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Abstract

The accelerated melting of ice sheets in Greenland and Antarctica, driven by climate warming, is
significantly contributing to global sea level rise. To better understand this phenomenon,
airborne radars have been deployed to create echogram images that map snow accumulation
patterns in these regions. Utilizing advanced radar systems developed by the Center for Remote
Sensing and Integrated Systems (CReSIS), around 1.5 petabytes of climate data have been
collected. However, extracting ice-related information, such as accumulation rates, remains
limited due to the largely manual and time-consuming process of tracking internal layers in radar
echograms. This highlights the need for automated solutions.

Machine learning and deep learning algorithms are well-suited for this task, given their near-
human performance on optical images. The overlap between classical radar signal processing
and machine learning techniques suggests that combining concepts from both fields could lead to
optimized solutions.

In this work, we developed custom deep learning algorithms for automatic layer tracking (both
supervised and self-supervised) to address the challenge of limited annotated data and achieve
accurate tracking of radiostratigraphic layers in echograms. We introduce an iterative multi-class
classification algorithm, termed “Row Block,” which sequentially tracks internal layers from the
top to the bottom of an echogram based on the surface location. This approach was used in an
active learning framework to expand the labeled dataset. We also developed deep learning
segmentation algorithms by framing the echogram layer tracking problem as a binary
segmentation task, followed by post-processing to generate vector-layer annotations using a
connected-component 1-D layer-contour extractor.

Additionally, we aimed to provide the deep learning and scientific communities with a large,

fully annotated dataset. This was achieved by synchronizing radar data with outputs from a
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regional climate model, creating what are currently the two largest machine-learning-ready Snow

Radar datasets available, with 10,000 and 50,000 echograms, respectively
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Chapter 1: INTRODUCTION

1-1 Background

The last decades have witnessed an increase in contemporary global warming which epitomizes
the steep impact of anthropogenic activities on world climate. The far-reaching consequences of
global warming has prompted many international bodies such as the World Health Organization
and United Nations to unanimously identify it as the single biggest health threat facing humanity
[1], [2], [3]- The Intergovernmental Panel on Climate Change (IPCC) forecasts a global
temperature rise of 1.5°C to 4.8°C by 2100 relative to pre-industrial levels [4], [5]. The
consequent accelerated polar ice melt and increased discharge into the ocean over the years poses
a significant threat of global sea-level rise, which has been estimated to increase by an average of
14-18 inches along the Gulf Coast of the United States by 2050 [6]. Addressing this issue is
imperative to mitigate the severe impacts, including extreme weather events and widespread

coastal flooding, which could detrimentally affect millions of individuals worldwide.

As a result, polar ice sheets in Greenland and Antarctica have been the focus of a plethora of
research since the beginning of the 21st century. In recent years, surface mass balance (SMB)
processes have been identified as the primary driver of increased Greenland Ice Sheet (GrIS)
mass loss. However, the intricate relationship between accumulation and surface melt introduces
uncertainties in accurately determining annual accumulation rates [7], [8], [9]. Since
accumulation varies across the ice sheets, a precise method of estimating the annual
accumulation rate is crucial to capture the catchment-wide spatiotemporal patterns required by
scientific climate models to accurately predict future sea-level rise [9], [10].

Traditionally, snow accumulation rates and other ice phenomenology are derived from ice cores

which are obtained by drilling ice columns and shallow pits across the polar ice sheets to provide



detailed measurements at one location. However, their inherent sparsity and high operational
costs make it challenging to capture catchment-wide accumulation rates. Attempts to interpolate
in-situ measurements only introduce further uncertainties due to the high variability in local
accumulation rates [11], [12]. To address this limitation, airborne radars have been developed to
track the isochronous snow layers at a much larger spatial scale and relatively lower cost. These
radar systems offer superior subsurface mapping capabilities compared to other remote sensing

methods such as space-borne radars.

The Center for Remote Sensing and Integrated Systems (CReSIS) at the University of Kansas
has developed a suite of radar systems for non-invasive monitoring of the changes in the
thickness and structures of these polar ice sheets over time [13], [14], [15], [16], [17], [18], [19],
[20]. Over a span of 3 decades, science missions using these radars have been conducted over
Antarctica and the Arctic including icy regions in Alaska, Greenland, and Canada. As a result, a
large repository of snow and ice data has been collected using a wide range of radar systems.
Figure 1-1 shows the map of Greenland and the coverage of CReSIS missions over the ice sheet.
This extensive repository of radar data houses a wealth of historical and contemporary climate
information, providing a rich source of high-resolution spatial and temporal data essential for

enhancing the accuracy of scientific weather models.



