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A B S T R A C T

Measuring similarities between different tasks is critical in a broad spectrum of machine learning problems,
including transfer, multi-task, continual, and meta-learning. Most current approaches to measuring task
similarities are architecture-dependent: (1) relying on pre-trained models, or (2) training networks on tasks and
using forward transfer as a proxy for task similarity. In this paper, we leverage the optimal transport theory and
define a novel task embedding for supervised classification that is model-agnostic, training-free, and capable
of handling (partially) disjoint label sets. In short, given a dataset with ground-truth labels, we perform a label
embedding through multi-dimensional scaling and concatenate dataset samples with their corresponding label
embeddings. Then, we define the distance between two datasets as the 2-Wasserstein distance between their
updated samples. Lastly, we leverage the 2-Wasserstein embedding framework to embed tasks into a vector
space in which the Euclidean distance between the embedded points approximates the proposed 2-Wasserstein
distance between tasks. We show that the proposed embedding leads to a significantly faster comparison of
tasks compared to related approaches like the Optimal Transport Dataset Distance (OTDD). Furthermore, we
demonstrate the effectiveness of our embedding through various numerical experiments and show statistically
significant correlations between our proposed distance and the forward and backward transfer among tasks
on a wide variety of image recognition datasets.

1. Introduction

Learning from a broad spectrum of tasks and transferring knowl-
edge between them is a cornerstone of intelligence, and primates
perfectly exemplify this characteristic. Modern Machine Learning (ML)
is rapidly moving toward multi-task learning, and there is great interest
in methods that can integrate, rapidly adapt, and seamlessly transfer
knowledge between tasks. When learning from multiple possibly het-
erogeneous tasks, it is essential to understand the relationships between
the tasks and their fundamental properties. It is, therefore, highly
desirable to define (dis)similarity measures between tasks that will
allow one to cluster tasks, have better control over the forward and
backward transfer, and ultimately require less supervision for learning
tasks.

There has been an increasing interest in assessing task similarities
and their relationship with forward and backward knowledge transfer
among tasks. For instance, various recent works look into the selection
of good source tasks/models for a given target task to maximize the
forward transfer to the target task (Achille et al., 2019; Bao et al.,
2019; Bhattacharjee et al., 2020; Fifty et al., 2021; Zamir et al., 2018).
Others have demonstrated the relationship between negative backward
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transfer (i.e., catastrophic forgetting) and task similarities (Nguyen
et al., 2019).

Many existing methods for measuring task similarities depend on
the choice of model(s), architecture(s), and the training process (Achille
et al., 2019; Gao & Chaudhari, 2021; Khodak, Balcan, & Talwalkar,
2019; Leite & Brazdil, 2005; Nguyen, Hassner, Seeger, & Archambeau,
2020; Venkitaraman, Hansson, & Wahlberg, 2020; Zamir et al., 2018).
For example, Gao and Chaudhari (2021), Venkitaraman et al. (2020),
Zamir et al. (2018) use pre-trained task specified models to measure a
notion of forward transfer and define it as task similarity. Achille et al.
(2019) embed tasks into a vector space that relies on a partially-trained
network. Khodak et al. (2019) use the optimal parameters as a proxy
for each task and Leite and Brazdil (2005) use the learning curves of a
pre-specified model to measure task similarities. Besides being model-
dependent, these approaches are often computationally expensive as
they involve training deep models (or require pre-trained models).

Model-agnostic task similarity measures provide a fundamentally
different approach to quantifying task relationships (Alvarez-Melis &
Fusi, 2020; Ben-David, Blitzer, Crammer, & Pereira, 2006). These meth-
ods often measure the similarity between tasks as a function of the
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similarity between the joint or conditional input/output distributions,
sometimes also taking the loss function into account. The classic theo-
retical results for such similarity measures (Batu, Fortnow, Rubinfeld,
Smith, & White, 2000; Ben-David et al., 2006) focus on information
theoretic divergences between the source and target distributions. More
recently, Optimal Transport (OT) based approaches (Alvarez-Melis &
Fusi, 2020; Tan, Li, & Huang, 2021; Xu, Yang, Liu, Zhang, & Liu, 2022)
have shown promise in modeling task similarities. Notably, Alvarez-
Melis and Fusi (2020) approach measuring task similarities through
the lens of a hierarchical OT (Yurochkin, Claici, Chien, Mirzazadeh,
& Solomon, 2019) where they solve an inner OT problem to calculate
the label distance between the class-conditional distributions of two
supervised learning tasks. The label distance is then incorporated into
the transportation cost of an outer OT problem, resulting in a distance
between two datasets that integrates both sample and label discrep-
ancies. Tan et al. (2021) treats the optimal transport plan between
the input distributions of two tasks as a joint probability distribution
and use conditional entropy to measure the difference between the
two tasks. One major shortcoming of these OT-based approaches is
their computational complexity. These methods require the pairwise
calculation of OT (or entropy regularized OT) between different tasks,
which can be prohibitively expensive in applications requiring frequent
evaluations of task similarities, e.g., in continual learning.

