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Abstract. We develop methods for studying the smooth closing lemma for Reeb flows in any

dimension using contact homology. As an application, we prove a conjecture of Irie, stating that

the strong closing lemma holds for Reeb flows on ellipsoids. Our methods also apply to other Reeb

flows, and we illustrate this for a class of examples introduced by Albers-Geiges-Zehmisch.
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1. Introduction

In [Pug67], Pugh proved a fundamental property of the periodic orbits of �1 dynamical

systems, called the �1 closing lemma. Morally speaking, Pugh’s closing lemma states that nearly

periodic points become periodic after a slight�1-perturbation of the dynamical system. Precisely,

it is stated as follows.

Theorem 1. [Pug67] Let + be a �1 vector-field on a closed manifold - and let G be a non-wandering
point of + . Then there is a �1 vector-field + 1 that is �1-close to + such that G is on a closed orbit of + 1.

Note that a point G is non-wandering if, for any open neighborhood * of G and every time (,

there exists a ) ě ( such that ))p*q X * is non-empty, where ) is the flow of + . If ) preserves

a volume form, then every point is non-wandering.

A key question in smooth dynamical systems (posed, for instance, by Smale [Sma98]) is

whether or not Theorem 1 extends to the �8 setting. However, in [Gut87] Gutierrez proved that

any compact manifold- containing an embedded punctured torusΣ Ă - possesses a vector-field

+ and a non-wandering point ? that does not become periodic under any small �8-perturbation

of + . This follows the work of Herman [Her79] in the Hamiltonian setting, where he proved

that all sufficiently small smooth Hamiltonian perturbations of a Diophantine rotation ) of the

two-torus T2 have no periodic orbits. These negative results suggested that, for general smooth

diffeomorphisms and flows, there is no analogue of the closing lemma.

Recently, dramatic progress has been made for area preserving diffeomorphisms of surfaces

and Reeb flows of contact 3-manifolds . In [Iri15], Irie used spectral invariants coming from

embedded contact homology (ECH) [Hut10] to prove the �8 closing lemma for Reeb flows on

closed contact 3-manifolds. In fact, Irie’s proof implied a strong closing property.

Definition 1.1 ( [Iri22]). A manifold . with contact form 
 satisfies the strong closing property if,

for any non-zero smooth function

5 : . Ñ r0,8q
there is a C P r0, 1s such that p1 ` C 5 q
 has a closed Reeb orbit passing through the support of 5 .

Theorem 2. [Iri15] Every closed 3-manifold with contact form p., 
q has the strong closing property.

Strong versions of the closing lemma were later proven for Hamiltonian surface maps [AI16] and

more generally, area preserving surface maps [CGPZ21,EH21].

ECH is a fundamentally low-dimensional theory, and so the methods in [Iri15] are not directly

applicable to studying the dynamics of higher-dimensional symplectomorphisms or Reeb flows.

On the otherhand, ECH is part of a family of Floer theories collectively called symplectic field

theory (or SFT) [EGH00], and other flavors of SFT (e.g. contact homology) generalize naturally to

any dimension. In a recent work [Iri22], Irie described an abstract framework for proving strong

closing properties using invariants satisfying formal properties in the spirit of SFT.

In this paper, we use contact homology to prove that the Reeb flow of any ellipsoid satisfies

the strong closing property, as conjectured by Irie in [Iri22]. This is a first step towards applying

the machinery of SFT to prove closing properties for more general classes of Reeb flows in higher

dimensions.

1.1. Spectral Gaps. The strong closing property for Reeb flows is a consequence of an abstract

criterion on contact homology. In order to explain this criterion, let us briefly review the structure

of contact homology (for a detailed discussion, see §2).

The contact homology of a closed contact manifold p., �q with contact form 
 is a Z{2-graded

vector-space over Q, denoted by

��p., �q with a filtration ��!p., �q Ă ��p., �q determined by 
.
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Figure 1. Morally speaking, the strong closing property states that any positive

perturbation of a Reeb flow supported in* must produce a closed orbit � through

* .

If 
 is non-degenerate (i.e. if the linearized Poincaré return map of every closed Reeb orbit of 


does not have 1 as eigenvalue) then ��p., �q can be computed as the homology of a dg-algebra

freely generated by good Reeb orbits. The differential counts genus 0 holomorphic curves in

R ˆ . with one puncture near `8 ˆ . and any number of punctures near ´8 ˆ ..

The contact homology algebra ��p.q comes with the additional structure of *-maps, which

can be constructed as follows. An abstract constraint % of codimension codimp%q is a graded map

% : ��p(2=´1 , �stdq Ñ Qrcodimp%qs.
Here p(2=´1 , �stdq is the standard tight contact sphere. There is a filtered, graded map associated

to any abstract constraint %, denoted by

*% : ��p., �q Ñ ��p., �qrcodimp%qs.
Intuitively, the *-map *% counts holomorphic curves � in R ˆ . passing through a point ? P Σ

in a small codimension 2 symplectic sub-manifold Σ of R ˆ ., where the number of branches of

� through ? and order of tangency of � at Σ is determined by %. Rigorously, *% can be most

easily constructed using the maps on contact homology induced by exact symplectic cobordisms

(and this approach is related to the point constraint approach by Siegel [Sie19]).

Figure 2. A cartoon of a U-map curve in contact homology. In general, the

tangency of the curve � at the sub-manifold Σ can be arbitrarily complex.

Floer homologies typically have associated spectral invariants that track the minimal filtration

at which a particular homology class appears. In symplectic geometry, these invariants have

become pivotal tools in the study of quantitative and dynamical questions (cf. [GH18, Hut10,

Sie19,CGHS21]). There are spectral invariants associated to contact homology, denoted by

s�p., 
q for each � P ��p., �q.
The *-map *% decreases this spectral invariant, in the sense that

s*%�p., 
q ď s�p., 
q for any � and %.

In particular, we can formulate an invariant that measures the minimal gap between the spectral

invariants of a class � and *%�.
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Definition 1.2. The spectral gap of a contact homology class � P ��p., �q is given by

gap�p., 
q :“ inf
%

 s�p., 
q ´ s*%�p., 
q
c%p�2=q

(
P r0,8q.

The normalizing constants c%p�2=q are certain symplectic capacities of the ball derived from the

contact homology of its boundary. The contact homology spectral gap of a closed contact manifold

. with contact form 
 is given by

gapp., 
q :“ inf
�

 
gap�p., 
q

(
.

The criterion for the strong closing property using the spectral gap can now be stated as follows.

Theorem 3. Let p., �q be a closed contact manifold with contact form 
, and suppose that

gapp., 
q “ 0.

Then p., 
q satisfies the strong closing property.

This criterion is formulated in abstract terms in [Iri22]. We will provide our own concrete

discussion of this condition, along with properties of the spectral gap, in §2.

1.2. Spectral Gap Of Ellipsoids. Given the spectral gap framework discussed above, we are

naturally lead to the following question.

Question 4. Let p., �q be a closed contact manifold with non-trivial contact homology. Does the

contact homology spectral gap vanish for any contact form 
?

Even in simple cases, computing the*-map involves a difficult analysis of �-holomorphic curves,

and so Question 4 is extremely difficult. As a first step, Irie conjectured an affirmative answer to

Question 4 in the following family of examples of contact manifolds.

Example 1.3 (Ellipsoids). An ellipsoid boundary pB�,�|B�q is a contact manifold B� given as the

boundary of an ellipsoid � in C= of the form

� “ tI P C
= : xI, �Iy ď 1u where � is symmetric and positive definite.

The contact form �|B� is the restriction of the standard Liouville form � on C= .

� “ 1

2
¨

=ÿ

9“1

G 93H 9 ´ H 93G 9 .

The Reeb vector-field ' is given by 'pIq “ 2��I where � : R2= Ñ R2= is multiplication by 8.

Figure 3. Two different visualizations of the Reeb flow of an ellipsoid � Ă C= .

On the left, a flow on the boundary of the higher-dimensional domain �. On the

right, as the dynamics of = independent harmonic oscillators (e.g. springs).
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Remark 1.4 (Harmonic Oscillator). From the perspective of classical mechanics, the Reeb flow

of an ellipsoid is the Hamiltonian dynamics of a harmonic oscillator on a fixed energy surface.

Indeed, up to a linear symplectomorphism, every ellipsoid is equivalent to one of the form

�p0q “ �p01 , . . . , 0=q :“ tpI1 , . . . , I=q : � ¨
ÿ

8

|G8|2 ` |H8|2
08

ď 1u where 0 ă 01 ď ¨ ¨ ¨ ď 0= .

The Reeb flow on the boundary of �p0q is simply the Hamiltonian flow of the Hamiltonian

� : R2= Ñ R given by �pG, Hq “ � ¨
ÿ

8

|G8|2 ` |H8|2
08

.

This is precisely the Hamiltonian for = independent harmonic oscillators with periods 01 , . . . , 0= .

Ellipsoid boundaries are some of the most well-studied contact manifolds (cf. [CGHS21,Sie19,

GH18]) and have provided a useful testing ground for many conjectures. Irie’s conjecture

from [Iri22] can be stated as follows.

Conjecture 5 ( [Iri22, Conjecture 5.1]). The boundary pB�,�|B�q of an ellipsoid � Ă C= has the strong
closing property.

1.3. Strong Closing Property For Ellipsoids. The purpose of this paper is to prove Irie’s conjec-

ture via the following spectral gap result.

Theorem 6. The boundary pB�,�|B�q of an ellipsoid � Ă C= has vanishing spectral gap, and thus
satisfies the strong closing property.

Remark 1.5. After the posting of this paper, a different proof of the strong closing property

for integrable systems was given by Xue [Xue22] using KAM theory. Our method of proof is

different and applies to more general, non-integrable systems. See §1.4.

Our approach to Theorem 6 has two parts: the periodic (or integer) case and the general case.

1.3.1. Periodic Case. An integer ellipsoid � is an ellipsoid that is linearly symplectomorphic to a

standard ellipsoid �p01 , . . . , 0=q where 01 , . . . , 0= are all integers,

p01 , . . . , 0=q P Z
= .

The Reeb flow of an ellipsoid with integer 08 is periodic, i.e., the flow !) is the identity for some

). The period is given by the least common multiple of 01 , . . . , 0= ,

) “ lcmp01 , . . . , 0=q.

The strong closing property is automatically satisfied for these flows, since every point goes

through a periodic orbit of period bounded by ). We first prove that this property is reflected in

contact homology as follows.

Theorem 7. Let � “ �p0q Ă C= be an ellipsoid with p01 , . . . , 0=q P Z= . Then, there is a contact
homology class � P ��pB�q and a *-map * “ *% such that

s*�pB�,�|B�q “ s�pB�,�|B�q “ lcmp01 , . . . , 0=q.

Theorem 7 is proven by a direct holomorphic curve calculation in contact homology. Let us

briefly sketch the proof, as carried out in §4.

Proof Sketch. Note that B� does not have a non-degenerate contact form. Instead, the contact

form is Morse-Bott, and the set of closed Reeb orbits of a given period ) forms a sub-manifold

#) Ă B� with quotient () :“ #){R by the Reeb flow.
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Any Morse-Bott contact form admits an arbitrarily small non-degenerate perturbation so that

every closed Reeb orbit � of period less than some fixed ! ą 0 corresponds to a pair

p), ?q where ? is a critical point of a Morse function 5 : () Ñ R.

The period of � is also approximately ). Note that () is an orbifold in general, and so morally

we must work with orbifold Morse functions (in the appropriate sense). Moreover, gradient flow

lines � between critical points on a fixed Morse-Bott family () lift to holomorphic cylinders D� in

the symplectization of B� between the correspoinding orbits.

When ) is the period of the Reeb flow, i.e., the least common multiple of 01 , . . . , 0= , the sub-

manifold #) Ă B�p0q is simply the ellipsoid boundary B�p0q itself and () is a closed orbifold of

dimension 2= ´ 2. If ?` and ?´ are the unique maximum and minimum of a Morse function 5

on () , then for any point I P () , there is a unique gradient flow line

� : R Ñ () from ?` to ?´ passing through I.

This flow line lifts to a cylinder D� from the orbit �` of p), ?`q to the orbit �´ of p), ?´q passing

through a point whose projection to () is I.

On the other hand, there is a *-map *%0 that counts holomorphic curves satisfying a point

constraint. Using intersection theory from [Sie11, MS19] and Wendl’s automatic transversality

[Wen10], we prove that the cylinder D� is unique and transversely cut out. Therefore,

*P0p�`q has a non-zero �´ coefficient.

The orbits �` and �´ are both closed and non-exact in contact homology, and thus, the spectral

invariant of � “ r�`s and *%0p�q have the same action ), proving Theorem 7. �

Remark 1.6. In principle, one could use Morse-Bott formulations of contact homology (cf.

[Bou02]) to compute the *-map in Theorem 7 directly using gradient flow lines (and holomor-

phic cascades more generally). For the sake of completeness we provide here a direct analysis of

the relevant moduli space and do not rely on the Morse-Bott formulation of contact homology.

1.3.2. General Case. The second step of our proof transfers the vanishing spectral gap of integer

ellipsoids to general ellipsoids via the following approximation property.

Proposition 8. Let p., �q be a closed contact manifold with a sequence of

contact forms 
8 , homology classes �8 P ��p., �q, and real numbers &8 ą 0.

Suppose that, as 8 Ñ 8, these sequences satisfy


8 ď 
 ď p1 ` &8q ¨ 
8 and &8 ¨ s�8 p., 
8q Ñ 0.

Then, the contact homology spectral gaps satisfy

gapp., 
q ď lim inf
8Ñ8

gap�8 p., 
8q.

Proposition 8 can be proven in an entirely formal way from Definition 1.2. On the other hand,

elementary results in Diophantine approximation can be used to prove the following result.

Proposition 9. Let � be any ellipsoid. Then there exists a linear symplectomorphism ) : C= Ñ C= and
a sequence of rational ellipsoids �8 of period )8 such that

p1 ´ &8q ¨ �8 Ă )p�q Ă p1 ` &8q ¨ �8 and &8 ¨ )8 Ñ 0.

Rational ellipsoids are rescalings of integer ellipsoids and so by Theorem 7, there exist classes

�8 P ��pB�8 ,�|B�8 q with s�8 pB�8 ,�|B�8 q “ )8 .

Theorem 6 is therefore an immediate consequence of Propositions 8 and 9.



CONTACT HOMOLOGY AND HIGHER DIMENSIONAL CLOSING LEMMAS 7

1.4. Strong Closing Property For A Non-Integrable Flow. The methods of this paper are quite

general, and can be applied to prove the strong closing lemma for flows that are very different

from the ellipsoids. To illustrate this, in §6 we will prove the strong closing property for a family

of non-periodic contact forms on a non-integrable contact 5-manifold .. This family arises as a

particular case of a construction by Albers-Geiges-Zehmisch [AGZ18].

Definition 1.7. We say that a Reeb flow on a contact manifold . of dimension 2= ´ 1 is integrable
if it generates an (1 action that extends to a Hamiltonian T2=´1 action on ..

Consider the symplectic manifold - “ C%1 ˆ C%1 equipped with the product symplectic

form $. Let �1 , �2 denote the cohomology classes Poincare dual to rC%1 ˆ pts and rpt ˆC%1s
respectively. Consider the prequantization bundle

( Ñ - with 21p(q “ �1 ` �2

As a prequantization space, ( admits a contact form 
 uniquely determined by 3
 “ �˚$. More-

over, ( admits a Hamiltonian circle action generated by the vector-field -� of the Hamiltonian

� : - Ñ R given by �pG, Hq “ �

2

´ |G|2
p1 ` |G|2q `

|H|2

p1 ` |H|2q

¯
` 1

This action lifts to a circle action on ( generated a Reeb vector-field '2 (for a contact form 
2)

that commutes with the Reeb vector-field '1 of 
. This yields a contact T2-action

T
2 ñ p(, �q

Moreover, any vector 0 “ p01 , 02q P t
2 » R2 with 08 ą 0 corresponds to a contact form 
0 and a

vector-field '0 given by 01 ¨ '1 ` 02 ¨ '2.

The space ( described above is toric (since the (1-action generated by � extends to a Hamil-

tonian T2-action). However, there is free Z4-action of ( lifting the Z4-action on - generated by

the following 4-periodic map.

C%1 ˆ C%1 Ñ C%1 ˆ C%1 with 5 pG, Hq “ p´H, Gq
The action on ( commutes with the T2-action and we can show that

Lemma 1.8. The quotient . “ ({Z4 does not admit a Hamiltonian T3-action extending the T2-action.

The contact form 
0 descends to., and is periodic if and only if 0 is (proportional to) a rational

vector. By an analogous argument to §1.3, we prove that

Theorem 10. The contact manifolds p., 
0q satisfy the strong closing property for each 0 P p0,8q2.

In light of Lemma 1.8, we suspect that these Reeb flows cannot be approximated by integrable

flows. If this is the case, methods from integrable systems (e.g. the KAM theory methods

of [Xue22]) cannot be applied to these flows.

1.5. Generalizing Irie’s Conjecture. We conclude this introduction by discussing several con-

jectures that are motivated by the results of this paper. These conjectures will be the subject of

future work.

A contact form 
 on a contact manifold p., �q is periodic if the Reeb flow ! : Rˆ. Ñ . satisfies

!) “ Id for some time ) ą 0.

The closed Reeb orbits of a periodic contact form on a closed manifold . form closed orbifolds

() :“ #){R where #) :“ tH P . : !)pHq “ Hu.
Every connected components ( of () has an associated grading shift gr(, given by the formula

gr( :“ RSp(q ´ 1

2
¨ dimp(q mod 2.
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Here RS is the Robbin-Salamon index (see §2.1.3) of the linearized flow along any Reeb orbit in

(. To each component (, we also associate a filtered, graded vector-space

+p(q :“ �‚`gr(
p(;Qq.

We equip +p(q with the homology grading shifted by gr( and the trivial filtration where +!p(q
is 0 if ! is less than the period of the orbits in ( and +p(q otherwise.

Our first conjecture provides a simple formula for contact homology in the periodic setting.

Conjecture 11. Let p., �q be a closed contact manifold with a periodic contact form 
. Then

��p., �q » Sym
´à

(

+p(q
¯

as filtered, graded vector-spaces.

We expect that Conjecture 11 can be proven without Morse-Bott theory using Pardon’s formula-

tion of contact homology [Par15] using an (1-localization argument, analogous to the proof of

the Arnold conjecture given in [Par16].

Our next conjecture generalizes Theorem 7 to general periodic contact forms.

Conjecture 12. Let p., �q be a closed contact manifold with a periodic contact form 
 of period ). Then,
there exists a class � P ��p., �q and a *-map *% such that

s*%�p., 
q “ s�p., 
q “ ).

We expect that Conjecture 12 admits a similar proof to Theorem 7. Namely, one should lift a

gradient flow line on the orbifold of closed orbits ( “ () between the maximum and minimum

of an (orbifold) Morse function on ( to a �-holomorphic cylinder counted by the*-map and then

verify uniqueness and transversality using intersection theory and automatic transversality.

Remark 1.9. A key technical difficulty is our use of a flag of Reeb invariant contact sub-manifolds

of B� in Theorem 7. A possible analogue of this flag can be constructed using the orbifold

Donaldon divisor construction [GMZ22] on the orbifold quotient .{R.

We conclude by noting that the spectral gap provides a criterion for periodicity; a similar

statement for ECH spectral invariants was proved by Cristofaro-Gardiner–Mazzuchelli [CGM20].

The proof of this criterion appears in §2. It follows from a simple modification of the formal

arguments used to prove Theorem 6.

Theorem 13 (Periodicity Criterion). Let p., �q be a closed contact manifold with contact form 
 where

(1.1) gap�p., 
q “ 0 for some � P ��p., �q.
Then the Reeb flow of 
 is periodic.

Note that Conjecture 12 states that (1.1) is also a necessary condition for periodicity. Therefore,

a slightly weaker version of Conjecture 12 can be reformulated as follows.

Conjecture 12’. If p., �q is a closed contact manifold with contact form 
, then the following are

equivalent.

(a) The Reeb flow of the contact form 
 is periodic.

(b) There is a class � P ��p., �q such that gap�p., 
q “ 0.

We say that a contact form 
 on p., �q is near periodic if there is a sequence of periodic contact

forms 
8 of period )8 and &8 ą 0 such that


8 ď 
 ď p1 ` &8q ¨ 
8 and &8 ¨ )8 Ñ 0

The vanishing of the spectral gap of periodic contact forms can be transferred to near-periodic

contact contact forms via the approximation result in Proposition 8, as in the ellipsoid case. We

expect many new examples of non-periodic Reeb flows that satisfy Irie’s strong closing property

to arise in this way.
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Outline. The paper is organized as follows. In Section 2 we review necessary preliminaries from

contact homology. Section 3 contains the exposition of abstract constraints in contact homology

and the spectral gap. It also contains the proofs of Theorem 3, Proposition 8 and Theorem 13.

Section 4 contains an analysis of the moduli space counted by the *%1-map. In Section 5 we use

this analysis to prove Theorem 7. We also provide a proof of Proposition 9 and thus conclude

the proof of the closing property for all ellipsoids, as stated in Theorem 6. Section 6 contains

a proof of Theorem 10, the strong closing property for the non-integrable flows constructed in

Section 1.4.

Acknowledgements. We would like to thank Helmut Hofer for discussions that initiated this

project. We also thank Lior Alon, Oliver Edtmair, Michael Hutchings, Agustin Moreno and

Kyler Siegel for helpful conversations. JC was supported by the National Science Foundation
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No. DMS-1926686. RP was supported by the National Science Foundation under Award No.

DGE-1656466. ST was supported by the AMIAS Membership at the Institute for Advanced Study

and the Zuckerman Israeli Postdoctoral Scholarship.

2. Contact Homology

In this section, we review the formalism of contact homology, which is a simple variant of

symplectic field theory originally introduced by Eliashberg-Givental-Hofer [EGH00].

Remark 2.1. We will work with the transversality framework developed by Pardon [Par15],

although all of the results discussed here should be independent of the specific transversality

scheme.

2.1. Reeb Orbits. We start by discussing some preliminaries about Reeb dynamics. Throughout

this section, we fix a contact manifold p., �q with a contact form 
. We let ' denote the Reeb

vector-field of 
 and ! : R ˆ . Ñ . denote the Reeb flow.

2.1.1. Reeb Orbits. A closed or periodic Reeb orbit � is a closed trajectory of the Reeb vector-field

', that is,

� : R{)Z Ñ . satisfying
3�

3C
“ ' ˝ �.

Here ) is called the the period or action of �, and for any Reeb trajectory one has

) “ Ap�q where Ap�q :“
ż

�

.

Two Reeb orbits � and � are equivalent if they are related by translation in C, that is, if

�pC ` C0q “ �pCq for some C0 P R and all C P R.

Any closed trajectory � factors into a covering map ) and a simple (i.e., injective) closed orbit �.

R{)Z )ÝÑ R{) 1
Z

�ÝÑ ..

The covering multiplicity �� of � is the degree of the covering map ), namely,

(2.1) �� :“ degp)q.
We will consider tuples of Reeb orbits, possibly with repetition, of the form

Γ “ p�1 , . . . , �#q.
If Γ consists of < distinct orbits �1 , . . . , �< occurring with multiplicity �8 in the sequence and

having covering multiplicity �8 , respectively, then we let

ApΓq “
ÿ

8

Ap�8q, �Γ “ �1�2 ¨ ¨ ¨�< , and �Γ “ �1�2 ¨ ¨ ¨�< .
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2.1.2. Non-Degeneracy. Let #) denote the set of fixed points of the time ) Reeb flow.

#) :“ tH P . : !)pHq “ Hu Ă ..

We say that #) is Morse-Bott if it is a closed sub-manifold of . with tangent bundle given by

)#) “ kerp3!) ´ Idq|#) .

A Morse-Bott family ( Ă #){(1 of Reeb orbits is a connected component of the quotient #){(1 for

some period ). Here (1 » R{)Z acts on #) by the Reeb flow. Note that any Morse-Bott family

is automatically an effective orbifold. As a special case, a Reeb orbit � is non-degenerate if

kerp3!) ´ Idq|� “ )� “ spanp'q.

That is, if ( “ �{(1 is a 0-dimensional Morse-Bott family.

A contact form 
 is said to be non-degenerate below action ! if every closed Reeb orbit � with

Ap�q ď ! is non-degenerate. The form 
 is called non-degenerate if every closed Reeb orbit is

non-degenerate. Finally, 
 is Morse-Bott if every closed Reeb orbit is in a Morse-Bott family.

2.1.3. Linearized Flow And Indices. A trivialization � : �˚� » C=´1 of � along a Reeb orbit � is a

trivialization of �˚� as a symplectic vector-bundle, that is, � is a 1-parameter family of symplectic

diffeomorphism ��pCq : ��pCq Ñ C=´1. The linearized flow Φ�,� associated to � and � is the path of

symplectic matrices

Φ�,� : r0, )s Ñ Spp2= ´ 2q given by Φ�,�pCq “ ��pCq ˝ 3!'
C |� ˝ �´1

�p0q
.

This path depends on the trivialization, but if � and � are isotopic trivializations, then the paths

Φ�,� and Φ�,� are isotopic via paths ΦB : r0, )s Ñ Spp2= ´ 2q for C P r0, 1s such that

rankpkerpΦBp)q ´ Idqq is constant in B.

The path Φ�,� allows us to associate a Robbin-Salamon index (introduced by Robbin-Salamon

in [RS93]) to any orbit with a trivialization.

Proposition 2.2. [Gut14] For each = ě 1, there exists an integer valued Robbin-Salamon index of
paths of symplectic matrices

RS : �0pr0, 1s, Spp2=qq Ñ Z,

that is characterized by the following axioms.

(a) (Homotopy) If ΦB : r0, 1s Ñ Spp2=q for B P r0, 1s is a family of paths such that ΦBp0q and Φ
Bp1q

are independent of B, then

RSpΦ0q “ RSpΦ1q.
(b) (Additive) RS is additive under concatenation and direct sum, that is,

RSpΦ ˚ Ψq “ RSpΦq ` RSpΨq and RSpΦ ‘ Ψq “ RSpΦq ` RSpΨq.

(c) (Vanishing) IfΦ : r0, 1s Ñ Spp2=q is such that rankpΦpCq´Idq is constant in C, then RSpΦq “ 0.

The Robbin-Salamon index generalizes the Conley-Zehnder index, in the sense that RSpΦq “
CZpΦq when kerpΦp1q ´ Idq is 0-dimensional and Φp0q is the identity.