Figure 1-1 Map of Greenland showing survey flight lines currently available at

https://openpolarradar.org/ for one of the radar systems. The blue lines represent the flight path

along which subsurface radar data has been collected.

To further investigate how climate warming affects different sections of the polar ice sheets and
the interactions of these effects, several radar systems with specific hardware design and
capabilities have been created to study identified sections of the ice column ranging from the top
layers of recent snow fall to the underlying bedrock several kilometers under the surface. One
such system is the ultra-wideband (UWB) Snow Radar, which captures annual snow

accumulation in the top firn layers of polar ice sheets. Its lower operating elevation and large


https://openpolarradar.org/

bandwidth enable it to achieve a vertical resolution that is fine enough to discriminate
isochronous layers formed from annual accumulation. The radar echograms produced from these
airborne measurements reveal annual accumulation stratigraphy [17], [18] which contains

information needed to estimate annual accumulation rates [19], [20].
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Figure 1-2: Example Snow Radar echogram from the summit in Greenland showing annual
snow layering. Inset is a map of Greenland with the red dot marking the center of Greenland

where the echogram data was collected.

Figure 1-2 is an example of a Snow Radar echogram created from data collected from a 5 km
transect at the center of the Greenland ice sheet. Details about radar echograms and how they are
created is delayed to the discussion in Section 2-2. Due to chronologically different deposition
ages, the snow layers seen in the echogram are a result of contrasting physical properties of the
snow layers such as snow density, snow grain size, etc. These layer property changes result in

dielectric contrasts that cause scattering that the radar detects. In the echogram image, the



“surface” is the air-snow interface after which are several “internal” roughly annual snow layers.
Each of these snow layers needs to be individually identified and accurately tracked to infer the
accumulation rates for the mapped geolocations.

Figure 1-3 is an enlarged view of the echogram in Figure 1-2 magnifying the view of the top few
internal layers corresponding to about a decade of annual snow fall assuming each layer
represents an annual layer. To correctly estimate the annual accumulation rate in the location
captured by this echogram, it is important to accurately track each pixel of each layer to obtain

the propagation delay to the layer.
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Figure 1-3 Zoomed in image of earlier echogram to show the internal layers

Concretely, to estimate the accumulation between successive years, the difference in the radar
two-way travel time between adjacent layers is combined with the density-depth-age profile of
the location to infer the snow accumulation rate. To illustrate how the accumulation rate is
estimated, we provide an approximate estimate of the accumulation between the first two layers

in the echogram shown in Figure 1-3. The mean radar propagation delay to the first layer (the



surface) is about 3.122 pus and to the second layer (first internal layer) is about 3.125 us giving a
difference of 0.003 ps. Assuming a constant relative permittivity of €, = 1.35 at the captured
geolocation assumed to be constant for the top few meters of snow depth, the annual

accumulation is estimated using Equation (1) below:

cAt (1)

d= = 0.38m
2\/£r

where ¢ = 3.00 X 108 m/s is the speed of light in a vacuum,
At is the propagation delay difference,

€, 1s the assumed relative permittivity in snow and d is the accumulation depth in meters

Given that this data was collected in the year 2012, the tracked surface corresponds to the spring
2012 surface and the immediate lower layer corresponds to the summer-fall 2011 transition.
Hence, an approximate mean accumulation of 0.38 m occurred in the mapped 5 km transect
shown in the echogram between 2011 and 2012. This estimation process can be repeated for each
of the (more than 50) consecutive layers in the full echogram in Figure 1-2. Typically, a precise
accumulation estimation is done on a finer spatial resolution scale of a few meters by using the

propagation delay for each column in the echogram image.

The accumulation estimate can be combined with the age difference between the layers to
estimate the accumulation rate. This information is critical for tuning existing scientific climate
models who otherwise suffer from limited spatial data coverage for ground truth. Assimilating
radar derived estimation will not only improve the accuracy of the models in predicting future
climate changes but also reinforce confidence in the model’s predictions by reducing the existing

uncertainties.