We propose a novel OT-based task embedding for supervised learn-
ing problems that is model-agnostic and computationally efficient. On
the one hand, our proposed approach is similar to Achille et al. (2019)
and Peng, Li, and Saenko (2020), which embed datasets into a vector
space in which one can easily measure the difference between tasks,
e.g., via the Euclidean distance between embedded vectors. On the
other hand, our approach is inspired by the Optimal Transport Dataset
Distance (OTDD) (Alvarez-Melis & Fusi, 2020) framework, and it es-
sentially provides a Euclidean embedding for a hierarchical OT-based
distance between tasks. To calculate such a task embedding, we use the
Wasserstein embedding framework (Kolouri, Naderializadeh, Rohde,
& Hoffmann, 2020; Wang, Slepčev, Basu, Ozolek, & Rohde, 2013).
Importantly, our approach alleviates the need for pairwise calculation
of OT problems between tasks, turning it into a more desirable solution
than previously proposed methods.

Contributions. We propose a computationally efficient and model-
agnostic task embedding, denoted as Wasserstein Task Embedding
(WTE), in which the Euclidean distance between embedded vectors
approximates a hierarchical OT distance between the tasks. We provide
extensive numerical experiments and demonstrate that: (1) our cal-
culated distances between embedded tasks are highly correlated with
the OTDD distance (Alvarez-Melis & Fusi, 2020), (2) our proposed
embedding and similarity calculation is significantly faster than the
OTDD distance, and (3) our proposed similarity measure provides
strong and statistically significant correlation with both forward and
backward transfer.

2. Related work

Model-based task similarity. Most existing approaches to measur-
ing task similarity are model-dependent and use forward transferability
as a proxy for similarity. Zamir et al. (2018) use pre-trained models
on source tasks and measure their performance on a target task to
obtain an asymmetric notion of similarity between source and target
tasks. Following Zamir et al. (2018)’s work, Dwivedi and Roig (2019)
measure the transferability in a more efficient manner by applying the
Representation Similarity Analysis (RSA) between the trained models
(e.g. DNNs) from different tasks. Similarly, Nguyen et al. (2020) assume
the source and target tasks share the same set of inputs but have
different sets of labels, and estimate the transferability by the empirical
conditional distribution of target labels given the inputs computed by
a pre-trained model on the source task.

Another class of approaches embed the tasks into a vector space
and then define the (dis)similarity on the embedded vector represen-
tations. Achille et al. (2019) discuss processing data (images) through
a partially trained ‘‘probe network’’ and obtain vector embedding by
computing the Fisher information matrix (FIM). The (dis)similarity of
two tasks is then computed from the difference between the FIMs.
Similarly, Peng et al. (2020) propose a domain (labeled dataset) to
vector technique. In particular, given a domain, they feed the data to
a pre-trained CNN to compute the Gram matrices of the activations of
the hidden convolutional layers, and apply feature disentanglement to
extract the domain-specified features. Concatenation of the diagonal
entries of Gram matrices and the domain-specified features gives the
final domain embedding. These methods, however, highly rely on the
pre-trained models and training process, and lack theoretical guaran-
tees. On the opposite side of the spectrum is directly measuring the
discrepancy between domains.

