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Abstract 

The accelerated melting of ice sheets in Greenland and Antarctica, driven by climate warming, is 

significantly contributing to global sea level rise. To better understand this phenomenon, 

airborne radars have been deployed to create echogram images that map snow accumulation 

patterns in these regions. Utilizing advanced radar systems developed by the Center for Remote 

Sensing and Integrated Systems (CReSIS), around 1.5 petabytes of climate data have been 

collected. However, extracting ice-related information, such as accumulation rates, remains 

limited due to the largely manual and time-consuming process of tracking internal layers in radar 

echograms. This highlights the need for automated solutions. 

Machine learning and deep learning algorithms are well-suited for this task, given their near-

human performance on optical images. The overlap between classical radar signal processing 

and machine learning techniques suggests that combining concepts from both fields could lead to 

optimized solutions. 

In this work, we developed custom deep learning algorithms for automatic layer tracking (both 

supervised and self-supervised) to address the challenge of limited annotated data and achieve 

accurate tracking of radiostratigraphic layers in echograms. We introduce an iterative multi-class 

classification algorithm, termed “Row Block,” which sequentially tracks internal layers from the 

top to the bottom of an echogram based on the surface location. This approach was used in an 

active learning framework to expand the labeled dataset. We also developed deep learning 

segmentation algorithms by framing the echogram layer tracking problem as a binary 

segmentation task, followed by post-processing to generate vector-layer annotations using a 

connected-component 1-D layer-contour extractor. 

Additionally, we aimed to provide the deep learning and scientific communities with a large, 

fully annotated dataset. This was achieved by synchronizing radar data with outputs from a 
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regional climate model, creating what are currently the two largest machine-learning-ready Snow 

Radar datasets available, with 10,000 and 50,000 echograms, respectively 
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Chapter 1: INTRODUCTION 

1-1 Background 

The last decades have witnessed an increase in contemporary global warming which epitomizes 

the steep impact of anthropogenic activities on world climate. The far-reaching consequences of 

global warming has prompted many international bodies such as the World Health Organization 

and United Nations to unanimously identify it as the single biggest health threat facing humanity  

[1], [2], [3]. The Intergovernmental Panel on Climate Change (IPCC) forecasts a global 

temperature rise of 1.5°C to 4.8°C by 2100 relative to pre-industrial levels [4], [5]. The 

consequent accelerated polar ice melt and increased discharge into the ocean over the years poses 

a significant threat of global sea-level rise, which has been estimated to increase by an average of 

14-18 inches along the Gulf Coast of the United States by 2050 [6]. Addressing this issue is 

imperative to mitigate the severe impacts, including extreme weather events and widespread 

coastal flooding, which could detrimentally affect millions of individuals worldwide. 

 

As a result, polar ice sheets in Greenland and Antarctica have been the focus of a plethora of 

research since the beginning of the 21st century. In recent years, surface mass balance (SMB) 

processes have been identified as the primary driver of increased Greenland Ice Sheet (GrIS) 

mass loss. However, the intricate relationship between accumulation and surface melt introduces 

uncertainties in accurately determining annual accumulation rates [7], [8], [9]. Since 

accumulation varies across the ice sheets, a precise method of estimating the annual 

accumulation rate is crucial to capture the catchment-wide spatiotemporal patterns required by 

scientific climate models to accurately predict future sea-level rise [9], [10]. 

Traditionally, snow accumulation rates and other ice phenomenology are derived from ice cores 

which are obtained by drilling ice columns and shallow pits across the polar ice sheets to provide 
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detailed measurements at one location. However, their inherent sparsity and high operational 

costs make it challenging to capture catchment-wide accumulation rates. Attempts to interpolate 

in-situ measurements only introduce further uncertainties due to the high variability in local 

accumulation rates [11], [12]. To address this limitation, airborne radars have been developed to 

track the isochronous snow layers at a much larger spatial scale and relatively lower cost. These 

radar systems offer superior subsurface mapping capabilities compared to other remote sensing 

methods such as space-borne radars.  

 

The Center for Remote Sensing and Integrated Systems (CReSIS) at the University of Kansas 

has developed a suite of radar systems for non-invasive monitoring of the changes in the 

thickness and structures of these polar ice sheets over time [13], [14], [15], [16], [17], [18], [19], 

[20]. Over a span of 3 decades, science missions using these radars have been conducted over 

Antarctica and the Arctic including icy regions in Alaska, Greenland, and Canada. As a result, a 

large repository of snow and ice data has been collected using a wide range of radar systems. 

Figure 1-1 shows the map of Greenland and the coverage of CReSIS missions over the ice sheet. 

This extensive repository of radar data houses a wealth of historical and contemporary climate 

information, providing a rich source of high-resolution spatial and temporal data essential for 

enhancing the accuracy of scientific weather models. 
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Figure 1-1 Map of Greenland showing survey flight lines currently available at 

https://openpolarradar.org/ for one of the radar systems. The blue lines represent the flight path 

along which subsurface radar data has been collected. 

 

To further investigate how climate warming affects different sections of the polar ice sheets and 

the interactions of these effects, several radar systems with specific hardware design and 

capabilities have been created to study identified sections of the ice column ranging from the top 

layers of recent snow fall to the underlying bedrock several kilometers under the surface. One 

such system is the ultra-wideband (UWB) Snow Radar, which captures annual snow 

accumulation in the top firn layers of polar ice sheets. Its lower operating elevation and large 

https://openpolarradar.org/
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bandwidth enable it to achieve a vertical resolution that is fine enough to discriminate 

isochronous layers formed from annual accumulation. The radar echograms produced from these 

airborne measurements reveal annual accumulation stratigraphy [17], [18] which contains 

information needed to estimate annual accumulation rates [19], [20].

Figure 1-2: Example Snow Radar echogram from the summit in Greenland showing annual 

snow layering. Inset is a map of Greenland with the red dot marking the center of Greenland 

where the echogram data was collected.

Figure 1-2 is an example of a Snow Radar echogram created from data collected from a 5 km 

transect at the center of the Greenland ice sheet. Details about radar echograms and how they are 

created is delayed to the discussion in Section 2-2. Due to chronologically different deposition 

ages, the snow layers seen in the echogram are a result of contrasting physical properties of the 

snow layers such as snow density, snow grain size, etc. These layer property changes result in 

dielectric contrasts that cause scattering that the radar detects. In the echogram image, the 
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“surface” is the air-snow interface after which are several “internal” roughly annual snow layers.

Each of these snow layers needs to be individually identified and accurately tracked to infer the 

accumulation rates for the mapped geolocations.

Figure 1-3 is an enlarged view of the echogram in Figure 1-2 magnifying the view of the top few 

internal layers corresponding to about a decade of annual snow fall assuming each layer 

represents an annual layer. To correctly estimate the annual accumulation rate in the location 

captured by this echogram, it is important to accurately track each pixel of each layer to obtain 

the propagation delay to the layer. 

Figure 1-3 Zoomed in image of earlier echogram to show the internal layers

Concretely, to estimate the accumulation between successive years, the difference in the radar 

two-way travel time between adjacent layers is combined with the density-depth-age profile of 

the location to infer the snow accumulation rate. To illustrate how the accumulation rate is 

estimated, we provide an approximate estimate of the accumulation between the first two layers 

in the echogram shown in Figure 1-3. The mean radar propagation delay to the first layer (the 
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surface) is about 3.122 µs and to the second layer (first internal layer) is about 3.125 µs giving a 

difference of 0.003 µs. Assuming a constant relative permittivity of ε𝑟 = 1.35 at the captured 

geolocation assumed to be constant for the top few meters of snow depth, the annual 

accumulation is estimated using Equation (1) below: 

 
𝑑 =

𝑐 Δ𝜏

2√ε𝑟
  =  0.38𝑚 (1) 

where 𝑐 = 3.00 × 108 m/s is the speed of light in a vacuum, 

Δ𝜏 is the propagation delay difference, 

ε𝑟 is the assumed relative permittivity in snow and 𝑑 is the accumulation depth in meters 

 

Given that this data was collected in the year 2012, the tracked surface corresponds to the spring 

2012 surface and the immediate lower layer corresponds to the summer-fall 2011 transition. 

Hence, an approximate mean accumulation of 0.38 m occurred in the mapped 5 km transect 

shown in the echogram between 2011 and 2012. This estimation process can be repeated for each 

of the (more than 50) consecutive layers in the full echogram in Figure 1-2. Typically, a precise 

accumulation estimation is done on a finer spatial resolution scale of a few meters by using the 

propagation delay for each column in the echogram image.  

 

The accumulation estimate can be combined with the age difference between the layers to 

estimate the accumulation rate. This information is critical for tuning existing scientific climate 

models who otherwise suffer from limited spatial data coverage for ground truth. Assimilating 

radar derived estimation will not only improve the accuracy of the models in predicting future 

climate changes but also reinforce confidence in the model’s predictions by reducing the existing 

uncertainties. 
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1-2 Summary of problem statement 

The importance of precise tracking and delineation of individual snow layers in echogram 

images, as exemplified in the illustration above, underscores the necessity of obtaining annual 

accumulation at very fine spatiotemporal resolution from collected radar data to improve 

scientific climate weather predictions.  However, the larger percentage of existing echograms are 

yet to be tracked due to the lack of efficient tracking methods. Tracking of layers is primarily 

done manually due to the complexity of the tracking process. Manual tracking of echogram 

layers is a tedious and error-prone process, requiring significant investment of the annotator’s 

time.  

 

In recent times, several semi-automated tools have been developed but this still does not scale 

well to the large data that has been collected since humans are still involved in the annotation 

process. Artificial intelligence, specifically machine learning and deep learning algorithms, hold 

great potential for this problem given their well-reported excellent performance in the optical 

image domain. Deep learning algorithms are currently the state-of-the-art algorithms for 

performing classification, object detection, and semantic segmentation on optical image data and 

hitherto complex problems like speech recognition [21], [22], [23], [24], [25], [26], [27], [28], 

[29], [30]. Unlike traditional signal processing algorithms and probabilistic graphical models, 

which have demonstrated limited performance and require redesign for different datasets due to 

varying accumulation patterns, deep learning algorithms possess the potential for broad 

generalization when properly trained [31], [32]. Moreover, the significant overlap between 

classical radar signal processing and machine learning techniques [33], [34], [35], [36], suggests 

that a fusion of concepts from both fields can lead to optimized solutions for the problem of 

mapping the rapidly varying spatiotemporal accumulation patterns over polar ice sheets. In this 

work, we explored multiple machine learning and deep learning approaches to create automatic 
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layer trackers that can uniquely identify and track snow layers in the Snow Radar echogram over 

several line-kilometers both over dry snow and wet snow zones. 

 

1-3 Summary of original research contributions 

In this work, we implemented a fusion of signal processing algorithms for pre-processing and 

deep learning supervised and self-supervised algorithms to deal with the imperfect and limited-

annotated-data problem to achieve accurate tracking of isochronous radiostratigraphic layers in 

echograms.  

Specifically, in this work, we achieved the following research milestones: 

1. Successfully designed and tested different streams of deep learning algorithms to 
understand their strengths and weaknesses. 

 

2. Successfully deployed the first generalizable deep learning algorithms to track persistent 
snow layers over thousands of line-km over Greenland Ice Sheet. 

 

3. Improved automated tracking (requiring minor quality control) to speed up layer tracking 
by x5. 

 

4. Creation of a large “deep learning ready” Snow Radar dataset. 

 

5. Synchronization of the Modele Atmospherique Regionale (MAR) regional climate model 

with radar echograms. 
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Chapter 2: LITERATURE REVIEW AND DEEP LEARNING 
BACKGROUND 

 

2-1 Literature review 

In over three decades of collecting remote radar measurements over polar ice sheets, a large 

amount of data has been collected necessitating the need for efficient processing and tracking of 

snow and ice layers in the echograms. As a result, many scholarly works exploiting different 

characteristics of the snow surface and subsurface targets to track the snow layers have been 

developed. These approaches can be broadly grouped as: Semi-automated vs fully automated, 

surface-bedrock vs internal layer tracking, and machine learning (ML)/deep learning (DL) vs 

non-ML algorithms.  

 

Semi-automated methods require some form of human input for tracking while fully automated 

algorithms are designed to operate without any human interaction end-to-end. Surface-bedrock 

models aim to accurately track only surface (air-snow boundary) and bottom (ice-bedrock 

boundary) layers while internal layer trackers are designed to track all laterally persistent layers 

that could appear at any depth within the snow and ice. Surface-bedrock tracking is usually 

intended for lower frequency radar systems that can penetrate all the way through to the ice 

bottom but have coarser resolution to distinguish internal layers. Internal layer tracking is needed 

for most radars, but only sufficiently fine range resolution radar systems can visually distinguish 

annual layers from one another. The ability to clearly discriminate between each internal layer is 

dependent on the bandwidth and center frequency of the radar system. Finally, non-ML models 

deploy methods such as statistical models, level-set, probabilistic graphical methods, etc., while 

machine or deep learning methods develop artificial neural networks to track the desired layers. 
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Gifford et al. [37] combined active contour and thresholding edge-based approaches to identify 

contour boundaries (surface and bedrock) after applying gradient-based edge detection 

techniques and image processing to reduce noise effects. The consecutive studies in Ferro et al. 

[38], [39] developed statistical models for characterizing subsurface backscatter categorized into 

strong layers, weak layers, low returns, and basal returns which were modified and applied to 

automatically estimate ice thickness of data acquired from Antarctica in [39]. Koenig et al. [40] 

also developed a high-frequency versus low-frequency semi-automated discriminator algorithm 

to identify peaks in the returned backscatter power. Rahnemoonfar et al. [41] applied a distance-

regularized level-set function to detect the surface and the ice bottom to improve earlier work by 

Mitchell et al. [42] and D. P. Onana et al.[43] . In another work, Rahnemoonfar et al. [44] took 

inspiration from Coulomb’s law of electrostatic force to detect ice surface and bottom boundaries 

after performing anisotropic diffusion to enhance layer edges. 

 

Another set of works approaches the problem as a probabilistic inference problem by developing 

probabilistic graphical models to detect layer boundaries. Crandall et al [45] pioneered the 

paradigm while Lee et al. [46] employed Markov-Chain Monte Carlo (MCMC) over the joint 

distribution of all possible layer targets in the inference problem. Xu et al. [47] expanded the 

scope to include 3D surface and bedrock reconstruction using Markov random fields (MRF) and 

Berger et al. [48] refined the approach by incorporating additional domain knowledge in the 

unary and binary loss function terms. 

 

Carrer and Bruzzone [49] introduced machine learning methods by incorporating a support 

vector machine (SVM) with statistical modeling to classify layers, bedrock, and noise.  

Since then, several machine and deep learning models have been designed and applied to the 

radar echogram layer tracking problem. Kamangir et al. [50] introduced a hybrid wavelet 
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network for ice boundary detection. Xu et al. [51] designed a multi-task network that avoids the 

use of meta-data using a combination of recurrent neural networks (RNN) and 3D ConvNets to 

track layers in 3D radar imagery. In Varshney et al. [52] internal layer tracking was introduced as 

a semantic segmentation task and deep neural networks were applied to the problem whereas Cai 

et al. [53] applied an Atrous Spatial Pyramid Pooling (ASPP) module using a ResNet-101 

backbone to detect layer and bedrock interfaces in echograms created from Antarctica 

campaigns.  Other efforts by Yari et al. [54] and Wang et al. [55] applied multi-scale transfer 

learning and tiered-segmentation approaches for internal layer tracking respectively while 

Rahnemoonfar et al. [56] introduced the addition of synthetic data for model training and multi-

scale learning for tracking ice layers in [57]. In Yari et al. [58], physics-driven and GAN 

methods were used to create simulated data to train a multi-scale network to improve the 

accuracy of internal layer tracking. Varshney et al. [52] combined the layer tracking task and ice 

thickness estimation using fully convolutional neural networks and extended the approach in 

Varshney et al. [59] by incorporating physics-defined labels. More recently, Ghosh and Bovolo 

[60] combined attention modules with the fusion of TransU-Net and TransFuse modules to 

segment the combination of ice layers, bedrock, and noise similar to efforts in Cai et al. [61] with 

the addition of a Multiscale convolution module (MCM) and focal loss for class weight 

balancing. 

2-2 Snow Radar and Snow Radar echograms 

The Center for Remote Sensing and Integrated Systems (CReSIS) at the University of Kansas 

has developed a suite of radar systems suitable for collecting remotely sensed measurements 

over polar regions in the last few decades [10,13,59, 60]. Depending on the subsurface target or 

scene of interest and considering the limitations of electromagnetic propagation through that 

scene, the frequency of operation, transmit power, and bandwidth are chosen to design the 

appropriate radar system. The primary interest of this work is to focus on radar systems designed 
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to image the shallow snow and not-too-deep (firn) internal layers in the ice sheet column. 

However, the overall goal of this research is to identify best practices and develop deep learning 

algorithms not suited for just a specific radar system but generalizable to multiple radars systems 

especially if these systems share similar hardware design and image relatively the same section 

of the ice column.  

 

We begin our efforts by focusing first on the Snow Radar data to train and test the early 

iterations of the deep neural networks. The Snow Radar is a Frequency Modulated Continuous 

Wave (FMCW) system that, for the dataset used in this work, operates in the 2-8 GHz frequency 

band and is designed to image the top firn layers of the polar ice sheets with a vertical resolution 

of ∼4 cm in snow. The echogram images from the Snow Radar data are formed through pre-

summing, pulse compression with windowing, coherent noise removal, deconvolution, and 

incoherent averaging. The Snow Radar is capable of measuring snow thickness over sea and land 

ice by imaging shallow snow layers. Over land, it can identify annual snow layer interfaces due 

to its fine vertical resolution which is important for estimating annual accumulation. Over sea 

ice, it can be used to estimate snow cover on sea ice. This work focuses on the land ice problem 

of tracking annual layers.  

 

The annual snow layer interfaces (hereafter ‘internal layers’) appear as peaks in the pulse 

compressed range profiles because, at each interface, a portion of the transmitted electromagnetic 

field is scattered back to the receiving antenna. The interface between late summer and early 

winter snow fall appears characteristically different to the radar receiver resulting in annual 

layering within the snow imagery. This difference can be attributed to the difference in the 

seasonal weather patterns, creating a snow permittivity change that causes detectable backscatter 

towards the receiving antenna. The distinct peaks in the pulse-compressed backscatter are further 
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enhanced with various digital filtering and signal processing methods to create the radar 

echogram.  

 

2-2-1 Brief overview of the Snow Radar system configuration for the 2012 science mission 

The first iteration of the deep learning models developed was trained solely on the data collected 

during the 2012 Operation Ice Bridge Mission. The Snow Radar configuration for this campaign 

was for the Lockheed P-3 Orion aircraft flying at a nominal altitude of 500 m above ground 

level. A detailed description of the hardware configuration for this campaign is documented in 

[15], [16].  Table 1 summarizes the key hardware configuration parameters for the campaign. 

Datasets from later campaigns are tested in the later stages of this work. The hardware 

configuration was progressively improved for these later campaigns, but the images are generally 

similar in nature to the 2012 campaign. Details of some of these improvements can be found in 

[62], [63]. 

 

 

 

Table 1: The Snow Radar parameters used for the 2012 science mission. 

Parameter Value 

Transmit power 100 mW 

Pulse duration 250 µs 

Bandwidth 2-8 GHz 

Intermediate frequency ADC sampling rate 125 MSPS 

Range resolution ~ 4 cm 

 



14 

Here, we provide a basic overview of the digital signal processing routines performed to aid the 

understanding of how the echogram images are formed. The digital signal processing starts by 

loading a two-dimensional data matrix where the row dimension is fast-time and the column 

dimension is slow-time. This is converted from the receiver’s ADC quantized values to the 

received voltage value at the antenna. This data can be referred to as space-time data. Applying 

the Fast Fourier Transform (FFT) along the row or fast-time dimension, with Hanning 

windowing to reduce sidelobes, converts the fast-time axis to the frequency domain which, for 

FMCW radars, is proportional to the two-way travel time or delay to the target. The delay can be 

converted to depth (or range) which will ultimately be used to infer the layer thickness between 

adjacent snow layers. After applying the FFT to pulse compress the data, phase and time 

corrections are performed to compensate for the effects of altitude variation due to aircraft 

position and altitude changes. Subsequently, further processing such as coherent noise removal is 

performed by estimating the noise using a low pass filter in the space axis with a very low cutoff 

frequency (30 seconds of flight time) and subtracting it from the space-time data. For the survey 

data used to create the training and test set for this work, a 1x5 depth-by-along-track boxcar filter 

is applied to the power-detected data and then decimated in the along-track by a factor of 5. This 

reduces the variance of the speckle noise and accentuates the internal layers since, typically, they 

are roughly horizontal and aligned with the along-track dimension.  

 

2-2-2 The Snow Radar echogram 

The radar echogram introduced earlier in Figure 1-2 can be summarized as a representation of 

the data matrix produced by taking the logarithm of the power-detected, coherently, and 

incoherently averaged received backscatter returns. The Snow Radar has limited cross-track 

elevation angle resolution due to the small antenna used, but the scattering is assumed to come 

from the nadir elevation angle. The echogram image shows snow accumulation patterns beneath 
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the ice surface along the flight profile that can be resolved into roughly annual layers. The 

horizontal axis represents the along-track dimension (direction of aircraft flight) where each 

column is a “range-line” while the vertical axis is the fast-time dimension, and each row is a 

“range bin”. The pixel intensity is a function of the received radar scattering from the resolution 

cell with lighter pixels representing low returns and darker pixels depicting stronger returns from 

the buried snow layers. 

 

Figure 2-1 shows the same Snow Radar echogram image created from data collected at the ice 

sheet summit in Greenland. The air-snow interface where the transmitted signal first interacts 

with the snow layers is referred to as the “surface”. Other layer stratigraphy corresponding to the 

annual snow fall are collectively referred to as “internal layers”.  

 

Figure 2-1: Snow Radar echogram showing several decades of snow accumulation 

 

z
SURFACESURFACE

INTERNAL LAYERS
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Figure 2-2: Magnified Snow Radar echogram showing only the first few layers 

The Snow Radar echogram has unique features that distinguish it from echograms created from 

other radar systems. This is particularly because of the system’s S-C frequency band which 

detects the top firn layers and the associated large bandwidth allowing it to achieve fine vertical 

resolution in snow. This makes each snow layer clearly distinguishable in the resulting image 

unlike other contemporary radar systems with coarser resolution that are unable to separate 

annual layers [64]. The layers can be seen in Figure 2-1 as the “dark” roughly horizontal and 

laterally persistent pixels along the flight path [9], [34]. The horizontal (x-axis) of the echogram 

image corresponds to geolocations (latitude/longitude) traveled along the flight path of the 

aircraft while the vertical (y-axis) represents the radar two-way travel time to the different snow 

stratigraphy and the depth at which they occur.  

 

Echogram images help visualize subsurface features, particularly snow layers, in the mapped 

locations. The layer’s contour (flat or curved) reveals significant information about the snow’s 

historical deposition and subsequent metamorphosis. The curvature of these layers indicates a 
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variety of geological and climate processes, such as the flow dynamics of the glaciers, the 

accumulation patterns of snowfall and the effects of wind redistribution. The echogram images 

capture the orientation of the layers allowing for detailed analysis of the snowpack structure and 

the accumulation patterns [65], [66], [67]. 

 

The orientation and degree of curvature of the snow layers are influenced by several factors such 

as the terrain of the mapped location. For instance, in areas where snow accumulates on sloped 

or uneven terrain, the layers may display significant curvature due to gravitational settling and 

compaction. Particularly in glacial regions like Greenland, the movement and deformation of the 

ice can create complex, undulating patterns in the snow layers. These curved layers can also 

result from differential snow deposition, where wind and topography interact to create variable 

snow depths. By analyzing these curved contours, inference about past climatic conditions and 

accumulation rate can be made and this helps make better predictions about future snow 

behavior. 

 

As described in Section 1-2, annual accumulation can be estimated from the radar two-way 

travel time (hereafter “twtt”) and converted to meters using available snow permittivity-depth 

profiles for that location. However, to achieve this, all the layers in the echogram must be 

detected and accurately tracked. As such, the goal of echogram layer tracking is to obtain a 2D 

matrix 𝐺 of dimensions 𝑁𝐿 × 𝑁𝑥 where 𝑁𝐿 is the number of snow layers in an echogram image 

(often unknown apriori by the tracking algorithm) and 𝑁𝑥 is the number of rangelines in the 

echogram. Each row of 𝐺 contains a vector of the radar two-way travel time of each of the 𝑁𝐿 

layers sorted from the topmost layer till the last detected annual layer. This matrix 𝐺 of tracked 

layer twtt can be plotted over the echogram image to visualize the tracking result. Figure 2-3 
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shows an example of an echogram where the snow layers have been identified, tracked and 

plotted in red over the echogram image. This is often used in tracking as a visual sanity check to 

see how well the result of the tracking algorithm is following the layer peaks/boundaries. These 

tracked twtt are subsequently used to estimate the annual accumulation for the mapped location. 

 

 

 

Figure 2-3: Magnified echogram image with tracked layers plotted in red. 
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2-2-3 Some challenges inherent in echogram layer tracking 

Automatic layer tracking algorithms have some inherent challenges that need to be addressed to 

achieve good tracking results while being able to generalize to a broad range of echogram 

images. The primary input for most tracking algorithms is the echogram image (many times as 

the only input), hence, issues with the quality of the echogram directly impact the performance 

of the algorithms. The image quality of an echogram is usually determined by the snow zone it 

was created from.  

 

The echogram images shown so far are from the dry snow zone whose echograms have the best 

image quality because of the high layer reflectivity relative to the diffuse volumetric background 

scattering and the relatively flat, parallel and distinguishable accumulation layers. The dry snow 

zone is the coldest and highest region of the ice sheet, farthest from the coast, and is usually 

characterized by extremely low temperatures all year round with little or no melt. The large 

density contrasts in this zone reflect a strong radar signal back to the aircraft. Other zones such as 

the percolation, ablation and wet snow zones have echogram images with less trackable layering. 

 

A primary challenge in echogram layer tracking is the significant variability of annual snow 

layer morphology within echograms. There is a wide variety of shapes and forms the annual 

snow layering can take in an echogram image. This is usually dictated by the surface topography 

and geographical features of the imaged location. The rapidly varying spatiotemporal 

accumulation pattern across the ice sheets means echogram images created from two locations a 

few hundred meters apart may appear starkly different. Further, the number of layers in each and 

the morphology of the layers can also differ. 
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The earlier illustrations in Section 1-1 employed simplified echogram imagery to facilitate easy 

comprehension of the radar echogram layer tracking process. However, it is important to know 

that a lot of echogram images exhibit greater complexity. Some examples of echograms with 

different layer morphology and orientation are shown in Figure 2-4 and Figure 2-5.  

 

Also, the echogram images shown so far have undergone an important “processing” step to 

remove the effect of the surface relief of the surveyed location. The process of compensating for 

the surface topography is referred to in this work as “surface flattening” where each range line is 

adjusted so that the snow surface lies on the same row in the echogram matrix for every column. 

To perform surface flattening, the 1D surface layer contour (i.e. the index of the pixel containing 

the surface in all the echogram rangelines) is used. Prior to surface flattening, echogram images 

reflect the radar trajectory elevation changes and the surface relief of the location, both of which 

may vary widely across the dataset.  

 

Figure 2-4 and Figure 2-5 show example echograms prior to the surface flattening step. This 

gives a glimpse into the wide variety of layer orientation, layer interspacing, and the number of 

layers that can exist in an echogram image.  
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Figure 2-4 Sample echograms with unflattened surface and varying accumulation patterns

Figure 2-5 Additional example echograms with unflattened surface and varying accumulation 

patterns

Furthermore, it should be noted that even after surface flattening, the internal layers are not 

always “flat and parallel” to each other. There also exists a range of variability in the geometry 

of accumulation layers within a unit echogram image. As a result, automatic echogram tracking 

algorithms need to be robust to handle the diversity in echogram layering. 
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The geometry of the internal layers, although generally following the structure of the 

topography, can be unpredictable and is generally unknown a priori. Figure 2-6 shows another 

echogram where the orientation of the first few layers differs sharply from the deeper layers. The 

deeper layers are often more closely packed than shallower layers because they have been 

“burdened” by newer depositions. The weight of the earlier layers compresses the older 

accumulation to lose air content resulting in smaller density variations and spacing which 

impacts the received radar reflectivity from them. 

 

The deeper layers in the echogram image also have lower signal-to-noise ratios (SNR) due to 

signal extinction through scattering and attenuation as the radar wave transverses down and up 

through the snowpack. This is particularly worse for echograms created from snow regions other 

than the dry snow zone such as the ablation or wet snow zone where the presence of meltwater 

diffusely scatters the transmitted signal in all directions lowering the quality of the generated 

echogram for layer tracking. As a result, some rangelines may have significant fading for some 

or all their range bins. This has significant consequences on layer tracking as the tracking of 

faded layers is harder and sometimes ambiguous even for trained experts leading to subjective 

and different tracking results. 

 

The synergistic interaction of these effects presents a formidable challenge for many automatic 

tracking algorithms. Consequently, a robust algorithm is necessary to achieve consistent layer 

tracking across the vast polar ice sheets. 
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Figure 2-6 Echogram with different internal layer orientation after surface flattening. 

 

 

Figure 2-7 Echogram with different internal layer orientation after surface flattening. 
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2-3 Rationale for machine learning adoption in echogram layer tracking 

Artificial intelligence, specifically machine learning and deep learning algorithms, hold great 

potential for this problem given their well-reported performance in other scientific domain with 

high dimensional and non-linear data such as in the speech recognition problem and man-

machine communication. Deep learning algorithms are currently the state-of-the-art algorithms 

on a variety of hitherto complex scientific fields datasets ranging from astronomy [68], [69], 

material science [70], [71] to human genomics and bioinformatics [72], [73]. In the optical image 

domain, which shares similarities with echogram images, deep learning has become the standard 

for performing classification, object detection and localization, image analysis and generation 

and semantic segmentation [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].  

 

As evidenced in the echogram layer tracking literature, several traditional signal processing 

algorithms and statistical models have been applied in the past. Despite the development of many 

such traditional algorithms, their efficacy remains constrained, particularly on echogram sets 

with poor image quality and “non-flat” accumulation patterns. Consequently, they are best 

adopted as semi-automated tools that can be used by humans during the manual tracking process 

to speed up the tracking. However, semi-automated tracking methods still require significant 

human interaction for layer tracking which impedes the speed of layer tracking and does not 

scale well to the large volume of data collected.  

