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NEWTON-OKOUNKOV BODIES AND SYMPLECTIC EMBEDDINGS INTO
NON-TORIC RATIONAL SURFACES

JULIAN CHAIDEZ AND BEN WORMLEIGHTON

AsstrACT. We develop new methods of both constructing and obstructing symplectic embeddings
into non-toric rational surfaces using the theory of Newton-Okoukov bodies. Applications include
sharp embedding results for concave toric domains into non-toric rational surfaces, and new cases
of non-existence for infinite staircases in the non-toric setting.

1. INTRODUCTION

A symplectic embedding is a smooth embedding between symplectic manifolds of the same
dimension that respects symplectic forms. The study of such maps is at the heart of symplectic
geometry [22,43] and many basic questions about their existence or non-existence remain open.

Over the last decade, dramatic progress has been made in dimension four (i.e. the first non-
trivial dimension). This was initiated by Hutchings’ foundational work on embedded contact
homology (ECH) [24,25] and more specifically the introduction of ECH capacities

CECh(X ,w) € (0,00] of a symplectic 4-manifold (X, w) and keN

Soon after their introduction, McDuff used ECH capacities to resolve Hofer’s conjecture on
ellipsoid embeddings [36]. This initiated a flurry of progress on symplectic embeddings between
ellipsoids and other toric domains [10,14,16]. In particular, Hofer’s conjecture was extended to
a more general class of embeddings between toric domains by Cristofaro-Gardiner [12].

Connections between symplectic embeddings and algebraic geometry have been explored by
many authors [5,37]. In particular, recent work of the authors [8,45-47] has focused on the
connections between ECH capacities and positivity in algebraic geometry (c.f. Lazarsfeld [33]).
In this story, a central role is played by an algebraic version of ECH capacities called algebraic
capacities

cilg(Y, A) of a polarized projective surface (Y,A) and keN

As with any such bridge between fields, benefits flow in both directions [3, 8,31, 46]. However,
nearly all of the existing sharp embedding results that are approachable through this bridge
apply only in the toric setting.

In this paper, we develop a number of tools from algebraic positivity to study symplectic
embeddings from toric domains into non-toric targets. In particular, we focus on Zariski decom-
position and Newton—-Okounkov bodies in algebraic positivity and use them to study symplectic
embedding obstructions coming from ECH. As an application, we provide new sharp results on
many symplectic embedding problems with non-toric target.

1.1. Newton—-Okounkov bodies. Given an n-dimensional, smooth projective variety Y equipped
with an effective R-divisor A and a Z"-valued valuation v: C(Y) — Z" on the field of rational
functions C(Y) there is an associated Newton—Okounkov body

A(Y,A,v) € R"

Newton-Okounkov bodies are convex bodies in R" generalizing the perhaps more familiar
notion of moment polytopes in toric geometry. In particular, there is a relationship between

counts of sections of the line bundles O(mA) and lattice points in the dilates mA(Y, A, v), and
1



2 J. CHAIDEZ AND B. WORMLEIGHTON

the normalized volume of A(Y, A, v) is equal to the volume of the pair (Y, A) [32,33]. The general
expectation of the theory of Newton-Okounkov bodies is that many, if not all, quantifications
of the algebraic positivity of (Y, A) can be accessed via the combinatorics of Newton-Okounkov
bodies.

In dimension two every Newton-Okounkov body has an associated combinatorial weight se-
quence. The weight expansion of a concave or convex region Q) [Rz2 o With two adjacent boundary
edges on the coordinate axes [10,12,36] is a sequence of real numbers describing a decomposition
of Q into triangles.

In the toric setting the moment polytope and associated weight sequence play a key role in
the study of obstructions to embeddings between foric domains. A toric domain is a symplectic
4-manifold Xq given as preimage of a certain type of region Q < R? under the moment map
u: C? — R? for the standard 2-torus action on C2. The ECH capacities of convex and concave toric
domains can be entirely computed using the moment polytope and weight expansion [12, §A].

1.2. Symplectic embeddings via Newton-Okounkov bodies. The first main result of this paper
provides machinery for constructing symplectic embeddings using Newton—-Okounkov bodies
by extending work of Kaveh [27].

Let (Y, A) be a smooth projective variety of dimension n equipped with a flag
Y.:Y:Yn QYﬂ—l 2"'2Y] QYO

where Y; is an irreducible subvariety of Y of dimension i. Y, determines a Z"-valued valuation
vy, on C(Y) and so there is an associated Newton—-Okounkov body

A=A(Y,AY.) =AY, A Y.) = RY,
There is an associated open toric free domain Fu to A given by the Lagrangian product
Fpo:=T" xint(A) c T" x R" ~ T*T"

In the language of projective geometry this is the variety (C*)" equipped with a certain toric
Kéhler form. In [27] Kaveh uses a type of ‘'weighted” deformation to the normal cone and
gradient-Hamiltonian flow to prove the following result.

Theorem 1 ([27, Thm. 10.5]). Let (Y, A) be a polarized smooth variety with a flag Y, on Y. Let
A = A(Y,A,Y,) be the associated Newton—Okounkov body. Suppose X < Fx is a compact domain, then
there is a symplectic embedding

X - (Y, wa)

Drawing on work of Pabiniak [41] Kaveh applies Thm. 1 to give a lower bound the Gromov
width of projective varieties in terms of their Newton-Okounkov bodies [27, Cor. 12.4] and study
symplectic ball packings in such spaces [27, Cor. 12.6].

Now suppose that the Newton—-Okounkov body A contains a neighborhood of the origin. Such
a convex body has an associated toric domain X, c C" and an identification

Fp ~ XA\{points with non-trivial stabilizer} < X

In general (and particularly in dimension four), more is known about symplectic embeddings
involving toric domains than about their corresponding free domain. With this in mind, we
prove the following enhancement of Thm. 1.

To state our generalization, recall that there is a canonical sequence of polytopes A, (Y, A, Y,)
associated to any triple (Y, A,Y.) as above, given by the convex hull of the image of H’(mA)
under the valuation vy,. The normalizations %Am (Y, A,Y,) converges to A(Y, A, v) as m — c0.
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Proposition 1 (Prop. 3.22). Let (Y, A) be a smooth, polarized variety with a flag Yo and let X < Xq°
be a subset of the interior of the toric domain with moment polytope

Q= %Am (Y,A,Y,) for some m

Then there is a symplectic embedding X — (Y, wa).

The polytopes %Am (Y, A, Y,) exhaust the Newton-Okounkov body A. Therefore, Prop. 1 morally
states that embeddings into the interior of the toric domain X, may be transfered to Y itself. We
refer to the embeddings resulting from this construction as Kaveh embeddings.
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Ficure 1. Transferring embeddings from X 1 Amo to (Y, wa)

The proof largely follows Kaveh’s original approach, by using a family of projective varieties
acquired by deformation to the normal cone where the central fiber is symplectomorphic to C?
equipped with the toric symplectic form prescribed by A,,.

1.3. Algebraic capacities via Newton-Okounkov bodies. The second main result of this paper
provides machinery for obstructing symplectic embeddings, by computing algebraic capacities
combinatorially using Newton-Okounkov bodies.

Let (Y, A) be a pseudo-polarized rational surface; i.e. a pair consisting of a smooth rational surface
Y and a big and nef (or ample) R-divisor A on Y. Then Y (or a blowup of Y) can be presented as
a tower of point blowups
(*) Y=V, 5y, 8 By TLp?
with exceptional curve E; C Y; of each 7; so that there is a sequence of divisors with Ag = Op2(c)
and A; = 17 Ai—1 — a;E; on Y; with A, = A. We denote such a tower of polarized surfaces by
(¥, A). The algebraic weight sequence of the tower (Y, A) is then

(+) wt(Y, A) = (c;a1,...,a,)

Note that there are many different presentations of (Y, A) as a tower with potentially different
weight sequences. We say that (Y, A) admits the weight sequence (+) if it arises from a tower
presentation of (Y, A).

We show that, as for the combinatorial weight sequence and ECH capacities, the algebraic
weight sequence determines the algebraic capacities of a polarized surface.

Theorem 2 (Prop. 4.8). Let (Y, A) be a pseudo-polarized rational surface. Assume that there is a pseudo-
polarized rational surface (Y4, Ay) with the same weight sequence as (Y, A) and with —Ky, effective.
Then | |

(Y, A) = (Y, AL)

This provides a valuable computational tool for algebraic capacities on surfaces with poorly
behaved nef cones; for instance, general blowups of P? in more than 8 points. This is entirely
analogous to, and actually implies, [12, Thm. A.1] for ECH capacities.

We state the main consequence Thm. 2 has for algebraic capacities and their connection to
ECH capacities for toric domains.
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Theorem 3 (Thm. 4.12). Let (Y, A) be a polarized rational surface. Suppose there is a Newton—Okounkov
body A = A(Y, A, v) whose weight sequence is admitted by (Y, A). Then the algebraic capacities of (Y, A)
and the ECH capacities of F coincide.

cTB(Y, A) = cSN(Fy)
If in addition A is A-generic (see Def. 3.23) then A is a moment domain and so
MY, A) = ¢SN(Xa)
Note that if A contains a neighborhood of the origin in [RZ;O then C;Ch(P A) = czCh(XA). This is
expressed algebraically by the (mild) condition that A is A-generic.
As an example consequence of Theorem 3, we can given algebraic formula for the Gromov

width of some polarized rational surfaces.

Corollary 1. Let (Y, A) be a polarized rational surface. Suppose there is a strongly convex Newton—
Okounkov body A = A(Y, A, v) whose weight sequence is admitted by (Y, A). Then

1 .
cc(Y,wa) = c; (Y, A) = DeI\l{]élf%y)Z{A -D:I(D) =2}

Proof. The Gromov width and the first ECH capacity agree for strongly convex, free toric domains
(cf. [23]), and so cg(Fa) = c‘fCh(FA). A ball that embeds into F also embeds into (Y, w4) by Thm.
1. Therefore, we have

co(Y, wa) = cc(Fa) = c<M(Fa) = cB(Y, A)

Finally, we apply the main theorem of [8] to see that
co(Y, wa) < B(Y, A) O

1.4. Applications. Our main results yield a number of nice symplectic embedding results for
non-toric projective surfaces.

1.4.1. Computation of algebraic capacities. As a first application we are able to identify many non-
toric rational surfaces where the conditions of Thm. 3 are met.

For each family of surfaces (Y, A) we consider we find a Newton-Okounkov body A that
completely calculates the algebraic capacities of (Y, A). Moreover, via Thm. 1 we acquire em-
beddings X — Y with complement of arbitrarily small volume. This analysis is carried out for
many examples in §5. In this introduction we will discuss a few of these computations, starting
with the following example.

Theorem 4 (Prop. 5.3 + Prop. 5.6). Let Y be a rational surface whose only curves of negative self-
intersection are rational curves C with C2 = —1. Let A be an ample R-divisor on Y such that (Y, A)
admits a weight sequence (c;ay, ..., a,) with

n—3 <
i=1

Then there is an A-generic Newton—Okounkov body A whose weight sequence is admitted by (Y, A).

When Y is a del Pezzo surface there are weaker inequalities depending on the Picard rank for
c,ai,...,a, to satisfy. All del Pezzo surfaces are covered by Thm. 4. If n < 3 then Y must be
a toric del Pezzo surface. In that case the inequality is vacuous and the result holds by direct
calculation.

