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Abstract—Communication at terahertz (THz) frequency bands
is a promising solution for achieving extremely high data rates in
6G wireless networks while supporting the emerging Ultra-Reliable
Low-Latency Communications (URLLC). To support the strict
QoS requirements, it is preferable to deploy a multi-access edge
computing (MEC) technology in the URLLC systems to improve
the latency and reliability performance of wireless communication.
Meanwhile, finite blocklength (FBL) coding has been established as
a powerful technique to substantially enhance various QoS metrics
for URLLC by enabling short-packet communications. However,
guaranteeing ultra-reliable and low-latency MEC (URLL MEC)
operating in FBL regime is very challenging due to uncertainties of
wireless links, limited communications and computing resources,
as well as dynamic network traffic. In this work, we investigate
the combined offloading decisions, blocklength optimization, and
computation and power allocation in a URLL MEC network
operating with FBL codes, where the short-packet technique is
adopted to meet the stringent QoS requirements of delay-sensitive
computing services. Given the formulated problem is a mixed-
integer non-linear programming, an innovative deep reinforcement
learning (DRL) solution, utilizing the double deep Q-network
framework is proposed to effectively enhance the optimization of
offloading strategies within the MEC network. Then, by leveraging
the optimized offloading decisions, the cost for each agent is
determined through the optimization of either transmit power and
blocklength or local computing resources. Simulation results show
that the proposed DRL scheme can effectively reduce the system
delivery delay in the MEC network and outperform the baseline
approaches.

I. INTRODUCTION

The forthcoming sixth-generation (6G) wireless cellular net-
work supports a variety of new applications with ultra-high
reliability and low latency (URLL) service requirements [1],
[2]. Among these emerging applications include, connected and
autonomous vehicles (CAVs), extended reality (XR), ivideo-
driven machine–human interaction with strict quality-of-service
(QoS) requirements on the end-to-end (E2E) delay (e.g., 1
ms) and reliability (e.g., 10−8 packet loss probability). Hence,
ultra-reliable and low-latency communication (URLLC), which
inherently incorporates reliability and latency as key factors
in network design, stands as a prominent use case within 6G
networks. To meet strict QoS requirements and achieve URLLC,
multi-access edge computing (MEC) is an attractive solution to
significantly reduce service delay by letting the user equipments
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(UEs) to offload their tasks to the base stations (BSs) in the
network rather than the remote cloud center [3], [4].

While promising, maintaining consistent performance in a
MEC-assisted network presents significant challenges due to the
inherent instability of wireless channel, stochastic task arrival,
heterogeneity of edge computing servers and computing tasks.
Therefore the performance of a MEC-assisted network not
only depends on the delay violation probability but also is
influenced by the decoding error probability. Specifically, to
facilitate URLLC, it is necessary to have a relatively short
coding blocklength. This means that the underpinning theory
of finite blocklength (FBL) coding needs to be considered [5],
[6]. In contrast to the infinite blocklength regime, where the
blocklength is considered unlimited, the FBL regime involves
a blocklength that is so short that data transmission can no
longer be arbitrarily reliable [7]. This results in a trade-off when
determining the optimal coding blocklength within the decision
strategy. Therefore, it is necessary to determine the proper
offloading decisions and recourse allocation for a MEC-assisted
network in FBL regime to guarantee the system performance,
including throughput, latency, and reliability.

In the literature, the majority of researches [8]–[12] inves-
tigate the MEC-assisted networks with joint communication
and computation design. In [9], the authors propose a novel
scheme to optimize the reliability of the MEC-assisted network
by considering the distribution of E2E service delay, encom-
passing over-the-air transmission and edge computing delay.
The authors in [8] present a multi-task learning based feed for-
ward neural network model to achieve an optimal computation
offloading strategy for the MEC-assisted network. The authors
in [10] investigate user association problem by formulating the
offloading delay for the MEC-assisted network with decoupled
uplink/downlink association. The power allocation for delivery
delay reduction in a device-to-device (D2D) enabled MEC
scenario is studied in [11]. The authors in [12] propose a novel
joint communication and computation load balancing scheme
as well as resource allocations to minimize the E2E delay in
the MEC-assisted internet-of-thing (IoT) network.