Discrepancy measures of domains. Over the years, numerous
notions of discrepancy to measure the (dis)similarity of datasets
(domains) were proposed, including L1-norm (Batu et al., 2000),
generalized Kolmogorov–Smirnov distance (Devroye, Györfi, & Lugosi,
1996), and loss-oriented discrepancy distance (Mansour, Mohri, &
Rostamizadeh, 2009). In the context of domain adaptation, generalized
Kolmogorov–Smirnov distance (later known as the -distance) is a
principled notation of discrepancy, which is a relaxation of total
variation. Another widely used distance is the Maximum Mean
Discrepancy (MMD) (Gretton, Borgwardt, Rasch, Schölkopf, & Smola,
2006), which captures the (dis)similarity of the embedding of
distribution measures in a reproducing kernel Hilbert space. Pan,
Tsang, Kwok, and Yang (2010) propose to learn transfer components
across domains in reproducing kernel Hilbert space using MMD,
and show that the subspace spanned by these transfer components
preserves data properties. Such domain discrepancy methods, however,
cannot take labels into account, and thus may not be enough to reflect
the similarity of tasks.

Optimal transport based task similarity. In recent years, metrics
rooted in the optimal transport problem, e.g., the ‘‘Wasserstein dis-
tance’’ (Villani, 2009, 2021) have attracted growing interest in the ma-
chine learning community. Wasserstein distance is a rigorous metric of
probability measures endowed with desired statistical convergence be-
havior, in contrast to other classical discrepancies (e.g. KL-divergence,
total variation, JS-divergence, Hellinger distance, Maximum mean dis-
crepancy, etc.).

Alvarez-Melis and Fusi (2020) propose a notion of distance between
two datasets in a supervised learning setting. They introduce Optimal
Transport Dataset Distance (OTDD) based on the OT theory, which
can be thought as a hierarchical OT distance where the transportation
cost measures the distance between samples as well as labels. With
the assumption that the label-induced distributions can be approxi-
mated by Gaussians, the distance between labels is defined as the
Bures-Wasserstein distance.

Tan et al. (2021) introduce another OT-based method to measure
the transferability, named OTCE (Optimal Transport Conditional En-
tropy) score. In particular, they first use the entropic optimal transport
to estimate domain differences and then use the optimal coupling
between the source and target distributions to compute the conditional
entropy of the target task given source task. The OTCE is defined by
the linear combination of the OT distance and the conditional entropy,
whose coefficients are fitted by auxiliary tasks. To overcome this major
limitation of dependency on auxiliary tasks, Tan, Zhang, Li, Huang,
and Zhang (2024) propose a faster and auxiliary-free variant of OTCE,
named F-OTCE, which estimates transferability by first solving an OT
problem between source and target distributions, and then just using
the optimal coupling to compute the Negative Conditional Entropy
between source and target labels.

Both OTDD and OTCE (including F-OTCE) were shown to be ef-
fectively aligned with forward transfer, however, the computation of
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Algorithm 1 Multidimensional Scaling

Input:  = {xn}Nn=1, D = [d(xi, xj )]i,j , l

1: B = − 1

2
(idN×N −

1

N
1N×N )D(idN×N −

1

N
1N×N ), where idN×N is the

N ×N identity matrix, 1N×N is N ×N matrix of all ones.
2: Eigen-decomposition B = V �V T

3: Rearrange � into �̂ with descending order of variances
4: Rearrange V into V̂ in correspondence with �̂

5: �̂(l) = �̂[∶ l , ∶ l]; V̂(l) = V̂ [∶ l]

6: return  () = �̂

1
2

(l)
V̂(l)

the pairwise Wasserstein distances/optimal coupling among increas-
ing number of datasets remains expensive. This hinders the appli-
cation of these methods to problems where one needs to perform
nearest dataset retrieval frequently (e.g., memory replay approaches in
continual learning).

Computation Cost of OT Distance. Calculating the Wasserstein
distance involves solving an n2 dimension linear programming and
the computational cost is (n3 log(n)) for a pair of n-size empirical
distributions. To facilitate the computation, one common method is
adding entropic regularization (Cuturi, 2013; Peyré, Cuturi, others,
2017), by which the original linear programming problem is converted
into a strictly convex problem. By applying the Sinkhorn-Knopp algo-
rithm (Chizat, Peyré, Schmitzer, & Vialard, 2018; Peyré, Cuturi, others,
2017) to find an �- accurate solution, the computational complexity
reduces to (n2 log(n)∕�3) (Altschuler, Niles-Weed, & Rigollet, 2017).
However, this technique suffers a stability-accuracy trade-off. When the
regularity coefficient is high, the objective is biased toward the entropy
term; when it is small, the Sinkhorn algorithm will not be numerically
stable.