A consequence of the well-known SHGH Conjecture [19, Conj. 0.1] or [11, Conj. 2.2.3] gives
that all blowups of P2 in n very general points also fit into the setting of Thm. 4. Recall that a
set of n points being “very general” means that it lies in the complement of a countable union of
subvarieties in the configuration space of all sets of 1 points.
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As a second example, we formulate a general procedure for producing non-toric examples
that our main results apply to. This procedure may be thought of as a “genericization”, moving
the centers of a tower of blowups to be in more general position.

Theorem 5 (Prop. 4.8 + Prop. 5.11). Let (Y«, Ax) be a pseudo-polarized toric surface presented as a
tower as in (x). Suppose (Y, A) is a pair consisting of a rational surface Y and an R-divisor A such that:

e (Y, A) can be presented as a tower with the same weight sequence as (Y, Ax),
o the centres of the blowups for Y are in more general position than those for Y.

Then A is big and nefand ¢ 8(Y, A) = ¢I¥(Yy, A).

One can think of ‘big and nef’” as meaning “possibly degenerate symplectic form” and so the first
part of Thm. 5 states that (Y, A) can indeed be regarded as an object of symplectic geometry. The
second part relates the algebraic capacities of (Y, A) — which may be hard to compute as the nef
cone of Y could be very complicated — to the algebraic capacities of (Y., A ), which are highly
accessible by algebraic or symplectic methods reducing to lattice combinatorics [12,24, 45].

1.4.2. Concave to non-toric embeddings. Our main results also provide an immediate generalization
of the optimal embedding result of Cristofaro-Gardiner on symplectic embeddings of concave
toric domains into convex ones to the closed, non-toric setting.

Corollary 2. Let (Y, A) be a pseudo-polarized rational surface. Suppose that there is a Newton—Okounkov
body A(Y, A, Y,) whose weight sequence is admitted by (Y, A). Then, for any concave toric domain Xq
the following are equivalent.

o Forany r < 1, there is a symplectic embedding X,q — (Y, wa).
alg

e The ECH capacities CiCh(XQ) are bounded above by the algebraic capacities ¢, °(Y, A).
This result applies to all of the examples computed in §5; the del Pezzo surfaces and higher rank
blowups in Thm. 4, and the genericizations of toric surfaces from Thm. 5). This is a rare example
of a sharp result for symplectic embeddings into non-toric target manifolds.

Remark 1.1. Variants of the existence result for symplectic embeddings in Cor. 2 can also be
proven by adapting the proof methods of Cristofaro-Gardiner-Holm-Mandini-Pires (see in
particular [14, Rem. 3.6]) to the non-toric context. Our proof adheres to the general philosophy of
this paper by utilizing Kaveh embeddings from Newton-Okounkov bodies to produce non-toric
embeddings from toric ones.

1.4.3. Obstructing staircases. Recall that the ellipsoid embedding function fx : Ry — R, of a sym-
plectic 4-manifold X = (X, w) is the function

fx(a):=1inf{r : E(1,a) - (X, 7 w)}

A famous result of McDuff-Schlenk [38] demonstrates the existence of certain infinite staircases
occurring in the ellipsoid embedding function of certain toric domains. An infinite staircase
consists of the infinite sequence of points of nondifferentiability of fx accumulating to a finite
point ag € R>;.

Since the work of McDuff-Schlenk [38] the characterization of spaces that possess an infinite
staircase has attracted significant interest [14,34]. As a final application we provide some initial
applications of our machinery to the intricate problem of obstructing infinite staircases in non-
toric rational surfaces.

Proposition 2 (Prop. 5.14). Let (Y, A) be a polarized del Pezzo surface. The ellipsoid embedding function
of (Y, wa) has no infinite staircase when:
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(i) Y has degree 3 and (Y, A) has weight sequence

18 + /24
5

(c;1,1,1,1,1,1) ford<c< ~ 4.57

(ii) Y has degree 1 and (Y, A) has weight sequence
24 + /%
5

1.5. Asymptotics via Zariski decomposition. Zariski decomposition [48] splits a big divisor A on
a surface as

(c;1,1,1,1,1,1,1,1)  for6<c < ~ 6.76

A=P+N
where Pisbig and nefand N is pseudo-effective. The primary feature of this decomposition is that
all “positivity” information about A (e.g. section counts) is captured by P. Zariski decomposition
will play a significant role in the proofs and computations of this paper.

We can also draw on Zariski decomposition to extend the algebraic Weyl law [46, Thm. 4.2]
from polarized surfaces to weakly polarized surfaces, i.e. a pair (Y, A) where Y is a Q-factorial
projective surface and A is a big divisor. This brings in a central invariant in algebraic positivity:
the volume vol(A) of a divisor A, which roughly tracks the growth of sections of m A for large m.

Theorem 6 (Prop. 4.14). Suppose (Y, A) is a smooth or toric weakly polarized surface. Then

cMB(Y, A)?

lim = 2vol(A)

k—o0

As with the algebraic Weyl law for big and nef divisors, Thm. 6 allows us to define error terms
eMB(Y, A) i= cIB(Y, A) — \/2vOl(A)k

to capture the sub-leading asymptotics of cilg(Y, A). In the case that A = gA for some Z-divisor
Ap and some g € R~ we can give a precise description of these sub-leading asymptotics, just as
in the big and nef case [46, Thm. 4.10].

Theorem 7 (Cor. 4.19). Let (Y, A) be a weakly polarized surface that is either smooth or toric, and

where A is a real multiple of a Z-divisor. Then the error term eilg(Y, A) is O(1) and nonconvergent with
explicitly computable lim inf and lim sup.

As with the big and nef case [47, §3.8] it is an intriguing open question to more precisely
characterise when convergence does and does not occur among the sub-leading asymptotics for
algebraic capacities of weakly polarized surfaces.

1.6. Future directions. We conclude by remarking on a few possible extensions of this work.

Remark 1.2 (Abelian surfaces). While the results of [8] and hence of this paper do not apply
to non-rational surfaces, we conclude with an example illustrating possible connections in the
case of abelian surfaces (or four dimensional complex tori). The Newton—-Okounkov body for
a polarized abelian surface is a trapezium [32, Ex. 6.5], which describes a ruled surface over
CP! in toric algebraic geometry or a related convex toric domain from the perspective of §3.
Ball packings of abelian surfaces have been studied in two different ways using ball packings of
associated ruled surfaces [4,31] and it is plausible that this structure is being reflected in their
Newton-Okounkov theory.

Remark 1.3 (Other connections). To obtain a wider class of sharp embedding results we need
to construct Newton-Okounkov bodies with prescribed weight sequences. We hope that the
Newton-Okounkov bodies coming from cluster varieties [6] or from a finer understanding of the
relationship between Newton-Okounkov bodies and toric degenerations [1] will allow for these
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next steps. It would also be interesting to understand the effect of blowup and perturbation
on the global Newton-Okounkov body [32, Thm. B] as a way of potentially systematising the
process of computing weight sequences of Newton-Okounkov bodies that we have developed
here.

Remark 1.4 (Limitations). We make the cautionary note that using Zariski decomposition to
calculate Newton—-Okounkov bodies is currently a radically difficult task in general, and that
we were forced to use the still-open SHGH Conjecture to complete our applications to rational
surfaces of higher Picard rank. We emphasise that there is no intrinsic reason why our methods
should not generalise far beyond the applications presented here, indeed this seems likely as our
understanding of Newton—Okunkov bodies continues to grow.

Acknowledgements. The authors are very grateful to Alex Kiironya for frequent helpful conver-
sations around the subject of this paper. They are also grateful for input from Dave Anderson,
Laura Escobar, Tara Holm, Tim Magee, Nicki Magill, Dusty Ross, and Morgan Weiler.

2. ALGEBRAIC PRELIMINARIES

In this section we give a detailed discussion of the tools from posivity in algebraic geometry
that we will use in this paper: Newton-Okounkov bodies and Zariski decomposition.

2.1. Birational geometry. We start by recalling some relevant motivation and terminology from
birational algebraic geometry. In this section, we let [ denote one of the rings Z, Q or R.

A Weil K-divisor on a projective surface Y is a formal K-linear combination of irreducible
codimension one subvarieties of Y. We often omit Weil from our language. We say that a Weil
Z-divisor D on Y is Q-Cartier if some integer multiple of D is Cartier; that is, D is the zero scheme
of a section of a line bundle on Y. More generally, a Weil R-divisor is Q-Cartier if it can be
expressed as an R-linear combination of Q-Cartier Z-divisors. Y is said to be Q-factorial if every
Weil Z-divisor on Y is Q-Cartier.

Example 2.1. Every toric surface is Q-factorial, as is every smooth projective surface.

Notation 2.2. We fix the following notation for various groups and cones of divisors.
¢ Div(Y)k is the group of the Weil divisors on a Q-factorial surface Y with [K-coefficients.

e NS(Y)k := NS(Y) ®z K is the Néron-Severi group of Y, i.e. the group of integral Weil
divisors up to algebraic equivalence tensored with K.

o NE(Y)k is the cone of effective [K-divisors inside the Néron—Severi group NS(Y)k.
o NE(Y)y is the pseudo-effective cone of Y, i.e. the closure of the NE(Y ) in NS(Y ).

o Nef(Y)k is the cone of divisor classes in NS(Y )i corresponding to nef divisors (namely,
those divisors intersecting nonnegatively with every effective divisor)

o Amp(Y)k is the cone of ample divisor classes in NS(Y ), i.e. those divisors intersecting
positively with every effective divisor.

e Big(Y) is the group of big divisor classes, i.e. those in the interior of the effective cone.
e R-Div(Y)z is the set of R - Z-divisors D = c¢ - D' where ¢ € R and D' is a Z-divisor.

There is a natural round-down operation from R-divisors to Z-divisors that we denote by

Div(Y)gr — Div(Y)z D = Z a;D; — |D| := Z[aiJDi

where D; are irreducible codimension one subvarieties of Y.

Notation 2.3. We let Oy (D) be the associated sheaf to a Z-divisor (class) D and H'(D) =
H!(Oy(D)) be the corresponding sheaf cohomology of dimension &(D).
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Definition 2.4. Let (Y, A) be a pair consisting of a Q-factorial surface Y and an R-divisor A. We
say that (Y, A) is

o a weakly polarized surface if A is big,

e a pseudo-polarized surface if A is big and nef,

e a polarized surface if A is ample.
Note that ample implies big and nef, so that polarized surfaces are pseudo-polarized and pseudo-
polarized surfaces are weakly polarized.

2.2. Newton-Okounkov bodies. We next review the theory of Newton-Okounkov bodies [28,

32,40], which are convex bodies that encode asymptotic information about sections of line
bundles.

Fix a projective variety Y and a valuation v: C(Y) — Z". Note that we only require v to be
defined on C(Y)\{0} to avoid compactifying Z". The valuation restricts to a map

v: HY(A) < C(Y) — Z" for any divisor A

Here we use the identification of global sections of Oy (A) with rational functions with vanishing
locus A. Let Ay, (Y, A, v) denote the convex hull of the image of H O(mA) under v:

(2.1) Aw(Y,A,v) = conv (v (H'(mA)))
Definition 2.5. The Newton—Okounkov body A(Y, A, v) associated to (Y, A, v) is defined by

A(Y,D,v) = U% -Ax(Y,D,v)
k

Remark 2.6. We note that, while explicit, Def. 2.5 does not assist much in the calculation of
Newton-Okounkov bodies, which is typically very subtle.

Flags of subvarieties provide the main source of valuations. This will be the only type of valuation
considered in this paper.

Definition 2.7. A flag Y, in a projective variety Y is a sequence of projective subvarieties
Yocvic---CcY,=Y where dim(Y;) =i
A flag Y, is locally smooth if each Y; is smooth in a neighborhood of the point Yy. We will assume

this condition unless otherwise stated.