For sufficiently nice paths, the Robbin-Salamon index can be explicitly computed using cross-

ings of the Maslov cycle. To be precise, for a given path Φ and any C P r0, 1s, let ΓC be the

symmetric bilinear form on kerpΦpCq ´ Idq given by

ΓCpE, Fq “ $0

ˆ
3Φ

3C
pCqΦ´1pCqE, F

˙
.
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Let signpΓCq be ´1 raised to the power of the signature of ΓC . A crossing is a time C P r0, )s
such that detpΦpCq ´ Idq “ 0. A crossing C is non-degenerate if ΓC is non-degenerate. When every

crossing time of Φ is non-degenerate, the Robbin-Salamon index is given by

(2.2) RSpΦq “ 1

2
signpΓ0q `

ÿ

0ăCă)

signpΓCq ` 1

2
signpΓ)q

where the sum is over all crossings of Φ.

Let � be an orbit lying in a Morse-Bott family of Reeb orbits (, and let � be a trivialization of

the contact structure � on a neighborhood of �. The Robbin-Salamon index of a � with respect to

� is given by

RS�p�q “ RSpΦ�,�q
where Φ�,� is the linearized flow along �, restricted to � and trivialized by �. We will sometimes

denote RS�p�q by RS�p(q in order to distinguish the index of a degenerate orbit from the index of

a non-degenerate perturbation of it. We remark that the pairity of the RS index is independent

of the choice of trivialization1. If � is non-degenerate, then we define the Conley-Zehnder index of

� with respect to � as

CZ�p�q :“ RSpΦ�,�q.
Finally, the SFT grading |�|� is given by

|�|� “ p= ´ 3q ` CZ�p�q mod 2

where dimp.q “ 2= ´ 1.

2.2. Holomorphic Buildings. We next establish basic notation for �-holomorphic curves and,

more generally, �-holomorphic buildings.

2.2.1. Symplectic Cobordisms And Liouville Domains. A symplectic cobordism - : .̀ Ñ .́ between

closed contact manifolds p.̀ , 
`q and p.́ , 
´q is a compact symplectic manifold p-, $q with

boundary such that

B- “ .̀ Y p´.́ q and $|).̆ “ 3
˘.

The symplectic cobordism - is exact if $ “ 3� where �|).̆ “ 
˘. A deformation of exact

cobordisms is simply a smooth 1-parameter family of exact cobordisms p-,�Cq : .̀ Ñ .́

parametrized by C P r0, 1s. Two exact cobordisms are deformation equivalent if they are (up to

isomorphism) connected by a deformation.

Given symplectic cobordisms - : .1 Ñ .2 and - 1 : .2 Ñ .3, there is a well-defined composition
given by

- ˝ - 1 :“ - Y.1 -
1.

This cobordism inherits a symplectic cobordism structure (induced by a standard collar neigh-

borhood of the boundary) and is exact if - and - 1 are exact.

Any symplectic cobordism - can be completed to a non-compact, cylindrical manifold called

the completion of -, denoted by

-̂ “ p´8, 0s ˆ .́ Y.́ - Y.̀ r0,8q ˆ .̀ .

As a special case, if p., 
q is a contact manifold with contact form, we have a trivial exact

cobordism

r0, 1sA ˆ . : p., 41
q Ñ p., 4 0
q with Liouville form � “ 4A
.

The completion of the trivial cobordism is called the symplectization and is denoted by .̂.

1This follows from the loop property of the CZ index (see e.g. [Gut14]) and the concatenation property of the RS

index
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A Liouville domain p,,�q is an exact symplectic cobordism from B, to the emptyset. If - is

an exact symplectic manifold with Liouville form �, then a symplectic embedding � : , Ñ -

from a Lioiville domain is called exact if

�˚� “ �

More generally, � is weakly exact if

r�|B, ´ �˚�|B, s “ 0 P �1pB, ;Rq.

For any weakly exact embedding � : , Ñ -, the Liouville form � of - is homotopic through

Liouville forms in a neighborhood of , so that � is exact. After such a deformation, -z, is a

symplectic cobordism

- : .̀ Ñ .́ Y B,
and we may write - “ p-z,q ˝ p, Y r0, 1s ˆ .́ q (up to deformation).

2.2.2. Homology Classes. Given a symplectic cobordism - : .̀ Ñ .́ and sequences of Reeb

orbits Γ˘ in .̆ , let

Ξ˘ Ă .̆

denote the 1-manifold in .̆ given as the union of the underlying simple orbits of Γ˘. We

may identify Ξ` Y Ξ´ as a sub-manifold of B-. We denote the following subset of the relative

homology by

(p-;Γ` , Γ´q :“ t� P �2p-,Ξ` Y Ξ´q : B� “ rΓ`s ´ rΓ´s P �1pB-qu.

Given a homology class � P (p-;Γ` , Γ´q and a trivialization � : �|Γ`YΓ´ » R2=´2 of � over the

collections of Reeb orbits Γ` and Γ´, there is a well-defined relative Chern number (Definition 5.1

in [Wen15])

21p�, �q P Z.

Moreover, given a choice of genus 6, there is a well-defined Fredholm index given by

indp�, 6q :“ p= ´ 3q ¨ p2 ´ 26 ´ |Γ`| ´ |Γ´|q ` 21p�, �q `
ÿ

�`PΓ`

CZ�p�`q ´
ÿ

�´PΓ´

CZ�p�´q.

Note that if - : .0 Ñ .1 and - 1 : .1 Ñ .2 are symplectic cobordisms, then there is a map of

homology classes in - and - 1 to homology classes in the composition

(p-;Γ0 , Γ1q ˆ (p- 1;Γ1 , Γ2q Ñ (p- ˝ - 1;Γ0 , Γ2q denoted by p�, �1q ÞÑ � ` �1.

This map is associative. Moreover, the Chern class and Fredholm index are both additive with

respect to this operation.

2.2.3. Complex Structures. A compatible almost complex structure on a contact manifold p., �q is a

bundle endomorphism � : � Ñ � such that

�2 “ ´ Id and 3
p´, �´q|� is a metric for any contact form 
.

Any such almost complex structure extends to an almost complex structure �̂ on .̂ by

�̂|� “ � and �̂pBAq “ ' where .̂ “ RA ˆ ..

Likewise, for �˘ compatible almost complex structures on .̆ , a compatible almost complex structure
�̂ on the completion -̂ of a symplectic cobordism - : .̀ Ñ .́ is a bundle endomorphism

�̂ : )-̂ Ñ )-̂ such that

�̂2 “ ´ Id, $p´, �̂´q|- is a metric on -, �̂|p´8,0sˆ.́ “ �̂´ , and �̂|r0,8qˆ.̀ “ �̂`.
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2.2.4. Holomorphic Maps. Fix a symplectic cobordism - : .̀ Ñ .́ and a compatible almost

complex structure �̂ on -̂. Consider a closed Riemann surface

pΣ̄, 9q with a finite set of punctures % Ă Σ̄.

A �-holomorphic map from the punctured surface Σ :“ Σ̄z% to the symplectization p-̂ , �̂q is a map

D : Σ Ñ -̂ satisfying � ˝ 3D “ 3D ˝ 9.

The �-energy E�pDq and area ApDq of a �̂-holomorphic map are defined as follows.

E�pDq “ sup
)´

ż

D´1pp´8,0qˆ.q
D˚p)´3B ^ 
´qq ` sup

)`

ż

D´1pp0,8qˆ.q
D˚p)`3B ^ 
`qq,

ApDq “
ż

D´1pp´8,0qˆ.q
D˚p3
´q `

ż

D´1p-q
D˚$ `

ż

D´1pp0,8qˆ.q
D˚p3
`q.

Here the supremums are over compactly supported functions )´ : p´8, 0s Ñ r0,8q and )` :

r0,8q Ñ r0,8q with integral 1. The energy EpDq is simply the sum

EpDq “ E�pDq ` ApDq.

A holomorphic map is said to have finite energy if EpDq is well-defined. Any finite energy, proper

holomorphic map D is asymptotic to sequences of closed Reeb orbits Γ˘ as A Ñ ˘8, D Ñ Γ˘ as

˘8. To be precise, for each puncture ? P %, there is a neighborhood * of ? and a holomorphic

chart ) : r0,8qB ˆ p(1qC » *z? Ă Σ such that

D ˝ )pr0,8q ˆ (1q Ă r0,8q ˆ .̀ or D ˝ )pr0,8q ˆ (1qq Ă p´8, 0s ˆ .́ ,

and

�R ˝ D ˝ )pB,´q ÝÝÝÝÑ
BÑ˘8

˘8, �. ˝ D ˝ )pB,´q �0

ÝÝÝÝÑ
BÑ˘8

�p˘)´q as a map (1 Ñ .̆ .

Here � is a closed Reeb orbit of .̆ , �R : -̂ Ñ R is the projection to the R-factor, and �. : -̂ Ñ .̆

is the projection to the .̆ -factor where both projections are defined on the cylindrical ends of -̂.

Hence, Stokes theorem implies that

ApDq “ ApΓ`q ´ ApΓ´q.

Since the area of holomorphic maps is always non-negative, this implies that ApΓ`q ě ApΓ´q.
Finally, any holomorphic curve D from Γ` to Γ´ represents a class

rDs P (p-;Γ` , Γ´q

acquired as the fundamental class of the composition � ˝ D where � : -̂ Ñ - is the continuous

map sending - to itself and the ends p´8, 0q ˆ .́ and p0,8q ˆ .̀ to .́ and .̀ , respectively.

2.2.5. Asymptotic Markers and Matchings. Consider a cobordism - : .̀ Ñ .́ and equip each

simple Reeb orbit � in .̀ and .́ with a basepoint 1� P � Ă .̆ .

Given a finite energy holomorphic map D : Σ Ñ -̂ asymptotic to a Reeb orbit � at a puncture

?, let (? denote the unit circle bundle at the puncture ?

(? :“ p)?Σ̄z0q{R`.

The complex structure on Σ̄ induces an (1-action on (? and there is a natural map of the form

�D,? : (? Ñ �, where � is the simple orbit of �.

An asymptotic marker <� at a puncture ? P % is a choice of element

<� P (? , such that �D,?p<�q “ 1� .
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Given two holomorphic curves D and E asymptotic to � at punctures ? and @, respectively, a

matching isomorphism � between their ends is a map

� : (? Ñ (@ , such that �E,@ ˝ �p�´1
D,?p1�qq “ 1� .

A holomorphic map D is said to be equipped with asymptotic markers if each of its punctures is.

Note that a biholomorphism ) : Σ Ñ Σ
1 induces a map on the set of asymptotic markers and

matching isomorphisms along the punctures. We denote these maps by )˚.

2.2.6. Holomorphic Curves. Given an integer 6, a homology class � P (p-;Γ` , Γ´q, and tuples of

Reeb orbits Γ˘ in .̆ , we have an associated moduli space of finite energy �-holomorphic curves

M6,�p-, �;Γ` , Γ´q or M6,�p-̂ , �̂;Γ` , Γ´q.

The points in this moduli space are �-holomorphic maps D : Σ Ñ -̂ equipped with asymptotic

markers that satisfy

6pΣ̄q “ 6, rDs “ � and D Ñ Γ˘ as A Ñ ˘8,

modulo the relation that D is equivalent to D1 if there is a biholomorphism ) : Σ1 » Σ such that

D1 “ D ˝ )

and the induced )˚’s respect the asymptotic markers. We refer to such an equivalence class D as

a �-holomorphic curve (with asymptotic markers).

In the case where -̂ “ .̂ is the symplectization of a contact manifold . and �̂ is the sym-

plectization of a compatible almost complex structure on �, the moduli space admits a natural

R-action given by R-translation in R ˆ .. Then we adopt the notation

M6,�p., �;Γ` , Γ´q :“ M6,�pR ˆ ., �̂;Γ` , Γ´q{R.

Example 2.3. A trivial cylinder in a symplectization p.̂, �̂q is any map D : R ˆ (1 Ñ .̂ of the form

DpB, Cq “ pB, �p) ¨ Cqq where � is a closed Reeb orbit of period ).

2.2.7. Holomorphic Buildings. A �-holomorphic building D̄ in a contact manifold . from Γ` to Γ´ is

a finite sequence of orbit tuples

Γ1 , . . . , Γ< with Γ` “ Γ1 and Γ´ “ Γ< ,

and a sequence of finite energy �-holomorphic maps in .̂, called the levels of D̄, denoted by

D8 : Σ8 Ñ .̂ with D8 Ñ Γ8`1 at ´ 8 and D8 Ñ Γ8 at ` 8,

where each level D8 is non-trivial, i.e., not a union of trivial cylinders. Moreover, the levels

asymptotic to Γ8 are equipped with asymptotic markers for all 8 P t1, . . . , <u, and the (pairs of)

punctures of the levels asymptotic to orbits in Γ8 for 8 “ 2, . . . , < ´ 1 are equipped with matching

isomorphisms.

Two buildings D̄ and Ē are equivalent if, up to R-translations, there is a biholomorphism

of domains on each level respecting the holomorphic map, asymptotic markers and matching

isomorphisms.

Any building D̄ has a well-defined genus 6 “ 6pD̄q and homology class rD̄s “ � determined

by gluing the curves along the matching punctures. In particular, the homology class is given by

� “
ÿ

8

�8 P (p.;Γ` , Γ´q.

The moduli space of equivalence classes of �-holomorphic buildings in . from Γ` to Γ´ of genus

6 and homology class � is denoted by

M6,�p., �;Γ` , Γ´q.
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Figure 4. A simplified picture of a possible holomorphic building. Note that all

of the holomorphic buildings and curves of interest in this paper will be genus 0.

More generally, a �-holomorphic building D̄ in a symplectic cobordism - : .̀ Ñ .́ from Γ`

to Γ´ is a sequence of Reeb orbit tuples

Γ
`
1 , . . . , Γ`

0 , Γ
´
1 , . . . , Γ´

1
with Γ` “ Γ

`
1 and Γ´ “ Γ

´
1

and a sequence of finite energy �-holomorphic maps of the form

D˘
8

: Σ˘
8

Ñ .̂̆ , with D˘
8

Ñ Γ
˘
8

at ` 8 and D˘
8

Ñ Γ
˘
8`1

at ´ 8,

D- : Σ- Ñ -̂ , with D- Ñ Γ
`
0 at ` 8 and D- Ñ Γ

´
1 at ´ 8,

equipped with the same asymptotic markers and matching isomorphisms as in the symplectiza-

tion case. Equivalence of a pair of buildings is defined as in the symplectization case, but we only

quotient by the R-direction in the symplectization levels. The moduli space of �-holomorphic

buildings in - from Γ` to Γ´ of genus 6 and homology class � is denoted by

M6,�p-, �;Γ` , Γ´q.

The moduli spaces M6,�p., �;Γ` , Γ´q and M6,�p-, �;Γ` , Γ´q admit a Gromov topology de-

scribed by [BEH`03, §9.1]. Moreover, both spaces are compact [BEH`03, §10.1].

2.2.8. Marked Moduli Spaces. �-holomorphic curves and buildings can be decorated to include

marked points. More precisely, we can formulate a moduli space

M6,�,<p-, �;Γ` , Γ´q.

The points in this moduli space are genus 6 �-holomorphic maps D : Σ Ñ -̂ in homology class

� (with asymptotic markers) and an ordered tuple of < marked points B1 , . . . , B< in Σ, modulo

reparametrizations that respect the marked points. There is an evaluation map

ev : M6,�,<p-, �;Γ` , Γ´q Ñ -̂<

that takes an equivalence class rD, B1 , . . . , B<s to the point pDpB1q, . . . , DpB<qq P -̂< . One may also

form a moduli space of buildings

M6,�,<p-, �;Γ` , Γ´q

of J-holomorphic buildings where each level is a �-holomorphic curve with marked points and

the total number of marked points over all the levels is <. This moduli space is compact with

respect to the topology in [BEH`03].
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2.2.9. Parametric Moduli Spaces. Let % be a compact manifold with boundary and let �% be a

%-parameter family of compactible complex structures on -, consisting of a compatible complex

structure �? for each ? P %.

There is a parametric moduli space of �?-holomorphic curves ranging over all ?, namely,

M6,�,<p-, �% ;Γ` , Γ´q :“
ď

?P%

t?u ˆ M6,�,<p-, �% ;Γ` , Γ´q

That is, a point in this moduli space is a pair consisting of a point ? P % and a �?-holomorphic

curve (with marked points). Likewise, there is a compactified moduli space of buildings

M6,�,<p-, �% ;Γ` , Γ´q :“
ď

?P%

t?u ˆ M6,�,<p-, �% ;Γ` , Γ´q.

These parametric moduli spaces inherit evaluation maps ev and an additional continuous pro-

jection map

� : M6,�,<p-, �% ;Γ` , Γ´q Ñ %, p?, Dq ÞÑ ?

given by projection to the %-factor. We will consider parametric moduli spaces of buildings with

marked points in §4.4.

2.2.10. Generic Tranversality. Let % be a compact manifold with boundary B% and let �% :“ t�?u?P%

be a %-family of compatible almost complex structures on -. We now briefly review some generic

transversality results that are standard in the literature on SFT.

Recall that a point p?, rD, B1 , . . . , B<sq in the moduli space

M6,�,<p-, �% ;Γ` , Γ´q

is called parametrically regular or parametrically transverse if the parametric linearized operator

�D,? , incorporating both variations in the map D and variations in the parameter space %, is

surjective.

Proposition 2.4. (cf. [Wen15, Thm. 7.1 and Rmk. 7.4]) The set of parametrically regular points

Mreg Ă M6,�,<p-, �% ;Γ` , Γ´q

is an open set and a smooth orbifold of dimension

dimpMregq “ vdimpM6,�,<p-, �% ;Γ` , Γ´qq :“ indp�, 6q ` dimp%q ` 2<.

The local isotropy group at an orbifold point pB, rD, B1 , . . . , B<sq P Mreg is given by

Autp?, D, B1 , . . . ,< q :“ t) : Σ Ñ Σ : 9 ˝ 3) “ 3) ˝ 9 , D ˝ ) “ D, DpB8q “ B8u.

Finally, the evaluation map ev and projection map � are both smooth on Mreg.

As a special case, an unparametrized �-holomorphic curve rD, B1 , . . . , B<sq is simply called regular
if it is parametrically regular with respect to the 0-parameter family �.

Given a compact, closed submanifold / Ă -̂< , a parametrically regular p?, rD1 , . . . , D<sq is

parametrically /-regular if the evaluation map

ev : M6,�,<p-, �% ;Γ` , Γ´q Ñ -̂<

from the parametric moduli space is transverse to / at D.

Proposition 2.5. There is a comeager setJregp-, %q of %-families of compatible almost complex structures
�% such that the space of somewhere injective curves

Mi
6,�,<p-, �% ;Γ` , Γ´q :“

 
D P M6,�,<p-, �% ;Γ` , Γq : D is somewhere injective

(

consists of (parametrically) /-regular curves.
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The parametric regularity part of this result (without accounting for the evaluation map) is

proven in [Wen15, Thm. 7.1-7.2, Rmk. 7.4]. The transversality of the evaluation map is proven

in [Wen15, §4.6] for the case of closed curves in a closed symplectic manifold -. The approach

used in [Wen15, §4.6] is a standard one, using the Sard-Smale theorem, and can be adapted to the

symplectization case with minimal modifications. Mainly, we need to work in the appropriate

analytic set up, for example, by working with weighted Sobolev spaces instead of Sobolev spaces.

2.2.11. Buildings in Contact Homology. We primarily consider holomorphic buildings arising in

contact homology. These are genus 0 buildings with a single positive end in an exact cobordism

p-,�q or in (the symplectization of) a contact manifold .. These are curves in the moduli spaces

(2.3) M0,�p-, �; �, Γq and M0,�p., �; �, Γq.

Lemma 2.6. Let D̄ be a �-holomorphic building in one of the moduli spaces (2.3). Then, each level D8 is a
disjoint union of curves

E : Σ Ñ .̂̆ or E : Σ Ñ -̂

where Σ is connected and of genus 0, and E has exactly one positive puncture.

Proof. Let D̄ “ pD1 , . . . , D<q be a holomorphic building in (the symplectization of) .. The case of

buildings in a cobordism is similar. Let D̄: denote the building

D̄: “ pD1 , . . . , D:q for 1 ď : ď <.

We prove by induction on : that each building D̄: is connected and that each component curve

E satisfies the conclusion of the lemma.

For the base case, note that every component E of every level D8 is genus 0, since otherwise

the entire building would have positive genus. Moreover, since -̂ and .̂ are both exact, every

non-constant finite energy holomorphic curve E must have at least one positive puncture. Thus,

the top level D̄1 “ D1 is a connected genus 0 curve with one positive puncture.

For the induction case, assume that D̄: satisfies the induction hypothesis. By the above

reasoning, each component E of the level D:`1 is genus 0 with at least one positive puncture.

This positive puncture must connect to a negative puncture of D̄: so that D̄:`1 is connected. If a

component E has more than one positive puncture, then attaching E to the connected building

D̄: contributes genus to D̄:`1. Therefore, E has exactly one puncture. �

Remark 2.7. In [Par15], a slightly different compactification of M “ M6,�p-, �;Γ` , Γ´q is used

(and similarly for M6,�p., �;Γ` , Γ´q). In Pardon’s compactification, if D8 : Σ8 Ñ .̂̆ is a sym-

plectization level of a building D̄ and Σ8 breaks into disconnected components Σ8 ,1 , . . . ,Σ8 ,: , then

each component D8|Σ8 , 9 is separately regarded as a holomorphic curve modulo translation and

any trivial cylinder components are eliminated.

The differences between the BEHWZ compactification of [BEH`03] and the Pardon compacti-

fication [Par15] will not be important for this paper. In particular, we will treat them as equivalent

in Constructions 2.8 and 2.9 below.

However, we do note that any BEHWZ building corresponds to a unique Pardon building

by only remembering the constituent maps of the building on each connected component of

the levels (and eliminating the trivial components of every level). Conversely, any Pardon

building can be lifted to a BEHWZ building by adding trivial levels and grouping the connected

components of the building appropriately. In particular

M “ M in the BEHWZ topology ðñ M “ M in the Pardon topology.
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2.3. Basic Formalism. We can now discuss the basic construction of the contact dg-algebra

of a contact manifold and the cobordism map of an exact cobordism. This construction was

introduced in [EGH00]. Here we discuss the specific foundational setup of Pardon [Par15].

Construction 2.8. The contact dga of a closed contact manifold . with a non-degenerate contact

form 
, denoted by

p�p., 
q, B� ,�q or more simply �p.q
is the filtered dg-algebra formulated as follows. Associate a generator G� to each good Reeb

orbit � (see [Par15, Definition 2.49] for a definition). Each generator G� is given a standard SFT

grading and action filtration

(2.4) |G�| “ ´ CZp�q ´ = ` 3 mod 2 and ApG�q “
ż

�

, respectively.

The algebra �p., 
q is the graded-symmetric algebra freely generated by these generators,

(2.5) �p., 
q :“ Sym‚

“
G� : � is a good orbit

‰
.

The SFT-grading | ¨ | and the action filtration A on GΓ “ G�1 . . . G�: are given by

|GΓ| :“
ÿ

8

|�8| and ApGΓq :“
ÿ

8

Ap�8q.

We let �!p., 
q Ă �p., 
q denote the graded subspace given by

�!p., 
q :“ QxGΓ : ApGΓq ď !y
The differential on �p., 
q is the unique derivation such that, for any good orbit �, we have

B� ,�pG�q :“
ÿ

�,Γ

#�M0,�p., �; �, Γq
�Γ ¨ �Γ

¨ GΓ.

Here, #�M0,�p., �; �, Γq is a (virtual) point count of index 1 holomorphic buildings in the sym-

plectization of . with one positive puncture at � and negative punctures at Γ (see [Par15]). This

count depends on a choice of the VFC data �. The sum is over all ordered lists Γ of good orbits

and all homology classes � P (p.; �, Γq such that indp�, 0q “ 1.

Construction 2.9. The cobordism map of an exact cobordism - : p.̀ , 
`q Ñ p.́ , 
´q, denoted

Φ-,�,� ,� : �p.̀ , 
`q Ñ �p.́ , 
´q, or more simply Φ- ,

is the unique filtered dg-algebra map such that, for any good closed orbit � of .̀ , we have

Φ-,�,� ,�pG�q :“
ÿ

�,Γ

#�M0,�p-, �; �, Γq
�Γ ¨ �Γ

¨ GΓ.

Here #M0,�p-, �; �, Γq is a (virtual) point count of index 0 holomorphic buildings in the comple-

tion of - with 1 positive puncture at � and negative punctures at Γ (see [Par15]), and the sum

is over all ordered lists Γ of good orbits in .́ and all homology classes � P (p-; �, Γq such that

indp�, 0q “ 0.

Remark 2.10. In both Constructions 2.8 and 2.9, the virtual point count is equal to an actual

(oriented) point count when the relevant moduli space M is compact (i.e. M “ M) and each

holomorphic curve is transversely cut out (i.e. the relevant linearized B operator is surjective).

See [Par15, Thm. 1.1(iv)].

The main results of Pardon’s construction [Par15] can now be summarized as follows.

Theorem 2.11. [Par15] Let p., 
q and - : p.̀ , 
`q Ñ p.́ , 
´q be as in Construction 2.8-2.9. Then
the following hold.
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(a) The map B� ,� : �p.q Ñ �p.q is a filtered differential. That is,

B2
� ,� “ 0 and ApB� ,�pGqq ď ApGq.

(b) The map Φ-,�,� ,� : �p.̀ q Ñ �p.́ q is a filtered chain map. That is,

Φ-,�,� ,� ˝ B�` ,�` “ B�´ ,�´ ˝ Φ-,�,� ,� and ApΦ-,�,� ,�pGqq ď ApGq.

Furthermore, Φ-,�,� ,� is independent of � and � up to filtered chain homotopy.

(c) The composition of cobordism maps is filtered homotopic to the cobordism map of the composition,

Φ-˝-1 » Φ- ˝ Φ-1 .

(d) If p-,�q is the trivial cobordism - “ r0, 1s ˆ .,� “ 4 C
, � is a translation invariant almost
complex structure induced by a compatible complex structure on �, and � is any VFC data, then

Φ-,�,� ,� : �p�p.q, B� ,�q Ñ �p�p.q, B� ,�q

is the identity map on the level of unfiltered graded dg-algebras.

By Theorem 2.11, we can now define contact homology as an invariant of contact manifolds.

Definition 2.12. The contact homology ��p.q of a closed contact manifold p., �q is given by

��p.q :“ �p�p.q, B� ,�q, for any choice of 
, � , �.