 

A handful of fully automated tracking methods only perform well for a limited number of 

echograms but need to be redesigned for the dynamic accumulation pattern captured in a large 

dataset. This is likely due to the limited amount of both modeling data and the expressive power 

of the assumed model in these approaches. Many of the designed models are too simplistic and 

fail to fully capture the underlying layer accumulation process and inadequately capture the 
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nuanced details and complex interactions that characterize the process. This, in part, explains 

why they achieve limited success only on some echograms. 

 

Furthermore, the analysis of airborne radar data shows that the signal plus noise distribution 

appears to deviate from “well-described” probability distributions. The non-stationary nature of 

layer accumulation data, coupled with rapid decorrelation of the accumulation pattern across 

space, presents a significant challenge. Consequently, constructing signal processing models that 

fully capture the underlying data distribution, thus facilitating generalization to varied polar 

regions with distinct spatiotemporal snow accumulation patterns, proves arduous. 

 

Deep learning algorithms, however, hold the potential of generalizing easily across different 

datasets and variations of the accumulation pattern captured in the echogram when correctly 

trained [31], [32]. Machine learning (ML) and deep learning (DL) algorithms offer distinct 

advantages over classical methods when addressing the radar echogram layer tracking problem. 

Firstly, ML algorithms excel at detecting and modeling intricate patterns within data. This is 

particularly useful in the echogram layer tracking problem where there exists a highly non-linear 

relationship between the power-detected echogram pixel values input, and the output snow layer 

coordinates in the echogram image. The highly parameterized deep learning architecture and 

number of trainable parameters increases the degrees of freedom of the model leading to robust 

modeling of the input-output shape. Also, the intermediate insertion of various non-linear 

activation functions such as the rectified linear unit (ReLU) and the Gaussian Error linear unit 

(GeLU) further enhances the ability to model non-linearity in the input-output mapping. 

 

Furthermore, these models are adaptable to a variety of input modalities and frequencies such 

that during inference on input echogram images from slightly different radar systems or 
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accumulation patterns, the robustness of the trained model is evidenced in good one-shot 

performance. This reduces the need to develop new models for slight variations in echogram 

images or accumulation patterns. Even in the case of significant domain difference, the model 

can be adapted by transfer learning and finetuning on a relatively small new dataset to optimize 

the weights of the trained model to the differences in the new echogram set.  

 

The potential for end-to-end learning of these algorithms to capture the input-output relationship, 

without the need for manual feature engineering on the input is very attractive. While the current 

models developed perform post-processing to extract the visibly identified layers from the output 

activation map, no extra feature engineering is done on the input. This is critical since all the 

information in the input echogram is available to the deep learning model during training. Hence, 

the model can learn subtle relationships that are valuable to achieving good performance on the 

echogram layer tracking problem but may be unknown to humans. Although the interpretability 

of these models is currently limited which makes troubleshooting and parameter investigation 

somewhat difficult, they overwhelmingly make up for their opaqueness by achieving sterling 

results on a variety of problems.  

 

On the echogram layer tracking problem, the models trained in this work achieve good 

performance, as detailed in the evaluations in 3-2-4-2, 4-6, 4-6-2, 5-2-6 and 6-2-7-2 in laterally 

tracking of consistent accumulation layers over several kilometers particularly in the dry snow 

zones of polar ice sheets. 

 

2-3-1 Fusion of signal processing and machine learning for the layer tracking problem 

Machine learning and deep learning algorithms are argued to be extensions of concepts and ideas 

that originated from adaptive signal processing, statistical modelling, and estimation theory. 
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However, several modifications, such as improved optimization algorithms, introduction of non-

linear activation functions, very large model parameters and complex model architectures in 

deep learning have helped it achieve better performance on complex problems with large 

datasets. The significant overlap between both fields suggests that a fusion of ideas from both 

will lead to better results on the layer tracking problem. 

 

In this work, we combine approaches from both fields by applying signal processing techniques 

like pulse compression, constant false alarm rate detection of the surface layer, coherent and 

incoherent integration, and signal detrending in the pre-processing stages to improve the quality 

of the echogram images.  Subsequently, machine learning and deep learning algorithms were 

developed to identify the layer pixels and track them in the improved images. Finally, a 

combination of signal processing algorithms and computer vision algorithms were developed to 

extract the identified layers in the deep learning model outputs. 

 

2-3-2 Challenges in applying deep learning to echogram layer tracking 

Despite the appeal of applying machine learning and deep learning algorithms to the layer 

tracking problem, there are some inherent challenges that need to be addressed. First is 

identifying the appropriate deep learning paradigm that best suits the problem. The deep learning 

paradigm in this context refers to one of supervised, unsupervised or deep reinforcement 

learning. The initial deep learning framework chosen for formulating the layer tracking problem 

was to set it as “supervised deep learning” because of the flexibility of the approach and reported 

success on similar problems in other fields. However, supervised deep learning algorithms suffer 

from the circular problem of first requiring large amounts of labeled data to train the models 

[74]. These large quality annotations are required to expose the model during the training phase 

to the true underlying statistical distribution of the data to find the optimal layer weights and 
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parameters in the solution space. However, at the inception of this research, there is no such fully 

annotated large radar echogram dataset. This prompts the need to progressively create a radar 

echogram dataset large enough to train a deep learning model. The alternative of direct zero-shot 

learning from weights of large models trained on optical images fails largely due to the 

dissimilarity between the data domains. This precludes the application of off-the-shelf deep 

learning algorithms which fail on the echogram layer tracking problem largely because of the 

lack of overlap in the training data and radar echograms. 

 

To train a supervised deep learning model for layer tracking, a key to achieving good 

performance is the availability of high-quality input echogram images. This will facilitate the 

ability of the models to understand the noise peculiarities inherent in remotely sensed radar data 

to correctly discriminate signal and noise signals. However, signal attenuation and fading 

through the snow medium, non-ideal radar system characteristics, aircraft roll and antenna 

radiation pattern effects, off-nadir backscatter and multipath scattering are some of the 

phenomena that combine to form the non-Gaussian noise distribution that result in the observed 

imperfections in the echogram image. This invariably results in poor input image quality when 

the effects are severe. These noise effects are particularly noticeable in images created from 

radar data collected from wet or ablation snow zones where continuous melting introduces melt 

run-off water that both disrupts the annual snow layering and attenuates the radar signal. For 

these kinds of images, the presence of along-track fading particularly when the orientation of the 

accumulation layers in the image is curved or arcuate, results in a challenging layer tracking 

problem. Hence, the need for a robust custom deep learning algorithm.  

 

Also, existing popular deep learning models are mostly designed for relatively small optical 

input image sizes or images that can be resized with no harm to performance. For example, 



29 

resizing a high quality 1280 x 720 pixel image of a dog to 256 x 256 does not affect a 

classification model trained to identify the animal in the picture. However, this does not hold true 

for echogram images. The high resolution of echogram images introduces additional 

complexities in making the decision for the right training setup such as the choice of deep 

learning architecture, the computing and memory resource requirements, training time and 

inference time. Furthermore, the option of resizing requires additional care since arbitrary 

resizing of the echograms to smaller dimensions can distort the spatiotemporal information, 

particularly in the depth or fast-time axis information, making it impossible to tie tracked layers 

back to the physical problem of estimating annual snow accumulation. This prompts the need to 

either train on the large image size or find creative ways to decimate whilst preserving the output 

layer resolution.  

 

Additionally, a critical fact inherent in airborne radar subsurface mapping is that snow layer 

interfaces in echogram images are more than one pixel thick. However, the labeling process used 

to create the ground truth assigned just one pixel to each column of each layer in the echogram. 

This has implications for training and evaluating deep learning models for layer tracking. First, 

the tracking of echogram layers even by trained humans to create the ground truth label is 

ambiguous since there are multiple layer pixels that can be chosen. Although there exist general 

unwritten rules and guidelines regarding the selection of consistent layer pixels as ground truth, a 

universally accepted scientific method remains elusive. Secondly, this ambiguity is significant in 

model performance evaluation and the definition of evaluation metrics that truly reflect how well 

the models are tracking the layers. A model might be reported to do poorly based on certain 

metrics that compare with the human-annotated label even though the model chooses alternative 

layer pixels that can be said to be equally correct.  
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More so, the involvement of humans in creating the ground truth labels inevitably introduces 

errors. Manual labelling of echogram layers is in fact very difficult, and errors are often 

unavoidable due to human fatigue. This is of consequence in the design of the deep learning 

architecture because some architectures are more susceptible to these errors than others. These 

label ground-truth errors become more critical when evaluating the accuracy of automatically 

tracked layers by different deep learning models.  

 

In summary, the challenges to be considered when deciding the deep learning algorithm to use 

for the radar echogram layer tracking problem include: 

1. Existing ground truth annotations are imperfect, limited, and incomplete for each 

echogram. Moreover, subtle ambiguity sometimes exists in the definition of a layer’s 

exact pixel location since the layers are generally more than one pixel thick. 

2. The fine resolution of the echogram image demands a higher GPU memory budget which 

competes with the optimization of heavily parameterized algorithms. Although it is 

possible to resize the images, care is needed to not distort the layer information. 

Furthermore, when models are trained on decimated images, inference on real full-scale 

echograms would require extra manipulation that may introduce subtle errors (e.g. odd 

decimation factors). 

3. The dimension of the echogram images in the dataset may vary. Even more critical is that 

the number of layers that may exist in the image is unknown a priori. Most deep learning 

algorithms prefer fixed input image sizes with a fixed number of output classes. 

4. The output of the models needs to be a layer contour. 
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Chapter 3: METHODOLOGY 

At the inception of this research, the amount of echogram image and annotation pairs available 

was very limited. Recognizing the strength of deep learning algorithms and their weakness of 

requiring large amounts of annotation, a heuristic approach is first adopted to decompose the 

radar echogram layer tracking problem into a simpler iterative problem. This chapter discusses 

the iterative row block algorithm, the deep learning algorithms designed for this and the post-

processing step to reconstruct the decomposed echogram images. 

 

3-1 Iterative RowBlock algorithm 

In this paradigm, the dense prediction problem requiring each pixel in the echogram image to be 

individually classified into different layers all in one go is reformulated as an iterative layer 

detection problem where the goal is to identify a single layer at a time starting with the surface 

whose position is known a priori. Concretely, instead of attempting to track all the layers in the 

echogram image all at once by treating the image as a single input to the algorithm, the echogram 

image is first broken down into smaller units and layer tracking is done on this one layer at a 

time. This is achieved by employing the echogram image matrix decomposition routine 

described below. 

 

Consider the 2D matrix in Figure 3-1 depicting an echogram image. The surface layer (coded in 

red) is always known a priori since simple thresholding algorithms can be used to track the 

surface. It is expected that the next layer (the first internal layer in this case) will be a few rows 

beneath the surface and that the subsequent layer (the second internal layer) will also be a few 

rows after the first internal layer and so on. This assumption is because each layer is produced 

from the net surface mass balance from the annual cycle of precipitation and evaporation, which 
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is assumed to be positive each year in the dry snow zone. Therefore, the internal layers do not 

cross each other even when there is some ice melting (i.e., the layer thickness is always positive). 

Hence, to track the internal layers starting from the first internal layer, a fixed number of rows 

starting from those immediately after the surface are extracted. We term these extracted 

rows/pixels as a RowBlock because it is roughly parallel with the rows. Specifically, a 

RowBlock is the region of the echogram image directly beneath a previously detected layer 

which would contain the next layer and the algorithm is trained to determine the index of the 

next layer from these. Usually, the initial layer that defines the first or top row block is the snow 

surface. It is important to note that the RowBlock’s top and bottom edges do not follow constant 

rows in the original image, since the top and bottom edges follow the layer above that defines the 

RowBlock.  

 

Thus, we pose the tracking problem as an iterative detection problem which is solved by tracking 

one layer at a time from the iteratively formed RowBlocks. An example of forming the first two 

row blocks of an image is shown in Figure 3-2. The number of pixels rows that are in a 

RowBlock, 𝑁𝑟𝑏 , is a hyperparameter that is chosen based on statistics of internal layer spacing 

collected from available manually tracked internal layers. It is chosen to be large enough so that 

the next layer occurs within the row block. Sometimes, a row block may contain more than one 

layer i.e., a deeper or subsequent layer after the next layer could be included in the row block. 

The purpose of this is so that the neural network models can be trained to learn how to ignore 

these deeper layers and only track the next layer.  
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Figure 3-1 Depiction of an echogram image showing iterative RowBlock creation 

 

The example in Figure 3-1 only shows RowBlocks with a single layer in each; if the number of 

rows 𝑁𝑟𝑏 in each row block had been increased, then part of layer 2 would have shown up in row 

block 1. A possible reason for restricting the number of rows in each row block (e.g., to 𝑁𝑟𝑏 = 5 

rows in Figure 3-1) is to reduce the size of the Neural Network (NN) and therefore the learning 

time of the NN. However, this must be balanced with the need for 𝑁𝑟𝑏 to be large enough to 

always ensure that the next layer will be completely contained in the row block.  

 

Rather than passing a single column in a row block as the neural network’s input, we form a 

“ColumnPatch” - a combination of the current column and the adjacent Ncols columns to the left 

and right. Using ColumnPatches as inputs to the model has the advantage of including local 

spatial information that is shared by adjacent columns which improves the model's performance 

and ensures a smooth column-to-column transition in the tracked layers. For columns with 

insufficient support at the edge of the row blocks, available columns are mirrored to complete the 
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required ColumnPatch size. Figure 3-2 illustrates how ColumnPatches are formed from the row 

blocks in Figure 3-1 

 

 

Figure 3-2 ColumnPatch creation process 

 

In this paradigm, the objective of the deep learning model is to identify the index of the next 

layer in each column of the current row block, one column at a time. Concretely, to track the first 

internal layers, 𝑁𝑟𝑏 rows after the first layer are used to form the row block. For each column, the 

input to the neural network is a ColumnPatch formed with 2𝑁𝑐𝑜𝑙𝑠 + 1 columns centered on the 

column for which the next layer is being estimated. The algorithm is trained with the 

ColumnPatches as inputs and the outputs as the index of the pixel containing the next layer. The 

tracked location of the first internal layer from all the columns in the row block is then used as 

the base to form the next row block from which the next internal layer is to be tracked. This 

process is iterated until a termination condition is met (and ideally all the detectable layers in the 

echogram are tracked).  

 

The advantage of this algorithm is reconstructing a complex problem of tracking an unknown 

number of layers in a full echogram into a simpler problem of finding just the next layer in a 

focused area of the echogram where the next layer is expected to be. Using RowBlocks to create 

ColumnPatches, the complexity seen by the algorithm is reduced from having to identify and 

track layer pixels in the entire echogram to only identifying the index of the next layer for a 
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single column in a ColumnPatch. A direct consequence of this decomposition is substantial 

expansion of training data by several orders of magnitude. The exact order of expansion depends 

on the choice of 𝑁𝑐𝑜𝑙𝑠 and 𝑁𝑟𝑏. By breaking the echogram into RowBlocks and then into 

ColumnPatches, the unit input to the deep learning algorithm is no longer the entire echogram 

image but sections of it. This helps circumvent the challenge posed by limited availability of 

training data by providing millions of training examples. 

 

It is important to note the difference in the algorithm’s routine during training and inference. For 

training, the tracked internal layers (ground truth) are always available, therefore the RowBlock 

for a layer is formed using the available tracked layer information. However, at inference time, 

only the echogram and the tracked surface are provided to the models. The algorithm therefore 

uses the prediction from the last step to form the RowBlock for the next iteration.  

 

An early termination routine was also adopted to stop the iterative layer inference from 

unnecessarily continuing till the bottom of the echogram when the previously returned prediction 

suggests that there are no further layers in the echogram image after the current one. Some 

echograms have fewer layers and as such do not span the entire depth of the echogram. It is 

therefore not necessary to continue to search for deeper layers until the bottom of the echogram. 

However, to prevent premature termination of the routine, the inference routine does not quit the 

first time but after multiple tries with consecutive “no-layer” returns. Section 3-2-4 elaborates on 

the implementation of the early termination routine used in this work.  

  

Before applying this algorithm to “real” echogram data, we designed simulated echograms in 

order of increasing complexity to investigate the viability of this deep learning approach. These 
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simulated echograms were later combined with real echogram dataset to increase the dataset’s 

size and diversity. 

 

3-1-1 Heuristic-based simulated echogram 

To assess the feasibility of applying deep learning for real echogram layer tracking, we 

commence by designing a simulated echogram based on a simple heuristic and employing the 

iterative layer tracking algorithm on it. The simulated echogram was created based on the 

following assumptions: 

(i) The data was collected from the dry snow zone where there is no melting and annual 

stratigraphy is preserved 

(ii) The surface is flat 

(iii) Backscatter from each pixel is not based on any scattering models but just a superposition of 

many coherent point targets 

(iv) To model the stochasticity and incoherence between adjacent rangelines, the coherent point 

targets are randomly positioned in the image pixel and weighted by complex Gaussian weights 

(v) The response is the ideal point target band-limited sinc function with no sidelobes. 

(vi) Gaussian noise is added. 

(vi) The layer statistics and the signal statistics are not rigorously derived from data but are based 

on educated guesses. 

Based on these assumptions, we created echogram images such as the one shown below in 

Figure 3-3. We then applied the Row Block algorithm to iteratively track the layers one at a time.  
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Figure 3-3  Heuristic-based simulated echogram 

    

 

3-1-1-1 Shallow model for heuristic-based simulated echograms 

A lightweight artificial neural network (ANN) with a single hidden layer, and multi-class output 

layer was designed. The training set has 𝑀 examples. The training input matrix is 𝑋 =

[𝑥(1), 𝑥(2), … , 𝑥(𝑀)], where example 𝑥(𝑖) is a 𝑛𝑥 = 𝑁𝑟𝑏 × (2𝑁𝑐𝑜𝑙𝑠 + 1) length column vector of 

image pixels corresponding to the (𝑖) row block example. The associated output matrix is 𝑌 =

[𝑦(1), 𝑦(2), … , 𝑦(𝑀)], where example 𝑦(𝑖) are one-hot encoded 𝑁𝑟𝑏 + 1 length column vectors 

with the elements of the vector corresponding to {no-layer,layer in row 1, … ,layer in row 𝑁𝑟𝑏} 

where every element is zero except for a one in the position corresponding to the correct answer. 
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The hidden layer has 𝑁 nodes and the network learns the optimum bias vectors 𝑏[1] and 𝑏[2] 

defined below, and weights 𝑊[1] and W[2], also defined below as matrices representing the 

linear maps through the hidden layer and the output layer respectively. 

 

The output of the hidden layer for input example (𝑖) is given by: 

 𝑎[1](𝑖) = 𝑔(𝑊[1]𝑥(𝑖) + 𝑏[1]) and 𝐴[1] = 𝑔(𝑊[1]𝑋 + 𝑏[1])   (2) 

where 𝑔(𝑧) = 1

1+𝑒−𝑧
 is the sigmoid activation function, label [1] in 𝑎[1](𝑖) refers to the first layer 

of activation outputs, 𝑎[1](𝑖) = [𝑎1
[1](𝑖), … , 𝑎𝑁

[1](𝑖)]
𝑇

 is a column vector where the subscripts from 

1 to 𝑁 correspond to the outputs of each hidden node, 𝐴 = [𝑎[1](1), … , 𝑎[1](𝑀)] is the matrix 

formed from the outputs from each training example, 𝑏[1] is a bias vector term of size 𝑁 × 1, and 

𝑊[1] is a 𝑁 × 𝑛𝑥 matrix. 

The output of the output layer for input example (𝑖) is given by: 

 𝑎[2](𝑖) = 𝑔(𝑊[2]𝑎[1](𝑖) + 𝑏[2]) and 𝐴[2] = 𝑔(𝑊[2]𝑋 + 𝑏[2])  (3) 

where [2] refers to this being the second layer of activation outputs. 

𝑎[2](𝑖) = {𝑎1
[2](𝑖), … , 𝑎𝑁𝑟𝑏

[2](𝑖)} is a column vector where the subscripts from 1 to 𝑁𝑟𝑏 correspond to 

the outputs of each output node, 𝐴 = [𝑎[2](1), … , 𝑎[2](𝑀)] is the matrix formed from the outputs 

from each training example, 𝑏[2] is a bias vector term of size 𝑁𝑟𝑏 × 1, and 𝑊[2] is a 𝑁𝑟𝑏 ×𝑁 

matrix. 

 

A regularized logistic regression cost function 𝐽(𝑊[1],𝑊[2]) using the cross-entropy loss 

function is used for training the model over the entire training set 
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𝐽(𝑊[1],𝑊[2]) =

1

𝑀
[−𝑌𝑇 𝑙𝑜𝑔(𝐴[2]) − (1 − 𝑌)𝑇 𝑙𝑜𝑔(1 − 𝐴[2])]

+
𝜆

2𝑀
[|𝑊[1]|

2

2
+ |𝑊[2]|

2

2
]

 

 

 (4) 

where 𝜆 is a scalar regularization hyperparameter which scales the Frobenius norm of the weight 

matrices to prevent overfitting during training. 

 

Backpropagation is used to calculate the partial derivatives of the cost function with respect to 

the model parameters, 𝑊[1] and W[2]. The cost function optimization is done using the fmincg 

conjugate gradient descent algorithm from MATLAB. The optimization goal is to find the model 

parameters that minimize the overall cost function. 

 

3-1-1-2 Shallow model result 

The training set contains 307,200 ColumnPatches taken from a subset of all the RowBlocks 

generated from 800 simulated Snow Radar echograms. The NN was trained on a 128 GB, 3.3 

GHz, 8-core Red Hat Enterprise Linux server using MATLAB. The simulated 1000 by 256 

echogram matrices were decimated to 125 by 64 to reduce the number of inputs and outputs of 

the NN. 

For testing, 200 simulated echograms with known surface were created. Using the surface 

information, the first layer of each echogram was tracked, and this was used to form the row 

block for the next/second layer and this process continued until the termination condition was 

met. The following a priori information and hyper-parameters were used: 

• The number of rows in a row block is set to 𝑁𝑟𝑏   = 16. 

• A total of 𝑁𝑐𝑜𝑙𝑠 = 15 neighboring columns were used on each input (7 to the left and 7 to 

the right of the column being estimated). 
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• The number of NN layers was set to L = 3. 

• The number of nodes in hidden layer N = 50, 

• no-layer termination threshold γ = 0.5, and a regularization term λ = 50. 

An example echogram image is shown in Figure 3-4a with ground truth labels as dashed lines. 

The NN layer tracks for this image are shown in Figure 3-4b as colored lines identifying each 

layer in the simulated image.  

The model’s performance is evaluated quantitatively using root mean squared error (RMSE) 

defined below where 𝑦 in this case represents the index of the selected row rather than the one-

hot encoded output vector. The term, 𝑦(𝑖) − 𝑦̂(𝑖), then represents the difference in rows 

between the NN estimated layer location and the ground truth layer location. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑀
∑(𝑦(𝑖) − 𝑦̂(𝑖))2
𝑚

𝑖 = 1

  

 (5) 

Overall, an accuracy of 92.8 % was achieved with an RMSE of 0.24 pixels. Accuracy here is 

defined as the percentage of the model predictions that exactly match the ground truth. In other 

words, the percentage of columns in the test data that the model predicted the exact row/no-layer 

state. Also, of the inexact predictions (prediction pixel errors) made by the model, only 2% of 

them were greater than 1 pixel. 
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        Figure 3-4: (a) Simulated echogram image with ground labels as dashed lines. (b) Image 

with overlaid prediction for each layer in the echogram  

 

3-1-2  Improved simulated echograms 

Following the successful application of the RowBlock algorithm for layer tracking in a 

simplified simulated echogram, efforts were made to enhance the simulated echogram’s fidelity 

to match actual echogram images. The approach adopted involved identifying and replicating 

key physical models underlying the layering and backscatter power of the Snow Radar. This was 

achieved by incorporating noise, layer geometry, and echogram signal statistics, all derived from 

actual echogram data. The simulator model was then parameterized using statistical estimates 

obtained from data collected along a flight line extending from Central to Northwest Greenland, 

which spans diverse snow accumulation conditions within the dry snow zone. 

 

 

3-1-2-1 Layer generation 

To simulate echogram images with “near-real” layers, we investigated the layer geometries that 

exist in a sample dataset with over 200,000 rangelines (after stacking and other post-processing). 
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The geometry of the layers in an echogram image depends largely on the geographic and 

climatic conditions of the measurement site. Wet-snow and ablation snow zones usually have 

fewer internal layers, with markedly sloped and undulating layer geometry while dry snow zones 

have more internal layers which are relatively flat and parallel to each other. It should be noted 

that most of the sample dataset used in parameterizing our model comes from the dry snow zone. 

However, this is the zone of greatest interest for automated tracking due to the higher number of 

persistent layers compared to other snow zones. 

 

 

Simulating Layer Geometries 

Using the manual annotations of the sample dataset, we computed the thickness (snow 

accumulation) between consecutive tracked layers to understand the underlying accumulation 

random process. The histogram of the layer thickness reveals a Gaussian process with a slowly 

changing along-track mean. This suggests that, although there are local variations in each layer 

thickness from rangeline to rangeline, there is also a slowly varying trend in the average layer 

thickness over space. Another important process is the correlation between the layer thickness of 

different layers at a particular location. This is seen qualitatively in an echogram image such that 

the layers often share a similar trend in their layer geometry, and this can be attributed to the 

weather and topography of the imaged location. This tends to be consistent over time as each 

layer is deposited at a site. Therefore, to create layers with similar geometry to that in real data, 

all three processes need to be incorporated. 

 

To model the high-frequency local variations, the sample dataset was divided into blocks of 1000 

rangelines. We then computed the power spectral density of each layer thickness after 

subtracting the along-track mean in each section. Similarly, to capture the slowly varying along-
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track accumulation mean that describes how the mean thickness varies across space, we 

computed the mean thickness and variance for each section. In future versions of the simulator, 

the autocorrelation function of the low frequency (slowly varying) component of the layer 

geometry could be considered instead of mean and variance. Given the different accumulation 

rates over Greenland, accumulation can vary a lot between different locations, and this is seen in 

the sample dataset. We, therefore, re-grouped the dataset into 4 groups of accumulation zones, 

based on the accumulation/thickness of the first layer: shallow, medium, high, and very high 

accumulation zones. 

 

Lastly, to partly model the similar trend that exists in the thickness of the first layer and 

subsequent layers and the geometry of layers in an echogram, we normalized the layer 

thicknesses of all the layers relative to the thickness of the first layer to simulate the correlation 

between the layers in an echogram. This was done for all four zones and since the distribution of 

the normalized layer thickness is approximately Gaussian, we estimated the mean and variance 

of each.  

 

One additional image attribute to note is the number of traceable layers. This parameter is 

defined as the number of layers in the echogram with a sufficiently high signal-to-noise ratio that 

detection is possible. This parameter is treated as a wide-ranging value from a uniform 

distribution for the training to avoid biasing the network's model parameters to a limited number 

of layers. The number of layers is randomly chosen from a uniform distribution between a 

minimum of 5 layers to a maximum of 40 for each simulated echogram. The mean thickness of 

the first layer is then generated from a uniform distribution based on the distribution of the first 

layer in the sample dataset and this determines the accumulation zone of the simulated 

echogram. Next, the mean thickness of each of the deeper layers is computed by multiplying the 
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mean thickness of the first layer with the multiplicative factor drawn from the normalized layer 

thickness distribution of the accumulation zone. To add the high frequency rangeline to the 

rangeline variation, a random Gaussian sequence with zero mean and unit variance is filtered to 

match the power spectral density of the layer thickness as seen in the sample dataset. 

 

The images in Figure 3-5 and  Figure 3-6 show the power spectral density of the simulated layer 

and real sample data respectively. Although the length of the simulated layer thickness sequence 

for each layer is shorter — resulting in a sparser power spectral density compared to the real 

data— the overall trend is consistent between them. This matching power spectral density profile 

demonstrates that the simulated layer thickness closely resembles that of real data, which 

significantly enhances the simulator's ability to generate echogram images that appear more 

realistic. 

 

Figure 3-5: Power spectral density of simulated layer 
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Figure 3-6: Power spectral density of real data. 

 

3-1-2-2 Layer Power Generation 

Like the layer generation process described above, we modeled the backscatter power of the 

simulated echogram using statistics derived from the received backscatter in the sample dataset. 

The layer scattering response generally follows the shape predicted by the Moore convolution 

model for surface altimetry [64]. The shape starts with a fast-rising edge (attributed to the RMS 

height of the surface) followed by a slower, exponential-like, decay (attributed to the off-nadir 

backscatter) with the tracked layer centered on the peak as shown in Figure 3-7. 

Moore and Williams [64] show that the expectation of the power detected waveform for the 

surface can be modeled as the convolution of several constitutive elements including the height 

distribution of the layer, the pulse-limited footprint, and the expected backscatter. We assume the 

Born approximation [65] so that the interaction or multipath between layers can be ignored. We 
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model the set of layers as the superposition of each layer independently generated and then 

incoherently summed. 

 

Figure 3-7: Illustration of the normalized average or expected backscatter from a layer. 

Following the convolution model, we simulated the response of a layer by convolving a 

Gaussian waveform, which approximates the height distribution of the layer, and an exponential 

decay waveform, which approximates the combined pulse limited area and layer backscatter roll-

off. The peak of the Gaussian is aligned with the tracked layer location and the combined return 

for a range line is the linear superposition of these convolved waveforms – one for each layer in 

that range line. Snow Radar scattering tends to be incoherent because scatterers that form a layer 

vary randomly throughout the snow volume that constitutes the layer. Therefore, rangelines 

typically have minimal to no phase correlation with neighboring rangelines.  

 

This incoherent backscattering assumption, which is the basis of the above convolution model, is 

supported by the Doppler spectra along snow layers. In general, the spectrum is broad without 

distinct coherent peaks. The histogram of the Snow Radar data in the sample dataset, which 
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includes along-track incoherent averaging, shows that the distribution of the peak power along a 

layer fits a Chi-square distribution. Using the scaled superposition waveform as the mean power, 

a Gaussian random process was created to simulate the expected power returns from each 

rangeline. We then power detect and incoherently averaged multiple simulated rangelines to 

create the final simulated rangeline with the appropriate Chi-square distribution. 