Definition 2.8. The valuation vy, associated to a locally smooth flag Y, is recursively given by
the formula

vy, (s) := (ordy, ,(s), vz, (sly,_;))
where vz, (sly,_,) is the valuation associated to the flag Z, = Yp < --- < Y,,_; on Y,,_; evaluated
on the rational function s|y, ;.

Remark 2.9. When Y is a surface every valuation arises in this way from a flag Y, on some
birational model 7t: Y — Y where 7 is a series of blowups.

Notation 2.10. In the case of the valuation associated to a flag we will adopt the notation
AY,AY.) =AY, A,vy,) and  Ay(Y,AY,) :=Au(Y,A,vy,)

In the toric setting the Newton-Okounkov body generalizes the moment polytope by the
following result.

Proposition 2.11 ([32, Prop. 6.1]). Let Y be a toric variety with torus-invariant ample divisor A and
moment polytope Q). Then for any torus-invariant flag Y, we have

A(Y,A,Y,) =Q
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One expects this since, essentially by definition, if () is the moment polytope for a polarized toric
variety (Y, A) then lattice points in mQ correspond to torus-invariant sections in H(Oy(mA)).
Thus the rescaling by % will just return Q in the case that it is a lattice polytope.

2.3. Zariski decomposition. A related structure in algebraic positivity is Zariski decomposition,
which splits a divisor on a surface into two pieces that each store positivity information.

Definition 2.12. Let Y be a smooth surface and let D be a pseudo-effective R-divisor on Y. The
Zariski decomposition of D is the unique expression

D=P+N
where P is nef, N is pseudo-effective, and P - N’ = 0 for every irreducible component N’ of N.
We call P the positive part and N the negative part of D.

We state several properties of the Zariski decomposition into that we will use later.

Proposition 2.13. Let D be a pseudo-effective R-divisor with Zariski decomposition
D=P+N
Then P and N have the following properties.
o (Coefficients) If D is a Z or Q-divisor then P and N are Q-divisors.
e (Bigness) If D is big then P is also big.
o (Maximality) P is the largest nef R-divisor such that P < D.
o (Moduli) The moduli of D are captured by P in the sense that

W(mD) = i°(mP)  forallmeN
The fourth property is a famous result of Zariski [48] and motivates using Zariski decomposition
to study positivity questions.

The Zariski decomposition is also a powerful tool for studying volume. Recall that the volume
vol(A) of a big R-divisor A on a variety Y of dimension 7 is given by

. h%(mA
vol(4) := nllir;o m(”/n!)

This limit exists [33, §11.4] and measures the leading asymptotics of section counts for multi-
ples of A. The following lemma of Zariski is classical and is key to the interaction of Zariski
decomposition and positivity.

Lemma 2.14 ([48)). Let A be a big R-divisor with Zariski decomposition A = P+ N. Then vol(A) = P2.
2.4. Zariski chambers. The two positivity structures introduced above — Newton-Okounkov

bodies and Zariski decomposition — interact through the notion of Zariski chambers.

Introduced by Bauer—Kiironya-Szemberg [2], Zariski chambers decompose the big cone of a
smooth projective surface Y in such a way that the Zariski decomposition is appropriately 'con-
stant” within chambers. This also governs the points of nondifferentiability along the boundary
of Newton—-Okounkov bodies on Y; i.e. their vertices.

To define Zariski chambers, let D = P + N be the Zariski decomposition of a pseudo-effective
divisor so that P is nef and N is pseudo-effective. Denote the set of null curves of D by

Null(D) := {C irreducible curve : D - C = 0}
Also denote the set of irreducible components of the negative part of D by
Neg(D) := {irreducible components of N}
Note that Neg(D) < Null(P) by the construction of Zariski decomposition.
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Definition 2.15. The Zariski chamber p < Big(Y) of a big and nef divisor P is defined as follows.
Lp:={D € Big(Y) : Neg(D) = Null(P)}

The decomposition Big(Y) = | |p Xp is called the Zariski decomposition of the big cone of Y.

Intuituvely, a Zariski chamber consists of big divisors for which the support of their negative
part is held constant. The chambers are convex cones that are typically neither open nor closed,
and provide a locally finite cover of the big cone [2, Lem. 1.4].

Example 2.16. Suppose Y is a rational surface whose only negative curves are (—1)-curves; i.e. if
C < Y has C? < 0 then C? = —1. This class includes all del Pezzo surfaces. The Zariski chambers
for Y are described by the restriction of the hyperplane arrangement {C~}c2_, consisting of the
orthogonal complements C* := {D € Pic(Y)g : D - C = 0} for each irreducible negative curve on
Y to the big cone [2, Prop. 3.4].

The Zariski chamber decomposition controls the boundary of Newton-Okounkov bodies of
surfaces in very precise terms due to the foundational work of Lazarsfeld-Mustata [32]. Precisely,
fix a projective surface Y, a flag Yo = {y € Y1 < Y} and a big divisor A. Consider the divisors

A =A—-t\; with Zariski decomposition Ay = N; + P
Let u be the supremum over t such that A; is in the big cone.
Theorem 2.17 ([32, Thm. 6.4]). The Newton-Okounkov body A(Y,, A) is given by
AY,AY) ={(t,h)eR* : 0<t<pu and ay,(At)<h<pBy.(At)}
where ay, (A, -) and By, (A, -) are continuous and piecewise linear in t on any interval [0, ' with u’ < p.

The corners (i.e. points of nondifferentiability) of ay, and By, are governed by the Zariski
chamber decomposition. Morally, corners occur precisely at values of t where A; . lies in a
different Zariski chamber to A; for all small ¢ > 0, which the following result makes precise.

Lemma 2.18 ([30, Thm. B]). With the setup above we have:

o the map ay, (A, -) is not differentiable at t if and only if, for every € > 0, there is a curve C with
C € Neg(At+e)\Neg(Ay) and yeC

o the map By, (A, -) is not differentiable at t if and only if, for every € > 0, there is a divisor C with
C € Neg(At+e)\Neg(Ay) and y¢C

Remark 2.19. The Zariski decomposition is locally finite and bears many similarities to the
natural chamber decomposition arising from algebraic capacities [46, §3]; e.g. in [2, Prop. 1.14]
the local finiteness of the Zariski chamber decomposition is used to prove continuity for Zariski
decomposition while in [46, Cor. 3.2] the local finiteness of the chamber decomposition from
algebraic capacities is used to show their continuity. Understanding any relationship between
the two — especially in light of the results of §4.4 — is an interesting problem.

3. SYMPLECTIC EMBEDDINGS

In this section, we develop a variation of a construction of certain symplectic embeddings
that uses deformations (i.e. families of projective varieties over the complex line) and Newton—
Okounkov bodies, due to Kaveh [27]. We will refer to these as Kaveh embeddings.
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3.1. Basic notions. Recall that a symplectic manifold X = (X, w) is a smooth manifold X equipped
with a closed non-degenerate 2-form w, called a symplectic form.

Definition 3.1. A symplectic embedding 1: X — X' between symplectic manifolds (X, w) and
(X', ") of the same dimension is a smooth embedding that satisfies (*@’ = . We write

X X!
when a symplectic embedding X — X’ exists, without specifying the map.
The main tools for obstructing the existence of symplectic embeddings are symplectic capac-

ities. A symplectic capacity c is a numerical invariant of some class of symplectic manifolds such
that

c(X,w)<c(X,o') if X>X  and (X, a0)=a-c(X,w)
Typically an additional normalization constraint is included to rule out trivial capacities.

We will primarily focus on the ECH capacities of a symplectic 4-manifold (X, w) originally
introduced by Hutchings using embedded contact homology [24,25]. We denote these capacities

by
ciCh(X, w) € (0, 0] for keN

These capacities have many useful properties beyond the usual axioms of capacities. Most
pertinent to this paper is the following volume property.

Theorem 3.2 ([15, Thm. 1.1]). Let (X, ) be a Liouville domain. Then
CeCh(X, a))2

lim X

Jim T = 4vol(X, w)

Note that Thm. 3.2 extends to closed manifolds X that admit symplectic embeddings from
Liouville domains W with volume arbitrarily close that of X. We can capture the sub-leading
asymptotic behavior of the ECH capacities by defining

ex(X, w) = CECh(X,a)) —a/4vol(X, w)k

There has been much study of the asymptotics of these error terms via symplectic methods
[18,26,44] and algebraic methods [46,47].

3.2. Toric domains. There is a rich class of symplectic manifolds that will be particularly impor-
tant in this paper. Consider the standard moment map

p: C" — RY, w(z, ..., zn) =m-(z1 ..., |z0l?)

Definition 3.3. A moment domain Q0 = RY, is any domain containing a neighborhood of the
origin. The associated foric domain Xq and open free domain Fq are given by

Xo:=pu HQ) and Fq:=pu Q%)

Here )° denotes the interior of Q as a subset of R”. We say that Q is

(weakly) convex if () is convex as a subset of RY .

concave if the complement of (2 is convex as a subset of RZ .

integral if it is the convex hull of a finite set points in Z".

rational if m - () is integral for some m € N.
rational-sloped if it is a polytope such that there is an integral vector normal to each facet.
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Example 3.4. If Q = A(a), the triangle with vertices (0,0), (a,0), (0,a), then Xq = B*(a). More
generally, if Q is the triangle with vertices (0, 0), (a,0), (0, b) then Xq is the ellipsoid with sym-
plectic radii a and b given by

2
Xo = E(a,b) := {(zl,zz) eC?: @ + ”';ﬂ < 1}

Ficure 2. Concave and convex moment domains

(a) (b)

Toric domains are related to toric varieties from algebraic geometry as follows. Let O < R" be
an integral polytope; i.e. a polytope whose vertices lie on Z". Let

S=QnZ"c7"
Choose an ordering s1, . .., s, of the elements of S and consider the map
1g:C" > P!t given by ts(z1,...,20) = [2°,2%,...,2%] € pr-1

Here z° for s € Z" denotes the product

1
1

Sn

=zl...z,

The closure of (5(C") is precisely the toric variety Yq associated to the polytope Q and the ample
divisor Aq is the intersection of this closure with the hyperplane at infinity Pr-2 c Pr-1[17,
Ch. 2]. The link between the toric domain and toric variety is given by the following.

Lemma 3.5 ([8, §1.2]). Let (3 be a moment domain that is a convex lattice polytope and let 15: C" — pr-1
be the corresponding map to projective space. Then

int(XQ) >~ Lg (Cn) = YQ\AQ

The ECH capacities of toric domains are extremely well understood and are governed by the
so-called “weight sequence” of the moment domain Q). We start with the concave case from [10].

Definition 3.6. The weight sequence wt(C2) of a concave moment domain ) < Rio is the (poten-
tially infinite) unordered list (with repetitions) defined inductively as follows.

Let OO = A(a) be the largest equilateral right triangle contained in QO. The complement
Q\Q consists of two (possibly empty) components: a component (2, touching the x-axis and a
component Qg touching the y-axis. It is simple to check that Q; = ToC), + v, and Q3 = T3Qg + v3
are concave moment domains, where

w10 me[01] e [2] ee[i]

The weight expansion wt(Q) is now defined by the following recursive formula.
wt(Q) = {a} U wt(Qq) U wt()

The first stage of the process for the concave domain from Fig. 2(a) is shown in Fig. 3(a).
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Definition 3.7. The weight sequence wt(Q) of a convex moment domain Q < R?