The map Φ- : ��p.̀ q Ñ ��p.́ q induced by an exact cobordism - : .̀ Ñ .́ is similarly

defined with respect to any choice of � , �. Any choice of contact form 
 induces a filtration of

��p.q by sub-spaces

��!p.q or ��!p., 
q for any ! P r0,8q

Here ��!p., 
q is the image of the map

�p�!p.qq Ñ �p�p.qq “ ��p.q

if the contact form 
 is non-degenerate. In general, the ��!p.q is defined as the colimit

��!p., 
q “ colim� ��
!p., �q

where the colimit is taken over all non-degenerate contact forms � “ 5 
 with 5 ą 1 pointwise.

The cobordism maps Φ- are filtered with respect to this filtration.

Remark 2.13. More generally, given a contact form 
 on . that is non-degenerate below action

) and any ! ă ), we can still define the graded algebra

�!p.q :“ QxGΓ : ApΓq ď !y.

We may equip this algebra with a differential B� ,� given a choice of compatible complex structure

and VFC data. Likewise, if - : p.̀ , 
`q Ñ p.́ , 
´q are non-degenerate below action ), then we

have a cobordism dg-algebra map

Φ- : �!p.̀ q Ñ �!p.́ q

for any ! ď ), well-defined up to filtered chain homotopy. In particular, ��!p., 
q is the image

of the map

�p�!p., 
qq Ñ ��p.q
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Moreover, for any contact forms 
` and 
´ that are non-degenerate up to action ), the following

diagram commutes.

(2.6)

�p�!p.̀ qq Φ-ÝÝÑ �p�!p.́ qq

Φ

§§đ
§§đΦ

��!p.̀ q ÝÝÑ
Φ-

��!p.́ q

.

2.4. The Tight Sphere. We now calculate the contact homology algebra of the standard sphere,

which is a key example in later constructions.

Consider C= equipped with the standard Liouville form and associated Liouville vector-field

�std “ 1

2

ÿ

8

G83H8 ´ H83G8 , and /std “ 1

2

ÿ

8

G8BG8 ` H8BH8 .

Definition 2.14. A star-shaped domain , Ă C= is an embedded Liouville sub-domain of C= .

Equivalently, , is a codimension zero submanifold with smooth boundary that is transverse to

the Liouville vector field /, /&B, .

Every pair of star-shaped domains , and , 1 are equivalent through a canonical deformation,

i.e., by deforming the boundary along the radial direction. In particular, the contact boundaries

are all contactomorphic to the standard tight sphere.

Definition 2.15. The standard tight sphere p(2=´1 , �stdq is the unit sphere (2=´1 Ă C= equipped

with the contact structure �std “ kerp�std|(2=´1q.

If , Ă , 1 is an inclusion of star-shaped domains, then the exact symplectic cobordism

- : pB, 1 ,�|B, 1q Ñ pB,,�|B,q given by - :“ , 1z,
is isomorphic (as an exact cobordism) to a cylindrical cobordism - : p(2=´1 , 
q Ñ p(2=´1 , �q for

a pair of contact forms 
 and � on p(2=´1 , �q.

Example 2.16. Choose a sequence of rationally independent, positive real numbers

0 ă 01 ď 02 ď ¨ ¨ ¨ ď 0= .

The standard ellipsoid � “ �p01 , . . . , 0=q Ă C= is the star-shaped domain given by

�p01 , . . . , 0=q “ tI P C
= :

ÿ

8

�

08
¨ |I8|2 ď 1u.

The Reeb dynamics on B� is very explicit and easy to determine (cf. [GH18, §2.1]). Specifically,

there are exactly = non-degenerate, simple, closed Reeb orbits given by

�8 “ B� X C8 for 8 “ 1, . . . , =.

Here C8 Ă C= is the 8th complex axis in C= . Every Reeb orbit � is an iterate of one of these orbits.

The action and Conley-Zehnder index of an orbit � “ �
9

8
is given by

Ap�q “ 9 ¨ 08 and CZp�q “ = ´ 1 ` 2 ¨ #torbits � of B� : Ap�q ď Ap�qu.
Note that the Conley-Zehnder index is well-defined without reference to a trivialization, since

21p(3 , �stdq “ 0 and �1p(3q “ 0.

Lemma 2.17. The contact homology algebra��p(2=´1 , �stdq is isomorphic to a graded-symmetric algebra
freely generated by generators G: of grading ´2= ` 2 ´ 2p: ´ 1q for each : ě 1, namely,

��p(2=´1 , �stdq » Sym‚

“
G: ; : ě 1

‰
.
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Proof. Consider (2=´1 equipped with the contact form induced as the boundary of an irrational

ellipsoid �p01 , . . . , 0=q. The (cohomological) SFT grading of a closed Reeb orbit � is given by

|�| “ ´2= ` 2 ´ 2 ¨ #torbits � of B� : Ap�q ď Ap�qu.

In particular, the SFT grading is even for all generators of �pB�q and the differential is trivial. �

Remark 2.18. Note that the isomorphism in Lemma 2.17 is not claimed to be canonical.

In §5, we will require the following property of cobordism maps given by inclusion.

Lemma 2.19. Let �p0q Ă �p1q be two ellipsoids and consider the map Φ : �pB�p0qq Ñ �pB�p1qq
corresponding to the cobordism �p1qz�p0q. Then, Φ is an isomorphism on the chain level and its inverse
is word-length non-decreasing.

Proof. The exact cobordism �p1qz�p0q is isomorphic to a cylindrical cobordism, and so the map

Φ : �pB�p0qq Ñ �pB�p1qq

is a quasi-isomorphism inducing the natural isomorphism on homology. Since the differentials

of �pB�p0qq and �pB�p1qq are trivial, Φ is in fact an isomorphism of dg-algebras. Moreover, by

Theorem 2.11(c)-(d), the inverse Φ
´1 is the cobordism map induced by �p1qz�p2 ¨ 0q for any 2 ą 0

sufficiently small.

It remains to show that cobordism maps between ellipsoids are word-length non-decreasing.

Since cobordism maps are algebra maps, this is equivalent to having a non-constant generator

being mapped to the constants. In the case of the ellipsoids this is impossible, since the con-

stants have grading zero, the non-constant generators lie in positive degrees and the cylindrical

cobordism maps preserve the Z-grading. �

3. Spectral Gaps

In this section, we discuss contact homology spectral gaps and related structures, including

abstract constraints, constrained cobordism maps and spectral invariants.

3.1. Abstract Constraints. An abstract constraint provides a purely homological tool for tracking

the ways in which a holomorphic curve can be tangent to (or asymptotic to) a set of points in a

symplectic cobordism. Rigorously, we have the following definition.

Definition 3.1. An abstract constraint % in contact homology with < points, dimension = and

codimension codimp%q “ : is a degree : map

% :
<â

8“1

��p(2=´1 , �stdq Ñ Qr:s,

or equivalently, a cohomology class % P ��pY<
1 (

2=´1q_ of grading codimp%q “ :.

Example 3.2 (Empty Constraint). The empty constraint %H is the codimension 0 map given by

%Hp1q “ 1 and %HpGq “ 0 if |G| ą 0.

Alternatively, %H is the unique Z-graded algebra map ��p(2=´1 , �stdq Ñ Q.

Example 3.3 (Tangency Constraints). It follows from Lemma 2.17 that

kerp%Hq{ kerp%Hq2 »
8à

:“0

Qr2= ´ 2 ` 2:s.

In particular, there is (up to multiplication by a non-zero constant) a unique surjective map

Π: : kerp%Hq{ kerp%Hq2 Ñ Qr2= ´ 2 ` 2:s for each : ě 0.
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Therefore, we have an abstract constraint (well-defined up to multiplication by a constant)

%: : ��p(2=´1 , �stdq “ Q ‘ kerp%Hq Ñ kerp%Hq Ñ kerp%Hq{ kerp%Hq2 Π:ÝÑ Qr2= ´ 2 ` 2:s.

Remark 3.4. As observed by Siegel [Sie19, §5.5], the constraint%: coincides with the map acquired

by counting genus 0 holomorphic curves in a star-shaped domain, with one positive puncture,

passing through a point ? and tangent to a local divisor � through ? to order :.

In §5, we will use a version of this fact in the proof of our main results. We also give an alternate

argument for a weak version of this correspondence (for certain curves counted in constrained

cobordism maps and counts of cylinders passing through a point) in §4.4.

Example 3.5 (Dual Constraints). Let � be an irrational ellipsoid and let Ξ be an orbit tuple on

B�. There is a dual abstract constraint

%Ξ : ��pB�q » ��p(2=´1 , �stdq Ñ Qr|Ξ|s

determined by Ξ. This is defined in the usual way, with

%ΞpGΓq “ 1 if Γ “ Ξ and %ΞpGΓq “ 0 otherwise

As a special case, the abstract constraint %: in Example 3.3 coincides with %� where � is the

unique closed orbit of � with |�| “ 2= ´ 2 ` 2:.

3.2. Constrained Cobordism Maps. By using abstract constraints, we can formulate a general-

ization of the cobordism maps in contact homology, which morally counts curves satisfying a

number of tangency constraints.

Definition 3.6. Let - : .̀ Ñ .́ be a connected exact cobordism and let % be an abstract

constraint. The %-constrained cobordism map

Φ-,% : �p.̀ q Ñ �p.́ qrcodimp%qs

is the filtered chain map of degree codimp%q constructed by the following procedure. Choose a

star-shaped domain ,8 for 8 “ 1, . . . , < and an embedding

� : , “ ,1 Y ¨ ¨ ¨ Y ,< Ñ intp-q.

Since ,8 are star-shaped domains, � is automatically weakly exact (see §2.2.1). Thus we may

assume (after deformation) that � is exact and -z, is an exact cobordism. Also, choose a

cochain �B,,% representing %, i.e., a chain map

�B,,% : �pB,q » �pY<
1 (

2=´1q Ñ Qrcodimp%qs

which is in the cohomology class %. Then, we define Φ-,% to be the composition

�p.̀ q Φ-z,ÝÝÝÑ �p.́ Y B,q “ �p.́ q b �pB,q Id b�B,,%ÝÝÝÝÝÝÑ �p.́ q b Qrcodimp%qs.

Definition 3.7. Let % be an abstract tangency constraint and . be a connected, closed contact

manifold. The U-map

*% : �p.q Ñ �p.qrcodimp%qs.
is the %-constrained cobordism map Φ-,% where - “ r0, 1s ˆ . is the trivial cobordism.

Remark 3.8. The constrained cobordism mapsΦ-,% are not dg-algebra maps in general. However,

some constrained cobordism maps are compatible with the algebra structure in other ways (see

Lemma 3.12).

Lemma 3.9. The cobordism maps Φ-,% are well-defined up to filtered chain homotopy.
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Figure 5. A cartoon of (a) an abstract constraint %, visualized as a weighting of the

orbits on the sphere and (b) the curves counted in constrained cobordism maps,

asymptotic to the orbits with non-zero weights under %.

Proof. Choose a disjoint union , “ ,1 Y ¨ ¨ ¨ Y ,< of star-shaped domains *8 , an embedding

, Ă -, Floer data p� , �q on -z, and a cochain representative �B,,% of %. We adopt the notation

Φ-,%,,,�,� :“ pId.́ b�B,,%q ˝ Φ-z,,�,� .

Since chain homotopy is a closed relation under composition, Φ-,%,,,�,� is independent of the

choice of �B,,% up to filtered chain homotopy. Note that we are viewing �B,,% as a filtered map

by equipping Qrcodimp%qs with the trivial filtration.

To show independence of , and p� , �q up to filtered homotopy, we start by considering two

special cases and then move on to address the general case.

Case 1. Let � : r0, 1s ˆ , Ñ - be a family of symplectic embeddings. This family � induces a

family of exact symplectic cobordisms

-z�Cp,q : .̀ Ñ .́ Y B,
By Theorem 2.11(b), the induced cobordism maps of -z�0p,q and -z�1p,q are homotopic (for

any choices of Floer data). Since filtered homotopy is a closed relation under composition with

filtered chain maps, we see that

Φ-,%,�0p,q,� ,� “ pId.́ b�B,,%q ˝ Φ-z�0p,q,� ,� » pId.́ b�B,,%q ˝ Φ-z�1p,q,�1 ,�1 “ Φ-,%,�1p,q,�1 ,�1

Case 2. Let + “ +1 Y ¨ ¨ ¨ Y +< be a collection of star-shaped domains with inclusions +8 Ă ,8

that are strictly exact, i.e., that intertwine the Liouville forms. Let ,z+ : B, Ñ B+ be the

difference cobordism. Consider the cobordism map

Φ,z+,�,! : �pB,q Ñ �pB+q
for some choice of Floer data p� , !q on ,z+ . We may choose the cochains �B,,% and �B+,% so

that

�B,,% » �B+,% ˝ Φ,,�,! .

On the other hand, by Theorem 2.11(c), we have

Φ-z+,�,� » Φp.́ ˆr0,1sqY,z+ ˝ Φ-z,,�1 ,�1 “ pId.́ bΦ,z+,�,!q ˝ Φ-z,,�1 ,�1

for appropriate choices of Floer data p� , �q on -z+ and p� 1 , �1q on -z, . Therefore,

Φ-,%,+,�1 ,�1 “ pId.́ b�B+,%q ˝ Φ-z+,�1 ,�1

» pId.́ b�B+,%q ˝ pId.́ bΦ,z+,�,!q ˝ Φ-z,,�1 ,�1

» pId.́ b�B,,%q ˝ Φ-z,,�,� “ Φ-,%,,,�,� .

General Case. Let , “ ,1 Y ¨ ¨ ¨ Y ,< and + “ +1 Y ¨ ¨ ¨ Y +< be any two choices of <

disjoint star-shaped domains in -. We may choose star-shaped domains �8 (e.g. sufficiently

small ellipsods) that include into �8 Ă ,8 and �8 Ă +8 , and such that the embeddings

�8 Ñ ,8 Ñ - and �8 Ñ +8 Ñ -
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are homotopic through a homotopy of embeddings � : r0, 1s ˆ �8 Ñ -. Thus, by Cases 1 and 2,

Φ-,%,,,�,� and Φ-,%,+,�1 ,�1 are filtered chain homotopic (for any Floer data). �

As mentioned above, an abstract constraint% is an assignment of numerical weights to the Reeb

orbits on the boundary of a star-shaped domain , . Constrained cobordism maps are acquired

by deleting, from a cobordism - and counting curves with ends on B, with non-zero weights.

Let us make this intuition precise in a specific case. Fix a connected exact cobordism - : .̀ Ñ
.́ between contact manifolds with non-degenerate contact forms. Let � Ă - be an embedded

irrational ellipsoid and let Ξ be an orbit tuple in B�. Consider the exact cobordism

-z� : .̀ Ñ .́ Y B�

Finally, fix an orbit � of .̀ and an orbit tuple Γ of .́ . The following lemma is immediate from

Construction 2.9, Remark 2.10 and Definition 3.6.

Lemma 3.10. Let %Ξ be the dual constraint to Ξ (see Example 3.5). Let � be a compatible almost complex
structure on � such that

M0,�p-z�; �, Γ Y Ξq
is regular and compact in the BEHWZ topology for each homology class � P (p-z�; �, Γ Y Ξq. Then the
GΓ-coefficient of Φ-,%ΞpG�q is given by

xGΓ ,Φ-,%ΞpG�qy :“ 1

�Γ ¨ �Γ

¨
ÿ

�

#M0,�p-z�, �; �, Γ Y Ξq

Here the sum is over all classes with indp0, �q “ 0 and # denotes an oriented point count.

Constrained cobordism maps satisfy a number of useful (and expected) axioms presented in

the following lemma.

Lemma 3.11. The constrained cobordism maps Φ-,% satisfy the following properties.

A. (Functoriality) If - : . Ñ .1 and - 1 : .1 Ñ .2 are two exact cobordisms, and % and & are two
tangency constraints, then

Φ-˝-1 ,%b& » Φ-,% ˝ Φ-1 ,& and *& ˝ Φ-,% “ Φ-,%b& “ Φ-,% ˝ *& .

B. (Additivity) If - : . Ñ .1 is an exact cobordism, and % and & are two tangency constraints of
the same dimension, then

Φ-,%`& » Φ-,% ` Φ-,& .

C. (Empty Constraint) Let %H be the empty constraint. Then

Φ-,%H “ Φ- and *%H “ Id .

Proof. It suffices to prove these properties for Φ-,% , as the *-maps are a special case.

Axiom A. Choose collections of disjoint star-shaped domains , “ ,1 Y ¨ ¨ ¨ Y ,< Ă - and

+ “ +1 Y ¨ ¨ ¨ Y += Ă - 1. Up to deformation of exact cobordisms, we may write

p- ˝ - 1qzp, Y +q “
`
p-z,q Y pr0, 1s ˆ B+q

˘
˝ p- 1z+q.

Therefore, by Theorem 2.11(c) we have (up to filtered chain homotopy) the equivalence

Φp-˝-1qzp,Y+q » Φp-z,qYpB+ˆr0,1sq ˝ Φ-1z+ » pΦ-z, b IdB+q ˝ Φ-1z+ .

We may choose the cochains representing %, & and % b & to satisfy

(3.1) �Bp,Y+q,%b& “ �B,,% b �B+,& .
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This implies the desired composition property, by the following calculation.

Φ-˝-1 ,%Y& “ pId.2 b�Bp,Y+q,%Y&q ˝ Φp-˝-1qzp,Y+q

»
`
pId.2 b�B,,%q b �B+,&

˘
˝ pΦ-z, b IdB+q ˝ Φ-1z+

“ pId.2 b�B,,%q ˝ Φ-z, ˝ pId.1 b�B+.&q ˝ Φ-1z+ “ Φ-,% ˝ Φ-1 ,& .

Axiom B. Choose a collection of disjoint star-shaped domains , “ ,1 Y ¨ ¨ ¨ Y ,< Ă -. We

may choose the cochain representatives of %, &, and % ` & so that

�B,,%`& “ �B,,% ` �B,,& .

Thus, we can calculate that

Φ-,%`& “ pIdY’ bp�B,,% ` �B,,&qq ˝ Φ-z,

“ pId.1 b�B,,%q ˝ Φ-z, ` pId.1 b�B,,&q ˝ Φ-z, “ Φ-,% ` Φ-,& .

Axiom C. Any star-shaped domain , determines a unital, Z-graded dg-algebra map

Φ, : ��pB,q Ñ ��pHq “ Q.

The cohomology class of this map is unique, and equal to %H. Therefore,

Φ-,%H “ pId bΦ,q ˝ Φ-z, “ Φ- . �

The constrained cobordism maps Φ-,%:
with respect to the tangency constraints %: defined in

Example 3.3 satisfy, in addition, a chain level Leibniz rule.

Lemma 3.12. The constrained cobordism map Φ-,%:
of the tangency constraints %: satsifies

(3.2) Φ-,%:
pGHq “ Φ-,%:

pGq ¨ Φ-pHq ` Φ-pGq ¨ Φ-,%:
pHq.

As a special case, the *-maps *%:
satisfy the Leibniz rule.

(3.3) *%:
pGHq “ *%:

pGq ¨ H ` G ¨ *%:
pHq.

Proof. Let , Ă - be an embedded irrational ellipsoid. Let H 9 denote the generators of ��pB,q.
We first note that the map Φ-z, in Definition 3.6 satisfies

Φ-z,pIq “ Φ-pIq b 1 `
8ÿ

:“0

Φ-,%:
pIq b H:`1 ` A

where A is a sum of factors G b H where H is a monomial of word length ě 2. This follows from

Definition 3.6, the fact that %: is the dual constraint to the p: ` 1q-th generator H:`1 (see Example

3.5) and the fact that %H is dual to 1 P ��pB,q. Since Φ-z, is an algebra map, we thus have

(3.4) Φ-z,pII1q “ Φ-pII1q b 1 `
8ÿ

:“1

pΦ-,%:
pIqΦ-pI1q ` Φ-pIqΦ-,%:

pI1qq b H:`1 ` A1

where A1 is a remainder term of the same form as A. On the otherhand, the map Π “ Id b�B,,%:

from Definition 3.6 is given by

(3.5) ΠpG b H:1 . . . H:< q “
"

G if < “ 1, :1 “ : ` 1

0 otherwise

By Definition 3.6, we have Φ-,%:
“ Π ˝ Φ-,, . Thus it follows from (3.4) and (3.5) that

Φ-,%:
pII1q “ Π

`
pΦ-,%:

pIqΦ-pI1q ` Φ-pIqΦ-,%:
pI1qq b H:`1

˘
“ Φ-,%:

pIqΦ-pI1q ` Φ-pIqΦ-,%:
pI1q

which is the desired Leibniz rule. �
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3.3. Spectral Invariants. We now recall the definitions and properties of spectral invariants and

capacities in the setting of contact homology.

Definition 3.13. The contact homology spectral invariant s�p., 
q of a closed contact manifold .

with contact form 
 and a class � P ��p.q is given by

(3.6) s�p., 
q :“ Ap�q “ mint! : � P ��!p.q Ă ��p.qu P p0,8q.

Definition 3.14. The contact homology capacity c%p,q of a Liouville domain p,,�q and an abstract

constraint % is given by

c%p,q :“ infts�pB,,�|B,q : Φ,,%p�q ‰ 0u.

Note that here we are viewing , as an exact cobordism from B, to H.

Remark 3.15. If p., 
q is a closed contact manifold where 
 is non-degenerate, (3.6) is equivalent

to the minimum action of a cycle in the dg-algebra �p.q representing �,

s�p., 
q “ mintApGq : G P �p.q satisfying BG “ 0 and rGs “ �u.

Theorem 3.16. The contact homology spectral invariants s� satisfy the following properties.

A. (Conformality) If p., 
q is a contact manifold with contact form 
 and 0 ą 0 is a constant, then

s�p., 0 ¨ 
q “ 0 ¨ s�p., 
q.

B. (Cobordism Map) If - : p.̀ , 
`q Ñ p.́ , 
´q is an exact symplectic cobordism, % is an abstract
constraint and , Ă - is a (weakly) exactly embedded Liouville domain, then

sΦ-,%p�qp.́ , 
´q ` c%p,q ď s�p.̀ , 
`q.

C. (U-Map) If p., 
q is a contact manifold with contact form 
 and % is an abstract constraint, then

s*%p�qp., 
q ď s�p., 
q.

D. (Monotonicity) Let 5 : . Ñ r0,8q be a smooth non-negative function on .. Then,

s�p., 
q ď s�p., 4 5 ¨ 
q.

Moreover, s�p.,´q is continuous in the �0-topology on contact forms.

E. (Reeb Orbits) For each class � P ��p.q, there is a Reeb orbit tuple Γ such that

s�p., 
q “ ApΓq.

Furthermore, if 
 is non-degenerate and � has grading |�|, then

|Γ| “ |�|.

Proof. We demonstrate each of these axioms individually.

Axiom A. This follows immediately from the definition and the fact that the contact homology

groups of ��p.q with respect to 
 and 0 ¨ 
 are canonically identified with action filtrations

differing by the scaling factor 0.

Axiom B. By the functoriality property of constrained cobordism maps stated in Lemma 3.11,

Φ-,% can be written as the composition

��p.̀ q Φ-z,ÝÝÝÑ ��p.́ qb��pB,q Id bΦ,,%ÝÝÝÝÝÑ ��p.́ qb��pHqrcodimp%qs “ ��p.́ qrcodimp%qs.

Choose basis G8 of ��p.́ q of pure action filtration, that is, G8 is a linear combination of generators

which have the same action. Then, for some set of elements H8 P ��pB,q, all but finitely many

of which vanish), we may write

Φ-z,p�q “
ÿ

8

G8 b H8 and Φ-,%p�q “
ÿ

8

Φ,,%pH8q ¨ G8 .
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Since G8 is a basis of pure filtration, we know that

(3.7) ApΦ-z,p�qq “ A
`ÿ

8

G8 b H8
˘

“ maxtApG8 b H8q : H8 ‰ 0u.

(3.8) ApΦ-,%p�qq “ A

˜ÿ

8

Φ,,%pH8q ¨ G8

¸
“ maxtApG8q : Φ,,%pH8q ‰ 0u.

Let < be the index such that ApG<q “ ApΦ-,%p�qq and Φ,,%pH<q ‰ 0. By Definitions 3.13 and

3.14, we have

(3.9) sΦ-,%p�qp.́ , 
´q “ ApΦ-,%p�qq “ ApG<q and 2%p,q ď ApH<q.

On the other hand, by (3.7) and the monotonicity of the action filtration under cobordism maps,

we know that

(3.10) ApG<q ` ApH<q “ ApG< b H<q ď ApΦ-z,p�qq ď Ap�q “ s�p.̀ , 
`q.

The constrained monotonicity property follows immediately from (3.9) and (3.10).

Axiom C. Fix & ą 0 and consider the cobordism - : p., 4& ¨
q Ñ p., 
q given by - “ r0, &sA ˆ.

equipped with the standard Liouville form � “ 4A
. The *-map *% is the constrained map

Φ-,% : ��p.q Ñ ��p.q.

By the usual monotonicity and scaling axioms, we therefore know that

s*%p�qp., 
q ď lim
&Ñ0

s�p., 4& ¨ 
q “ s�p., 
q.

Axiom D. To prove monotonicity, assume that 5 : . Ñ r0,8q and choose & ą 0. Consider the

cobordism - : p., 4 5 ¨ 
q Ñ p., 4´& ¨ 
q given by

- :“ tpA, Hq : 0 ď A ď 5 pHqu Ă RA ˆ . with Liouville form � “ 4A�

The cobordism map and scaling axioms imply that &´1 ¨ s�p., 
q ď s�p., 4 5 ¨ 
q. Thus, we take

& Ñ 0 to acquire the monotonicity inequality.

To deduce continuity, let 
8 “ 58 ¨ 
 be a sequence of contact forms that �0 converges to 
.

Then, 58
�0

ÝÑ 1 and so there exists a sequence of constants �8 ą 0 such that

�8 Ñ 1 as 8 Ñ 8 and �8 ą 58 ą �´1
8

.

By the cobordism map and scaling axioms, we see that

�´1
8

¨ s�p., 
q “ s�p., �´1
8

¨ 
q ď s�p., 58 ¨ 
q ď s�p., �8 ¨ 
q “ �8 ¨ s�p., 
q.

By taking the limit as 8 Ñ 8, we see that s�p., 
8q Ñ s�p., 
q.
Axiom E. Assume that p., 
q is non-degenerate and let � P ��p.q. Then there exists a cycle

G representing � such that

G “
ÿ

Γ

2Γ ¨ GΓ with ApGq “ maxtGΓ : 2Γ ‰ 0u “ s�p., 
q.