In the other line of research, the body of work in [13]–
[20] investigates several new methods based on deep neural
networks (DNNs), deep reinforcement learning (DRL) and
federated learning (FL) to optimize the performance of the
MEC-assisted networks. The authors in [14] present a novel
resource allocation scheme using multi-agent DRL in a vehicle-
to-vehicle (V2V) communication network. In [15], the authors
propose a DRL-based computation and communication resource
allocation algorithm in a MEC-assisted railway IoT network.
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The problem of joint power allocation and resource allocation
for URLL communications in a vehicular network is proposed
in [17]. The authors present a new distributed algorithm based
on FL to estimate the tail distribution of the queue lengths. In
[18], the authors investigate the problem of jointly optimizing
resource and learning performance to reduce communication
costs and improve learning performance in wireless FL systems.
The authors in [20] focus on optimizing various aspects of
FL, including weight compression, convergence analysis and
iteration reduction over IoT networks.

While current schemes can effectively enhance the URLLC
performance of MEC-assisted networks through appropriate
radio resource allocation, the performance of MEC-assisted
networks under finite blocklength (FBL) regime remains limited
[21]–[23]. For example, in [22], the authors investigate the
computation and power allocation problem for non-orthogonal
multiple access MEC networks in the FBL regime. In fact,
they propose a novel analytical scheme to approximate the
average overall block error probability in finite blocklength
regime. However, the impact of edge computing on task trans-
mission time is not considered. Furthermore, the significant
computational complexity introduced by the iterative methods
can affect delay performance. This motivates us to devise a
time-efficient resource management approach for MEC-assisted
networks utilizing DRL.

In this paper, we investigate the resource allocation problem
in the MEC-assisted network considering the FBL regime and
aim to minimize the system delivery delay under both commu-
nication and computing constraints. The main contributions of
our paper are summarized as follows:

• Instead of Shannon rate, we adopt the short packet coding
rate to more accurately capture the rate loss in the FBL
regime [5], [6], [24].

• We propose a novel scheme to optimize the reliability
of the MEC-assisted network by minimizing the system
delivery delay under both the wireless network and edge
computing servers constraints.

• We formulate the multi-objective problem that aims to
minimize the long-term delivery delay of a CAV in a
decentralized manner by efficiently allocating offloading
decisions, computation resources, transmit powers, and
blocklength to CAVs across the radio access network
(RAN).

• Given the proposed problem is a mixed integer non-
linear programming (MINLP), a new solution based on
DRL is proposed to jointly address the offloading decision
problem, computing resource assignment, transmit power
allocation and blocklength optimization across the MEC-
assisted network. To this end, we cast our problem as a
multi-agent DRL problem and solve it using double deep
Q-network (DDQN).

• Comprehensive simulations are performed to show the
superiority of the proposed algorithm through comparisons
with those existing schemes for a network of CAVs as a
case study.

The rest of the paper is organized as follows. Section II
presents the system model. Section III and IV describe the
problem formulation and the proposed solution. Simulation
results are provided in Section V and conclusions are presented
in Section VI.

II. SYSTEM MODEL

Consider a single-cell multi-user MEC-assisted network con-
sisting of a set M ∈ M CAVs and a BS as shown in Fig. 1.
We consider a slotted orthogonal frequency division multiple
access (OFDMA) transmission scheme where the length of a
time slot is T . We also assume that each CAV m has its own
dedicated sub-channel of bandwidth ω. Due to the stringent
delay requirement of the CAVs, T is considered to be rather
small to reduce the transmission delay. Next, we explain the
transmission and computing latencies in details.

A. Over-the-Air Transmission Delay

Considering the OFDMA mechanism, interference is ignored
due to the exclusive allocation of subcarriers. If the CAV m
decides to offload its task, it should first transmit it to the BS
through wireless channels. Due to the wireless fading channel,
some packets may not be decoded successfully at the BS,
hence, re-transmission is needed. In this paper, we use a basic
automatic repeat request (ARQ) transmission scheme in which
a packet is retransmitted until the receiver acknowledges suc-
cessful decoding. Since packets are short, we use Polyanskiy’s
FBL coding rate [5], [24]

k = nC(γ)−
√
nV (γ)Q−1(ϵ) +

1

2
log n+O (1) . (1)

where γ is the SNR and C (γ) = ω log2(1 + γ) is the channel
capacity, k is the length of the packet and V (γ) is channel
dispersion given as follows

V (γ) = ω2

(
1− 1

(1 + γ)2

)
log22 e. (2)

We use this as an approximation by ignoring the O(1) term.
The SNR between CAV m and the BS for the j-th transmission,
γm,j , is given by