 

To parameterize the layer power generation, the mean power for layer 𝑙, denoted, 𝑚𝑙, is found by 

taking the average power of the bin that is manually tracked across all rangelines where the layer 

is defined. The mean power represents the backscatter received by the radar for each layer and 

therefore encapsulates backscatter cross-section, attenuation, and other effects. We estimated the 

width of a layer by calculating the range bins it took for the peak power to decline to 𝑒−1 of the 

layer peak return for all well-defined and tracked layers in the sample dataset. Based on the 

resulting histogram of the estimated layer width, we approximate the width of the layer peaks, 

𝑑𝑙, by a uniform distribution between 10 to 15 range bins or rows. 

The estimated along track mean peak power, 𝑚𝑙, for each layer is used to scale the convolved 

exponential and Gaussian waveform and the resulting range line signal power is given by: 

 
𝑃𝑠(𝑥) =∑𝑚𝑙 𝑒𝑥𝑝

−(𝑥 − 𝜇𝑙)
2

2𝑑𝑙
2

𝐿

𝑙=1

⊗𝑈(𝑥) 𝑒𝑥𝑝(−𝛼𝑙𝑥) 
                    

(6) 

   

where  

• 𝑃𝑠 is the expected backscatter power waveform for each rangeline.  

• 𝑥 is the fast time pixel index 

• 𝑈(𝑥) is the unit step function 
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• 𝐿 is the number of layers in the range line 

• 𝑚𝑙 is the mean peak power for layer  

•  𝜇𝑙 is the location or row of layer l,  

• 𝑑𝑙 is the width of layer l pulled from a uniform distribution from 10 to 15 rows, and 

• 𝛼𝑙 is the exponential decay rate of the layer.  

The values of 𝑚𝑙, 𝑑𝑙, and α𝑙  are all estimated from the sample data. To estimate the decay rate of 

each layer, all rangelines in the sample data are grouped into K groups of 20 consecutive 

rangelines each. Each group was then incoherently averaged in the along-track dimension to 

produce a single filtered range line per group. Note that the data are already incoherently 

averaged and decimated by five during the process to generate the echograms, so the total 

number of incoherent averages is 100. This ensemble of K filtered rangelines is then used to find 

the backscatter peak power, 𝑃𝑝𝑒𝑎𝑘,𝑙𝑘, and the minimum power, 𝑃𝑚𝑖𝑛,𝑙𝑘, between this and the next 

peak, for each filtered range line k ∈ 1,...,K and each layer l ∈ 1,...,L. 

 

The backscatter peak power 𝑃𝑝𝑒𝑎𝑘,𝑙𝑘 generally corresponds to the location of the layer since the 

tracked layer follows the peak power. Using the range bin distance between the peak and the 

minimum for each layer and filtered range line, 𝑏𝑙𝑘, we compute the estimated decay rate for 

each layer as follows: 

 
𝛼𝑙 =

1

𝐾
∑(−1 ∕ 𝑏𝑙𝑘)

𝐾

𝑘=1

∗  log (
𝑃𝑚𝑖𝑛,𝑙𝑘

𝑃𝑝𝑒𝑎𝑘,𝑙𝑘
) 

(7) 
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As described in Equation (7), the decay rate, 𝛼𝑙, is estimated from the average of the exponential 

curve fitted between peak power 𝑃𝑝𝑒𝑎𝑘,𝑙𝑘 and minimum power, 𝑃𝑚𝑖𝑛,𝑙𝑘 , for K adjacent 

rangelines. 

  

We concluded the signal statistics analysis by estimating the background thermal noise power, 

𝑃𝑛, from the sample dataset by estimating the power of the received signal before the surface 

return arrives under the assumption that there are no targets above the surface so that only 

thermal noise is present in the part of the image used to estimate the thermal noise. The expected 

thermal noise power is also assumed to be constant. The complex signal and additive noise are 

both pulled from additive white complex circular Gaussian noise which is then scaled by the 

expected signal, 𝑃𝑠(𝑥), and noise power 𝑃𝑛. Thus, the power detected rangeline with signal and 

noise is given below as 

The distribution of the power detected signal follows an exponential distribution. The final step 

in the simulator is to incoherently average M = 100 rangelines together followed by decimation 

in along-track by M. This results in a Chi-squared distribution with 2M degrees of freedom. This 

is done in the data processing to reduce signal fading which helps produce smoother and better-

delineated layering in the images. Examples of echogram images simulated from this approach 

are shown in Figure 3-8 and Figure 3-9. 

 
𝑝(𝑥) = |𝑠(𝑥)√𝑃𝑠(𝑥) + 𝑛(𝑥)√𝑃𝑛|

2

  (8) 
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Figure 3-8: Simulated echogram image using improved model

Figure 3-9: More simulated echograms with different number of layers and layer shape
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3-2 Row Block on actual echogram images 

The enhanced simulated echograms exhibit greater realism, closely resembling actual 

echograms. This improvement also increases the flexibility in manipulating echogram features, 

such as the number of layers, the shape of internal layers, and the along-track distance of the 

echogram, enabling the creation of a diverse simulated echogram dataset. To further supplement 

the limited supply of manually annotated real echograms, these simulated echograms were 

combined with additional synthetic images generated by conditional Generative Adversarial 

Networks (cGANs) to produce "near-real" echogram images.  

However, despite these improvements, applying models trained on simulated images directly to 

real echograms did not yield the anticipated results, with minimal performance gains observed. 

This outcome, though somewhat expected, underscores the models' insufficient robustness in 

capturing the complex features inherent in echogram images. While visually improved, the 

simulated echograms still fail to encapsulate the underlying random processes necessary for deep 

learning models to effectively track layers. 

Echograms, unlike optical images, are characterized by specific challenges such as signal fading, 

speckle noise, interference from non-nadir scatterers, and other system imperfections typical of 

SAR data. These factors, when severe, degrade image quality and complicate layer tracking, 

even for human analysts. Although further investigation could potentially improve the simulator 

and clarify why simulated images did not significantly enhance performance, the research focus 

was shifted to working directly with real echogram images. 
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Figure 3-10: Map of Greenland showing the flight line used for estimating the statistics used 

for the simulated RowBlock echograms 

Next, we began experimenting with various deep learning architectures using manually 

annotated datasets to identify the most effective architecture for modeling and learning from real 

echogram data. To begin, a pilot dataset with echogram image and annotated ground truth was 

selected. Figure 3-10 shows the flightline from which the initial manually annotated echogram 

dataset was derived. This dataset comprises of 1,272 training echograms created from one 

flightline. The performance outcomes and limitations of tested architectures are detailed in the 

following sections. 

 

3-2-1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a specialized class of deep learning models designed 

to process and analyze visual data, though they have also been effectively applied to other data 
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types such as audio and text. They have become the cornerstone of modern computer vision tasks 

such as image classification, object detection and image segmentation. They are particularly 

effective because they can automatically and adaptively learn spatial hierarchies of features from 

input images, which allows them to handle the complexity of visual data more efficiently than 

traditional neural networks. 

CNNs are composed of multiple layers, each responsible for extracting different levels of 

abstraction from the input data. The key layers in a CNN include: 

1. Convolutional Layer: This layer is the core building block of a CNN. The convolutional 

layer applies a set of filters (also known as kernels) to the input image. This set of 

learnable filters scans the input image, performing a dot product between the filter 

weights and the input data. These filters are usually small matrices (e.g., 3x3, 5x5) but 

could be larger for specific applications. They slide over the input data to extract features 

such as edges, textures, or patterns. This operation is called a "convolution," which gives 

CNNs their name. The output of the convolution operation is the “feature map” that 

represents the presence of specific features in the input image. 

2. Activation layer: After the convolution operation, the output is passed through an 

activation layer (usually the ReLU activation function). This is an element-wise operation 

that replaces all negative pixel values in the feature map with zeros, which introduces 

non-linearity into the model, allowing it to learn more complex patterns. The sigmoid 

activation is also a common choice particularly on the output layer. 

3. Pooling layer: This layer is used to reduce the spatial dimensions of the feature maps 

while retaining the most important information in the input. The most common type of 
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pooling operation is max pooling, where the maximum value is selected from a group of 

values in the feature map. 

4. Fully connected layers: This layer is used in classification CNN models but not in 

segmentation networks. After the series of convolutional and pooling layers with 

intermediate non-linear activation layer insertion, the final high-level reasoning in the 

neural network to determine the appropriate class is done with the fully connected layer 

in the classification network. The alternative is the segmentation head in segmentation 

networks. 

 

CNNs are widely used in deep learning due to their ability to perform template matching at 

different image scales, translation and illumination invariance to achieve remarkable results. 

Fundamental to the success of CNNs is the pooling operation. Its key function is to reduce the 

spatial size (width and height) of feature maps while trying to preserve the most important 

features within them. This reduction in dimensionality offers several advantages.  

Pooling makes CNNs more efficient by lowering the number of parameters and computations 

after convolution. It reduces the number of values needing processing in subsequent layers, 

leading to faster training and reduced processing power demands. It also improves the robustness 

of the network by capturing the essential features within a local area making the network less 

sensitive to slight positional variations in the input data. This property, known as translation 

invariance, allows the network to recognize the same object even if it appears slightly shifted in 

the image. This translational invariance property of convolutional neural network is mostly due 

to the convolution operation performed at each image scale, but the pooling operation also 

contributes to this. Importantly, pooling helps to control overfitting which happens when a model 
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memorizes the training data too well and performs poorly on unseen examples. Pooling reduces 

the complexity of the data representation, making it harder for the model to simply memorize 

details and encouraging it to learn more generalizable features.  

However, the attempt to implement 1D and 2D CNNs did not yield good performance. This is 

most likely due to the small dimensions of the input ColumnPatch. This precludes the application 

of successive pooling operations which ultimately limits the performance of the CNN 

architecture. Exploring larger ColumnPatch sizes by removing the undersampling in their 

generation or inclusion of a greater portion of the image is a potential avenue for future work that 

would allow testing this hypothesis of the CNNs poor performance.  

 

3-2-2 Multilayer Perceptron (MLP) 

MLP is a supervised learning algorithm architecture consisting of fully connected feed-forward 

artificial neurons with an input layer, one or more hidden layer(s) and an output layer. It is a 

specific type of artificial neural network with all the nodes in the layers densely connected. 

During training, through a series of forward pass and error back propagation, the network learns 

to approximate the latent input-output distribution. The MLP is known to be close to the 

universal approximator when given sufficient depth and/or width. This property makes it a good 

candidate for modeling input-output relationships between rangeline backscatter and the internal 

layer range index.  

 

However, there are limitations to the vanilla implementation of the MLP. Having just one hidden 

layer with a lot of nodes makes it susceptible to overfitting the training data and will also suffer 

performance degradation with increased layer depth [75]. To combat this limitation, we trained a 



56 

variant of the classical MLP termed “Skip-MLP” which uses ResNet blocks and successive skip 

connections between all adjacent blocks. The skip connections serve as identity functions that 

easily allow gradient flow during model forward and backward optimization pass, effectively 

increasing convergence speed while mitigating vanishing or exploding gradients. 

 

Figure 3-11: Architecture of the SkipMLP model 

 

The SkipMLP network (shown in Figure 3-11) consists of 𝐷𝑥 repeated blocks of sandwiched 

dense layers, batch normalization layers and non-linear activation functions. The nodes in the 

dense layers act as an approximation of a universal estimator whose weights are optimized 

during the training. The batch normalization layer normalizes the network weights every training 

batch to settle the learning process, thereby drastically reducing the number of training epochs. A 

Rectified Linear Unit (ReLU) differentiable activation function is applied before the dropout 

layer to help the model learn nonlinear mappings that may exist in the data. 
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The depth 𝐷𝑥 of the network and the width (number of nodes in the hidden layer) are 

hyperparameters carefully chosen to achieve desired model performance. To avoid overfitting 

the training data due to increased parameterization, both batch normalization layer and dropout 

layer are used to provide regularization in each block. 

 

Taking inspiration from the popular ResNet architecture, each block is connected to previous 

blocks through the skip connections. However, we extend this to form interconnection between 

all the blocks instead of just adjacent blocks i.e. all the blocks are connected to one another 

through skip connections. Skip connections have been shown to significantly reduce model 

inference cost by as much as 50% on datasets such as CIFAR-10 [76]. The strength of the 

SkipMLP architecture is that with the interconnected skip connections between all the blocks, 

every layer of the model can learn from all prior layers thereby reducing the chance of 

information loss during training. The skip connections also serve the additional purpose of 

preventing exploding or diminishing gradients while also preventing information degradation 

problem due to architecture depth since earlier inputs are always available. We used the softmax 

activation function on the output layer consisting of 𝑁𝑟𝑏 + 1 nodes as described in the basic 

single-hidden layer ANN earlier in this chapter. 

 

3-2-3  Long Short-Term Memory with Position Embedding (LSTM_PE) 

Given the inherently sequential nature of the geospatial information captured in the columns of a 

ColumnPatch, a recurrent neural architecture is a good fit to exploit this implicit property. Of the 

known Recurrent Neural Network (RNN) deep learning architectures, the LSTM is reported to 

have better performance on similar tasks because of its ability to model longer-range patterns 

[77], [78]. The long-term dependency modeling ability of LSTM helps it achieve better 
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performance by allowing the network to effectively capture and remember important information 

from earlier in the sequence, which is crucial for making accurate predictions or decisions later 

in the sequence. Therefore, we designed a version of the LSTM to track the index of layers in 

each training ColumnPatch. 

LSTM’s major component is the memory cell also known as “cell state” which keeps track of the 

information state in the network as weights are updated during training. LSTMs also have the 

forget, input and output gates that act as filters to control information that can be added or 

removed from the cell state based on the current input 𝑥𝑡 and the output from previous time 

step ℎ𝑡−1.  

 

Figure 3-12: Architecture of the LSTM model 

 

The equations in (9) describes all the gates, their interconnections and activation functions used 

in a LSTM model based on the seminal paper [79].  
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 𝐹𝑡 = σ(𝑥𝑡𝑈
𝑓 + ℎ𝑡−1𝑊

𝑓) 

𝑖𝑡 = σ(𝑥𝑡𝑈
𝑖 + ℎ𝑡−1𝑊

𝑖)          

𝑍𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈
𝑧 + ℎ𝑡−1𝑊

𝑧)      

𝑜𝑡 = σ(𝑥𝑡𝑈
𝑜 + ℎ𝑡−1𝑊

𝑜)     

𝐶𝑡 = σ(𝐹𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑍𝑡)     

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) ∗ 𝑜𝑡 

 

  

 

(9) 

where 𝑡 is the time step, 𝑥 is the current input, and 

ℎ𝑡−1 is the previous hidden state. 

𝑈 is the weight matrix that connects the inputs to the hidden layer while 𝑊 is the recurrent 

connection between the previous hidden layer and the current one.  

F, i, Z describe the forget gate, input gate and the candidate hidden state. C is the next cell state 

formed while o is the output gate which is also the next hidden state. 

 

Although the RowBlock creation and the number of resulting ColumnPatch’s drastically expands 

available training data needed for deep neural network training, there is a tradeoff in the depth 

information captured by each ColumnPatch. However, this can be easily compensated for. A 

ColumnPatch from a RowBlock captures spatial information from adjacent columns that helps in 

tracking the layers in the RowBlock columns but does not fully capture depth correlation with 

deeper layers contained in the echograms. Concretely, if two ColumnPatches come from 

different RowBlocks (layers), but the same echogram, are provided as input to the neural 

network, the ColumnPatches, by themselves do not contain explicit information that would help 

the network learn the relationship that exists between layers at a given geographic location. This 
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distinction is important because of the radar power fading phenomena associated with returns for 

deeper internal layers. In this sense, although ColumnPatch’s can be viewed as independent and 

identically distributed (i.i.d) inputs to the model, auxiliary depth information will improve the 

model’s performance.  

We therefore supplement each ColumnPatch with its location index in the originating echogram 

and provide this as auxiliary input to the LSTM. The integer location index is derived from the 

originating echogram as the index of the total ColumnPatch formed from the echogram. For 

example, for an echogram with a total of 1500 ColumnPatches, the location index of the first and 

last ColumnPatch are 1 and 1500 respectively. The location index effectively adds depth and 

additional spatial information to each ColumnPatch input which considerably improves the 

model’s performance.  

Similar to image patches used in Vision Transformers [30], the derived location index is 

projected onto a learnable position embedding space spanning the entire training ColumnPatches. 

The weights of the embedding are randomly initialized and eventually learned during training. 

Conclusively, the input to the LSTM_PE model is the sum of the ColumnPatch and its embedded 

location index. 

 

Deep LSTMs are usually prone to overfitting because of the large number of parameters when 

the model is unrolled. To avoid this, we apply recurrent dropout which uses the same pattern of 

dropped units instead of varying dropout mask at every timestep. Finally, similar to SkipMLP, 

we apply a softmax activation function on the final layer to output the index of the next layer in a 

given input ColumnPatch. 
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3-2-4 Experimental setup 

As shown in Figure 3-10, the dataset used for creating the RowBlock dataset was collected in the 

Spring of 2012 from the dry snow facies around the ridge of the Greenland ice sheet. Owing to 

high elevation and low temperature, little to no annual melt occurs in this region resulting in 

well-preserved annual stratigraphy. As a result, the imaged echograms capture historical 

accumulation spanning over four decades. The internal layers in the echograms were manually 

tracked using semi-automated layer picking software in the Open Polar Radar Toolbox 

developed at CReSIS [80]. The picking tool is based on the Viterbi algorithm [81] with 

implementation details in [45], [48]. A total of 1786 echogram blocks were tracked, with 50% 

overlap between consecutive blocks. Also, only the top 28 layers were tracked to maintain 

consistency in the tracked echograms. 

Splitting the echogram matrix into RowBlocks and ColumnPatches effectively expands the 

limited manually annotated ground truth data to a total of 2,094,400 ColumnPatches which forms 

a dataset large enough to train a deep neural network. However, a methodological approach is 

required to divide the data into echogram training, validation, and test sets.  

First, the ColumnPatches in each set should be diverse and represent the different accumulation 

patterns in the entire dataset to train a “generalizable” model. Secondly, and more importantly, it 

is crucial to carefully separate ColumnPatches derived from echograms in the training set from 

those in the test and validation sets. Creating ColumnPatches first from all available echograms 

and dividing them into train and evaluation sets can result in data leakage because 

ColumnPatches overlap each other so that using a ColumnPatch in training that has a lot of 

overlap with a ColumnPatch in the other sets could lead to biased results. 



62 

To avoid both issues, we employed a simple interspersing of the echograms following the order 

of the echograms along the contiguous flight path which transverse different accumulation 

conditions, although the flight path was mostly over the dry snow zone. Concretely, the final test 

set was created by alternating every 20 echograms to make a total of 200 echogram test set. We 

followed the same pattern to create the training and validation set to give a split of 1232 training 

echograms and 354 validation echograms. This approach ensures that each set is independent 

with no leakage of information between sets and that each set covered a diverse set of snow 

accumulation patterns in order to reduce the chance of covariance shifts between the sets 

 

Figure 3-13: Distribution of targets (number of rows to the next layer) in the training set, test 

set, validation set and the entire dataset. 
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3-2-4-1 Implementation details 

Initial echogram matrices of size 1664x256 were decimated by 4 to 416x64 to keep the training 

time and compute expense tractable. The RowBlocks are formed from the decimated echograms 

invariably dictating the layer spacing and the value of 𝑁𝑟𝑏 . We set 𝑁𝑟𝑏  =  21 and 𝑁𝑐𝑜𝑙𝑠 =  7 

resulting in an input shape of 21x15 for both models. The training and validation set consist of 

1,508,660 and 377,164 samples respectively. For SkipMLP, we used 512 nodes in each dense 

layer and a dropout of 0.3 in each block. A total of 𝐷𝑥 = 10 blocks were used to increase the 

representation power of the model.  

Similar hyperparameters were chosen for the LSTM_PE model. Each layer has 512 hidden nodes 

and a recurrent dropout rate of 0.3 between each layer. We limited the depth of layers in 

LSTM_PE to 𝐷𝑥 = 3 to avoid overfitting the training set. This resulted in 7M and 10M trainable 

parameters for the SkipMLP and LSTM_PE models respectively. Adam optimizer was used for 

both models with an initial learning rate of 1e-3 that is reduced by a factor of 0.25 after 30 

epochs at a plateau and trained for a total of 200 epochs. We trained both models with a batch 

size of 128 on a single Intel(R) Core(TM) i9-10900K 5.3GHz CPU with NVIDIA RTX A5000 

GPU. 

 

3-2-4-2 Model Results 

We report Accuracy, Precision, Recall, and F1-score for both models in Table 2. The accuracy is 

defined as the percentage of predictions made by the model that exactly match the ground truth 

labels (i.e. the total of all the correct predictions divided by the total of all predictions). This 

domain-specific accuracy provides a direct measure of the model's performance in correctly 
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identifying the correct layer pixel in each test ColumnPatch. Precision refers to the proportion of 

correct predictions for a particular class (true positives) divided by all predictions to that class 

including predictions that should have predicted a different class (true positives plus false 

positives). Precision indicates how well the model avoids false positives. Recall is similar but 

divides the correct predictions (true positives) for a class by the total number of instances for that 

class including predictions that were assigned to other classes (true positives plus false 

negatives). Recall reflects the model’s ability to capture all instances of a class. The reported 

values of Recall and Precision are the weighted average of the recall and precision of each class 

where the weighting is based on the frequency of each class in the test dataset. This weighted 

approach ensures that the performance metrics reflect the distribution of classes, providing a 

more balanced evaluation of the model's ability to generalize across different classes. Finally, the 

F1-score is the harmonic mean of precision and recall (i.e. the reciprocal of the mean of the 

reciprocals of precision and recall) – the harmonic mean is designed for averaging rates or 

percentages. 

 

Table 2: Performance metrics for the Skip-MLP and LSTM-PE 

Metric Skip-MLP LSTM-PE 

Accuracy 0.81 0.88 

Precision 0.78 0.89 
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Metric Skip-MLP LSTM-PE 

Recall 0.81 0.88 

F1-score 0.80 0.89 

 

For all the metrics reported, the LSTM_PE model achieves better performance than the 

Skip_MLP. This is likely because of the latent sequential structure in rangeline information that 

is exploited by the LSTM architecture. While the Skip_MLP model's performance is fair, the 

flattening of the input ColumnPatches obliterates spatial information in the data and this might 

be responsible for the slight performance dip. This proves that incorporating “some” of our 

knowledge of the data in the design of the model architecture has potential gains. The recurrence 

of the LSTM architecture is able to take advantage of the sequential layer information in the 

columns of the input ColumnPatch to achieve better performance. However, attempts to increase 

the modeling power of the LSTM by increasing 𝐷𝑥 > 3 led to the exploding gradient RNN issue. 

3-2-4-3 Reconstruction of Echograms from ColumnPatch predictions, result and discussion 

The goal of the automatic trackers is to track the internal layers in radar echograms; not in the 

independent ColumnPatches. Therefore, we apply the models to track internal layers in the 200 

test echograms forming RowBlocks and ColumnPatches and report the performance.  
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Again, we highlight the difference in the algorithm's routine during training and inference. For 

training, the tracked internal layers (ground truth) are available and the row block for a layer is 

formed using the tracked layer from ground truth. However, at inference time, only the echogram 

and the tracked surface are available. The routine to reconstruct the echograms from the 

ColumnPatches and track the internal layers is outlined below.  

 Given an echogram and its tracked surface, the goal is to track all the internal layers with the 

total number of layers unknown apriori. The first row block is formed using the available surface 

and the model is used to predict the next layer location in each ColumnPatch. The result of this is 

then used to form the next row block from which the next (second) internal layer will be traced. 

This continues until all the internal layers in the echogram are traced and the model returns "no-

layer" for all the columns in the last row block formed. However, there are few situations that 

might affect the overall tracking performance in an echogram.  

First, due to the sequential nature of the layer predictions, an error in an earlier row block can 

cascade to deeper layers resulting in overall poor performance. An example of this is when the 

prediction for a ColumnPatch in the current row block is wrong e.g. it is several pixels different 

from what it should be. In simple cases where there are only rare occurrences of this, it is 

somewhat easy to detect and correct. Since it is expected that the predictions of adjacent columns 

should be similar, then, a sudden spike in layer location is not physically meaningful and can be 

detected. We detect such few occurrences using a simple local mode filter applied to each layer 

prediction to detect predictions that may be off. The identified wrong predictions are replaced 

with the modal values of neighboring ColumnPatches. This solution is not robust to larger 

groups of errors. 
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In cases where some ColumnPatches in a row block incorrectly return a "no-layer" class, it 

becomes difficult to create the next row block since a complete prior layer prediction is needed 

to create the next row block. We can categorize these missing layer detections into three main 

scenarios: 

a. Deeper Layer: The “no layer” might be correct and the true layer is located 

deeper in the snowpack than the current row block size can capture. This can 

happen when there is a lot of snow accumulation in a single year so that the layer 

is thick enough to be thicker/deeper than our row block is. 

b. Truly Missing Layer: The scattering from an annual layer may not be enough to 

distinguish it from the background.  

c. Model Prediction Error: In some cases, the model might simply make a 

mistake. 

The adjacency of the missing layers can help distinguish which situation is at play - if all the 

columns return the "no-layer" class, it is believed that there truly is no layer in those columns, 

otherwise, it is deemed a false negative prediction. To correct the issue and form the next row 

block, we use 𝑁𝑟𝑏

2
 as a "placeholder layer" but do not include this in the saved tracked layer.   

Lastly, the tracker could stop too early if it receives a "no-layer" class for all the ColumnPatches 

in a row block. To avoid this, the inference routine does not stop the first time all the 

ColumnPatch predictions return "no-layer" except when the prediction is already at the bottom of 

the input echogram. Again, we use 𝑁𝑟𝑏

2
 as a placeholder layer to form a "tentative row block" to 

search if there are still deeper layers. It is when this also returns all "no-layer" class that the 

iterative routine quits. 
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3-2-4-4 Tracking error analysis 

The metrics reported in Table 2 highlights the performance of the models on the ColumnPatches 

and not directly on the tracking accuracy in echogram images. Hence, new metrics that 

investigate the tracking efficiency of the models are introduced. We used a variant of the well-

known mean absolute error termed N-pixel accuracies. The N-pixel accuracy is calculated by 

comparing the prediction with the ground truth and reporting the percentage of absolute errors 

that are above a certain number of pixels.  

where 𝑦(𝑖)is the ground truth and  𝑦̂(𝑖) is the model’s prediction both for the (𝑖)th example.  

M is the total number of echograms in the test set.  

 

Table 3 shows the N-pixel accuracy for the 200 test echograms for both models. This result is on 

the decimated echogram of size 256 x 64. In all 3 reported accuracies, LSTM_PE performs better 

than Skip_MLP. The 1-pixel accuracy is the toughest to achieve because it requires that the 

prediction and the ground truth label match exactly. 2-pixel and 3-pixel accuracies allow some 

room for imprecision in the models’ predictions. 

Table 3: N-pixel accuracy for the Skip-MLP and LSTM-PE 

Metric Skip-MLP LSTM-PE 

1- pixel accuracy 0.725 0.782 

 
𝑁𝑝𝑖𝑥𝑒𝑙−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

1

𝑀
∑|𝑦(𝑖) − 𝑦̂(𝑖)| <= 𝑁

𝑀

𝑖=1

 
 

(10) 
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Metric Skip-MLP LSTM-PE 

2- pixel accuracy 0.762 0.798 

3- pixel accuracy 0.805 0.830 

 

 

 

Figure 3-14: (a) Decimated and filtered echogram (b.) Annotated Ground truth (c) Skip_MLP 

predictions and (d) LSTM_PE predictions  
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Figure 3-15: (a) Echogram with Skip_MLP predictions (in red) and LSTM_PE predictions (in cyan)  

(b) magnified view 

 

 

3-2-4-5 Application to other untracked flight lines  

There were setbacks when attempting to apply the models trained with the RowBlock algorithm 

to echograms from flightlines other than the one used for training. Initially, these flightline 

echograms needed to be decimated to match the training configuration. The model performed 
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moderately well on a few handpicked echograms that were very similar to the training set but 

was very brittle when the echograms slightly differed. This poor generalization is likely because 

the 𝑁rb= 21 used for training did not match the layer statistics of the new dataset. While 

extensive research can be done to optimize the choice of 𝑁rb that will generalize broadly to the 

large untracked dataset, the high variability of spatial accumulation over the polar ice sheet 

suggests that there is likely not one value that can generalize to multiple flightlines. 

 

 

3-2-5 Initial efforts of applying deep learning models to 5km echograms frames 

The success of the RowBlock algorithm on its test set demonstrated that deep learning 

algorithms are a viable option for snow layer tracking. However, given the limitations of the 

current implementation of the RowBlock algorithm, the focus was shifted toward exploring deep 

learning models that can process "full echograms" without the need to first disassemble them 

into smaller units. Such algorithms will take full advantage of long-range spatiotemporal 

information inherent in full echograms, enabling them to not only identify the layer pixels but 

learn generalizable features such as the spatiotemporal correlation between layer pixel values and 

layer spacing in both along-track and layer depth axis. 

 

This approach, however, comes with the associated challenge of requiring a large dataset to 

effectively train the models. Along with this are the required computational resources needed to 

train such models. To begin this effort, we experimented with decimated echograms to mitigate 

the computational needs. 
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The initial goal at this stage of the research is to train using the available decimated echograms to 

assess the feasibility of using deep learning models for accurate snow layer tracking in full 

echogram images. If successful, these models can be scaled to handle full-sized echograms, with 

the expectation that more ground-truth echograms will be generated to support further model 

development and validation. 

 

3-2-5-1 Binary segmentation on decimated echograms 

Two models were designed to investigate two different image segmentation paradigms: namely 

binary image segmentation and deep-tiered multi-layer segmentation. Details of the training 

paradigm and model architecture are delayed to sections 4-4-1 and 4-4-2 respectively. Here, we 

only show the qualitative performance of the designed model as proof of concept for applying 

image segmentation deep learning models directly to “whole” echogram images. 