<o 1s the sequence
wt(Q) = (a; wt(Qq), wt(Qp))

Here A(a) is the smallest right triangle containing Q, and )y and (), are the (possibly empty)
concave domains constructed from the components of A(a)\Q as in the concave case. We show
the first step of the process for the convex domain from Fig. 2(b) in Fig. 3(b).

Remark 3.8. As discussed in [47, §2.4] it is most natural to view this sequence as indexed by a
rooted binary tree.

Remark 3.9. A concave or convex moment domain Q is rational-sloped (for instance, rational) if
and only if its weight sequence is finite.

Ficure 3. Weight decompositions

] . . . Q/ ° [ . ° °

2 S \\ /
\q 3 3 3 ° Qz

ECH capacities can be used to completely characterize the existence of symplectic embeddings
of a concave toric domain to a convex toric domain [12] due to a result of Cristofaro-Gardiner.

Proposition 3.10 ([12, Thm. 1.2]). Let Q and A be concave and convex moment domains respectively
in RZ)O' The following are equivalent:
(i) The interior of Xq symplectically embeds into the interior of Xa.
(if) For each c with 0 < ¢ < 1, Xcq symplectically embeds into the interior of Xa.
(iil) 2™ (Xq) < §N(Xa) for each k > 1.
3.3. Kaveh deformations. Fix a smooth projective variety Y of dimension n equipped with a

flag Y,. In [27] Kaveh constructed a Kdhler manifold equipped with a submersion to C with
generic fiber Y and central fiber symplectomorphic to an open free domain Fgq,.

The goal of this subsection is to describe a version of a Kaveh'’s construction where the central
fiber is a toric domain Xq. The construction is essentially the same as in [27] but we carefully
check that certain details (e.g. the extension of holomorphic functions) carry over to our setting.

3.3.1. Taylor series valuation. We start by describing a local version of the valuation of a flag and
describing some of its properties. Let f be a formal Taylor series in n variables, written as

3.1 fu, ..., uy) = Z cqu® where a=(ay,...,ay) € Z’;O
a

Recall that the support supp(f) is the set of integer vectors such that the coefficient c, is non-zero.

supp(f) :={a : co #0} < Z’;O

There is a natural order valuation vrs on the fraction field of C[[uy,...,u,]] determined by the
standard lexicographic ordering < on Z". On a formal Taylor series, it is given by

vis(f) = min (« : a € supp(f))
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The valuation vy, of a flag Y, is the pullback of vrs through any coordinate chart p: V ~ U < C"
on a neighborhood V' < Y that satisfies

(3.2) (VY =Un(0xCHccn

More precisely, the following diagram commutes, where the horizontal map sends f to the Taylor

series of f o~ 1: U — C.
{f : X - C holomorphic near Yo} — C[[u1, ..., u4]]

lw. lws

7" — > 7"
We will require the following property of the order valuation, which roughly states that the
valuation of f is a boundary point of the convex hull of the support.

Lemma 3.11. There isa C > O such if w = (w1, ..., wy) satisfies w; < 0 and w;y1 < Cw; for all i,
then w - vis(f) < w - a for all a € supp(f).

Proof. Letv = vis(f) and r; = v; + vj11 + -+ - + v,. Choose w = (w1, ..., w,) to satisfy

(3.3) w;i<0 and w; = C - wj;q where C =max{l,r,72,...,7s}

Now let a € supp(f). Since v = v1s(f), there is a j such that a; = v; for j < iand a; > v; + 1.
Thus we have

(a —0) Zw] j) +wi(a; +Zwkak—vk Zwkvk
j<i k>i k>i
Due to (3.3), we have w; 1 < wj forall j > i + 1 and thus
- Z WUk < Wi — Wiy17ip1 <O O
k>i

As an immediate consequence of Lem. 3.11 we have the following corollary.
Corollary 3.12. If f1, ..., fr are a set of formal Taylor series, then there exists a w € N" such that
w-vrs(fi) <w-a  forall a € supp(fi)
Analogous results to Lem. 3.11 and Cor. 3.12 also hold for the valuation vy,.
3.3.2. Weighted deformations. We next describe a construction of a certain projective variety
X(Y,,m)

determined by Y, and a choice of integer vector m € N". Fix achart ¢: V ~ U < C" on Y that
satisfies the compatibility condition (3.2) with the flag. To define this space, consider the map
D, : C* x C" — C x C" using the coordinates uy, . . ., u, defined as follows.

D (tur, ... uy) = (b7 ™uq, ...t uy,)

We also define W = @,,(C* x U) u (0 x C") < C x C" and let ¥ denote the composition map

C* x vV o xu 2w
Lemma 3.13. The set W < C x C" is open and \V is a biholomorphism of C* x V with an open subset
of W commuting with projection to C.

Proof. The only non-trivial part of the claim is that W is open. Since W is a local biholomorphism,
it suffices to check that every (0;z) = (0;z1,...,2,) € 0 x C" is an interior point of W. Choose
any ball B(z) < C" around z and note that w = (t"wy,...,t"w,) is in U for w € B(z) and |t|
sufficiently small, since U is a neighborhood of 0. It follows that for sufficiently small 6

[-6,0]> x B(z) = W ]
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Definition 3.14. The weighted deformation to the normal cone X = X (Y,, m) associated to (Y,, m) is
given by the gluing (C* x Y) uy W, equipped with the holomorphic submersion
C* xY — X(Y.,m)
\L ln with  771(0) = Ty, Y ~ C"

C* —— C

3.3.3. Holomorphic functions on deformations. Let f: Y — C be a meromorphic function that is
holomorphic near Yy and let supp(f o 1) be the support of the Taylor series of fop~!: U — C.

Definition 3.15. A pair (m,v) of an integer vector m € N" and a vector v € supp(f o ¢~!) is
compatible if v is the unique minimum of the function

supp(fo@™) —=Z a—a-m
Lemma 3.16. If (m,v) is a compatible pair, then the function t =" f on C* x Y < X (Y., m) extends
holomorphically over the complement 0 x C" of C* x Y to a function F satisfying
(3.4) F0,w) = cow®  for (u,w)e0xC"

Proof. Consider the coordinates t and w; = t~"u; on the neighborhood W < X'(Y,, m) of 0 x C".
In terms of the notation in (3.1), the Taylor series for f in the coordinates (f,w) on W is given by

flw) =Y cat™ow =) ca<H(t’”"wi)""’>

1

Since the Taylor series (3.1) is absolutely convergent for small |u|, the Taylor series of t and w are
absolutely convergent for any w € C", as long as || is sufficiently small. On the other hand, the
Taylor series is divisible by t""“ since m - v < m - @ whenever ¢, # 0. Therefore

(35) Ef () = Y ot @0
o

is absolutely convergent in a neighborhood of (0, w) € 0 x C", for any w.

Thus t =" f extends holomorphically over 0 x C" and is given by the Taylor series (3.5) near
0 x C". In particular, when t = 0, the expansion only contains terms c,w® with m - @ = m - v.
Since v is the unique minimizer of the map a — m - @, we acquire (3.4). m]

Definition 3.17. The meromorphic map F(m,v): X(Y,,m) — C associated to a meromorphic
map f: Y — C and a compatible pair (m, v) is defined uniquely by

F(m,v)(t;z) =t""™7 f(z) on C*xYcX(Y.,m)

3.3.4. Projective embeddings of deformations. Let A be a very ample divisor on Y and consider the
corresponding Kodaira embedding

¢:Y >PE  where E=(HA))
Choose a basis of E and consider the dual basis of sections of the associated line bundle L.
o1,...,0. € HY(A) ~T(L)

We may assume that 7 = o, is non-vanishing at the basepoint Yy of the flag Y,. For each section
oi, we have a meromorphic function given by

oi=fi-1

After rescaling 0;, we may assume that the Taylor coefficient of f; corresponding to index vy, (f;) =
vy, (o) is 1. We let v(o) denote the set

v(o):={vy(oi) : i=1,...,r} and  A(0):=conv (v(0)) = RY,

Finally, use Cor. 3.12 to choose m € N" such that (m, vy, (0;)) is a compatible pair for each i.
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Definition 3.18. The extension ®(c): X (Y., m) — C x P"~! of the Kodaira map ¢ to X (Y,,m) is
defined as the map

(t;z) = (L [Fi(t;2), ... Fr(t2)]

where F; = F(m, vy,(0;)) is the meromorphic function determined by f; in Definition 3.17. Note
that

(3.6) DP(0)(0;wy, ..., wy) =[w”,w?, ..., w"1,1] where v; = vy, (0})
Lemma 3.19. If A(o) < RZ ) is a moment domain (see Def. 3.3) then D(o) is an embedding.

Proof. 1t suffices to check that the restriction of ®(c) to 0 x C" is an an embedding and that the
differential is full rank there. If A(0) is a moment domain then some multiples of the unit basis
vectors ey, ..., e, are in v(o). From [29, Cor.B(ii)] and the very ampleness of A we see that in fact
ei,...,e, mustbein v(o). After reordering, we may assume that v; = ¢; fori = 1,...,n. Under
this assumption, we can write ®(g)|oxc» as

cr M, eng e inthechart (zi,...,2zr-1) — [21,. .., Zr 1, 1]

Here F: C" — C"~"~!is holomorphic. Thus ®(0) is a injective and has full rank differential. O

3.3.5. Kahler forms on deformations. Let (o) be the pullback of the Fubini-Study form on P"~1.
Qo) := D(0)*Qps
Moreover, let (Y, ws) be the fiber 7~1(s) equipped with the 2-form Q(a)|y..

Lemma 3.20. If A(0) is a moment domain, then (o) is a symplectic form on the fibers Y;. Furthermore
(a) (Yo, wo) is symplectomorphic to the interior of the toric domain X (y)
(b) (Ys, ws) is symplectomorphic to (Y, wa) for s # 0.

Proof. The first claim is immediate from Lem. 3.19. Moreover, (3.6) and Lem. 3.5 immediately
imply (a). Finally, (b) follows from the fact that

wWs = I][)*KJFS

where ¢: Y — P" ! is the Kodaira embedding determined by the sections 7; = s~%""g; where
v; = vy,(0;). On the otherhand, the symplectic form w, is defined (up to symplectomorphism)
as the pullback of Qs by the Kodaira embedding determined by any basis.

Note that w4 is well-defined (up to symplectomorphism) because the space of bases of sections
of A is path connected, and so any two such pullbacks are connected by a cohomologous path of
symplectic forms. In particularly, they are symplectomorphic by the Moser trick. m]

Lemma 3.21. If A(0) is a moment domain, then for any compact subset X < Yp ~ int(Xx(,)), there is a
symplectic embedding X — (Y, wa).

Proof. We use the gradient Hamiltonian flow as in [27, §7] on X = X(Y,, m). Consider the real
part h: X — R of the projection 7 : X — C and consider the following vector-field V on X'.
Vh
Vi=———
(Vh,Vh)

Here (—, —) is the associated Riemannian metric to (), and V is the gradient vector-field with
respect to this metric. For sufficiently small ¢, we have a flow

. [0, t] xX —>X with W0|X =1d

By [27, Prop 7.1] ¥, is a symplectic embedding to Y; which is symplectomorphic to (Y, w4). O
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3.4. Construction of Kaveh embeddings. We conclude this section by applying §3.3 to the
construction of symplectic embeddings from toric domains to projective varieties.

Let (Y, A) be a smooth polarized variety equipped with a flag Y,. Recall that the Newton—
Okounkov body of (Y, A) with respect to Y, is defined by

A(Y,A,Y,) = lim 1 “Am(Y,AYS) where Am(Y,A,Y,) = conv(vy, (HO(mA)))

m—oo M

The limit here is a Hausdorff limit of sets.