γm,j =
GmPmhm,j

σ2
, (3)

where Pm, Gm and σ2 denote, respectively, the transmit power
of CAV m, the antenna gain of CAV m and the noise power. In
addition, hm,j represent the Rayleigh fading channel gain for
the j-th transmission between CAV m and the BS. The channel
gain hm,j is considered flat-fading over the bandwidth ωm and
constant during the transmission of one block. We allow the
code rate to depend on the SNR. Since k is fixed between re-
transmissions, we allow n to be variable through a function
n(γ). Then the error probability at the j-th transmission for the
m-th CAV is

ϵm,j = Q

(
n (γm,j)C (γm,j) + 0.5 log2 n (γm,j)− k√

n (γm,j)V (γm,j)

)
, (4)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on December 30,2025 at 22:54:13 UTC from IEEE Xplore.  Restrictions apply. 



The re-transmission continue until no error happens, and the
total number of transmission is therefore a random variable J .
The transmission delay for CAV m is then given by:

τairm =
J∑

j=1

n (γm,j) , (5)

The aim is to find the optimum nm(γ) to minimize τairm .
However, as the end goal is to minimize the system delivery
delay, nm(γ) will be found through a total system optimization,
see Section III.

B. Computing Delay at Edge Computing Servers

Computing delay refers to the time needed for executing
a task at an edge computing server within the MEC-assisted
network. The execution time of a task depends on the data to be
processed and the tasks submitted, therefore, it can be modeled
as a random variable. For instance, the execution time for
performing the object detection highly depends on the quality
or level of details in the captured images, as well as the type and
processing resources of the edge server. Since only idle MEC
server is considered for once scheduling, the waiting time for
queue is not involved.

Let fmax denote the maximum computing-cycle frequency
of edge processor for the BS. If CAV m offloads its task to
the edge server the computation delay would be τ comp

m = cm
fedge
m

, where cm and fedge
m denote the CPU cycle requirement of

the task and average computation capacity of edge server,
respectively.

In addition, if CAV m decides to process its task locally,
the delay for local computation would vary based on the
computation resources allocated for task processing, denoted
by f loc

m . Therefore, the local delay for the CAV is modeled as
τ locm = cm

f loc
m

.
It’s important to note that higher resource utilization, whether

in terms of transmit power or computation capacity, decreases
the system delivery delay at the cost of reducing the blocklength
n (γ), but increasing the probability of error ϵm,j and the num-
ber of ARQ retransmissions. Hence, managing this trade-off
requires careful handling through efficient offloading decision-
making and precise optimization of both local computation and
offloading strategies.

III. MULTI-OBJECTIVE PROBLEM FORMULATION

The main goal of this paper is to minimize the delay of
completing task by jointly accounting the offloading decision
strategy, computing and power allocation and the blocklength
of each CAV over a specified time horizon, T . The long-term
expected delay for each CAV m, is formulated as follows:

τm
(
nm(γ),Pm, f locm ,xm,ym

)
=

E

[
limt→∞

1

t

t∑
i=0

(xm,iτ
loc
m,i + ym,i(τ

comp
m,i + τairm,i)

]
,

(6)

MEC-
enabled 

BS

CAV1

CAV 𝒎

Data

Fig. 1. System Model.

where nm (γ), Pm, f locm , xm and ym represent the vectors of
blocklength, transmit powers, local computing resource alloca-
tion, edge server computation resource allocation, local com-
puting and edge offloading decision of CAV m, respectively.

For any given CAV m, we model the decision-making
problem (DMP), expressed as:

min
nm(γ),Pm,f locm ,xm,ym

τm

subject to:
C1 : τm ≤ τth,

C2 : f loc
m ≤ Fmax,m,

C3 : xm + ym = 1, ∀m ∈ M,

C4 : xm, ym ∈ {0, 1}, ∀m ∈ M.

(7)

Constraint C1 expresses that total time for processing the task
must meet the maximum delay threshold determined by QoS
requirement. Constraints C2 indicates the local computation
capacity with the maximum threshold Fmax,m. The constraints
C3 and C4 indicate that the decision variables of the problem
are all binary indicators.

The proposed optimization problem in (7) is a MINLP, hence,
it is difficult to solve. Next, we develop a new efficient algorithm
to solve this problem.

IV. PROPOSED DDQN ALGORITHM

When addressing the joint optimization problem in multi-user
scenarios, various challenges come to light.

• The significant mobility observed in CAVs results in fre-
quent and unpredictable shifts within the communication
channel. This dynamic variability poses a considerable
challenge for CAVs, impeding their ability to effectively
make optimal real-time decisions.