3. Preliminaries

3.1. Multidimensional scaling (MDS)

Multidimensional scaling (MDS) (Cox & Cox, 2008) is a non-linear
dimensionality reduction approach that embeds N samples into an l-
dimensional Euclidean space while preserving their pairwise distances.
Given a set of high-dimensional data  = {xn}Nn=1 and the proximity
matrix D ∈ R

N×N , where Di,j = d(xi, xj ), and d(⋅, ⋅) denotes the metric
in  , the goal of MDS is to construct a distance-preserving map from 
to a lower-dimensional Euclidean space R

l. Depending on the objective
and inputs, MDS can be classified into metric MDS and non-metric MDS.
Specifically, metric MDS aims to find a map  ∶  → R

l such that

min
 

√√√√
∑
i,j

(
d(xi, xj ) − ‖ (xi),  (xj )‖

)2
∑
i,j d(xi, xj )2

, (1)

which can be solved by Algo. 1.
Note that MDS not only works for Euclidean distances, but also for

other dissimilarities such as Wasserstein distances (Hamm, Henscheid,
& Kang, 2022; Wang et al., 2011).

3.2. Wasserstein distances

Let � , � be Borel probability measures on  ⊆ R
d with finite pth

moment, and the corresponding probability density functions are p�
and p� , i.e. d � = p�d x, d � = p�d x. The 2-Wasserstein distance between
� and � is defined as (Villani, 2009):

2(� , �) =
(

inf

∈� (� ,�)∫×

‖x − x′‖2d 
(x, x′)
) 1

2

, (2)

where � (� , �) is the set of all transport plans between � and �, i.e. prob-
ability measures on  ×  with marginals � and �. We also note that
by Brenier theorem (Brenier, 1991), given two absolutely continuous

probability measures � , � on R
d with densities p� , p� , there exists a

convex function � such that T = ∇� is a transport map sending � to
�. Moreover, it is the optimal map in the Monge–Kantorovitch optimal
transport problem with quadratic cost:

2(� , �) =
(

∫ ‖x − T (x)‖2p�d x
) 1

2

, (3)

where T = ∇� pushes � to �, denoted by T#� = �.

3.3. Wasserstein Embedding (WE)

Wasserstein Embedding (Courty, Flamary, & Ducoffe, 2017; Kolouri,
Naderializadeh, Rohde, & Hoffmann, 2021; Kolouri, Tosun, Ozolek, &
Rohde, 2016; Wang et al., 2013) provides a Hilbertian embedding for
probability distributions such that the Euclidean distance between the
embedded vectors approximates the 2-Wasserstein distance between
the two distributions. Let {�i}

I
i=0

be a set of I probability distributions
over  ⊆ R

d with densities {pi}
I
i=0

. We fix �0 as the reference measure.
Assume Ti is the optimal transport map that pushes �0 to �i, the
Wasserstein embedding of �i is through a function � defined as

�(�i) = (Ti − id)
√
p0 (4)

where the id is the identity function, i.e., id(x) = x. � admits nice
properties including but not limited to Kolouri et al. (2021):

1. d(�i, �j ) ∶= ‖�(�i) −�(�j )‖2 is a true metric between �i and �j ,
moreover, it approximates the 2-Wasserstein distance: d(�i, �j ) ≈2(�i, �j ).

2. In particular, ‖�(�i)‖2 = ‖�(�i) −�(�0)‖2 ≈ 2(�i, �0). Here we
leveraged the fact �(�0) = 0.

Although these hold true for both continuous and discrete measures
{�i}

I
i=0

, we focus on the (uniformly distributed) discrete setting in this
paper and provide the following numerical computation details. Let
pi =

1

Ni

∑Ni
n=1

�xin
, where �x is the Dirac delta function centered at x ∈ 

and Xi = {xi
n
}
Ni
n=1

is the set of locations of non-negative mass for �i.
Then the Kantorovich problem with quadratic cost between �i and �0

can be formulated as

min
�∈�i

N0∑

n=1

Ni∑

k=1

�nk‖xin − x
0
k
‖2
2

(5)

where the feasible set is

�i ∶= {� ∈ R
N0×Ni |N0

Ni∑

n=1

�nk = Ni

N0∑

k=1

�nk = 1, ∀n, k}. (6)