Proposition 3.22 (Kaveh Embeddings). Let (Y, A) be a smooth, polarized variety with a flag Y, and
let X < Xq be a subset of the interior of the toric domain with moment polytope

Q= %Am (Y,A,Y,) for some m

Then there is a symplectic embedding X — (Y, wa).

Proof. After passing to a multiple of m we may assume that mA is very ample and that mQ <
int(A, (Y, A,Y,)). Pick a basis ¢ of sections of H'(mA), so that A, (Y, A,Y,) = A(c). By our
hypothesis, A(0) is a moment domain and /m - X < int(X,(,)). Here 1/m - X denotes the scaling
of X as a subset of C". By Lem. 3.21 we have a symplectic embedding

\/%-X d (Y,a)mA)

By rescaling the symplectic forms on both sides by 1 we obtain the result. m]

In general it is possible that Q < A(Y, A, Y,) but mQ & A, (Y, A,Y,) for any m. In the case
of surfaces we have greater control from work of Kiironya-Lozovanu [29]. We begin with the
following definition.

Definition 3.23. Fix a pseudo-polarized surface (Y, A). We say that a valuation v: C(Y) — Z?is
A-generic if v = vy, for a flag Y, on a birational model 7t: Y — Y such that 7*A - Y1 > 0. We also
call the Newton-Okounkov body A(Y, A, v) A-generic when v is A-generic.

Example 3.24. If Y, is a flag on Y and A is ample then vy, is automatically A-generic.

Lemma 3.25. Let (Y, A) be a pseudo-polarized smooth surface and suppose that v = vy, is A-generic.
Then A(Y, A, v) is a convex moment domain.

Proof. Since A = A(Y, A, v) is a convex polygon we only require that it has two adjacent edges
on the coordinate axes. Observe that as A is big and nef we have N, = 0 for all sufficiently small
¢ = 0 and so the lower boundary of A contains the line segment between (0,0) and (¢,0) for
some ¢ > 0. The upper bound for A at t = 0 is given by By, (A,0) = A - Y1 > 0 by assumption
and thus the line segment between (0,0) and (0, A - Y7) is also contained in 0A. m]

Lemma 3.26. Let (Y, A) be a pseudo-polarized surface. If v is A-generic then A, (Y, A, V) is a convex
moment domain for all sufficiently large m € Z .

Proof. Following [29] we call a rational point in A(Y, A, v) valuative if it is of the form Lv(s) for
some s € HY(mA), hence is also a rational point in A, (Y, A, v). Since v is A-generic it follows
that a small right triangle A with corner at the origin is contained in A(Y, A, v). [29, Cor. B(ii)]
implies then that any rational point in A lying on the coordinate axes is valuative and hence lies
in some A, (Y, A,v). Choose two rational points of the form (a,0) and (0, b); these both live in
Am, (Y, A,v) for some m, € Z>y. Since the origin lies in A, (Y, A, v) when A is nef, taking the
convex hull we find that A,,, (Y, A, v) is a convex domain and therefore A,, (Y, A, v) is a convex
domain for all m > m,. O

We sum up the relevant conclusions from this section in the following corollary.
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Corollary 3.27. Let (Y, A) be a smooth polarized surface. Suppose Y, is a locally smooth flag on Y with
associated Newton—Okounkov body A = A(Y, A,Y.). If a moment domain () satisfies QO < int(A) then
there there is a symplectic embedding Xqo — (Y, wa).

Proof. This follows since in the situation of Kaveh embeddings we only consider valuations from
flags on Y, which are A-generic by Ex. 3.24 when A is ample. m]

4. ALGEBRAIC CAPACITIES

In this section we apply the tools developed in §2-3 to prove the main results of this paper on
algebraic capacities and symplectic embeddings.

4.1. Definition and properties. We begin by recalling the definition of the algebraic capacities
of a (weakly) polarized surface. These are an algebraic incarnation of ECH capacities.

Definition 4.1 ([46, Def. 1]). The kth algebraic capacity chg(Y, A) of a weakly polarized surface
(Y, A) is given by

(®) A, A)i= | inf {A-D: x(Or(D)) > k o+ x(Ov)}

Definition 4.1 is a kind of isoperimetric problem on the nef cone of Y. The pairing A - D is an area
quantity — when A is ample it is explicitly the symplectic area with respect to w4 —and x(Oy (D))
is a volume or index quantity measuring in some sense the moduli of the divisor D.

We will require several features of these invariants, including simplifications in sufficiently
nice cases. These features are all found in [46, §2] and apply whenever A is big and nef.

Lemma 4.2 (Minimizer). There is a nef Z-divisor realising the infimum ().

Lemma 4.3 (Alternative Formulas). Let (Y, A) be a pseudo-polarized surface. Then we have the
following alternative formulas for the algebraic capacities.

e (Toric) If Y is toric, then

alg _ ~hom - : . . 1,0 >
PR A) = (Y, A) = inf (A-D (D) > K+ 1)

e (Pseudo-Effective) If Y is smooth or toric, c*'8 can be computed with pseudo-effective divisors

¢M™(Y,A)= inf {A-D:x(Oy(D))=k+ x(Oy)}
DeNE(Y)z

o (Effective Anticanonical) If —Ky is effective, then it is equivalent to optimise over pseudo-effective
Q- or R-divisors, and moreover in this case

cMB(Y, A) = chom(y, A)
e (Index) If Y is smooth or has only canonical singularities then

alg .
Y,A) = t {A-D:I(D) =2k
(Y, A)= | inf {A-D:1(D)>2k)

where 1(D) denotes the index of the divisor D (c.f. [12, Prop. 4,31) given by the formula
[(D):=D - (D = Ky) = 2(x(Oy(D)) = x(Oy))
Finally, the following result provides a connection linking algebraic capacities to ECH capacities.

Theorem 4.4 ([45, Thm. 1.1] + [8, Thm. 1.5]). Let (Y, A) be a polarized rational surface that is either
smooth or toric. If (X, w) is a star-shaped domain that symplectically embeds into (Y, wa) then

cMNX, w) < cIB(Y, A)
Moreover, if (Y, A) is toric with moment polytope (2 < Rz;o then
M (Xa) = (Y, A)
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4.2. Weight sequences. We next introduce an algebraic analogue of weight sequences.

Definition 4.5. A tower of (pseudo-)polarized rational surfaces (), A) is a sequence

(%) Y, nflm“'ﬂ,ylgyoz[p?-

of one-point blowups such that each surface ¥; comes with an ample (or big and nef) R-divisor
A; satisfying
A() = OPZ(C) Al‘ = n;kAi,1 — (Zl‘Ei
Here E; is the exceptional fibre of the blowup 7t;. The weight sequence of (Y, A) is
wt(Y, A) = (c;a1,...,a,)

We say that a pseudo-polarized rational surface (Y, A) admits the weightsequence w = (c; a1, ..., ay)
if there is a tower (Y, .A) with wt(), A) = w and a birational morphism ¢: Y, — Y with
Qp*A = Ay.

Remark 4.6. We note that this sense of weight sequence has been used or observed in several
previous works including [14, 46,47].

Weight sequences are particularly useful when they satisfy some additional hypotheses.

Definition 4.7. The weight sequence w = (c;ay, ..., a,) of a tower (), A) is called

e positive if there is a (possibly different) tower (), A’) with weight sequence w such that
each of the surfaces Yl.’ in the tower has effective anticanonical divisor,

e polytopal if there is a (possibly different) tower (), A") with weight sequence w such that
each surface Y;, each blowup 7;, and each divisor A; is toric.

Equivalently, a weight sequence w is polytopal if it is the weight sequence of a convex, rational-
sloped moment domain (see Def. 3.7). Note that polytopal weight sequences are positive.

The main result of this section is that, in the positive case, algebraic capacities are determined
by the weight sequence. This is analogous to similar results for ECH capacities [12, Thm. A.1].

Proposition 4.8. Let (Y, A) and (Y’, A") be two pseudo-polarized rational surfaces with the same positive
weight sequence w = (c;ay, ..., a,). Then the algebraic capacities of (Y, A) and (Y', A") coincide, i.e.

cilg(Y,A) = cilg(Y’,A’) forall  keN
We will make significant use of the fact that czlg(Y, A) can be computed using nef divisors or
effective divisors [46, Prop. 2.11].

Proof. First, assume that (Y’, A") = (Y;, A},) for some tower (), A’) where each surface Y/ has
effective anticanonical divisor.

Begin by noting that a tower as in (*) induces an identification Pic(Y)r =~ R where p is
the Picard rank of Y as follows. Let p; = 1, o my_1 0 --- o m;41 and select the natural basis
{H,B1,...,By} of Pic(Y)Rr given by

H =By = pyOp2(1) and B; = pE;

In this basis, the intersection pairing Qy on Pic(Y)g is the diagonal bilinear form

1 0
O - Idn

We have an analogous basis {H’, B}, ..., B} of Pic(Y')r ~ R and thus an isomorphism
@ : (Pic(Y)r, Qy) ~ (Pic(Y')r, Qy)  suchthat  ®(Ky) = Ky
We will mostly use the notation D’ = ®(D). Note that the index of D and D’ agree since
I(D) =D+ (D~ Ky) = D' - (D' — Ky)) = (D)
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Also note that if a divisor class D has positive index then D - H > 0 (or equivalently D’ - H' > 0).
We next claim that ® and ®~! map nef divisors of positive index to effective divisors. That is

(4.1) ®({D e Nef(Y)z : I(D) > 0}) = NE(Y')z

(4.2) O 1({D’ € Nef(Y')z : I(D') > 0}) = NE(Y)z
We first prove (4.1). Choose D € Nef(Y)z. Since I(D) = I(D’) > 0, we have
0>-D-H=-D"-H
Since H' is nef, —D’ cannot be effective. Therefore
h*(D') = h°(K}, — D’) = 0
It then follows from I(D’) > 0 that h°(D’) > 1 and thus that D’ € NE(Y’)z. To see (4.2), note that
if D is an ample Z-divisor on Y then
I(mD) = mD - (mD — Ky) = m*D*> —mD -Ky >0 forallm » 0

In particular, the ample cone over R can be written as

Amp(Y)r = cone{D € Amp(Y)z : I(D) > 0}
Note that for a subset S < Div(Y)z, we have a well-defined (closed) dual cone

SY =cone(S)" :={DeDiv(Y)z:D-S >0forall S € S}

Since the closure of the ample cone is the nef cone, and the effective cone and the nef cone are
dual, we have

(4.3) {D e Amp(Y)z : I(D) = 0}¥ = Amp(Y)y = NE(Y)z
On the otherhand, we know by (4.1) that
(4.4) {D e Amp(Y)z : I(D) =0} < ®}(NE(Y')z)

By dualizing (4.4) and applying (4.3), we acquire (4.2) as follows.
NE(Y)gr 2 @ /(NE(Y')y) 2 @ '({D € Nef(Y')z : I(D) > 0})

Finally, we show that the algebraic capacities of (Y’, A’) and (Y, A) bound each other. Simply
apply (4.1) to see that

¢B(Y, A= inf {A'-D':I(D')>2k}> inf {A-D:I(D)=2k}=c 8(Y,A)
D’eNE(Y")z DeNef(Y)z

\%

The opposite direction is an identical use of (4.2). This concludes the proof in the case where
(Y, A") = (Y, A,) for a tower (), A') where each surface Y! has effective anticanonical divisor

In the general case, by Def. 4.7, there is a tower ()", A”) with weight sequence w such that
each surface Y/ in the tower has effective anticanonical divisor. Thus by the special case, we have

Cilg(Y/A) = Cilg(Yé/,AZ) = Cilg(Yé,A;) for each k O

Remark 4.9. The proof of Prop. 4.8 used the mutual identification of the Picard groups of Y and
Y’ to RP with the given bilinear form to translate between divisor classes on Y and Y’, and to
convert positivity properties on Y (nefness, index sufficiently large) to positivity properties on
Y’ using appropriate vanishing. This implies that a tower with effective —Ky is the most efficient
way to blow-up, in the sense that the effective cone is maximised. We expect that towers where
the centres are in very general position will have ‘minimal” effective cone in this sense.