If � has pure homological grading |�|, then we can assume that 2Γ “ 0 for |Γ| ‰ |�|. Let Γ be the

maximal action orbit tuple with 2Γ ‰ 0, then

s�p., 
q “ ApΓq and |Γ| “ |�|

as desired.

If 
 is degenerate, we can take a sequence of non-degenerate contact forms 
8 that�8 converges

to 
. Then, the corresponding orbit tuples Γ8 have bounded total action and thus converge to

an orbit tuple Γ of 
 as 8 Ñ 8. This convergence can be seen via arguments similar to those in
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the Proof of Theorem 13 (3.4.1). Since s� is continuous in the �8-topology on contact forms, this

implies that

s�p., 
q “ lim
8Ñ8

s�p., 
8q “ lim
8Ñ8

ApΓ8q “ ApΓq. �

Theorem 3.17. The contact homology capacities c% satisfy the following properties.

A. (Conformality) If p,,�q is a Liouville domain and 0 ą 0 is a constant, then

c%p,, 0 ¨ �q “ 0 ¨ c%p,,�q.

B. (Monotonicity) If p,,�q Ñ p+, �q is a (weakly) exact embedding of Liouville domains, then

c%p,,�q ď c%p+, �q.

C. (Tensor Product) If % and & are two abstract constraints, then

c%p,,�q ď c%b&p,,�q.

D. (Reeb Orbits) If % is an abstract constraint, then there is a tuple of Reeb orbits Γ of B, such that

c%p,,�q “ ApΓq.

Furthermore, if �|B, is non-degenerate, then

|Γ| “ codimp%q mod 2< where < :“ min |21p,q ¨ �|.

Proof. Axioms A, B, and D are proven by approaches that are essentially identical to the analogous

properties (respectively A, D and E) in Theorem 3.16. For Axiom C, we note that

Φ,,%b& “ Φ,,% ˝ *& .

Therefore, if Φ,,%b&p�q ‰ 0, we have Φ,,%p*&p�qq ‰ 0. We thus acquire the inequality

2%p,,�q ď mintAp�q : Φ,,%p�q ‰ 0u ď mintAp*&p�qq : Φ,,%b&p�q ‰ 0u

ď mintAp�q : Φ,,%b&p�q ‰ 0u “ 2%b&p,,�q. �

3.4. Spectral Gap. We are now ready to introduce the contact homology spectral gap.

Definition 3.18. Let . be a closed contact manifold with contact form 
 and let � P ��p.q be a

contact homology class. The spectral gap of p., 
q in class � is defined to be

(3.11) gap�p., 
q :“ inf
!s�p., 
q ´ s*%p�qp., 
q

c%p�2=q : % is an abstract constraint
)
.

The (total) spectral gap of the contact manifold p., 
q is given by

(3.12) gapp., 
q :“ inf
�P��p.q

gap�p., 
q.

Theorem 3.19 (Theorem 3). Let p., 
q be a closed contact manifold with contact form such that

gapp., 
q “ 0.

Then, p., 
q satisfies the strong closing property, namely, for every non-zero 5 : . Ñ r0,8q there exists
C P r0, 1s such that p1 ` C 5 q
 has a closed Reeb orbit passing through the support of 5 . Moreover, if
gap�p., 
q “ 0 for some � P ��p.q, then the period of this orbit is bounded by s�p., 
q.

Proof. Let 5 : . Ñ r0,8q and fix ! P r0,8s. Assume, if possible, that for all C P r0, 1s, the contact

form p1 ` C 5 q
 does not have a periodic Reeb orbit of action up to ! through the support of

5 . In this case, the action spectrum of p1 ` C 5 q
 up to ! remains the same as C varies. Note

that the action spectrum of 
 is a measure zero set. As observed in [Iri15, Lemma 2.2], this is a

consequence of the fact that the critical values of the contact action functional are contained in the

critical values of a smooth function on a finite dimensional manifold, which can be constructed
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by adapting the proof of [Sch00, Lemma 3.8] from the Hamiltonian setting. So, the continuity

(in C) of the spectral invariants, stated in Theorem 3.16, guarantees that

(3.13) s�p., p1 ` C 5 q
q “ s�p., 
q,

for all C P r0, 1s and � P ��p.q such that s�p., 
q ď ). We will show that the cobordism property

gives a positive lower bound for the spectral gap of such contact homology classes.

Fix � ą 0 small and let - be the cobordism from p., 4�p1 ` 5 q
q to p., 
q given by

- :“ r0, �s ˆ . Y tp� ` logp1 ` C ¨ 5 pHqq, Hq : C P r0, 1su Ă .̂.

There exists a number A “ Ap 5 , ., 
q such that the ball �2=pAq of radius A embeds into -. By

the cobordism property of spectral invariants stated in Theorem 3.16, for any homology class

� P ��p.q and an abstract constraint % it holds that

s�p., 4�p1 ` 5 q
q ´ sΦ-,%p�qp., 
q ě c%p�2=pAqq.

By the conformality property of the capacities stated in Theorem 3.17, we have c%p�2=pAqq “
A2 ¨ c%p�2=q. Rearranging the above inequality we obtain

(3.14) A2 ď
s�p., 4�p1 ` 5 q
q ´ sΦ-,%p�qp., 
q

c%p�2=q .

We will show that the latter lower bound contradicts the vanishing of the spectral gap. Let

- 1 :“ r0, �{2s ˆ . be a trivial cobordism and decompose - as - “ - 1 Y p-z- 1q. By the

functoriality property of the constrained cobordism map we have

Φ-,% – Φ-1 ,% ˝ Φ-z-1 “ *% ˝ Φ-z-1 .

Combining this with inequality (3.14) and equation (3.13), and using again the properties of

spectral invariants, we conclude that for every homology class � P ��p.q such that s�p., 
q ď ),

A2 ď
s�p., 4�p1 ` 5 q
q ´ s*%˝Φ-z-1�p., 
q

c%p�2=q “
4�s�p., p1 ` 5 q
q ´ s*%�p., 
q

c%p�2=q
p3.13q“

4�s�p., 
q ´ s*%�p., 
q
c%p�2=q ď

s�p., 
q ´ s*%�p., 
q
c%p�2=q ` A2

2
,

where the last inequality holds when we take � ď log
´

1 ` A2

2s�p.,
q

¯
. Applying this estimate for

every abstract constraint %, we get a positive lower bound for the spectral gap,

(3.15)
A2

2
ď inf

%

s�p., 
q ´ s*% p., 
q
c%p�2=q “ gap�p., 
q.

To prove the first assertion of the theorem, take ) “ 8. Then the above lower bound for

gap�p., 
q for all � implies that gapp., 
q is positive, in contradiction with the hypothesis. To

prove the second part of the theorem, suppose gap�p., 
q “ 0 for some � P ��p.q and take

) “ s�p., 
q. Then (3.15) yields a contradiction. �

Remark 3.20 (Semi-continuity of the spectral gap). The spectral gap is upper semi-continuous,

that is, for every sequence of contact forms 
8 converging to 
 and for every class � P ��p.q we

have

lim sup
8Ñ8

gap�p., 
8q ď gap�p., 
q,

lim sup
8Ñ8

gapp., 
8q ď gapp., 
q.

This is due to the fact that the spectral gaps are defined as an infimum over continuous functions.
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In fact, for a fixed class �, the �-spectral gap is continuous. More generally, under some

conditions on the rate of convergence of 
8 to 
, the spectral gap of 
 can be bounded from

above by spectral gaps of 
8 . In order to give a more precise statement of this fact we adapt the

following notation.

Notation 3.21. Let 
 and 
1 be two contact forms on .. We write 
 ď 
1 if there exists an exact

cobordism from p., 
1q to p., 
q.

Proposition 3.22. Let p., 
q be a contact manifold and suppose there exist sequences t
8u of contact
forms, t�8u of contact homology classes, and t&8u of positive numbers, such that:

(i) 
8 ď 
 ď p1 ` &8q
8 , and
(ii) &8 ¨ s�8 p., 
8q ÝÝÝÑ

8Ñ8
0.

Then, gapp., 
q ď lim inf8Ñ8 gap�8 p., 
8q. In particular, if gap�8 p., 
8q Ñ 0, then gapp., 
q “ 0.

Proof. Fix � ą 0. For each 8, let %8 be an abstract constraint such that

(3.16)
s�8 p., 
8q ´ s*%8

p�8qp., 
8q
c%8 p�2=q ă gap�8

p., 
8q ` �.

By our assumption that 
8 ď 
 ď p1 ` &8q
8 we have the following commutative diagram of

filtered homologies

(3.17)

��p., p1 ` &8q
8q
*

p1`&8q
8
%8ÝÝÝÝÝÝÑ ��p., p1 ` &8q
8q

Φ1

§§đ
§§đΦ1

��p., 
q
*


%8ÝÝÝÝÝÑ ��p., 
q

Φ2

§§đ
§§đΦ2

��p., 
8q
*


8
%8ÝÝÝÝÝÝÑ ��p., 
8q.

Here, in order to distinguish between the *-maps on contact homologies filtered by the contact

forms 
 and 
8 , we adapt the notations*

%8

and*
8

%1
respectively. By definition, for �8 P ��p., p1`

&8q
8q we have

gapp., 
q ď
sΦ1p�8qp., 
q ´ s*


%8
Φ1p�8qp., 
q

c%8 p�2=q “
sΦ1p�8qp., 
q ´ s

Φ1*
p1`&8q
8
%8

p�8q
p., 
q

c%8 p�2=q

ď
s�8 p., p1 ` &8q
8q ´ s

Φ2Φ1*
p1`&8q
8
%8

�8
p., 
8q

c%8 p�2=q ,

where the last inequality follows from the cobordism property of spectral invariants, stated in

Theorem 3.16. By Theorem 2.11, the composition Φ2Φ1 : ��p., p1` &8q
8q Ñ ��p., 
8q of maps

between the contact homologies is the indentity map with filtration rescaled by 1{p1 ` &8q. Using
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the conformality property of spectral invariants (Theorem 3.16) we obtain

gapp., 
q ď
s�8 p., p1 ` &8q
8q ´ s*


8
%8
�8

p., 
8q

c%8 p�2=q “
p1 ` &8qs�8 p., 
8q ´ s*


8
%8
�8

p., 
8q

c%8 p�2=q

“

¨
˝
s�8 p., 
8q ´ s*


8
%8
�8

p., 
8q

c%8 p�2=q

˛
‚`

&8 ¨ s�8 p., 
8q
c%8 p�2=q

ď gap�8
p., 
8q ` � ` 2&8 ¨ s�8 p., 
8q,

where the last inequality follows from our choice of the abstract constraint %8 , and the fact that

the capacities c%8 p�2=q have a positive lower bound which is uniform in 8. Since our � can be

taken to be arbitrarily small, we conclude that if the product &8 ¨ s�8 p., 
8q converges to zero, then

gapp., 
q ď lim inf8Ñ8 gap�8
p., 
8q. �

3.4.1. Detecting periodicity via spectral gaps. Theorem 13 from the introduction states that if there

exists a homology class � P ��p., �q such that gap�p., 
q “ 0, then the Reeb flow of 
 is

periodic. The following proof is similar to an argument from ECH that was pointed out to us by

Oliver Edtmair.

Proof of Theorem 13. A classical theorem of Wadsley [Wad75] implies that if all Reeb orbits are

closed then the flow is periodic. Therefore, it is sufficient to show that there is a periodic orbit

passing through every point of ..

Fix a point H P ., let t+=u8
=“1 be open sets in . such that X=+= “ tHu. Let 5= : . Ñ r0,8q

be a smooth non-zero function supported in += , such that } 5=}�3 ď 1
= . Recall our assumption

that gap�p., 
q “ 0 and denote ) :“ s�p., 
q. By Theorem 3.19, there exists C= P r0, 1s such that

the contact form 
= :“ p1 ` C= 5=q
 has a periodic orbit �= of period )= ď ) passing through the

support of 5= . By extracting a subsequence we may assume that )= converge to some )‹ ď ). We

think of �= as a map R Ñ ., and denote �
=
p´q :“ �=p)= ¨ ´q : (1 – R{Z Ñ .. Denote by '
=

and '
 the Reeb vector fields of 
= and 
, respectively. The sequence �
=

is equicontinuous since

the derivatives 9�
=

“ )= ¨ '
= are uniformly bounded. Therefore, we can apply Arzelà-Ascoli

theorem and conclude that there is a subsequence t�
=:

u: that converges to a limit � : (1 Ñ ..

Clearly, � passes through H since �
=

passes through += . Let us show that � is differentiable and

that its derivative is )‹ ¨ '
. Fix C P (1 and consider a chart in . around �pCq. For large enough

=, �
=
pCq lies in this chart and satisfies

�
=
pC ` �q ´ �

=
pCq “

ż �

0
)= ¨ '
= ˝ �

=
pC ` �q3�,

for small enough �. Taking the limit when = Ñ 8 over this equation, we obtain

�pC ` �q ´ �pCq “
ż �

0
)‹ ¨ '
 ˝ �pC ` �q3�

for every � ą 0 small enough. Therefore, � is indeed differentiable, its derivative is)‹ ¨'
, and its

reparamterization �pCq :“ �pC{)‹q is a periodic orbit of '
 that passes through H, as required. �

4. Analysis of the constrained moduli spaces

In this section, we analyze the compactified moduli spaces of holomorphic cylinders between

select orbits of a Morse-Bott contact form. We prove that, under some conditions, these moduli

spaces are cut-out transversely and consist of a single point. Before formally stating the main

result for this section, let us fix the setting and present the relevant definitions and notations.

Setup 4.1. Throughout this section we fix the following structural assumptions.
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(i) A contact manifold p., �q of dimension 2= ´ 1, for = ě 3.

(ii) A contact form 
 on . such that the flow !C of the corresponding Reeb vector field ' is

periodic.

(iii) An almost complex structure � on � and a Riemannian metric 6�p´,´q “ 
b
`3
p´, �´q
on ..

(iv) A Morse-Bott function 5 : . Ñ R that is !C-invariant and whose critical manifolds are

1-dimensional. Note that the !C-invariance of 5 implies that the critical manifolds are

disjoint unions of periodic Reeb orbits. For such 5 , we let:

‚ - 5 be the vector field defined by 
p- 5 q ” 0 and 3
p´, - 5 q “ 35 p´q; and

‚ ∇� 5 be the vector field defined by 6�p´,∇� 5 q “ 35 p´q. Note that �∇� 5 “ ´- 5 .

(v) Given 5 as above and � ą 0 we define perturbations of 
, ' and � as follows.

‚ The perturbation of 
 is 
 5 :“ 4� 5 
.

‚ The Reeb vector field of 
 5 is ' 5 “ 4´� 5 p' ´ �- 5 q.
‚ Let � 5 be the R-invariant almost complex structure on .̂ “ RA ˆ . satisfying:

˚ � 5 pBAq “ ' 5 ,

˚ � 5 preserves the bundle �, and

˚ the restriction of � 5 to � is equal to �.

(vi) Let �` and �´ be circles of global maxima and minima of 5 , respectively. Considering

�˘ as (not necessarily simple) Reeb orbits of 
, assume that their periods are the same

and coincide2 with the minimal period of the flow !C .

(vii) Let I P . be a point in the intersection of the unstable manifold of �` and the stable

manifold of �´.

(viii) Consider a sequence of nested manifolds .3 Ă ¨ ¨ ¨ Ă .2=´1 “ ., such that for each 9:

(a) dim
`
.29´1

˘
“ 29 ´ 1 and �2p.29´1q “ 0;

(b) .29´1 is invariant under the Reeb flow !C ;

(c) p.29´1 , �X).29´1q is a contact manifold and 
|).29´1 is a contact form for it. Moreover,

� X ).29´1 is �-invariant;

(d) ∇� 5 is tangent to.29´1 and 5 |.29´1 is Morse-Bott. In particular,.29´1 is invariant under

the gradient flow of 5 ;

(e) Along any critical circle � of 5 , other than �` which lies in .2=´3, the restriction of

the Hessian of 5 to the symplectic orthogonal of � X ).29´1 in � X ).29`1 is positive

definite3;

(f) I P .3 Ă ¨ ¨ ¨ Ă .2=´1.

We call such a sequence t.29´1u=
9“2

a contact flag. This is illustrated in Figure 4.

Example 4.2. The example of interest of this setting is when . “ B� is the boundary of an

ellipsoid with rationally dependent entries. The contact flag is given by intersecting B� with

complex linear subspaces: .29´1 “ B� X
`
C 9´1 ˆ t0u=´9 ˆ C

˘
. In Section 5.1 we study this

example in detail and explain how it fits into Setup 4.1.

Remark 4.3. Assumption (viii).(a) that �2p.29´1q “ 0 has two purposes:

‚ To ensure that the relative CZ index is well defined over Z,

‚ To guarantee that the homological intersection of any 2-torus in .29`1 with the hypersur-

face .29´1 is zero (see Lemma 4.16 and Figure 8).

2For the arguments in Sections 4.1-4.3, it is enough to assume that the periods of �˘ are the same and divide the

minimal period of the flow !C . The assumption that the periods �˘ coincide with the minimal period of the flow is

used only in Section 4.4 for regularity purposes. See Remark 5.8

3In particular, this means that �` is the only maximum of 5 in .2=´3. This assumption will be used for computing

certain Conley-Zehnder indices of an 5 -perturbation of the Reeb flow.
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Figure 6. An illustration of a contact flag, as defined in Setup 4.1. The lavender

sphere .7, the pink disk .5 and the purple circle .3 represent consecutive nested

sub-manifolds in the flag. The orbits �` and �´ lie in .3, and are connected by a

Morse flow line in green.

As a consequence, assumption (viii).(a) can be replaced with any weaker conditions that ensure

the two above properties. This is done in Section 6.

The main purpose of this section is to prove the following claim.

Proposition 4.4. Consider Setup 4.1. The compactified moduli space4

Mp., � 5 ; �` , �´; Iq

of � 5 -holomorphic cylinders in .̂ between �´ and �` containing p0, Iq consists of a single point which is
transversely cut-out.

Remark 4.5. The single point in the moduli space Mp., � 5 ; �` , �´; Iq is a certain lift of the

gradient flow line of 5 from �´ to �` that passes through I. This lift is described in section 4.1

below.

Remark 4.6. ‚ For any periodic flow, the fixed point set at any time ) is a submanifold

satisfying the Morse–Bott condition. This is due to the fact that # any periodic diffeo-

morphism # is an isometry for the metric 6̂ :“ 1
#

ř#
9“1 #

˚6, where 6 is any Riemannian

metric.

‚ The contact form 
 5 :“ 4� 5 
 is non-degenerate in a finite action window when � is small

enough. That is, fixing )‹ ą 0, there exists � ą 0 such that every periodic orbit of 
 5 with

action less than )‹ is non-degenerate. These periodic orbits lie over the critical circles of

5 , and thus correspond to pairs p(, ?q of a Morse–Bott family ( of orbits of 
 and a circle

? of 5 -critical points. The Conley-Zehnder index of such an orbit can be calculated from

the Robbin-Salamon index of the family (, its dimension, and a Morse-type index of ?, as

shown in the following lemma.

Lemma 4.7. Fix a trivialization � of the contact structure on a neighborhood of the perturbed orbit
� “ p(, ?q corresponding to a pair of a Morse–Bott family ( of orbits of 
 and a circle ? of 5 -critical
points. The Conley-Zehnder index of � “ p(, ?q with respect to � is given by

(4.1) CZ�p(, ?q “ RS�p(q ` 1

2
dimp(q ´ ind(

">AB4p 5 ; ?q,

where ind(
">AB4p 5 ; ?q is the number of negative eigenvalues of the restriction of the Hessian of 5 to the

tangent space of the image of ( in ..

4See section 2.2.11 for the definition of this moduli space.
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Proof. To see this, write the linearized Reeb flow of 
 5 as a composition

3!
5
C “ p3! 5

C ˝ 3!´1
C q ˝ 3!C .

As explained in [Gut14], the composition is homotopic to the concatenation of paths. By the

additivity and homotopy invariance of the Conley-Zehnder index (Proposition 2.2), the index

of the orbit p(, ?q with respect to 
 5 is equal to the sum of the Robbin-Salomon index of the

family ( with respect to 
 and the CZ-index of the path 3)C :“ p3!´1
C ˝ 3!

5
C q ˝ 3!) , where

) is the period of (. Let us compute the latter. First, notice that for every C ď ), the image

)Cp�p0qq lies in a small neighborhood of the point !)p�p0qq, since the flows !C and !
5
C differ

by a small time reparametrization on critical circles of 5 . Identifying a neighborhood of !)�p0q
with its Darboux chart, the path 3)C solves the ODE 3 9)C “ �0 Hessp� 5 q�p0q|�3)C . When � is

sufficiently small, the path ΦpCq crosses the Maslov cycle only at the origin and the crossing form

is Γp�p0qq :“ ´ Hessp� 5 q�p0q|kerp3)0´Idq. The kernel of 3)0 ´ Id “ 3!) ´ Id coincides with the

tangent space to the image of ( in . by our assumption that ( is a Morse–Bott family. Since the

Hessian of 5 is degenerate only in the Reeb direction, the signature of this crossing form is by

definition the number of positive eigenvalues minus the number of negative eigenvalues, and

hence coincides dimp(q ´ 2 ind(
">AB4p 5 ; ?q. This shows that (4.1) holds. �

The next lemma shows that the parity of the CH-grading coincides with the parity of the

Morse indices of the perturbing function 5 . We will use it to conclude that the differential in CH

vanishes.

Lemma 4.8. The contact homology grading of a pair p(, ?q of a Morse–Bott family ( of orbits of 
 and a
circle ? of 5 -critical points satisfies:

(4.2) |p(, ?q| :“ = ´ 3 ` �/p(, ?q “ ind(
">AB4p 5 ; ?q mod 2.

Proof. We start by showing that the dimension of the family ( is even. Indeed, let ) be the period

of the family ( and denote by #) Ă . the fixed-point set of !) , or equivalently, the submanifold

composed of the orbits in (. Its tangent space is

)#) “ 〈'〉 ‘ kerp3!) ´ Idq.

Therefore, dimp(q “ dimp#)q ´ 1 “ dim
`
kerp3)) ´ Idq

˘
, which is even, since it is the 1-

eigenspace of a linear symplectic map.

Set 3 :“ 1
2 dimp(q P N. We will show that

(4.3) '(p(q “ = ´ 3 ´ 1 mod 2.

Together with the formula for �/p(, ?q given in Lemma 4.7, this yields the required result. Our

first step towards (4.3) is to notice that the parity of the Robbin-Salamon index of a path of matri-

ces depends only on the ends and not on the path it self. This can be seen, for example, from the

definition of the Robbin-Salamon index given at (2.2). Given a path with non-degenerate cross-

ings, the index is a sum of the signatures of the crossing forms. These forms are non-degenerate,

and are defined over even dimensional spaces, kerp3!C ´ Idq. Therefore, the signatures are all

even. Since the signatures of the ends of the path are are multiplied by 1{2, they determine the

parity of the index.

So now we focus on 3!) and identify it with a symplectic matrix. We can write it as a

Id�X)#) ‘Ψ. By the additivity of the RS index, The Morse–Bott condition implies that Ψ does

not have 1 as an eigenvalue. Moreover, there exists # such that Ψ# “ Id, since the Reeb flow

on . is periodic. Let us show that, up to conjugation, the matrix Ψ decomposes to a direct

sum of elements of *p1q. Fix a compatible metric 6, then 6̂ :“ 1
#

ř#
:“1pΨ:q˚6 is a Ψ-invariant

compatible metric. We conclude that up to a change of basis, Ψ is orthogonal, and hence unitary.



CONTACT HOMOLOGY AND HIGHER DIMENSIONAL CLOSING LEMMAS 35

In particular, Ψ is diagonalizable, and after another change of basis can be written as a direct

sum of two-dimensional rotations

Ψ “ ‘=´1´3
9“1

4 8�9

, with �9 ‰ 0 mod 2� due to the Morse–Bott condition. The RS index of the path ΨpCq “
‘=´1´3

9“1
4 8�9 C is

ř=´1´3
9“1 1 “ = ´ 1 ´ 3. Therefore,

'(p(q “ '(pΨpCqq mod 2

“ = ´ 1 ´ 3 mod 2.

This shows that (4.3) holds and concludes the proof. �

The rest of this section is dedicated to proving the above proposition. In subsection 4.1 we

describe an element of Mp., � 5 ; �` , �´; Iq. In subsection 4.2 we prove that there are no other

elements in this moduli space. In subsection 4.3 we show that this moduli space is cut-out

transversely.

4.1. Lifting flow lines to holomorphic cylinders. In this section we lift a gradient flow line of

the Morse-Bott function 5 in. to a � 5 -holomorphic curve in the symplectization .̂. Let � : R Ñ .

be a gradient flow line of 5 , that is, 9�pBq “ ∇� 5 p�pBqq, such that limBÑ˘8 �pBq is contained in �˘,

respectively. Further, assume that �p0q “ I. Such a gradient flow line exists by our choice of the

point I stated in Setup 4.1 and is clearly unique. Denoting by ) ą 0 the common period of �˘

with respect to the contact form 
, we can define a � 5 holomorphic map D� : R ˆ (1 Ñ .̂ by

(4.4) D�pB, Cq :“ p0pBq, !)¨Cp�p�)Bqqq ,

where 0pBq is defined by the ODE

90pBq “ ) ¨ 4� 5 p�p�)Bqq , 0p0q “ 0.

Note that D� is indeed a � 5 -holomorphic curve that limits to �˘ at the ends, and contains p0, Iq in

its image, since D�p0, 0q “ p0, �p0qq. Therefore, D� lies in the moduli space Mp., � 5 ; �` , �´; Iq.

4.2. Uniqueness. In this section we show that the moduli space Mp., � 5 ; �` , �´; Iq has no

elements other than the lift D� constructed above.

Proposition 4.9. Consider Setup 4.1. The only point in the moduli space Mp., � 5 ; �` , �´; Iq is the
curve D� constructed in Section 4.1.

The proof of Proposition 4.9 uses the intersection theories in [Sie11, MS19]. We will show

inductively that any element of Mp., � 5 ; �` , �´; Iq is contained in the symplectizations of all of

the submanifolds .3 Ă ¨ ¨ ¨ Ă .2=´1 “ .. Then it will follow from a result in [Sie11] that this

element is in fact contained in the image of D�. The structure of this section is as follows. First, we

show that the buildings in Mp., � 5 ; �` , �´; Iq consist only of cylinders, then we give an overview

of the holomorphic intersection theory of Moreno-Siefring, and finally we explain how to use it

to show that Mp., � 5 ; �` , �´; Iq consists of only one element.