• Due to constrained resources, the decision made by each
individual CAV holds a consequential influence on the
selection and actions of other CAVs within the network.
Meaning that optimal decision-making by one CAV not
only affects its own resource allocation and performance
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Algorithm 1 Proposed DRL for Joint Offloading Decision and
Computing and Communication Resource Allocation
Input: M, t = 0
Output: n (γ) ,P, f loc x,y

1: Initialize the online and target networks for each agent m.
2: while (maximum number of iterations is not reached) do
3: ϕonline

m = ϕtarget
m ,.

4: for each CAV m in M do
5: for each time step t if |Im,t| > 0 do
6: Compute the offloading decision, x and y, using

ϕonline
m ,

7: Interact with environment and solve (8) or (9)
applying KKT conditions,

8: Save the experience n (γ) ,P and f loc in replay
memory Om,t,

9: Calculate ϵm,j from (4),
10: if P(1− ϵm,j) = 1 then
11: Train the local model on Om,t,
12: Transmit ϕonline

m to the PS,
13: else
14: return to step 7,
15: end if
16: end for
17: end for
18: end while

but also ripples through the network, influencing the deci-
sions and performance of other CAVs.

• As the number of CAVs grows in the network, the of-
floading decision complexity increases exponentially. This
escalating complexity underscores the need for scalable
and efficient approaches to address the evolving demands
of CAV networks.

To address the issues mentioned above, we propose a multi-
agent DDQN algorithm to solve the secure offloading and
computing and communication resource allocation problem.
The details of the algorithm are elaborated in the following
section.

A. Sketch of double deep Q-network

Given the aforementioned challenges, employing traditional
optimization methods to address the dynamic optimization
problem described in equation (7) is not feasible. Model-free
DRL is a useful tool for handling the DMP and learning the
optimal solutions in dynamic environments. Hence, the DMP is
formulated as a Markov Decision Process (MDP). Particularly,
we model our problem as a multi-agent DDQN problem. For
each CAV (DRL agent), we have following components:

• State space: the state space for each agent m, denoted by
sm, is defined as
sm = {Im, hm,j}, where Im is the length of the task
queue of CAV m.

• Action space: The action space of agents, denoted by A,
includes the offloading decisions, blocklengths, computing

TABLE I
SIMULATION PARAMETERS

Notation Parameter Value
M Number of CAVs 30
Pm Transmit power of a CAV 10 mW
Gm Antenna gains 1
fmax Computing frequency 30 GHz
N0 Noise power spectral density −204 dBm/Hz [25]
ω Total system bandwidth 3 GHz [25]
k Packet length 256 bits
τth Service latency requirement 10-100 ms

frequencies, and transmit powers.
• Cost function: The objective function defined in (7) de-

pends on the value of n (γ) and Pm when offloading
to edge server and f loc

m if local computation is selected.
Hence, in order to accurately capture the benefits of a
specific offloading decision within the cost function, it is
imperative to carefully optimize these variables. Therefore,
when CAV m performs its task locally, i.e., xm = 1,
the cost would be calculated by solving the following
optimization problem:

min
f loc
m

τ locm

subject to: C1, C2.
(8)

If CAV m offloads its task to the edge server, i.e., ym = 1,
the blocklength, the transmit power and computing fre-
quency at the edge server would be optimized by solving
the following optimization problem:

min
nm(γ),Pm

τ comp
m + τairm

subject to: C1.
(9)

By modeling the cost function as an optimization problem, we
can not only optimize local resource utilization and enforce
system constraints, but also provide the agent with an accurate
estimation of the quality of offloading decisions. It’s impor-
tant to note that both equations (8) and (9) represent convex
optimization problems with respect to the variables f loc

m and
nm (γ), Pm, respectively. These types of optimization problems
can be effectively solved using standard software tools, e.g.,
Karush-Kuhn-Tucker (KKT) conditions. After finding the opti-
mal computing and communication resource allocation vectors,
f locm , Pm as well as the blocklenght vector nm (γ), first we
calculate the packet error probability, ϵm,j , defined in (4).
If P(1 − ϵm,j) = 1, we feed the optimal computing and
communication resource allocation vectors into the DDQN
framework as the immediate cost function.

