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Abstract—Federated learning is a popular distributed learning
approach for training a machine learning model without disclos-
ing raw data. It consists of a parameter server and a possibly
large collection of clients (e.g., in cross-device federated learning)
that may operate in congested and changing environments. In this
paper, we study federated learning in the presence of stochastic
and dynamic communication failures wherein the uplink between
the parameter server and client i is on with unknown probability
pti in round t. Furthermore, we allow the dynamics of pti to be
arbitrary.

We first demonstrate that when the pti’s vary across clients,
the most widely adopted federated learning algorithm, Federated
Average (FedAvg), experiences significant bias. To address this ob-
servation, we propose Federated Postponed Broadcast (FedPBC),
a simple variant of FedAvg. It differs from FedAvg in that the
parameter server postpones broadcasting the global model to the
clients with active uplinks till the end of each training round.
Despite uplink failures, we show that FedPBC converges to a
stationary point of the original non-convex objective. On the
technical front, postponing the global model broadcasts enables
implicit gossiping among the clients with active links in round t.
In spite of the time-varying nature of pti , we can bound the
perturbation of the global model dynamics using techniques
to control gossip-type information mixing errors. Extensive
experiments have been conducted on real-world datasets over
diversified unreliable uplink patterns to corroborate our analysis.

Index Terms—Federated learning, communication failures,
gossiping, non-convex optimization, fault-tolerance.

I. INTRODUCTION

FEDERATED learning is a distributed machine learning
paradigm wherein a parameter server and a collection

of end/edge devices (referred to as clients) collaboratively
train a machine learning model without requiring clients to
disclose their local data [2], [3]. Instead of uploading raw data
to the parameter server, the clients work at the front line in
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Base Station 

Fig. 1: A federated learning system with moving autonomous
vehicles as clients. The signal strength of the vehicles indicates the
communication conditions.

processing their local data and periodically report their updates
to the parameter server, which then effectively aggregates
those updates to obtain a new model. The massive system
scale and the client heterogeneity in hardware, software, and
environments leads to either active [2], [3] or passive [4]–[6]
partial client participation, i.e., in each round, the parameter
server receives updates from a subset of clients only.

Federated learning systems are often deployed in congested
and uncontrollable environments with mobile clients such
as smartphones and other internet-of-thing devices. Client
mobility and environment complexity can result in unreliable
communication [3], [7], [8], which may even vary significantly
across time and devices. For example, the network connection
between a smartphone and a base station may be lost when
the smartphone is on a train passing through a tunnel. Pop-
ular transportation layer protocols either have an expensive
overhead (such as TCP) or are unreliable (such as UDP)
[8]. Previous research has demonstrated that unpredictable
fluctuations in both the speed and direction of mobile end
devices can lead to erratic capacity patterns in 5G links [9]–
[11].

Unreliable communication in federated learning systems
has not caught attention until recently. Ye et al. [8] as-
sume the communication failures are symmetric with fixed
underlying statistics. Time-varying communication constraints
are considered in [12], wherein the evolution of the feasible
client sets is assumed to follow a homogeneous Markov chain
with a steady-state distribution. Yet, as we shall see from
the example illustrated in Fig. 1, the assumption of time-
invariant communication dynamics easily breaks down when
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clients are mobile and operate in complex environments. More
detailed discussions are reserved in Section II. It is tempting to
address dynamic communication capabilities via asynchronous
distributed learning, wherein an active client contributes to the
global model only when its uplink is on. Unfortunately, to
the best of our knowledge, existing literature mostly assumes
bounded delay assumption of the uplink availability [13]–
[19], which are hard to hold in practical federated learning
systems [3], [20]. Often, clients in a federated learning system
communicate with the parameter server on their own schedule,
which is subject to communication constraints and can have
variations due to hardware or software heterogeneity.

In this paper, we study stochastic uplink failures wherein
the uplink between the parameter server and client i is active
with probability pti in round t. Furthermore, we allow pti to be
time-varying and its dynamics to be unknown and arbitrary.
An illustrative example that motivates our problem formulation
is shown in Fig. 1. Specifically, fast-moving vehicles quickly
pass through a base station’s coverage, resulting in frequent
handovers. Varying road conditions (e.g., tall buildings, tun-
nels), traffic densities, and unforeseeable extreme weather can
lead to complex dynamics of the connection probabilities. To
the best of our knowledge, understanding the convergence of
federated learning in the presence of such stochastic uplink
failures remains largely under-explored.
Contributions. Our contributions are three-fold:
• We identify simple instances with mild data heterogeneity

and show both analytically and numerically that when the
pti’s are not uniform, Federated Average (FedAvg) – the
most widely adopted federated learning algorithm – fails to
minimize the global objective even for simple convex loss
function.

• We propose Federated Postponed Broadcast (FedPBC),
which differs from FedAvg in that the parameter server
postpones broadcasting the global model to the clients with
active uplinks till the end of each training round.
– On the technical front, postponing the global model

broadcasts enables implicit gossiping among the clients
with active links. Hence, the perturbation caused by non-
uniform and time-varying pti can be bounded by lever-
aging the techniques of controlling information mixing
errors.

– We show in Theorem 1 that, in expectation, FedPBC
converges to a stationary point of the non-convex global
objective when pti ≥ c for an absolute constant c. The
staleness of uplink availability is characterized in Propo-
sition 2. Departing from existing literature, our FedPBC
does not require either balanced pti’ s, bounded stochastic
gradients, or almost surely bounded stochastic gradient
noise.

• We validate our analysis empirically on three real-world
datasets. Extensive experiments are conducted on both time-
varying and time-invariant Bernoulli, Markovian, and cyclic
uplink unreliable patterns.

II. RELATED WORK

In this section, we explore additional related work and
present an exhaustive discussion on relevant work mentioned

in Section I. The section is divided into two parts: client
unavailability and bias correction in distributed learning.

A. Client Unavailability

The communication unreliability addressed in this paper is
implicitly linked to client unavailability. The key commonality
is that, during failure occurrences, the parameter server cannot
receive responses from the involved clients. Prior literature
can roughly be categorized into two groups: known client
participation statistics [2], [4], [21]–[25] and unknown client
participation statistics [6], [12], [20], [26], [27].
Known client participation statistics. In the seminal works
of federated learning [2], [4], the parameter server proactively
determines “who to participate” via sampling the clients either
uniformly at random or proportionally to clients’ local data
volume. A more challenging yet practical scenario where the
parameter server loses such proactive selection capability is
considered in [3]–[5], [28]. To limit the negative impacts of
stragglers, the parameter server only waits for a few fastest
client responses before moving to the next round. To balance
the contribution of active and inactive clients, the parameter
server adjusts their aggregation weights according to the
corresponding response probabilities, which are assumed to be
known. On the other hand, some research aims to manipulate
client scheduling schemes to either improve communication
efficiency or to speed up training, where, at a high level, clients
are required to participate whenever the parameter server
requests. In contrast, clients are allowed to communicate on
their own schedules in our work. To name a few, Perazzone et
al. [21] analyze the convergence of FedAvg under time-varying
client participation rates. Nevertheless, they assume (1) the
participation rates pti’s are a known prior and (2) the parameter
server controls the participation rates to save communication
bandwidth. Chen et al. [24] study a client sampling scheme
under which the parameter server only samples the most
important updates. Toward this, the parameter server needs
to calculate and manipulate the participation rates. Cho et
al. [22] devise an adaptive client sampling scheme that non-
uniformly selects active clients in each round to accelerate
training. Unfortunately, the convergence is up to a non-
vanishing error. In another work, Cho et al. [23] study a cyclic
participation scheme to accelerate FedAvg training, where the
parameter server designs and controls the cyclic participation
pattern of the clients. Tang et al. [29] utilize the notion
of system-induced bias, where the local data set of active
clients does not represent the entire population due to time-
varying unbalanced communications. Albeit facing similar
time-varying communications, their approach requires, which
we do not, the parameter server to select the representative
clients strategically.
Unknown client participation statistics. Only a handful of
existing works fall under this line of research. Wang and Ji
[6] consider structured client unavailability. For the methods
in [6] to converge to stationary points, the response rates of the
clients need to be “balanced” in the sense that either (1) the
pti’s are deterministic and satisfy the regularized participation,
i.e., there exists µ > 0 such that 1

P

∑P
τ=1 p

t0+τ
i = µ for
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all clients at all t0 ∈ {0, P, 2P, · · · } where P is some
carefully chosen integer; or (2) pti’s are random and satisfy
E [pti] = µ for all clients and sufficiently many rounds. In
contrast, we do not require such probabilistic “balanceness”.
Ribero et al. [12] consider random client availability whose
underlying response rates are also heterogeneous and time-
varying with unknown dynamics. The key difference from
our focus is that the underlying dynamics of pti in [12] is
assumed to be Markovian with a unique stationary distribution,
which is hard to justify when the dynamics vary significantly.
Gu et al. [20] consider general client unavailability patterns
for both strongly convex and non-convex global objectives.
For non-convex objectives (which is our focus), they require
that the consecutive unavailability rounds of a client to be
deterministically upper bounded, which does not hold even
for the simple uniform and time-invariant response rates.
Moreover, they require the noise of the stochastic gradient to
be uniformly upper-bounded. Wang and Ji design a lightweight
algorithm in a concurrent work [27] to fix FedAvg over non-
uniform participation probabilities. However, their algorithm
needs a separate online estimation module to adapt clients’
aggregation weights to their unavailable durations, while we
do not. In addition, they analyze only time-invariant communi-
cation probabilities, which are subsumed by our time-varying
communication setup.

B. Bias Correction in Distributed Learning

As we will show in Section IV, FedAvg suffers significant
bias when the uplinks are non-uniformly available. However,
the term bias is not new and has different meanings under dif-
ferent contexts in the field of distributed learning. For example,
clients perform multiple local updates to save communication
in federated learning before communicating with the parameter
server. Yet, bias arises when clients are heterogeneous in the
number of local steps [30]. To correct the bias, Wang et al. [30]
propose FedNova [30], in which every client participates, and
the parameter server normalizes the contribution of different
clients by adjusting the aggregation weights according to their
numbers of local steps. In fully distributed settings (where no
parameter server exists), doubly-stochastic information mixing
matrices are critical in ensuring equal contribution among
clients. Generally, obtaining doubly-stochastic matrices can be
challenging. Push-sum techniques [31], [32] are widely used
to address bias that stems from the lack of doubly-stochastic
information mixing matrices. However, clients in our problem
are only allowed to communicate with the parameter server,
rendering direct applications of the techniques impossible. Our
study is orthogonal to them.

III. PROBLEM FORMULATION

A federated learning system consists of one parameter
server and m clients that collaboratively minimize

min
x∈Rd

F (x) =
1

m

∑
i∈[m]

Fi (x) , (1)

where Fi (x) = Eξi∼Di [ℓi (x; ξi)] is the local objective, Di is
the local distribution, ξi is a stochastic sample that client i has

access to, and ℓi is the local loss function. The loss function
can be non-convex.

We are interested in solving Eq. (1) over unreliable com-
munication uplinks between the parameter server and the
clients. In each round t, the communication uplink between the
parameter server and the client i is active with probability pti,
which could be simultaneously time-varying and is unknown
to both parameter server and clients. Let At be the set of
clients with active uplinks in round t.