The discrete formulation Eq. (5) corresponds to the formulation in
Eq. (2) with squaring both sides. The optimal transport plan �∗

i
is the

minimizer of the above optimization problem, which is solved by linear
program at cost (N3 log(N)), N being the number of input samples.
To avoid mass splitting, the barycentric projection (Wang et al., 2013)
assigns each x0

j
in the reference distribution to the center of mass it

is sent to and thus outputs an approximated Monge map Ti. Then the
Wasserstein Embedding for input Xi is calculated by

�(Xi) = (Ti −X0)∕
√
N0 ∈ R

N0×d . (7)

One of the motivations behind Wasserstein embedding is to amelio-
rate the need for computing pairwise Wasserstein distances. Given
M datasets, computation of M(M−1)

2
Wasserstein distances (i.e., OT

problems) across all distinct pairs is impractically expensive especially
when M is large, while leveraging Wasserstein embedding, it suffices
to calculate only M OT problems and the pairwise Euclidean distances
between the embedded distributions.
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Fig. 1. Wasserstein Task Embedding framework. Given labeled task distributions �1 and �2 with input space R
d , WTE first maps them into R

d+l as probability distributions �1 and
�2 by label embedding via MDS, then apply WE to get vectors v1 and v2 with respect to a fixed reference measure �0. Here N0 is the size of reference set.

3.4. Optimal Transport Dataset Distance (OTDD)

Let  = {xn ∈ R
d}N
n=1

be the input set with labels (classes)  =

{yn}
N
n=1

. Following the OTDD framework (Alvarez-Melis & Fusi, 2020),
let � = {(xn, yn) ∈  ×  }N

n=1
denote the set of data-label pairs. OTDD

encodes each label y as distribution �y, where �y =
1

|Cy|
∑
x∈Cy

�x and

Cy ⊂  is the subset of input set with the label y. The ground distance
in � is then defined by combining the Euclidean distance between the
data points and the 2-Wasserstein distance between label distributions:

d�
(
(x, y), (x′, y′)

)
∶=

(
‖x − x′‖2 +2

2
(�y, �y′ )

) 1
2 . (8)

Based on this metric, the OT distance between two distributions �i and
�j on � is

dO T (�i, �j ) = inf
�∈�(�i ,�j )∫�×� d� (z, z

′)2d �(z, z′), (9)

where �(�i, �j ) denotes the set of transport plans between �i and �j .
Note that Eq. (9) is a hierarchical transport problem, as the transporta-
tion cost itself depends on calculation of the Wasserstein distance. To
avoid the computational cost of a hierarchical optimal transport prob-
lem, Alvarez-Melis and Fusi (2020) replace the Wasserstein distance
in Eq. (8) with the Bures-Wasserstein distance (Bhatia, Jain, & Lim,
2019; Malago, Montrucchio, & Pistone, 2018), which assumes that �ys
are Gaussian distributions. Throughout the paper, we consider only the
exact-OTDD, as opposed to the entropy-regularized and other variants.

4. Method

In this section, we specify the problem setting, review the OTDD
framework, and then propose our Wasserstein task embedding (WTE).

4.1. Problem setting

In supervised classification problems, tasks are represented by
input-label pairs and can be denoted as � ⊆  ×  = {(xn, yn)}Nn=1,
where  ⊆ R

d is the data/inputs and  is the labels. We aim to define
a similarity/dissimilarity measure for tasks that enable task clustering
and allow for better control over the forward and backward transfer.

4.2. Wasserstein task embedding

We define a task-2-vec framework (Fig. 1) using Wasserstein em-
bedding (WE) such that the (squared) Euclidean distance between two
vectors approximates the OTDD between the original tasks, and denote
this embedding by WTE. We later show in the experiment section

that the Euclidean distance between the embedded task vectors is not
only highly predictive of forward transferability, but also significantly
correlates with the backward transferability (catastrophic forgetting).