Remark 4.10. The proof of Prop. 4.8 simplifies if —Ky is effective, since the use of (4.1) also works
in place of (4.2).
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In practice, it is often more convenient to show that a weight sequence is polytopal than
positive as this is demonstrable through purely combinatorial arguments and, as we shall see,
plays well with the theory of Newton—Okounkov bodies.

Example 4.11. Note that any weight sequence of the form (c, ¢1, ..., ¢,) with ¢; > 0 small relative
to c is polytopal and hence positive. One can thus compute the algebraic capacities of any pseudo-
polarized rational surface coming from a tower with this weight sequence by the much easier
task of computing the algebraic capacities for a toric surface with this weight sequence. We will
develop this further in §5.3.

4.3. Calculation via Newton-Okounkov bodies. We now use Newton-Okounkov bodies to
compute algebraic capacities and prove general embedding results.

Theorem 4.12. Let (Y, A) be a pseudo-polarized smooth rational surface. Suppose (Y, A) has a Newton—
Okounkov body A whose weight sequence is admitted by (Y, A). Then, the ECH capacities of F and the
algebraic capacities of (Y, A) agree:

cMB(Y, A) = ¢S (Fy)
If A is A-generic then

cMB(Y, A) = ¢SM(Xa)
Proof. By assumption the weight sequence of (), A) is polytopal and so positive. Therefore we
can apply Prop. 4.8 to see that

cTB(Y, A) = c¥(Ya, An)

The algebraic capacities of a toric surface agree with the ECH capacities of the corresponding free

toric domain [45, Thm. 1.1] and with the toric domain Xj if A is A-generic and hence a moment
domain. ]

As an application of Thm. 4.12 we have the following sharp embedding result.

Corollary 4.13. Let (Y, A) be a polarized smooth rational surface. Suppose there is a Newton—Okounkov
body A(Y,A,Y.) coming from a flag Y, on Y such that (Y, A) admits the weight sequence wt(A). Then
for any concave moment domain C the following are equivalent:

(@) N (Xq) < cIB(Y,A)forall k € N.

(b) There is a symplectic embedding X.q — (Y, wa) forany 0 < ¢ < 1.
Proof. First, (b) implies (a) by Thm. 4.4. To show that (a) implies (b), let A := A(Y, A, Y,) be the
Newton-Okounkov body (Y, A). By Thm. 4.12 we know that
e (Xp) = SN (Fa) = cB(Y, A) > SN (Xq)

Then by Cor. 3.27 and Prop. 3.10 we have for any b, c with 0 < ¢ < b < 1 there is a symplectic
embedding

Prop. 3.10 Cor. 3.27

Xea Xpa (Y, wa) o

4.4. Asymptotics via Zariski decomposition. We next apply Zariski decomposition to study the
asymptotics of ECH capacities.

In [46, Thm. 4.2] it was shown that for a big and nef divisor A on a smooth or toric projective
surface Y we have
(AP
lim ———
k—o0 k
This matches the asymptotics found by Cristofaro-Gardiner-Hutchings-Ramos [15] for ECH
capacities. We generalise this to cover the case where A is a big divisor.

= 2A?
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Proposition 4.14. Suppose (Y, A) is a smooth or toric weakly polarized surface. Then

i AP

Him p = 2vol(A)

Proof. Asin [46, Prop.4.19], we reduce the toric case to the smooth case using a limiting argument.
Let A = P + N be the Zariski decomposition of A and suppose that P is a R-Z-divisor

P = gPy with Py e Div(Y)z and g € R~g
We observe that I(dxPy) = diPo - (dxPo — Ky) is bounded below by 2k when
1

= E (Po . Ky + \/(PO . Ky)2 + 8kpg>

d

Vv

Thus for d satisfying this bound, the algebraic capacities satisfy
1 2
(0L AP (diA- Py ([dilaPg)
k - k B k
Taking the limit as k — o0 and applying Lem. 2.14, we find that

alg 2 2p2
c,°(Y,A 2kg-P.
lim M < lim 179

= 2¢°P5 = 2P? = 2vol(A)

Continuity implies that the same result holds for any big R-divisor A — note this indeed follows
since if A is a Q-divisor then so are P and N by Prop. 2.13. Hence if A is an R-Z-divisor then so
are P and N.

For the converse inequality we observe that for any nef divisor D we have A - D > P - D since
N is pseudo-effective. Hence

alg 2 alg 2
Cc Y, A c Y/ P
calg(Y,A) > calg(Y,P) and thus lim L) > lim L) = 2P% = 2vol(A)
k k k—o0 k k—o0 k
since P is big and nef and so [46, Thm. 4.2] applies to (Y, P). ]

Remark 4.15. The main philosophical takeaway is that for large k, the optimisers computing the
kth algebraic capacity are close to multiples of the positive part P of A. Thus we can approximate
the kth algebraic capacity with multiples of P.

Example 4.16. Consider the big non-nef divisor A = H + Eon Y = dPs. H is the positive part of
A and

(Y, A) = ¢TB(Y, H) = ¢ B(P?,0(1))
We also recreate results from [46, §3] for big divisors to study their sub-leading asymptotics.

Lemma 4.17. Suppose A is a big Z-divisor on a smooth surface Y and let A = P + N be its Zariski
decomposition. Suppose that D is an optimizer for the algebraic capacities in that

D-A=c®(Y,A) where k=I(D)
Then if 1(D) is sufficiently large, D + P is also an optimizer.
(D+P)-A=c"8(Y,A)  where 1=1I(D+P)

Proof. The argument exactly follows [46, Prop. 4.5] where the only extra ingredient required is
the fact that P- D — oo as I(D) — oo, which followed automatically when P = A. This follows

in general since P - D > c;:lg(Y,P) — was k =I1(D) — . ]
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Corollary 4.18. Let A be a big R-Z-divisor on Y with Zariski decomposition A = P + N. Let P = qPy
for Py a primitive Z-divisor. Then there are ko € Z>pand s; < --- < s, € Rsuch that s, —s1 < qu and

cilg(Y,A):k>k0} :{si+qu§:m>0,i=1,...,r}

Proof. This follows the proof of [46, Cor. 4.6] with Lem. 4.17 playing the role of [46, Prop.4.5]. O

It also follows that optimisers for cilg(Y,A) for large enough k take the form D; + mPy for

some fixed set {Dq, ..., D,} of effective divisors and m > 0. We can conclude from this that the
sub-leading asymptotics of cilg(Y, A) are O(1) but nonconvergent when A is a big R-Z-divisor,
matching the conclusion in the big and nef case [46, Thm. 4.10]. The proof is identical given our
setup.

Corollary 4.19. Let (Y, A) be a weakly polarized surface that is either smooth or toric. If A is an
R-Z-divisor then the error terms

eMB(Y, A) i= cIB(Y, A) — \/2vOl(A)k

are O(1) and nonconvergent with

liminfe"®(Y, A) = %KY - Aand limsup e!'®(Y, A) = %Ky . A+ gap(Y,A)

k—co k—o0

where gap(Y, A) > 0 is defined in [46, Def. 4.8].

4.5. Homological formula via Zariski decomposition. We end this section by applying the
Zariski decompoisition to slightly generalising a reformulation of algebraic capacities using
pseudo-effective R-divisors appearing in [8,46]. We do not require this result elsewhere in the

paper.
Proposition 4.20. If (Y, A) is a pseudo-polarized Q-factorial surface then

inf {A-D:h°D)=>k+1}= inf {A-D:h(D)=k+1}
DeNE(Y)g DeNef(Y)z
Prop. 4.20 shows that the homological version of the algebraic capacities can be evaluated by
considering either nef Z-divisors or pseudo-effective R-divisors. In the toric case or the weak del
Pezzo case [46, Cor. 2.5], we can conclude the same for algebraic capacities.

Proof. Since both sides are invariant under blowup and pullback, we may assume that Y is smooth.
The < inequality is clear. Let D be a pseudo-effective R-divisor and let D = P + N be its Zariski
decomposition. Since N is pseudo-effective we have A - D > A - P. Since h°(P) = h%(D) > k + 1
we have

A-D>A-P> inf {A-D:hD)=k+1}
DeNef(Y)g

and so

inf {A-D:h’D)=k+1}> inf {A-D:h°D)=k+1}
DeNE(Y)g.z DeNef(Y)gr

Let P be a nef R-divisor. Note that
A-|IP|<A-P and  K(P)) = K'(P)

and so |P| is a candidate Z-divisor to evidence the result of the proposition. However, | P| may
not be nef. The solution is to take the Zariski decomposition of |P| and iterate. More precisely,
let Py be a nef R-divisor and let the Zariski decomposition of | Pg| be P1 + Nj. If Ny = 0 then | Po|
is nef and we are done. If not, continue by setting

|Pi] = Piy1 + Nij1
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Note that

A-Pi=A - |Pi|=A-Piyq and hO(PZ‘) = ho(lPiJ) = hO(Pi_H)
so that P;,1 is preferable to P; from the perspective of the optimisation problems in the proposi-
tion. Let P; = >}, a;Dp so that a;“ < [aéj. By property 3. of Zariski decomposition in §2.3 each
a, is a decreasing sequence that is bounded below (by zero) and thus converges. By construction
the limit must be an integer and so the divisors P; converge to a Z-divisor. Since the nef cone is
closed this limiting divisor is a nef Z-divisor and the result is proven. O

Remark 4.21. Note that h%(mP;) = h°(mP;,1) for m > 1in general due to taking the round-down.
Similar results were used in [8,9,46] to relate ECH capacities to algebraic capacities by connecting
Seiberg—Witten or Gromov-Witten invariants to nefness. We anticipate that arguments of this
type will be useful in relating other symplectic invariants to birational qualities of divisors.

5. EXAMPLES AND APPLICATIONS

In this section, we provide several families of examples that our main results on algebraic
capacities (Thm. 4.12) and symplectic embeddings (Cor. 4.13) apply to. In particular, we compute
Newton-Okounkov bodies with suitable weight sequences for these examples.

Remark 5.1. All Newton—-Okounkov bodies considered from this point will be automatically
A-generic and so we omit this from the discussion for brevity.

5.1. del Pezzo 5. As a first example we consider the del Pezzo surface Y of degree 5 polarized by
its anticanonical divisor A = —Ky. This the highest degree non-toric del Pezzo surface, obtained
by blowing up P? in four general points. Consider the flag Y, = {y € Y1 < Y} where Y; is a
(—1)-curve and y is a general point on Y;.

Claim 5.2. The Newton—Okounkov body A = A(Y, A, Y,) is as depicted in Fig. 4.

This has weight sequence (3;1,1,1,1) as computed in Fig. 5, which coincides with the algebraic
weight sequence of the natural tower presentation of (Y, A). Therefore Cor. 4.13 implies that
the algebraic capacities of (Y, —Ky) sharply obstruct embeddings of concave toric domains into
(Y, A).

