. Linear dynamics and eigenfunctions. (a) Phase plane of (C.1). (b) \varphi 1(x, y), (C.4), formed from
the first eigenvector. (c) \varphi 2(x, y), (C.5), formed from the second eigenvector. (d)--(f) Additional eigenfunctions.
The eigenfunctions have linear dynamics.

\varphi 1(t;x0, y0) =\varphi 1(x0, y0)e
 - t =\varphi 1(x0, y0)e

 - t,(C.6)

\varphi 2(t;x0, y0) =\varphi 2(x0, y0)e
2t =\varphi 2(x0, y0)e

2t.(C.7)

Equations (C.4) and (C.5) give us initial conditions in terms of x and y, \varphi 1(x0, y0) = y0  - x0,
and \varphi 2(x0, y0) = y0  - 2x0. Now that we have analytical solutions to the dynamics in the
eigenfunction space we can map the solutions back to the original (x, y) space. We use the
system of equations (C.4) and (C.5) to solve for x and y as functions of \varphi 1 and \varphi 2,

x(t) =\varphi 1(t;x0, y0) - \varphi 2(t;x0, y0),(C.8)

y(t) = 2\varphi 1(t;x0, y0) - \varphi 2(t;x0, y0).(C.9)

We have analytical solutions for \varphi 1 (C.6) and \varphi 2 (C.7) and may substitute these solutions into
the equations for x and y. With this substitution we get the analytical solution for (x(t), y(t))
in terms of time t and the initial condition (x0, y0),

x(t) = (y0  - x0)e
2t  - (y0  - 2x0)e

 - t,(C.10)

y(t) = 2(y0  - x0)e
2t  - (y0  - 2x0)e

 - t.(C.11)

The key to obtaining a solution was finding eigenfunctions, which have linear dynamics. Be-
cause observables with linear dynamics have known solutions, this process allows us to find
an analytical solution in the (\varphi 1(t;x0, y0),\varphi 2(t;x0, y0)) space and then map the solution back
to the (x(t), y(t)) space.

Although we are finished solving this problem, we will consider what other eigenfunc-
tions we might have used, as \varphi 1 and \varphi 2 were not our only options. Bollt [3] demonstrates
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954 MEGAN MORRISON AND J. NATHAN KUTZ

that additional eigenfunctions can be generated from primary eigenfunctions [3]; the inverse
and product of eigenfunctions are also eigenfunctions. From these properties we generate
additional eigenfunctions for (C.1) out of eigenfunctions \varphi 1 and \varphi 2,

\varphi 3 =
1

\varphi 1
, \lambda 3 = - \lambda 1,(C.12)

\varphi 4 =
1

\varphi 2
, \lambda 4 = - \lambda 2,(C.13)

\varphi 5 =
\varphi 1

\varphi 2
, \lambda 5 = \lambda 1 +

1

\lambda 2
.(C.14)

Figure 9 shows the phase plane of (C.1), the dynamics mapped onto the eigenfunctions, and
the resulting linear dynamics that occur on these special observables. \varphi 1 and \varphi 2 are both a
linear mapping from the (x, y) plane with a null space along v1 and v2, respectively. Con-
versely, \varphi 3 and \varphi 4 are nonlinear with respect to x and y. Both of these functions have a
discontinuity along the eigenvector directions; the eigenfunctions go to infinity as they ap-
proach the invariant manifolds. \varphi 5 has a null space along v1 and is undefined along v2 as it is
composed of \varphi 1 in the numerator and \varphi 2 in the denominator. Although \varphi 3, \varphi 4, and \varphi 5 are
all nonlinear with respect to x and y, they are linear with respect to time. This means that
they all display exponential growth or exponential decay as the eigenfunction observables are
measured along the flow of the original variables. We extend this process to nonlinear ODEs
and use the invariant manifolds of nonlinear systems to generate eigenfunctions.

C.2. Nonlinear example 4---Quasi-two-dimensional system. This next example connects
the one-dimensional and two-dimensional cases and clarifies the connection between the sys-
tem's invariant manifolds and the eigenfunctions,

\.x= x2  - x,

\.y= xy - 2y
(C.15)

with initial conditions x(0) = x0 and y(0) = y0. The surfaces that generate one-dimensional
invariant manifolds that include the fixed points along their zero level-set are M1 = x, M2 =
x - 1, and M3 = y; these one-dimensional invariant manifolds are \Lambda 1 = \{ (x, y) :M1(x, y) = 0\} ,
\Lambda 2 = \{ (x, y) : M2(x, y) = 0\} , and \Lambda 3 = \{ (x, y) : M3(x, y) = 0\} . We use (2.7) to solve for the
N -functions:

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

dx
dt

x
=

x2  - x

x
=

x(x - 1)

x
= x - 1,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(x - 1)
dt

x - 1
=

x2  - x

x - 1
=

x(x - 1)

x - 1
= x,

N3(x, y) =
d
dtM3(x, y)

M3(x, y)
=

dy
dt

y
=

xy - 2y

y
=

y(x - 2)

y
= x - 2.