4.2.1. Label embedding via MDS
The combination of optimal transport metric with MDS technique

was first introduced as an approach to characterize and contrast the dis-
tribution of nuclear structure in different tissue classes (normal, benign,
cancer, etc.) (Wang et al., 2011), and further studied in image manifold
learning (Hamm et al., 2022). In short, it seeks to isometrically map
probability distributions to vectors in relatively low-dimensional space.
We leverage the prior work and define an approximated isometry on the
label distributions by (1) calculating the pairwise Wasserstein distances
and (2) applying MDS to obtain embedded vectors. We adopt the same
simplification as in OTDD, that is, assuming the label distributions
are Gaussians to replace Wasserstein distances with the closed form
Bures-Wasserstein distance:

2
2
(�y, �y′ ) = ‖uy − uy′‖22 + Tr(�y + �y′ − 2(�

1
2
y �y′�

1
2
y )

1
2 ) (10)

where u and � denote the mean and covariance matrix of Gaussian
distributions. In consistence with previous notations, let us denote the
label (MDS) embedding operator by  , then

2
2
(�y, �y′ ) ≈ ‖ (�y) −  (�y′ )‖22, (11)

where  (�y),  (�y′ ) ∈ R
l are vectors whose dimension l is selected to

balance the trade-off between accuracy and computation cost
(Tenenbaum, Silva, & Langford, 2000). Having both inputs and labels
represented as vectors, we concatenate these two components and map
the data-label pairs � to �′ ⊆ R

d+l such that

d�
(
(x, y), (x′, y′)

)
≈ (‖x − x′‖2

2
+ ‖ (�y) −  (�y′ )‖22)

1
2

= (‖[x,  (�y)] − [x′,  (�y′ )]‖22)
1
2

= ‖[x,  (�y)] − [x′,  (�y′ )]‖2 (12)

where [⋅, ⋅] denotes the concatenation operator and the domain �′ =

{[x,  (�y)]}x∈ is equipped with l2 norm. Fig. 2 shows this approxi-
mation performance among labels in MNIST (LeCun & Cortes, 2005)
and USPS (Hull, 1994) datasets. MDS embeddings can capture the pair-
wise relationships with a maximum of 7.26% error by 10-dimensional
vectors.

4.2.2. Wasserstein Embedding
By Eqs. (12) and (9), OTDD can be approximated by the squared 2-

Wasserstein distance between the distributions over input-(label MDS
embedding) pairs, �′. Then we leverage the Wasserstein embedding
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Fig. 2. Label-to-label Bures-Wasserstein distance (left) and label MDS embedding Euclidean distances (middle) between MNIST and USPS datasets, squared error is provided on
the right.

Algorithm 2 Wasserstein Task Embedding

Input: {Xi = {(xi
n
, yi
n
)}
Ni
n=1

}I
i=1

1: Calculate label-to-label distance matrix D (Eq. (10))
2: Calculate  (�y) ∈ R

l for all distinct labels y (Algo. 1)
3: Stack each input with its label vector: x → [x,  (�y)] ∈ R

d+l

4: Fix a discrete reference distribution �0 on �0 = {z0
m
}
N0

m=1
⊂ R

d+l with

density p0 =
1

N0

∑N0

m=1
�
z0m

.

5: for i ∈ [1, 2,⋯ , I] do
6: Calculate the optimal transport plan �i from �0 to the discrete

measure �i with distribution on �i = {zi
n

= [xi
n
,  (�yin )]}

Ni
n=1

by
solving the minimization in Eq. (5).

7: Calculate the approximated Monge map Ti =

[
1

Ni

∑Ni
n=1

�i
m,n
zi
n
]
N0

m=1
as a stack of vectors by barycentric projection

(Wang et al., 2013) of �i.
8: vi = (Ti − �0)∕

√
N0

9: end for
10: return {vi}

I
i=1

framework to embed the updated task distributions into a Hilbert space,
with the goal of reducing the cost of computing pairwise Wasserstein
distances. Again, we emphasize that this can bring down the cost from
quadratic to linear with the number of task distributions.

The WTE algorithm is summarized in Algo. 2. The outputs are the
vector representations of input tasks with respect to a pre-determined
MDS dimension and WE reference distribution.

5. Experiments

To assess the effectiveness of our WTE framework, we empirically
validate the correlation between WTE distance and forward/backward
transferability on several datasets. Moreover, we provide both qualita-
tive and quantitative comparison results with OTDD, and show WTE
distance is well aligned with OTDD, and meanwhile is notably faster
to compute. We use the MDS toolkit in scikit-learn and the exact lin-
ear programming solver in Python Optimal Transport (POT) (Flamary
et al., 2021) library for implementing WE. We carry out the distance
calculations on CPU and all the model training experiments on a 24 GB
NVIDIA RTX A5000 GPU.