1-2 Summary of problem statement

The importance of precise tracking and delineation of individual snow layers in echogram
images, as exemplified in the illustration above, underscores the necessity of obtaining annual
accumulation at very fine spatiotemporal resolution from collected radar data to improve
scientific climate weather predictions. However, the larger percentage of existing echograms are
yet to be tracked due to the lack of efficient tracking methods. Tracking of layers is primarily
done manually due to the complexity of the tracking process. Manual tracking of echogram
layers is a tedious and error-prone process, requiring significant investment of the annotator’s

time.

In recent times, several semi-automated tools have been developed but this still does not scale
well to the large data that has been collected since humans are still involved in the annotation
process. Artificial intelligence, specifically machine learning and deep learning algorithms, hold
great potential for this problem given their well-reported excellent performance in the optical
image domain. Deep learning algorithms are currently the state-of-the-art algorithms for
performing classification, object detection, and semantic segmentation on optical image data and
hitherto complex problems like speech recognition [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30]. Unlike traditional signal processing algorithms and probabilistic graphical models,
which have demonstrated limited performance and require redesign for different datasets due to
varying accumulation patterns, deep learning algorithms possess the potential for broad
generalization when properly trained [31], [32]. Moreover, the significant overlap between
classical radar signal processing and machine learning techniques [33], [34], [35], [36], suggests
that a fusion of concepts from both fields can lead to optimized solutions for the problem of
mapping the rapidly varying spatiotemporal accumulation patterns over polar ice sheets. In this

work, we explored multiple machine learning and deep learning approaches to create automatic
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layer trackers that can uniquely identify and track snow layers in the Snow Radar echogram over

several line-kilometers both over dry snow and wet snow zones.

1-3 Summary of original research contributions

In this work, we implemented a fusion of signal processing algorithms for pre-processing and

deep learning supervised and self-supervised algorithms to deal with the imperfect and limited-

annotated-data problem to achieve accurate tracking of isochronous radiostratigraphic layers in

echograms.

Specifically, in this work, we achieved the following research milestones:

1.

Successfully designed and tested different streams of deep learning algorithms to
understand their strengths and weaknesses.

Successfully deployed the first generalizable deep learning algorithms to track persistent
snow layers over thousands of line-km over Greenland Ice Sheet.

Improved automated tracking (requiring minor quality control) to speed up layer tracking
by x5.

Creation of a large “deep learning ready” Snow Radar dataset.

Synchronization of the Modele Atmospherique Regionale (MAR) regional climate model

with radar echograms.



Chapter 2: LITERATURE REVIEW AND DEEP LEARNING
BACKGROUND

2-1 Literature review

In over three decades of collecting remote radar measurements over polar ice sheets, a large
amount of data has been collected necessitating the need for efficient processing and tracking of
snow and ice layers in the echograms. As a result, many scholarly works exploiting different
characteristics of the snow surface and subsurface targets to track the snow layers have been
developed. These approaches can be broadly grouped as: Semi-automated vs fully automated,
surface-bedrock vs internal layer tracking, and machine learning (ML)/deep learning (DL) vs

non-ML algorithms.

Semi-automated methods require some form of human input for tracking while fully automated
algorithms are designed to operate without any human interaction end-to-end. Surface-bedrock
models aim to accurately track only surface (air-snow boundary) and bottom (ice-bedrock
boundary) layers while internal layer trackers are designed to track all laterally persistent layers
that could appear at any depth within the snow and ice. Surface-bedrock tracking is usually
intended for lower frequency radar systems that can penetrate all the way through to the ice
bottom but have coarser resolution to distinguish internal layers. Internal layer tracking is needed
for most radars, but only sufficiently fine range resolution radar systems can visually distinguish
annual layers from one another. The ability to clearly discriminate between each internal layer is
dependent on the bandwidth and center frequency of the radar system. Finally, non-ML models
deploy methods such as statistical models, level-set, probabilistic graphical methods, etc., while

machine or deep learning methods develop artificial neural networks to track the desired layers.