Ficure 4. Newton-Okounkov body for del Pezzo 5

Ficure 5. Weight sequence decomposition for A
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Proof of Claim 5.2. We compute A explicitly by analyzing Zariski chamber crossings. Note that
the effective cone of a del Pezzo surface is generated by its (—1)-curves hence we need only test
against these curves to verify nefness. We follow the notation of [21, §3.1] for (—1)-curves on Y
as shown in Fig. 6. In particular, we denote by E1, Ey, D3, D5 the exceptional curves on Y. There
are then two 5-cycles of (—1)-curves D + --- + Ds and Eq + - - - 4+ E5, each in the class —Ky.

FiGcure 6. (—1)-curves on del Pezzo 5

.

NN

El\ENDA;
L\ Es

\
D E, D; —

b, WX

We denote by : Y — P2 the blowup in the four points corresponding to Ej, E;, D3, D5 in
Fig. 6. Pick Y1 = Dj for concreteness. The divisor A; whose journey through the Zariski chamber
decomposition determines A is given in the basis H = n*Op2(1), E1, E2, D3, D5 by

Ay =3H—-E1—Ey;—D3—Ds—tD1=83—-t)H—-(1—t)Ey —Ey; — D3 — (1 —1t)Ds
This is nef for 0 < t < 1; indeed, it is apparent that A; - E; < 0 when t > 1. Hence, Py = A; and
Ny =0for0<t <1 Sett=1+s. We can write
A; = Py + N;  where Pt2(2*25)H*(1*S)E2*(1*S)D3
Ni =sH + sEy —sEy — sD3 + sDs

and can verify that P; is nef and N; is effective for 1 < t < 2 or equivalently 0 < s < 1. Indeed,
N¢ =5s(E1+ Dy + Ds) and Py - H < 0 for t > 2. Further, P; - N; = 0 giving that this is the Zariski
decomposition for A; in this interval. As indicated by the intersection with H, for ¢ > 2 we find
that A; is no longer big and so by [32, Thm. 6.4] the functions ay, (4, -) and By, (4, -) carving out

A are supported on [0,2]. In this case the lower boundary ay,(4,-) = 0 since Ny = 0 and N;
never acquires new components meeting y € D1. The top boundary is given by

By.(A,t)=Pi-D1 = {

1+t 0<t<l1
4-2t 1<t<2
producing the polygon in Fig. 4. m]
5.2. del Pezzo surfaces. As a more sophisticated example we consider a polarized del Pezzo
surface (Y, A) presented as a tower (), A) as in (x) with weight sequence (c; a1, ..., a,). We fix a
flag Y, of the following form:
Y=yeE,CY

where E, is an exceptional curve from some 7t, on Y and y € E, is an arbitrary point. Let A be
the associated Newton-Okounkov body A = A(Y, A, Y,).
Proposition 5.3. Let r be the Picard rank of Y and suppose that any of the following criteria holds.

(1) r<5

(2) r<7andc — Z?:l aj; = 0 for all distinct iy, . .., is.
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(3) r<8andc — 2]6'=1 aj; = 0 for all distinct iy, . . ., ie.

(4) r < 9 and in addition to the inequalities from (3) we have 3c — 22]7=1 aj; = 0 for all distinct
i1,...,107.

Then the Newton—Okounkov body A associated to the flag Y, has weight sequence equal to the algebraic
weight sequence of the tower (Y, A).

Each of the inequalities in (2)-(4) is quantifying that c is appropriately large relative to ay, . . ., a,.

Proof. We proceed by induction on the Picard rank. For the base case, if Y has Picard rank at
most 4 then Y is toric, hence each (—1)-curve is torus-invariant and so by [32, §6.1] the Newton—
Okounkov body A for the flag Y, is the moment polytope of (Y, A). In particular, it is polytopal.

In general, suppose the statement is true for polarized del Pezzo surfaces of Picard rank n and
suppose (Y, A) is a polarized del Pezzo surface of Picard rank n + 1. Without loss of generality
assume that E, is not the exceptional curve from the final blowup in the tower and consider the
blowup map m,: Y — Y;_1 from contracting the final exceptional curve E,,. Note that ¥;,_1 is a
del Pezzo surface of Picard rank n and that A = ®j;A,—1 — a,E, for some ample divisor A,,_; on
Y, —1 so that (Y,,_1, Ay—_1) is another polarized del Pezzo surface.

E, can be viewed as a (—1)-curve in Y,_; and, further, the inequalities holding between
c,ai,...,a, imply the analogous inequalities hold among c, ay,...,a4,—-1. Thus the Newton-
Okounkov body A(Y,—1, A,—1, Y.) has the same weight sequence (c; a1, ...,a,-1)as (Y1, An—1)
where Y, is the flagy € E, < Y.

We will show in each case that the Newton—-Okounkov body associated to A with respect to
the flag Y, : y € Eg € Y is obtained from A(Y,,_1, A,_1,Y.) by slicing with a hyperplane in such
a way that a reqular triangle (i.e. the SL(2,Z) image of a right, isosceles triangle) of height (and
width) a, is removed. This will show that the weight sequence of A(Y, A, Y,) is obtained from

the weight sequence of A(Y,,_1, Ay—1,Y.) by concatenating with {a,}, which is by construction
how one obtains the weight sequence of (Y, A) from the weight sequence of (Y;,_1, A,—1).

From Ex. 2.16 we can explicitly describe the Zariski chamber decomposition for Big(Y): in this
case the Zariski chambers are carved out by the hyperplane arrangement

{CL}C2<0

Asin §2.4 we write (¢, h) for points of Newton—Okounkov bodies in R2. Recall that the functions
defining the upper and lower boundaries of A(Y, A, Y,) have breaks exactly when A; = A — tE,
crosses into a new Zariski chamber; in other words, when A; - C = 0 for some (—1)-curve C on
Y. Writep: Y — P2 for the total blowup map, which factors throughamap p: Y,,—1 — P2. Write
H = p*Op2(1). We compare the (—1)-curves on Y to those on Y;_1. They split into four classes:

(i) C = m*C for some (—1)-curve C < Y1,
(ii) C=E,,
(i) C=H—-E;—E,,
(iv) C is the strict transform of a curve of degree > 1 in P? passing through the point p(E,,).

Note that the centre of the blowup : Y — Y,_; cannot be on any (—1)-curve and so all (—1)-
curves in Y;,_1 lift to (—1)-curves in Y. The main work of the proof is contained in the following.

Claim 5.4. If the weight sequence of (Y, A) satisfies one of the conditions (1)-(4), then the only (—1)-curves
C inducing a wall C* that A; meets as t varies are those from (i) and C = H — E, — E,,.

For clarity we write A=A,_q1and A; = A,_1 — tE,. Note for a curve C = t*C in (i) we have

A;-C = (nfA—ay,E—tE,) miEy = ni(A—tE,) -niC=A;-C
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— —
Hence any wall C; that A; hits at t = ¢; also defines a wall C ZL that A; hits at t = ¢;. This proves
the part of Claim 5.4 regarding curves in (i).

We claim that any curve C defining a wall that A; meets must be supported on E, when written
in the basis H, Ey, ..., E, of Pic(Y). Indeed, if C has no E, component then A; - C = A-C > 0.
Thus, the remaining relevant curves fall into the subclasses:

(lll’) C = H - E* - En/

(iv’) C is the strict transform of a curve of degree > 1 in P? passing through the points p(E)

and p(E.).

The curve C = H — E, — E,, in (iii") does describe a wall that A; passes through since
A;-C=(n*A—a,E, —tE,)-(H—E,—E,)=A-(H—E,) —a, —t
and so A; meets this new wall at t = £, := A - (H —E,) — a,. Indeed, in this case we find that
the upper bound p for t is given by A - (H — E,) = A- (H — E.) for both A(Y,,_1,4,Y.) and
A(Y,A,Y,). This follows since H — E, is a O-curve on Y;,_1 and Y, and when A; - (H — E,) =0
we see that A; has met the corresponding face of the effective cone. We see then that t, = u —a,
and thus defines a new vertex of A(Y, A, Y,) compared to A(Y,—1, A, Y.).

It remains to show that in each of the relevant cases all curves C in (iv’) define a wall that A;
does not meet inside Big(Y). We write

n
C=dH — Z b,E;
i=1

where d> — Y7 | b? = —1 and b,, b, > 0. Compute
n
Ay C=A-(dH — ) biE;) — bt
i=1

so that if A; did meet C+ it would be when

n

1 u 1
t=t,:= b_A - (dH — Z biE;) = b—(cd — Z a;b;)
* i=1 * i=1

We show that A;, is not big, equivalently ¢, > u, and so A; does not meet C* inside Big(Y).
(1) When the Picard rank of Y is 5 there are no (—1)-curves on Y of the type (iv’). Hence the
proof of this case is complete.
(2) When the Picard rank of Y is 6 or 7 the only (—1)-curves of the type (iv’) are strict
transforms of conics passing through five of the blowup centres. The classes of these
curves take the form

2H — E;, — Ej, — Ei, — Ei, — Eis

From our previous observations it is sufficient to consider the curves
2H —E.—E, —E; —E; — Ex
where b, = 1. We find that t, > u precisely when
to—u=A-(C-H+E,)=c—ay—a;—aj—a, =0

as required in the statement of Prop. 5.3.

(3) When the Picard rank of Y is 8 we obtain a further class of (—1)-curves from the strict
transform of cubic curves in P2 with a double point at one the blowup centres and passing
through six others. The class of such a curve is

3H —2E;, —Ej, — - — Ej,
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and again we only need consider such curves passing through p(E.) and p(E,). There
are two cases to consider: either b, = 1 or b, = 2. If b, = 2, namely the double point of
the cubic is at p(E.), we have

2(t<>—y)=A~(C—2H+2E*)=c—ai1—~~~—a1-6

which is nonnegative by assumption. This also implies the inequalities in (2) for conics.
If b, = 1 then

to—u=A-(C—H+E,) =2c—2a;, —aj — - — aj

where we choose i7; = x and this is nonnegative from the inequality in the b, = 2 case
and the fact that ¢ > a;,.

(4) When the Picard rank of Y is 9 performing the same analysis with the new (—1)-curves

coming from strict transforms of certain quartics, quintics, and sextics in P2 again yields
that t, > p when the inequality in the statement of Prop. 5.3 holds. In this case the
additional inequality comes from the sextic in P? with a triple point at p (E,) and a double
point at p(E;) for each i = *.

This proves Claim 5.4. We have shown that A(Y, A,Y,) is obtained from A(Yn,l,z, ?.) by

slicing with a half-space whose boundary line passes through the point (u — a,, By (A, pt — an)).
We conclude the proof by noting that the slice we remove must correspond to removing a regular
triangle of side length a, from A(Y;_1, A, Y.) as the volume of the two polytopes differs by a,
and we have already located an edge of length a,,. m]

5.3. Rational surfaces of higher Picard rank. Next, we turn our attention to rational surfaces
obtained by blowing up nine or more points in P2,

Let (Y, A) be a polarized rational surface presented as a tower (), A) as in (x) whose only

negative curves are rational (—1)-curves. Write n + 2 for the Picard rank of Y and let E, be an
exceptional curve on Y. Denote the weight sequence of (Y, A) by (c; a1, ..., an41)-

Lemma 5.5. Let C be a rational (—1)-curve on the polarized surface (Y, A) of the form

n+1

C=dH — Z b,E;
i=1

Then if n = 3 and d > 2 we have

bién—Z

-d foralli=1,...,n+1

Proof. After reordering we may assume that b, ;1 is the largest b;. We note that

n+1 n+1

Db =d+1 > bi=3d-1
i=1 i=1

Clearly b, 41 < d — 1since d > 2 and so write b, .1 = d — k for some k > 1. We then have

n n n n
Mb?=2kdi—k*+1 > bj=2d+k—1  and thus b7 <k )b
i1 i=1 i=1 i=1

By applying the Cauchy-Schwarz inequality to the latter bound, we find that

n 2 n n n
( bl-) <7D 1=n) b7
i=1 i=1 i=1 i=1

Thus we get the following bound relating d, k and n.