 

For binary segmentation, we designed the well-known U-Net [82] architecture with slight 

modifications. The U-Net architecture is so-called because the encoder and decoder network are 

stacked beside each other to form a U-shaped architecture with skip connections between 

corresponding levels. Figure 3-16 shows the symmetrical U-Net encoder-decoder architecture 

with shared skip connections between contemporary feature map stages. 
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Figure 3-16: U-Net binary segmentation architecture 

 

At the input of the encoder, decimated echogram images of size 416x64 are fed in and this is 

followed by blocks of convolutional layers. The first convolutional layer has an asymmetric filter 

size of 7x5 to account for the difference in the height and width of the radar image. Other filters 

used in the convolutional layers in the contraction and expansion path are symmetric 3x3 filters. 

The subsequent convolutional layers have a dropout layer, batch normalization and ReLU 

activation function but these are not shown in the figure to avoid overcomplicating the diagram.  

 

Each convolution block, dropout, and batch normalization layer in the encoder path is followed 

by a 2x2 max pooling represented by the gray arrow to downsize the image so that the next 

convolutional layers can learn local features from a downsized image. Similarly, each block in 

the decoder path is first concatenated with the corresponding image of equal resolution in the 

encoder path, followed by two convolutional layers, and then is upsampled by a 2x2 kernel to 
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resample the image to finer resolution. The up-convolution operation is depicted by the “black” 

arrow in the network image. The series of convolution, downsampling, upsampling and 

concatenation of the encoder and decoder blocks helps the model to learn both global features at 

low resolution and local features at fine resolution and the correlation between them – hence the 

ability of the network to perform the segmentation of the layers. 

The model is trained with the Nesterov-accelerated Adaptive Moment Estimation (NAdam) 

optimizer using a binary-cross entropy loss function for 100 epochs. To combat the effect of 

class imbalance between the less abundant layer pixels and more abundant no-layer pixels, we 

applied a 1:10 ratio class weighting and also used focal loss in addition to cross entropy loss as 

the model’s objective function. 

 

Figure 3-17 and Figure 3-18 are qualitative outputs of the model when used for inference on the 

test set. As can be seen from both images, the model shows promising results in tracking the 

layers in the decimated echograms. This indicates that training the models on the complete 

echogram is a viable approach. In Figure 3-17, the echogram has a very simplistic and almost 

perfectly straight layer structure which may suggest that the trained model can only track those 

but Figure 3-18 shows that the model can learn sloped orientations too. 
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Figure 3-17: Example binary segmentation algorithm qualitative output on a decimated image 

(a.) Decimated image (b.) Ground truth (c.) Model Output 
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Figure 3-18:  Two more examples of binary segmentation algorithm qualitative output on 

decimated images. (a.) Decimated image (b.) Model output 

3-2-5-2 Multiclass semantic segmentation on decimated images 
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Similarly, a vision-transformer based model was developed to apply multi-class semantic 

segmentation architecture on the decimated echogram. Again, although this architecture is 

introduced here, a comprehensive discussion of the multi-class semantic segmentation 

architecture is deferred to Sections 4-4-2 and 5-2.  

The vision-transformer architecture employs the layer isomorphism paradigm such that no 

decimation was done in the architecture to ensure that the input dimension matches the output 

dimension needed for pixel-wise dense classification. 

 

The number of multiclass layers in the training echograms was limited to the top 30 layers in 

each echogram. Table 4 shows the training hyperparameters. 

 

Table 4: EchoViT training hyperparameters 

Echogram Vision Transformer Training Hyperparameters 

Batch size 4 

Learning rate 1e-3 

Number of heads 20 

Number of Transformer layers 10 

Input image shape 416x64 

Embedding dimension 416 

MLP dense units [2048, 1024, 512, 64]  

Convolution stem activation function GeLU 

Prediction Full Convolution activation 

function 

Softmax 

 

Number of prediction classes 30 
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Number of epochs 250 

Loss function Categorical Cross Entropy 

Test Accuracy 93% 

 

Accuracy is usually not regarded as a good metric for segmentation tasks because of the class 

imbalance and possible misalignment of ground truth and prediction pixel values. Instead, other 

metrics that more accurately reflect model performance are presented in the table below.  

 

Table 5: Semantic segmentation metrics for semantic segmentation of decimated echograms 

Layer Precision Recall  F1-score Class support 

0 0.990 0.990 0.990 2486464 

1 0.970 0.970 0.970 142912 

2 0.950 0.970 0.960 196928 

3 0.950 0.950 0.950 154112 

4 0.920 0.940 0.930 115520 

5 0.940 0.930 0.940 109056 

6 0.930 0.950 0.940 87232 

7 0.970 0.950 0.960 135936 

8 0.960 0.960 0.960 125888 

9 0.950 0.950 0.950 123776 

10 0.940 0.940 0.940 126720 

11 0.940 0.940 0.940 129600 

12 0.940 0.940 0.940 143168 
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13 0.950 0.950 0.950 104320 

14 0.940 0.930 0.930 101568 

15 0.920 0.930 0.930 104768 

16 0.900 0.920 0.910 87040 

17 0.940 0.940 0.940 133376 

18 0.930 0.930 0.930 100864 

19 0.920 0.910 0.920 75008 

20 0.900 0.920 0.910 70016 

21 0.930 0.920 0.920 83328 

22 0.930 0.920 0.920 83264 

23 0.860 0.900 0.880 47104 

24 0.890 0.890 0.890 29056 

25 0.910 0.890 0.900 31680 

26 0.900 0.910 0.900 38336 

27 1.000 1.000 1.000 0 

28 1.000 1.000 1.000 0 

29 0.880 0.930 0.900 24640 
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Figure 3-19:  Two examples of semantic segmentation algorithm qualitative output on 

decimated images. (a.) Decimated image (b.) GT (c.) Raw prediction (d.) Filtered prediction 
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The promising results of the binary segmentation and multiclass segmentation on the decimated 

echogram images motivated the pursuit of a more extensive implementation on full echograms. 

 

However, a detailed look at the segmentation results, particularly the semantic segmentation, 

suggests overfitting of the model but further work was not done to verify or correct this since the 

initial goal was only to confirm the viability of the approach using the decimated images but to 

train a larger dataset with full sized echograms. 
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Chapter 4 METHODOLOGY (2) 

 

4-1 – Creating large-scale dataset of full echograms. 

An important goal of this research is to create a larger and standardized echogram dataset 

consisting of well delineated training, test, and validation sets that can support the training of 

various deep learning algorithms. Standardized datasets are crucial for applying deep learning to 

novel scientific problems. They establish a common ground for researchers, enabling fair 

comparisons of deep learning model performance across different architectures and training 

methods. Reproducibility of results is ensured, fostering scientific progress through verification 

and iterative development. Moreso, collaboration and data sharing become efficient which is 

particularly valuable for data-intensive problems such as the radar echogram layer tracking. The 

hope is that providing such standardized datasets will streamline the future research efforts by 

eliminating the need for individual data pre-processing, saving researchers valuable time and 

effort and paving the way for efficient scientific discovery through deep learning. 

 

While the volume of training data is undeniably important for the success of deep learning, true 

progress depends equally on the quality and diversity of that data. This implies leveraging prior 

knowledge gained from earlier experiments to better condition the data used to create the dataset, 

thereby achieving performance gains. The integration of domain-specific insights into the data 

preparation process is crucial for optimizing the dataset's utility in training effective models 

 

For instance, an examination of echogram images reveals certain characteristics that may be 

challenging for algorithms to correctly identify and track internal layers. Using the echogram 

image in Figure 4-1 as an example, although some layers beneath the surface can be seen, many 
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are faint and may be difficult to track by traditional methods. This suggests that additional signal 

processing-based preconditioning of the echograms could enhance the delineation of the layers, 

thereby improving the performance of the proposed automatic layer trackers. Such preprocessing 

steps are essential to highlight the features in the echograms that are critical for accurate layer 

tracking. 

 

Therefore, prior to applying the deep learning algorithm to the echograms, the following 

preprocessing steps were applied in the order outlined below to better delineate the interface 

between successive snow layers.  

 

Figure 4-1: Snow Radar echogram image 
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4-1-1 Surface tracking 

Figure 4-1 depicts an echogram before surface flattening. Variations in terrain relief and aircraft 

elevation cause the surface index of the received backscatter to vary along the flight line. 

However, to enhance the visualization of internal layers and facilitate along-track processing -

such as incoherent averaging of neighboring rangelines - it is crucial to represent the surface in 

the echogram image as perfectly flat. 

 

Since the surface bin in a rangeline typically corresponds to the first significant peak in received 

backscatter, adaptive threshold techniques can be readily employed for its detection and tracking. 

Consequently, traditional signal processing approaches are used for surface tracking, while deep 

learning is reserved for the more challenging task of tracking closely spaced internal layers. 

 

The air-snow interface, or surface, is the first layer detected within an echogram data matrix. 

This surface marks the initial point of interaction between the radar signal transmitted from the 

aircraft and the ground snow, resulting in a significant increase in backscatter power compared to 

earlier received signals. Although the surface return is not confined to a single fast-time bin, 

there is a noticeable rise in backscatter as the radar pulse encounters the surface. 

 

Due to variations in backscatter power and surface return across different rangelines, an adaptive 

threshold is required to accurately track the surface bin. To address this, an adaptive detection 

algorithm was developed, utilizing each rangeline’s data to estimate the threshold. This approach 

ensures reliable and precise surface tracking despite the inherent variability in the echogram data 

 

Concretely, we employ a form of Cell Averaging - Constant False Alarm Rate (CA-CFAR) 

algorithm to set the dynamic threshold for each rangeline. The noise floor estimation for each 
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rangeline is achieved by applying a finite median filter to returns preceding the surface which 

comprise only noise since there are no detectable targets above the surface. A constant power 

offset (P_offset) is then added to this estimated noise floor to dynamically set the minimum 

surface bin power threshold for each rangeline, corresponding to the rising edge of the peak 

return. 

 

These thresholds are further constrained using the surface index estimated from a digital 

elevation model (DEM) obtained from radar altimetry. Each rangeline’s DEM surface bin 

estimate is derived by synchronizing DEM data with the radar’s location and fast time sampling 

to get the corresponding radar two-way travel time and range bin index. The CA-CFAR 

threshold and the DEM estimate are combined to create a constrained search window from which 

the maximum return index is chosen as the rangeline’s surface bin. Finally, a Savitzky-Golay 

filter is applied to the tracked surface bins from all the rangelines in the echogram to create a 

smoothed surface-bin 1-D contour vector. 

 

4-1-2 Surface flattening  

The tracked surface serves as the reference layer for subsequent layers that may exist in an 

echogram. After tracking the surface bin in each rangeline, these bins are aligned to create an 

echogram representation that mimics a perfectly flat surface. This improves visualization of 

internal layers, their correspondence to annual accumulation, and facilitates subsequent signal 

processing like along-track filtering. To align the surface bin, a rangeline (typically the first in 

the echogram matrix), is set as the reference and other rangelines or image columns are shifted 

up or down so that the fast time index of their surface bin matches the reference. The shift is 

implemented using linear interpolation. This operation is also reversible allowing the flattened 

echogram to be returned to its original state if necessary. 
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4-1-3 Averaging and filtering 

The backscatter from a resolution cell of snow volumetric scattering at S and C-band is usually 

modeled as a random process [83] due to the snow grain size and its interaction with the radar 

signal wavelength. This stochasticity is seen in the high variance of the backscattered power for 

each rangeline which can obscure the snow internal layers, particularly for weak deeper layers.  

Prior to coherent and incoherent averaging, it is difficult or sometimes impossible to identify the 

layer peaks. To enhance the visibility of the layers and the performance of the layer tracker 

algorithms, a boxcar moving-average filter is applied in both fast-time and slow-time dimensions 

to smooth the returns. Filtering is done in the linear power domain. We chose low-order (order 3 

and order 5) boxcar filters in along-track and fast-time dimensions, respectively, to improve the 

delineation of the internal layers since an aggressive filter can broaden the layer peaks and 

introduce subtle artifacts. 

 

4-1-4 Detrending 

One of the challenges associated with automated tracking of layers in echogram data is the 

inherent power loss experienced by the radar signal as it penetrates to deeper snow layers. As the 

transmitted radar signal propagates through the snow layers, the combination of spherical 

spreading loss, media attenuation, and scattering causes the signal power to be attenuated. 

Hence, the radar backscatter power from deeper layers is often lower than those from earlier 

layers. This results in a large dynamic range for each rangeline, which if not mitigated, can make 

it difficult for deep learning models to effectively detect and track deeper layers. The detrending 

step attempts to remove the power loss as a function of depth trend. By pre-processing the 

echogram data with detrending algorithms, we can create a more uniform signal profile down the 

entire rangeline. This pre-processing step allows the deep learning model to focus on the 
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variations in backscatter power that are more likely to be associated with the actual internal 

layers of interest, leading to improved tracking performance. 

A low order polynomial fit to the log-power data is used to remove the trend in the received 

power. Given an echogram with a tracked surface and the deepest layer index for each rangeline, 

we identify three distinct regions (see Figure 4-2) in the backscatter data - (I) signal in air before 

the surface, (II) signal in snow/ice (with possible internal layers) and (III) signal after the deepest 

layer. Due to the distinct characteristics of each region, a different trend is estimated for each 

region as shown in Figure 4-2. 

First, the trend for region (II) is found by fitting a low-order (5th degree) polynomial (in a least-

squares sense) to the backscatter in region (II). After this is found, the polynomial is evaluated at 

the surface bin which corresponds to the top of region (II) – this evaluation is used to set the 

detrend value for region (I). Since the signal prior to the surface is mostly dominated by the 

thermal noise of the system, the trend for region (I) is forced to be constant so that the noise is 

not amplified during detrending and the constant value is set equal to the polynomial evaluation 

at the surface bin to avoid a discontinuity here. Region III was not used in this work since the 

echograms were truncated to mostly not include the deeper regions and the low-order polynomial 

proved effective in fitting the noise region when present. 

 

4-1-5 Normalization 

Inputs to most machine learning models are usually normalized to either [0,1] or [-1,1]. This is 

done to achieve similar scales between the input images and the model's output to facilitate fast 

convergence during training. We apply a linear transformation to the original log-domain 

echogram image to map the signal portion of the echogram to a normalized scale of [0,1].  



88

Figure 4-2: Plot of backscatter power of a rangeline showing detrending regions

4-1-6 Multi-distance multi-looking echogram blocks

To further diversify the dataset and maximize the available manually annotated echograms, a 

multi-distance multi-looking approach was implemented. Given that the data generally comes 

from long flightlines, the data can be segmented up in different ways with varying lengths and 

overlap. This strategy helps in constructing a larger and more diverse dataset. Consequently, we 

treat the coverage distance of each echogram as a flexible pre-training hyperparameter rather 

than maintaining a uniform distance across the dataset.

This method of using staggered flight line distances to form echogram blocks for training deep 

learning models has several advantages. It simulates a range of spatial accumulation patterns 



89 

within the dataset, which enhances the robustness of the models against "unseen" spatial 

distributions. By exposing the models to varied spatial accumulation patterns, we improve their 

ability to learn and accurately represent the true underlying snow layering phenomena. This 

approach significantly boosts the models’ potential to generalize to new echograms that were not 

part of the training set, thereby increasing the likelihood of successful inference on echograms 

from future surveys. We also evaluate the performance of the models as a function of the along-

track length. 

 

To create the SnowRadar_Dataset_v1, echogram blocks of along-track distances of 2 km, 5 km, 

10 km, 20 km and 50 km were created. The training, validation and test sets all include a mixture 

of these different lengths of images. However, to ensure uniformity of dimensions of all the 

echograms in the training set, along-track averaging (multi-looking), and linear interpolation 

were used to resample the data to create fixed size images of 𝑁𝑡  =  1664 and 𝑁𝑥 = 256.   
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Figure 4-3:  Image of echogram after applying steps 1- 5 

 

The dimensional uniformity is crucial because it standardizes the dataset samples, enabling an 

accurate assessment of the performance of different deep learning models. By ensuring that each 

echogram block adheres to a consistent format, we eliminate variability that could otherwise 

skew the evaluation of model performance, thus allowing for a more reliable comparison across 

different architectures and training methodologies.  

 

To facilitate easy distinction and identification, the specific distance associated with each 

echogram block is appended to its filename. This practice not only aids in organizing the dataset 
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but also allows researchers to quickly reference and analyze the spatial coverage of each 

echogram block, contributing to more efficient data management and model training processes. 

 

Figure 4-4 compares 2 km and 5 km echogram blocks created from approximately the same 

geographical location. Although the echogram images appear visually similar due to their 

overlapping geolocation, a closer examination reveals differences in the along-track spatial 

accumulation patterns. These variations are encoded in the echogram layer variance, which is 

significantly different for the two images.  

 

During training, the models are exposed to this subtle yet critical information, allowing them to 

better identify and track accumulation layers. This nuanced variance serves as a valuable source 

of data, enhancing the model's ability to accurately learn and predict snow layering patterns 

across different spatial scales. 

 

Figure 4-4:  Echogram blocks created from 2km and 5km line distances respectively 
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4-2 Snow Radar ML_Dataset_v1 

4-2-1 Dataset echograms 

The Snow Radar Dataset_v1 is created from selected flight lines from the NASA Operation Ice 

Bridge (OIB) campaigns in 2012. The dataset comprises 11 flight lines, covering a total distance 

of 28,369 line kilometers. While the primary objective was to create a dataset that captures the 

rapidly varying spatiotemporal accumulation patterns across the ice sheet, the majority of the 

available annotated data originates from the dry snow zone. 

 

The training and validation set uses 9 of the 11 flight lines spanning the different snow zones and 

accumulation patterns across Greenland. Consequently, only a small portion of the data is from 

other zones such as the wet snow zone and transition zones.   
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Figure 4-5:  Spatial plot of dataset flight lines and neighboring ice cores. Flight lines in blue 
represent training data while those in red (L1), green (L2), and yellow (L3) are the test data. 
Black squares mark the locations of some of the existing ice cores and snow pits in Greenland 
 

 

 

The test set is carefully divided into 3 groups; L1, L2, and L3 each represent different snow 

accumulation patterns that exist in most polar ice sheets. The L1 test set is derived from the dry 

snow zone characterized by well-preserved annual accumulation stratigraphy. L3, on the other 

hand, is close to the coast and contains echograms from the wet snow zone where older 

stratigraphy might have been eroded due to melting. The L2 test echograms capture the transition 

between both zones.  
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The quality of the echograms varies across these zones. Echograms from the L1 section of the 

test data are of the highest quality, exhibiting clear visibility of snow layers. Conversely, the 

radar backscatter from L2 and L3 zones is often diffused due to the presence of refrozen melted 

snow. This reduction in visual quality is important for assessing the performance of deep-

learning models on echograms from different snow zones with varying image quality. The split 

of the test data into these 3 sections is done to investigate how deep-learning models perform on 

echograms from different snow zones and of varying image quality. 

 

Additionally, there are some test echograms (in L2 and L3) that coincide closely with existing 

ice cores which can be used for corroborating ice-depth-age measurements for radar data 

facilitating synchronization between radar data and ice core data. This alignment is intended to 

encourage further studies comparing radar measurements with coinciding and neighboring ice 

core and ice pit measurements. 

 

Summarily, the Snow Radar dataset_v1 has 11,302 training set echograms, 1,322 validation 

echograms and a total of 1,292 test echograms. The test echograms are further subdivided into 

127 L1 echograms, 1049 L2 echograms and 116 L3 test echograms.  

 

Since L3 test echograms primarily originate from the wet snow zone, some images capture no 

internal snow layers or exhibit very low quality. Despite their poor quality, they are important for 

model training because most flight lines include at least one of these echograms. The objective is 

for deep learning algorithms to learn to correctly identify these low-quality echogram images and 

either ignore them or track only the surface layer when possible. The overall distribution of the 

dataset is shown in Figure 4-6 
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Figure 4-6: Distribution of the dataset along-track distances in the train, validation, and 
testing sets. The testing set subdivision into 3 levels L1, L2, and L3 corresponding to different 
Snow Zones are also shown in the insert plot. The numbers in each bar represent the frequency 
of occurrence of each along-track distance in each of the set

4-2-2 Dataset metadata

In creating the Snow Radar Dataset_v1, we included metadata for each echogram. The Snow 

Radar is equipped with Inertial Measurement Unit (IMU) and Global Positioning System (GPS) 

to provide precise auxiliary information about the surveyed location and aircraft's orientation at 

every point during the data collection. These additional meta-data, such as the antenna phase 

center geolocation, aircraft elevation, and other GPS data have been synchronized with the radar

echogram to provide additional information for each rangeline. This provides additional context 

and description to further ground the understanding of the users what each echogram represents 

and provides context for accurate interpretation. Moreso, there are new deep learning paradigms 

where relevant metadata are included in training to achieve performance gains.
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Each entry in the dataset is provided as a .PNG file and has an associated .MAT file. Some of the 

important fields in the files are described below. The data fields are described first followed by 

metadata fields. 

• Data [ 𝑁𝑡 × 𝑁𝑥]: This is the echogram image and is the primary training input. It is the 

log-normalized backscatter received from the surface and other internal layers at the 

imaged location. 

• Layers [ 𝑁𝐿 × 𝑁𝑥]: This is a form of the ground truth created through a combination of 

semi-automated and manually corrected annotation. It is provided as a 2D matrix that is a 

stack of 𝑁𝐿 rows of 1D contour vector representing each tracked layer. Regardless of the 

deep learning architecture or tracking method, this is the final and preferred format for 

saving the tracked snow layers. In this form, the accumulation between successive annual 

layers can be estimated. The values are oftentimes in the range bin domain depicting the 

fast time bin the layer is localized in each rangeline. However, this can be converted to 

radar two-way travel time using the ADC fast time sampling rate (also provided in the 

metadata) which is eventually used to estimate the layer depth or accumulation in meters. 

 

• Layers bitmap or raster [ 𝑁𝑡 ×𝑁𝑥]:  This is another form of the ground truth annotation 

containing the same information as the “Layers” field. It is, however, provided in a 

binary raster format. This format is typically used as the training “target” for a binary 

segmentation task. It is a sparse binary matrix of equal dimensions with the echogram 

image, but its pixel only contains one (1) when there is a layer and zero (0) otherwise. 

This form of the ground truth has an imbalanced class distribution with many more zeros 

than ones which might need to be accounted for during model training. 
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• Layer segment  [ 𝑁𝑡 × 𝑁𝑥]: This is a dense matrix and is another form of ground truth. It 

has the same dimension as the echogram image and is created as the label for training 

deep multi-tiered segmentation models. In this 2D matrix, each accumulation layer is 

assigned a unique index starting from the topmost layer as 0 and the index is repeated 

until the next accumulation layer. 

 

Other important GPS and IMU metadata 

• Latitude [𝑁𝑥 ×  1]: This is the associated WGS-84 geodetic latitude coordinate reported 

by the GPS and IMU and is synchronized with each rangeline of the echogram. The 

position fields can be used to synchronize radar measurements with other sources such as 

LIDAR, satellite image, weather models, etc. 

• Longitude [𝑁𝑥 ×  1]: This is the corresponding pair of Latitude.  

• Elevation [𝑁𝑥 ×  1]: This is the elevation relative to the WGS-84 ellipsoid surface. 

• Time [𝑁𝑥 ×  1]: This is the radar system Analog-to-Digital Converter (ADC) fast time 

axis corresponding to each row of the image. Zero time corresponds to the time the 

transmit signal was sent. This field is important for converting tracked echogram layers in 

range bins (or row-index) back to radar two-way-travel time. 

• Roll [𝑁𝑥 ×  1]: This measures the rotation of the aircraft about its longitudinal axis. 

Positive roll corresponds to ring wing tip down. It is provided in radians and has a 

relationship with the backscatter received because the radiation pattern of the antenna 

rotates with the aircraft since the antenna is fixed (i.e. not mounted on a gimbal). Non-

zero roll angles mean that the antenna’s boresight or mainlobe points away from nadir 

resulting in a reduction in received power. 
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• GPS Time [𝑁𝑥 ×  1]: This is the GPS time corresponding to when each rangeline's data 

was collected. It is saved in the ANSI C standard (seconds since Jan 1, 1970 00:00:00). 

 

 

4-3 Synchronization of dataset with Model Atmospheric Regional (MAR) weather model 

data 

Regional weather models, such as the Modelle Atmospherique Regionale (MAR), provide 

historical meteorological and climatic data that can complement radar measurements to enhance 

the accuracy of annual snow accumulation estimates in Greenland. To further enrich the Snow 

Radar dataset, MAR model data is synchronized with radar measurements, providing auxiliary 

information that deep-learning models can potentially leverage to improve layer detection and 

tracking performance. This integration also opens avenues for comparative studies between radar 

imagery and weather model outputs. 

 

In this work, we utilize MAR model data version 3.10, which provides climate data at a 15 km 

grid resolution across Greenland. The synchronization of MAR outputs (e.g., density, 

temperature, etc.) with radar data is achieved using the latitude and longitude coordinates of each 

rangeline in the echograms. A 2D Delaunay triangulation interpolation algorithm is employed to 

align the gridded MAR outputs with the radar data. 

 

Surface Mass Balance (SMB) is selected as a primary measurement to be synchronized with 

radar data, as it provides estimates of annual accumulation layers that correspond to the internal 

layers observed in echogram images. The annual SMB is computed by summing daily 

measurements from the weather model for each accumulation cycle, covering the past three 
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decades up to the year of the radar measurement. The MAR daily SMB is calculated as the sum 

of daily snowfall and rainfall, minus sublimation, evaporation, runoff meltwater, and surface 

water. The accumulation cycle used spans from September of one year to September of the 

following year, reflecting the snow layer captured by the Snow Radar during the summer-to-

winter transition. In cases where summer melt exceeds winter accumulation, resulting in a 

negative annual SMB, the deficit is subtracted from the previous year's mass balance. 

 

We estimate annual accumulation from the weather model and convert it into equivalent Snow 

Radar internal layers, creating a model-derived product equivalent to the annotated ground truth. 

To achieve this, the SMB is accumulated from the date of acquisition to the date of each 

summer-to-winter transition. These net accumulations, measured in millimeters of water 

equivalent (mmWe), are then converted to snow layer depth in meters. By combining this 

information with a depth-density profile and a density-permittivity conversion model, an 

estimate of the radar's two-way travel time to each weather model-estimated annual layer can be 

derived. 
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Figure 4-7:  MAR map of mean annual surface mass balance for the Greenland ice sheet 
 

To estimate how the initial snow density varies with snow depth for each flightline, the mean 

annual accumulation, initial snow density, and mean annual surface temperature from MAR data 

are used as inputs to the Herron and Langway firn densification model [84]. The output of this is 

a density versus depth profile (ρ𝑑) for the imaged location. The derived density-depth profile is 

subsequently used as input to the simple mixture model in Equation (11) to estimate the snow 

permittivity vs snow depth profile. 
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 ϵ𝑑 = (1 + 0.85𝜌𝑑
2) 

𝑇𝑊𝑇𝑇 =  ( 2 × 𝑑 × √𝜖𝑑 ) / c 

 

(11) 

Finally, the estimated two-way travel time is synchronized with the radar imagery layering using 

the radar ADC fast-time sampling rate. This estimate can be considered as equivalent to the 

annotated echogram layer vector ground truth, albeit, from the MAR model's perspective. It is 

provided as “weather layers” metadata associated with each echogram. However, due to the 

coarse spatial resolution of the MAR data, the MAR weather layers fail to capture fine along 

track layer details that are on the order of tens to hundreds of meters. Like the annual weather 

data layer estimated from SMB, other measurements from MAR were interpolated onto the radar 

measurement flight lines to create annual measurements for echograms in the datasets. These 

include annual meltwater production (ME), mean surface temperature, mean surface density, 

run-off of meltwater and rainwater (RU), meltwater refreezing and deposition (RZ), Snow height 

change due to melt (SHC), Snowpack height total (SNHS), etc.  

 

Each row of these fields in the echogram data corresponds to annual MAR output synchronized 

to the radar rangelines starting from the date of radar data collection back to the summer-to-

winter transition of each earlier year in the dataset (in this case 2012 back to 1980) making a 

total of 32 annual measurements. For example, the first row in the “curr_smb” field is the 

estimated SMB from the MAR output for the year 2012 while the 5th row is the estimation for 

the year 2008. It is important to note that while the number of snow layers seen by the radar (i.e. 

the number of layers in the echogram) might vary from one echogram to the other depending on 
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the snow zone the echogram measurement was taken from, the number of MAR “layers" 

estimated from MAR data remains the same for all the echograms in the dataset.  

 

More details about the MAR model and its outputs can be found in [85]. 

 

4-4 - Full echogram image layer tracking 

With the relative increase in the training dataset, we set out to train and predict on the entire 

echogram at one go as opposed to iteratively tracking the layers one at a time. However, it is 

important to correctly define and formulate the problem within the appropriate deep learning 

framework. 

Many of the state-of-art performance reported in computer vision tasks are from classification 

models. Deep learning classification models are those trained to identify a single class for each 

input image. They are a type of supervised learning algorithm used to categorize data points into 

predefined classes by learning a mapping from input features to discrete output labels, essentially 

building a decision boundary between the different classes it was exposed to during training. 

When probed with an input image during inference, the objective is to identify the correct class 

of the input from the set of inputs it was trained on. As an example, if a model is trained on a set 

containing different types of cat and dog images, at inference, the model is supplied a new cat 

image, one not used for training, the performance of the model is evaluated based on how well it 

is able to correctly classify the new image. These classification models do not output the pixels 

associated with each object but just the class of the object in the test image. This paradigm does 

not fit the echogram layer tracking problem which needs to identify the pixels associated with 

each layer. 
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The goal of the echogram layer tracking problem is to design a deep vision algorithm that can 

identify each snow accumulation layer in the echogram as a 1-dimensional contour which 

describes which image pixels the layer passes through and has the same cardinality as the 

number of rangelines in the echogram image. The final output will therefore be a 2D matrix of 

all the identified 1D contours vectors corresponding to the orientation of all the snow layers in 

the echogram image. 

Formally, given an input 2D grayscale echogram image 𝐄 ∈ {ℝ𝑁𝑡×𝑁𝑥 ∶ 0 ≤ 𝐸(𝑚, 𝑛) < 1}, E 

represents the two-dimensional spatial distribution of the firn layer backscatter in the along-track 

or slow time (𝑁𝑥) axis and depth layer or fast time (𝑁𝑡) axis. A deep learning model is to 

identify which of the 2D echogram matrix E pixels contain a snow layer and track at most 𝑁𝑥 

consecutive columns for each layer. The output of the algorithm for 𝐿 unique layers would then 

be 𝐎 ∈ ℝ𝑁𝐿×𝑁𝑥 

 

In the context of supervised deep learning, we cast the echogram layer tracking problem in two 

different ways: 

(i) binary segmentation and 

(ii)  deep-tiered multi-layer segmentation problem.  