Gifford et al. [37] combined active contour and thresholding edge-based approaches to identify
contour boundaries (surface and bedrock) after applying gradient-based edge detection
techniques and image processing to reduce noise effects. The consecutive studies in Ferro et al.
[38], [39] developed statistical models for characterizing subsurface backscatter categorized into
strong layers, weak layers, low returns, and basal returns which were modified and applied to
automatically estimate ice thickness of data acquired from Antarctica in [39]. Koenig et al. [40]
also developed a high-frequency versus low-frequency semi-automated discriminator algorithm
to identify peaks in the returned backscatter power. Rahnemoonfar et al. [41] applied a distance-
regularized level-set function to detect the surface and the ice bottom to improve earlier work by
Mitchell et al. [42] and D. P. Onana et al.[43] . In another work, Rahnemoonfar et al. [44] took
inspiration from Coulomb’s law of electrostatic force to detect ice surface and bottom boundaries

after performing anisotropic diffusion to enhance layer edges.

Another set of works approaches the problem as a probabilistic inference problem by developing
probabilistic graphical models to detect layer boundaries. Crandall et al [45] pioneered the
paradigm while Lee et al. [46] employed Markov-Chain Monte Carlo (MCMC) over the joint
distribution of all possible layer targets in the inference problem. Xu et al. [47] expanded the
scope to include 3D surface and bedrock reconstruction using Markov random fields (MRF) and
Berger et al. [48] refined the approach by incorporating additional domain knowledge in the

unary and binary loss function terms.

Carrer and Bruzzone [49] introduced machine learning methods by incorporating a support
vector machine (SVM) with statistical modeling to classify layers, bedrock, and noise.
Since then, several machine and deep learning models have been designed and applied to the

radar echogram layer tracking problem. Kamangir et al. [50] introduced a hybrid wavelet
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network for ice boundary detection. Xu et al. [51] designed a multi-task network that avoids the
use of meta-data using a combination of recurrent neural networks (RNN) and 3D ConvNets to
track layers in 3D radar imagery. In Varshney et al. [52] internal layer tracking was introduced as
a semantic segmentation task and deep neural networks were applied to the problem whereas Cai
et al. [53] applied an Atrous Spatial Pyramid Pooling (ASPP) module using a ResNet-101
backbone to detect layer and bedrock interfaces in echograms created from Antarctica
campaigns. Other efforts by Yari et al. [54] and Wang et al. [55] applied multi-scale transfer
learning and tiered-segmentation approaches for internal layer tracking respectively while
Rahnemoonfar et al. [56] introduced the addition of synthetic data for model training and multi-
scale learning for tracking ice layers in [57]. In Yari et al. [58], physics-driven and GAN
methods were used to create simulated data to train a multi-scale network to improve the
accuracy of internal layer tracking. Varshney et al. [52] combined the layer tracking task and ice
thickness estimation using fully convolutional neural networks and extended the approach in
Varshney et al. [59] by incorporating physics-defined labels. More recently, Ghosh and Bovolo
[60] combined attention modules with the fusion of TransU-Net and TransFuse modules to
segment the combination of ice layers, bedrock, and noise similar to efforts in Cai et al. [61] with
the addition of a Multiscale convolution module (MCM) and focal loss for class weight
balancing.

2-2 Snow Radar and Snow Radar echograms

The Center for Remote Sensing and Integrated Systems (CReSIS) at the University of Kansas
has developed a suite of radar systems suitable for collecting remotely sensed measurements
over polar regions in the last few decades [10,13,59, 60]. Depending on the subsurface target or
scene of interest and considering the limitations of electromagnetic propagation through that
scene, the frequency of operation, transmit power, and bandwidth are chosen to design the

appropriate radar system. The primary interest of this work is to focus on radar systems designed
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to image the shallow snow and not-too-deep (firn) internal layers in the ice sheet column.
However, the overall goal of this research is to identify best practices and develop deep learning
algorithms not suited for just a specific radar system but generalizable to multiple radars systems
especially if these systems share similar hardware design and image relatively the same section

of the ice column.

We begin our efforts by focusing first on the Snow Radar data to train and test the early
iterations of the deep neural networks. The Snow Radar is a Frequency Modulated Continuous
Wave (FMCW) system that, for the dataset used in this work, operates in the 2-8 GHz frequency
band and is designed to image the top firn layers of the polar ice sheets with a vertical resolution
of ~4 cm in snow. The echogram images from the Snow Radar data are formed through pre-
summing, pulse compression with windowing, coherent noise removal, deconvolution, and
incoherent averaging. The Snow Radar is capable of measuring snow thickness over sea and land
ice by imaging shallow snow layers. Over land, it can identify annual snow layer interfaces due
to its fine vertical resolution which is important for estimating annual accumulation. Over sea
ice, it can be used to estimate snow cover on sea ice. This work focuses on the land ice problem

of tracking annual layers.