4.2.1. Ruling out non-cylindrical buildings. Our first step towards proving that D� is the unique

element in the moduli spaceMp., � 5 ; �` , �´; Iq is to show that all buildings inMp., � 5 ; �` , �´; Iq
consist only of cylinders.

Lemma 4.10. For � ą 0 sufficiently small, each building in Mp., � 5 ; �` , �´; Iq consists solely of
� 5 -holomorphic cylinders.



36 J. CHAIDEZ, I. DATTA, R. PRASAD, AND S. TANNY

Proof. Fix a building D P Mp�` , �´; � 5 q with : ě 1 levels. Let Γ1 , Γ2 , . . . , Γ:`1 be the associated

limits and notice that Γ1 “ p�´q and Γ
:`1 “ p�`q.

We start by finding a sequence of orbits t� 9 P Γ
9u:`1

9“1
of non-decreasing actions:

ż

�1

 5 ď

ż

�2

 5 ď . . . ď

ż

�:`1

 5 .

This sequence is constructed inductively as follows. Pick �1 “ �´. Given � 9 , there exists a unique

connected � 5 -holomorphic curve D 9 in D such that � 9 is one of its negative ends. Recall that every

connected component of a level in D has a single positive end, as explained in section 2.2.11. We

take � 9`1 to be the unique positive end of D 9 . See Figure 7 for an illustration.

Figure 7. An illustration of a holomorphic building D, and the sequence of orbits t� 9u.

We will now show that the connected components D 9 must be all cylinders. This will conclude

the proof, since the positive end of D:`1 is �`. Let �
9

1 :“ � 9 , �
9

2 , . . . , �
9

#9
be the negative ends of

D 9 . We need to show that #9 “ 1 for all 9. For any given punctured � 5 -holomorphic curve in .̂,

the total integral of 
 5 over the positive limits is greater than or equal to the total integral of 
 5

over the negative limits. Applying this to D 9 , we find that

(4.5)

ż

� 9`1

 5 ě

#9ÿ

8“1

ż

�
9

8


 5 ě
ż

� 9

 5 ` p#9 ´ 1q ¨ )<8= ,

where )<8= is the minimal period of a periodic orbit of 
 5 . In particular, the 
 5 -integrals are

non-decreasing along the sequence t� 9u. The 
 5 integrals of the first and last orbits in this

sequence are ż

�˘


 5 “ 4� 5 p�˘q)

where ) ą 0 is the common period of �˘ under the Reeb flow of 
. Combining this with (4.5)

we find that for all 9,

4� 5 p�`q) “
ż

�`


 5 ě
ż

� 9`1

 5

p4.5q
ě

ż

� 9

 5 ` p#9 ´ 1q ¨ )<8=

ě
ż

�´


 5 ` p#9 ´ 1q ¨ )<8=

“ 4� 5 p�´q) ` p#9 ´ 1q ¨ )<8= .

Rearranging the above, we obtain

(4.6) p#9 ´ 1q ¨ )<8= ď p4� 5 p�`q ´ 4� 5 p�´qq).

The minimal action )<8= of a Reeb orbit of 
 5 “ 4� 5 
 is uniformly bounded (in �) below by a

constant depending only on 
, as long as � is taken to be smaller than some constant depending
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only on 5 . This implies that the inequality (4.6) can only hold if #9 ´1 “ 0 for all 9 P t1, . . . , :`1u.

We thus conclude that D 9 are all cylinders, and therefore D is composed solely of cylinders as

well. �

4.2.2. An overview of holomorphic intersection theory. Our main tool in proving the uniqueness

result stated in Proposition 4.9 is the holomorphic intersection theory developed in [Sie11,MS19].

We give here an overview of this theory, following [MS19] and adapted to our case.

Let p., �, 
q be a closed contact manifold with a contact form and denote the Reeb vector field

by '. Let � be an almost complex structure on .̂ and consider a codimension-2 submanifold /

of .̂ such that:

‚ there exist closed codim-2 submanifolds /˘ Ă . such that / is asymptotically cylindrical
over /˘ (see Definition 4.11 below),

‚ the sub-bundles �/˘ :“ � X )/˘ are �-invariant,

‚ p/˘ , �/˘q are contact manifolds and 
|)/˘ are contact forms on them, and

‚ / is invariant under the flow of '.

The contact structure � splits along /˘ into a pair of symplectic vector bundles

p�|/˘ , 3
q » p�/˘ , $/q ‘ p�# , $#q

where �/˘ “ )/˘ X � as mentioned above, �# is the symplectic complement of �/ in �, and $/,

$# are the restrictions of 3
 to �/, �# respectively.

Definition 4.11. The hypersurface / Ă .̂ is asymptotically cylindrical over /˘ Ă . if there exists

B-families of sections of �# , i.e. �` : r'1 ,8q Ñ Γp�# |/`q and �´ : p´8,´'1s Ñ Γp�# |/´q such

that

/ X pr'1 ,8q ˆ .q “
ď

pA,?qPr',8qˆ/`

ĄexppA,?qp�`pAqp?qq,

/ X pp´8, '1sq ˆ .q “
ď

pA,?qPp´8,'1sˆ/´

ĄexppA,?qp�´pAqp?qq.

w

Remark 4.12. We will consider two simple cases of asymptotically cylindrical hypersurfaces. The

first is a symplectization of a contact submanifold, namely / :“ /̂`. The second case is when

. is 3-dimensional and / is a pseudoholomorphic cylinder. It follows from [MS19, Theorem

2.2] that any pseudoholomorphic cylinder is asymptotically cylindrical over its ends (see also

Definition 4.14 below).

Given a �-holomorphic cylinder D in .̂ with non-degenerate ends �D
˘, the works [MS19, Sie]

define a “holomorphic intersection number” D˚/ of D with the manifold/ and prove a “positivity

of intersection” property (see Theorem 4.15). The holomorphic intersection number is defined

as a sum of a “relative intersection number" and a contribution from the Conley-Zehnder index

of the ends in the normal contact direction �# .

Definition 4.13 (Holomorphic intersection number, [MS19,Sie]). Let ., /, D and �D
˘ be as above.

Fix a trivialization of �# along the orbits of ' that lie in / (if there are any) and collectively

denote it by �.

‚ (Relative intersection number). Let D� be a deformation of D as described in Definition 4.14

below. Roughly speaking, this deformation uses a �-constant section of �# to push any

ends of D that lie in / off of it. In particular, if the ends of D do not lie in / then D� “ D.

Define the relative intersection number of D with / to be

(4.7) ��pD, /q :“ D� ¨ / P Z,
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namely, the standard transverse intersection number of the deformation D� with the hy-

persurface /.

‚ (Normal Conley–Zehnder index). Let � be a non-degenerate Reeb orbit which lies in

/˘. Its normal Conley–Zehnder index CZ#
� p�q is the Conley–Zehnder index of the path

of 2 ˆ 2 symplectic matrices defined by applying the trivialization � to the projection of

the linearized Reeb flow to �# . For an orbit � that does not lie in/, we define CZ#
� p�q :“ 0.

‚ The holomorphic intersection number of D and / is defined to be

(4.8) D ˚ / :“ ��pD, /q ` tCZ#
� p�D

`q{2u ´ rCZ#
� p�D

´q{2s.

The deformation D� required for the definition of the relative intersection number (4.7) is

constructed as follows.

Definition 4.14 (Deformation D� of D). We write down the deformation at the positive end, the

deformation at the negative end is analogous with the appropriate changes in sign. If �D
` is not

contained in /`, then we do not deform D near the positive end. Suppose �D
` is contained in /`

and extend the trivialization � to a trivialization � : * ˆR2 Ñ �# |* on some open neighborhood

* Ă /` of �D
`. Then, [MS19, Theorem 2.2] states that the map D may be written as

pB, Cq ÞÑ ĄexpD)pB,CqpD#pB, Cqq,
where:

‚ pB, Cq P r',`8q ˆ (1 for ' " 1 large enough,

‚ D)pB, Cq lies in R ˆ * Ă R ˆ /`,

‚ D# is a smooth section of D˚
)
�˚�# , where � is the projection R ˆ /` Ñ /`.

We then perturb the map D by replacing the above parametrization of D near `8 by the map

pB, Cq ÞÑ ĄexpD)pB,Cq pD#pB, Cq ` �p|B|q�pD)pB, Cq, &qq(4.9)

where � : r0,8q Ñ r0, 1s is a smooth cut-off function equal to 0 for B ă ' ` 1 and equal to 1 for

B ą ' ` 2, and 0 ‰ & P R2.

The following theorem is a restriction of Theorem 2.5 from [MS19] adapted to our notations.

Theorem 4.15 ( [MS19, Theorem 2.5]). Let ., /, D be as above, and assume further that the image of D
is not contained in /. Then, D ˚ / ě 0 and it is equal to 0 if and only if the image of D does not intersect
/.

4.2.3. Proof of uniqueness. In this section we use the intersection theory reviewed above to prove

Proposition 4.9. We continue with Setup 4.1. Our first step is to show that the relative intersec-

tion number �� of any � 5 -holomorphic cylinder D in .28`1 with a Reeb invariant codimension-2

hypersurface / is zero. We will later apply this lemma to / “ .̂28´1 when 8 ą 1 and to / “ 8<pD�q
when 8 “ 1.

Lemma 4.16. Let D be a � 5 -holomorphic cylinder in .̂28`1, and let / Ă .̂28`1 be a codimension-2
asymptotically cylindrical hypersurface that is invariant under !C . Then, ��pD, /q “ 0.

Proof. Let D� be the deformation of D as in Definition 4.14, and denote by �D�

˘ the ends after the

deformation. Let ℓ : R Ñ .28`1 be a curve that connects �D�

˘ , namely limBÑ˘8 ℓpBq P �D�

˘ . Since

.28`1z/ is connected, we can choose the path ℓ to not intersect /. Consider the cylinder

� : R ˆ (1 Ñ .̂28`1 , �pB, Cq :“ pB, !CℓpBqq P R ˆ .28`1 “ .̂28`1.

Since ℓ does not intersect the !C-invariant submanifold /, its orbit under this action does not

intersect it as well. Therefore, the cylinder � is disjoint from / (see Figure 8). Moreover,
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our assumption that �2p.28`1q “ 0 guarantees that the union of D� and � is null-homologous.

Consider the compactification . of .̂ into a manifold with boundary, diffeomorphic to r0, 1s ˆ..

By the homology invariance of the standard algebraic intersection number (e.g., [Bre13, Part VI,

Section 11]), the intersection number of D#� with the compactification of / vanishes. Thus,

��pD, /q “ D� ¨ /“� ¨ / “ 0. �

Figure 8. An illustration of the deformation D� of D, whose ends are disjoint from
the hypersurface, and the cylinder � that has the same ends and does not intersect

.̂2=´3.

The next lemma concerns the normal Conley-Zehnder indices of the periodic orbits of the 5 -

perturbed Reeb flow !
5
C . This will be useful for computing the holomorphic intersection number

of a � 5 -holomorphic cylinder with the submanifolds in the contact flag.

Lemma 4.17. Take . “ .28`1 and / “ .̂28´1 for 8 P t2, . . . , = ´ 1u. Let � be a periodic orbit of the
perturbed contact form 
 5 that lies in .28´1. There exits a trivialization � of �# such that the normal CZ
index of � is

CZ#
� p�q “

#
`1 if � “ �` ,

´1 if � ‰ �`.

Proof. Let � be any trivialization of �# along � that is invariant under the periodic Reeb flow !C ,

namely, � : R2 ˆ � Ñ �# satisfying

(4.10) 3!C ˝ �p¨, Gq “ �p¨, !CpGqq
for all G P �. In this trivialization the linearized flow of ' 5 is given by

ΦpCq :“ �p¨, �pCqq´1 ˝ 3!
5
C ˝ �p¨, �p0qq

“ �p¨, ! 5
C �p0qq´1 ˝ 3!

5
C ˝ �p¨, �p0qq.

Since � is a periodic orbit of ' 5 , it is a critical circle of 5 . By the definition of ' 5 stated in (v), it

is proportional to ' wherever - 5 vanishes. Therefore,

ΦpCq “ �p¨, !4� 5 ¨C�p0qq´1 ˝ 3!
5
C ˝ �p¨, �p0qq

p4.10q“ �p¨, �p0qq´1 ˝ p3!4� 5 ¨Cq´1 ˝ 3!
5
C ˝ �p¨, �p0qq.

Denoting )C :“ p!4� 5 ¨Cq´1 ˝! 5
C , the linearization 3)C is conjugate to ΦpCq by �p¨, �p0qq. Identifying

a neighborhood of �p0q with its Darboux chart, the path 3)C of matrices solves the ODE 93)C “
´�0 ¨ Hessp� 5 q3)C . When � is sufficiently small, the path ΦpCq crosses the Maslov cycle only at

the origin and the crossing form is Γp�p0qq :“ ´ Hessp� 5 q�p0q|�# . By assumption (viii).(e) from
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Setup 4.1, the Hessian of 5 is positive definite on �# unless � “ �`, in which case it is negative

definite. Therefore, the normal Conley-Zehnder index of � is 1
2 ¨ p`2q “ `1 if � “ �` and

1
2 ¨ p´2q “ ´1 otherwise. �

We are now ready to prove that, under the assumptions of Setup 4.1, the only point in the

compactified moduli space Mp., � 5 ; �` , �´; Iq is D�.

Proof of Proposition 4.9. Let D “ pD1 , . . . , D:q P Mp., � 5 ; �` , �´; Iq be a building of � 5 -holomorphic

curves. Lemma 4.10 above states that the components D9 of D are all cylinders. Therefore, we

may apply Lemma 4.16 and conclude that ��pD9 , .̂2=´3q “ 0 for all 9. Denoting the negative

and positive ends of D9 by �9´1 and �9 respectively, we notice that �9´1 ‰ �` for all 9. This is

due to the fact that �` is a global maximum for 5 and that the 
 5 -action is decreasing along

� 5 -holomorphic curves. Therefore, Lemma 4.17 asserts that, for a properly chosen trivialization

�, CZ#
� p�9´1q “ ´1 and CZ#

� p�9q ď 1 for all 9. It follows that the holomorphic intersection

numbers of each piece with the hypersurface / “ .̂2=´3 is non-positive. Indeed,

D9 ˚ .̂2=´3 :“ ��pD9 , .̂2=´3q ` tCZ#
� p�9q{2u ´ rCZ#

� p�9´1q{2s

“ 0 ` tCZ#
� p�9q{2u ´ r´1{2s “ tCZ#

� p�9q{2u ď 0.

Theorem 4.15 (which is a special case of [MS19, Theorem 2.5]) states that, in this case, each D9 is

either disjoint from .̂2=´3 or contained in it. By definition of Mp., � 5 ; �` , �´; Iq, the image of D

contains the point p0, Iq P .̂3 Ă ¨ ¨ ¨ Ă .̂2=´3. Denoting by D90 the component of D whose image

contains p0, Iq, we find that D90 is not disjoint from .̂2=´3, and thus is contained in it.

Figure 9. The proof of Proposition 4.9 uses positivity of intersection to rule out

the illustrated scenario, in which the piece of the building that intersects the

hypersurface is not contained in it.

We now consider the curve D90 in .̂2=´3. Arguing as above, we see that its holomorphic

intersection number with the hypersurface .̂2=´5 is again non-positive. Since its image intersects

.̂3 Ă ¨ ¨ ¨ .̂2=´5 we conclude that D90 Ă .̂2=´5. Continuing by induction we conclude that the image

of D90 is contained in .̂3.

To finish the proof, notice that the above arguments imply that the holomorphic intersection

number of D90 and D� in .̂3 is non-positive. Since these two � 5 -holomorphic curves intersect at

p0, Iq, it follows from Theorem 4.15 that D90 “ D�. In particular, their ends agree: �9 “ �` and

�9´1 “ �´. Recalling that �` and �´ are global maxima and minima for 5 , it follows from action

considerations that the only ends that could coincide with them are �: and �0 respectively, we

conclude that the building D consists of a single cylinder, D90 “ D�, which concludes the proof. �

4.3. Transversality. The aim of this section is to show that the � 5 -holomorphic curve D�, de-

scribed in Section 4.1, is cut-out transversely.
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4.3.1. Local transversality of the moduli space without a point constraint. We start by showing that

the moduli space without the point constraint is locally transversely cut-out at D�. The notion of

a moduli space being locally transversely cut-out at a curve appears in [Par15, Section 2.11]; we

give a brief overview here for convenience.

Definition 4.18 ( [Par15, Section 2.11]). Let D be a � 5 -holomorphic curve in .̂.

‚ For : ě 0 and � ă 1, define the associated weighted Sobolev space

(4.11) , :,2,�pD˚).̂q “
!
5 | � ¨ 5 P , :,2pD˚).̂q

)
, } 5 }:,2,� :“ }� ¨ 5 }:,2 ,

where � : R ˆ (1 Ñ Rą0 equals 1 away from the ends and equals 4�|B| near the ends.

‚ The linearized operator5

(4.12) �D : , :,2,�pD˚).̂q Ñ , :´1,2,�
´
D˚).̂ bC Ω

0,1pR ˆ (1q
¯
,

of D is defined as follows. Given any symmetric connection ∇ on ).̂, the linearized

operator takes the form [Wen15, Section 2.1]

(4.13) �DF “ ∇F ` � 5 pDq ˝ ∇F ˝ 9 ` p∇F � 5 q ¨ 3D ˝ 9

‚ A � 5 -holomorphic curve D is transversely cut-out if the linearized operator �D is surjective.

Proposition 4.19. Consider Setup 4.1. The linearized Cauchy-Riemann operator at D� is surjective.

Our strategy for proving Proposition 4.19 is to show that the linearized operator splits into a

direct sum of real-linear Cauchy–Riemann operators on complex line bundles. Then, we apply

the automatic transversality results from [Wen10] to deduce surjectivity.

Recall the contact flag .3 Ă ¨ ¨ ¨ Ă .2=´1 “ .. It defines a splitting

(4.14) � “ �3 ‘ ¨ ¨ ¨ ‘ �2=´1

of the contact distribution into two-dimensional sub-bundles as follows. The bundle �3 is defined

to be the contact structure of .3. For 8 ą 1, the bundle �28`1 is defined to be the symplectic

complement of ).28´1 in the contact structure of .28`1. Denoting by + the span of BA and ', we

have a splitting

).̂28`1 “ + ‘
˜

8à

:“1

�2:`1

¸
, 8 “ 1, . . . , = ´ 1.

Moreover, it follows from the assumptions in Setup 4.1 that � 5 preserves this splitting. For any

8 “ 1, . . . , = ´ 1, we write �8 for the linearized operator of D�, considered as a � 5 -holomorphic

curve in .̂28`1. We will also denote the full linearized operator �=´1 by �.

Lemma 4.20 (Decomposing the linearized operator). For any 2 ď 8 ď = ` 1 there exists a Fredholm
real-linear Cauchy–Riemann operator !8 on the bundle �28`1 such that the operator �8 has the matrix form

ˆ
�8´1 0

0 !8

˙

with respect to the splitting ).̂28`1 “ ).̂28´1 ‘ �28`1.

The linearized operator can be written in terms of a symmetric connection on ).̂, as in (4.13).

It will be convenient, for the purposes of computation, to use the Levi–Civita connection of a

metric which is well-adapted to the contact flag.

5The domain of the linearized operator considered by Pardon in [Par15] is slightly bigger. Since our aim here is to

prove surjectivity this does not cause any issue.



42 J. CHAIDEZ, I. DATTA, R. PRASAD, AND S. TANNY

Lemma 4.21 (Choice of connection). There exist symmetric connections ∇8 on ).̂28`1, such that for
any E tangent to the hypersurface .28´1, the operator ∇8

E can be written as

(4.15) ∇8
E “

ˆ
∇8´1
E 0

0 ∇1
E

˙

with respect to the splitting ).̂28`1 “ ).̂28´1 ‘ �28`1.

Proof. Let ℎ1 be the metric on .3 equal to the one induced by � 5 . Define for each 8 P t2, . . . , = ´ 1u
a metric ℎ8 on .28`1 which satisfies the following conditions:

‚ The submanifold .28´1 is totally geodesic with respect to ℎ8 .

‚ The splitting

).28`1|.28´1 “ ).28´1 ‘ �28`1

is ℎ8-orthogonal.

The metrics ℎ8 can be constructed inductively by repeated applications of the following standard

trick. Fix any Riemannian metric ℎ on .28`1 which restricts to ℎ8´1 on .28´1 and makes �28`1

orthogonal to ).28`1. Use the restriction of the exponential map to �28`1 to define a tubular

neighborhood * of .28´1 in .28`1. The involution E ÞÑ ´E on �28`1 then defines a smooth

involution � : * Ñ * that fixes ).28´1. Set ℎ8 :“ 1
2pℎ ` �˚ℎq on * and extend it outwards. Then

� is an isometry for ℎ8 . Given any p?, Fq P ).28´1, the corresponding geodesic is mapped under

� to a geodesic corresponding to p�p?q, �pFqq “ p?, Fq. In other words this geodesic is preserved

by � and this is in .28´1.

For each 8 P t2, . . . , =´1u, let ℎ̂8 denote the cylindrical metric over ℎ8 on the cylinder .̂28`1. Let

∇8 denote the Levi–Civita connection on .̂28`1 with respect to ℎ̂8 . By definition, ∇8 is symmetric.

The splitting (4.15) follows from the fact that .̂28´1 is totally geodesic with respect to ℎ̂8 and

hence the ℎ̂8 parallel transport preserves the orthogonal direct sum decomposition ).28`1|.28´1 “
).28´1 ‘ �28`1. �

The next lemma states that the asymptotic operators of �, the linearized operator of D� in

.̂, respect the direct sum decomposition induced by the contact flag, and that the pieces in the

contact direction are non-degenerate.

Lemma 4.22. The asymptotic operators �˘ of � respect the splitting (4.14). Moreover, their restrictions
to �˚

˘�29`1 are non-degenerate.

Proof. Consider the connections from Lemma 4.21, and write ∇ :“ ∇=´1 for the connection

on the total manifold .̂. Following [Wen10], the asymptotic operators �˘ are defined by

limBÑ˘8 �pBBq “ ∇B ´ �˘. Evaluating (4.13) as B Ñ ˘8 we obtain

lim
BÑ˘8

�pBBq “ lim
BÑ˘8

∇B ` � 5∇C ` p∇� 5 qBCD

“ ∇B ` � 5∇)¨' 5
` p∇� 5 q) ¨ ' 5 “ ∇B ` )� 5∇' 5

` )∇p� 5 ' 5 q ´ )� 5∇' 5

“ ∇B ` ) ¨ � 5 p∇' 5
´ ∇' 5 q ` )∇p� 5 ' 5 q.

Notice that � 5 ' 5 “ BA is covariantly constant, since the metric defining ∇ is cylindrical. Therefore

the asymptotic operators are

(4.16) �˘ “ ´) ¨ � 5 p∇' 5
´ ∇' 5 q ` )∇p� 5 ' 5 q “ ´) ¨ � 5 r' 5 ,´s.

Since � 5 and the flow of ' 5 preserve the splitting, the operator � 5 r' 5 ,´s does as well. Denoting

by �8
˘ the restrictions of �˘ to �˚

˘�28`1, it remains to show that they are non-degenerate. Notice

that the operators �8
˘ coincide with the restriction to �˚

˘�28`1 of the linearization of the flow !
5
C

of ' 5 . Let �˘ be trivializations of �28`1 along �˘ that are invariant under the periodic Reeb flow

!C , as in 4.10. As shown in the proof of Lemma 4.17, the linearization of the flow !
5
C is conjugate
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to a path of matrices 3)C that solves the ODE 93)C “ ´�0 ¨ Hessp� 5 q3)C . Note that the Hessian

of 5 is degenerate in the direction of the Reeb vector field ', since 5 is '-invariant. However, by

the Morse-Bott condition, the restriction of the Hessian to �28`1, is non-degenerate. When � is

sufficiently small, this implies that t3)CuCPr0,)s is non-degenerate as well. �

We are now ready to show that the linearized operator splits into a direct sum.

Proof of Lemma 4.20. Let ∇8 be the connection from Lemma 4.21, and write �8 as

�8 “ ∇8 ` � 5 ˝ ∇8 ˝ 9
l              jh              n

p8q

` p∇8 � 5 q ¨ 3D� ˝ 9
l              jh              n

p88q

.

The splitting of the first part, p8q, follows immediately from the splitting of ∇8 and the fact that � 5

preserves the decomposition. Indeed, since BBD� and BCD� lie in the subspace ).̂28´1, Lemma 4.21

guarantees that ∇8
BBD�

“ ∇8´1
BBD�

‘ ∇1
BBD�

, and the same for BCD�. Therefore,

p8q “
ˆ
∇8´1 ` � 5 pD�q∇8´1 ˝ 9 0

0 ∇1 ` � 5 pD�q∇1 ˝ 9.

˙
.

Let us rewrite the second part of�8 applied to BB (the computation for BC is completely analogous):

p88qpBBq “ p∇8 � 5 q ¨ 3D� ˝ 9BB “ p∇8 � 5 q ¨ BCD�
“ p∇8 � 5 q ¨ ) ¨ ' 5 “) ¨

`
∇8p� 5 ' 5 q ´ � 5∇

8' 5

˘

“ ) ¨
`
∇8p´BAq ´ � 5∇

8' 5

˘

“ ) ¨
`
0 ´ � 5∇

8' 5

˘
“ ´)� 5∇

8' 5 .(4.17)

where, in the second and third lines, we used the fact that BCD� “ ) ¨' 5 by construction, and that

' 5 “ ´� 5 BA respectively. In the last row we used the fact that the metric ℎ̂ 8 is cylindrical in the A-

direction, which implies that the vector field BA is covariantly constant. We now evaluate p88qpBBq “
´)� 5∇

8' 5 on a tangent vector field E and split into cases with respect to the decomposition

).28`1|.28´1 “ ).28´1 ‘ �28`1:

‚ E P ΓpD˚
�).28´1q: Using Lemma 4.21 and the fact that ' 5 is tangent to .̂28´1 as well, we

obtain ∇8
E' 5 “ ∇8´1

E ' 5 . Therefore p88qpBBqE “ ´)� 5∇
8´1
E ' 5 .

‚ E P ΓpD˚
� �28`1q: Extend E into a vector field Ẽ defined on a neighborhood of the image of

D� in .̂28`1. Then, along the hypersurface .̂28´1 we have

p88qpBBqE “ ´)� 5∇
8
E' 5 “ ´)� 5

´
∇8
' 5
Ẽ ` rẼ , ' 5 s

¯

“ )� 5

´
r' 5 , Ẽs ´ ∇8

' 5
Ẽ
¯

“ )� 5

´
r' 5 , Es ´ ∇8

' 5
E
¯

!4<<0 4.21“ )� 5

´
r' 5 , Es ´ ∇1

' 5
E
¯

“ � 5 rBCD� , Es ´ � 5∇
1
BCD�

E

“ � 5 r3D� ˝ 9pBBq, Es ´ � 5∇
1 ˝ 9pBBqpEq.