The N -functions corresponding to the M -functions are N1(x, y) = x  - 1, N2(x, y) = x, and
N3(x, y) = x - 2. Multiple differences of the N -functions result in constants,
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\lambda 1 =N2(x, y) - N1(x, y) = x - (x - 1) = 1,

\lambda 2 =N1(x, y) - N3(x, y) = x - 1 - (x - 2) = 1,

\lambda 3 =N2(x, y) - N3(x, y) = x - (x - 2) = 2.

According to Theorem 3.1, we can construct eigenfunctions from the M -function quotients,

\varphi 1(x, y) = - M2

M1
=

1 - x

x
, \lambda 1 = 1,(C.16)

\varphi 2(x, y) =
M1

M3
=

x

y
, \lambda 2 = 1.(C.17)

The corresponding weight vectors are \bfp 1 = [ - 1 1 0] and \bfp 2 = [1 0  - 1]. \bfp 1 and \bfp 2 are linearly
independent, meaning we may use \varphi 1 and \varphi 2 to solve for \bfx (t) according to Theorem 3.3.
Solving for x and y as functions of \varphi 1 and \varphi 2 and substituting the solutions for \varphi 1(t;x0, y0)
and \varphi 2(t;x0, y0) gives us

x(t) =
1

1+\varphi 1(t;x0, y0)
=

1

1+ 1 - x0

x0
et
,(C.18)

y(t) =
1

\varphi 2(t;x0, y0)(1 +\varphi 1(t;x0, y0))
=

y0
x0et + (1 - x0)e2t

.(C.19)

Notice that the dynamics of x and the solution for x do not depend on y, making it a one-
dimensional ODE. Its eigenfunction, (C.16), has a zero at x = 1 and a singularity at x = 0.
Now when x is viewed as the first variable in a two-dimensional ODE, the first eigenfunction is
now zero not only at a single point, x= 1, but along the entire curve x= 1 in the (x, y) plane.
Likewise its singularity now no longer exists only at a single point, x= 0, but along the entire
curve x= 0 in the (x, y) plane. This example demonstrates how zero and singular level-sets of
eigenfunctions in \BbbR 2 are natural extensions of zero and singular values of eigenfunctions in \BbbR .

C.3. Nonlinear example 5. Consider the system with three linear invariant manifolds,

\.x= x - y - x2,

\.y= - x - y - xy.
(C.20)

The invariant manifolds that are one-dimensional, go through the system's fixed points, and
are tangent to the fixed point eigenvector directions occur along y= (1+

\surd 
2)x, y= (1 - 

\surd 
2)x,

and y = x - 2. The invariant manifold generating functions are M1 = y  - (1 +
\surd 
2)x, M2 =

y  - (1 - 
\surd 
2)x, and M3 = y  - x+ 2; the invariant manifolds are \Lambda 1 = \{ (x, y) :M1(x, y) = 0\} ,

\Lambda 2 = \{ (x, y) : M1(x, y) = 0\} , and \Lambda 3 = \{ (x, y) : M1(x, y) = 0\} . We use (2.7) to solve for the
corresponding N -functions,

N1(x, y) =
d
dtM1(x, y)

M1(x, y)
=

d(y - (1+
\surd 
2)x)

dt

y - (1 +
\surd 
2)x

=
(y - (1 +

\surd 
2)x)(

\surd 
2 - x)

y - (1 +
\surd 
2)x

=
\surd 
2 - x,

N2(x, y) =
d
dtM2(x, y)

M2(x, y)
=

d(y - (1 - 
\surd 
2)x)

dt

y - (1 - 
\surd 
2)x

=
(y - (1 - 

\surd 
2)x)( - 

\surd 
2 - x)

y - (1 - 
\surd 
2)x

= - 
\surd 
2 - x,

N3(x, y) =
d
dtM3(x, y)

M3(x, y)
=

d(y - x+2)
dt

y - x+ 2
=

(y - x+ 2)( - x)

y - x+ 2
= - x.
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The N -functions are N1(x, y) =
\surd 
2  - x, N2(x, y) =  - 

\surd 
2  - x, and N3(x, y) =  - x. The

following linear combinations ofN -functions result in constants: \lambda 1 =N3(x, y) - N2(x, y) =
\surd 
2,

\lambda 2 = N3(x, y)  - N1(x, y) =  - 
\surd 
2, and \lambda 3 = N1(x, y)  - N2(x, y) = 2

\surd 
2. We construct the

eigenfunctions

\varphi 1(x, y) =
M3

2M2
=

y - x+ 2

2(y - (1 - 
\surd 
2)x)

, \lambda 1 =
\surd 
2,(C.21)

\varphi 2(x, y) =
M3

2M1
=

y - x+ 2

2(y - (1 +
\surd 
2)x)

, \lambda 2 = - 
\surd 
2.(C.22)

The weight vectors \bfp 1 = [0  - 1 1]T and \bfp 2 = [ - 1 0 1]T are linearly independent, meaning
that we can solve for \bfx (t) using (\varphi 1,\varphi 2). Solving the nonlinear system of equations (\varphi 1,\varphi 2)
for (x, y) gives us

x=
 - 
\surd 
2(\varphi 1  - \varphi 2)