The annual snow layer interfaces (hereafter ‘internal layers’) appear as peaks in the pulse
compressed range profiles because, at each interface, a portion of the transmitted electromagnetic
field is scattered back to the receiving antenna. The interface between late summer and early
winter snow fall appears characteristically different to the radar receiver resulting in annual
layering within the snow imagery. This difference can be attributed to the difference in the
seasonal weather patterns, creating a snow permittivity change that causes detectable backscatter

towards the receiving antenna. The distinct peaks in the pulse-compressed backscatter are further
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enhanced with various digital filtering and signal processing methods to create the radar

echogram.

2-2-1 Brief overview of the Snow Radar system configuration for the 2012 science mission

The first iteration of the deep learning models developed was trained solely on the data collected
during the 2012 Operation Ice Bridge Mission. The Snow Radar configuration for this campaign
was for the Lockheed P-3 Orion aircraft flying at a nominal altitude of 500 m above ground
level. A detailed description of the hardware configuration for this campaign is documented in
[15], [16]. Table / summarizes the key hardware configuration parameters for the campaign.
Datasets from later campaigns are tested in the later stages of this work. The hardware
configuration was progressively improved for these later campaigns, but the images are generally
similar in nature to the 2012 campaign. Details of some of these improvements can be found in

[62], [63].

Table 1: The Snow Radar parameters used for the 2012 science mission.

Parameter Value
Transmit power 100 mW
Pulse duration 250 ps
Bandwidth 2-8 GHz
Intermediate frequency ADC sampling rate 125 MSPS
Range resolution ~4 cm

13



Here, we provide a basic overview of the digital signal processing routines performed to aid the
understanding of how the echogram images are formed. The digital signal processing starts by
loading a two-dimensional data matrix where the row dimension is fast-time and the column
dimension is slow-time. This is converted from the receiver’s ADC quantized values to the
received voltage value at the antenna. This data can be referred to as space-time data. Applying
the Fast Fourier Transform (FFT) along the row or fast-time dimension, with Hanning
windowing to reduce sidelobes, converts the fast-time axis to the frequency domain which, for
FMCW radars, is proportional to the two-way travel time or delay to the target. The delay can be
converted to depth (or range) which will ultimately be used to infer the layer thickness between
adjacent snow layers. After applying the FFT to pulse compress the data, phase and time
corrections are performed to compensate for the effects of altitude variation due to aircraft
position and altitude changes. Subsequently, further processing such as coherent noise removal is
performed by estimating the noise using a low pass filter in the space axis with a very low cutoff
frequency (30 seconds of flight time) and subtracting it from the space-time data. For the survey
data used to create the training and test set for this work, a 1x5 depth-by-along-track boxcar filter
is applied to the power-detected data and then decimated in the along-track by a factor of 5. This
reduces the variance of the speckle noise and accentuates the internal layers since, typically, they

are roughly horizontal and aligned with the along-track dimension.

2-2-2 The Snow Radar echogram

The radar echogram introduced earlier in Figure 1-2 can be summarized as a representation of
the data matrix produced by taking the logarithm of the power-detected, coherently, and
incoherently averaged received backscatter returns. The Snow Radar has limited cross-track
elevation angle resolution due to the small antenna used, but the scattering is assumed to come

from the nadir elevation angle. The echogram image shows snow accumulation patterns beneath
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the ice surface along the flight profile that can be resolved into roughly annual layers. The
horizontal axis represents the along-track dimension (direction of aircraft flight) where each
column is a “range-line” while the vertical axis is the fast-time dimension, and each row is a
“range bin”. The pixel intensity is a function of the received radar scattering from the resolution
cell with lighter pixels representing low returns and darker pixels depicting stronger returns from

the buried snow layers.