Above, we used the fact that the connection ∇8 is symmetric and that ' 5 is tangent to the

hypersurface .̂28´1.

Overall we conclude that the second part of �8 decomposes as

p88q “
ˆ

p∇8´1� 5 q ¨ 3D� ˝ 9 0

0 � 5 r3D� ˝ 9 ,´s ´ � 5∇
1 ˝ 9

˙
.

Summing p8q and p88q we obtain a decomposition of �8 :

�8 “
ˆ
�8´1 0

0 ∇1 ` � 5 r3D� ˝ 9 ,´s

˙
.



44 J. CHAIDEZ, I. DATTA, R. PRASAD, AND S. TANNY

A simple computation shows that !8 :“ ∇1 ` � 5 r3D� ˝ 9 ,´s is a Cauchy-Riemann operator. More-

over, since BCD� “ )' 5 , the asymptotic operators of !8 are indeed the restrictions of �˘ to

�˚
˘�28`1. By Lemma 4.22, they are non-degenerate. This implies that !8 is a Fredholm operator

(e.g. [Wen10, Section 2.1]), and thus concludes the proof. �

Having established the splitting of the linearized operators �8 , we are ready to prove surjec-

tivity.

Proof of Proposition 4.19. We will prove by induction that the Cauchy-Riemann operators �8 are

surjective for all 8. This will use the decomposition from Lemma 4.20, as well as automatic

transversality [Wen10] for �1 and !8 . Starting with the base case of the induction, �1 is the lin-

earized operator at the (non-constant) curve D� inside the 4-dimensional manifold .̂3. Theorem 1

from [Wen10] states that6, in a 4-dimensional manifold, an immersed pseudoholomorphic curve

is regular if

(4.18) indpDq ą 1

2
pindpDq ´ 2 ` 26 ` #Γ0 ` #�0pBΣqq,

where:

‚ Σ is the domain of the curve,

‚ 6 is the genus of Σ,

‚ Γ0 is the set of ends of D with even CZ index.

In our case, Σ “ R ˆ (1, and hence 6 “ 0 and #�0pΣq “ 0. Moreover, #Γ0 ď 2 since D� has only

two ends. Therefore, condition (4.18) holds if indp�1q ą 0. The latter inequality obviously holds

in our case (in fact, indp�1q “ dim
´
.̂3

¯
´ 2 “ 2).

Having established the base case of the induction we move on to the induction step. We

assume that �8´1 is surjective for some 8 and show surjectivity of �8 . By the decomposition

of �8 given in Lemma 4.20, this is equivalent to showing that the real-linear Cauchy-Riemann

operator !8 is surjective. This is an operator on sections of a complex line bundle. Proposition 2.2

from [Wen10] states that7 given a complex line bundle � Ñ Σ, a Cauchy-Riemann Fredholm

operator ! : ,1,2p�q Ñ !2p� bC Ω
0,1pR ˆ (1q is surjective if

(4.19) indp!q ě 0 and indp!q ą 1

2
pindp!q ´ 2 ` 26 ` #Γ0 ` #�0pBΣqq,

where:

‚ 6 is the genus of Σ,

‚ Γ0 is the set of ends for which the CZ index of the asymptotic operator is even.

As before, in our case 6 “ 0 and #�0pBΣq “ 0. Therefore the second condition in (4.19) amounts

to indp!q ą ´2 ` #Γ0. Since the domain Σ in our case is a cylinder, #Γ0 ď 2, and we are left

with the requirement indp!q ą 0. A simple computation shows that indp!8q “ 2 for all 8. This

essentially follows from the direct sum decomposition given in Lemma 4.20, the additivity of the

Fredholm index, and the fact that indp�8q “ 28. We therefore conclude that !8 is surjective, and

this completes the proof. �

Remark 4.23. In the above proof we showed that !8 is surjective as an operator between the

spaces ,1,? and !? . Note that this implies surjectivity of the corresponding operator between

, :,2 and , :´1,2, by elliptic regularity. Indeed, the cokernel of !8 is the kernel of its formal

adjoint operator. Applying elliptic regularity to the formal adjoint, we find that its kernel is

independent of : and ?.

6We only state a special case of Wendl’s theorem, adapted to our notations.

7Again, we state a special case adapted to our notations.
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4.3.2. The evaluation map is a submersion. Let I, �, D� be as given in Section 4.1. We showed in

Proposition 4.19 that the linearized operator

� : , :,2,�pD˚
�).̂q Ñ , :´1,2,�

`
D˚).̂ bC Ω

0,1pR ˆ (1q
˘

is surjective. This implies that the moduli space Mp.̂, � 5 ; �` , �´q of � 5 -holomorphic cylinders

near D� admits the structure of a smooth manifold of dimension indp�q near D�, with tangent

space at D� identified with kerp�q ‘ R ¨ BA . The extra factor comes from the fact that we are not
quotienting by the translation action; recall that the operator � controls the deformations of the

quotient moduli space Mp., � 5 ; �` , �´q “ Mp.̂, � 5 ; �` , �´q{R.

Our ultimate goal is to show that the point-constrained moduli space Mp., � 5 ; �` , �´; Iq is

transversely cut-out at D�. The point constrained moduli space is defined as the inverse image

ev´1p0, Iq, where ev is the evaluation map

ev : Mp.̂, � 5 ; �` , �´q ˆ RB ˆ (1
C Ñ .̂, pD, B, Cq ÞÑ DpB, Cq.

It is transversely cut-out at D� if and only if ev is a submersion at the point pD� , 0, 0q. The

linearization of ev at pD� , 0, 0q, which we write as �ev, is the linear map

�ev : kerp�q ‘ R ‘ )p0,0qpR ˆ (1q Ñ )p0,Iq.̂

defined by

(4.20) p+, 2, Eq ÞÑ +p0, 0q ` 2 ¨ BA ` pBED�qp0, 0q.

In order to show that the moduli space Mp., � 5 ; �` , �´; Iq is cut-out transversely at D�, it

remains to prove the following proposition.

Proposition 4.24. The map �ev is surjective.

The proof of Proposition 4.24 uses the surjectivity of the linearized evaluation map on Morse

flow lines, as stated in the following lemma.

Lemma 4.25. Let Morsep�` , �´q be the space of Morse flow lines from �` to �´. Then it is a smooth
manifold and, for every G P Morsep�` , �´q the map

�Morse
ev : )GMorsep�` , �´q Ñ )Gp0q., defined by + ÞÑ +p0q

is surjective.

Proof. The space Morsep�` , �´q is composed of all smooth maps G : R Ñ . such that 9GpBq “
∇� 5 pGpBqq, which limit to points in �` and �´ respectively as B Ñ ˘8. Consider the natural

evaluation map

evMorse : Morsep�` , �´q Ñ .

sending a flow line G to the point Gp0q. The image of Morsep�` , �´q under this evaluation map is

the intersection of the unstable manifold of �` and the stable manifold of �´. This intersection

is a smooth open submanifold of .. This follows from the fact that the unstable manifold of

�` and the stable manifold of �´ are both smooth open submanifolds of maximal dimension in

., so they must intersect transversely. By existence and uniqueness of ODEs, this implies that

the space Morsep�` , �´q is a smooth manifold and that the evaluation map is a diffeomorphism

onto an open subset of ..

The tangent space )GMorsep�` , �´q at any flow line G is a 2= ´ 1-dimensional vector space of

smooth vector fields + along G satisfying the linearized Morse flow line equation

∇B+ ´ Hess� 5 p+q “ 0,
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where ∇ denotes the Levi–Civita connection of the metric 6� and Hess�p 5 q is the Hessian of 5

with respect to this metric. The linearization of evaluation map at G is the operator

�Morse
ev : )GMorsep�` , �´q Ñ )Gp0q., + ÞÑ +p0q.

Since evMorse is a diffeomorphism, its linearization is surjective. More explicitly, by existence

of solutions to ODEs, for any point G1
0 in a neighborhood of Gp0q, there is a flow line G1 such that

G1p0q “ G1
0. �

Proof of Proposition 4.24. There is a natural parameterization of a set of cylinders near D� in

Mp.̂, � 5 ; �` , �´q with a neighborhood of � in the space of Morse flow lines from �` to �´.

Lemma 4.25 states that the corresponding evaluation map, which sends a flow line to its image

at the point 0 P R, is a submersion. We will show that the linearization of this evaluation map at

� factors through �ev.

In Section 4.1 we explained that every Morse flow line G can be lifted to a � 5 holomorphic curve

given by

DGpB, Cq :“ p0pBq, !)¨CpGp�)Bqqq , where 90pBq “ ) ¨ 4� 5 pGp�)Bqq , 0p0q “ 0.

Consider the lift map ! : Morsep�` , �´q Ñ Mp�` , �´; � 5 q that sends a flow line G to its lift DG .

The space Mp.̂, � 5 ; �` , �´q is cut out transversely near D� by Proposition 4.19. Therefore we can

consider the linearization of ! at �,

)�! : )�Morsep�` , �´q Ñ kerp�q ‘ R,

which sends a vector field + P )�Morsep�` , �´q to the vector field

)�+pB, Cq :“
ż B

0
�35 p+p�)B1qq ¨ 90pB1q3B1 ¨ BA ` 3!)¨C ¨ +p�)Bq

in kerp�q. Denoting by �Π the projection )p0,Iq.̂ Ñ )I., we claim that

(4.21) �Morse
ev “ �Π ˝ �ev ˝ )�!.

Indeed, given + P )�Morsep�` , �´q, the operator �Morse
ev sends it to +p0q. On the other hand,

since the coefficient of BA in )�+ vanishes when B “ 0, the projection �Π ˝ �ev sends )�+p0, 0q to

+p0q as well.

Now we use (4.21) to conclude the proposition. By Lemma 4.25, the operator �Morse
ev is

surjective. This implies that the map �Π ˝ �ev must be surjective, so by definition of �Π we

deduce

SpanpBAq ` Imp�evq “ Imp�Π ˝ �evq “ )p0,Iq.̂.

Recalling (4.20), we see that SpanpBAq Ă Imp�evq. Therefore, Imp�evq “ SpanpBAq ` Imp�evq “
)p0,Iq.̂, i.e., �ev is surjective. �

4.4. Relation to abstract constraints. Thus far in §4, we have counted points in moduli spaces of

cylinders with a point constraint. To conclude this section, we relate this count to a point count

in the moduli spaces involved in the *-maps constructed in §3.2.

We continue to work with the objects and notation described in Setup 4.1. We can also work

with the weaker hypothesis discussed in Remark 4.3.

Let - : . Ñ . be the trivial cobordism r´�, �sB ˆ . equipped with the Liouville form

� “ 4 B
 5 “ 4 B`& 5 


and let � Ă - be an embedded, irrational ellipsoid that is the image of an embedding

� : �p11 , . . . , 1=q Ñ - such that �p0q “ 0 ˆ I P r´�, �s ˆ .
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The boundary B� has a shortest simple orbit �. Let � 1 be a compatible almost complex structure

on -z� and fix the shorthand notation

M-z� :“ M0,�p-z�, � 1; �` , Γ´q, where Γ´ “ p�´ , �q.
This is the moduli space of genus 0 �-holomorphic curves in the cobordism -z� : . Ñ . Y B�
asymptotic to �` at `8 and �´ Y � at ´8. Moreover, let �2 be an almost complex structure on

� and fix the shorthand notation

M� :“ ev´1p0q Ă M0,�,1p�, �2;�,Hq.
This is the moduli space of �2-holomorphic planes in � that pass through 0 P � and that are

asymptotic at `8 to �. The goal for the rest of the section is to prove the following result.

Proposition 4.26. Assume that the period of �˘ is equal to the minimal period of the Reeb flow of 
.
There exists a choice of complex structures � 1 on -z� and �2 on � such that the moduli spaces

M-z� and M�

are transversely cut out, 0-dimensional and equal to their compactifications (i.e. there are no buildings in
their compactifications). Furthermore, they satisfy

(4.22) #Mp., � 5 ; �` , �´; Iq “ #M-z� ¨ #M� mod 2

Remark 4.27. In fact, the equality (4.22) should be true over Q for any choice of complex struc-

tures, as a virtual count of points in the framework of Pardon [Par15,Par16]. This version of this

result is proven by Siegel [Sie19], using �-holomorphic cascades and the Morse-Bott formalism.

In the spirit of the other results of this paper and for the sake of completeness, we provide a

proof that uses only transversely cut out holomorphic curves and avoids Morse-Bott theory.

Our strategy to prove Proposition 4.26 is quite standard. First, we choose a complex structure

satisfying a number of regularity hypotheses for somewhere injective curves. Second, we show

the desired compactness results for M-z� and M� for the chosen complex structures. Last, we

use a parametric moduli space to construct a topological cobordism

ĂM from Mp., � 5 ; �` , �´; Iq to M-z� ˆ M� .

The existence of such a cobordism proves the desired result.

To begin the argument, we fix almost complex structures such that the relevant moduli spaces

of somewhere injective curves are sufficiently regular. We are permitted to do this by standard

generic transversality results (reviewed in §2.2.10, see Proposition 2.5).

Setup 4.28. For the rest of the section, fix compatible almost complex structures

� 1 on -z� and �2 on �

satisfying the following properties:

(i) the moduli spaces of finite energy, somewhere injective curves

Mi
6,�,<p-z�, � 1;Γ` , Γ´q and Mi

ℎ,1,;p�, �
2;Ξ` ,Ξ´q are regular,

(ii) the evaluation maps

ev : Mi
ℎ,1,1p�, �2;Ξ` ,Ξ´q Ñ -̂ are transverse to I.

Given � 1 and �2 as in Setup 4.28, there is a compactified moduli space that we denote by

M-z�\�

consisting of genus 0 buildings D̄ with the following levels.

‚ A sequence of levels D`
1 , . . . , D`

:
in .̂.
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Figure 10. A possible building in the moduli space M-z�\�. We will show in

Lemma 4.29 that (generically) these buildings must be much simpler than this.

‚ A single level D in the cobordism y-z� of genus 0 with one positive end.

‚ A sequence of levels D´
1 , . . . , D´

;
in .̂.

‚ A sequence of levels E1 , . . . , E< in B̂�.

‚ A single level E in �̂.

where the positive ends and negative ends of adjacent levels match in the usual way. A depiction

of a possible building D̄ is depicted in Figure 10.

We now show that (under our hypotheses) the only buildings appearing in M-z�\� are those

of the simplest possible form. We will require the following lemma.

Lemma 4.29. Consider � ą 0 from Setup 4.1 and let � 1 as in Setup 4.28. Let �` and �´ be orbits of .
satisfying

(4.23) Ap�`q ě Ap�`q ě Ap�´q ě Ap�´q

Finally, let D be a finite energy, connected � 1-holomorphic map in y-z� of genus 0 such that

(4.24) D Ñ �` at ` 8 and D Ñ �´ Y Ξ at ´ 8

where Ξ is a non-empty orbit sequence in . Y B�. Then for sufficiently small �, we must have

�` “ �` �´ “ �´ and Ξ “ �

Proof. First, factor D as a branched cover # and a somewhere injective map E,

D : Σ1 #ÝÑ Σ
EÝÑ .̂.

Here E has a positive and negative ends asymptotic to orbits

�˘ covered by �˘ and Ξ
1 covered by Ξ.

It suffices to show that �˘ “ �˘ and Ξ
1 “ �. Note that this will imply that D “ E.

First, note that E is genus 0. Indeed, we can compactify # to a branched cover (2 Ñ Σ̄ where

Σ̄ is a closed surface given by compactifying Σ along the punctures. Any closed surface with a

non-trivial branched cover from (2 is genus 0.

Next, note that �` and �´ are orbits corresponding to perturbations of Morse-Bott orbits of

period equal to the period ) of the Reeb flow of 
 5 . Thus, using the action bounds (4.23), we
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have

Ap�`q ´ Ap�´q “ Ap�`q ´ Ap�´q
degp#q ď

Ap�`q ´ Ap�´q
degp#q “ $p�q.

Thus, the orbit set Ξ1 cannot contain any orbits in . for small �, otherwise the action of the orbit

set �´ Y Ξ
1 would be larger than that of �`. Moreover, any pair of orbits of 
 5 satisfying

Ap�`q ´ Ap�´q ď $p�q and Ap�´q ď Ap�`q ď Ap�`q » ) ` $p&q

must be perturbations of Morse-Bott orbits in the same Morse-Bott family (! for sufficiently small

�. In particular, �˘ correspond to pairs p(! , ?˘q, where ! ď ) (where ) is the period of the flow

of �) and ?˘ are critical circles of 5 . By Lemma 4.7, the Conley-Zehnder indices CZp�˘ , �˘q in

any trivialization �˘ of � over �˘ is given by

CZp�˘ , �˘q “ RSp�˘ , �˘q ´ dimp(!q{2 ` ind(!
">AB4

p 5 ; ?˘q

where RSp�˘ , �˘q is the Robbin-Salamon index of the unperturbed orbit and ind(!
">AB4

p 5 ; ?˘q
denotes the Morse-Bott index of the critical circle ?˘ in the tangent directions to (!. In particular,

let Σ be a cylinder connecting �` and �´ formed by a 1-parameter family of orbits of period !

connecting �` and �´, and let � be a trivialization of � over Σ. Then

CZp�` , �q ´ CZp�´ , �q ď 2= ´ 2,

Since �2p.;Qq “ 0 by hypothesis, there is a well-defined difference of SFT grading between �`

and �´, and in those terms the above inequality states that

|�`| ´ |�´| ď 2= ´ 2

Equality can occur if and only if dimp(!q “ 2= ´ 2, ?` is the maximum circle of 5 and ?´ is

the minimum of 5 . Since ! ď ) and ) is the period of the flow of 
 5 , this only if (! “ () , and

�˘ “ �˘.

Finally, note that the Fredholm index of the holomorphic curve E is given in terms of relative

SFT gradings by

indpEq “ |�`| ´ |�´| ´ |Ξ1| ď 2= ´ 2 ´ |Ξ1|.
Here � is a trivialization of � over E . By the calculation in Example 2.16, we know that

|Ξ1| “ = ´ 3 `
ÿ

�PΓ

CZp�q ě 2= ´ 2,

since every orbit � on the boundary of an ellipsoid had �/p�q ě = ` 1. Moreover, equality holds

if and only if Ξ1 is the length 1 sequence of the minimum action orbit �. Overall we conclude that

indpEq ď 0

with equality if and only if

D “ E, �` “ �` , �´ “ �´ and Γ “ �.

By hypothesis, every somewhere injective curve is non-negative index. Therefore indpEq “ 0 and

thus it coincides with D, and their ends coincide with �` and �´ Y � as required. �

Remark 4.30. The reasoning in Lemma 4.29 relies on Setup 4.1(vi). In particular, we use the fact

that �` and �´ are in the minimal period Morse-Bott family of orbits of dimension 2= ´ 2.

Lemma 4.31. Let � ą 0 in Setup 4.1 be sufficiently small and choose � 1 , �2 as in Setup 4.28. Then

(i) The moduli spaces M-z� and M� are compact, regular and 0-dimensional.
(ii) We have an equality of moduli spaces

M-z�\� “ M-z� ˆ M�
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Proof. The regularity and dimension of both moduli spaces follows from our choice of � 1 and �2.

We now argue for the compactness of M-z� and M�, and the equality (ii).

First, to show that M-z� is compact, consider an arbitrary building

D̄ P Mp�` , �´ Y �; � 1q “ M0,�p-z�, � 1; �` , �´q
Denote by D the level of D̄ in -z�. Then, D is genus 0 and has one positive end asymptotic to

an orbit �` with Ap�`q ď Ap�`q, a negative end �´ satisfying Ap�´q ě Ap�´q and some other

negative ends Ξ. Thus by Lemma 4.29, we have

�` “ �` , �´ “ �´ , and Ξ “ �.

This implies that D̄ “ D and so M-z� is compact.

Next, to show that M� is compact, let Ē be a building in the compactification Mp�; I, �2q, then

there is a bottom level

E : Σ Ñ �̂ with I P ImpEq
Since the whole building is genus 0, so is E, and E has no negative ends since � is a cobordism to

the empty set. Moreover, the action of the positive ends Ξ` must be less than Ap�q. Since � has

the minimum action over all orbit sets, we must have Ξ` “ �, so

E P M� and E “ Ē

Finally, to show (ii), let D̄ be a building in the compactified moduli space M-z�\�. Then the

level D in -z� satisfying the hypotheses of Lemma 4.29, and so we have

D P M-z�

The level E of D̄ in � must thus have positive ends of action bounded by the actions of the negative

end � of D. This is only possible if

E P M�

The only remaining levels in D̄ must be trivial for action reasons, so D̄ consists only of the levels

D and E. This proves the result. �

Given a choice of � 1 and �2, there is a family �r1,8q of almost complex structures on -,

� 1#'�
2 for ' P r1,8q.

This family is acquired by identifying - with the space

- » -z� YB� r0, 's ˆ B� YB� �

and setting � 1#'�
2 be equal to � 1 on -z�, �2 on � and letting � 1#'�

2 be translation invariant on

r0, 's ˆ B� in the r0, 's-direction. This family has associated parametric moduli space of genus

0 curves from �` to �´, i.e. the space

M0,�,1p-, �r1,8q; �` , �´q.

This map has an evaluation map ev to -̂, and we now need to consider the parametric moduli

space of cylinders passing through I. We adopt the shorthand notation

ĂMr1,8q :“ ev´1pIq Ă M0,�,1p-, �r1,8q; �` , �´q.
See §2.2.9 for a discussion of parametric moduli spaces. By the appropriate version of SFT

compactness (cf. [BEH`03, Prop. 10.6]), given a sequence of elements

p'8 , D8q P ĂMr1,8q with '8 Ñ 8
there is a limiting building

D̄ P M-z�\�
!4<<0 4.31“ M-z� ˆ M�
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that D8 converges to with respect to the BEHWZ topology in [BEH`03]. Since M-z� and M�

consist entirely of regular curves (by Setup 4.28), there is a gluing map

glue : M-z� ˆ M� ˆ p',8q Ñ ĂMr1,8q

that is a homeomorphism for sufficiently large '. The construction of this gluing map is carried

out, for example, in [Par15, §5]8.

Lemma 4.32. There exists a r0,8q-family of compatible almost complex structures on -, denoted

�r0,8q “ t�'u'Pr0,8q

that has the following properties.

(i) �' “ � 5 for ' near 0 and �' “ � 1#'� for ' sufficiently large.
(ii) The parametric moduli space

ĂMr0,8q :“ ev´1pIq Ă M0,�,1p-, �r0,8q; �` , �´q

is a 1-manifold with boundary Mp., � 5 ; �` , �´; Iq.
(iii) The natural projection map to the parameter space

� : ĂMr0,8q Ñ r0,8q
is proper.

Proof. Let t�'u'Pr0,8q be a 1-parameter family of compatible almost complex structures on -

satisfying (i). We use M' to fiber of � at ', i.e.

M' :“ tD : p', Dq P ĂMr0,8qu

We also let Mi
'

denote the subset of somewhere injective curves in M' and M' denote the

BEHWZ compactification. All of the holomorphic curves in the moduli spaces

Mp., � 5 ; �` , �´; Iq and M' for large ' ą 0

consist entirely of regular curves (and no buildings) by construction of � 1 and �2, and Proposition

4.4. As regularity is an open condition, we automatically know that M' is compact and regular

(in the usual sense, not parametrically) outside of r0, 1s Ă r0,8q for some 0 ă 0 ă 1 ă 8. Using

Proposition 2.5, we perturb t�'u'Pr0,8q on p0 ´ �, 1 ` �q for small � so that the moduli spaces

M8
6,�,<p-, �r0,1s;Γ` , Γ´q

are parametrically regular and the natural evaluation maps

ev : M8
6,�,1p-, �r0,1s;Γ` , Γ´q Ñ -̂

are transverse to I. We now claim that under these hypotheses, we have

(4.25) Mi
' “ M' “ M' for any ' P r0, 1s.

This implies that the space ĂMr0,8q is a compact 1-manifold, implying (ii) and (iii).

To prove (4.25), we consider a �'-holomorphic building

D̄ P M' .

Let D be the level of D̄ that contains I and let E be the underlying simple curve. By identical

reasoning to Lemma 4.29, E must be a holomorphic cylinder in -̂ of area $p�q. For small �, E

must therefore must be asymptotic to closed orbits �˘ that are Morse perturbations of orbits in

the same Morse-Bott family (!. In particular, the Fredholm index of E satisfies

indpEq ď |�`| ´ |�´| ď 2= ´ 2,

8Note that the gluing result in [Par15] is much more general than the one required here. In particular, we only

require the gluing map for a specific stratum of the moduli space denoted MIV,reg in [Par15].
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with equality if and only if

(4.26) E “ D, �` “ �` and �´ “ �´.

Here |�`| ´ |�´| again denotes the relative grading of �` and �´.

Thus consider the case where indpEq ă 2= ´ 2. Then the parametric moduli space containing

E with a marked point added,

Mi
0,�,1p-, �r0,1s; �` , �´q,

is a manifold of dimension less than 2=. By the Sard-Smale theorem, the image of the (smooth)

evaluation map

ev : Mi
0,�,1p-, �r0,1s; �` , �´q Ñ -̂

is of the first category (i.e. a countable union of nowhere dense sets) and has dense complement.

In particular, there are points arbitrarily close to I that are not in the image of ev. Therefore,

after pulling back �r0,1s by a r0, 1s-family of small symplectomorphisms supported near I, we can

assume that

I R ev
`
Mi

0,�,1p-, �r0,1s; �` , �´q
˘

for any �` , �´ satisfying the hypotheses above. In particular, after modifying �r0,1s, we may

assume that E does not contain I unless indpEq “ 2= ´ 2, which implies (4.26). This concludes

the proof. �

We can now conclude this section with a proof of Proposition 4.26.

Proof. The compactness, transversality and dimension of the moduli spaces

M-z� and M�

are demonstrated in Lemma 4.31. To prove (4.22), we simply note that for a choice of �r0,8q as in

Lemma 4.32, the parametric moduli space

ĂM :“ �´1pr0, 'sq Ă Ă"r0,8qH

is a cobordism from Mp., � 5 ; �` , �´; Iq to M-z� ˆ M� as long as 0 ą 0 is close to 0 and 1 is

sufficiently large. �

5. Vanishing spectral gap for ellipsoids

Our main goal for this section is to prove Theorem 6, which states that the strong closing

property holds for all ellipsoids. We will show that the spectral gap vanishes for ellipsoids and

therefore, the strong closing property will follow from Theorem 3.19.