Assumption 1 (Threat model). There exists a c ∈ (0, 1] such
that pti ≜ E[1{i∈At}] ≥ c, where the events {i ∈ At} are
independent across clients i ∈ [m] and across rounds t ∈ [T ].

Intuitively, c can be interpreted as one of the system con-
figurations. For our algorithm to work, neither the parameter
server nor clients are required to know c.
Notations. We introduce the additional notations that we will
use throughout the paper. For a given vector v, ∥v∥2 defines
its l2 norm. For a given matrix A, ∥A∥F defines its Frobenius
norm, and λ2(A) denotes its second largest eigenvalue when
A is a square matrix. Rd defines a d-dimensional vector space.
[m] ≜ {1, · · · ,m}. 1{E} is an indicator function of event E ,
i.e., 1{E} = 1 when the event E occurs; 1{E} = 0 otherwise.
F t denotes the sigma-algebra generated by all the randomness
up to round t. O(·) is the asymptotic upper bound of a function
growth, i.e., f(n) = O(g(n)) if there exist constants c0 > 0
and n0 ∈ N such that f(n) ≤ c0g(n) for all n ≥ n0.

IV. A CASE STUDY ON THE BIAS OF FEDAVG

The heterogeneities in federated learning systems with un-
reliable uplinks stem from both heterogeneous local data and
varying uplink activation probabilities, which together result
in a biased objective. In this section, we use a simple quadratic
counterexample (a similar setup as in [30]) to illustrate FedAvg
fails to minimize the global objective in Eq. (1) when pi’s
vary across clients. We numerically observe a similar bias phe-
nomenon when testing other FedAvg-like algorithms such as
FedAvg with momentum and FedAvg with two-sided learning
rates. Let the local objective Fi (x) = 1

2 ∥x− ui∥22 , where
ui ∈ Rd is an arbitrary vector. The corresponding global
objective is thus

F (x) =
1

m

m∑
i=1

Fi (x) =
1

2m

m∑
i=1

∥x− ui∥22 , (2)

with unique minimizer x⋆ = 1
m

∑m
i=1 ui.

Proposition 1. Choose x0 = 0 and ηt = η ∈ (0, 1) for all
t. For a global objective as per Eq. (2) when pti = pi for
all t and under FedAvg with exact local gradients and local
computation steps s ≥ 1, it holds that,

lim
T→∞

E
[
xT
]

=
m∑
i=1

piui

[
1 +

∑m
j=2 (−1)

j+1 1
j

∑
S∈Bj

∏
z∈S pz

]
1−

∏m
i=1 (1− pi)

, (3)

where Bj ≜
{
S
∣∣∣S ⊆ [m] \ {i} , |S| = j − 1

}
.
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Fig. 2: A visualization of the expected output of FedAvg algorithm
with two clients, whose u1 = 0, u2 = 100 and p1 = 0.5. We vary
p2 ∈ [0, 1] (shown as x-axis). Eq. (3) becomes limT→∞ E

[
xT

]
=

(150 · p2) / (p2 + 1). y-axis is the expected output of FedAvg. When
p2 = 0.5, FedAvg recovers the global minimizer (u1 + u2)/2 = 50.
It can be seen that the expected output of the FedAvg algorithm can
deviate far from the global minimizer when p1 ̸= p2.

It can be checked that if there exist i, i′ ∈ [m] such that pi ̸=
pi′ , then limt→∞ E [xt] ̸= x∗. In fact, the expected output
of FedAvg may be significantly away from x⋆ depending on
pi’s and ui’s. As illustrated in the scalar example in Fig. 2,
overall, the global model in FedAvg deviates away from the
global optimum. It is easy to see that the bias only worsens
when the connection probabilities pi’s change over time.

On the one hand, when the probability pti’s are uniform, (3)
reduces to the global optimum x⋆ =

∑m
i=1 ui/m. In other

words, FedAvg recovers the unbiased global optimum when
each client’s uplink is activated equally often. On the other
hand, when clients’ local data is i.i.d., e.g., ui = u for all
i ∈ [m], the expected output of FedAvg recovers the global
optimum u under even heterogeneous pti’s. This matches
the intuition that clients become interchangeable when their
local data distributions are homogeneous. We defer the proof
to Appendix A.

V. ALGORITHM: FEDERATED POSTPONED BROADCAST
(FEDPBC)

In this section, we propose FedPBC (Federated Postponed
Broadcast, formally described in Algorithm 1) - a simple
variant of FedAvg. Recall that At denotes all clients with
active communication links in global round t. The stochastic
gradient used by client i round t is denoted as ∇ℓi(x(t,k)

i ; ξti).
Compared to FedAvg, FedPBC postpones the global model

broadcasts to clients in At till the end of each training
round. Postponing the global model broadcast introduces some
staleness as the clients will start from different xt

i rather than
xt. It turns out that such staleness helps in mitigating the bias
caused by non-uniform link activation probabilities. Moreover,
the expected staleness is bounded as shown in Proposition 2.
Theoretical analysis and numerical results can be found in
Sections VI and VII, respectively.
Implicit gossiping among clients in At. From line 11 to
line 13 of Algorithm 1, via the coordination of the parameter
server, the clients in At implicitly average their local updates
with each other, i.e., there is implicit gossiping among the

Algorithm 1: FedPBC

1 Input: T , x0, s, {ηt}t=0,··· ,T−1. The parameter server
and each client initialize parameter x0;

2 for t = 0, · · · , T − 1 do
/* On the clients. */

3 for i ∈ [m] do
4 x

(t,0)
i = xt

i;
5 for k = 0, · · · , s− 1 do
6 x

(t,k+1)
i ← x

(t,k)
i − ηt∇ℓi(x(t,k)

i ; ξti);
7 end
8 xt⋆

i ← x
(t,s)
i ;

9 Report xt⋆
i to the parameter server;

10 end
/* On the parameter server. */

11 if At ̸= ∅ then xt+1 ← 1
|At|

∑
i∈At xt⋆

i ;
12 else xt+1 ← xt ;
13 for i ∈ At do xt+1

i ← xt+1 ;
14 else xt+1

i ← xt
i;

15 end

clients in At at round t. Formally, we are able to construct a
mixing matrix W (t) as

W
(t)
ij =


1

|At| , if i, j ∈ At;

1, if i = j and i /∈ At;

0, otherwise.

(4)

The matrix is by definition doubly-stochastic and W (t) = I
when At = ∅ or |At| = 1. We further note that this matrix
can be time-varying since the link activation probabilities pti’s
can be time-varying. As can be seen later, this mixing matrix
bridges the gap between local and global model heterogeneity
and establishes a consensus among clients. In compact matrix
form, we adopt the following notations.

X(t) =
[
xt
1, · · · ,xt

m

]
;

G
(t)
0 =

[
s∇ℓ1(x(t,0)

1 ), · · · , s∇ℓm(x(t,0)
m )

]
;

G(t) =

[
s−1∑
r=0

∇ℓ1(x(t,r)
1 ), · · · ,

s−1∑
r=0

∇ℓm(x(t,r)
m )

]
;

∇F (t) =
[
∇F1(x

t
1), · · · ,∇Fm(xt

m)
]
.

(5)

Further, let

x̄t ≜
1

m

m∑
i=1

xt
i. (6)

Consequently, the consensus error, which measures the dis-
tance between the averaged model over all the clients and
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local models, can be written in matrix form as (7),

1

m

m∑
i=1

∥∥x̄t − xt
i

∥∥2
2
≜

1

m
∥X(t) (I− J) ∥2F

=
1

m
∥
(
X(t−1) − ηG(t−1)

)
W (t−1) (I− J) ∥2F

=
η2

m
∥

t−1∑
q=0

G(q)

t−1∏
l=q

W (q) − J

 ∥2F, (7)

where the last equality follows from the fact that all clients
are initiated at the same weights.

VI. CONVERGENCE ANALYSIS

A. Assumptions

Before diving into our convergence results, we introduce
the regularity assumptions, which are commented towards the
end of this subsection.

Assumption 2 (Smoothness). Each local gradient function
∇ℓi(θ) is Li-Lipschitz, i.e.,

∥∇ℓi(x1)−∇ℓi(x2)∥2 ≤ Li ∥x1 − x2∥2 ≤ L ∥x1 − x2∥2 ,

for all x1,x2, and i ∈ [m], where L ≜ max
i∈[m]

Li.

Assumption 3 (Bounded Variance). Stochastic gradients at
each client node i ∈ [m] are unbiased estimates of the true
gradient of the local objectives, i.e.,

E
[
∇ℓi(xt

i) | F t
]
= ∇Fi(x

t
i),

and the variance of stochastic gradients at each client node
i ∈ [m] is uniformly bounded, i.e.,

E
[
∥∇ℓi(x)−∇Fi(x)∥22 | F

t
]
≤ σ2.

Assumption 4. There exists F ∗ ∈ R such that F (x) ≥ F ∗

for all x ∈ Rd.

Assumption 5 (Bounded Inter-client Heterogeneity). We say
that local objective function Fi’s satisfy (β, ζ)-bounded dis-
similarity condition for β, ζ ≥ 0 if

1

m

m∑
i=1

∥∇Fi(x)−∇F (x)∥22 ≤ β2 ∥∇F (x)∥22 + ζ2. (8)

Assumptions, 2, 3 and 4 are standard in federated learning
analysis [33]–[35]. Assumption 5 captures the heterogene-
ity across different users. It is a more relaxed assumption,
e.g. than, bounded gradients [22], [26], where they assume
1
m

∑
i∈[m] ∥∇Fi(x)∥22 ≤ ζ2, also than [6], [19], where they

assume 1
m

∑
i∈[m] ∥∇Fi(x)−∇F (x)∥22 ≤ ζ2. When clients

have i.i.d. local datasets, it holds for Eq. (8) that β = ζ = 0
since Fi = Fj . Notably, we assume the unbiasedness in
Assumption 3 is imposed only at the beginning of each global
round.

B. Convergence Results

In this section, we state our key lemmas and our main
theorem. All remaining proofs are relegated to Appendix A.
Proposition 2 captures the expected staleness of local updates
and can be shown by tools from probability theory [36].

Proposition 2. Define the last active round of the link i as
τi(t) ≜ {t′ | t′ < t, i ∈ At′}. Given pti such that pti ≥ c,
where c is an absolute constant, we have E [t− τi(t)] ≤ 1

c .

Lemma 1 (Lemma 1 in [37]). For s ≥ 1, suppose Assump-
tion 2 holds, we have for all x ∈ Rd :

∥∥∥∥∥
s−1∑
k=0

[
∇ℓi(x(t,k))−∇ℓi(xt)

]∥∥∥∥∥
2

≤ κη

(
s

2

)
Li

∥∥∇ℓi(xt)
∥∥
2
,

where κ ≜ maxi
(1+ηLi)

s−1−sηLi

(s2)(ηLi)
2 and monotonically non-

decreases with respect to η > 0.

Remark 1. Lemma 1 comes from a concurrent work [37] and
characterizes the perturbation incurred by the multi-step local
computation. When s = 1, i.e., when a client performs only
one-step local computation, it holds that κ = 0. For s ≥ 2, we
have κ ≥ 1. Moreover, due to its monotonicity with respect
to η in Lemma 1, κ is bounded from above by an absolute
constant when the learning rate η is upper bounded.