 

4-4-1 Binary image segmentation 

In the binary segmentation paradigm, the model is trained to classify each pixel in the image as 

either containing a layer (1) or not (0) using the associated ground truth binary matrix annotation 



104 

of identical dimension: 𝐺𝑏 ∈ {ℝ𝑁𝑡×𝑁𝑥 ∶  𝐺𝑏(𝑚, 𝑛) = {0,1}} (see Figure 4-8b). It is important to 

note that in binary image segmentation, only one pixel is designated as the layer pixel for each 

layer in each rangeline which differentiates it from traditional segmentation tasks that generally 

do not explicitly constrain the shape or number of pixels associated with any given class. 

While there can be a variety of inner architectures for the model, the output layer of the binary 

segmentation neural network generally has a sigmoid activation function for each pixel that is 

subsequently thresholded to produce binary outputs. This thresholding step is critical, as it reveals 

the sensitivity and specificity of the model in correctly identifying layer pixels, directly impacting 

the accuracy of layer tracking. During inference, the trained model is given a test grayscale 

echogram image E, to output a binary matrix classifying each input pixel into one of "layer" or 

"no-layer" classes depending on whether or not the pixel contains a layer.  Since accumulation 

layers in the echogram image have spatial correlation along-track, correctly identified pixel layers 

in adjacent columns naturally trace out the layer geometry. This inherent spatial coherence allows 

the model to effectively capture the underlying structure of the snow layers. This approach is 

simple, relatively easy to train, but powerful and generalizable because it makes less assumptions 

about the task. 

 

4-4-2 Deep-tiered multi-layer segmentation:  

Given that each layer in the echogram image corresponds to a chronological snow deposition, 

typically assumed to be annual, the multi-layer segmentation task aims to uniquely identify the 

pixels associated with each year’s deposition. The most recent accumulation prior to the data 

collection is seen as the first layer, with older years arranged sequentially in chronological order. 

This structure informs the ground truth annotation as depicted in Figure 4-8 where each snow layer 
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is assigned a unique class label. Hence, the deep learning model is trained to identify pixels 

corresponding to each year’s accumulation and to delineate boundaries between adjacent layers.  

Concretely, the ground truth annotation is a 2D matrix 𝐺𝑑 ∈ {ℝ𝑁𝑡×𝑁𝑥 ∶ 𝐺𝑑(𝑚, 𝑛) ∈ {0,1,2, 𝐿𝑚𝑎𝑥}}. 

Each pixel is assigned a tiered label 𝐿 based on its associated year of deposition:  

• 𝐿 = 0 represents the pixels in the signal-in-air portion before the transmit signal interacts 

with the surface, 

• 𝐿 = 1 represents the first year's accumulation, 

• 𝐿 = 2 represents the second year's accumulation, 

• And so on until 𝐿 =  𝐿𝑚𝑎𝑥 which corresponds to the deepest accumulation layer in the 

input echogram image. 
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Figure 4-8: Example image echogram and the corresponding binary segmentation and multi-

class segmentation labels
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Figure 4-9: Example qualitative result of multi-layer transformer-based architecture 

 

This approach resembles multi-class image segmentation of optical images, with the distinction 

that, in deep-tiered multi-layer segmentation, accumulation layers are naturally ordered by the year 

of the snowfall. Also, layers share horizontal boundaries only with adjacent accumulation layers 

(the year before and after) but with no other layer. This approach to the radar echogram layer 
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tracking problem has the advantage of directly estimating each year's annual accumulation range 

bins since it uniquely identifies each layer pixel in the along-track axis and delineates its 

boundaries with adjacent accumulation layers.  

However, this approach comes at the cost of increased parameterization of the model and the 

inherent need for more training data, and consequent longer training time. 

For the preliminary stages of this work, we truncated the echograms to only contain the top 30 

layers with the intention to extend this to include all deeper snow layers in the echogram after the 

initial analysis. Figure 4-8 shows a sample echogram image, the binary mask, and the multi-layer 

segmentation mask. 

 

4-5 Deep learning models for full echogram image tracking 

Detecting and tracking snow layers in echogram images can be conceptualized as a semantic 

segmentation task where the model is designed to classify each pixel in the input image instead 

of just assigning a label to the entire image as in image classification. To provide the desired 

pixel-wise dense prediction output, a fully convolutional output layer is pivotal in the design of 

semantic segmentation models. The fully convolutional layer uses a 1x1 filter kernel on the 

penultimate convolutional filter outputs to produce dense output prediction. This paradigm is 

employed in most well-known semantic segmentation architectures. 

 

To benchmark the performance of the Snow Radar Dataset_v1 dataset, we trained the following 

well-known segmentation models with slight adaptations to their original architecture for our 

particular problem. 
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1. Fully Convolutional Networks (FCN) [86], 

2. U-Net [82],  

3. Attention-U-Net [87], 

4. DeepLabv3+  [88], 

5. and a soft ensemble of all four models.  

 

We train these models for the dense binary segmentation tasks, i.e. to predict for every pixel in 

the echogram image if it contains a layer or not. A brief description of each of the models is 

provided below. 

 

4-5-1 Models’ description 

1. Fully Convolutional Network: This model is generally regarded as one of the pioneer 

deep learning architectures for binary and multi-class image segmentation and was 

proposed in [86]. The work represents a significant advancement in the field of computer 

vision, particularly for the task of semantic segmentation. Traditional convolutional neural 

networks (CNNs) end with fully connected layers which produce a small, fixed number of 

outputs, unsuitable for pixel-wise predictions required in segmentation tasks. FCNs address 

this by replacing these fully connected layers with convolutional layers that maintain 

spatial information, allowing the network to output a spatially dense prediction map that 

corresponds directly to the input image dimensions. This architecture effectively 

transforms a classification network into a dense, pixel-wise prediction model.  

The FCN architecture starts with an encoder-decoder structure where the encoder part 

consists of convolutional and pooling layers. The encoder stage is made from a sequence 

of 2D convolutional layers applied to the input image with intermediate spatial 
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downsampling. After each stage of 2D convolution, the number of applied filters is 

increased while the spatial dimension is reduced to increase the representation power of 

the model while progressively learning local-to-global features in the input image. 

For echogram layer tracking, a key part of the original architecture was altered in our 

implementation. Instead of upsampling directly from the bottle-neck layer in the encoder 

to the decoder output, the transposed convolution was done in equal amounts of stages as 

it was in the encoder. This approach helps preserve low-level information learned by the 

network, such as curves and lines, which are crucial for the echogram layer tracking task. 

However, no skip connection was inserted between the corresponding encoder layer. 

Finally, the decoder fully-convolutional layer is used as the output layer to produce pixel-

wise segmentation prediction.
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Figure 4-10: Schematic diagram of the Fully Convolutional Network (FCN) architecture

2. U-Net model – The U-Net model remains one of the classic segmentation models till date. 

Prior to this work, traditional approaches to segmentation often struggle with limited 

training data and the challenges posed by complex structures and variations in niche 

domain images. Although the original U-Net architecture was specifically tailored for 

biomedical image segmentation tasks, the solution proffered to these issues by employing 

an encoder-decoder structure with skip connections addresses the underlying challenge for 

a number of related fields. 

The U-Net architecture consists of a contracting path, which captures context and reduces 

spatial dimensions, and an expansive path, which enables precise localization. The 
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contracting path comprises a series of convolutional and max-pooling layers that 

progressively downsample the input image, extracting high-level features. The expansive 

path consists of upsampling layers followed by convolutional layers that increase the 

spatial resolution of feature maps. Crucially, skip connections are introduced to connect 

corresponding layers between the contracting and expansive paths, allowing the network 

to retain fine-grained spatial information from earlier stages while incorporating high-level 

context. 

This unique architecture enables the U-Net to effectively learn intricate spatial 

relationships within input images and produce accurate segmentation masks. The original 

authors demonstrated the efficacy of U-Net on various biomedical segmentation tasks, 

including cell tracking in microscopy images and delineation of neuronal structures in 

electron microscopy data. U-Net's ability to leverage both local information and global 

context, facilitated by skip connections, proved instrumental in achieving state-of-the-art 

performance in biomedical image segmentation then. 

For the binary segmentation task for echogram layer tracking, we designed four stages of 

the encoder-decoder with double convolution at each stage. Each block has a sandwich of 

convolution, max-pooling, batch normalization and ReLU activation function. A 

progressive number of filter channels of size 32, 64, 128 and 256 was applied at each stage 

with skip connections between feature maps of similar spatial resolution. 
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Figure 4-11: U-Net segmentation architecture showing each block and the skip connections

3. Attention U-Net: The Attention U-Net, as introduced in the paper "Attention U-Net: 

Learning Where to Look for the Pancreas," [87] represents a significant advancement in 

medical image segmentation, particularly for identifying the pancreas in abdominal CT 

scans. Traditional segmentation approaches often struggle with accurately delineating 

small and intricate structures like the pancreas due to its variability in shape, size, and 

appearance. The Attention U-Net addresses this challenge by incorporating an attention 

mechanism into the U-Net architecture, allowing the network to dynamically focus on 

relevant regions while suppressing irrelevant background information. This ability is 

critical in echogram layer tracking.
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The Attention U-Net architecture extends the standard U-Net by integrating an attention 

gate module into its contracting path. This attention gate module learns to assign different 

weights to feature maps based on their importance, directing the network's focus towards 

informative regions. During training, the attention mechanism enables the model to learn 

where to concentrate its attention for accurate important local features necessary for 

segmentation. Importantly, the attention gate module is designed to be lightweight, 

ensuring computational efficiency while enhancing the network's ability to capture fine-

grained details crucial for pancreas localization.

Figure 4-12: AttentionU-Net architecture showing the insertion of attention gates into the U-Net

architecture 

The attention mechanism computes an attention map that weighs the importance of each 

pixel or region in the feature maps. This map is used to scale the feature maps, emphasizing 

important areas and diminishing less important ones. They are inserted into the skip 

connections between the encoder and decoder paths in the U-Net architecture. Each 

attention gate receives two inputs: the feature map from the encoder (which is being passed 
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to the decoder via the skip connection) and the feature map from the corresponding decoder 

layer. The gate computes an attention map that modulates the encoder feature map, 

allowing only the most relevant features to be passed to the decoder. The attention gate 

uses additive attention, where the importance of each spatial location is computed based 

on the combination of the encoder and decoder features. The gate outputs a map that 

highlights areas of interest, which is then multiplied by the encoder feature map before it 

is passed to the decoder. By dynamically attending to relevant regions, the Attention U-

Net is meant to achieve superior performance compared to traditional U-Net models and 

other similar segmentation methods. The attention mechanism allows the network to 

adaptively adjust its focus, improving segmentation accuracy and robustness across diverse 

patient datasets. 

 

Figure 4-13: Magnified view of the additive attention operation 

For our implementation, instead of using a squeeze attention module along the channel 

axis, attention gates were designed to filter the features by suppressing what the network 
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deems as irrelevant regions and highlighting salient features that are considered critical to 

the task at hand. 

4. DeepLab v3: The key innovation of DeepLab lies in its employment of atrous convolution, 

also known as dilated convolution, which enables capturing multi-scale contextual 

information without significantly increasing computational complexity. By applying atrous 

convolution at multiple dilation rates, DeepLab effectively enlarges the receptive field of 

convolutional filters, allowing the model to integrate contextual information across 

different scales while preserving spatial resolution. 

Furthermore, DeepLab incorporates the use of atrous spatial pyramid pooling (ASPP), 

which further enhances its ability to capture multi-scale contextual information. The atrous 

convolutional layer, also known as dilated convolution, uses a dilation rate to control the 

spacing between kernel elements, effectively expanding the receptive field without 

increasing the number of parameters or reducing the spatial resolution. When the dilation 

rate is set to values greater than 1, the convolution operation skips over input pixels, 

allowing the network to capture features from a larger context, similar to downsampling. 

This is because, with a higher dilation rate, the convolution can aggregate information from 

a wider range of pixels while maintaining the same input size. As a result, the model can 

perceive a larger area of the input image (or feature map) without explicitly reducing its 

spatial dimensions, making atrous convolution a powerful alternative to downsampling, 

especially in tasks like this where preserving spatial resolution is crucial. 

 

ASPP utilizes multiple parallel atrous convolutional layers with different dilation rates to 

capture context at various scales. This allows DeepLab to efficiently integrate information 
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from different receptive fields, enabling accurate segmentation of objects at different sizes. 

Additionally, DeepLab employs a fully convolutional network (FCN) architecture, 

facilitating end-to-end training and enabling the model to produce pixel-wise segmentation 

masks directly from input images.

For our implementation to track echogram layers, ResNet50 was used as the backbone of 

the encoder taking outputs from two resolution scales and combining them as the input to 

the decoder. This is further upsampled (decoded) to extract features at the image scale.

Given the encoder-decoder network with spatial pyramid pooling in the DeepLab 

architecture, it can extract contextual information from multiple scales, as well as refine 

them through sharp object boundaries which is crucial for the layer tracking task.

Figure 4-14: Schematic of DeepLab architecture
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5. Soft ensemble: Soft ensemble is a simple routine in deep learning where the output of 

different models are naively combined without any further training. It is similar to using 

majority votes of the constituent models to decide the class of each input image pixel. To 

harness the strength of each of the previous four models, the soft ensemble model was 

created from their combination. Concretely, the ensemble is the average of the prediction 

map of FCN, U-Net, Attention U-Net, and DeepLabv3 models. This has the advantage of 

emphasizing details agreed on by most or all the models. However, it has the downside of 

ignoring important features identified by one or a minority of the models.  

  

4-5-2 Training implementation details 

For conciseness, we provide a summary of the dataset and implementation details for training the 

models below. 

 

The models were trained on the Snow Radar dataset version 1 (detailed in Section 4-2). The 

echogram images and their corresponding binary labels are used for training the binary 

segmentation models. We employ very mild augmentation techniques such as color jitter, 

contrast transformation, left-right-flip, and slight elastic deformation to increase the robustness 

of the models. Random zooming and cropping were not used to avoid erasing the depth and 

spatial information in the range bin/depth and along-track axis respectively. These operations, 

particularly in the depth axis, make it difficult, sometimes impossible, to convert the tracked 

layer vectors back to depth in meters and stall the accumulation rate estimation process. To 

standardize the data, we enforced uniform dimensions across all echograms in the dataset by 

setting 𝑁𝑡  = 1664 and 𝑁𝑥  = 256.  
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For training, the Fully Convolutional Networks (FCN), U-Net, and Attention U-Net all have four 

stages of downsampling in their encoder paths. Each convolution block in the encoders consists 

of a sequence of convolution, dropout, batch normalization, and activation layers. The ReLU 

activation function is used in each convolution block. A similar pattern is followed in the 

decoder paths. In the decoder paths of U-Net and Attention U-Net, the naïve upsampling 

operation was replaced with the parameterized Conv2DTranspose, and the ReLU activation 

function was also applied within the decoder convolution blocks.  

 

Also, unlike the conventional FCN which applies a single upscaling of the final downsampled 

feature map, we applied sequential stages of upsampling to generate the output binary map. 

However, there are no skip connections between the contraction and expansion paths. This 

makes it very similar to the U-Net model except that U-Net applies a double convolution block at 

each stage and skip connections exist between feature maps of similar spatial resolution in the 

encoder and decoder paths.  

 

The Attention U-Net model is also similar to the U-Net except for the added attention gates. Our 

DeepLabv3 implementation uses ResNet50 architecture as the backbone with ImageNet pre-

trained weights and dilation rates of [6,12,18] in the spatial pyramid pool.  

 

All the models were trained with Binary focal loss with 𝛼 =  0.25 and β =  2 to mitigate the 

inherent binary class imbalance. Further details about the loss functions is delayed till section 6-

2-4-2. The Adam [89] optimizer was used with an initial learning rate of 1e-3 that is decreased 

by a factor of 0.25 after 10 iterations at a plateau and EarlyStopping was implemented after a 

patience of 30 epochs at a plateau without improvement in the validation loss. Consequently, 

although the models were set to train for a fixed number of epochs, the terminating epoch for 
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each of the model differs slightly. However, we observed a mean epoch of 120 for all four 

models. 

 

 

 

 

 

Table 6: Model training hyperparameter summary 

Training hyperparameters Value 

Input image dimension 𝑁𝑡  = 1664 and 𝑁𝑥  = 256. 

Batch size 4 

Initial learning rate 1e-3 

Number of encoder blocks 4 

Number of decoder blocks 4 

Convolution filters per block [16, 32, 64, 128]  

Convolution non-linear function ReLU 

Output convolution activation function Softmax 

 

Number of prediction classes 1 

Number of epochs Varies  

Loss function Binary focal cross entropy 

Class balancing factor (𝜶) 0.25 

Focusing parameter (𝜷) 2 
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4-5-3 Hyperparameter tuning 

Hyperparameter tuning is a critical step in machine learning model development. Unlike model 

parameters, which are learned from training data, hyperparameters are preset before training 

begins. These hyperparameters control aspects of the training such as learning rate, 

regularization strength and the architecture of the model. The selection of optimal 

hyperparameters is critical to improve model accuracy, reduce overfitting and overall predictive 

power of the model. However, finding the right combination of hyperparameters is often 

complex and computationally expensive. This can be alleviated by adopting some generally 

accepted benchmark values based on reported training schemes in literature. 

 

To train the models a basic hyperparameter search was performed, focusing on key parameters 

such as batch size, convolution filter sizes, learning rate, and optimal training epochs. Due to the 

large dimensions of the input echogram, using a large batch size was not feasible on the available 

hardware. As the UNet family of models shares similar architectures, we adopted comparable 

hyperparameters. A batch size of 4 was ultimately chosen, as larger sizes frequently led to out-

of-memory errors, especially when running multiple training sessions concurrently. Although 

exploratory runs with batch sizes of 8 and 16 were attempted, models like AttentionUNet often 

crashed due to limited GPU resources, reinforcing the decision to use a mini-batch size of 4 for 

the final model training. 

 

Similarly, the size of the convolution block filters is also limited by available hardware. While 

larger filter sizes could theoretically improve the model’s representational power, they frequently 

led to GPU memory exhaustion. Although some of the UNet model variants could have been 

trained with larger filter sizes, to ensure uniformity and consistency which is important for easy 
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comparison of their performance, filter sizes of 16, 32, 64 and 128 were used to train the UNet-

family models. 

 

An initial search was conducted to determine the optimal learning rate. Various constant learning 

rates—0.1, 0.01, 0.003, 0.001, and 0.0001—were tested over 100 epochs for the UNet model. 

Higher rates (0.1 and 0.01) failed to converge quickly, resulting in a large gap between training 

and evaluation loss. Rates of 0.003 and 0.001 performed better, with 0.001 slightly 

outperforming 0.003. However, constant learning rates proved inadequate, particularly in later 

training stages, where a slower rate is needed to navigate toward a local or global minimum. 

 

To address this, a learning rate scheduler was implemented. The scheduler started with an initial 

learning rate, decreasing it gradually by a factor of 0.25 when training plateaued (i.e., when the 

validation loss did not decrease for 10 consecutive epochs). This adaptive learning rate was 

valuable, as it responded to the needs of each model’s training cycle, reducing sensitivity to the 

initial learning rate. For all convolution-based models, an initial rate of 1e-3 was used, 

decreasing to 5e-6 in 0.25 increments. 

 

Other hyperparameters, such as kernel size and network depth, were kept relatively uniform 

across models (except in specific cases like DeepLab). The Adam optimizer was chosen over 

RMSprop and SGD for its superior performance. 

 

4-6  Model evaluation and discussion 

In this section, we report the performance of the deep learning models on each section of the test 

set in three different stages.  
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4-6-1 Binary output evaluation 

The immediate output of the binary segmentation models is probability heat maps derived from 

applying the sigmoid activation function to the logits output of the models. Visually inspecting 

the probability heat maps reveals the detected layers but the domain of the values in the heat 

maps are real numbers from 0 to 1 (sometimes containing negative values but this corresponds to 

noise).  To convert these outputs into binary images, the probability maps are first thresholded 

followed by a simple non-maximum suppression algorithm. Details of our implementation of the 

non-maximum suppression algorithm is in 6-2-6-1. Qualitative examples of the binary output are 

shown in Figure 4-15 and Figure 4-16.  

 

To assess how well the models classify “layer” and “no-layer” pixels in the echogram, we 

employ two evaluation metrics from the image processing domain: Optimal Dataset Scale (ODS) 

and Optimal Image Scale F-scores evaluation metrics. Both metrics utilize the F1-score (see 

section 3-2-4-2 for definitions of F1-score, recall, precision and accuracy), but they differ 

slightly in how they determine the optimal threshold for converting the edge probability map into 

a binary image. ODS considers a single threshold for the entire test set of the probability maps 

and finds the threshold that yields the highest average F1-score across all the images. Hence, it 

gives a general idea of how well the models are performing on the entire test set using a single 

setting. OIS, on the other hand, calculates the average of the best F1 score for each image in the 

test set by finding the optimal threshold for each specific image.  

 

The SSIM metric (Structural Similarity Index Metric) is a measure of image quality that 

compares two images based on their structural similarity. It considers factors like luminance, 

contrast, and structural information, providing a more detailed assessment of image similarity 
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than traditional pixel-wise differences. More detailed discussion of SSIM is delayed until Section 

6-2-4-4. 

 

Table 7: Optimal dataset scale and optimal image scale F1 scores  

 U-Net AttentionU-

Net 

DeepLab FCN Ensemble 

ODS 0.800 0.910 0.881 0.909 0.886 

OIS 0.801 0.911 0.882 0.910 0.887 

 

After binarizing, the one-pixel thick binary output for each model produced is also used to 

compute the recall, precision, accuracy and structural similarity index measure (SSIM) for the 

models. The result is summarized in Table 8. 

 

 

Table 8: Weighted average metrics for each of the models 

Model Recall Precision Accuracy SSIM F1 

U-Net 0.9790 0.9778 0.9790 0.9583 0.9784 

AttentionU-Net 0.9779 0.9780 0.9779 0.9588 0.9780 

DeepLab 0.9780 0.9781 0.9780 0.9586 0.9780 

FCN 0.9779 0.9784 0.9779 0.9605 0.9782 

Ensemble 0.9781 0.9783 0.9781 0.9588 0.9782 
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Figure 4-15: Full echogram image, (b) Ground truth annotation and models’ binary outputs 

from (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-16: Another full echogram image, (b) Ground truth annotation and models’ binary 

outputs from (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-17: Echogram image with overlaid 1D contour tracked layer model outputs (b) 

Ground truth annotation (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-18: Another echogram image with overlaid 1D contour tracked layer model outputs 

(b) Ground truth annotation (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft 

Ensemble
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Figure 4-19: Echogram image and model binary outputs using (b) Ground truth annotation 

(c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble

The values in Table 8 indicate near-perfect performance and are similar for all the models

making it difficult to identify which model is performing consistently better than others. 

However, on a closer look, we see this is because of the domination of the prominent 0 class in 

the task which skews the metrics. Separating the classes and computing the metric for each class 

reveals that the models are not performing too well on the layer (1) class pixels which we are 

more interested in. 
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Table 9: Recall, Precision and F1 score for each binary class. 

Models Recall Precision F1 

 Class 

0 

Class 

1 

Unweighted 

average 

Class 

0 

Class 

1 

Unweighted 

average 

Class 

0 

Class   

1 

Unweighted 

average 

U-Net 0.990 0.068 0.529 0.988 0.077 0.532 0.989 0.072 0.531 

AttentionU-

Net 

0.988 0.084 0.536 0.989 0.083 0.535 0.989 0.083 0.536 

DeepLab 0.989 0.089 0.539 0.989 0.088 0.538 0.989 0.089 0.539 

FCN 0.989 0.104 0.564 0.989 0.099 0.544 0.989 0.101 0.545 

Ensemble 0.988 0.095 0.541 0.989 0.094 0.541 0.988 0.094 0.541 

 

Table 9 shows the unweighted Recall, Precision and F1 scores for each class and their average. 

This result shows that the ensemble model and FCN are the best performing with an F1 score of 

about 10% on the positive class. It is important to note that a perfect score of 1, implying a 

perfect overlap, is not expected for these metrics. This is because the layers are multiple pixels 

wide and the optimal pixel within the layer’s thickness is not well defined. A result that is only 

one pixel off from the ground truth will get a poor score even though the result is acceptably 

good. A consistent criterion for selecting the layer pixel (e.g. always tracking the leading edge or 

always tracking the middle of the layer) is required to ensure that the estimation of the 

accumulation between successive layers is accurate. Thus, the low recall, precision and F1 scores 

of the models on class 1 does not necessarily mean that they are very poor and not useful models 

for layer tracking. However, it does show that there may be room for improvement. 
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Hence, there is a need for a different metric (other than the classic computer vision pixel 

accuracy) to convey how well the models are performing on the layer tracking and accumulation 

estimation task.  

 

4-6-2 Tracking evaluation 

For a metric that better assesses the results, we employ the N-pixel accuracy earlier defined in 

Equation (10) to investigate how well each model tracks the layers. This calculates the accuracy 

of the positive class prediction in the neighborhood of the ground truth annotation. First, the 

model segmentation maps are thresholded and binarized to 0 (no layer pixel) and 1 (layer pixel) 

before each individual layer 1-D contour can be extracted. Since the width of each snow layer in 

the echograms is several pixels thick, the result of initial thresholding to create the binary output 

is similarly more than one pixel thick for each rangeline of the identified layer. This requires 

additional processing to thin the prediction to identify a single layer pixel for each layer’s 

rangeline. This is similar to the non-maximum suppression post-processing algorithm in the 

computer vision community.  

 

Concretely, the models' binary raster output (i.e. the matrix of 0's and 1's of dimension 𝑁𝑡 × 𝑁𝑥) 

is post-processed to create layer vectors (𝑁𝐿 × 𝑁𝑥) that uniquely track and identify each of the 

annual snow layers in the echogram. This is done using a post-processing routine that extracts 

the row index (range bin) of all layer-containing pixels and clusters them into individual layers. 

The row indices of all pixels containing a layer (i.e. 1s in the models' binary output) are first 

extracted. Next, exploiting the fact that no two snow layers cross each other because of the snow 

accumulation between them, each annual snow layer is inherently distinct and can be separately 

identified. The post-processing algorithm, therefore, clusters the extracted row indices for each 
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snow layer to form the 𝑁𝐿 × 𝑁𝑥 layer vector output (𝑁𝐿 layers of size 1 × 𝑁𝑥). This format 

uniquely identifies the range bin in each layer for all the echogram's 𝑁𝑥 rangelines and encodes it 

as a single row vector which is identical in structure to the ground truth layer vector (explained 

in Section 4-4-1).  

 

Using the tracked 1D layer contour, the N-pixel accuracy (% of layer pixels that are less than or 

equal to 𝑁 pixels from the ground truth) for N = 2, 5 and 10 are computed as well as the mean 

absolute error (MAE). Here, the MAE is the average absolute error between the prediction and 

the ground truth for all layer pixels as defined in Equation (12): 

 
𝑀𝐴𝐸 =

1

𝑁𝑒𝑐ℎ𝑜𝑁𝐿𝑁𝑥
∑ ∑ ∑|𝑌̂𝑛,𝑙,𝑗 − 𝑌𝑛,𝑙,𝑗|

𝑗≤𝑁𝑥

𝑗=1

𝑙≤𝑁𝐿

𝑙=1

𝑛≤𝑁𝑒𝑐ℎ𝑜

𝑛=1

 
(12) 

Table 10: N-pixel accuracies and Mean Absolute error of each model 

 2px 5px 10px MAE 

U-Net 0.1125 0.5499 0.8489 6.5227 

AttentionU-Net 0.1309 0.7293 0.9434 4.7331 

DeepLab 0.1679 0.6523 0.9237 5.0119 

FCN 0.2946 0.8015 0.9638 3.8132 

Ensemble 0.1780 0.6671 0.9274 4.9081 

 

The result in Table 10 shows that 71 to 89% of the layer predictions are more than or equal to 2 

pixels from the ground truth. This error rate drops to 4 to 15% when the error margin is increased 

to more than or equal to 10 pixels. The FCN model shows superior performance for all metrics 

compared to the other models (71% error rate for ≥ 2 pixels and 4% for ≥ 10 pixels). 
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To tie the pixel margins and MAE estimation back to the layer tracking estimation physical 

problem, we can find the layer thickness error in meters instead of pixels. The Snow Radar 

image fast-time sampling is Δ𝑡 =  0.08517 ns and assuming a dielectric of 𝜖𝑟 = 2, which is in 

between fresh fallen snow (𝜖𝑟~1.5) and solid ice (𝜖𝑟~3.15), gives a fast-time or row pixel 

height of 

 
Δ𝑟 = 

 𝑐Δ𝑡

2√𝜖𝑟 
 =  0.01m. (13) 

 

This shows that the worst performing model (U-Net) with MAE = 6.5 pixels and best performing 

model (FCN) with MAE = 3.8 pixels have mean errors of 5.9 cm and 3.4 cm respectively. Note 

that the reported MAE and N-pixel accuracies are only reported for pixels where the models and 

ground truth annotation simultaneously have valid predictions.  

 

Cases where only the model or only the ground truth produced a result have been excluded. This 

situation typically arises from low-probability segmentation mask values, which may be due to 

either poor pixel quality in the echogram image or errors in the deep learning model. In both 

scenarios, the layer pixels fail to be converted to 1 during binarization. In certain sensitive 

applications and some geographical locations (e.g. wet snow zones), it is desired that consecutive 

predictions are available for all rangelines. The predicted layers need to be continuous with no 

missed layer detections that can cause gaps in the predictions. Therefore, we also investigate and 

report the percentage of missed pixels for each model. 

 

In the tables below, “whole-layer pixels” refers to echograms where the entire layer is missing. 

“Intra-layer pixels” refers to layer pixels where only a portion of the layer is missing. The total 

number of layers in the test set across all images is 24,407 layers and the total number of layer 
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pixels is 6,184,704. There are 3165 and 21,242 layers in test groups L1 and L2 respectively. The 

results for both test groups are shown separately and combined. It should be noted that L2 

includes echogram imagery that are more difficult to track. 