Following the strategy discussed in §1.3, we proceed in two steps. First, in Section 5.1 we

consider ellipsoids �p<q “ �p<1 , . . . , <=q where < 9 P N. The Reeb flow is periodic on the

boundary B�p<q, so we may apply the results of Section 4. Specifically, we use Proposition 4.4

and Proposition 4.26 to show that certain coefficients of the map *%0 , defined in Example 3.3, are

non-zero and deduce that the spectral gap of a certain class vanishes for such ellipsoids. Second,

in Section 5.2, we use the vanishing of spectral gaps for integer ellipsoids to show that the total

spectral gap vanishes for irrational ellipsoids as well.

Notation 5.1. We fix the following notation for the rest of the section. Given an =-tuple of positive

numbers 0 :“ p01 , . . . , 0=q, consider the ellipsoid �p0q.
‚ We denote by t":u:PN, or t"0

:
u:PN, the sequence obtained by reordering the union

01 ¨ N Y ¨ ¨ ¨ Y 0= ¨ N to be a non-decreasing sequence with repetitions.

‚ We let �: , or �0
:

denote the :-th periodic Reeb orbit ordered by action. Here we introduce

Morse-Bott perturbations if the Reeb flow on B�p0q is degenerate.
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‚ We let G: denote the generator of ��pB�p0qq corresponding to �: (see Example 2.16).

Note that

|G: | “ 2= ´ 2 ` 2: and Ap�:q “ "0
:

5.1. Rational Ellipsoids. Consider an integer ellipsoid �p<q :“ �p<1 , . . . , <=q where < 9 P N for

9 “ 1, . . . , =. Denote the least common multiple of <1 , . . . , <= by

) :“ lcmp<1 , . . . , <=q
The Reeb flow on B�p<q is periodic of period ). Since < 9 divides ) for all 9 “ 1, . . . , =, the

common multiple ) appears in the sequence t"<
:

u: exactly = times. We denote the first index

in which ) appears in "<
:

by

:) :“ min
 
: P N : "<

: “ )
(
.

The main goal of this subsection is to prove the following result.

Theorem 5.2. Let �p<q be an integer ellipsoid as above, and let ) :“ lcmp<1 , . . . , <=q. Then
〈

*%0G:)`=´1 , G:)
〉

‰ 0.

Here %0 is the tangency abstract constraint from Example 3.3.

As mentioned above, the least common multiple ) of <1 , . . . , <= occurs with multiplicity = in

the sequence "<
:

. Therefore, the action ":)`=´1 of G:)`=´1 and the action ":) of G:) are both

equal to ). This implies the following corollary of Theorem 5.2.

Corollary 5.3. (Theorem 7) Let �p<q be an integer ellipsoid. Then

s*�pB�,�|B�q “ s�pB�,�|B�q “ ) where * “ *%0 and � “ G:)`=´1.

Remark 5.4 (Generalizations). Theorem 5.2 and Corollary 5.3 can be generalized in two direc-

tions.

(i) If �p0q is a rational ellipsoid, i.e. an ellipsoid where

08{0 9 P Q for any 8 , 9 , or equivalently 2 ¨ 0 “ < P Z
= for some 2 ą 0.

In this case, the contact form on B�p0q is simply a scaling of the one on B�p<q. Moreover,

there is an equivalence of filtered groups

��!pB�p0qq “ ��2¨!pB�p2 ¨ 0qq
that commutes with all (constrained) cobordism maps. Thus Theorem 5.2 and Corollary

5.3 generalize immediately to this case.

(ii) Any positive integer multiple @ of the period ) similarly corresponds to = classes

G:@ , . . . , G:@`=´1 P ��pB�p<qq
of the same action. Our proof of Theorem 5.2 almost generalizes to show that

〈

*%0G:)`=´1 , G:)
〉

‰ 0.

However, the proof uses Proposition 4.26, which we only show for the case of @ “ ). We

believe that the discussion in [Sie19, §5.5], rigorously carried out using the VFC methods

of [Par15], should suffice to generalize the moduli space correspondence in Proposition

4.26, but we do not carry out this analysis here.

Proof of Theorem 5.2. The result follows from combining Proposition 4.4 and Proposition 4.26,

which together assert that the moduli space count corresponding to the coefficient of G:) in

*%0G:)`=´1 is non-zero.

Step 1 - Setup. We start by showing that our setting satisfies the assumptions of Propositions 4.4

and 4.26, which are stated in Setup 4.1. Let p., 
q be the boundary of the integer ellipsoid
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� :“ �p<q with its standard contact form. The Reeb flow associated with this contact form is

given by

pI1 , . . . , I=q ÞÑ p42�8C{<1I1 , . . . , 4
2�8C{<= I=q

and has period ). Consider the function 5 : . Ñ R given by the restriction to B� of the map

(5.1) 5̃ : C= Ñ C
= , I “ pI1 , . . . , I=q ÞÑ

ř=
9“1p9 ´ 1q|I 9|2
ř=

9“1 |I 9|2
.

The function 5 is invariant under the T=-action on C= and thus is invariant under the Reeb flow.

Its critical circles are precisely the intersections of B� with the complex axes

�8 :“ B� X C8 “
"

p0, . . . ,
c

<8

�
42�8C{<8 , 0, . . . , 0q : C P r0, <8s

*
.

The function 5 is Morse–Bott. Indeed, the restriction of its Hessian to the normal to �8 is

non-degenerate, can be seen as follows. Along �8 the Hessian of the map 5̃ is given by

(5.2) Hessp 5̃ q|�8 “ �

<8
¨ diagp1 ´ 8 , 1 ´ 8 , 2 ´ 8 , 2 ´ 8 , . . . , = ´ 8 , = ´ 8q,

which is degenerate only on the 8-th C factor. The tangent space to B� along �8 is given by

)B�|�8 “ C
8´1 ‘

〈

'|�8
〉

‘ C
=´8 ,

where ' is the Reeb vector field. Therefore, the Hessian of 5 along �8 is degenerate only in the

Reeb direction which lies in the tangent space of �8 , so 5 is Morse-Bott with index

indp 5 , �8q “ 2p8 ´ 1q at the critical circle �8 .

The orbits �` and �´ are the period ) iterate of �1 and �= , i.e.

�` :“ �
){<1

1 and �´ :“ �
){<=
= .

The contact flag is given by the following sequence .3 Ă ¨ ¨ ¨ Ă .2=´1 “ . of nested ellipsoids:

.29´1 :“ B� X
`
C

9´1 ˆ t0u=´9 ˆ C
˘
, 9 “ 2, . . . , =.

Since .29´1 » B�p01 , . . . , 0 9´1 , 0=q Ă C 9 , we have �2p.29´1q “ 0. Moreover, .29´1 is invariant

under the periodic Reeb flow and the gradient flow of 5 . The intersection �29´1 :“ � X ).29´1 is

a �-invariant contact structure on.29´1. The formula (5.2) implies that the restriction of 5 to.29´1

is also Morse–Bott. In addition, for 8 and 9 such that �8 Ă .29´1 (that is, either 8 “ = or 8 ă 9), the

restriction of Hessp 5 q|�8 to the symplectic orthogonal of �29´1 in �29`1 is equal to diagp9 ´ 8 , 9 ´ 8q,
which is positive definite unless 8 “ =.

Finally, take I be any point in .3zt�´ Y �`u. Since �` and �´ are the only critical circles in

.3, I lies in the intersection of the stable manifold of �´ and the unstable manifold of �` which

concludes the assumptions stated in Setup 4.1.

Step 2 - Applying §4. Now we apply the results of §4 to show that the coefficient
〈

*%0G:)`=´1 , G:)
〉

does not vanish. First, notice that the contact form 
 5 on . has generators only in even gradings.

Indeed, this follows from Lemma 4.8 together with the fact that the Morse indices of 5 on any

Morse–Bott family are even. This is due to the fact that the Morse–Bott families are products of

some of the C factor, and the Hessian of 5 is a scalar matrix on each C factor. We conclude that

the differential vanishes and ��p(2=´1 , �BC3q – �p., 
 5 q. Consider the trivial exact cobordism

- “ r´�, �s ˆ . : p., 4�
 5 q Ñ p., 4´�
 5 q.
We let, Ă - be an embedded irrational ellipsoid with minimal Reeb orbit �. By Proposition 4.4

and 4.26, for any � ą 0 sufficiently small as in Setup 4.1, we can choose a compatible complex

structure � on -z, and � ą 0 (as in §4.4) such that the moduli space

M0,�p�` , �´ Y �q “ M0,�p�` , �´ Y �q
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is regular, contains no buildings and has point count

#M0,�p�` , �´ Y �q “ #Mp., � 5 ; �` , �´; Iq “ 1 mod 2.

Here � P (p-z, ; �` , �´ Y �q is the unique homology class from �` to �´ Y � in -z, . On the

otherhand, the abstract constraint %0 is the dual constraint (see Example 3.5) of the generator �

of ��p,q. Thus by Lemma 3.10, we know that

x*%0G:)`=´1 , G:) y “ 1 mod 2.

In particular, x*%0G:)`=´1 , G:) y is non-zero. �

5.2. Irrational Ellipsoids. We now use the non-vanishing of coefficients of *%0 for integer ellip-

soids, established in Theorem 5.2, to conclude that the spectral gap vanishes for all ellipsoids.

Theorem 5.5. For any ellipsoid �p0q :“ �p01 , . . . , 0=q, we have gappB�p0qq “ 0.

We begin by giving a very simple proof using the rational ellipsoid case (Corollary 5.3 and

Remark 5.4) and Proposition 3.22. We start with the following approximation property for

ellipsoids. This uses Dirichlet’s approximation theorem.

Lemma 5.6. Let �p0q be any ellipsoid and fix � ą 0. There exists an ellipsoid �pAq “ �pA1 , . . . , A=q with
rationally dependent entries such that

(5.3) �pAq Ď �p0q Ă
c

1 ` �

)
¨ �pAq

Here ) denotes the period of the Reeb flow on B�pAq.

Proof. We apply the simultaneous version of Dirichlet’s approximation theorem to the sequence

1

01
, . . . ,

1

0=
.

This result states that, for any natural number # , there exist integers @1 , . . . , @= , and ) 1 such that

) 1 ď # and for all 8 “ 1, . . . , =,ˇ̌
ˇ̌ 1

08
´

@8

) 1

ˇ̌
ˇ̌ ď 1

) 1 ¨ #1{=
, or equivalently, |08@8 ´ ) 1| ď 08

#1{=
.

For � ą 0 fixed as in the lemma statement, choose # so that

# ą
ˆ

2
maxt01 , . . . , 0=u

�

˙=

Under this hypothesis on # , we have the following bound for each 8,

(5.4) |08@8 ´ ) 1| ă �{2.

Denote ) :“ ) 1 ´ �{2 and A8 :“ )
@8

, and consider

�pAq :“ �pA1 , . . . , A=q “ �

ˆ
)

@1
, . . . ,

)

@=

˙
.

Clearly, the entries of �pAq are rationally dependent. To check that �pAq Ă �p0q, we note that

08
p5.4q
ą ) 1

@8
´ �

2@8
“ ) 1 ´ �{2

@8
“ A8 .

To check the second inclusion in (5.3), we note that

08
p5.4q
ă ) 1

@8
` �

2@8
“ ) 1 ` �{2

@8
“ ) ` �

@8
“ p1 ` �

)
q ¨ )

@8
“ p1 ` �

)
q ¨ A8 .

Therefore, we find that

�p0q Ă
c

1 ` �

)
¨ �pAq “ �

´
p1 ` �

)
q ¨ A

¯
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Note that ) as above is a positive integer satisfying ){A8 “ @8 for all 8 “ 1, . . . , =, but it is not

necessarily the smallest positive integer with this property (i.e. the period of the Reeb flow on

B�pAq). However, for any )0 ă ) we have
c

1 ` �

)
¨ �pAq Ă

c
1 ` �

)0
¨ �pAq

and so the assertion of the lemma still holds. �

Having established a good enough approximation of a general ellipsoid by a rational one, we

are ready to prove that the spectral gap vanishes for all ellipsoids.

Proof of Theorem 5.5. Let �p0q be any ellipsoid. By Lemma 5.6, for each � ą 0 there exists an

ellipsoid �pAp�qq with rationally dependent entries A8p�q such that

�pAp�qq Ď �p0q Ă
c

1 ` �

)p�q ¨ �pAp�qq

Here )p�q is the period of the Reeb flow on B�pAp�qq. This implies that the contact forms satisfy

�std|B�pAp&qq ď �std|B�p0q ď p1 ` �

)
q ¨ �std|B�pAq.

Here the contact forms on B�pAp&qq and B�p0q are identified with contact forms on the sphere,

and the order on contact forms is as in Notation 3.21. By Corollary 5.3 and Remark 5.4, there is

a class

�p�q P ��pB�pAp�qq with s*%0
�p�qpB�pAp�qqq “ s�p�qpB�pAp�qqq “ )p�q

In particular, the spectral gap of B�pAp�qq satisfies

gap�p�qpB�pAp�qqq “ 0

The result is now an immediate consequence of Proposition 3.22, which asserts that

gapp�p0qq ď lim
�Ñ0

gap�p�qp�pAp�qqq “ 0 �

5.3. Structure Of The *-Map. In [Iri22], Irie stated a second conjecture, which claims that

certain sequence of coefficients of the *%0 map do not vanish for ellipsoids. Our methods suffice

to prove a related (but weaker) structure result of this type.

Theorem 5.7. Let �p0q be an irrational ellipsoid. There exists a sequence :p8q ÝÝÝÑ
8Ñ8

8 such that

(5.5)
〈

*%0G:p8q`=´1 , G:p8q

〉

‰ 0 and sG:p8q`=´1
pB�p0qq ´ sG:p8q

pB�p0qq ÝÝÝÑ
8Ñ8

0.

This statement can compared to [Iri22, Conj. 5.1]9. Theorem 5.7 implies Theorem 5.5 in the

irrational case, and also uses the approximation of irrational ellipsoids by rational ones, given in

Lemma 5.6.

Proof. We will show that, for any � ą 0, there exists : P N such that

(5.6)
〈

*%0G:`=´1 , G:
〉

‰ 0 and sG:`=´1
p�p0qq ´ sG: p�p0qq ď �.

Since �p0q is irrational, the spectral invariants sG: pB�p0qq “ "0
:

are strictly increasing in :.

Therefore, for any fixed :, the difference in (5.6) is non-zero. This implies that we can construct

a sequence of distinct :p8q diverging to 8 satisfying (5.5).

Thus, fix � ą 0. Let �pAq be the ellipsoid with rationally dependent entries from Lemma 5.6,

and let ) be the period of the Reeb flow on B�pAq. Our proof consists of three steps. First, we

study the cobordism map

Φ : �pB�pp1 ` �

)
q ¨ Aqq Ñ �pB�p0qq of the cobordism map - “ �pp1 ` �

)
q ¨ Aqqz�p0q

9However, we warn the reader that there is a sizeable difference in our notation from [Iri22].
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Next, we use the information we derive on Φ to compare the *%0-maps for the two ellipsoids,

apply Theorem 5.2 to �pp1 ` �
) q ¨ Aqq and deduce the non-vanishing of a certain coefficient in the

*%0-map of �p0q. Finally, we compare the actions of the relevant orbits in both ellipsoids and

conclude that the difference in (5.6) is bounded by �.

We let tH:u: denote the generators of �pB�pAqq. Note that �pB�pp1 ` �
) qAqq “ �pB�pAqq where

the action is scaled by 1 ` �
) . We will only use ApH:q to denote the action with respect to B�pAq.

We also let :) be the first index in which ) appears in the sequence t"A
:
u: .

Step 1 - Cobordism Map. The goal of this step is to show that the image of H:)`=´1 under Φ does

not contain G1 ¨ G:) for sufficiently small �. That is

(5.7)
〈

ΦpH:)`=´1q, G1 ¨ G:)
〉

“ 0 for sufficiently small � ą 0.

Suppose otherwise. Then since the map Φ decreases action and ApG1q “ "0
1 “ 01, we have

(5.8) p1 ` �

)
q ¨ "A

:)`=´1 “ p1 ` �

)
q ¨ ApH:)`=´1q ě ApG1q ` ApG:) q “ 01 ` "0

:)
.

On the other hand, by the definition of :) and Lemma 5.6, we have

"A
:)`=´1 “ "A

:)
“ ) and "A

: ď "0
: ď p1 ` �

)
q ¨ "A

: for all :.

We can then calculate that

p1 ` �

)
q ¨ "A

:)`=´1 ´ "0
:)

“ p1 ` �

)
q ¨ ) ´ "0

:)
ď p1 ` �

)
q ¨ ) ´ "A

:)
“ p1 ` �

)
q ¨ ) ´ ) “ �.

When � is smaller than 01, this contradicts (5.8) and thus proves (5.7).

Step 2 - *-map. The goal of this step is to prove that

(5.9)
〈

*%0pG:)`=´1q, G:)
〉

‰ 0.

To prove this, we consider the commutative diagram

�pB�pp1 ` �
) q ¨ Aqq �pB�pp1 ` �

) q ¨ Aqq

�pB�p0qq �pB�p0qq

*%0

Φ Φ

*%0

We need three observations about the terms in this diagram. First, by Theorem 5.2 and Remark

5.4, we know that that

(5.10) 21 :“
〈

*%0pH:)`=´1q, G:)
〉

‰ 0.

Moreover, since Φ is a Z-graded isomorphism of algebras that decreases word length (by

Lemma 2.19), we must have

(5.11) 22 :“
〈

ΦpH:q, G:
〉

‰ 0,

Finally, by (5.7) we know that ΦpH:)`=´1q has a zero G1 ¨ G:) -coefficient. In other words

(5.12)
〈

ΦpH:)`=´1q, G1 ¨ G:)
〉

“ 0.

Combining the equations (5.10-5.11), we can thus conclude that
〈

*%0 ˝ ΦpH:)`=´1q, G:)
〉

“
〈

Φ ˝ *%0pH:)`=´1q, G:)
〉

“ 21 ¨
〈

ΦpH:) q, G:)
〉

“ 21 ¨ 22 ‰ 0.

We now claim that (5.12) implies the desired formula (5.9). Indeed, consider the element

ℎ :“
〈

ΦpH:)`=´1q, G:)`=´1

〉

¨ G:)`=´1 ´ ΦpH:)`=´1q
Since Φ preserves grading and respects word length, ℎ is a linear combination of monomials

G81 . . . G8: of length : ě 2. Furthermore, xℎ, G1 ¨ G:) y “ 0 by (5.12). Since *%0 satisfies the Leibniz

rule (Lemma 3.12), the only terms of word-length greater than 1 that can be mapped to G:) are of

the form G 9 ¨ G:) , for 9 such that *%0pG 9q is a multiple of the unit. Since the *%0 decreases degree



58 J. CHAIDEZ, I. DATTA, R. PRASAD, AND S. TANNY

by 2= ´ 2, the only elements that could be mapped to a constant have to be of degree 2= ´ 2 and

hence a multiple of G1. Over all, G1 ¨ G:) is the only term of word-length greater than 1 that can

be mapped to G:) . As a consequence, we conclude that
〈

*%0pℎq, G:)
〉

“ 0. Therefore,

xΦpH:)`=´1q, G:)`=´1y ¨
〈

*%0pG:)`=´1q, G:)
〉

“
`〈
*%0 ˝ ΦpH:)`=´1q, G:)

〉

`
〈

*%0pℎq, G:)
〉˘

“
〈

*%0 ˝ ΦpH:)`=´1q, G:)
〉

‰ 0.

Since xΦpH:)`=´1q, G:)`=´1y ‰ 0, this implies (5.9).

Step 3 - action comparison. Now choose : “ :) . We proved the *-map formula in (5.6) in Step

2, and we conclude by showing that the difference in (5.6) is bounded by �. First, note that by

definition

(5.13) sG:`=´1
pB�p0qq ´ sG: pB�p0qq “ "0

:`=´1 ´ "0
: .

Recalling that "A
:

ď "0
:

ď p1 ` �
) q ¨ "A

:
for all :, we have

sG:`=´1
pB�p0qq ´ sG: pB�p0qq ď p1 ` �

)
q"A

:`=´1 ´ "A
: “ p1 ` �

)
q ¨ ) ´ ) “ �.

This proves the desired bound, and concludes the proof. �

Remark 5.8 (Generalizations). Theorem 5.7 can be extended to rational ellipsoids given a more

general correspondence result than Proposition 4.26, such as in [Sie19]. This is due to the fact

that our assumption that the period of the orbits �˘ is equal to the minimal period of the flow,

rather than is divisible by this minimal period, was used only in Section 4.4. Given a more general

correspondence result, one would be able to prove Theorem 5.2 for any ) that is divisible by

lcmp<1 , . . . , <=q, and hence conclude the assertion of Theorem 5.7 for rational ellipsoids.

6. Closing lemma for a Reeb flow that is not nearly integrable.

In this section, we apply the results of §3 and §4 to prove the strong closing property for the

family of non-toric contact forms 
0 discussed in §1.4.

6.1. Contact Manifolds With Torus Actions. In order to study our family of examples, we will

need a few results about contact manifolds with torus actions.

6.1.1. Lifting Torus Actions. Recall that a contact manifold . with contact form 
 is periodic if the

Reeb flow is periodic. In this case, the quotient - “ .{(1 is a symplectic orbifold.

Here we investigate the lifting of toric structures from the symplectic orbifold - to . via the

projection � : . Ñ -. We require the following lemma.

Lemma 6.1. Let p., 
q be a periodic contact manifold with symplectic orbifold quotient -. Then the
bĳection between Reeb-invariant smooth functions on . and smooth functions on -

�8p-;Rq » �8
' p.;Rq given by � ÞÑ �̃ “ � ˝ �

has the following properties.

(a) (Vector-fields) The Hamiltonian vector-field-� of� on- and the contact Hamiltonian vector-field
+�̃ of �̃ are related by

+�̃ “ �̃ ¨ ' ` p-�q� ,
where p-�q� denotes the lift of -� to a vector-field tangent to � “ kerp
q. In particular

L+�̃

 “ 0.

(b) (Commutator) If � and � are two Hamiltonians on -, then

r+�̃ , +�̃s “ t�, �u ¨ ' ` r-� , -�s� .
(c) (Periodic) If -� is periodic with period 1 and � has a critical point ? with �p?q P Z, then +� is

periodic of period 1.
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Proof. For (a), we note that the contact Hamiltonian vector-field +�̃ of �̃ satisfies


p+�̃q “ �̃ and 3
p+�̃ ,´q ` 3�̃ “ 3�̃p'q ¨ 
 “ 0

The first identity says that the '-component of +�̃ is �̃ ¨ ' and the second identity says that the

�-component of +�̃ is -� . For (b), note that


pr+�̃ , +�̃sq “ +�̃p
p+�̃qq ´ pL+�̃

qp+�̃q “ 3�̃p+�̃q “ 3�p-�q “ t�, �u

Moreover, we have

3
pr-� , -�s� ,´q “ 3
pr+�̃ , +�̃s,´q “ ´3t�, �u
These two identities imply that the '-components and �-components of the two vector-fields in

(b) agree. Finally, to show (c), let � be a Hamiltonian on - with �p?q P Z at some critical point ?,

and suppose that -� is periodic of period 1. The contact Hamiltonian vector field of any constant

Hamiltonian � is � ¨'. Therefore, the flow generated by the constant Hamiltonian � “ �p?q P Z

is 1-periodic. As a consequence, it is enough to show that the flow of �1 “ �´�p?q is 1-periodic.

Notice that �1p?q “ 0 and let @ be a non-critical point of -�1 . Choose an arc � from ? to @ and let

5 : � Ñ - be the disk acquired by flowing � by -�1 for time 1. The area of this disk is
ż

�
$ “ ´

ż

�
3�1 “ ´p�1p@q ´ �1p?qq “ ´�1p@q

Thus the flow of the horizontal lift p-�1q� of -�1 over � carries a point H with �pHq “ @ to the

time ´�1p@q Reeb flow of H. On the other hand

+�̃1 “ �̃1 ¨ ' ` p-�1q�
The flow of �̃1 ¨ ' flows H to the time �1p@q Reeb flow of H. Therefore, the flow by +�̃1 carries H

to itself after time 1. �

Remark 6.2. Note that if � : - Ñ R generates a circle action on a symplectic orbifold p-, $q and

$ is rational (i.e. r$s P �2p-;Qq) then by the same calculation as in the proof of Lemma 6.1(c)

above, we have

�p@q P Q for any critical point @ of �

This hypothesis holds, for instance, when - “ .{(1 is the orbifold quotient of a contact manifold

with periodic Reeb flow.

An immediate consequence of Lemma 6.1 is the following lifting property for torus actions.

Lemma 6.3. Let p., 
q be a closed periodic contact manifold with symplectic orbifold quotient -. Then
any Hamiltonian T:-action on - lifts to a Hamiltonian T:-action on . preserving 
. Conversely, any
Hamiltonian T:-action on . preserving 
 descends to a unique Hamiltonian action on -.

Proof. Let � be the moment map for a Hamiltonian T:-action on - with components �1 , . . . , �: .

After translating the moment map, we can assume that � “ 0 at some critical point ? of �.

Consider the map

�̃ “ � ˝ � : . Ñ R
:

By Lemma 6.1(c), the components �̃8 each generate an (1-action that commute by Lemma 6.1(b).

Thus �̃ is a moment map for a T:-action generated by contact Hamiltonians. The other direction

of the lemma is clear. �

We say that a contact p2=`1q-manifold. (respectively, a symplectic 2=-manifold-) is integrable
if there is a Hamiltonian T2=`1-action on . (respectively, T2=-action on -) that is free on a dense

open set. Lemma 6.3 implies the following.

Corollary 6.4. The circle action generated by the Reeb flow on a periodic contact p2= ` 1q-manifold .

extends to an integrable system on. if and only if the symplectic orbifold quotient - “ .{(1 is integrable.
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6.1.2. Reeb Flows On Spaces With T2-Actions. Let p., �q be a contact manifold with contact form


 “ 
1 and Reeb vector-field ' “ '1 generating an (1-action. Let - “ .{(1 be the symplectic

orbifold quotient, and consider a Morse function

� : - Ñ R

generating an (1-action on - and with minimum value 1. Then the lift

'2 “ +r� “ r� ¨ ' ` p-�q�
is a Reeb vector-field with contact form 
2 “ 
{ r�. In light of Lemma 6.1, '1 and '2 generate

a T2-action by Reeb vector-fields on p., �q. For each 0 “ p01 , 02q with 08 ą 0, we have a Reeb

vector-field

'0 “ 01'1 ` 02'2 with contact form 
0 “ 


01 ` 02
r�
.