Lemma 2 (Descent Lemma). Suppose Assumptions 2, 3,
and 5 hold. Choose a learning rate η such that η ≤

1
108L2s3(β2+1)(1+κ2L2) . When Lipschitz constant L ≥ 1, it
holds that

E
[
F (x̄t+1)− F (x̄t) | F t

]
≤ −ηs

3

∥∥∇F (x̄t)
∥∥2
2

+ ηs
L2

m

m∑
i=1

∥∥xt
i − x̄t

∥∥2
2
+ η2s26L

(
ζ2 + σ2

) (
1 + κ2L2

)
.

Proof of Lemma 2. By Assumption 2, we have

F (x̄t+1)− F (x̄t) ≤
〈
∇F (x̄t), x̄t+1 − x̄t

〉
+

L

2

∥∥x̄t+1 − x̄t
∥∥2
2

=
〈
∇F (x̄t),− η

m
G(t)1

〉
+

Lη2

2

∥∥∥∥ 1

m
G(t)1

∥∥∥∥2
2

.

Taking expectations with respect to the randomness in the
mini-batches at t-th rounds, we have

E
[
F (x̄t+1)− F (x̄t) | F t

]
≤ E

[〈
∇F (x̄t),− η

m
G(t)1

〉
+

Lη2

2

∥∥∥∥ 1

m
G(t)1

∥∥∥∥2
2

| F t

]
.

For ease of notations, we abbreviate ∇ℓi(x(t,k)
i ) as ∇ℓ(t,k)i .
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(i) Bounding E[
〈
∇f(x̄t),− η

m∇G
(t)1
〉
| F t].

E
[〈
∇F (x̄t),− η

m
G(t)1

〉
| F t

]
= − η

m
E

[〈
∇F (x̄t),

m∑
i=1

s−1∑
k=0

∇ℓ(t,k)i

〉
| F t

]
= −sη

m

〈
∇F (x̄t),∇F (t)1

〉
︸ ︷︷ ︸

(A)

+ E

[
η

m

〈
∇F (x̄t),

m∑
i=1

s∇ℓ(t,0)i −
s−1∑
k=0

∇ℓ(t,k)i

〉
| F t

]
︸ ︷︷ ︸

(B)

.

Term (A) can be bounded as

− sη

〈
∇F (x̄t),

1

m
∇F (t)1

〉
= −sη

2

∥∥∇F (x̄t)
∥∥2
2

+
sη

2

∥∥∥∥∇F (x̄t)− 1

m
∇F (t)1

∥∥∥∥2
2

− sη

2

∥∥∥∥ 1

m
∇F (t)1

∥∥∥∥2
2

≤ −sη

2

∥∥∇F (x̄t)
∥∥2
2
− sη

2

∥∥∥∥ 1

m
∇F (t)1

∥∥∥∥2
2

+
sηL2

2m

m∑
i=1

∥∥x̄t − xt
i

∥∥2
2
.

For term (B), we have

E

[
η

m

〈
∇F (x̄t),

m∑
i=1

s∇ℓ(t,0)i −
s−1∑
k=0

∇ℓ(t,k)i

〉
| F t

]

=
η

m

m∑
i=1

〈
∇F (x̄t),E

[
s∇ℓ(t,0)i −

s−1∑
k=0

∇ℓ(t,k)i | F t

]〉
(a)

≤ η2s2

2

∥∥∇F (x̄t)
∥∥2
2

+
1

2ms2

m∑
i=1

E

∥∥∥∥∥s∇ℓ(t,0)i −
s−1∑
k=0

∇ℓ(t,k)i

∥∥∥∥∥
2

2

∣∣∣ F t


︸ ︷︷ ︸

(B.1)

,

where inequality (a) holds because of Young’s inequality. By
Lemma 1, we bound term (B.1) as follows

1

2ms2

m∑
i=1

E

∥∥∥∥∥s∇ℓ(t,0)i −
s−1∑
k=0

∇ℓ(t,k)i

∥∥∥∥∥
2

2

| F t


(b)

≤ 1

2ms2

m∑
i=1

E

[
κ2η2

(
s

2

)2

L2
∥∥∥∇ℓ(t,0)i

∥∥∥2
2
| F t

]

=
κ2η2

(
s
2

)2
L2

2ms2

m∑
i=1

E
[∥∥∥∇ℓ(t,0)i −∇Fi(x

t
i) +∇Fi(x

t
i)
∥∥∥2
2
| F t

]
(c)

≤ κ2η2L2σ2 s
2

4
+

κ2η2s2L2

4m

m∑
i=1

∥∥∇Fi(x
t
i)
∥∥2
2

≤ κ2η2s2L2L
2

m

m∑
i=1

∥∥xt
i − x̄t

∥∥2
2
+ κ2η2s2L2(ζ2 + σ2)

+ κ2η2s2L2
(
β2 + 1

) ∥∥∇F (x̄t)
∥∥2
2
,

where inequality (b) follows from Lemma 1, inequality (c)
follows from Assumption 3, and the last inequality holds
because of Proposition 3. Combing the bounds of terms (A)
and (B), we get

E
[〈
∇F (x̄t),− η

m
G(t)1

〉
| F t

]
≤ −

[
sη

2
− η2s2

2
− κ2η2s2L2

(
β2 + 1

)] ∥∥∇F (x̄t)
∥∥2
2

− sη

2

∥∥∥∥ 1

m
∇F (t)1

∥∥∥∥2
2

+ κ2η2s2L2(ζ2 + σ2)

+

(
sηL2

2m
+ κ2η2s2L2L

2

m

) m∑
i=1

∥∥x̄t − xt
i

∥∥2
2
. (9)

(ii) Bounding E
[∥∥ 1

mG(t)1
∥∥2
2
| F t

]
. By adding and subtract-

ing, we get

∥∥∥∥ 1

m
G(t)1

∥∥∥∥2
2

=

∥∥∥∥∥ 1

m

m∑
i=1

s−1∑
k=0

∇ℓ(t,k)i

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

s−1∑
k=0

(
∇ℓ(t,k)i −∇ℓ(t,0)i

)∥∥∥∥∥
2

2︸ ︷︷ ︸
(C)

+2

∥∥∥∥∥ s

m

m∑
i=1

∇ℓ(t,0)i

∥∥∥∥∥
2

2︸ ︷︷ ︸
(D)

.

For term (C), by Lemma 1, we have

∥∥∥∥∥ 1

m

m∑
i=1

s−1∑
k=0

(
∇ℓ(t,k)i −∇ℓ(t,0)i

)∥∥∥∥∥
2

2

≤ κ2η2s4L2

4m

m∑
i=1

∥∇ℓ(t,0)i ∥22

≤ κ2η2s4L2

2m
(

m∑
i=1

∥∥∥∇ℓ(t,0)i −∇Fi(x
t
i)
∥∥∥2
2
+

m∑
i=1

∥∥∇Fi(x
t
i)
∥∥2
2
)

(d)

≤ κ2η2s4L2σ2

2
+

κ2η2s4L2

2m

m∑
i=1

∥∥∇Fi(x
t
i)
∥∥2
2
,

where inequality (d) holds because of Assumption 3. For term
(D), by Assumption 3, we likewise have

s2

m2
E

[
∥

m∑
i=1

∇ℓ(t,0)i ∥22
∣∣∣F t

]
≤ 2s2

m

(
σ2 +

m∑
i=1

∥∥∇Fi(x
t
i)
∥∥2
2

)
.

Combing the above upper bounds of (C) and (D) and applying
Proposition 3, we get

E

[∥∥∥∥ 1

m
G(t)1

∥∥∥∥2
2

| F t

]
≤ 2s2σ2

(
2

m
+

κ2η2s2L2

2

)
+ 6s2L2

(
2 +

κ2η2s2L2

2

)
1

m

m∑
i=1

∥∥xt
i − x̄t

∥∥2
2

+ 6s2
(
β2 + 1

)(
2 +

κ2η2s2L2

2

)∥∥∇F (x̄t)
∥∥2
2

+ 6s2ζ2
(
2 +

κ2η2s2L2

2

)
. (10)
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(iii) Putting them together. Combining (9) and (10), we get

E
[
F (x̄t+1)− F (x̄t) | F t

]
≤ κ2η2s2L2(ζ2 + σ2)

− ηs

2

∥∥∥∥ 1

m
∇F (t)1

∥∥∥∥2
2

+
Lη2

2
6s2ζ2

(
2 +

κ2L2

2

)
−
[
ηs

2
− η2s2

2
− κ2η2s2L2

(
β2 + 1

)] ∥∥∇F (x̄t)
∥∥2
2

+

(
sηL2

2m
+ κ2η2s2

L4

m

) m∑
i=1

∥∥xt
i − x̄t

∥∥2
2

+
Lη2

2
6s2L2

(
2 +

κ2L2

2

)
1

m

m∑
i=1

∥∥xt
i − x̄t

∥∥2
2

+
Lη2

2
6s2

(
β2 + 1

)(
2 +

κ2L2

2

)∥∥∇F (x̄t)
∥∥2
2

+
Lη2

2
2s2σ2

(
2

m
+

κ2L2

2

)
.

Assuming that η ≤ 1/[108Ls(β2 + 1)(1 + κ2L2)], the
above displayed equation can be simplified as

E
[
F (x̄t+1)− F (x̄t) | F t

]
≤ −ηs

3

∥∥∇F (x̄t)
∥∥2
2

+ ηs
L2

m

m∑
i=1

∥∥xt
i − x̄t

∥∥2
2
+ η2s26L

(
ζ2 + σ2

) (
1 + L2κ2

)
.

The consensus error term 1
m

∑m
i=1 ∥xt

i − x̄t∥22 in Lemma 2
connects our analysis to the aforementioned W matrix. Let

M (t) ≜ E
[(

W (t)
)2]

, J ≜
1

m
11⊤;

ρ(t) ≜ λ2

(
M (t)

)
and ρ ≜ max

t
ρ(t).

Next, we borrow insights from the analysis of gossiping
algorithms in the following lemma.

Lemma 3. • (Ergodicity) If pti ≥ c for some constant c ∈
(0, 1).
– For each t ≥ 1, it holds that ρ ≤ 1− c4[1−(1−c)m]2

8 ;
– In the special case of uniform uplink availability, i.e.,

suppose it holds that |At| = k for all t ≥ 0, the bound
can be further tightened as ρ ≤ 1− c2

8 , where c ≜ k/m.
• (Mixing rate, [38, Lemma 1]). For any matrix B ∈ Rd×m,

it holds that

EW

[
∥B

(
t∏

r=1

W (r) − J

)
∥2F

]
≤ ρt∥B∥2F, (11)

where EW [·] denotes an expectation taken with respect to
randomness in W (1), · · · ,W (t).

Proof of Lemma 3. For ease of exposition, we drop time
index t in this proof. We first get the explicit expression for
E
[
W 2

jj′ | A ̸= ∅
]
. Suppose that A ̸= ∅, we have

W 2
jj′ =

m∑
k=1

WjkWj′k

= WjjWj′j +Wjj′Wj′j′ +
∑

k∈[m]\{j,j′}

WjkWj′k.

When k ̸= j and k ̸= j′ by Eq. (4), we have

WjkWj′k =
1

|A|2
1{j∈A}1{j′∈A}1{k∈A}.