: S b2
2d+k—-1= Z bi<n- :; L<kn or equivalently d
i=1 Zz‘=1 bi

kn —k+1
< —
2
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Since % is an increasing sequence in d, this gives us the following bound.
%) Egbn+1:d—k<kn—3k+l
d d d kn —k+1
The upper bound in (*) is decreasing in k and so the smallest value k = 1 is optimal. m]

Proposition 5.6. Let (Y, A) be the polarized rational surface above and suppose that its weight sequence
satisfies
n_2 n+1
0 x5
i=1
Let Y, be the flag {y € E. < Y} for an arbitrary point y € E.. Then the Newton—Okounkov body
A(Y, A,Y,) has weight sequence equal to the weight sequence of (), A).

Proof. We essentially repeat the argument from Prop. 5.3. Note that, as for del Pezzo surfaces,
the Zariski chambers for Y are carved out by the hyperplanes

{CL fez<o

in this setting [2, Prop. 3.4]. We again study a blowdown (Y, A) of (Y, A) obtained by contracting
an exceptional curve other than E,; equivalently, omitting the corresponding term from the
weight sequence. Observe that if (Y, A) satisfies (f) then so does (7, Z) since the Picard rank
of Y is n + 1 and the quantity »; a; decreases with blowdown. Arguing recursively as before
with base case a toric del Pezzo surface leaves us needing to show that every (—1)-curve in (iv’)
defines a wall that does not meet A; inside the big cone. Fix such a (—1)-curve C whose class is
notated as in Lem. 5.5 and define ¢, and u as above. We compute

n+1
bu(to—p) =A-(C—bH+DbE) = (d—b.,)c— Y. ab; +a,b,
i=1

Using the bound from Lem. 5.5 we have

n-—2 (AR 2 g2
b*(tou)><d » d)CZ " d(ll‘zd(;c " Zai

i=1 i=1

and the right-hand side is nonnegative when (1) holds. m|

Remark 5.7. A weaker version of the well-known SHGH Conjecture [19, Conj. 0.1] or [11,
Conj. 2.2.3] states that any tower of very general blowups of P? produces a rational surface
whose only negative curves are rational (—1)-curves, hence a surface to which Prop. 5.6 applies.
We note that, like the Nagata Conjecture, the SHGH Conjecture is still very much open.

5.4. Pseudo-polarized surfaces from toric degenerations. We conclude this section by dis-
cussing how degenerations can produce projective surfaces that are ‘more generic” with respect
to their tower presentations. We use this procedure to manufacture examples of surfaces that
Thm. 4.12 and Cor. 4.13 apply to.

As in [47, §2.4], weight sequences for pseudo-polarized toric surfaces are naturally indexed
by the infinite rooted binary tree 7 with root vertex o, controlling the inclusion of centers to
previous exceptional curves. We may view 7 as a poset with unique maximum oo and order

relation generated by edges. By padding with zeroes we can view all polytopal weight sequences
as elements of R7 := Rvet(7),

Definition 5.8. The space of all polytopal weight sequences P is given by
P:={(c,a;) e R” : a;e T\{oo} and (c, a;) = wt(), A) for a tower (), A)}

The set P, = P of polytopal weight sequences in R is the subset consisting of weight sequences
supported on p vertices.
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Proposition 5.9. The set of polytopal weight sequences P is a cone in R7. Moreover,

e T is concave with respect to the root component in the sense that

(c,ai)eP = (c',a;))eP if ¢

\%

c
e T is convex with respect to all other components in the sense that
(c,ai)e Panda; #0 = (c,a}) € P if  ap=a;>ajforallj<i

One can actually see that P is a cone directly from the framework of polarized Looijenga
towers in [47]. Here we provide a direct proof.

Proof. Suppose (c, a;) and (c’, a}) are polytopal weight sequences viewed in P. Let Q and Q' be
polygons corresponding to these weight sequences (or rather to the associated pseudo-polarized
toric surfaces).

We claim that the sequence (c + ¢, a; + ag) corresponds to the Minkowski sum Q + )’. This
is most easily seen algebro-geometrically. Let Y be a common toric blowup of Yq and Yoy and
let A, A’ be the pullbacks of Ag and A¢y to Y. From the definition of weight sequence we see
that the pair (Y, A + A’) has a tower with weight sequence (c + ¢/, a; + a;). From standard toric
geometry the polytope associated to A + A’ is the Minkowski sum of the polytopes associated to
A and A’, which are Q and )’ respectively as pullbacks of Ag and Agy.

It is clear that scaling a weight sequence corresponds to positively scaling the corresponding
polygon and so this immediately shows that P is a cone. Concavity in the root component
follows from noting that if A is the big and nef divisor corresponding to (c, a;) then (c + d, a;)
corresponds to A + p;Opa(d), which is the sum of a big and nef divisor and a nef divisor and
hence is big and nef. Convexity in the other components follows similarly from the hyperplane
arrangement description of toric divisors [42]. m]

Remark 5.10. Note that R” is not a nice cone. It is easy to construct weight sequences supported
on different sets of p vertices of 7 whose sum is hence supported on more than p vertices.

We next provide a more complete but much more implicit description of pseudo-polarized
rational surfaces with polytopal weight sequences.

Consider the flat family Blz(P? x P?) — P2 obtained by blowing up the diagonal Z < P2. The
fibers of this family are P? blown up once where the center of the blowup varies across all of
P2. Given c, a; > 0 the total space carries a line bundle ¢/ restricting to cH — a1E; on each fiber
where H is the pullback of Op2(1) and E; is the exceptional class. Repeating this process n times
yields a flat family % whose fibers are all possible n point blowups of P? (or towers of length
n), most occurring multiple times across the family, equipped with a line bundle & restricting
tocH —a1Ey — - — a,E, on fibers as above. A tower (), A) of length n with weight sequence
(c;ai1,...,ay,) is thus exactly a fiber of this family with its restricted line bundle.

Suppose now that (), A) defines a pseudo-polarised rational surface (Y, A) so that the re-
stricted line bundle A is big and nef. It follows from [39, Cor. 4] or [33, Ex. 1.4.5] that there is a
Zariski open set of fibers containing (), A) such that the restricted line bundle on each fiber in
this open set is nef. The self-intersection of each of these restricted line bundles is equal to A by
construction and so is in particular positive. By [20, Thm. 1.4.35] it follows that each restricted
line bundle is big and nef and hence each fiber in this open set defines a pseudo-polarised rational
surface. In this situation we say that a tower coming from a fiber in such an open set is a central
genericisation of (Y, A). This name comes from the picture that one is moving the centers of the
blowups defining (), A) into more general position (e.g. from blowing up torus-invariant points
on a toric surface to points not fixed by the torus action). We summarise this discussion in the
following proposition.
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Proposition 5.11. Suppose (Y, A) is a pseudo-polarized toric surface. If (Y', A") is any central generici-
sation of (Y, A) then A’ is big and nef.

Example 5.12. We consider the following example to illustrate the importance of y! being in
more general position than y;. Let Y be the del Pezzo surface of degree 6, obtained by blowing
up P2 in three general points. This is a toric surface with —Ky ample. This surface degenerates
to the surface Y’ obtained by blowing up P2 in three collinear points but —Ky is not even nef.
In this case the general fibre Y has ample anticanonical divisor but the special fibre Y’ has less
positivity.

The two results of this section combine to give access to many polarized rational surfaces with
polytopal weight sequences, hence whose ECH capacities can be combinatorially computed and
used to effectively obstruct embeddings. Note that the nef and effective cones of such surfaces
can be very complicated - e.g. [33, §1.5.D] — and so this is a major simplification. Prop. 5.9 gives
a method of producing new polytopal weight sequences from old ones, and Prop. 5.11 implies
that any pair (Y, A) admitting such a weight sequence produced by a tower of blowups with
sufficiently general centres is indeed (pseudo-)polarized and hence carries the structure of a
symplectic 4-manifold. We still require good Newton-Okounkov bodies in order to get the best
embedding obstructions as in Cor. 4.13 but Prop. 5.11 at least gives a large collection of cases
where this is potentially true, and Prop. 5.3 demonstrates this for many examples.

5.5. Infinite staircases for non-toric surfaces. Our final application concerns the complexity
of embedding obstructions phrased in terms of ‘infinite staircases’. It has been seen that the
obstructions from ECH capacities can be understood in terms of exceptional curves in blowups
of P2 [12,35]. Consider the ellipsoid embedding problem for a given symplectic 4-manifold
(X, w):

compute fx(z) := inf{r > 0:E(1,z) <> (X, rw)} forz > 1

It is often the case that only finitely many obstructions (coming from finitely many exceptional
curves) fully describe the structure of fx(z). In all cases where infinitely many obstructions fea-
ture, fx(z) takes the form of an infinite staircase with infinitely many points of nondifferentiability
accumulating to a point where the obstruction is prescribed by the trivial volume constraint [14].
The existence or non-existence of staircases is a significant open problem with some intriguing
conjectures such as [14, Conj. 1.20] and [34, Conj. 2.2.4].

The technology of Cristofaro-Gardiner-Holm-Mandini-Pires [14] and Casals—Vianna [7] to
study staircases is mostly focused on the (almost) toric case. The results of §4.3 and §5.2-5.3
allow questions about staircases for non-toric surfaces with suitable Newton—-Okounkov bodies
to questions about convex toric domains.

Example 5.13. To illustrate this, the existence of the Newton-Okounkov body with weight se-
quence (3;1,1,1,1) for the del Pezzo surface of degree 5 polarized by its anticanonical divisor
described in §5.1 implies that it has an infinite staircase. This follows from the corresponding fact
for any convex toric domain with weight sequence (3;1, 1,1, 1) from [14, Thm. 1.16]. This example
is already known [14, Rmk. 1.18] but it is a straightforward consequence of our machinery.

We present some more novel examples of our work to staircase questions.

Proposition 5.14. Let (Y, A) be a polarized del Pezzo surface. The ellipsoid embedding function of
(Y, wa) has no infinite staircase when:

(i) Y has degree 3 and (Y, A) has weight sequence

(c;1,1,1,1,1,1)  ford<c <

% ~ 457
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(ii) Y has degree 1 and (Y, A) has weight sequence

(c;1,1,1,1,1,1,1,1)  for6<c <

ﬂ ~ 6.76

Proof. First, the divisors A with weight sequences as in (i) and (ii) are indeed ample as the sum
of the (ample) anticanonical divisor and the nef divisor (¢ — 3)7*Op2(1). Observe that the lower
bounds on ¢ in each case imply by Prop. 5.3 that there is a Newton-Okounkov body for (Y, A)
whose weight sequence is admitted by (Y, A). It follows that an infinite staircase exists for (Y, w4)
if and only if it exists for the toric domain X,. In this context [14, Thm. 1.11] gives that if an
infinite staircase exists for Xy where wt(A) = (c; a1, ..., a,) then it accumulates at ag > 1 where

2 ((3C - %))

(*) (10
2
C2 § i al-

When c is bounded above as in (i) or (ii) one can verify that the discriminant of (%) is negative
and hence no accumulation point can exist. |

2>a0+1=0

Testing the discriminant is quite an unrefined way of establishing that staircases do not exist.
It is very possible that more extensive results on infinite staircases for non-toric surfaces are
achievable by combining our methods with other techniques from [13,14].
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