Note that our assumption that � is Morse implies that the above T2 action is effective.

There are essentially two dynamical cases for the Reeb vector-field'0 : the periodic case and the

non-periodic case. In order to describe the periodic case, we require the following generalization

of the least common multiple.

Definition 6.5. The (generalized) least common multiple of two real numbers B1 , B2 ą 0 is given by

lcmpB1 , B2q :“ inf t2 ¨ @1 ¨ @2 : B1 “ 2 ¨ @1 and B2 “ 2 ¨ @2 for 2 P R and @1 , @2 P Zu ,
Here the infimum of an empty set is defined to be `8.

Note that lcmpB1 , B2q is finite if and only if B1 and B2 are rationally dependent. Moreover, if

01 , 02 P N then this definition coincides with the standard least common multiple.

Lemma 6.6. If 01 and 02 are rationally dependent (i.e. 01{02 P Q), then '0 is periodic of period

) “ lcmp1{01 , 1{02q
Moreover, the Reeb flow is Morse-Bott and the simple closed orbits come in two types.

(a) Orbits of period ), coming in Morse-Bott families ( of dimension dimp-q “ dimp.q ´ 1.
(b) Isolated orbits whose projection to - is a critical point G of �, with period p01 ` 02�pGqq´1.

Proof. We start by showing that '0 is periodic of the claimed period. Let !C denote the flow of

'0 , which we can write as

!C “ !01C
1 ˝ !02C

2

Here !C
8

is the flow of the Reeb vector-field '8 , for 8 “ 1, 2. We claim that !! “ Id if and only if

! “ 2@1@2 for a real number 2 ą 0 that satisfies

1

01
“ 2@1 and

1

02
“ 2@2

Indeed, if ! “ 2@1@2 is of the stated form, then

01! “ 2@1@201 “ @2 02! “ 2@1@202 “ @1

Therefore !01!
1 “ !02!

2 “ Id since !1 and !2 are 1-periodic. Conversely, recall that the T2 action

generated by '1 and '2 is effective. Therefore, there exists a free orbit of the torus action on .,

and thus a point ? where

!!
8 p?q “ ? if and only if ! P Z

It follows that !!p?q “ ? if and only if 01! and 02! are integers, i.e. if is of the form ! “ 2@1@2

stated above. This confirms the claim, and it now follows from Definition 6.5 that !C is periodic

with period ) “ lcmp1{01 , 1{02q.
Next, we show that the orbits of '0 come in the types discussed above. First, we write

'0 “ 01'1 ` 02'2 “ p01 ` 02 ¨ r�q'1 ` 02p-�q�
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where p-�q� is the horizontal lift of the Hamiltonian vector-field of � on -. Now consider a

point ? P . and the orbit � through it. If �p?q P - is a critical point of �, then -� “ 0 and �

is simply an orbit of
´
01 ` 02

r�p�p?qq
¯
'1, falling into type (b). If �p?q is not a critical point of

�, then the orbit of ? under the T2-action generated by '1 and '2 is free, denote this orbit by Σ.

Under the identification Σ » T2, � is simply a curve of rational slope. In particular, its period is

lcmp1{01 , 1{02q,which is the period of '0 . �

Lemma 6.7. If 01 and 02 are rationally independent (i.e 01{02 is irrational), then

(a) The simple orbits � of 
0 each project to a critical point of � on -.
(b) Every Reeb orbit � is non-degenerate, elliptic and has even SFT grading i.e.

|�| “ 0 mod 2.

Proof. (a) follows from an identical analysis to the proof of Lemma 6.6. To see (b), choose a critical

point G of � and let � be a closed Reeb orbit with �p�q “ G. The period of � is given by

:

01 ` 02 ¨ �pGq for : P Z`.

Assume, first, that - is a manifold at G (i.e. an orbifold with no isotropy). Given a point ? P �,

the contact structure �? is identified with )G- via the differential 3� : � Ñ )-. Moreover, the

restriction 3!C
'1

|� of the linearized Reeb flow of '0 to � can be identified with the linearized

Hamiltonian flow with a time reparametrization, 3!02¨C
�

. Therefore, the linearized Reeb flow at

time :
01`02¨�pGq can be identified with the map

3!!
�pGq : )G- Ñ )G- where ! “ :02

01 ` 02 ¨ �pGq “ :

01{02 ` �pGq .

Since � is autonomous and its flow !C
�

is 1-periodic, the matrices �pCq “ 3!C
�

pGq for C P R form

a 1-periodic subgroup of the symplectic automorphism group Spp)?-q. Arguing similarly to the

proof of Lemma 4.8 (i.e., pick a compatible Riemannian metric, average with respect to the path

�pCq and obtain an invariant compatible metric) we see that after a change of basis, � is identified

with

�pCq “

»
——–

42�8<1C 0 . . . 0

0 42�8<2C . . . 0

0 0 . . . 0

0 0 . . . 42�8<=´1C

fi
ffiffifl for rationally independent integers <8 P Z

It is an easy consequence of Remark 6.2 and the rational independence of 01 and 02 that ! P RzQ.

This implies that �p!q (and thus the linearized Reeb flow along � and � itself) is non-degenerate.

The Conley-Zehnder index mod 2 is then

CZp�q “ CZp�p!qq “
ÿ

8

CZp42�8<8!q “ = ´ 1 mod 2

Thus we find that the SFT grading is

p= ´ 3q ` CZp�q “ 2= ´ 4 “ 0 mod 2 �

The above lemma implies that, when 01{02 is irrational, the contact dg-algebra of . with

respect to the contact form 
0 has no differential. Thus we can conclude the following corollary.

Corollary 6.8. The contact homology ��p., �q satisfies

��p., �q » Λp
8à

8“1

�p-;Qqq
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6.1.3. Non-Degenerate Perturbation. We can alternately view the non-degenerate contact forms


0 as a perturbation of the Morse-Bott contact forms of the same form. More precisely, choose

A “ pA1 , A2q with A1{A2 rational. Choose & ą 0 and let

(6.1) 5 : . Ñ R be given by 5 “ log
´ A1 ` A2

r�
A1 ` pA2 ` &q r�

¯

Lemma 6.9. The function 5 : . Ñ R has the following properties.

(a) 5 converges to 0 as & Ñ 0.
(b) For every 1 “ p11 , 12q, 5 is invariant under the Reeb flow '1 .
(c) 5 is Morse-Bott with 1-dimensional families of critical points.
(d) 4 5 
A “ 
0 where 0 “ pA1 , A2 ` &q.

Proof. Properties (a) and (d) are evident from the formula for 5 . To show that properties (b) and

(c) hold, we start by noticing that 5 “ 6 ˝ r� where

6pBq “ A1 ` A2 ¨ B
A1 ` pA2 ` &qB .

Since r� is invariant under the flow of '1 for all 1 “ p11 , 12q (see Section 6.1), 5 “ 6 ˝ r�
is invariant as well, which proves (b). To prove (c), first notice that r� is Morse-Bott with 1-

dimensional families of critical points, as a lift of a Morse function to an (1 bundle. Now, the

identity 5 “ 6 ˝ r�, together with the fact that 61pBq ă 0 when B ą 0, implies that 5 is Morse-Bott

with 1-dimensional families of critical points as well, which proves (c). �

6.1.4. Periodic Approximation. Let the contact manifold p., �q and the contact forms 
0 be as in

the previous sub-section. We now prove the following approximation property.

Proposition 6.10. For any 01 , 02 ą 0 and any � ą 0 there exist rationally dependent A1 , A2 ą 0 such that


A ď 
0 ď p1 ` �{)q
A

where ) “ lcmpA´1
1 , A´1

2 q is the period of the Reeb flow of 
A .

This approximation property will play the roll of Lemma 5.6 in our proof of Theorem 10. We

require the following arithmetic fact, which follows from an argument similar to Lemma 5.6.

Lemma 6.11. For any pair of positive numbers 01 , 02 ą 0 and any � ą 0 small, there exist A1 , A2 ą 0

with ) :“ lcmpA´1
1 , A´1

2 q ă 8 such that

(6.2)
A8

1 ` �{) ď 08 ď A8 .

Proof. By the simultaneous version of Dirichlet approximation theorem, for each # ą 0 there

exist non-zero integers @1 , @2 and ? ă # such that
ˇ̌
ˇ08 ´

@8

?

ˇ̌
ˇ ă 1

? ¨
?
#

, or |? ´
@8

08
| ă 1?

#08
.

Choose # and A8 for 8 “ 1, 2 so that

�{2 ą max

"
1?
#01

,
1?
#02

*
and A8 “

@8

? ´ �{2

Given these choices, � and A8 satisfy the following inequalities.

|
?

@8
´ 1

08
| ă 1?

#@808
ď �

2@8
and thus

1

A8
“

? ´ �{2

@8
ď 1

08

The second inequality yields 08 ď A8 . Moreover, note that A1 and A2 satisfy

1

A1
“ p

? ´ �{2

@1@2
q ¨ @1 and

1

A2
“ p

? ´ �{2

@1@2
q ¨ @2
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By Definition 6.5, this implies that ) :“ lcmpA´1
1 , A´1

2 q ď ? ´ �{2. Finally, we note that

A8 “
@8

? ´ �{2
“

@8

? ` �{2
¨
? ` �{2

? ´ �{2
ď 08 ¨ p1 ` �

? ´ �{2
q ď 08 ¨ p1 ` �{)q �

Proof of Proposition 6.10. Given 01 , 02 and � ą 0 let A1 , A2 be the numbers from Lemma 6.11. By

Lemma 6.6, the Reeb flow induced by 
A is periodic of minimal period ) :“ lcmpA´1
1 , A´1

2 q. By

the assertion of Lemma 6.11
A8

1 ` �{) ď 08 ď A8 .

This implies the required inequality between the contact forms:


A “ 


A1 ` A2
r�

ď 


01 ` 02
r�

“ 
0 ď p1 ` �{)q ¨ 


A1 ` A2
r�

“ p1 ` �{)q ¨ 
A . �

6.2. A family of non-integrable contact forms. In this section, we review the construction of

the family of contact manifolds discussed in §1.4, filling in some details that were omitted in the

introduction.

6.2.1. Preliminaries. Let us first, briefly, recall the discussion in §1.4. Consider the prequantization

space

� Ñ C%1 ˆ C%1 with 21p�q “ �1 ` �2

Here �1 , �2 denote the cohomology classes Poincare dual to rC%1 ˆ pts and rpt ˆC%1s. We let

� denote the contact structure, 
1 denote the standard prequantization contact form and '1 to

denote its Reeb vector-field, which generates a 1-periodic circle action on �. We next let � denote

the Hamiltonian

� : - Ñ R given by �pG, Hq “ �

2

´ |G|2
p1 ` |G|2q `

|H|2

p1 ` |H|2q

¯
` 1 on C ˆ C Ă C%1 ˆ C%1.

By Lemma 6.1, this action lifts to a free circle action on � generated the Reeb vector-field

'2 “ r� ¨ '1 ` p-�q� for the contact form 
2 “ 


r�
Moreover, '2 commutes with the Reeb vector-field '1 of 
. This yields a contact T2-action

T
2 ñ p�, �q generated by '1 , '2.

Next, we consider the Z4-action on - generated by the following 4-periodic map.

C%1 ˆ C%1 Ñ C%1 ˆ C%1 with #pG, Hq “ pzpHq, Gq

Here z : C%1 Ñ C%1 denotes the antipode map rD : Es ÞÑ r´D : Es. This Z4-action lifts to a free

action of Z4 on � as follows. We may view � as the unit circle bundle of the tensor product

!1 b !2 Ñ C%1 ˆ C%1

where !8 is the pullback (under projection to the 8th factor) of the $p1q line bundle over C%1.

The antipode lifts to a unitary map z˚ : ! Ñ ! since it descends from a unitary map of C2. We

now define a lift of 5 to !1 b !2 by

Ψ : !1 b !2 Ñ !1 b !2 with pG, H; D b Eq ÞÑ p9pHq, G; 8 ¨ 9˚E b Dq

Here 8 denotes complex multiplication by 8. Ψ is unitary, and thus restricts to �.

Remark 6.12. Ψ generates a free Z4-action on � that preserves 
 and 
2, and descends to the

Z4-action generated by # on C%1 ˆ C%1.
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6.2.2. Construction Of Family. We can now define the contact manifold

. :“ �{Z4

We may view . as a prequantization space over the symplectic orbifold - “ C%1 ˆC%1{Z4 with

a Hamiltonian (1-action induced by �. By Remark 6.12, the contact structure �, contact forms


1 , 
2 and Reeb vector-fields '1 , '2 all descend to.. We continue to denote them by �, 
1 , 
2 , '1

and '2, and we let

'0 “ 01 ¨ '1 ` 02 ¨ '2 with contact forms 
0

Lemma 6.13. The Reeb vector-fields '1 and '2 commute and generate flows of period 1. In particular,
they generate a contact T2-action on ..

Proof. The fact that r'1 , '2s “ 0 is local and so follows from the same fact on �.

To see that '1 is periodic of period 1, note first that it is periodic of period at most 1 since it

lifts to a periodic vector-field on � of period 1. To see that the period is equal to 1, note that a

simple '0-orbit � in � that projects to a point of C%1 ˆ C%1 on which Z4 acts freely will project

to a period 1 simple orbit �1 of '0 on ., via the quotient map � Ñ ..

The vector field '2 is the lift of the period 1 Hamiltonian flow generated by the Hamiltonian �

on the orbifold - “ C%1 ˆ C%1{Z4, described in Lemma 6.15(c). In particular, it is period 1. �

We will also consider the following specific hypersurface in ..

Definition 6.14 (diagonal hypersurface). Let .3 Ă . be the codim-2 hypersurface defined as

follows. Let Δ » C%1 be the diagonal in C%1 ˆ C%1, and let �3 be its inverse image under the

projection � Ñ C%1 ˆ C%1. Then .3 is the quotient of �3 by Z4.

We will require a number of topological properties of . for our proof. These properties will

be used to guarantee that the CZ index is defined over Z, as well as the vanishing of certain

homological intersections, see Remark 4.3. We record these properties below.

Lemma 6.15. The contact manifold p., �q has the following topological properties.

(a) The Chern class 21p�q is torsion in �2p.;Zq.
(b) r.3s “ 0 P �3p.;Qq. In particular, the intersection pairing of any � P �2p.;Qq with r.3s is 0.
(c) �2p.3;Qq “ 0.

Proof. To prove (a), consider the contact structure �� on �. We know that

21p��q “ �˚21pC%1 ˆ C%1q “ 2 ¨ 21p�q

for a constant 2. Now consider the Gysin sequence of the bundle � Ñ C%1 ˆ C%1.

¨ ¨ ¨ Ñ �0pC%1 ˆ C%1q 21p�qYÝÝÝÝÑ �2pC%1 ˆ C%1q �˚

ÝÑ �2p�q �˚ÝÑ �1pC%1 ˆ C%1q Ñ ¨ ¨ ¨

Since 21p�q and 21pC%1 ˆC%1q are proportional, 21pC%1 ˆC%1q is in the image of the map 21p�qY
and kernel of �˚. Thus 21p��q “ �˚21pC%1 ˆ C%1q “ 0. Now since Z4 acts freely on �, we know

that pullback by the quotient map � : � Ñ . yields an isomorphism

�˚ : �2p.;Qq » p�2p�;QqqZ4

where the latter is the sub-space of Z4-invariant classes. Since �˚21p�q “ 21p��q “ 0, this implies

that 21p�q is torsion.

To prove (b), recall the construction of .3 from Definition 6.14. Consider the Gysin sequence

�4pC%1 ˆ C%1;Qq 21p�qXÝÝÝÝÑ �2pC%1 ˆ C%1;Qq �˚

ÝÑ �3p�;Qq �˚ÝÑ �3pC%1 ˆ C%1;Qq
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Now observe that rΔs “ PDp21p�qq “ 21p�q X rC%1 ˆ C%1s and r�3s “ �˚rΔs. Thus by exactness

of the Gysin sequence, we have

r�3s “ �˚rΔs “ �˚p21p�q X rC%1 ˆ C%1sq “ 0

This prove that r�3s “ 0. Since r.3s “ �˚r�3s where � : � Ñ . is the quotient by Z4, this proves

(b).

Finally, we prove (c). Note that by Poincare duality and the isomorphism of quotient coho-

mology with co-invariants, we have

�2p.3;Qq » �1p.3;Qq » p�1p�3;QqqZ4 Ă �1p�3;Qq
It suffices to show that �1p�3;Qq “ 0. If we consider the Gysin sequence applies to �3 Ñ Δ »
C%1, we have

�1pC%1;Qq �˚

ÝÑ �1p�3;Qq �˚ÝÑ �0pC%1;Qq 21p�3qYÝÝÝÝÝÑ �2pC%1;Qq
Since �1pC%1;Qq “ 0 and 21p�3qY is injective, this implies that �1p�3;Qq “ 0. �

We let (by some abuse of notation) 
1 and 
2 denote the contact forms descending from 
 and


2 on �, and we denote the corresonding (commuting) Reeb vectors by '1 and '2, respectively.

Both '1 and '2 are periodic.

Lemma 6.16. . does not admit a contact integrable structure extending the circle action generated by the
Reeb vector-field '1 of 
.

Proof. It is proven in [STW99] that � is not toric, so this is immediate from Corollary 6.4. �

6.3. Proof of Theorem 10. After studying the structure and dynamics of the contact manifold .

and the Reeb flows '0 , we are finally ready to prove that it has the strong closing property. Our

first step towards a proof of Theorem 10 is to show that the assumptions of Proposition 4.4 hold

for p., 
Aq discussed above, when A “ pA1 , A2q are rationally dependent. These assumptions were

stated in Setup 4.1.

Lemma 6.17. The contact manifold p., 
Aq for rationally dependent A “ pA1 , A2q satisfies the assumptions
of Setup 4.1.

Proof. In what follows we go over each of the assumptions, in the same order as stated in Setup 4.1,

and explain why they hold for p., 
Aq. We use the notations from the previous subsections.

(i) . is a contact manifold of dimension 5: See Section 6.2.

(ii) The flow of 'A is periodic: This is proved in Lemma 6.6.

(iii) An almost complex structure on �: Let us describe the complex structure on the contact

structure of the prequantization bundle � Ñ C%1 ˆ C%1. It will be invariant under the

/4 action any thus descend to the contact structure � on ..

Since � is a prequantization bundle, its contact structure is canonically isomorphic to the

tangent bundle of the base, )pC%1 ˆ C%1q. Since the latter is a complex vector bundle,

this defines an almost complex structure on the contact structure of � which descends to

�. We denote this almost complex structure by �.

(iv) An invariant Morse–Bott function: Recall the function from Section 6.2:

� : C%1 ˆ C%1 Ñ R, �prG, Hsq :“ �

2

˜
|G|2

p1 ` |G|2q `
|H|2

p1 ` |H|2q

¸
` 1.

The critical points of the latter function on C%1 ˆ C%1 are r0, 0s, r8,8s, r8, 0s and

r0,8s, which are the non-free points of the Z4 action. After the quotient by the Z4

action, these descend to three classes: r0, 0s, r8,8s and r8, 0s „ r0,8s. Denote by
r� : . Ñ R the function obtained by lifting � to � and projecting to the quotient by the
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Z4 action. The perturbing function for us is the function 5 : . Ñ R defined using r�
by (6.1). By Lemma 6.9, the function 5 is Morse–Bott, invariant under the flow and its

critical manifolds are circles. Note that Lemma 6.9 also guarantees that 4 5 
A “ 
0 for

0 “ pA1 , A2 ` &q.
(v) No assumption to check.

(vi) No assumption to check. We take �˘ to be orbits of 'A of period ), corresponding to

the minimum and maximum of 5 . Here ) “ lcmtA´1
1 , A´1

2 u is the period of 'A . A simple

calculation shows that the maximum of 5 (which is the minimum of �̃) lies over r0, 0s,
and the minimum of 5 (which is the maximum of r�) lies over r8,8s.

(vii) Point constraint: We need to choose a point I in the intersection of the ascending manifold

of �´ and the descending manifold of �`. The flow lines of 5 coincide with those of

�̃ up to (orientation reversing) reparametrization. Consider the �̃ flow line given by

C ÞÑ r4 CG0 , 4
CG0 , 1s, where G0 ‰ 0 is a fixed element of C%1 and by 1 in the last coordinate

we mean 1 in a trivialisation of the bundle �tr4 CG,4 CGsu. The image of this flow line connects

�´ and �`. Let us pick I “ prG0 , G0s, 1q.
(viii) Contact flag: Since . is of dimension 5, we only need to define the codimension 2

submanifold of .. Recall Definition 6.14 of the hypersurface .3 Ă ..

(a) As explained in Remark 4.3, the assumption that �2p.29´1q “ 0 can be replaced by

the weaker assumptions that the CZ index is defined overZ and that the homological

intersection number of any 2-torus in .29`1 with .29´1 is zero. These are asserted

by Lemma 6.15. More explicitly, item (a) of the lemma guarantee that the relative

CZ index of any orbit is well defined over Z, while (b) and (c) guarantee that the

intersection number of any 2-torus in . with .3 (resp., in .3 with any cylinder) is

zero.

(b) .3 is invariant under the Reeb flow: Since 'A “ A1'1 ` A2'2, it sufficient to show that

.3 is invariant under both '1 and '2. Since .3 is a quotient of a restriction of the

prequantization bundle, it is invariant under the flow '1. '2 is a linear combination

of '1 and p-�q�, which is the horizontal lift of the symplectic gradient of the function

� defined above. Since this function is symmetric under replacing the two factors of

C%1 ˆ C%1, its Hamiltonian flow preserves the diagonal Δ. As a conserquence, the

quotient of the horizontal lift preserves .3.

(c) p.3 , �|.3q is a contact manifold as is coincides with the Z4 quotient of the unit circle

bundle �|Δ Ñ Δ. For the same reason, 
).3 is a contact form on .3.

The diagonal Δ is invariant under the action of 8 as 8 acts simultaneously on each

factor. This makes the contact planes �|.3 also �-invariant.

(d) ∇� 5 is tangent to .3: Since 5 is a composition of a 1-variable function on �̃, it is

enough to check that the gradient of �̃ is tangent to .3. Note that the metric defined

by � the 3
 is the standard metric onC%1ˆC%1, lifted to�. With respect to this metric,

∇�̃ “ pG, H, 0q at any prG, Hs, �q P .. So, for any point prG, Gs, �q P .3, ∇ 5 “ pG, G, 0q
and so is tangent to .3.

The function 5 |.3 is Morse-Bott as 5 is Morse on the diagonal.

(e) Conditions on Hessian of 5 : .3 contains two of the critical points, namely, r0, 0s, and

r8,8s corresponding to �` and �´. So apart from �` the only critical point in .3

is �´, which is a minimum and hence the Hessian is positive definite (and so is any

restriction of it).

(f) I “ prG0 , G0s, 1q P .3. �

Our next goal is to prove the vanishing of the spectral gap for the periodic flows corresponding

to rationally dependent p01 , 02q.
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Theorem 6.18. Suppose A “ pA1 , A2q are rationally dependent and denote by ) “ lcmpA´1
1 , A´1

2 q the
period of 'A . There exists a class � P ��p.q with s�p., 
Aq “ ) and gap�p., 
Aq “ 0.

Proof. We start by describing the contact homology of.. Consider the perturbation 
 5 :“ 4 5 
A for

5 defined using r�, and given a positive parameter & ą 0, by (6.1). As explained in Lemma 6.9,


 5 :“ 4 5 
A “ 
0 for 0 “ p01 , 02q :“ pA1 , A2 ` &q. Therefore, for a generic choice of & ą 0,


 5 is non-degenerate. As explained in [Par15, §1.8], contact homology has a relative grading

Z{221p�q ¨ �2p.q, which descends to an absolute Z2 grading. Lemma 6.7 guarantees that the Z2

grading of all of the orbits of 
 5 “ 
0 is zero, and hence the differential of the contact dga with

respect to 
 5 vanishes. Therefore, we identify the classes in ��p.q with the periodic orbits on


0 . Lemma 6.17 states that the assumptions of Proposition 4.4, as stated in Setup 4.1, hold for

p., 'Aq and the perturbing function 5 . Arguing as in the proof of Theorem 5.2, Proposition 4.4

together with Proposition 4.26, imply that
〈

*%0�` , �´

〉

“ 1 mod 2, where %0 is the tangency

constraint from Example 3.3. We remind that here �˘ are periodic orbits of 'A of period

) “ lcmpA´1
1 , A´1

2 q, lying over the minimum and the maximum of 5 . Therefore, we may consider

the class � :“ r�`s P ��p.q and compute its spectral gap:

gap�p., 'Aq :“ s�p., 
Aq ´ s*%0
�p., 
Aq ď sr�`sp., 
Aq ´ sr�´sp., 
Aq

“ lim
&Ñ0

ż

�`

4 5 
A ´
ż

�´

4 5 
A “
ż

�`


A ´
ż

�`


A “ ) ´ ) “ 0,

where we used the fact that 5
&Ñ0ÝÝÑ 0 and ) :“ lcmpA´1

1 , A´1
2 q is the period of 'A , which coincides

with the periods of �˘ by our choice of these orbits. �

Using Theorem 6.18 and Proposition 6.10 about approximations of irrational forms by rational

ones, we can conclude the vanishing of the spectral gap for '0 for all 0 “ p01 , 02q.

Corollary 6.19. For any 0 “ p01 , 02q, gapp., 
0q “ 0. In particular, it follows from Theorem 3 that
p., 
0q satisfies the strong closing property.

Proof. By Proposition 3.22, to conclude that gapp., 
0q “ 0 it is sufficient to show that there

exists a sequence 
8 and classes �8 P ��p.q such that 
8 ď 
 ď p1 ` &8q
8 , gap�8
p., 
8q “ 0

and &8 ¨ s�8 p., 
8q Ñ 0. Applying Proposition 6.10 for � “ 1
8 we conclude that there exist

Ap8q “ pAp8q
1 , A

p8q
2 q rationally dependent such that 
8 :“ 
Ap8q satisfies 
8 ď 
0 ď

´
1 ` 1

8¨)8

¯

8 ,

where )8 :“ lcmpAp8q
1 , A

p8q
2 q. Applying Theorem 6.18 to 
8 we obtain classes �8 P ��p.q with

s�8 p., 
8q “ )8 and gap�8
p., 
8q “ 0. Since 1

8¨)8
¨ )8 “ 1

8 Ñ 0, we conclude that the assumptions of

Proposition 3.22 hold and gapp., 
0q “ 0. �
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