 - \varphi 1  - \varphi 2 + 4\varphi 1\varphi 2
,(C.23)

y=
(2 - 

\surd 
2)\varphi 1 + (2+

\surd 
2)\varphi 2

 - \varphi 1  - \varphi 2 + 4\varphi 1\varphi 2
.(C.24)

Substituting the analytical solutions for \varphi 1 and \varphi 2 and the initial condition (x0, y0) gives us

x(t) =
 - 
\surd 
2
\Bigl( 

y0 - x0+2

2(y0 - (1 - 
\surd 
2)x0)

e
\surd 
2t  - y0 - x0+2

2(y0 - (1+
\surd 
2)x0)

e - 
\surd 
2t
\Bigr) 

 - y0 - x0+2

2(y0 - (1 - 
\surd 
2)x0)

e
\surd 
2t  - y0 - x0+2

2(y0 - (1+
\surd 
2)x0)

e - 
\surd 
2t + (y0 - x0+2)2

(y0 - (1 - 
\surd 
2)x0)(y0 - (1+

\surd 
2)x0)

,

y(t) =
(2 - 

\surd 
2) y0 - x0+2

2(y0 - (1 - 
\surd 
2)x0)

e
\surd 
2t + (2+

\surd 
2) y0 - x0+2

2(y0 - (1+
\surd 
2)x0)

e - 
\surd 
2t

 - y0 - x0+2

2(y0 - (1 - 
\surd 
2)x0)

e
\surd 
2t  - y0 - x0+2

2(y0 - (1+
\surd 
2)x0)

e - 
\surd 
2t + (y0 - x0+2)2

(y0 - (1 - 
\surd 
2)x0)(y0 - (1+

\surd 
2)x0)

.

Appendix D. Koopman eigenfunctions for two-dimensional ODEs---Numerical meth-
ods. Many two-dimensional nonlinear ODEs have invariant manifolds that cannot be easily
defined. We consider how we may test for eigenfunctions that are composed of M -functions
by numerically determining the functions y =mi(x) that define the invariant manifolds. We
then use these functions to numerically construct the M -functions and N -functions and use
regression to solve for a linear combination of N -functions that equals one. If the regression
error is minimal, then by Theorem 3.2 we can use the resulting constants to construct an
eigenfunction.

We use the following steps to test for eigenfunctions:
1. Find fixed points and eigenvectors.
2. Select starting values from linearization along eigenvector directions.
3. Numerically integrate to determine invariant manifolds.
4. Interpolate points along invariant manifolds to numerically define invariant manifold

functions y=mi(x).
5. Numerically define M -functions Mi(\bfx ) from the interpolated functions y=mi(x).
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6. Numerically differentiate the M -functions Mi(\bfx ) to compute Ni(\bfx ).
7. Use regression to solve for pi in the linear equation \bfone =

\sum k
i=1 piNi(x, y), using random

samples x, y drawn from some distribution (e.g., x, y\sim \scrN (0,3)).
8. If the regression error is minimal, then the pi coefficients determine the eigenfunction

\varphi (\bfx ) =
\prod k

i M
pi

i (\bfx ); otherwise there is no eigenfunction of this form.
Testing our procedure on various nonlinear systems, we find that often the regression

results in a large error, indicating that there does not exist an eigenfunction of the form \varphi (\bfx ) =\prod k
i M

pi

i (\bfx ). Other times our procedure yields a near zero error, indicating an approximate,
not exact, eigenfunction. Figure 10 shows eigenfunctions identified for two nonlinear ODEs;
one eigenfunction identified is exact, the other approximate. The left ODE (Figure 10(a)) was
previously analyzed in section 5.3 and was found to have exact eigenfunctions constructed from
M -functions. The right ODE has invariant manifolds that can only be numerically defined.
Figure 10(b) shows the regression results; the regression produces zero error on the left and
minimal error on the right. The resulting constants are used to construct eigenfunctions
(Figure 10(c)).

Exact eigenfunctions usually cannot be constructed from invariant manifolds using the
method we outline. However, approximate eigenfunctions may sometimes be found and may
be useful in constructing approximate analytical solutions. One direction of further research
would be to perform error analysis on approximate analytical solutions derived from numeri-
cally determined approximate eigenfunctions found using this method.

Figure 10. (a) Numerically determined invariant manifolds for two nonlinear ODEs and sample points used
for the regression. (b) Linear combination of N-functions results in exactly 1 with no error on the left and
some error on the right. (c) The regression with no error produces an exact eigenfunction; the regression with
some error produces an approximate eigenfunction.
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958 MEGAN MORRISON AND J. NATHAN KUTZ

Our process for testing for eigenfunctions is implemented in the scripts contained in the
following Github repository: \bfi \bfn \bfv \bfa \bfr \bfi \bfa \bfn \bft \bfm \bfa \bfn \bfi \bff \bfo \bfl \bfd \bfs \bfe \bfi \bfg \bfe \bfn \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs .

Acknowledgment. We would like to thank Marko Budi\v si\'c for his valuable comments on
our manuscript.
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