In addition, we have WjjWj′j = 1
|A|21{j∈A}1{j′∈A}, and

Wj′j′Wjj′ =
1

|A|21{j∈A}1{j′∈A}. Thus,
• For j ̸= j′, we have

W 2
jj′ =

m∑
k=1

WjkWj′k =
1

|A|
1{j∈A}1{j′∈A};

• For j = j′, we have

W 2
jj =

1

|A|
1{j∈A} +

(
1− 1{j∈A}

)
.

(i) The general case where pti ≥ c. In the special case where
A = ∅, we simply have W = I by the algorithmic clauses.
Therefore, E [Wjj′ | A = ∅] ≥ 0 holds for any pair of j, j′ ∈
[m]. It follows, by the law of total expectation and for all
j, j′ ∈ [m], that

E [Wjj′ ] = E [Wjj′ | A = ∅]P {A = ∅}
+ E [Wjj′ | A ̸= ∅]P {A ̸= ∅}

≥ E [Wjj′ | A ̸= ∅]P {A ̸= ∅} . (12)

• For j ̸= j′, it holds that

E
[
W 2

jj′ | A ̸= ∅
]
= E

[
1

|A|
1{j∈A}1{j′∈A}

∣∣∣A ̸= ∅]
(a)

≥ E
[
1

m
1{j∈A}1{j′∈A}

∣∣∣A ̸= ∅]
=

pjpj′

m
≥ c2

m
,

where (a) holds because |A| ≤ m ;
• For j = j′, it holds that

E
[
W 2

jj | A ̸= ∅
]
= E

[
1

|A|
1{j∈A} +

(
1− 1{j∈A}

) ∣∣∣A ̸= ∅]
≥ E

[
1

m

[
1{j∈A} +

(
1− 1{j∈A}

)] ∣∣∣A ̸= ∅] = 1

m
≥ c2

m
.

Recall that M = E [W ]. Next, we show that each element of
M is lower bounded.

Mjj′ ≥ E
[
W 2

jj′ | A ̸= ∅
]
P {A ̸= ∅} ≥ c2

m
[1− (1− c)

m
] .

We note that ρ(t) = λ2(M), where λ2 is the second largest
eigenvalue of matrix M . A Markov chain with M as the
transition matrix is ergodic as the chain is (1) irreducible:
Mjj′ ≥ c2

m [1− (1− c)
m
] > 0 for j, j′ ∈ [m] and (2)

aperiodic (it has self-loops). In addition, W matrix is by
definition doubly-stochastic. Hence, M has a uniform sta-
tionary distribution π = 1

m1⊤. Furthermore, the irreducible
Markov chain is reversible since it holds for all the states that
πiMij = πjMji. The conductance of a reversible Markov
chain [39] with a transition matrix M can be bounded by

Φ(M) = min∑
i∈S πi≤ 1

2

πi

∑
i∈S,j /∈S Mij∑
i∈S πi

≥
(

c
m

)2
[1− (1− c)

m
] |S|

∣∣S̄∣∣
|S|
m

=
c2 [1− (1− c)

m
]

m

∣∣S̄∣∣ ,



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, XXX XXXX 8

where
∣∣S̄∣∣ = m − |S| ≥ m

2 . From Cheeger’s inequality, we
know that 1−λ2

2 ≤ Φ(M) ≤
√
2 (1− λ2). Finally, we have

Φ(M) ≥ c2 [1− (1− c)
m
]

m

∣∣S̄∣∣ ≥ c2 [1− (1− c)
m
]

2
.

Thus, ρ(t) = λ2 ≤ 1− Φ2(M)
2 ≤ 1− c4[1−(1−c)m]2

8 .

(ii) The special case where the k uplinks are active uniformly
at random. In each round, the server picks k uplinks uniformly
at random. Consequently, different from the general case
where |A| is a random variable, it holds that |A| = k and
A ̸= ∅. In addition, c ≜ k

m . After a similar argument as
in the first case, it holds that Mjj′ ≥ c2

k . The conductance
of the reversible Markov chain with a transition matrix M
can be bounded by Φ(M) ≥ c2

k

∣∣S̄∣∣ ≥ c
2 . Finally, we have

ρ(t) = λ2 ≤ 1− Φ2(M)
2 ≤ 1− c2

8 .

Inequality (11) [38, Lemma 1] enables us to bound the
consensus error term 1

m

∑m
i=1 ∥xt

i − x̄t∥22 and says that the
spectral norm ρ must be less than 1 to ensure a bounded
error, which is crucial for the objectives to reach a stationary
point. Fortunately, we show that, under our uplink availability
assumption, ρ < 1 in Lemma 3.

Lemma 4 (Consensus Error). Suppose Assumptions 2, 3,
and 5 hold. Choose a learning rate η such that η ≤

1−√
ρ

108L2s3(β2+1)(1+κ2L2) . When Lipschitz constant L ≥ 1, it
holds that

1

mT

T−1∑
t=0

E
[
∥X(t) (I− J) ∥2F

]
≤ 12ρσ2

(1−√ρ)2
η2s2

+
54ρζ2

(1−√ρ)2
η2s2 +

54(β2 + 1)ρη2s2

(1−√ρ)2
1

mT

T−1∑
t=0

∥∇F (x̄t)∥2F.

Proof of Lemma 4. Define ∆G(r) ≜ G(r) − G
(r)
0 and

Ar,t ≜
∏t

ℓ=r W
(ℓ)−J. Recall the compact matrix forms in (5).

The consensus error can be rewritten as

∥X(t) (I− J) ∥2F = ∥(X(t−1) − ηG(t−1))W (t−1) (I− J) ∥2F

= ∥ − η
t−1∑
q=0

G(q)Aq,t−1∥2F

≤ 3η2 ∥
t−1∑
q=0

∆G(q)Aq,t−1∥2F︸ ︷︷ ︸
(A)

+ 3η2 ∥
t−1∑
q=0

(
G

(q)
0 − s∇F (q)

)
Aq,t−1∥F︸ ︷︷ ︸

(B)

+ 3η2s2 ∥
t−1∑
q=0

∇F (q)Aq,t−1∥2F︸ ︷︷ ︸
(C)

, (13)

where the second equality follows from the fact that all clients
are initiated at the same weights.

(i) Bounding E [(A)]. The term (A) in Eq. (13) arises from
multiple local steps. We have,

E [(A)]
(a)

≤
t−1∑
q=0

ρt−qE
[
∥∆G(q)∥2F

]
+

t−1∑
q=0

t−1∑
p=0,p ̸=q

E
[
∥∆G(p)Ap,t−1∥F∥∆G(q)Aq,t−1∥F

]
(b)

≤
t−1∑
q=0

ρt−qE
[
∥∆G(q)∥2F

]
+

t−1∑
q=0

t−1∑
p=0,p ̸=q

√
ρ2t−p−q

2
E
[
∥∆G(p)∥2F + ∥∆G(q)∥2F

]
,

where inequality (a) follows from (11), inequality (b) holds
because of Young’s inequality. Next, we bound the second
term. It follows that
t−1∑
q=0

t−1∑
p=0,p ̸=q

√
ρ2t−p−q

2
E
[
∥∆G(p)∥2F + ∥∆G(q)∥2F

]
≤

t−1∑
q=0

t−1∑
p=0

√
ρ2t−p−q

2
E
[
∥∆G(p)∥2F + ∥∆G(q)∥2F

]
≤

√
ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥∆G(q)∥2F

]
.

In addition, since ρ < 1, it holds that ρt−q ≤ √ρρ
t−q
2 for any

q ≤ t− 1. Thus, we have

E [(A)] ≤ √ρ
t−1∑
q=0

ρ
t−q
2 E

[
∥∆G(q)∥2F

]
+

√
ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥∆G(q)∥2F

]
≤

2
√
ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥
(
G(q) −G

(q)
0

)
∥2F
]
. (14)

It remains to bound E
[
∥∆G(q)∥2F

]
,

E
[
∥∆G(q)∥2F

] (c)

≤ κ2η2s4L2E
[
∥G(q)

0 − s∇F (q) + s∇F (q)∥2F
]

≤ 2κ2η2s4L2E
[
∥G(q)

0 − s∇F (q)∥2F
]

+ 2κ2s2η2s4L2E
[
∥∇F (q)∥2F

]
≤ 2κ2s2η2s4L2mσ2 + 2κ2s2η2s4L2E

[
∥∇F (q)∥2F

]
,

where inequality (c) follows from Lemma 1, adding and
subtracting. Thus,

E [(A)] ≤
2
√
ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥G(q) −G

(q)
0 ∥2F

]
≤ 4κ2s2η2s4L2mσ2ρ(

1−√ρ
)2

+
4κ2s2η2s4L2√ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥∇F (q)∥2F

]
.
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(ii) Bounding E [(B)].

E [(B)] ≤
t−1∑
q=0

ρt−qE
[
∥
(
G

(q)
0 − s∇F (q)

)
∥2F
]
≤ ρms2σ2

1− ρ
.

(iii) Bounding E [(C)]. Use a similar derivation as in (14), and
we get

E [(C)] ≤
2
√
ρ

1−√ρ

t−1∑
q=0

√
ρ
t−qE

[
∥∇F (q)∥2F

]
.

Furthermore, we have
T−1∑
t=0

t−1∑
q=0

√
ρ
t−qE

[
∥∇F (q)∥2F

]
=

T−2∑
t=0

E
[
∥∇F (t)∥2F

] T−1−t∑
q=1

√
ρ
q

≤
√
ρ(

1−√ρ
) T−1∑

t=0

E
[
∥∇F (t)∥2F

]
.

(iv) Putting them together.

1

mT

T−1∑
t=0

E
[
∥X(t) (I− J) ∥2F

]
≤ 3η2s2σ2 ρ

(
1 + κ2η2s4L2

)(
1−√ρ

)2
+

(
κ2η2s4L2

2
+ 1

)
6η2s2ρ

mT
(
1−√ρ

)2 T−1∑
t=0

E
[
∥∇F (t)∥2F

]
(d)

≤ 9ρ

(1−√ρ)2
η2s2

1

mT

T−1∑
t=0

∥∇F (t)∥F +
6ρσ2

(1−√ρ)2
η2s2,

where we assume that η ≤ 1
s2κL in inequality (d). Choosing

η ≤ 1−√
ρ

6Ls and by Proposition 3, we have

1

mT

T−1∑
t=0

E
[
∥X(t) (I− J) ∥2F

]
≤ 12ρσ2

(1−√ρ)2
η2s2

+
54(β2 + 1)ρη2s2

(1−√ρ)2
1

mT

T−1∑
t=0

∥∇F (x̄t)∥2F

+
54ρζ2

(1−√ρ)2
η2s2.

Our proof of Lemma 4 shares a similar sketch as that in
[38], yet with nontrivial adaptation to account for multiple
local updates and the fact the stochastic gradients at a client
within each round are not independent. Plugging Lemma 4
into Lemma 2, we obtain the main Theorem 1.