 

Table 11: Missing layer pixel evaluation showing “whole layer pixels”, “intra-layer pixels” and 

the combined percentage of layer pixels missed for the models. 

 Whole layer pixels Intra-layer pixels Combined 
Percentage 

 L1 L2 L1 + L2 L1 L2 L1 + L2  

U-Net 33 
1.04% 

1418 
6.67% 

1451 
7.72% 

42,228 
5.23% 

 

618,038 
11.49% 

660,266 
16.73% 

 
24.44% 

Attention 
U-Net 

14 
0.44% 

 

407 
1.92% 

421 
2.36% 

4,171 
0.52% 

137,555 
2.56% 

141,726 
3.07% 

 
5.43% 

DeepLab 11 
0.35% 

 

248 
1.17% 

259 
1.52% 

15,215 
1.89% 

265,010 
4.93% 

280,225 
6.81% 

 
8.32% 

FCN 16 
0.51% 

 

328 
1.54% 

1.46 
2.05% 

3,883 
0.48% 

133,847 
2.49% 

137,730 
2.97% 

 
5.02% 

Ensemble 10 
0.32% 

 

232 
1.09% 

0.99 
1.41% 

13,176 
1.63% 

246,719 
4.59% 

259,895 
6.22% 

 
7.63% 

 

 

4-6-2-1 Evaluation of layer tracking based on echogram image quality and along-track 

distance  

 

As discussed in Section 4-2-1, the Snow Radar ML Dataset_version1 contains echograms from 

different parts of Greenland that are representative of the different snow accumulation patterns 

over the ice sheet. The absence of moisture and melting in a polar region such as the dry snow 

zone where little or no melting occurs all year long ensures that the annual snow deposition 
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stratigraphy is always maintained. As a result, echograms from such locations have crisp layers 

resulting in better deep learning algorithm results. Here, we investigate the classification and 

tracking performance of the models on the different categories (particularly the L1 and L2 

groups) of test echogram images. L1 echogram images have the best image quality with distinct 

layers and high signal-to-noise ratio (SNR) between the layer pixel signal energy and the 

background noise. L2 echogram images are not as easy to trace as L1 images, but the snow 

layers in the echograms are still visible and can be identified and tracked.  

 

The L3 images are generally of low quality and may lack discernible snow layering. However, 

their characterization is crucial due to their frequent occurrence, sometimes at the beginning or 

the end of a survey flight line. To design a deep learning model that can consistently track snow 

accumulation over several kilometers of ice accumulation, the model needs to be exposed during 

training to these “imperfect and difficult” echogram images. This allows the model to either 

learn to disregard them or effectively track the snow surface despite their image quality 

limitations. However, for most tracking performance evaluation in this work, the L3 images are 

omitted as the priority is on L1 and L2 images that make up the bulk of the layers that need to be 

tracked. 

 

4-6-2-2 Model performance evaluation based on echogram image quality 

Here, we investigate the models’ ODS and OIS F1 scores and mean absolute error for each of the 

L1, L2 and L3 Snow zones.  
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Table 12: ODS and OIS for L1, L2 and L3 

 L1 L2 L3 Combined 
L1 +L2 +L3 

 ODS OIS ODS OIS ODS OIS ODS OIS 

U-Net 0.916 0.917 0.789 0.790 0.214 0.214 0.800 0.801 

AttentionU-Net 0.971 0.972 0.908 0.909 0.218 0.218 0.910 0.911 

DeepLab 0.959 0.960 0.880 0.881 0.159 0.159 0.881 0.882 

FCN 0.957 0.958 0.913 0.914 0.187 0.187 0.909 0.910 

Ensemble 0.962 0.963 0.885 0.886 0.167 0.167 0.886 0.887 

 

 

Table 13: Mean absolute error (MAE) for L1, L2 and L3 

 L1 L2 L3 

U-Net 4.222 6.872 70.987 

AttentionU-Net 3.466 4.970 69.266 

DeepLab 3.956 5.118 41.661 

FCN 3.982 3.742 47.084 

Ensemble 3.873 5.010 42.672 

 

The noticeable decline in the performance of most of the models as the echogram image quality 

decreases confirms the hypothesis that the performance of the models is strongly linked to the 

quality of the echogram images. Therefore, to achieve broad generalization to echogram images 

from different snow zones and image quality, a robust deep learning architecture that can 

maintain good performance irrespective of image quality is required. Of the examined deep 
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learning architectures, the FCN model exhibits better robustness to the declining echogram 

image quality. 

Table 14 : N_pixel accuracies for each echogram image quality segment 

 L1 L2 L3 

 2px 5px 10px 2px 5px 10px 2px 5px 10px 

U-Net 0.141 0.719 0.973 0.108 0.524 0.831 0.001 0.077 0.225 

Attention 
U-Net 

0.269 0.806 0.986 0.110 0.719 0.939 0.001 0.050 0.174 

DeepLab 0.124 0.761 0.987 0.175 0.637 0.916 0.001 0.022 0.175 

FCN 0.095 0.788 0.979 0.325 0.805 0.963 0.001 0.084 0.278 

Ensemble 0.141 0.768 0.988 0.184 0.653 0.920 0.001 0.044 0.183 

 

4-6-2-3 Model performance evaluation based on along-track length and echogram quality 

We also examine the effect of the along-track length of the echograms on the performance of the 

models and how this performance is influenced by image quality. In Table 15, the performance 

of the models is reported based on the echogram along-track distance. The 10-km echograms 

have the lowest MAE compared to 2-km and 5-km echograms. This strongly suggests that future 

work should explore the use of longer echograms to more confidently find the optimal value for 

this hyperparameter. To further scrutinize the relationship, Table 16 shows the performance of 

the models as a function of the along-track distance and echogram image quality simultaneously. 

 

Table 15: Mean absolute error (MAE) based on along-track length 

 2 km 

(Count = 911) 

5 km 

(Count = 366) 

10 km 

(Count = 15) 

U-Net 6.793 7.263 3.875 



138 

Attention U-Net 5.049 5.394 3.750 

DeepLab 5.177 5.231 4.006 

FCN 4.027 3.959 4.193 

Ensemble 5.064 5.168 3.909 

 

Combining the result in Table 15 and Table 16 shows that the performance of the models on 

2 km and 5 km echograms are comparable. However, in L2 echograms (which are most 

common), the FCN architecture has low MAE for 5 km echograms. 

 

It should be noted that the Snow Radar Dataset version 1 test set contains a very limited number 

of 10 km echograms. This would be increased in the next iteration of the dataset to allow for a 

fair comparison of the performance of models on echogram images with long along-track length. 

 

 

Table 16: Mean absolute error (MAE) based on echogram zone and along-track length 

 L1 L2 L3 

 2 km 5 km 10 km 2 km 5 km 2 km 5 km 

U-Net 4.337 4.092 3.875 6.797 7.062 68.717 74.328 

AttentionU-Net 3.376 3.565 3.745 5.020 4.843 53.642 91.834 

DeepLab 3.956 3.931 4.006 5.145 5.052 42.629 40.381 

FCN 3.928 4.020 4.193 3.791 3.620 51.727 40.377 

Ensemble 3.870 3.862 3.909 5.030 4.959 42.162 43.345 
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4-6-3 Generalization evaluation 

The overall goal of this work is to have a deep learning model that performs well, not just on the 

test set of the dataset but on echograms other than those in the training set. While it is not 

expected that the models would generalize (without extra finetuning or pre-training) to 

echograms that are characteristically very different such as echograms from the Multichannel 

Coherent Radar Depth Sounder (MCoRDS) whose center frequency is orders of magnitude 

different from the Snow Radar and focuses on a different section of the ice column, it is, 

however, expected that the models should generalize to echograms from similar radar systems 

and snow zones. Particularly given the large amount (approximately 50-60% of available 

echograms) that are yet to be tracked and several new science missions scheduled to collect more 

data, a model that can generalize to echograms in the wild would be valuable to automatically 

track layers to extract ice accumulation information. 

 

As such, we test the trained models on echograms outside the training set. These “new” test 

echograms are mostly from the same campaign year (2012) but not from the ML SR _dataset_v1 

dataset and include data collected in later years with similar radar hardware settings. These 

echograms are first pre-processed in a similar way to the preprocessing of the echograms in the 

dataset. However, these echograms do not have ground truth annotation, and therefore, they can 

only be evaluated qualitatively at this time. 

 

Figure 4-20 and Figure 4-21 demonstrate the generalization abilities of the models. The test 

echogram is from the dry snow zone and contains well defined snow layers. When used to 

perform inference, most of the models correctly classified and tracked the individual snow layers 

in the echograms. The DeepLab model shows its limitations by missing some of the snow layers. 
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Figure 4-20: “New” echogram from 2017 data tracked with trained models 

 

Figure 4-21: Another “new” echogram from the dry snow zone  

 

The test was conducted on several dry snow zone echograms and the models (including the U-

Net model) perform satisfactorily when the echogram image quality is good, and the snow layers 

can be easily identified. Specifically, these “good” echogram images have layer pixels with high 

SNR and clear discrimination between the layer’s pixel peaks and the “no-layer” pixel 

background noise floor between layers. 
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4-6-3-1 Model limitations 

Despite the performance of the models on dry snow zone echograms and their ability to 

generalize broadly to other echograms from different data collection years and slightly different 

radar hardware configurations, the models failed to reproduce similar performance on some 

echograms with certain features. The echogram in Figure 4-22 is an example of an echogram 

where all the models failed to correctly classify all the layer pixels and consequently failed to 

track the layers. Accurate tracking of the layers in post-processing is contingent on identifying 

most (if not all) the layer pixels correctly. For these types of echograms, where the layer 

stratigraphy orientation is curved or tubular, it is crucial for the models to identify all the layers 

pixels in the curved region to ensure accurate layer tracking. 

 

 

Figure 4-22: Sample echogram and activation maps where all the models fail to identify the 

snow layers 

 

The failure of all the models on these types of echograms prompted a closer examination of the 

characteristics of the echograms and model architectures to understand why the models did well 

on some echograms but failed on others. 
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Figure 4-23: A scope plot of all the rangelines in a sample echogram from the dry snow zone  

 

The figure above shows the plot of the normalized power as it is depicted by the echogram image 

but plotted as a function of depth. The A-scope (Amplitude scope) plot shows the same dataset 

as the echogram image but with a different visualization where the columns are plotted as 

vectors instead of a 2D color-coded surface map. It is created by plotting the linear normalized 

power of each column (rangelines) in the echogram image. The echogram image from which the 

A-scope was plotted is shown in Figure 4-24. As shown in the A-scope plot in Figure 4-23, when 

the snow zone has well-preserved layer stratigraphy, the radar received backscatter as the aircraft 

flies along-track shows that the layer peaks align with each other for each range line. The quasi-

stationarity of the snow layers in this snow zone causes all the received backscatter for the layers 

to co-localize which corresponds to the “almost perfectly straight” layers seen in the echogram 



143 

image. It must be noted that this A-scope is for a processed echogram whose rangeline is formed 

from coherent and incoherent averaging and has undergone some fast time filtering to reduce the 

high frequency component in the received backscatter. 

 

 

Figure 4-24: Echogram image corresponding to the A-scope plot  

 

Figure 4-25 is the annotated A-scope plot highlighting the layers (signal peaks) with blue arrows 

and the interlayer background noise floor (signal troughs) with red lines. In these echograms, the 

peaks corresponding to the layer are easily distinguishable due to its high backscatter SNR 

relative to the adjacent power trough before the next layer.  
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As such, it is seen that when the layer pixels, which corresponds to signal peaks, are 

considerably higher than the intra-layer noise floor and the peaks cluster together (blue arrows) 

in the A-scope, the models can identify and track the layers along track. This property is similar 

to the decision boundaries between the probability density functions (PDF) of the two classes in 

a binary detection problem. In such binary detection problem, a clear separation between the 

PDFs of the classes implies that there is a detection statistic that can be used to distinguish the 

classes. However, the decision boundaries of the deep learning models are not based on the pixel 

values alone but includes the spatiotemporal relationship information between the neighboring 

layer pixels. The spatiotemporal relationship learned by the models is why layers well below the 

surface (such as the last blue arrow) can still be detected and tracked despite having lower pixel 

values than the earlier intra-layer noise floor such as the one between the surface and layer 1 

(first red line). 

 

In contrast, the echograms with curvilinear layer orientation due to rapidly varying accumulation 

rates are more likely to have a poor distinction between the layer (1) peaks and no layer (0) 

throughs due to the presence of refrozen melt water features. 
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Figure 4-25: Annotated A-scopes to show each layer and linear power trough between layers 

 

The varying spatial accumulation pattern between different geographical regions is a key factor 

causing the models to fail. Another issue is reduction in SNR due to the aircraft roll angle. As the 

aircraft maneuvers along the flight path, oftentimes, the aircraft’s orientation changes to stay on 

course or make a turn. This causes the radar antenna to tilt, making the radar beam deviate from 

nadir, which lowers the signal power coming from the desired normal-incidence layer scattering 

and increases unwanted off-nadir backscatter. As such, these rangelines appear faded and blurred 

in the echograms. 

 

Concretely, echogram layer tracking is successful when these two sequential processes are 

completed accurately: layer pixel classification and along-track tracking. Layer pixel 

classification identifies the candidate layer pixels, and this must be done accurately to ensure 

successful layer tracking. However, as earlier mentioned, multiple pixels around the layers’ peak 
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are returned as the layer pixels in the model output heat map. The subsequent goal is to identify 

which of the candidate layer pixels for each rangeline coincide with the layer peak and achieve 

optimal connectivity between adjacent layer pixels to form a smooth tracked layer. 

 

Figure 4-26: A-scope plot of all the rangelines in a sample echogram from a transition snow 

zone 

  

For dry snow zones, the layer tracking problem is easier because the layers are flatter, and even 

when there is a reduction in SNR for some rangelines, it is easy to use information from 

neighboring rangelines to estimate or interpolate the faded ones. However, for the non-flat and 

curved orientation of the layers in the wet snow zone echograms, the relationship between 

neighboring lines is more complicated making the along-track tracking task difficult in these 

types of echograms. 
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Figure 4-27: Qualitative example of the tracking performance of the models on echograms 

with curved snow layer orientation. (a) AttentionU-Net (b) DeepLab (c) U-Net (d) FCN 

 

This situation is sometimes further worsened by the presence of small clusters of noisy peak 

pixels and artifact pixels caused either by the imperfections in the radar system or inherent in the 

remote data collection method. These artifact pixels are usually around the layer troughs of 

deeper layers (sometimes with low SNR) and mimic layer pixels. They often trick the models to 

classify them as valid layer pixels. These erroneous layer peaks are difficult to see on a cursory 

look at the echograms but closer inspection of the rangeline A-scopes reveal these peaks. In 

Figure 4-27, the models (AttentionU-Net, U-Net and FCN) incorrectly identified and tracked 

these artifact pixels around the deeper layers causing the incorrect along-track tracking. 

 

Dealing with these data artifacts is non-trivial and can mislead the post-processing tracking if the 

models have not learned to disregard such pixels. As such, the models need to be given some 

awareness of rangeline-to-rangeline (sequential) tracking during training and learn to ignore 

pixels that do not cluster with others to form a uniform and smooth track along the rangelines.  

 

It is also important to note that the mixed performance of the models (good tracking on the dry 

snow zone echograms but poor on wet snow zone) can also be attributed to the sparsity of wet 
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snow zone echograms in the training dataset. The dominance of dry snow zone echograms 

during training biases the model towards the most encountered echogram type. 

 

Approaches to improve the performance and generalizability of the models, particularly on 

echograms from non-flat accumulation zones are investigated in the next chapter. 
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Chapter 5 METHODOLOGY (3) 

5-1 Improving model generalizability  

The quest to improve the trained models’ ability to automatically track snow layers in echogram 

images beyond only those in the dry snow zone is critical since most of the collected data 

(fragmented into “segments”) rarely only contain dry snow zone echograms. Some flights target 

the transition and wet snow zones. Therefore, deep learning models robust to the different 

accumulation zones would be a valuable tool. 

 

The result obtained from the trained models revealed that the echogram snow layer tracking 

problem is a combination of layer pixel classification and along-track tracking problem. A model 

with good pixel classification performance is sufficient for dry snow zone echograms with nearly 

flat layers since the layer pixels are naturally aligned. However, layers with curvature require 

that the models learn spatial correlation in the along-track axis to not only classify individual 

layer pixels but also fill gaps where data quality is low due, for example, to the curvature or 

increased scattering that occurs more frequently outside the dry snow zone. 

 

We approached this by developing a new model architecture adept at taking advantage of the 

intrinsic sequential information in the fast-time and slow-time axis of the echogram data.  

 

5-2 Echogram vision transformer (EchoViT) 

Echogram images can be viewed as a sequence of 1D rangeline data stacked in the along-track 

axis. As a result, the layer contour tracing problem can be framed as a sequential identification of 

the layer edge from one echogram column to the next. This sequential nature lends itself readily 

to auto-regressive and sequential deep learning model architectures.  
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In section 3-2-3,  the sequential recurrent neural network (RNN) architecture was explored on 

the RowBlock problem, and it had better success than its convolutional based SkipMLP 

counterpart largely because it took advantage of the recurrence in the echogram data. The long 

short-term memory network (LSTM) was once deemed as the gold standard variant of the 

recurrent neural network but suffered major drawbacks of precluding parallel computation and 

having limited long-range dependency. It is also very susceptible to the vanishing gradient 

problem and very sensitive to training hyperparameters which all make the model difficult to 

train. 

 

In recent years, the transformer architecture [29] with attention modules have been introduced to 

overcome some of the limitations of the earlier RNN architecture. It was first introduced in the 

Natural Language Processing (NLP) domain but has since become the de facto standard for 

almost all language tasks and many vision tasks given its fast computation time and support for 

parallel computation. 

 

Transformers rely on a mechanism called self-attention, which allows the model to weigh the 

importance of different elements in the input sequence, irrespective of their position in the 

original input sequence. 

 

5-2-1 Self-attention mechanism  

As earlier mentioned, the self-attention mechanism is the cornerstone of the transformer 

architecture. It allows the model to weigh the importance of different elements in the input 

sequence when processing it. The attention mechanism takes the input data and learns the 

relationship between each “token” (the unit input into the transformer, an image patch for 
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computer vision problems) and how they are related to others and the impact that each input 

token has on others in the context of the entire input sequence. It mixes this information to output 

a context-aware and semantically rich representation of the input first before passing it on to 

other processing stages in the transformer architecture. The self-attention mechanism can be 

broken down into: 

a) computation of Query, Key and Value vectors 

b) calculation of attention scores 

c) scaling the attention scores 

 

a.) Computation of Query, Key and Value vectors:  It does this by creating 3 copies of the input 

known as the query (𝑄), key (𝐾) and value (𝑉) vectors. These vectors are obtained by 

multiplying the embedded input tokens by the corresponding weight matrices 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉. 

 𝑄 = 𝐸𝑊𝑄 

𝐾 = 𝐸𝑊𝐾 

𝑉 = 𝐸𝑊𝑉 

 

(14) 

where 𝐸 represents the input 2D echogram data and 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are the learnable weight 

matrices of the model. These learned matrices Q, K, V are now used as inputs to subsequent 

layers of the model. 

 

b.) Attention scores calculation: The soft attention module creates a representation of the 

sequential echogram data that is semantically rich containing the inter-relationship between the 

input tokens and how they contribute to the model output. The attention score is computed by 

taking the dot product of the query vector of one token with the key vector of another token in 

the sequence of image patches resulting in 𝑄 𝐾𝑇. The score between a pair indicates how much 
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focus one element should have on the other. In the context of echogram layer tracking, this 

parallel attention score forces sequential elements (rangelines or range bins) that need to be 

connected to form a 1D contour to learn to focus on the important pixels (those with higher 

attention scores) and to disregard others (those with lower scores).  

 

c.) Scaling the scores: To prevent the dot products from growing too large in magnitude, which 

can push the output softmax function into a region where the gradients are small enough that 

gradient descent slows down too much, the scores are scaled by the square root of the dimension 

of the key vectors (𝑑𝑘) to give 𝑄𝐾
𝑇

√(𝑑𝑘)
 

The attention mechanism is concluded by applying the softmax operation to scaled scores to 

normalize them into a pseudo probability density function with the attention weight sum 

equaling one. However, it is important to note that certain transformations are applied to the 

input before the self-attention mechanism. This is represented by the input patch and embedding 

layer in Figure 5-1. 
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Figure 5-1: Complete transformer auto-regressive architecture 

5-2-2 Embedding layer and positional encoding 

Similar to NLP tokens, the input patches are first embedded into a high dimensional manifold 

before passing them into the encoder. In NLP, each word is represented by a high-dimensional 
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vector obtained from an embedding matrix. In the case of echogram images, the patch, chosen 

based on a patchification scheme, is passed through a convolutional base layer and the feature 

vectors from this serve as the layer embedding. However, unlike deterministic embeddings such 

as eigen-value decomposition, Fourier transform, wavelet basis, etc., this embedding space is 

learnt entirely from the data, therefore, it can achieve better performance by making less 

assumptions and learning entirely from the input data. Starting with a random initialization of the 

transformation basis weights, the model during the forward and backward propagation phase of 

training learns the appropriate basis that best explains the latent information in the input images. 

 

Next, since the self-attention module is position and order-agnostic, the initial position of each 

patch in the image is provided as additional information through position embedding. The 

positional encodings are added elementwise to the embedding output. The initial approach used 

in the seminal paper [29]  was to use sinusoidal functions which vary smoothly and provide 

unique encodings for each position. This is static and not updated during training. However, a 

more recent way of implementing this is to also use a trainable embedding layer that is optimized 

with other weights in the network during training. 

 

The transformed input patches with added positional information are then passed as input to the 

earlier described self-attention module. Importantly, the power of the self-attention module is 

harnessed by performing multiple parallel copies (known as “heads”) of the operation. This is 

referred to as “multi-head self-attention” and is repeated several times to form the compound 

“multi-layer multi-head self-attention,” drastically improving the overall representation power of 

the architecture. 
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5-2-3 Layer normalization, skip connections and feed-forward networks 

As shown in Figure 5-1, the transformer encoder (where the self-attention operation is 

performed) consists of the normalization layer, self-attention layer, skip connections and 

multilayer perceptron head. The output of the multi-head self-attention goes through the 

normalization layer which normalizes the inputs to each layer (as opposed to batch 

normalization) to mitigate potential covariate shift in the transformed input. This is critical 

considering the residual connections that add previous inputs which can cause the scale of the 

activations of the attention layer output and the skip connection to vary. Without normalization, 

the network could experience exploding or vanishing gradients, which can hinder the training 

process.  

 

Skip or residual connections are a well-established technique that allows easier optimization of 

deep learning models and enables the training of deeper networks. In the transformer 

architecture, residual connections are inserted between the incoming transformed input to the 

encoder and the output of the self-attention module to ensure no information is lost due to 

processing. It is also inserted between the output of the attention module and input of the feed-

forward network. This is done to maintain strong gradients between the input and output of the 

network’s intermediate layer by providing an alternate path for information to be directly passed 

across the layers without degradation. 

 

Finally, the feed-forward network is a dense fully connected network that applies a non-linear 

transformation to the inputs. It enhances the model’s capacity to learn complex patterns from the 

input data by processing each position in the input sequence independently although using the 

same feed forward network. It consists of two linear transformation layers and a ReLU activation 

between them. While the feed-forward network in the transformer does not perform direct 
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mixing between different positions in the input sequence, it significantly enhances the 

transformer's ability to model complex patterns and relationships within each position 

independently. The feed-forward network introduces nonlinearity, transforms the dimensionality 

of the data, and, when combined with layer normalization and residual connections, improves 

training stability and performance. 

 

5-2-4 Segmentation output head 

A major alteration to the traditional vision transformer in the EchoViT architecture is the final 

prediction layer. Most vision transformer models are trained on optical images (ImageNet, 

ImageNet1000) as classification models. However, the echogram layer tracking problem is a 

tiered-image segmentation task where dense prediction is required for each pixel and subsequent 

tracking in along-track axis. Therefore, the final prediction layer is changed from a classification 

head to a fully convolutional layer that predicts the class of every pixel in the echogram.  

 

To match the size of the output decision matrix to the input image, network hyperparameters 

such as the dimension of the embedding layer and feedforward layer are chosen to match the 

dataset’s echogram input dimension. 

 

5-2-5 EchoViT model architecture 

To best leverage the vision transformer architecture for the echogram layer tracking problem, we 

investigated multiple patchification schemes to identify those that harness the natural rangeline-

to-rangeline sequence in the echogram which will be instrumental for layer tracking along-track. 
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5-2-5-1 Patch methodologies  

The EchoViT architecture is setup as a binary segmentation task which incorporates a pairwise 

self-attention mechanism to capture spatial correlations between echogram patches. EchoViT is 

an encoder-only transformer architecture that features a specifically designed binary 

segmentation output layer tailored to the input's patchifying scheme. 

 

The input to the encoder layer E is the patched echogram pixels mixed with corresponding 

learnable positional embedding 𝑍𝑝𝑜𝑠 as shown in Figure 5-1. Given a grayscale input echogram 

𝑮 ∈ {ℝ𝑁𝑡×𝑁𝑥 ∶ 0 ≤ 𝑮 (𝑚, 𝑛) ≤ 1} where 𝑁𝑡 is the number of fast-time bins and 𝑁𝑥 is the 

number of slow-time bins.  

 

We explored three patching schemes: 

1. Fast time patch 𝑃𝑓𝑡  ∈ ℝ𝑁𝑡 ×1 to give patch sequence 𝑍𝑓𝑡 = 𝑳[𝑃𝑓𝑡1, 𝑃𝑓𝑡2, … , 𝑃𝑓𝑁𝑥] +

𝑍𝑝𝑜𝑠_𝑓𝑡 

 

2. Slow time patch 𝑃𝑠𝑡  ∈ ℝ1 ×𝑁𝑥 to give patch sequence 𝑍𝑠𝑡 = 𝑳[𝑃𝑠𝑡1, 𝑃𝑠𝑡2, … , 𝑃𝑠𝑁𝑡] +

𝑍𝑝𝑜𝑠_𝑠𝑡 

 

3. Cropped patch 𝑃𝑐𝑟  ∈ ℝ𝑏𝑡×𝑏𝑥 to give patch sequence 𝑍𝑐𝑟 = 𝑳[𝑃𝑐𝑟1, 𝑃𝑐𝑟2, … , 𝑃𝑐𝑟𝑁] +

𝑍𝑝𝑜𝑠_𝑐𝑟 

 

where 𝑏𝑡 and 𝑏𝑥 are the respective dimensions of the patch and 𝑁 =  
𝑁𝑡𝑁𝑥

𝑏𝑡𝑏𝑥
 is the number 

of cropped patches. 
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For each scheme, L is the linear embedding operation and 𝑍𝑝𝑜𝑠_∗ is the corresponding 

position encoding for the patch.  

 

The positional embedding for each patchification scheme differs slightly depending on the 

number of patch tokens created by the scheme. For each scheme, the operation uses the integer 

position of each token in the input sequence (starting from 0) and maps this integer position to a 

continuous vector representation. This is done using an embedding matrix whose weights are 

learned during training that transforms the discrete positional information into a continuous 

vector space of the same dimension as the echogram patch embeddings. The context-rich 

outputs 𝑍𝑓𝑡, 𝑍𝑠𝑡 , 𝑍𝑐𝑟 are now the inputs to the self-attention layer in the EchoViT model. 

 

 

 

The patching schemes are visually illustrated in Figure 5-2 below.  
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Figure 5-2: Illustration of the patching scheme (a) Echogram with annual layer annotation  

(b) Slow time patch (c) Fast time patch (d) Crop patch 

 

5-2-5-2 EchoViT training experimental setup 

The EchoViT model architecture is a multi-head/multi-output model with each patching scheme 

as an output head, but all trained together. An additional head that combined the final outputs of 

the three patchification schemes was added to take advantage of the combination of all the 

schemes. 

 

The model was trained with the SR_ML_Datasetv1 where each echogram image has a fixed 

dimension 𝑁𝑡 = 1664 and 𝑁𝑥 = 256. We set 𝑏𝑡  =  𝑏𝑥  =  4 for the cropped patch scheme. 
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Consequently, the dimensions of each fast time patch 𝑃𝑓𝑡   = 1664 × 1, slow time patch 𝑃𝑠𝑡   =

1 × 256, and cropped patch 𝑃𝑐𝑟   = 416 × 64.  

 

Table 17: Binary EchoViT training hyperparameters 

Training hyperparameter Value 

Batch size 8 

 Starting learning rate 3e-3 

Number of heads 12 

Number of Transformer layers 15 

Input image shape 1664 X 256 

Embedding dimension 1664 

MLP dense units [512, 256]  

MLP activation function GeLU 

Convolution head activation function Softmax 

 

Number of prediction classes 2 

Training epochs 200 

Learning rate schedule Reduce LR by a factor of 0.25 on 

plateau after 10 epochs 

 

The training hyperparameters are listed in Table 17. The training was performed on a Core i9 

machine with an RTX A5000 GPU. 
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5-2-5-3 Qualitative output

Figure 5-3: EchoViT outputs (a) Echogram image (b) Fast Time patch activation (c) Slow 

time patch activation (d) Cropped patch activation

5-2-5-4 EchoViT binary output evaluation

Like the outputs of the convolution-based models in Section 4-5-1, the immediate output of the 

binary EchoViT architectures are also probability heat maps derived from applying the sigmoid 

activation function to the logits output of the models. Visually inspecting the probability heat 

maps in Figure 5-3 reveals that the models (except the cropped patch scheme) correctly 
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distinguish between snow layer pixels and non-layer pixels. As before, the domain of the values 

in the heat maps is from 0 to 1 requiring a threshold to binarize the output.   

 

Figure 5-3 shows the output of the models on an echogram image from the L1 test set. As seen 

from the performance of the convolution-based models, these echograms are relatively easy to 

track. Similarly, for the row and column patching schemes, the EchoViT models correctly 

identified the layer pixels. However, the cropped patching scheme output shows inferior 

performance for the same training hyperparameters that other schemes had. This shows that this 

patching scheme is suboptimal and confirms the hypothesis that arbitrary cropping of the 

echograms to form patches distorts the naturally occurring sequence formed both in the rows and 

columns of the echograms. To achieve good tracking performance in the along-track axis, it is 

best to design architectures that take advantage of this. Hence, the cropped patch scheme is 

excluded in the model evaluations because the output gets poorer for more challenging 

echograms. 