Figure 2-1 shows the same Snow Radar echogram image created from data collected at the ice
sheet summit in Greenland. The air-snow interface where the transmitted signal first interacts
with the snow layers is referred to as the “surface”. Other layer stratigraphy corresponding to the

annual snow fall are collectively referred to as “internal layers ™.
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Figure 2-1: Snow Radar echogram showing several decades of snow accumulation
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Figure 2-2: Magnified Snow Radar echogram showing only the first few layers
The Snow Radar echogram has unique features that distinguish it from echograms created from
other radar systems. This is particularly because of the system’s S-C frequency band which
detects the top firn layers and the associated large bandwidth allowing it to achieve fine vertical
resolution in snow. This makes each snow layer clearly distinguishable in the resulting image
unlike other contemporary radar systems with coarser resolution that are unable to separate
annual layers [64]. The layers can be seen in Figure 2-1 as the “dark” roughly horizontal and
laterally persistent pixels along the flight path [9], [34]. The horizontal (x-axis) of the echogram
image corresponds to geolocations (latitude/longitude) traveled along the flight path of the
aircraft while the vertical (y-axis) represents the radar two-way travel time to the different snow

stratigraphy and the depth at which they occur.

Echogram images help visualize subsurface features, particularly snow layers, in the mapped
locations. The layer’s contour (flat or curved) reveals significant information about the snow’s

historical deposition and subsequent metamorphosis. The curvature of these layers indicates a
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variety of geological and climate processes, such as the flow dynamics of the glaciers, the
accumulation patterns of snowfall and the effects of wind redistribution. The echogram images
capture the orientation of the layers allowing for detailed analysis of the snowpack structure and

the accumulation patterns [65], [66], [67].

The orientation and degree of curvature of the snow layers are influenced by several factors such
as the terrain of the mapped location. For instance, in areas where snow accumulates on sloped
or uneven terrain, the layers may display significant curvature due to gravitational settling and
compaction. Particularly in glacial regions like Greenland, the movement and deformation of the
ice can create complex, undulating patterns in the snow layers. These curved layers can also
result from differential snow deposition, where wind and topography interact to create variable
snow depths. By analyzing these curved contours, inference about past climatic conditions and
accumulation rate can be made and this helps make better predictions about future snow

behavior.

As described in Section 1-2, annual accumulation can be estimated from the radar two-way
travel time (hereafter “sw#”) and converted to meters using available snow permittivity-depth
profiles for that location. However, to achieve this, all the layers in the echogram must be
detected and accurately tracked. As such, the goal of echogram layer tracking is to obtain a 2D
matrix G of dimensions N; X N, where N; is the number of snow layers in an echogram image
(often unknown apriori by the tracking algorithm) and N, is the number of rangelines in the
echogram. Each row of G contains a vector of the radar two-way travel time of each of the N;,
layers sorted from the topmost layer till the last detected annual layer. This matrix G of tracked

layer twtt can be plotted over the echogram image to visualize the tracking result. Figure 2-3
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shows an example of an echogram where the snow layers have been identified, tracked and
plotted in red over the echogram image. This is often used in tracking as a visual sanity check to
see how well the result of the tracking algorithm is following the layer peaks/boundaries. These

tracked twtt are subsequently used to estimate the annual accumulation for the mapped location.
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Figure 2-3: Magnified echogram image with tracked layers plotted in red.

18

Propagation delay (us)



2-2-3 Some challenges inherent in echogram layer tracking

Automatic layer tracking algorithms have some inherent challenges that need to be addressed to
achieve good tracking results while being able to generalize to a broad range of echogram
images. The primary input for most tracking algorithms is the echogram image (many times as
the only input), hence, issues with the quality of the echogram directly impact the performance
of the algorithms. The image quality of an echogram is usually determined by the snow zone it

was created from.

The echogram images shown so far are from the dry snow zone whose echograms have the best
image quality because of the high layer reflectivity relative to the diffuse volumetric background
scattering and the relatively flat, parallel and distinguishable accumulation layers. The dry snow
zone is the coldest and highest region of the ice sheet, farthest from the coast, and is usually
characterized by extremely low temperatures all year round with little or no melt. The large
density contrasts in this zone reflect a strong radar signal back to the aircraft. Other zones such as

the percolation, ablation and wet snow zones have echogram images with less trackable layering.

A primary challenge in echogram layer tracking is the significant variability of annual snow
layer morphology within echograms. There is a wide variety of shapes and forms the annual
snow layering can take in an echogram image. This is usually dictated by the surface topography
and geographical features of the imaged location. The rapidly varying spatiotemporal
accumulation pattern across the ice sheets means echogram images created from two locations a
few hundred meters apart may appear starkly different. Further, the number of layers in each and

the morphology of the layers can also differ.
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The earlier illustrations in Section 1-1 employed simplified echogram imagery to facilitate easy
comprehension of the radar echogram layer tracking process. However, it is important to know
that a lot of echogram images exhibit greater complexity. Some examples of echograms with

different layer morphology and orientation are shown in Figure 2-4 and Figure 2-5.