Theorem 1. Suppose Assumptions 2, 3, 4, and 5 hold. Choose
a learning rate η such that η ≤ 1−√

ρ

108L2s3(β2+1)(1+κ2L2) . When
Lipschitz constant L ≥ 1, it holds that

1

T

T−1∑
t=0

E
[∥∥∇F (x̄t)

∥∥2
2

]
≤

6
(
F (x̄0)− F ⋆

)
ηsT

+ 54ηsL

(
κ2L2 + 1 +

1

1−√ρ

)(
σ2 + ζ2

)
.

Corollary 1. Suppose Assumptions Assumption 2, 3,
4, and 5 hold. Choose η = 1/

√
T , where T ≥

(108L2s3(β2 + 1)(1 + κ2L2)/
(
1−√ρ

)
)2. When Lipschitz

constant L ≥ 1, it holds that

1

T

T−1∑
t=0

E
[∥∥∇F (x̄t)

∥∥2
2

]
≤

6
(
F (x̄0)− F ⋆

)
s
√
T

+ 54
sL√
T

(
κ2L2 + 1 +

1

1−√ρ

)(
σ2 + ζ2

)
.

Remark 2. Here, we remark on Theorem 1:
(1) On the structures. The assumption that Lipschitz constant
L ≥ 1 is for simplifying the upper bound of η only, which,
notably, can be readily relaxed but at a cost of a much more
sophisticated learning rate condition. The second term stems
from noisy stochastic gradients (Assumption 3) and inter-client
gradient heterogeneity (Assumption 5).
(2) On stationary points of F . Theorem 1 says that x̄t in
FedPBC converges to a stationary point of F (non-convex) at
a rate of 1/

√
T . In sharp contrast, Proposition 1 dictates that

the expected output of FedAvg converges to a point that could
be far away from the true optimum depending on the interplay
between pti’s and data heterogeneity.
(3) On the role of the probability lower bound c. A
larger c results in a smaller ρ and thus a tighter bound on
1
T

∑T−1
t=0 E [∥∇F (x̄t)∥2] . Next, we discuss a couple of special

cases in Big-O notation with respect to the number of clients
m, the number of local steps s, spectral norm ρ, stochastic
gradient variance σ and bounded gradient dissimilarity ζ.
• FedPBC reduces to FedAvg with full-client participation

when c = 1. Setting η =
√

m/sT in Theorem 1, our
convergence rate O( 1√

msT
+
√

ms
T

(
σ2 + ζ2

)
) matches the

FedAvg literature (e.g., [30]).
• When it comes to FedAvg with uniform and time-invariant

participation, suppose k out of m clients are selected
uniformly at random each round. Setting η =

√
k/sT

in Theorem 1, our convergence rate becomes O( 1√
ksT

+

1
1−√

ρ

√
ks
T

(
σ2 + ζ2

)
). Since ρ ≤ 1 − c2/8 (in Lemma 3),

the rate becomes O( 1√
ksT

+ 1
c2

√
ks
T

(
σ2 + ζ2

)
), which

introduces a larger variance compared to the rate of FedAvg
with full participation, consistent with existing literature
(e.g., [40]).

(4) On convergence rate. Our convergence rate in Corollary 1
of O(1/

√
T ), where the Big-O notation is taken with respect

to the total global round T , matches the best possible rate
for any first-order algorithms that have access to only noisy
stochastic gradients of a smooth non-convex objective [41]. By
setting learning rate η as in bulletpoint (3), we shall see linear
speedup with respect to the first term; however, the second
term ultimately dominates the first term, which is consistent
with FedAvg literature, see, e.g., [4]. We leave achieving linear
speedup as a future direction.

VII. NUMERICAL EXPERIMENTS

In this section, we evaluate FedPBC and multiple baseline
algorithms on a simple quadratic function and real-world
datasets.
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Fig. 3: ∥xPS − x⋆∥2 in logarithmic scale. The results are obtained
after an average of 3 random seeds. Plots are reported as mean ±
standard deviation. The shaded areas plot standard deviation.

A. Quadratic function

The first part is about a simple quadratic function as in
Eq. (2). Recall that, in each round t, client i responds to the
parameter server’s update request with probability pti.
Counterexample. Our numerical results can be found
in Fig. 3. We consider a federated learning system of m = 100
clients, each performing s = 100 steps local updates per
round, in a total of 2500 global rounds. The local objective
is Fi(xi) = 1

2 ∥xi − ui∥22 , where xi,ui ∈ R100, ui ∼
N ((i/1000)1, 0.01I) , and x0

i = 0 for all i ∈ [m]. The
learning rate η = 0.0001. The uplinks of the first 50 clients
become open with probability p0, whereas the second half
with p1 – to be specified later. For ease of presentation, we
plot the distance to the optimum ∥xPS − x⋆∥2 after the first 50
communication rounds in Fig. 3, where xt

PS ≜ xt in Algorithm
1. All results are obtained after 3 random seeds and reported
as mean ± standard deviation. Notably, all plots are on a
logarithmic scale, potentially magnifying visual fluctuations.
Notice that the distance to optimum ∥xPS − x⋆∥2 does not
go strictly to 0. We presumably attribute this to pseudo-
randomness in computers to sample clients. Observe that two
algorithms attain a similar distance to optimum when p0 = p1.
Yet, FedPBC obtains a much lower error when p0 ̸= p1. In
addition, the error is on a similar scale (around 10−3) as in
the case of p0 = p1.

B. Real-world Datasets

In this section, we use three real-world datasets to validate
the performance of FedPBC on different uplink unreliable
patterns, and to compare with multiple baseline algorithms.
We code the experiments based on PyTorch 1.13.1 [42] and
Python 3.7.16. Detailed hardware and software specifications
can be found in Appendix B.
Dataset and data heterogeneity. The image classification task
is commonly adopted in evaluating the empirical performance
of a federated learning system [2], [20], [30], [34]. Following
existing literature [2], [20], [30], [34], we base our simulations
on SVHN [43], CIFAR-10 [44] and CINIC-10 [45]. All of
them include 10 classes of images of different categories.
For data heterogeneity, we partition all datasets and assign
data samples to clients according to a Dirichlet distribution
parameterized by α [46]. In particular, α = 0.1 in Table. I. A
smaller α entails a more non-i.i.d. local data distribution and
vice versa. Each client holds the same data volume; the exact
data volume may be dataset-dependent.

Federated learning system. We consider m = 100 clients,
wherein clients continue to compute locally albeit the failures
of unreliable communication uplinks. However, only clients
with active links are allowed to submit their local updates. We
use three customized convolutional neural networks for three
datasets, respectively. Next, we introduce our construction
of pti’s, which is then adopted to base the illustrations of
unreliable patterns.
The construction of pti’s. We define

pti ≜ pi ·
[
(1− γ) + γ · ϵt

]
, (15)

where pi ∈ (0, 1) is the time-invariant base probability, γ ∈
[0, 1] is time-invariant and is used to control the variations
of pti, and ϵt is time-dependent. Detailed specifications are
forthcoming.
• Construction of pi. Inspired by [20], [27], the time-invariant

base probability pi is jointly determined by the local data
distribution and a random variable R, which follows a
lognormal(µ0, σ

2
0) distribution. It is immediately clear that

the coupling leads to non-independent pi’s, which violates
the assumption of independence in uplink communication
failures in our theoretical analysis. However, FedPBC main-
tains its outperformance under such a challenging scenario.
Define the number of classes in a dataset as C, the class
distribution at a client i as νi for i ∈ [m]. Since the local
datasets are partitioned according to Dirichlet(α), we have
νi ∼ Dirichlet(α). Sample R from lognormal(µ0, σ

2
0) for

C times to obtain a positive vector r′ ∈ RC . Normalize
r′ by dividing its l1 norm and get r ≜ r′/∥r′∥1. Finally,
pi = ⟨r,νi⟩. Intuitively, r is used to quantify the unbalanced
contribution of different classes. It is easy to see that for
any fixed µ0, a larger σ0 leads to a more heterogeneous
contribution distribution. We set µ0 = 0 and σ0 = 10 in
Table 1. By definition, pi is a valid probability because

0 = ⟨0,νi⟩ < ⟨r,νi⟩
(a)

≤ ⟨r,1⟩ = 1,

where 1 is an all-one vector, (a) holds because each element
in νi is no greater than 1, and pi is strictly element-wise
positive.

• Construction of ϵt. [7, Figure 5] indicates that the number of
participants, i.e., clients with active communication uplinks,
depends on time and acts like a sine curve. Inspired by
this, we introduce a time-varying noise ϵt = sin [(2π/P ) · t],
where P = 40 defines the period and t is the current round
index. This is a similar setup as the Home Device unreliable
communication scheme in [12].

• Choice of γ. By definition, γ in (15) governs how severe
the fluctuations of the sine curve in pti’s are. Given a fixed
set of pi’s, γ determines both the lower and upper bounds
of pti’s.

Fig. 4a presents an example of generated r drawn from
a lognormal(0, 102), wherein class 0 and class 6 dominate
the entire distribution. Intuitively, if a client i holds most
of its images from classes other than 0 or 6, the generated
pi might be small and thus close to 0, possibly resulting in
the client not appearing during training rounds in simulations.
See Fig. 4b for details. To obtain meaningful results, we clip
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TABLE I: The reported results are in the form of mean accuracy ± standard deviation and are obtained over 3 repetitions in different
random seeds. Results are averaged over the last 100 rounds. In each simulation, clients perform mini-batch stochastic gradient descent in 5
steps on a convolutional neural network (CNN) locally per round. The total global rounds for SVHN, CIFAR-10, CINIC-10 are 4000, 10000,
10000, respectively. Furthermore, we use customized CNNs for different datasets, respectively. Algorithms are categorized into two groups:
(1) ones not aided by memory or known statistics; (2) ones with memory (including MIFA and FedAvg with known pti’s). Moreover, we
highlight the best and the second best in yellow and in cyan , respectively, among algorithms not aided by memory or known statistics.
The other hyperparameters are specified in Appendix, and some of them are tuned using grid search.