5.1. Datasets

We conduct experiments on the following four task groups:
*NIST task group consists of the handwritten digits dataset MNIST

(LeCun & Cortes, 2005) and its extensions EMNIST (Cohen, Afshar,
Tapson, & Van Schaik, 2017), FashionMNIST (Xiao, Rasul, & Vollgraf,
2017), KMNIST (Clanuwat et al., 2018) along with USPS (Hull, 1994).

We choose the MNIST split for EMNIST dataset and thus all tasks
contain 10 classes of gray-scale images. All datasets have a training set
of 60,000 samples and a test set of 10,000 samples, except USPS, with
a total of 9298 samples. We resize the images from USPS into 28 × 28
pixel level to match with the others.

Split-CIFAR100 task group is generated by randomly splitting the
CIFAR-100 (Krizhevsky, 2009) dataset with 100 image categories into
10 smaller tasks, each of which is a classification with 10 classes. There
are 600 32 × 32 color images in the training set and 100 in the test set
per class.

Split-Tiny ImageNet task group follows the same splitting scheme
as in Split-CIFAR100. We randomly divide the Tiny ImageNet (Le &
Yang, 2015) into 10 disjoint tasks with 20 classes. Each class contains
500 training images, 50 validating images and 50 test images. For
better model performance, we first rescale each sample to 256 × 256
and then perform a center crop to get 224 × 224 pixel images.

DomainNet task group (Peng et al., 2019) contains 6
domains/tasks: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q),
Real (R) and Sketch (S). We discard the Infograph task due to its noisy
annotations. To mitigate the class imbalance, we randomly sample at
most 100 images in each category.

5.2. Results

To study the transfer behaviors against the WTE distances, we
fix a model architecture for each task group. Specifically, we use
ResNet18 (He, Zhang, Ren, & Sun, 2016) on *NIST, Split-Tiny ImageNet
and DomainNet, and ResNet34 (He et al., 2016) on Split-CIFAR100. In
the forward transfer setting, for each source-target task pair, we first
train the head (i.e., the classifier) of a randomly initialized backbone
on the target task, and use the test performance as the baseline. Next,
we adapt from a model pre-trained on the source task and finetune
the head on the target task. We define the forward transferability of
the source-target pair as the performance gain, i.e. error drop when
adapting from the source task. To analyze backward transfer, all source
tasks are trained jointly during the first phase to avoid task bias,
then in the second phase the model learns only the target task and
suffers from ‘‘forgetting’’ the previous tasks. We use the catastrophic
forgetting, i.e., negative backward transfer as a measure of backward
(in)transferability. In implementations of WE, the reference distribution
is fixed for each task group, and is randomly generated by upsampling
random images at a lower spatial resolution to entail some smooth
structure.

Fig. 3 summarizes the correlation diagrams between our proposed
WTE distance and the forward/backward transferability on the afore-
mentioned three task groups. WTE distance is negatively correlated
with forward transferability, and positively correlated with catastrophic
forgetting. In all scenarios, the correlation is strong and statistically
significant, which confirms the efficacy of WTE distance as a measure
of task similarities. We also visualize the comparison between WTE
distance and OTDD on the *NIST task group in Fig. 4, showing strong
correlation between the two distances.
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Fig. 3. (Top row) forward transfer error drop and (bottom row) catastrophic forgetting against WTE distance on *NIST, Split-CIFAR100, Split-Tiny ImageNet and DomainNet over
five runs. Pearson’s r and the corresponding p-value are reported on top of each experiment setting.

Fig. 4. Pairwise OTDD (left) and WTE distances (middle) on the *NIST task group, and their correlation diagram (right). Notice that OTDD (Eq. (9)) is the squared 2, we report
the squared WTE distances and adjust to the same scale according to the cost function. Adjusted WTE distance is strongly correlated with OTDD, with correlation coefficient
r = 0.91.

Fig. 5. Wall-clock computation time comparison on the *NIST (left) and Split-CIFAR100 (right) task groups.
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Table 1
Correlation coefficients between the negative transferability with OT-based dis-
tance/score, all with p-value less than 0.05.