B. DDQN training phase

Consider the immediate cost of each CAV m obtained from
the solution of the (8) and (9) as Rm(s, a). Using Bellman
equation, the action-state value is:

Qm(s, a) = Rm(s, a)+ γ
∑
s′∈S

Wss′(a)max
a′∈A

Q∗
m (s′, a′) , (10)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on December 30,2025 at 22:54:13 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100

Number of rounds

0

0.5

1

1.5

2

2.5
T

ra
in

in
g

 l
o

s
s

Proposed approach

Baseline 1

Baseline 2

Fig. 2. Training loss versus the number of rounds.

where S,Wss′(a), and 0 < γ < 1 are the set of states, the tran-
sition probability function, and the discount factor, respectively.
To avoid the need for a complete model of the environment,
eliminate the calculation of the transition probability function,
and achieve a more stable learning process, we employ DDQN
in this work. In particular, we adopt DDQN to find a solution
to maximize the state-action function Q∗

m (s′, a′). Each agent
m has two neural networks working alongside each other, one
called online network with parameters ϕonline

m and the other
called target network with parameters ϕtarget

m . At each training
iteration the target value for training the online network in
device m is calculated as:

Zm = Rm(s, a) + γQm(s′,max
a′∈A

Q∗
m(s′, a′;ϕonline

m ), ϕtarget
m )

(11)
The proposed algorithm is summarized in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
scheme for delay optimization in the MEC-assisted network
shown in Fig. 1. The performance was evaluated by averag-
ing the results over sufficiently large Monte Carlo runs. We
compare the performance of the proposed method with two
baseline approaches. The first baseline approach, hereinafter
referred to as “Baseline 1”, uses DQN scheme to solve the
proposed problem. The second baseline, hereinafter referred
to as “Baseline 2”, uses random offloading decision scheme
with the proposed computing and power allocation. Simulation
parameters are summarized in Table I.

The convergence curve of the proposed DRL method is
shown in Fig. 2. As shown in Fig. 2, we observe that the loss
function decreases rapidly for all three methods, showing the
fast convergence of the proposed scheme as well as two other
baselines. The results show that the proposed scheme success-
fully converges within reasonably small number of epochs and
outperforms two other baseline schemes.

Figure. 3 illustrates how the delivery delay is affected by the
allocation of different bandwidth. As the bandwidth increases,
the delivery delay decreases due to the fact that each CAV
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requires to dedicate small amount of power to achieve higher
transmission rates. Therefore, the delivery delay is reduced.
The results in Fig. 3 indicate the superior performance of
the presented scheme compared to the baseline methods. For
instance, in a MEC-assisted network with assigned bandwidth
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ω = 4 GHz, the performance gains yielded by the proposed
algorithm are up to 40% and 55%, respectively, compared to
baseline methods 1 and 2.

In Fig. 4, the delivery delay versus the network size is shown
for the proposed scheme and the two baseline methods. It is
clear that the delivery delay increases as more CAVs exist in
the network. The results in Fig. 4 highlights that the proposed
scheme can yield up to 13% and 28% performance gain, when
M = 50, compared to the baseline 1 and 2, respectively.
Furthermore, Fig. 4 also shows the scalability of the proposed
method. For example, with the delivery delay of 12 ms, the
proposed scheme can support up to 70 CAVs, which is 11%
and 32% higher compared to baselines 1 and 2, respectively.

Figure 5 presents how the delivery delay varies with the
packet length k. As Fig. 5 shows the delivery delay increases as
packet length increases. This is because for a larger packet, the
additional time for the transmission, propagation, queuing, and
processing is required. The results in Fig. 5 also show that for
the same packet length, the proposed DRL scheme can achieve
the minimum delivery delay compared with two other baselines.
For instance, with the packet length of 300 bits, the performance
gains yielded by the proposed algorithm are up to 3% and 6%
, respectively, compared to baselines 1 and 2, respectively.

VI. CONCLUSION

In this paper, we considered a URLL MEC-based 6G THz
CAV network with ARQ schemes operating in the FBL regime.
We aim to minimize the delivery delay by optimally selecting
the offloading decisions, transmit power, computing recourse
allocation and blocklength of each CAV while fulfilling the
delay budget requirement. To solve the proposed MINLP, we
developed a new algorithm that adopted DDQN. More specifi-
cally, DDQN is used to determine the offloading decisions of the
CAVs. Given the offloading decisions, the computing capacity,
transmit power and blocklength of the CAVs is optimized to
minimize the delivery delay. Then, we feed the results into the
DDQN framework as the immediate cost function to optimize
the offloading decisions. Simulation results have confirmed the
effectiveness of the proposed scheme to those comparative
algorithms.
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