Unreliable
Patterns

Datasets SVHN CIFAR-10 CINIC-10
Algorithms Train Test Train Test Train Test

Centralized 88.7% 87.7% 76.1% 73.6% 61.9% 59.3%

Bernoulli1
with time-invariant pi’s

FedPBC (ours) 84.4%± 0.008 84.3%± 0.008 68.4%± 0.011 66.3%± 0.013 50.3%± 0.005 49.7%± 0.004
FedAvg 75.9%± 0.024 75.2%± 0.024 59.9%± 0.026 58.7%± 0.025 38.1%± 0.031 37.8%± 0.029

FedAvg all 56.4%± 0.083 56.4%± 0.072 48.9%± 0.031 48.7%± 0.026 32.6%± 0.030 32.3%± 0.030
FedAU 83.1%± 0.015 83.0%± 0.015 67.4%± 0.019 65.9%± 0.019 45.8%± 0.022 45.4%± 0.022
F3AST 76.9%± 0.036 76.9%± 0.037 58.5%± 0.053 57.7%± 0.052 40.7%± 0.049 40.3%± 0.048

FedAvg known pi’s 77.8%± 0.029 77.2%± 0.032 61.1%± 0.036 60.1%± 0.035 39.2%± 0.029 38.8%± 0.029
MIFA (memory aided) 80.8%± 0.003 80.8%± 0.003 67.8%± 0.006 67.1%± 0.006 47.6%± 0.005 47.1%± 0.005

Bernoulli
with time-varying pti’s

FedPBC (ours) 84.0%± 0.009 84.0%± 0.009 67.1%± 0.011 65.0%± 0.015 49.7%± 0.004 49.1%± 0.003
FedAvg 73.7%± 0.041 72.7%± 0.042 57.3%± 0.034 56.2%± 0.033 35.9%± 0.038 35.6%± 0.037

FedAvg all 37.0%± 0.097 36.5%± 0.085 43.2%± 0.030 43.2%± 0.029 28.9%± 0.024 28.7%± 0.024
FedAU 80.5%± 0.023 80.3%± 0.022 64.9%± 0.018 63.5%± 0.018 44.8%± 0.017 43.4%± 0.018
F3AST 78.3%± 0.027 78.1%± 0.029 60.7%± 0.037 59.6%± 0.035 41.2%± 0.035 40.8%± 0.035

FedAvg known pti’s 76.9%± 0.035 76.3%± 0.036 62.4%± 0.021 61.2%± 0.022 46.9%± 0.016 46.4%± 0.016
MIFA (memory aided) 79.2%± 0.005 79.2%± 0.005 66.2%± 0.006 65.5%± 0.005 46.4%± 0.010 45.8%± 0.009

Homogeneous1
Markovian

with time-invariant pi’s

FedPBC (ours) 84.8%± 0.009 84.1%± 0.008 68.6%± 0.010 66.5%± 0.010 50.0%± 0.006 49.5%± 0.006
FedAvg 74.7%± 0.023 74.0%± 0.023 59.1%± 0.022 57.9%± 0.020 37.4%± 0.029 37.1%± 0.029

FedAvg all 55.1%± 0.073 55.1%± 0.063 48.3%± 0.039 48.0%± 0.034 31.6%± 0.032 31.4%± 0.031
FedAU 82.7%± 0.015 82.6%± 0.013 68.3%± 0.019 66.4%± 0.018 47.2%± 0.019 46.7%± 0.018
F3AST 75.5%± 0.043 75.5%± 0.048 60.3%± 0.035 59.3%± 0.034 43.0%± 0.028 42.5%± 0.027

FedAvg known pi’s 76.0%± 0.025 75.7%± 0.027 61.0%± 0.036 60.0%± 0.034 40.8%± 0.022 40.4%± 0.022
MIFA (memory aided) 81.7%± 0.006 81.1%± 0.004 66.8%± 0.006 65.9%± 0.006 46.9%± 0.007 46.4%± 0.007

Non-homogeneous
Markovian

with time-varying pti’s

FedPBC (ours) 83.9%± 0.010 83.8%± 0.008 67.2%± 0.009 64.9%± 0.006 49.7%± 0.004 49.1%± 0.004
FedAvg 72.7%± 0.034 72.2%± 0.035 59.0%± 0.027 58.0%± 0.027 36.7%± 0.031 36.3%± 0.030

FedAvg all 38.6%± 0.091 38.3%± 0.079 43.7%± 0.026 43.8%± 0.024 29.4%± 0.025 29.2%± 0.024
FedAU 80.2%± 0.020 80.2%± 0.020 66.4%± 0.018 65.1%± 0.018 45.3%± 0.022 44.8%± 0.021
F3AST 77.0%± 0.033 77.0%± 0.033 62.8%± 0.032 61.5%± 0.032 43.0%± 0.029 42.6%± 0.028

FedAvg known pti’s 76.3%± 0.045 76.3%± 0.045 60.0%± 0.040 59.0%± 0.038 45.1%± 0.032 44.5%± 0.031
MIFA (memory aided) 79.2%± 0.005 79.1%± 0.004 66.3%± 0.007 65.6%± 0.007 46.5%± 0.008 46.1%± 0.008

Cyclic1
without periodic reset

FedPBC (ours) 84.2%± 0.010 84.2%± 0.009 67.5%± 0.015 65.2%± 0.017 49.7%± 0.008 49.0%± 0.007
FedAvg 72.3%± 0.029 71.7%± 0.032 57.0%± 0.028 56.0%± 0.026 37.0%± 0.029 36.6%± 0.029

FedAvg all 56.4%± 0.078 56.4%± 0.070 48.5%± 0.026 48.1%± 0.024 32.2%± 0.028 31.9%± 0.027
FedAU 80.2%± 0.027 79.8%± 0.027 64.5%± 0.024 63.1%± 0.022 43.3%± 0.033 42.8%± 0.032
F3AST 71.5%± 0.042 71.7%± 0.044 58.3%± 0.026 57.3%± 0.028 40.0%± 0.028 39.7%± 0.028

FedAvg known pi’s2 74.1%± 0.037 73.6%± 0.038 58.9%± 0.036 58.0%± 0.034 38.1%± 0.042 37.7%± 0.041
MIFA (memory aided) 70.9%± 0.033 70.9%± 0.033 59.1%± 0.021 58.7%± 0.022 42.3%± 0.039 41.8%± 0.038

Cyclic
with periodic reset

FedPBC (ours) 83.8%± 0.008 83.7%± 0.007 66.3%± 0.010 64.0%± 0.012 49.6%± 0.004 49.1%± 0.004
FedAvg 69.6%± 0.054 69.0%± 0.058 56.0%± 0.032 55.1%± 0.033 35.4%± 0.027 35.1%± 0.026

FedAvg all 34.2%± 0.074 33.6%± 0.065 42.5%± 0.026 42.4%± 0.026 28.7%± 0.023 28.5%± 0.023
FedAU 77.1%± 0.029 77.1%± 0.029 62.9%± 0.022 61.7%± 0.021 42.6%± 0.020 42.1%± 0.020
F3AST 75.4%± 0.035 75.3%± 0.037 62.3%± 0.041 61.0%± 0.040 42.7%± 0.041 42.2%± 0.040

FedAvg known pi’s2 72.7%± 0.049 72.1%± 0.052 60.0%± 0.032 59.1%± 0.030 45.5%± 0.029 45.0%± 0.028
MIFA (memory aided) 77.6%± 0.014 77.3%± 0.014 64.8%± 0.006 64.3%± 0.006 45.6%± 0.010 45.2%± 0.010

pi ← max {δ, pi}, where δ is a cutting-off parameter to ensure
a lower bound on pi. In Table I, δ = 0.02. Notably, δ leads to
the lower bound of pti being δ · (1− 2γ). Now, we are ready
to present unreliable schemes.

Unreliable schemes. In addition to a similar unreliable time-
invariant communication setup as in [27] for fair competition,
we study a more challenging scenario where pti’s change over
time. Specifically, we evaluate FedPBC and a set of baseline
algorithms on the following schemes:

1) Bernoulli. Client i submits its local updates to the parame-
ter server when the uplink becomes active with probability
pti. The first two columns of Table I demonstrate the results
when the probabilities are time-invariant pi’s and time-
varying pti’s, respectively. When pti is time-invariant, we
have pti = pi for all t ≥ 0, where pi is the time-invariant
base probability in (15). In the latter, pti is defined as in (15)

and changes over time.
2) Markovian. The uplink connection probabilities pti’s might

be affected by external factors, leading to an unexpected
shutdown after it is on or, conversely, resuming fully oper-
ational after it is off. Specifically, the uplink availability is
dictated by a Markov chain of two states “ON” and “OFF”,
whose initial state is determined by a Bernoulli sampling.
Depending on whether the transition probabilities change
over time, we have a homogeneous Markov chain (the
third row of Table I) or a non-homogeneous Markov chain
(the fourth row). The detailed illustration of the transition
probabilities is deferred to Appendix B.

3) Cyclic. The communication uplink between the parameter
server and the clients can have a cyclic pattern, where
the client has a fixed working schedule and joins the
training diurnally or nocturnally [7], [23]. A random offset
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(a) An example of generated r’s based on lognormal(0, 102) distri-
bution and normalization described above. Each color corresponds to
one class. The first row visualizes the proportions of each class. The
second row presents the exact numbers (rounded up to 2 decimals).
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(b) Histograms of the constructed pi’s under R ∼ lognormal(0, 102)
and νi ∼ Dirichlet(0.1) with 100 clients and δ = 0.

Fig. 4: The construction of pi’s.

Link status

active

inactive
Global round t0

active
period

active
period

active
period · · ·

inactive period ≜ (1− pi) · cycle length
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random offset ∼ Uniform [0, (1− pi) · cycle length]

pi · cycle length

(fixed) (fixed)

(a) An illustration of cyclic without periodic reset, where the com-
munication link turns on and off in a cyclical fashion. The length of
a cycle is a predefined parameter. Before a link becomes active for
the first time, it will remain off for a period of time, whose length
is sampled from Uniform [0, (1− pi) · cycle length]. After the initial
stage, the link will alternatively be in the active state with a fixed
duration of the active period (pi · cycle length) or in the inactive state
with a fixed duration of the inactive period [(1− pi) · cycle length].
In other words, the duration of the interval between two consecutive
link switch-ons is always fixed in length.
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(stochastic)
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(b) An illustration of cyclic with periodic reset. Similar to Fig. 5a,
a link switches on and off in alternation. The key difference is that
a random offset will be redrawn from the same uniform distribution
at the beginning of each cycle. The resampling procedure is called a
reset, which entails a stochastic length of the interval between two
consecutive link switch-ons.

Fig. 5: Illustrations of the communication unreliable schemes eval-
uated in Section VII-B

at the beginning of the whole process is used to simulate
and reflect the initial shift due to each client’s device
heterogeneity [27]. Please refer to Fig. 5a for details.
However, it is also possible that each client’s schedule
to start training varies each day, which motivates us to
devise the second scheme with periodic reset in Fig. 5b.
The key difference is that the random offset will be reset
at the beginning of each cycle, not only at the first cycle.
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(a) Bernoulli with time-invariant pti = pi’s in a total of 80 global
rounds. The first row shows the trajectories of time-invariant pti =
pi’s . The second row shows the status of the uplink sampled from
Bernoulli(pi).
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(b) Bernoulli with time-varying pti’s in a total of 80 global rounds.
The first row shows the trajectories of time-varying pti’s. The second
row shows the status of the uplink sampled from Bernoulli(pti).
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(c) The status of the uplink under homogeneous Markovian in a total
of 80 global rounds.
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(d) The status of the uplink under heterogeneous Markovian in a total
of 80 global rounds.
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(e) The status of the uplink under cyclic without periodic reset in a
total of 400 global rounds. The cycle length is 100.
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(f) The status of the uplink under cyclic with periodic reset in a total
of 400 global rounds. The cycle length is 100.

Fig. 6: Exemplary trajectories of pti’s and uplink status under
different unreliable communication schemes. Colored blocks indicate
that an uplink is active in the given round. We simulate the scenarios
where pi ∈ {0.01, 0.1, 0.5, 0.9}. The construction of pti based on pi
can be found in Section VII-B.

Notice that the interval for a link to become active is now
stochastic, rather than fixed.