 

Next, we evaluate the classification performance of the models to correctly distinguish “layer” 

and “no-layer” pixels in the echogram. The EchoViTs demonstrate good performance which is 

indicated by the significant separation between the foreground and the background classes as 

shown in the histogram plot in Figure 5-4. Due to the superior ability of the EchoViTs to 

correctly classify the layer pixels, the average of the ODS and OIS threshold values was used to 

binarize the outputs.  
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Figure 5-4: Histogram of Fast time patch output showing concentration of background pixels 

in first three bins. Inset is the zoomed image showing the first few bins. 

 

Table 18 shows the ODS and OIS F1 scores for the different EchoViT architectures. The 

performance shows signs of improvement over convolution-based models.  

 

Table 18: Optimal Dataset Scale and Optimal Image Scale F1 scores for EchoViTs 

 Slow time 

patch 

Fast time 

patch 

Combined 

ODS 0.978 0.985 0.969 

OIS 0.979 0.983 0.969 

 

Next, the recall, precision, F1 score and SSIM for the combined L1 and L2 test sets is computed 

and reported in the table below. 
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Table 19: Weighted average metrics for the EchoViT models 

Model Recall Precision Accuracy SSIM F1 

Slow time 

Patch 

0.9778 0.9781 0.9778 0.9585 0.9779 

Fast time 

Patch 

0.9780 0.9781 0.9780 0.9588 0.9780 

Combined 0.9779 0.9779 0.9779 0.9576 0.9780 

 

 

Similarly, the performance of the models on each binary class is examined. As reported in Table 

20, the performance of all three versions of the EchoViT performs better on both binary classes, 

particularly the minority layer (1) class.  

 

Table 20: Recall, precision and F1 score for each of the binary class. 

 Recall Precision F1 

 Class 0 Class 1 Unweighted 

average 

Class 0 Class 1 Unweighted 

average 

Class 0 Class 1 Unweighted 

average 

Slow time 

patch 

0.9886 0.1195 0.5540 0.9889 0.1168 0.5528 0.9887 0.1181 0.5534 

Fast time 

patch 

0.9887 0.1199 0.5543 0.9889 0.1182 0.5536 0.9888 0.1191 0.5540 

Combined 0.9887 0.1158 0.5523 0.9888 0.1150 0.5519 0.9888 0.1154 0.5521 
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As was the case with the convolutional-based models, these metrics tell us how well the 

prediction pixels coincide with the ground truth annotation, however, the thickness of the snow 

layers is more than one pixel thick which introduces an extra ambiguity in the model evaluation.  

 

The N-pixel accuracies for 𝑁 = {2,5,10}, MAE, and missed pixels for the models provide a 

better metric and are listed in the tables below for the two patchification methods. 

 

5-2-6 EchoViT tracking evaluation 

Table 21: N-pixel accuracies and Mean Absolute error of each model 

 2px 5px 10px MAE 

DeepLab 0.1679 0.6523 0.9237 5.0119 

FCN 0.2946 0.8015 0.9638 3.8132 

Slow time patch 0.3239 0.7989 0.9605 3.7649 

Fast time patch 0.3262 0.7998 0.9612 3.7286 

Combined 0.3150 0.8051 0.9600 3.7604 

 

 

The result in Table 21 for DeepLab, FCN and the three transformer-based models shows that the 

transformer architecture takes advantage of the sequential and local spatial information between 

adjacent rangelines to improve not just the classification performance of the model but its along 

track tracking performance. Compared to the convolution-based models, with FCN having the 

best performance with MAE = 3.8132, transformer-based models show good consistent tracking 

performance and a noticeable drop in their mean absolute error compared to the convolution-

based models. This is further evidenced in the close to zero intra-layer pixels missed as reported 
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in Table 22. The intra-layer pixels are important to ensure that there is no gap in the layer’s 

activation map which is crucial for the 1D layer contour extraction in post-processing especially 

for wet snow zone echograms. These values are for the combined L1 and L2 echograms 

excluding the L3 set. 

 

Table 22: Consecutive layer pixel prediction evaluation 

 Whole layer pixels Intra-layer pixels Combined Percentage 

DeepLab 1.52% 6.81% 8.32% 

FCN 2.05% 2.97% 5.02% 

Slow time patch 1.43% 0.25% 1.68% 

Fast time patch 1.33% 0.22% 1.55% 

Combined 2.27% 0.23% 2.50% 

 

5-2-6-1 EchoViT tracking performance based on echogram image quality 

Table 23: Mean absolute error (MAE) for L1, L2 and L3 

 L1 L2 L3 

DeepLab 3.956 5.118 41.661 

FCN 3.982 3.742 47.084 

SlowTime Patch 3.880 3.748 38.042 

FastTime Patch 3.858 3.709 36.935 

Combined 3.499 3.799 36.837 
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Table 24: N_pixel accuracies for each echogram image quality segment 

 L1 L2 L3 

 2px 5px 10px 2px 5px 10px 2px 5px 10px 

SlowTime Patch 0.155 0.769 0.988 0.358 0.803 0.956 0.007 0.077 0.358 

FastTime Patch 0.176 0.777 0.990 0.361 0.803 0.957 0.007 0.112 0.381 

Combined 0.168 0.828 0.991 0.337 0.801 0.955 0.006 0.094 0.345 

 

We continue the evaluation of the models in terms of the echogram image quality. The mean 

absolute error for L1, L2 and L3 is computed individually in Table 23. The three models show 

improved performance particularly on L2 and L3 echogram images with the fast time patch 

architecture achieving the best performance compared to the convolutional-based architectures 

and other transformer models. The N-pixel accuracy also shows significant improvement in all 

the image quality segments including the very poor quality L3 images. Particularly, the 10-pixels 

accuracies for both L1 and L2 images are above 95% showing that the model is doing well not 

just on the binary classification task but also on the along-track tracking task.  

 

In Table 25 below, the intra-layer pixels missed in the L1 and L2 segments are enumerated 

separately. The L2 missed layer pixels dominates the overall combined percentage missed pixels. 

This again corroborates the impact of image quality on deep learning models. However, 

compared to the convolutional-based models, the transformer models achieved less than 0.1% 

intra-layer pixel missed as compared with the FCN (the best convolution-based model) with 

2.97% intra-layer pixel missed. This is very significant particularly for echograms with curved 

layer orientation and poor image quality such as those in the wet snow zone. As discussed in 

Section 4-6-3-1, missed pixels in the curved regions of snow layer prediction make it difficult 
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and sometimes impossible to automatically track such layers in the model output. The 

transformer self-attention mechanism takes advantage of the inherent sequential information in 

rangelines and range bins to improve the along track tracking thereby reducing the frequency of 

missed intra-layer pixels. 

 

Table 25: Consecutive layer pixel prediction evaluation 

 Whole layer pixels Intra-layer pixels Combined 
Percentage 

 L1 L2 L1 + L2 L1 L2 L1 + L2  

DeepLab 11 
0.35% 

 

248 
1.17% 

259 
1.52% 

15,215 
1.89% 

265,010 
4.93% 

280,225 
6.81% 

 
8.32% 

FCN 16 
0.51% 

 

328 
1.54% 

1.46 
2.05% 

3,883 
0.48% 

133,847 
2.49% 

137,730 
2.97% 

 
5.02% 

Slow time 

patch 

10 
0.32% 

  

236 
1.11% 

246 
1.43% 

1645 
0.20% 

2424 
0.05% 

4,069 
0.25% 

  
1.68% 

Fast time 

patch 

10 
0.32% 

  

215 
1.01% 

225 
1.33% 

1447 
0.18% 

  

2379 
0.04% 

3,826 
0.22% 

  
1.55% 

Combined 19 
0.44% 

  

388 
1.83% 

407 
2.27% 

1447 
0.18% 

2557 
0.05% 

4,004 
0.23% 

  
2.50% 

 

5-2-7 Generalization evaluation 

Similar to earlier developed models, the EchoViT models are tested on a wide range of unlabeled 

data both from the same campaign year, 2012, and other years with similar radar hardware. As 

shown in the quantitative metrics, the vision transformer-based models achieve both better 

classification results as well as along-track tracking performance. For echograms from the dry 

snow zone, EchoViTs have excellent tracking performance (see Figure 5-5 below) and even on 

echograms with noticeable along-track fading as in Figure 5-6. 
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Figure 5-5: Echogram image from dry snow zone overlaid with EchoViT outputs (b) FastTime 

patch layers (c) SlowTime patch layers (d) Combined layers  
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Figure 5-6: Echogram image with some along track fading overlaid with EchoViT outputs (b) 

FastTime patch layers (c) SlowTime patch layers (d) Combined model  

 

 

The figures below (Figure 5-7 through  Figure 5-10) show qualitative examples of cases where 

the convolutional-based echograms had a hard time tracking the layers but the transformer-based 

model successfully tracked the layers. 
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Figure 5-7: (a) Echogram image overlaid with (b) U-Net layers (c) AttentionU-Net layers (d) 

DeepLab layers (e) FCN layer (f) Ensemble layer 

 

 

 

Figure 5-8: Echogram image overlaid with EchoViT outputs (b) FastTime patch layers (c) 

SlowTime patch layers (d) Combined layers  

 



172 

 

Figure 5-9: Another echogram image overlaid with convolution-based model outputs (b) U-Net 

layers (c) AttentionU-Net layers (d) DeepLab layers (e) FCN layers (f) Ensemble layers  

 

 

 

Figure 5-10: The same echogram image overlaid with EchoViT outputs (b) FastTime patch 

layers (c) SlowTime patch layers (d) Combined layers 
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5-2-8 Limitations of transformer-based models 

While transformer-based models have demonstrated improved tracking performance, certain 

architectural subtleties introduce limitations that vary in significance depending on the specific 

application and required tracking precision. In some cases, these limitations may be negligible 

and can be overlooked; however, in others, they may necessitate exploring alternative 

architectures. 

 

A key limitation of transformer-based architectures, particularly in the context of echogram layer 

tracking, is the requirement for a fixed input size, which stems from the predefined patch size 

necessary at model initialization. Transformers architecture design currently requires that the 

number of input tokens and the patching scheme be defined in advance, resulting in a need for 

consistent input dimensions. This means that the echograms fed into the model must have the 

same number of rangelines and range bins—an often-unrealistic scenario. In optical images, 

where transformers excel and achieve state-of-the-art performance, each pixel typically lacks a 

direct physical interpretation, allowing for arbitrary resizing or cropping without distorting the 

image's meaning.  

 

While it is possible to carefully reshape the echogram images to fit the defined input shape of the 

transformer model by appropriately upsampling and downsampling as needed, the data 

interpolation is not entirely perfect since the frequency content of the image is not perfectly 

bandlimited leading to a loss in the high frequency content of the echogram image and 

introduction of subtle artifact because of the interpolation. A mild consequence of this is lower 

along-track resolution of the tracked echogram layers when the interpolation leads to loss of 

details and blurred edges in the input echogram image. Another implication of reshaping the 

image size to a fixed dimension is that the slopes of layers change and would no longer be 
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representative of the true snow accumulation layer slopes. Unless this is accounted for by 

training with echograms having the same ranges of distortions, this would result in layer 

orientations that were not encountered by the model during training. Consequently, the model's 

performance on such accumulation layer slopes during inference will likely be lower. 
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Chapter 6: METHODOLOGY (4) 

6-1 Optimizing convolutional-based model for performance consistency 

The improvements made by the transformer-based models indicate that further enhancements 

can be made to the convolutional-based model to achieve better performance. The transformer-

based architecture, being an auto-regressive model, exploits the inherent spatiotemporal structure 

in the echogram images to outperform our previous convolutional networks. However, 

convolutional-based architectures are desirable for the echogram layer tracking problem because 

of their lack of restriction on the echogram input shape meaning that they can take any shape of 

input echogram and are not constrained by what the model was trained with during inference. 

This eliminates the need for resizing, which could otherwise degrade along-track resolution. 

Such flexibility, without performance loss, is critical, especially since many echogram images 

outside the training set differ significantly in size from the fixed dimensions used during model 

training. 

 

Typically, echograms in a deep learning training set are best set to be of the same shape to 

facilitate the mini batch grouping for parameter optimization during training. When this is done, 

some architectures such as the transformer-based models, require that the test images are first 

resized to match the training set dimensions during inference. After obtaining the prediction, the 

results are subsequently reshaped back to the original dimensions of the input image. This is 

often not a challenge in many image domain problems but as earlier described, the pixel 

resolution of echogram images has a direct relationship with the physical phenomenon being 

measured. Downsampling and upsampling of the echogram images results in the loss of fine 

details of the accumulation layers particularly in the along-track axis. As such, convolutional-

based models are particularly attractive because they perform well on echogram images outside 
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the training set as well as future echograms that will be created from upcoming scientific 

missions. 

 

Consequently, a new convolutional-based model is designed to improve on the weaknesses of 

earlier models. Particularly, earlier convolutional-based models, despite their good performance 

on dry snow zone echograms with good image quality, were noticed to suffer significant 

performance dip on echograms with poorer image quality and less obvious delineation of the 

snow layers. The model’s tracking performance deteriorates significantly when these two 

conditions coexist:  

1. Weaker backscatter from the snow layer relative to the background clutter due to the presence 

of meltwater in the mapped region, and,  

2. Curving accumulation layer coincides with signal power fading in the echogram rangelines. 

 

The coincidence of these two effects causes gaps in the thinned layer predictions which are 

difficult to merge and combine to form the desired output layer 1D contours. To tackle this 

problem, a multi-pronged approach is adopted to improve multiple sections of the entire 

echogram layer tracking pipeline starting from the pre-training image processing to the training 

architecture, and the layer contour post-processing extraction. Notably, a new convolutional-

based architecture that builds on the strength of earlier models but enforces autoregressive 

cohesion between adjacent layer pixels using a composite loss function is designed. Also, a 

larger dataset with improved echogram diversity is created and used to train the model. 
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6-2 Training pipeline modifications 

6-2-1 Echogram image pre-processing  

The performance of all the earlier trained models proves that the performance is hinged, not 

surprisingly, on the input echogram image quality. Hence, efforts were made to improve the 

training set echogram image quality as much as possible but to also increase the diversity in the 

training set to include more lower quality images to learn with. Of the several image pre-

processing steps listed in Section 4-1, echogram filtering, averaging and detrending were noticed 

to considerably affect the tracking performance of the models. 

 

6-2-1-1 Detrending  

Rangeline power detrending was also noticed to have a significant effect on the model tracking 

performance. As explained earlier, deeper layers often have less SNR compared to shallower 

layers, and the lower SNR makes it difficult to distinguish the layer peaks from noise at these 

depths. As a result, some models failed to correctly classify and track such layers. In the new 

training scheme, rangeline detrending is used to make it so peak pixel intensities are more 

comparable regardless of the depth of the layer. To increase the training set diversity, a few 

training echograms were left undetrended to give the model the opportunity to learn from these 

kind of echogram images too. Specifically, copies of detrended and undetrended echogram 

images of the 18th and 28th April 2012 (segment 01) flightlines were added to the new training 

set. Both segments include a total of 860 undetrended images added to the training set which 

includes echogram data of along-track lengths of 2 km and 5 km.  
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6-2-1-2 Fast time filtering 

The length of the fast-time filter is critical in handling noise in the rangeline data. A short filter 

does not fully eliminate low-amplitude noisy peaks, while longer filters (21 pixels or more) may 

blur weak layers along with removing noise. The ideal filter length varies across echograms and 

requires further experimentation for optimal performance. In the new training set, the filter 

length was randomly varied between 3, 5 and 7 pixels for the echograms in the training set. This 

further contributes to the diversity in the training set. 

 

6-2-1-3 Deep learning-based image filtering and denoising 

As established from earlier models and experiments, a deep learning model performs better when 

the input echogram image has good image quality with crisp delineation between the noise 

background and the layer pixels. However, despite the application of traditional signal 

processing methods such as detrending, coherent and incoherent averaging, etc., the image 

quality is still limited for some echograms. Worse still, the incorrect application of some 

processing due to wrong hyperparameter choices, such as fast time filter length, can remove vital 

information from the data which will negatively affect the model tracking performance. This 

proves that adaptive hyperparameters are needed to best condition the echogram for optimal deep 

learning processing.  

 

To address this challenge, deep learning-based denoisers and filters are explored to learn and 

adaptively remove noise from the echogram image. This is critical for echogram image filtering 

and denoising where the noise characteristics are dynamic, making it difficult to choose a fitting 

filter type or tune an optimal filter length. 
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There exists a number of classical and deep learning-based filters in the literature [90], [91], [92], 

[93] which have been reported to surpass traditional signal processing approaches. In this work, 

we adopt the deep plug-and-play image restoration (DPIR) [94] learning-based image denoising 

algorithm. 

 

The algorithm combines model based and learning-based paradigms, consolidating the strength 

of both approaches to train a variable splitting (half-quadratic splitting) CNN-based denoiser that 

employs both U-Net and ResNet in its denoiser architecture. Concretely, the grayscale image 

deep CNN denoiser termed (DRU-Net) has a U-Net backbone that consists of four image scales 

that each have skip connections between the downscaled and transposed convolved image pair. 

Starting with the initial convolutional layer with N = 64 channels, the number of channels is 

doubled for each successive scale with the last layer having N = 256 channels. The convolution 

layers’ weights discard the bias weight term, and each residual block only contains one ReLU 

activation function – an architecture choice that has been noticed to improve deep denoiser 

super-resolution. 

 

As shown in the network diagram in Figure 5-9, the model has 4 stages of 2x2 decimation in the 

encoder path and corresponding stages in the decoder path. The Residual Block is made up of 4 

consecutive convolutions with similar number of features and a skip connection addition 

between the initial input and the residual block output. This is done to increase the representation 

power of the network. This is then followed by sequential standard convolution blocks (SConv) 

in the encoder and transposed convolution blocks (TConv) in the decoder with intermediate 

downsampling. 
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Although the denoiser is not applied on the training echograms, it is included in the inference 

pipeline to handle the different noise levels that may exist in the test echogram, particularly other 

echograms outside the dataset. It adaptively removes Gaussian and non-Gaussian noise in the 

image. The output of the denoiser, with improved PSNR, is then passed to the model to predict 

the layers. 

 

Figure 6-1: Block diagram showing overview of the DPIR denoiser architecture 

 

6-2-1-4 Vesselness filter 

Vesselness filters [95], [96], [97] are designed to enhance tubular structures in images that 

traditional filters have limited performance on due to the curved orientation of the feature of 

interest in the image. Originally designed for medical images of blood vessels, airways and other 

tubular anatomical structures that require specialized filters, echogram images with arcuate snow 

layers share similar feature orientations. Owing to the curved and river-like nature of the feature 

of interest in the image, the application of classical boxcar filters that operate on adjacent pixels 

has limited performance and can sometimes be detrimental especially in the case of a weak snow 

layer transversing only a few pixels out of the overlaid filter length.  

 

These filters utilize the Hessian matrix which contains second-order partial derivatives of the 

image intensity to analyze the local shape and structure of the image features. As such, they can 
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identify pixels that contribute to elongated features like snow layers in the echogram image while 

ignoring other non-vessel features that correspond to noise.  

The Hessian matrix 𝑯 at a point (𝑥, 𝑦) in a 2D image is defined as 

𝐻 = [
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑥𝑦 𝐼𝑦𝑦

] 

where 𝐼𝑥𝑥, 𝐼𝑥𝑦, 𝐼𝑦𝑦 are the second-order partial derivatives of the image intensity I. The 

eigenvalues 𝜆1 and 𝜆2 of the Hessian matrix provide insight into the local curvature of the image 

intensity surface. These eigenvalues are critical for identifying tubular structures, with different 

magnitudes indicating structural characteristics and their orientation. This is important since 

snow layer structures typically go from left-to-right (horizontally orientated) while noise features 

such as image and processing artifacts, rangeline fading, often result in vertically oriented 

features. 

 

In this work, we adopt the Meijering vessel filter [98] designed to enhance curvilinear structures 

while being robust to noise and variations in the vessel diameter or intensity discontinuities along 

the travel path. The filter enhances neurite-like features even in low contrast neighborhoods such 

as is the case with diffused layer backscatter in wet snow zone echograms. It achieves this using 

multi-scale analysis where the image is analyzed at multiple scales by convolving with a 

Gaussian derivative of different standard deviations. This creates a scale-space representation 

that helps in capturing structures of different pixel widths. The standard deviation σ of the 

Gaussian kernel is varied across the multiple scales provided which allows the filter to identify 

consistent tubular features across the scale-space created. 

 

As with the DRU-Net denoiser, the Meijering filter is used only in the inference pipeline. The 

aim is to train the segmentation models with a variety of poor and good echogram images to 
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improve their robustness but perform inference on cleaned images. The Meijer filter also has the 

drawback of introducing vertical ridge-like artifacts, but the sequential application of the above-

mentioned processing steps combined with the segmentation model can get rid of these. 

 

Figure 6-2: (a) Echogram with curvilinear layers (b) mild boxcar filtered echogram (N = 5) (c) 

aggressive boxcar filtered echogram (N=21) (d) Meijer filter output 

 

6-2-2 Increasing echogram image diversity in the training and test set 

To improve the performance of the new model, echograms with specific characteristics were 

added to the training set. The goal was to simultaneously improve the model’s performance both 

on wet snow zone echograms and dry snow echograms with very deep layers e.g. echograms 

with more than 50 snow layers. To achieve this, more echograms with few layers and undulating 

orientation were manually traced and added to the training set. Particularly since the first set of 

models had challenges predicting wet snow zone echograms partially due to the sparsity of these 

kinds of echograms, increasing the population of such echograms in the training set becomes 

imperative. Also, simulated echograms with few layers and varying layer curvature representing 

echograms from the wet snow zone were added to the training and testing datasets. 

 

Also, to improve the model performance on echograms with very deep layers such as those from 

the summit of Greenland which may have more than hundred (100) layers with the lower layers 
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being very faint, closely packed and difficult to distinguish, more of such echograms were 

manually tracked and added to the training set.  This updated training pipeline was deployed 

using the active learning paradigm to create the SR_ML_Dataset version 2 with 50,000 training, 

validation and testing set examples. 

 

6-2-3 Improved binary segmentation training label 

In the earlier training set, the output ground truth was generated with single-pixel thick layers. 

However, this makes training more difficult since the layers themselves are multiple pixels thick. 

Assigning a single pixel as the layer is a harder training objective and increases the susceptibility 

of the model output to having undesired gaps in the tracked layers since it is being trained to 

have just one pixel for each layer. Therefore, we relax the training criteria by including the 

neighboring 3 pixels above and below the candidate layer pixel so that the output ground truth is 

generated with 7-pixel thick layers.  Figure 6-3 below illustrates the difference between the 

previous binary ground truth and the new ground truth. By relaxing the layer thickness, the 

model learns to focus on the band of pixels around a layer, instead of just a single pixel, thereby 

reducing the possibility of a disconnected tracked layer even when some of the echogram 

rangelines suffer noticeable fading. It is important to note that although multiple pixels are 

assigned higher probability values relative to the no-layer pixels, a single pixel is eventually 

chosen as the layer pixel in post-processing. The selected pixel is the one with the maximum 

probability in the model’s output probability map and the one that makes an 8-pixel connection 

with its neighboring pixels. This is further explained and illustrated in the post-processing set up. 
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Figure 6-3: Examples of (left) zoomed echogram images with (middle) previous binary GT labels 

and (right) new multi-pixel binary GT labels 
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6-2-4 Custom hybrid model cost function 

To train the new architecture, a hybrid cost function is developed to improve on the strength of 

earlier models while also ensuring connectivity between adjacent pixels. The cost function (also 

known as objective function or loss function) measures how well a deep learning model’s 

prediction matches with the actual data. It quantifies the error between the predicted values and 

the true values. The selected optimizer takes the output of the cost function to minimize its value 

by adjusting the model’s weight parameters during training. It is an important part of training a 

deep learning model because it dictates how well a model is trained and its success on test and 

out-of-sample data. An incorrectly defined cost function could either lead to the model not 

training well, the model not learning expected features from the data or worse, the model 

overfitting the training data. 

 

6-2-4-1 Binary cross-entropy (BCE) loss 

Some of the earlier trained models were trained with the most common supervised deep learning 

classification cost function – binary cross-entropy defined as 

 

 
𝐿𝐵𝐶𝐸  =  

−1

𝑛
 ∑ [ 𝑦𝑖 𝑙𝑜𝑔(𝑦 𝑖)  +  (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦 

𝑖
)

𝑛

𝑖 = 1
] 

 

(15) 

where 𝑦𝑖 is the actual label (0 or 1) and 𝑦 
𝑖
 is the predicted probability of the instance being in 

class 1. 

The BCE cost function has the good attribute of producing a probabilistic interpretation of the 

model’s output when used with a sigmoid activation layer. Its reputation on binary tasks is 

earned because of its non-negative loss and convexity which makes it well behaved for gradient 
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optimization. However, it might be too simplistic particularly for highly imbalanced classes like 

the binary segmentation echogram layer tracking task.  

 

6-2-4-2 Binary focal cross entropy loss 

In some problems, particularly those with highly imbalanced classes, the binary cross entropy 

loss can reach a plateau where it becomes insensitive to further changes in the model’s 

parameters during training. This can make it difficult to continue optimizing the model 

parameters to improve performance on the minority class. The binary focal cross entropy loss 

[99] is designed to address the issue of class imbalance.  

 

It introduces a modulating factor to the BCE loss giving less weight to the well-classified 

examples and focusing on the hard-to-classify ones.  

 

 
𝐿𝐹𝐿  =  

−1

𝑛
 ∑ 𝛼𝑡(1 − 𝑝𝑡,𝑖)

𝛾
 𝑙𝑜𝑔(𝑝𝑡,𝑖)

𝑛

𝑖 = 1
 

 

(16) 

where 𝑝𝑡 is the predicted probability for the true class, 𝛼𝑡 is the balancing factor parameter that 

helps balance the importance of positive vs negative examples. 𝛾 is the focusing parameter that 

adjusts the rate at which easy examples are down weighted. When 𝛾 =  0, focal loss is 

equivalent to BCE loss but as 𝛾 increases, the focusing effect is intensified, putting more 

emphasis on the hard examples. 

However, the introduction of new hyperparameters in focal loss introduces a new challenge too. 

Hyperparameter tuning of the focusing parameter 𝛾 which differs from one dataset to another 

adds a layer of complexity since its value dictates the effectiveness of the focal loss. Although 

further experimentation is needed, the values 𝛾 =  2 and 𝛼 =  0.25 were used for training. 
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6-2-4-3 Intersection over union (IoU) loss 

While BCE focuses on pixel-wise accuracy and focal loss on class imbalance, there is still the 

need to ensure patch-level segmentation quality to avoid potential gaps in the snow layer output 

segmentation map. To achieve this, the IoU loss, also known as Jaccard index loss, is added to 

the custom composite loss function. 

 

The IoU loss is popular in segmentation tasks for evaluating the overlap between the predicted 

segmentation mask and the actual segmentation label. Hence, it is useful for evaluating the 

accuracy of the model’s predicted masks and how well the model’s predicted snow layer 

boundaries align.  

 

The IOU loss is derived from the IoU metric with the IoU metric defined as the ratio of the 

intersection of the prediction and ground truth to their union  

 
𝐼𝑜𝑈 metric =  

|𝐴 ∩  B|

|𝐴 ∪  B|
 

(17) 

The IoU loss is computed as 𝑐 =  1 −  𝐼𝑜𝑈 𝑚𝑒𝑡𝑟𝑖𝑐 to approximate a convex, optimizable loss 

function. A small smoothing factor is sometimes added to prevent instability when the 

intersection or union is zero and to ensure that the loss is differentiable.  

 

Unlike BCE and focal loss that operate solely on pixel-per-pixel basis, the IoU loss emphasizes 

the overall shape and boundary accuracy of the model’s segmentation map which is crucial for 

predicting the curved boundaries of snow layers in echogram images. 
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6-2-4-4 Structural Similarity Index Measure (SSIM) loss 

Structural Similarity Index Measure (SSIM) is a perceptual metric used to measure the similarity 

between two images. Unlike traditional loss functions like BCE, focal loss and IoU loss which 

focus on pixel-level accuracy and overlap, SSIM performs image-level evaluation by estimating 

the perceptual quality and structural information of the echogram images. It considers subtleties 

like luminance, contrast, and other structural differences. 

 

The SSIM between two images 𝑥 and y is computed as 

 
𝑆𝑆𝐼𝑀(𝑥, 𝑦)  =  

(2µ𝑥µ𝑦  + 𝐶1) (2𝜎𝑥𝑦  + 𝐶2)

(µ𝑥2  + µ𝑦2  +  𝐶1) ( 𝜎𝑥2 + 𝜎𝑦2  + 𝐶2)
 

(18) 

where: 

• µ𝑥 and µ𝑦 are the mean intensities of x and y; 

• 𝜎𝑥
2 and 𝜎𝑦2 are the variances of x and y and 𝜎𝑥𝑦 is the covariance of x and y; 

• 𝐶1 and 𝐶2 are small constants to stabilize the division with a weak denominator. 

 

Like the IoU loss, SSIM loss is computed by estimating 1 −  𝑆𝑆𝐼𝑀 to ensure that maximizing the 

SSIM is equivalent to minimizing the SSIM loss. Including SSIM loss in the composite cost 

function forces the model to consider local patterns of intensities that have strong 

interdependencies such as the layer edges and boundaries which may be missed by BCE, Focal 

loss or IoU loss. SSIM is also more robust to changes in illumination and contrast in pixel values 

which is what happens in rangeline fading scenarios.  
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6-2-4-5 Custom 8-pixel connectivity loss 

As earlier discussed, a major challenge noticed in previous model outputs was the gaps and 

disjoints that occurred in the tracking of a snow layer when the echogram rangelines suffer 

severe fading. To specifically address this, the custom 8-pixel connectivity loss is included in the 

composite loss function. The connectivity loss function encourages the predicted segmentation 

mask to have smooth and connected regions by penalizing discrepancies between a pixel and its 

neighbor in all 8 possible directions. This ensures that neighboring pixels in the mask are 

consistent with each other since structural continuity of the prediction regions is critical for 

tracking the snow layers in the echograms. 