Task group Source WTE distance OTDD OTCE F-OTCE

C 0.774 0.783 0.731 0.728
S 0.487 0.522 0.436 0.412

DomainNet R 0.518 0.523 0.514 0.516
Q 0.527 0.548 0.534 0.509
P 0.722 0.721 0.713 0.711

5.3. Computation complexity

As we mentioned before, OTDD suffers from a prohibitive compu-

tational cost as the number of tasks grows large. The pairwise OTDD

calculation for a set of M tasks requires (M2N3 log(N)) time in the

worst case, where N is the largest number of samples among the tasks.

WTE distance requires solving only M optimal transport problem, lead-

ing to (M N3 log(N)) complexity. To better demonstrate the efficiency

of WTE distance, we report the wall-clock time comparison on the

*NIST and Split-CIFAR100 in Fig. 5.

5.4. Forward transferability correlation

We provide the Pearson correlation comparison results among the

four OT-based transferability measures in Table 1 for the DomainNet

task group. WTE distance approximates OTDD, and achieves compa-

rable performance to predict forward transferability. OTCE score also

shows strong correlation with forward transferability in most settings,

however it is worth noting that OTCE is not completely model-agnostic

as it uses model performance on auxiliary tasks to fit the linear weights.

For the auxiliary task construction of OTCE in this experiment, we

follow the original paper and randomly select 10% target tasks as

the auxiliary for each configuration to determine the coefficients in

OTCE score using least squares fitting. Besides, we take into account

the effect of the number of auxiliary tasks on the OTCE performance

(as illustrated in Figure 7 of Tan et al., 2021), and set the number of

auxiliary tasks to be 4 to reach a good trade-off between correlation

and computation cost. We have also included results for F-OTCE (Tan

et al., 2024), the rapid and auxiliary-free version of OTCE. This variant

demonstrates comparable performance to OTCE, with only a marginal

reduction in effectiveness.

6. Conclusion

In this paper, we propose Wasserstein task embedding (WTE), a

model-agnostic task embedding framework for measuring task

(dis)similarities in supervised classification problems. We perform a

label embedding through multi-dimensional scaling and leverage the 2-

Wasserstein embedding framework to embed tasks into a vector space,

in which the Euclidean distance between the embedded points ap-

proximates the 2-Wasserstein distance between tasks. We demonstrate

that our proposed task embedding distance is correlated with forward

and backward transfer on *NIST, Split-CIFAR100, Split-Tiny ImageNet

and DomainNet task groups while being significantly faster than ex-

isting methods. In particular, we show statistically significant negative

correlation between the WTE distances and the forward transfer, and

positive correlation with the catastrophic forgetting (i.e. negative back-

ward transfer). Lastly, we show the alignment of WTE distance with

OTDD, but with a significant computational advantage as the number

of tasks grows.
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Appendix. Notation list

• R
d ,Rl ,Rd+l ,RN0(d+l) : Euclidean spaces with dimension d, l, d + l

and N0(d + l);
•  : A subset in R

d ;
•  = {yn}Nn=1 : Labels corresponding to input dataset  = {xn ∈

R
d}N
n=1

;

• � : The set of data-label pairs {(x, y) ∈  × };
• Cy ⊂  : The subset in  with label y;

• D : Proximity matrix for MDS;
• d(⋅, ⋅) : A metric on a space in the context;
•  ∶  → R

l : Mapping by MDS;
• � , � : Borel probabilities on a space indicated in the context;
• p� , p� : The probability density functions corresponding to �

and �. With slight abuse of notation we may use � and p�
interchangeably;

• 2 : 2-Wasserstein metric;
• � (� , �) : The set of all transport plans between � and �, i.e. prob-

ability measures on  ×  with marginals � and �;
• id , idN×N : Identity function and identity matrix of size N × N ,

resp;
• 1N×N : N ×N matrix of all ones;

• T : Monge map;
• T#� : The push-forward measure of � by T ;
• � : Mapping by Wasserstein embedding;
• � : The set of discrete transport plans, in correspondence to � ;
• �∗ : Optimal transport plan;
• �0 : The reference measure for Wasserstein Embedding;
• N0 : Size of �0, when �0 is discrete;
• u, � : Mean and covariance of Gaussian distributions;
• M : Number of supervised tasks;
• I : Number of distributions.

Data availability

Data and code are publicly available.
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