Fig. 6 shows an example of uplink statuses under the
unreliable communication schemes we evaluate. It is observed
that uplinks become less frequently active when probabilities
change from time-invariant (Fig. 6a) to time-varying (Fig. 6b).
In addition, the uplinks become even more sparsely active
when the schemes move to Markovian in Fig. 6c and 6d.
On the other hand, the cyclic unreliable scheme exhibits a
different pattern: the uplinks in Fig. 5a become active and
inactive in alternation after an initial random offset. Notice
that the uplink’s offline duration is always fixed. In contrast,
the duration remains random in Fig. 5b due to a reset at the
beginning of each cycle.
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TABLE II: The first round to reach a targeted test accuracy under
Bernoulli with time-varying pti’s over 3 random seeds. We study the
first round to reach 1/4, 1/2, 3/4 and 1 of the best test accuracy of
each dataset in Table I, which is rounded up to the nearest 10% below
for ease of presentation. In addition, we sample the mean of test
accuracy every 150 global rounds to mitigate noisy progress. Some
algorithms may never attain the targeted accuracy due to their inferior
performance, where we use “–” as a placeholder. For example, the
best test accuracy of FedAvg all is 36. 5% under Bernoulli with time-
varying pti’s in Table I, below both 3/4 and 1 of the best accuracy.

Datasets Quarters 1/4 1/2 3/4 1
Test accuracy 20% 40% 60% 80%

SVHN

FedPBC (ours) 150 300 450 1650
FedAvg 300 450 1050 –

FedAvg all 1950 – – –
FedAU 300 300 750 3450
F3AST 450 750 1200 3600

FedAvg known pti’s 600 1050 1650 –
MIFA (memory aided) 300 600 1050 –

Test accuracy 15% 30% 45% 60%

CIFAR-10

FedPBC (ours) 150 150 450 3300
FedAvg 150 450 1050 9450

FedAvg all 150 1500 – –
FedAU 150 300 750 3900
F3AST 150 300 1200 4800

FedAvg known pti’s 0 450 1800 4800
MIFA (memory aided) 150 150 600 3600

Test accuracy 10% 20% 30% 40%

CINIC-10

FedPBC (ours)

0

150 300 900
FedAvg 150 1050 6450

FedAvg all 600 – –
FedAU 150 300 2700
F3AST 300 1200 3000

FedAvg known pti’s 0 300 1050 2850
MIFA (memory aided) 150 900 2700

Baseline algorithms. We compare FedPBC with six baseline
algorithms, including FedAvg [2], FedAvg all, FedAvg known
pti’s [21], FedAU [27], F3AST [12], and MIFA [20]. Under
FedAvg all, the parameter server averages all clients’ local
updates, wherein the contributions of clients with inactive
communication links are deemed zeros. FedAvg known pti’s
requires the time-varying pti’s to be a known prior. We defer
the other algorithmic specific parameters to Appendix B.
Results. Table I presents the evaluation results. The first row
details the centralized learning results as a benchmark. We
can see that all federated learning algorithms suffer some
performance degradation, which is also commonly observed in
distributed learning when there are communication constraints.
Intuitively, this is the cost paid for not disclosing raw data to
the other clients. In summary, FedPBC outperforms all other
baseline algorithms not aided by memory on the SVHN and
CINIC-10 datasets. In a rare instance, FedPBC is surpassed
by FedAU on the CIFAR-10 dataset by a mere 0.2% in test
accuracy. The rationale merits additional scrutiny. Addition-
ally, FedAvg trails behind FedPBC by a substantial margin of
approximately 10% in test accuracy, confirming its inherent
bias.

It turns out that MIFA, aided by 100 units of old local
gradients, does not always achieve the best performance.

We conjecture it to the old gradients induced by a lower
participation rate. Fig. 4b shows that most probabilities fall
below 0.1 under our construction of pi’ s, which means
that an uplink could be inactive for a long time before
waking up again. Although clients in FedPBC start in each
global round from its own staled local model, the expected
staleness is upper bounded (see Proposition 2). It is not
surprising that F3AST acts inferior to FedPBC. At a high
level, F3AST caps At to a few representative clients for
local optimization, excluding the rest of the clients within
At. FedPBC surpasses FedAU in all scenarios in terms of
train accuracy. Although FedAU develops an online average
method to estimate the underlying connection probabilities, it
cannot tolerate complex dynamics. This can be observed in the
performance degradation when switching from cyclic without
periodic restart to cyclic with periodic restart. In the former, the
uplinks are activated alternately with a fixed interval after the
initial random offset, whereas in the latter, they are switched
on stochastically, making it much more challenging. In the
case of time-invariant pi’s, the outperformance of our FedPBC
may stem from its utilization of true gradient trajectories to
account for inactivities. This approach may result in better
compensation than the online estimate used in FedAU. Though
FedAvg with known probability uses the ground truth 1/pti to
mimic the empirical length of the uplink active interval, as
pointed out in [27], the empirical length can unfortunately
deviate far from the ground truth 1/pti.

To complement the numerical results in the main section, we
also study the impact of different system-design parameters,
including α, γ, δ, σ0, on learning performance. The results
are deferred to Appendix B.
Staleness. Table II demonstrates the first round to reach a
targeted test accuracy under Benoulli with time-varying pti’s.
Specifically, we study the round to reach the four quarters of
the best test accuracy, which is rounded to the nearest 10%
below for a neat presentation. It is readily seen that FedPBC
attains a similar round to reach 1/4 and 1/2 of the best test
accuracy as either FedAU or MIFA. When it is beyond 3/4
of the best accuracy, FedPBC in fact becomes the fastest
algorithm. Hence, we empirically conclude that the staleness
in FedPBC is mild and confirms its practicality.

VIII. CONCLUSION

In this paper, we study federated learning in the presence
of stochastic uplink communications that are allowed to be
simultaneously time-varying and unknown to all parties in the
distributed learning system. We show that, by using a simple
quadratic counterexample in Proposition 1, the seminal work
FedAvg is inherently biased from the global optimum under
non-i.i.d. local data. We propose FedPBC, which leverages
implicit gossiping by postponing the broadcast till the end of
each global round, is provable to reach a stationary point of
the global non-convex objective, and converges at the optimal
rate in the presence of smooth non-convex and stochastic
objective gradients. Extensive experiments have been pro-
vided over diversified unreliable patterns to corroborate our
analysis. Numerous directions are open for future research.
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First, FedPBC requires clients to perform local computation
throughout training rounds, which may bring in extra com-
putation costs. It is interesting to study how FedPBC can be
applied to serve clients with limited computation resources. In
addition, our work only addresses unreliable uplink commu-
nication. So, unreliable bidirectional communication failures
are another extension. We expect to incorporate different local
optimization methods, other than stochastic gradient descent,
and establish provable guarantees. Finally, it is also interesting
to explore achieving the desired linear speedup property.

ACKNOWLEDGEMENT

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Army Research Laboratory, the National Science Foundation,
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] M. Xiang, S. Ioannidis, E. Yeh, C. Joe-Wong, and L. Su, “Towards
bias correction of fedavg over nonuniform and time-varying commu-
nications,” in 2023 62nd IEEE Conference on Decision and Control
(CDC), Dec 2023, pp. 6719–6724.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[3] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[4] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations, 2020.

[5] C. Philippenko and A. Dieuleveut, “Bidirectional compression in hetero-
geneous settings for distributed or federated learning with partial partici-
pation: tight convergence guarantees,” arXiv preprint arXiv:2006.14591,
2020.

[6] S. Wang and M. Ji, “A unified analysis of federated learning with arbi-
trary client participation,” in Advances in Neural Information Processing
Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
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APPENDIX A
PROOFS

Proposition 3 is illustrated first as an intermediate result to
assist in the proofs.

Proposition 3. For any t ∈ [T − 1], it holds that
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Inequality (16) can be shown by Jensen’s inequality, where
we plug in Assumptions 2 and 5.

Proof of Proposition 1. At each client i ∈ At, for each local
step k = 0, · · · , s− 1, we have
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Following from the fact that pti = pi for all t at all clients,
E[ 1

|At|
∑

i∈At ui|At ̸= ∅] = E[ 1
|A1|

∑
i∈A1 ui|A1 ̸= ∅] for all

t. Unrolling the recursion until time 0 and applying the full
expectation up to time t+ 1, we have
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where x0 = 0, and

a ≜
m∏
i=1

(1− pi) +

[
1−

m∏
i=1

(1− pi)

]
(1− η)

s
.

Notably, a < 1, it holds that limt→∞(1 − at+1) = 1. Let
Xi = 1{i∈A1} for each i ∈ [m]. We have

E
[∑

i∈A1 ui

|A1|

∣∣∣A1 ̸= ∅
]
= E

∑m
i=1 Xiui∑m
j=1 Xj

∣∣∣ m∑
j=1

Xj ̸= 0


=

m∑
i=1

uiE

 Xi∑m
j=1 Xj

∣∣∣ m∑
j=1

Xj ̸= 0

 .

By the law of total expectation and the convention that 0
0 = 0,
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Next, we show that

E

[
1

1 +
∑

j∈[m]\{i} Xj

∣∣∣Xi = 1

]

= 1 +
m∑
j=2

(−1)j+1 1

j

∑
S∈Bi

j

∏
z∈S

pz, (19)
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where Bij ≜
{
S
∣∣∣S ⊆ [m] \ {i} , |S| = j − 1

}
. Without loss of

generality, let i = m. Define S̄ ≜ [m] \ S

E

[
1

1 +
∑

j∈[m]\{m} Xj

∣∣∣Xm = 1

]
= E

[
1

1 +
∑

j∈[m−1] Xj

]

≜
m∑
j=1

1

j
P
{∣∣A1 \ {m}

∣∣ = j − 1
}

=
m∑
j=1

1

j

∑
S∈Bj

∏
x∈S̄

(1− px)
∏
z∈S

pz. (20)

Then, we show that (19) and (20) are equivalent. The degree
coefficient of polynomial 0 (i.e., when |S| = 0) relates only
to j ∈ {1}:

∏m−1
k=1 (1 − pk), where we select all the ones in

parentheses. Thus, the coefficient of the terms in the degree
of polynomial 0 is 1. The degree coefficient of polynomial 1
(i.e., when |S| = 1). corresponds to j ∈ {1, 2}:

m−1∏
k=1

(1− pk) (j = 1); (21)

1

2

m−1∑
k=1

pk
∏

x∈[m−1]\{k}

(1− px) (j = 2). (22)

Take the coefficient of p1 as an example. In (21), to get
p1, we select p1 from (1 − p1) and all the ones from the
rest parentheses, which yields −1

(
1
0

)
. In addition, in (22),

the coefficient is 1
2

(
1
1

)
. They add up to −1 + 1

2 = − 1
2 .

For a general degree coefficient of polynomial K (i.e., when
|S| = K), by using a similar argument, the coefficient is
(−1)K

[∑K
y=0

(−1)y

y+1

(
K
y

)]
, which can be simplified as

(−1)K
K∑

y=0

(−1)y

y + 1

(
K

y

)
= (−1)K

K∑
y=0

(−1)y

y + 1

K!

y!(K − y)!

= (−1)K 1

K + 1

K∑
y=0

(−1)y (K + 1)!

(y + 1)!(K − y)!

=
(−1)K+1

K + 1

K∑
y=0

(−1)y+1

(
K + 1

y + 1

)

=
(−1)K+1

K + 1

[
(−1 + 1)K+1 − (−1)0

]
=

(−1)K

K + 1
.