 

Given the model output segmentation map 𝑦̂, where each element 𝑦 (𝑖, 𝑗) represents the 

predicted value (probability or confidence score) at pixel location (𝑖, 𝑗), the 8-pixel connectivity 

loss 𝐿𝑐𝑜𝑛𝑛 is defined as the sum of the absolute differences between the predicted value 𝑦̂ (𝑖, 𝑗) 

and its neighboring pixels in all 8 directions: 

 
𝐿𝑐𝑜𝑛𝑛(𝑦̂ (𝑖, 𝑗))   =  

1

𝑁
 ∑ |𝑦̂ (𝒊, 𝒋)  −   𝑦(𝒊 + 𝑑𝑥 , 𝒋 +  𝑑𝑦)|

(𝑑𝑥,𝑑𝑦) ∈ shifts
 (19) 

where shifts =  { (−1,−1), (−1,0), (−1,1), (0, −1), (0,1), (1, −1), (1,0), (1,1) } represents the 

8 neighboring pixels around each pixel (𝑖, 𝑗). N = 8 is the total number of neighboring pixels. 

 In summary, the composite loss function used to train the model is defined below: 

 𝐿𝑐𝑜𝑚𝑝 =  𝐿𝐵𝐶𝐸  +  𝐿𝐹𝐿  +  𝐿𝐼𝑜𝑈  +  𝐿𝑆𝑆𝐼𝑀  +  𝐿𝑐𝑜𝑛𝑛 

 

(20) 
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The composite loss which combines Binary Cross-Entropy (BCE) Loss, Focal Loss, Intersection 

over Union (IoU) Loss, Structural Similarity Index Measure (SSIM) Loss, and Connectivity Loss 

leverages their individual strengths to collectively enhance segmentation model performance.  

 

Binary Cross-Entropy (BCE) Loss is pivotal for precise pixel-wise classification, ensuring each 

pixel in the segmentation mask is correctly classified based on predicted probabilities. Focal 

Loss supplements this by addressing class imbalance, concentrating more on challenging classes 

to achieve balanced predictions. Intersection over Union (IoU) Loss measures overlap between 

predicted and ground truth masks, crucial for accurate boundary delineation. It emphasizes the 

quality of segmentation outputs, ensuring predicted regions align well with ground truth masks. 

 

Structural Similarity Index Measure (SSIM) Loss evaluates perceptual quality by considering 

local patterns, luminance, and contrast in images. It enhances visual similarity and structural 

consistency in segmentation outputs, aligning closely with human perception while the 

Connectivity Loss enforces 8-pixel connectivity, promoting smooth transitions and consistency 

between neighboring pixels. This maintains structural integrity in segmentation masks, reducing 

artifacts and discontinuities. 

 

Collectively, these loss functions provide a comprehensive evaluation of segmentation quality. 

They address pixel-level accuracy, class balance, overlap accuracy, perceptual quality, and 

structural consistency. This holistic approach enhances the model’s robustness, improves 

generalization across diverse datasets, and ultimately enhances the segmentation performance of 

the new convolutional model on the challenging echogram layer tracking problem. 
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6-2-5 The EchoRefine Model 

A new convolutional-based architecture was designed to build on the success of the fully 

convolutional network (FCN) that achieved better performance compared to the other models 

tested. The FCN, although sharing a very similar architecture with U-Net and AttentionU-Net, 

achieved better tracking performance. This is likely due to the gradual upscaling in the decoder 

but significantly the absence of any connection between the encoder-decoder counterpart layers. 

The echogram layer tracking problem is an edge/contour detection problem which should be 

learned in the earlier layers of a deep neural network. Although more experimentation is needed 

to confirm the hypothesis, it is possible that the plain and unassuming architecture of the FCN 

forces it to truly understand the underlying layering process which leads to its better 

performance. 

 

Since the challenge of the earlier developed convolutional models was their inability to 

consistently track the layers especially along the contour edges and layer boundary in the arcuate 

layer regions with faded rangeline power, we developed the EchoRefine model which introduces 

an extra refine module that takes the front “FCN-like” model output as its input combined with 

supplementary information of neighboring rangelines to further refine the layer edges and 

correctly delineate the layer boundaries. It must be noted, however, that the model is trained end-

to-end. 

 

The EchoRefine model has a simple yet effective architecture with 2 stages – first is a shortened 

FCN-like network at the front and an additional refinement network to gradually refine the 

coarse output of the initial network to create fine and continuous boundary predictions. The 

EchoRefine takes inspiration from the Deep Coarse-to-Fine family of models that takes the 

probability maps of the earlier model but builds an auxiliary detached model to improve the 
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earlier prediction. Unlike many of these models with detached component models, the 

EchoRefine is a consolidated model that exists as a single unit. Examples of such models include 

RefineNet [100] that uses long-range residual connections to preserve information during the 

downsampling path, SRM [101] that uses cascaded stages of intermediate segmentation maps 

that are refined to produce high resolution outputs. Other coarse-to-fine models include C2S 

[102], DHSNet [103] and DGRL [104]. 

 

Concretely, the EchoRefine model has an FCN-like encoder-decoder front-model which contains 

3 stages of sandwiched convolution, batch normalization, ReLU activation function with dropout 

and a 2x2 max pool layer. These convolutional layers share a similar architecture with the first 3 

stages of the notable ResNet-34 [105] which facilitates feature extraction from the ResNet 34 

model pretrained on ImageNet images [106]. The 3 encoder stages are followed by matching-in-

size Conv2DTranspose upsampling units in the decoder to restore the feature map to the original 

input shape. 

 

 

Like the residual refinement module in [107], the EchoRefine’s refinement network uses an 

encoder-decoder architecture which has a single convolution layer in each of the 4-stage encoder 

layers with 64 filters each. An intermediate bridge stage is inserted prior to the decoder stages 

which uses small 3 x 3 receptive field filters to focus the refined segmentation map. The 

refinement network decoder performs non-overlapping progressive upsampling in equivalent 4-

stages before inserting a prediction head to create the final output of the EchoRefine model. 
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Figure 6-4: EchoRefine Model architecture diagram

6-2-6 The 1-D layer contour extraction routine

Before going on to discuss the EchoRefine tracking performance, we first discuss the steps

followed to convert the segmentation model output to individual 1-D layer contours for each 

identified snow layer. The 1-D layer contour extraction can be summarized into the following 

sequential steps:

(a) Pixel thresholding

(b) Individual layer patch identification

(c) Thinned layer range bin value extraction
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First, the binary segmentation model produces a probability map with values between 0 and 1 

because of the sigmoid activation output on the final layer (See Figure 6-5). Typically, the values 

of the non-layer pixels are low and close to zero while the layer pixels are higher. However, the 

exact value of the layer pixels varies depending on the model architecture and training 

effectiveness. The separation between the layer pixels and the non-layer pixels probabilities is a 

measure of the model’s performance and ability to distinguish between both classes. When there 

is a clear separation (large value) between both classes, it is easy to find a threshold to classify 

each pixel into the correct class. This is often the case for most models when the echogram has 

good image quality like in Figure 6-5. However, this is not always true particularly for poorer 

quality echogram images with deeper snow layers in echograms that are closer to each other and 

sometimes have poor SNR. Also critical is the ability of the model to distinguish between artifact 

pixels (and ignore them) but still identify layer pixels that have low values due to echogram 

image artifacts or rangeline power fading in the echogram image. 

 

 



195

Figure 6-5: (a) Example good quality echogram image and (b) EchoRefine model output
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Figure 6-6: (a) Example poorer quality echogram image and (b) EchoRefine model output  

 

Figure 6-7: (a) Example poorer quality echogram image and (b) EchoRefine model output  
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6-2-6-1 Pixel thresholding 

To extract the 1-D contours of each identified snow layer from the segmentation output map, the 

first step is to set a threshold to distinguish between layer pixels and background (no-layer) 

pixels. Using the Optimal Dataset Scale and Optimal Image Scale, one can get a threshold 

estimate for the training dataset and individual image respectively, but this computation is 

expensive since it performs a grid search, and the returned value does not always give optimal 

performance. Alternatively, we employ a simple adaptive search for each test image. This is 

done by estimating an optimal value that separates both classes based on the distribution of 

detrended echogram pixels. For echogram images with distinct layers, obtaining a good threshold 

value is easy as shown in Figure 6-8 below. The first histogram bin typically corresponds to most 

of the background class so choosing the fourth histogram bin is often sufficient to discriminate 

both classes. However, finding an optimal threshold value for images with poorer quality 

requires extra care. The current implementation uses an affine combination of the 90th percentile 

and the Otsu threshold[108]. Concretely, all pixel values below the threshold are set to zero 

while those greater are set to one to give the binarized output as in Figure 6-8(d).  
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Figure 6-8: (a) Example echogram image with distinct snow layers (b) EchoViT FastTime-patch 

model output (c) Zoomed model output distribution with the threshold in red (d) binarized output 

 

6-2-6-2 Individual layer patch identification 

From Figure 6-8, the output of the thresholding stage is a binarized map of the model prediction. 

The region (patch) for each layer can be clearly identified although it is represented by a few 

pixels. Also, although each layer is visually identified, it needs to be thinned to a single pixel per 

rangeline and extracted as a 1-D contour. The output in Figure 6-8d is a binary map that only 

identifies layer pixels from non-layer pixels. To extract the 1-D layer contour, it is important to 

first identify all the pixels that contribute to each layer uniquely. This is done using mathematical 

morphological tools specifically using connected components analysis. The theoretical 

fundamentals are introduced in [109] and further developed in [110], [111]. 
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Connected components analysis (CCA) is a fundamental concept in image processing and 

computer vision that involves the identification of contiguous regions in a binary image. A 

connected component is a maximal set of foreground pixels such that there exists a path between 

any pair of pixels within the set. Formally, let 𝐺 =  (𝑉, 𝐸) be an undirected graph where each 

vertex 𝐯 ∈ 𝐕 corresponds to a pixel, and each edge 𝐞 ∈  𝐄 represent the adjacency between the 

pixels. A connected component G is a subgraph in which any two vertices are connected to each 

other by paths, and which is connected to no additional vertices in the supergraph. 

 

Building from the foundational work of Carlo and Luigi in [112], [113] to works in [114], 

[115],[116], several algorithms have been proposed for the efficient computation of connected 

components. Classical approaches include depth-first search (DFS) and breadth-first search 

(BFS) which traverse the image from top left to bottom right to label each component. More 

advanced methods such as Union-Find offer improved performance for larger images and 

datasets.  

 

Due to the chronological deposition age of each snow layer, each layer is distinct and ideally, all 

the pixels in the echogram image corresponding to each layer ought to be 8-pixel connected. 

Hence, components analysis was adopted given its relative simplicity to implement particularly 

for small to medium-sized echogram images. 
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Figure 6-9: (a) Example echogram image with distinct snow layers (b) EchoViT FastTime-patch 

model output (c) binarized output (d) Individual layer patch identified using CCA 

 

In Figure 6-9, the CCA outputs a 2D map in Figure 6-9d that is of similar dimension with the 

input echogram image. Also, all its 24 layers have been uniquely identified based on the 

segmentation map predicted by the EchoViT deep learning model in Figure 6-9b. All the pixels 

in the binarized map (Figure 6-9c) belonging to a specific layer has now been assigned the 

correct label of the layer in Figure 6-9d. Now, this output can then be iterated over, one layer at a 
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time, to retrieve the single pixel corresponding to the layer’s peak and its range bin values as a 1-

D layer contour. 

 

6-2-6-3 Thinned layer range bin 1-D layer contour extraction 

Given the output of CCA with each layer uniquely identified, the multi-pixel wide layer needs to 

be thinned into a single pixel corresponding to the snow layer peaks. This process is often termed 

“skeletonization” in the computer vision community. This is achieved using dynamic 

programming technique to track the peaks across all the rangelines for each layer.  

Concretely, a Greedy Search with a connectivity constraint is performed using both the identified 

layer in the CCA output and the probability map output from the deep learning model. Although 

the probability map from the deep learning model returns more than one pixel for each rangeline 

of each layer, the peak probability value along the rangelines of the layer often corresponds to 

the true index of the single pixel layer peak. The Greedy Search, therefore, goes through the 

rangelines for each layer to identify the layer peaks that best achieve 8-pixel connectivity 

between the layer peak pixels. As a result, the peak probability may occasionally be disregarded 

if it does not connect with the adjacent pixel, and instead, the nearest probability index is used.  

This step is repeated starting from the first identified layer by CCA to the last layer and the 

resulting output is a 2D matrix with each row being the 1-D range bin index which traces out the 

contour of each layer as shown in Figure 6-10e. 
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Figure 6-10: (a) Echogram image with distinct snow layers (b) FastTime-patch model output (c) 

binarized output (d) Individual layer patch identified using CCA (e) Extracted and plotted 1D 

layer contours 
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6-2-6-4 Addressing issues due to echogram imperfections before 1-D layer contour 

extraction 

 

The description of the thresholding and CCA as described in Figure 6-9 is straightforward for the 

ideal case where the snow layers are distinct and there is clear separation between consecutive 

layers. While this is true for most echograms, it is not always the case especially for poor quality 

echogram images. Consequently, additional processing is required to deal with the ensuing 

complications. 

 

Despite the simplicity of CCA, it suffers two potential drawbacks that can degrade the accuracy 

of the layer 1-D contour extraction. First, CCA requires strict 8-pixel connectivity between 

adjacent rangeline pixels in a layer without allowing as little as a single pixel gap. When there 

exists a gap of a pixel or more between the pixels that cluster to form a layer, CCA treats them as 

separate and distinct components by assigning different labels to them. As will be described, this 

can be difficult to resolve in some cases e.g. steeply curved contour edges. Secondly, if multiple 

layers are mistakenly merged due to imprecise threshold to separate them, CCA reports these 

layers as one. If the incorrectly merged layers are not separated, the layer contour extraction 

process will report them as a single 1-D contour. This often results in a confusing 1D layer 

contour that is a jumbled mixture of the range bins from two or more constituent layers. Both 

drawbacks significantly compromise the accuracy of layer tracking and completely hinder the 

ability to correctly estimate snow accumulation in the echogram because of the incorrect layer 

1D contours estimated. 

 

Finding the optimal threshold to separate the two classes into a binarized map is challenging in 

echograms with less distinct snow layer boundaries coupled with significant rangeline fading 



204 

effects. In many of these cases, it is impossible to find such a threshold without merging two or 

more neighboring layers as one. This leads to the challenge of optimizing for a threshold that 

satisfies the dual condition of ensuring strict connectivity between adjacent rangeline pixels of a 

layer while preventing two or more neighboring layers from merging as one.  

 

Figure 6-11: (a) Echogram image with fading effects towards the right edge (b) FCN model 

output (c) binarized output (d) magnified section of the binarized image to illustrate layer 

merging   

Typically, one or both conditions are violated in snow layer tracking in echograms with image 

artifacts and poor image quality. While trying to find the lowest permissible threshold to avoid 

layer gaps in a section of the echogram (usually the deeper layers), shallower layers with a lower 
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noise floor merge. While the use of adaptive thresholds (such as adaptive mean or adaptive 

Gaussian thresholds) for each echogram pixel alleviates the “layer merging” challenge, it is not 

totally eradicated.  

 

Separating the merged layers is achieved by computing the statistics of the connected 

components elements returned by CCA such as the number of columns and rows for each 

detected component. Merged layers have the characteristics of spanning more rows than the 

average of a single layer component but having gaps between consecutive rows for some of its 

rangelines. Once this condition is detected, a custom grid-based row-wise dynamic programming 

technique can be used to identify the joining pixels and separate the merged layers. 

 

To correct the layer gap issue for dry snow zone echograms with disjointed, but relatively 

horizontal layers, connected component elements can be done without many complications. 

Since the layers are flat, despite the gaps, the separated elements (that ideally should be seen as 

one element) are merged based on a heuristic rule. However, this is usually complicated for 

closely spaced disjointed curvy layers in echogram images where the disjointed pieces are 

known to be difficult to order in a 2D plane. This is why rangeline fading coinciding with arcuate 

layer curves are often difficult to deal with. Although more sophisticated methods such as greedy 

beam search exist to correct the layer gap issues, a preliminary application of this algorithm 

indicates that the challenge persists for some images. 

 



206 

 

Figure 6-12: (a) Example echogram image with severe fading effects towards the right edge (b) 

FCN model output (c) Binarized output (d) Zoomed binarized output 

As seen in the binarized echogram image above, both complications of layer gap and layer 

merging occurs for the deeper layers. While the layer merge issue can be resolved fairly quickly, 

automating the assignment of the disjointed layers as a single connected component requires 

further attention. This is because the length and orientation of the “broken” pieces of a layer 

varies widely across the dataset, a simple heuristic of correctly combining such disjointed parts 

remain elusive. 
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6-2-7 EchoRefine tracking evaluation 

6-2-7-1 Qualitative model performance 

Before the quantitative analysis of the EchoRefine model, we first illustrate the improvements 

achieved by the model over earlier models. 

 

  

Figure 6-13: Outputs of earlier models on a challenging echogram image 

 

Figure 6-14: EchoRefine model output  
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Figure 6-15: Outputs of earlier models on another challenging echogram image 

 

 

 

Figure 6-16: EchoRefine model output  
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6-2-7-2  Tracking Evaluation 

Table 26: N-pixel accuracies and mean absolute error of ViT models and EchoRefine 

 2px 5px 10px MAE 

SlowTime Patch 0.3239 0.7989 0.9605 3.7649 

FastTime Patch 0.3262 0.7998 0.9612 3.7286 

Combined 0.3150 0.8051 0.9600 3.7604 

EchoRefine 0.3612 0.8178 0.9947 3.5425 

 

Table 27: Consecutive layer pixel prediction evaluation of ViT models and EchoRefine 

Metric Slow time 

patch 

Fast time 

patch  

Combined EchoRefine 

Whole layer pixels 1.43 1.33 2.27 1.26 

Intra-layer pixels 0.25 0.22 0.23 0.15 

Combined  1.68 1.55 2.50 1.41 

 

6-2-7-3 EchoRefine tracking performance based on echogram image quality 

Table 28: Mean absolute error (MAE) for L1, L2 and L3 

 L1 L2 L3 

SlowTime Patch 3.880 3.748 38.042 

FastTime Patch 3.858 3.709 36.935 

Combined 3.499 3.799 36.837 

EchoRefine 3.539 3.546 38.433 

 

Table 29: Consecutive layer pixel prediction evaluation based on image quality segments 
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 Whole layer pixels Intra-layer pixels Combined 
Percentage 

 L1 L2 L1 + L2 L1 L2 L1 + L2  

DeepLab 11 
0.35% 

 

248 
1.17% 

259 
1.52% 

15,215 
1.89% 

265,010 
4.93% 

280,225 
6.81% 

 
8.32% 

FCN 16 
0.51% 

 

328 
1.54% 

1.46 
2.05% 

3,883 
0.48% 

133,847 
2.49% 

137,730 
2.97% 

 
5.02% 

Slow time 

patch 

10 
0.32% 

  

236 
1.11% 

246 
1.43% 

1645 
0.20% 

2424 
0.05% 

4,069 
0.25% 

  
1.68% 

Fast time 

patch 

10 
0.32% 

  

215 
1.01% 

225 
1.33% 

1447 
0.18% 

  

2379 
0.04% 

3,826 
0.22% 

  
1.55% 

Combined 19 
0.44% 

  

388 
1.83% 

407 
2.27% 

1447 
0.18% 

2557 
0.05% 

4,004 
0.23% 

  
2.50% 

EchoRefine 10 
0.32% 

201 
0.94% 

211 
1.26% 

1040 
0.12% 

1638 
0.03% 

2,678 
0.15% 

1.41% 

 

 

Table 30: N_pixel accuracies for each echogram image quality segment 

 L1 L2 L3 

 2px 5px 10px 2px 5px 10px 2px 5px 10px 

SlowTime Patch 0.155 0.769 0.988 0.358 0.803 0.956 0.007 0.077 0.358 

FastTime Patch 0.176 0.777 0.990 0.361 0.803 0.957 0.007 0.112 0.381 

Combined 0.168 0.828 0.991 0.337 0.801 0.955 0.006 0.094 0.345 

EchoRefine 0.192 0.808 0.996 0.370 0.778 0.957 0.010 0.088 0.341 
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Table 31: MAE based on along-track distance for each echogram image quality segment 

 L1 L2 L3 

 2km 5km 10km 2km 5km 2km 5km 

SlowTime Patch 3.851 3.918 3.959 3.766 3.702 39.491 36.024 

FastTime Patch 3.846 3.851 3.946 3.761 3.577 39.744 36.664 

Combined 3.426 3.579 3.740 3.817 3.757 40.571 31.542 

EchoRefine 3.635 3.382 3.343 3.549 3.538 40.084 34.570 

 

 

The results from Table 26 to  

 

 

 

 

Table 31 record the performance of the EchoRefine model compared to the vision transformer 

models. This shows that EchoRefine generally outperforms other models across most metrics, 

especially in terms of N-pixel accuracies. It achieves the lowest MAE across all echogram image 

quality segments, indicating superior performance. Although its performance is comparable to 

some ViT models on some tasks (e.g. the combined model is competitive on the 5px accuracy 

and has lower L1 MAE), the EchoRefine model generally performs better than the transformer 

models. 
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Also, EchoRefine shows superior performance with the lowest percentage of missed pixels 

across all categories. It also has relatively consistent performance across L1 and L2 but has a 

high MAE for L3. Both EchoRefine and Combined ViT models exhibit some inconsistencies in 

the L3 segment performance across the experiments which reflects the inconsistency in the L3 

echogram data. While the slow time patch and fast time patch models show consistent 

performance, they are generally outperformed by the EchoRefine model. 

6-2-8 Generalization evaluation 

The performance of the improved pipeline surpassed all previous implementations and was 

successfully used to track several previously unlabeled flightline with an estimate of over 10,000 

5 km echogram frames. The performance of the model is consistent over dry snow zone 

echograms and most wet snow zone echograms. It also records strong performance on “L3-like” 

echograms that usually do not contain a clearly defined snow layer. Currently, the algorithm has 

been integrated into the Open Polar Radar Toolbox to automatically track all the layers in any 

given Snow Radar echogram image. 

 

However, there are a few corner cases, particularly for very poor-quality echogram images, 

where the model tracking result might need manual adjustment. These corrections can be easily 

done using the Open Polar Radar Toolbox picker tool using any of the semi-automated 

algorithms. 

  

The figures below show some examples of its performance on echogram images from different 

snow zones. The examples images are grouped based on how similar they are to L1, L2 and L3 

test echogram images. The first image is the echogram, followed by the Refine Model activation 

and finally the tracked 1-D layer contours plotted over the echogram image. 
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Figure 6-17: EchoRefine model output on echograms similar to L1 echograms 
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Figure 6-18: EchoRefine model output on echograms similar to L2 echograms 
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Figure 6-19: EchoRefine model output on echograms similar to L3 echograms 
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6-2-9 Ablation studies 

In the implementation of the EchoRefine model and the updated training and inference pipeline, 

several changes were simultaneously integrated to address observed shortcomings in the 

previous models. This naturally raises the question of the relative importance of each 

modification and how earlier models might have performed with these updates. 

 

To comprehensively answer this question, an elaborate ablation study, systematically removing 

each component, re-training the model and observing its impact on performance is needed. 

Despite the intention to conduct a comprehensive ablation study, the time constraints posed by 

the experimental setup makes it challenging to explore all the possible experiment 

configurations. Currently, each run of the training requires approximately one week to complete, 

as such, performing the more than 32 necessary runs for a thorough ablation analysis would 

extend the project timeline significantly. While the importance of this study is crucial in 

evaluating the contribution of individual features, we have opted to prioritize the development 

and validation of a working solution at this stage in the research. 

 

However, it must be noted that the new features added to the updated training and inference 

pipeline were strategically added to mitigate specific deficiencies identified in earlier models. 

For example, the initial convolution-based models had limited performance on echogram images 

from the wet snow zone producing blurry edge delineations in the segmentation outputs that are 

difficult to binarize. To improve on this, the EchoRefine implemented a follow-up refinement 

module to further improve the boundaries of the “FCN-like” front architecture to improve the 

separation between the foreground and background pixel classes. The modified composite cost 

function follows the same thinking: to improve the along-track tracking performance of the 

convolution-based models to achieve similar performance as the transformer-based models. 
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However, there is still the need to return to the ablation studies to gain a deeper understanding of 

the individual contributions of each of the features. The insights gained from the current training 

and inference pipeline will provide a good foundation to support further refinement and 

optimization in future work. It is anticipated that these subsequent studies will not only validate 

the design choices but also reveal additional opportunities for enhancement, thereby further 

solidifying the models’ performance. 

 

6-2-10 Retrospective analysis of EchoRefine model modifications 

Considering the several modifications made simultaneously to the EchoRefine model training 

pipeline such as the updated training dataset, improved echogram image preprocessing, etc., a 

retrospective analysis discussing how the new features might impact the performance of earlier 

models is imperative. 

 

In the following sections, we will explore each of the earlier training paradigms that were 

implemented and examine how they might have benefited from the enhancements introduced in 

the new training pipeline. It should be noted, however, that these particular experiments have not 

yet been conducted at the time of this writing. Nevertheless, they remain an important area for 

future investigation, as further experimentation could provide a deeper understanding of the 

impact of these modifications and offer valuable insights that could inform subsequent studies 

and model refinements. 

6-2-10-1 Retrospective comparison with the RowBlock algorithm 

The RowBlock algorithm is characteristically different from the convolution-based or 

transformer models because it performs a form of feature engineering on the echogram image to 

create the input ColumnPatches used for training. This, coupled with the difference in the input 
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and output of the RowBlock models, being a multi-class classification model, makes it difficult 

to directly compare its performance with convolution and transformer-based segmentation 

models. The modifications made were informed primarily from the deficiencies noticed in earlier 

trained convolution models, hence more suited to segmentation models. 

 

However, the RowBlock algorithm might be able to profit from the improved echogram 

preprocessing. The combination of the application of the hessian based vesselness filter and the 

deep learning-based echogram image denoiser adaptively removes the inter-layer noise which 

improves the distinction between the echogram layer pixel and no-layer pixels. This is shown in 

the EchoRefine model performance to contribute to the improved layer tracking performance.  

 

Incorporating this preprocessing into the RowBlock algorithm pipeline would also improve the 

layer pixel delineation resulting in the ColumnPatches of higher image quality. As a result, this 

will potentially improve the classification result of the model. Further gains could also be 

achieved by supplementing the higher quality input ColumnPatches with classification model 

architectures with increased representation power to better learn the input-output mapping in the 

improved training data. 

 

 

6-2-10-2 Retrospective comparison with the convolution-based algorithms 

The earlier trained convolution models in Chapter 4 are better suited to take advantage of all the 

EchoRefine training pipeline modifications introduced. While these experiments are yet to be 

performed, it is expected that the models would also achieve better performance. Given that the 

echogram image preprocessing steps introduced produced better training and testing images, the 

additional incorporation of increased training echogram diversity, increasing the ground truth 
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label width and the neighboring-pixel-aware composite cost function all justify the hypothesis 

that all the convolution models will produce better segmentation outputs than values reported in 

4-6-2. However, it is still expected that the EchoRefine will likely surpass their improved 

performance. We hypothesize that it has a more robust architecture for the following reasons.  

 

 

First, the additional refinement module in the EchoRefine model has the advantage of hindsight 

(which is not available in earlier models). Although the model is trained end-to-end, the 

architecture affords it the ability to further improve the imperfections of the first stage to further 

refine and trace out the along-track layering of the snow layers. Also, the end-to-end 2-stage 

architecture of the EchoRefine model increases the count of the model parameters and therefore 

the representation power of the model, putting it in a better position to correctly model the 

layer/no-layer pixel distinction and perform better on echogram images with less obvious layer 

pixel distinction such as wet snow zone echograms due to its auxiliary refinement module.  

 

 

 

6-2-11 Accessing Python Code and Dataset 

 

The code for the models and the datasets created can be found here: 

https://gitlab.com/openpolarradar/opr/-/wikis/Machine-Learning-Guide 
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Chapter 7 CONCLUSION 

 

This work presents our findings in developing a generalizable machine learning and deep 

learning computer vision algorithm for the echogram layer tracking problem. Given the 

enormous amount of radar sounding data that has been collected over several decades, there is a 

need for an automatic layer tracker to extract ice layers from the radar echograms. 

  

Using machine learning and deep learning algorithms, infused with advanced signal processing 

to pre-process the images, custom models were designed to track the snow accumulation layers 

in echogram images from the dry snow and wet snow zones. The RowBlock algorithm took 

advantage of the chronology of layers in each rangeline and spatial correlation among 

neighboring rangelines to track the layers one at a time, reconstructing the complex layer 

tracking problem as a sequential multiclass classification task. 

  

Multiple convolution-based deep learning algorithms were also developed to process the whole 

echogram image at once. While these excelled on echograms from the dry snow zone, 

their limited utilization of along-track layer correlation prompted the need for algorithms that can 

exploit the correlation that exists in the columns and rows of the echogram matrix. Consequently, 

transformer-based vision models were designed with three patchification schemes. These 

implementations resulted in improved along track tracking surpassing most of the earlier 

convolution-based methods. However, the fixed embedding layer of transformer-based 

models requires that echogram images are reshaped to match the fixed dimensions which could 

potentially lead to loss of resolution in either fast time or slow time dimensions. 
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Combining the lessons learned from the different architectures that were investigated, a multi-

pronged approach was employed to improve several sections of the convolution-based deep 

learning model pipeline leading to the EchoRefine model with the 8-pixel 

connectivity constraint cost function. This resulted in improved along-track tracking 

performance and satisfactory performance even in echograms from the wet snow zone. Finally, 

an improved 1-D accumulation layer contour extraction algorithm was developed to efficiently 

return each 1-D layer contour from the segmentation model heat map output. This algorithm has 

been integrated into the Open Polar Radar Toolbox to automatically track many of the previously 

untracked echograms created from science campaigns from 2012 to 2021 which were not part of 

the training data. 

  

As a result of the progress made in this work, two standard deep learning Snow Radar datasets 

with 11,000 and 50,000 echograms synchronized with climate fields from the Modèle 

Atmosphérique Régional climate model have been created and made available to the deep 

learning and science communities to boost further studies. 
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