Combining the above yields (19). Finally, we plug Eq. (18) in
Eq. (17) and get

lim
t→∞

E
[
xt+1

]
= lim

t→∞
E

[
m∑
i=1

uiE

[
Xi∑m
j=1 Xj

∣∣∣A1 ̸= ∅

]]

=
m∑
i=1

uipi

(
1 +

∑m
j=2 (−1)

j+1 1
j

∑
S∈Bj

∏
z∈S pz

)
1−

∏m
i=1(1− pi)

,

where Bj ≜
{
S
∣∣∣S ⊆ [m] \ {i} , |S| = j − 1

}
.

Special cases. (i) When probabilities are uniform, i.e., pi = p
for i ∈ [m]. The coefficient of each term in (3) becomes

p(1 +
∑m

j=2(−1)j+1 (
m−1
j−1 )
j pj−1)

1− (1− p)m

(a)
=

p(1 +
∑m

j=2(−1)j+1 (
m
j )
m pj−1)

1− (1− p)m

=
1

m
·
mp+

∑m
j=2(−1)j+1

(
m
j

)
pj

1− (1− p)m

(b)
=

1

m
·
mp+

∑m
j=2(−1)j+1

(
m
j

)
pj

mp+
∑m

j=2(−1)j+1
(
m
j

)
pj

=
1

m
,

where equality (a) holds because j
(
m
j

)
= m

(
m−1
j−1

)
, equality

(b) holds because

1− (1− p)m
(c)
=

m∑
j=1

(−1)j+1

(
m

j

)
pj

= mp+
m∑
j=2

(−1)j+1

(
m

j

)
pj ,

where equality (c) holds because of binomial theorem. Con-
sequently, (3) reduces to the unbiased global optimum

lim
T→∞

E
[
xT
]
=

1

m

m∑
i=1

ui = x⋆.

(ii) When clients local distributions are homogeneous, e.g.,
ui = u for all i ∈ [m]. (3) reduces to∑m

i=1 pi

[
1 +

∑m
j=2 (−1)

j+1 1
j

∑
S∈Bj

∏
z∈S pz

]
1−

∏m
i=1 (1− pi)

u. (23)

Let us define Cj ≜
{
S′
∣∣∣S′ ⊆ [m], |S′| = j

}
. Next, we show

that
∑

S′∈Cj

∏
z′∈S′ pz′ =

∑m
i=1

pi

j

∑
S∈Bj

∏
z∈S pz . We start

from the R.H.S. Take the occurrence of A = px1
px2

. . . pxj
as

an example, where x1 < x2 < . . . < xj . Since it is equally
possible for px1

, px2
, . . . and pxj

to be the leading term (i.e.,
pi in (23)), we then have

(
j
1

)
many A terms in the R.H.S.

(
j
1

)
=

j will cancel the original coefficient 1
j at each term. Hence,

the equality holds. Consequently, (23) simplifies to (24).∑m
j=1 (−1)

j+1∑
S′∈Cj

∏
z′∈S′ pz′

1−
∏m

i=1 (1− pi)
= 1, (24)

where the equality holds because of the expansion of the term∏m
i=1(1− pi). Finally, we get

lim
T→∞

E
[
xT
]
= u. (25)

(25) indicates that the global objective will recover each
client’s local optimums under even heterogeneous participation
probability pi’s when clients’ local data distributions are
homogeneous.

Proof of Proposition 2. In our work, the probabilities pti ≥
c. Therefore, define Ymin as the random variable of the
ordinary geometric distribution with success probability c.
We have E [Ymin] = 1/c. [36, Theorem 3.2] tells us that
E [t− τi(t)] ≤ E [Ymin] = 1/c.
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Proof of Theorem 1. In this proof, we combine all the above
intermediate results to show the final theorem.
(a) Taking expectation over the remaining randomness and a
telescoping sum.

1

T

T−1∑
t=0

E
[
F (x̄t+1)− F (x̄t)

]
≤ −sη

3

1

T

T−1∑
t=0

E
[∥∥∇F (x̄t)

∥∥2
2

]
+ 6Lη2s2

(
κ2L2 + 1

) (
σ2 + ζ2

)
+ ηs

L2

mT

T−1∑
t=0

E
[∥∥xt

i − x̄t
∥∥2
2

]
,

where inequality (a) holds because of Assumption 4.
(b) Plugging in Lemma 4 and Assumption 4.

F ⋆ − E
[
F (x̄0)

]
T

≤ 9η2s2L

[
κ2L2 + 1 + 16ηs2

ρsL(
1−√ρ

)2
] (

σ2 + ζ2
)

− sη

3

(
1− 162η2s2

ρ
(
β2 + 1

)
L4(

1−√ρ
)2

)
1

T

T−1∑
t=0

E
[∥∥∇F (x̄t)

∥∥2
2

]
.

(26)

We know from η ≤ 1−√
ρ

108L2s3(β2+1)(1+κ2L2) ≤
1−√

ρ

18(β2+1)L2s that

1− 162η2s2
ρ
(
β2 + 1

)
L4(

1−√ρ
)2

≥ 1−
162ρ

(
β2 + 1

)
L4(

1−√ρ
)2

(
1−√ρ

)2
324 (β2 + 1)

2
L4
≥ 1

2
.

In addition, we also have κ2L2+1+16ηs3 ρL

(1−
√
ρ)

2 ≤ κ2L2+

1 + 1
1−√

ρ . Therefore, rearrange the terms in (26), it follows
that

1

T

T−1∑
t=0

E
[∥∥∇F (x̄t)

∥∥2
2

]
≤

6
(
F (x̄0)− F ⋆

)
ηsT

+ 54ηsL

(
κ2L2 + 1 +

1

1−√ρ

)(
σ2 + ζ2

)
.

APPENDIX B
EXPERIMENTAL SETUP

Hardware and Software Setups. The simulations are per-
formed on a private cluster with 64 CPUs, 500 GB RAM and
8 NVIDIA A5000 GPU cards. We code the experiments based
on PyTorch 1.13.1 [42] and Python 3.7.16. Our code is accessi-
ble at https://github.com/mingxiang12/FedPBC.

Neural Network and Hyper-parameter Specifications.
We initialize the customized CNNs using the Kaiming
initialization. A decaying learning rate schedule η =
η0/
√
(t/10) + 1 is adopted. The initial local learning

rate η0 and the global learning rate ηg are searched,
based on the best performance after 500 global rounds,
over two grids {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005} and
{0.5, 1, 1.5, 5, 10, 50}, respectively. We set β = 0.01, which
is tuned over a grid of {1, 0.5, 0.1, 0.05, 0.01, 0.005} × 10−2,
for F3AST [12].

Transition probabilities
qt⋆i qtiConditions

qt⋆i · (1− pti) ≤ pti 0.05 0.05 · 1−pt
i

pt
i

qt⋆i · (1− pti) > pti
pt
i

1−pt
i

1

TABLE III: The construction of qti and qt⋆i .

qt⋆i

qti
OFF ON1− qt⋆i 1− qti

Fig. 7: An illustration of the Markovian transition probabilities.

Missing algorithm descriptions. In this section, we specify
the missing essential hyperparameters for specific algorithm
implementations. As recommended by [27], we choose K =
50 for FedAU without further specification. Note that K is an
algorithmic hyperparameter in FedAU. Adopting the setup in
[12], we set the communication constraint to be 10 clients for
F3AST.

Datasets. All the datasets we evaluate contain 10 classes of
images. Some data enhancement tricks that are standard in
training image classifiers are applied during training. Specifi-
cally, we apply random cropping to all datasets. Furthermore,
random horizontal flipping is applied to CIFAR-10 and CINIC-
10. SVHN [43] dataset contains 32×32 colored images of 10
different number digits. In total, there are 73257 train images
and 26032 test images. CIFAR-10 [44] dataset contains 32×32
colored images of 10 different objects. In total, there are 50000
train images and 10000 test images. CINIC-10 [45] dataset
contains 32×32 colored images of 10 different objects. In
total, there are 90000 train images and 90000 test images.

Constructions of Markov transition probabilities. Recall
that the link status in Markovian unreliable scheme is dic-
tated by a Markov chain, whose initial states are based on
Bernoulli(pti). Fig. 7 plots the Markov chain. Let qti and qt⋆i
define the transition probability from the “ON” state to the
“OFF” state and from the “OFF” state to the “ON” state,
respectively. In the experiments, we aim to construct qti and
qt⋆i so that a stationary distribution is met as

qti · pti = qt⋆i ·
(
1− pti

)
. (27)

Concretely, we first assume that qt⋆i = 0.05 is an external
choice. If qt⋆i · (1− pti) > pti, we adjust qti and qt⋆i to ensure
(27). Please find the details in Table III.
Ablation Experiments. In this part, we conduct ablation
experiments to study the impact of different parameters on
the performance of FedPBC and the other baseline algorithms.
Specifically, we evaluate all algorithms on the SVHN dataset
under the Bernoulli unreliable communication scheme with
time-varying pti’s. In any set of experiments, only one system
design parameter is changed, while the others remain the
same as in Table I. We report the mean test accuracy over

https://github.com/mingxiang12/FedPBC
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Fig. 8: The test accuracies in the ablation experiments. In each plot, only one system design parameter is changed. The others remain the
same as in Table I. All experiments are evaluated on the SVHN dataset under Bernoulli with time-varying unreliable uplinks. The bars with
backslashes refer to the algorithms requiring extra memory or known historical statistics.

the last 100 rounds in bar plots in Fig. 8. Algorithms are
divided into two groups: those with additional memory or
known historical statistics (bars with backslashes) and those
without. It is observed that FedPBC outperforms the baseline
algorithms not aided by memory in almost all cases (except
when α = 1.0 by FedAU in Fig. 8a and σ0 = 1.0 by FedAU in
Fig. 8d.) The reason why FedPBC trails behind FedAU in the
above two cases is worth further investigation. Compared to
memory-aided algorithms, although MIFA occasionally dwarfs
FedPBC, the benefit margin is lower than 2% in test accuracy.
Impact of data heterogeneity α. In the presence of more
homogenous local data, i.e., a larger α, the bias phenomenon
gradually disappears as the local objectives become inter-
changeable, which is confirmed by Fig. 8a from the on-par
performance of almost all algorithms when α = 1.0.
Impact of fluctuation γ. The magnitude of the sine function
is defined as γ and thus governs the fluctuations of pti’s. It can
be seen that the test accuracies of all algorithms decrease as
γ increases. This is intuitive, as enlarged fluctuations impose

new challenges. It is observed that FedPBC outperforms all
algorithms that are not aided by memory.
Impact of a cutting-off lower bound δ. Recall that pi’s
might be too small and close to 0 due to the unbalanced
class contributions in r. We show in Lemma 3 that a smaller
lower bound c of pti’s slows down convergence and incurs a
looser bound in Theorem 1. Notice that FedPBC remains the
best among the algorithms not aided by memory in terms of
test accuracy. At one challenging extreme (when δ = 0.001),
all algorithms experience significant drops in accuracy, in
particular MIFA. This confirms our conjecture that the old
gradient might lead to staled updates and affect performance.
Impact of contribution heterogeneity σ0. A smaller σ0

leads to a more even contribution of each class and thus
more homogeneous pi’s. Hence, it is not surprising to find
that many baseline algorithms attain accurate test predictions
when σ0 = 1.0. In contrast, FedPBC shadows all baseline
algorithms except MIFA in the highly heterogeneous scenario
where σ0 = 20.0.
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