Also, the echogram images shown so far have undergone an important “processing” step to
remove the effect of the surface relief of the surveyed location. The process of compensating for
the surface topography is referred to in this work as “surface flattening” where each range line is
adjusted so that the snow surface lies on the same row in the echogram matrix for every column.
To perform surface flattening, the 1D surface layer contour (i.e. the index of the pixel containing
the surface in all the echogram rangelines) is used. Prior to surface flattening, echogram images
reflect the radar trajectory elevation changes and the surface relief of the location, both of which

may vary widely across the dataset.

Figure 2-4 and Figure 2-5 show example echograms prior to the surface flattening step. This

gives a glimpse into the wide variety of layer orientation, layer interspacing, and the number of

layers that can exist in an echogram image.
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Figure 2-5 Additional example echograms with unflattened surface and varying accumulation

patterns

Furthermore, it should be noted that even after surface flattening, the internal layers are not
always “flat and parallel” to each other. There also exists a range of variability in the geometry
of accumulation layers within a unit echogram image. As a result, automatic echogram tracking

algorithms need to be robust to handle the diversity in echogram layering.
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The geometry of the internal layers, although generally following the structure of the
topography, can be unpredictable and is generally unknown a priori. Figure 2-6 shows another
echogram where the orientation of the first few layers differs sharply from the deeper layers. The
deeper layers are often more closely packed than shallower layers because they have been
“burdened” by newer depositions. The weight of the earlier layers compresses the older
accumulation to lose air content resulting in smaller density variations and spacing which

impacts the received radar reflectivity from them.

The deeper layers in the echogram image also have lower signal-to-noise ratios (SNR) due to
signal extinction through scattering and attenuation as the radar wave transverses down and up
through the snowpack. This is particularly worse for echograms created from snow regions other
than the dry snow zone such as the ablation or wet snow zone where the presence of meltwater
diffusely scatters the transmitted signal in all directions lowering the quality of the generated
echogram for layer tracking. As a result, some rangelines may have significant fading for some
or all their range bins. This has significant consequences on layer tracking as the tracking of
faded layers is harder and sometimes ambiguous even for trained experts leading to subjective

and different tracking results.

The synergistic interaction of these effects presents a formidable challenge for many automatic

tracking algorithms. Consequently, a robust algorithm is necessary to achieve consistent layer

tracking across the vast polar ice sheets.
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Figure 2-6 Echogram with different internal layer orientation after surface flattening.
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Figure 2-7 Echogram with different internal layer orientation after surface flattening.
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2-3 Rationale for machine learning adoption in echogram layer tracking

Artificial intelligence, specifically machine learning and deep learning algorithms, hold great
potential for this problem given their well-reported performance in other scientific domain with
high dimensional and non-linear data such as in the speech recognition problem and man-
machine communication. Deep learning algorithms are currently the state-of-the-art algorithms
on a variety of hitherto complex scientific fields datasets ranging from astronomy [68], [69],
material science [70], [71] to human genomics and bioinformatics [72], [73]. In the optical image
domain, which shares similarities with echogram images, deep learning has become the standard
for performing classification, object detection and localization, image analysis and generation

and semantic segmentation [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].

As evidenced in the echogram layer tracking literature, several traditional signal processing
algorithms and statistical models have been applied in the past. Despite the development of many
such traditional algorithms, their efficacy remains constrained, particularly on echogram sets
with poor image quality and “non-flat” accumulation patterns. Consequently, they are best
adopted as semi-automated tools that can be used by humans during the manual tracking process
to speed up the tracking. However, semi-automated tracking methods still require significant
human interaction for layer tracking which impedes the speed of layer tracking and does not

scale well to the large volume of data collected.

A handful of fully automated tracking methods only perform well for a limited number of
echograms but need to be redesigned for the dynamic accumulation pattern captured in a large
dataset. This is likely due to the limited amount of both modeling data and the expressive power
of the assumed model in these approaches. Many of the designed models are too simplistic and

fail to fully capture the underlying layer accumulation process and inadequately capture the
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nuanced details and complex interactions that characterize the process. This, in part, explains

why they achieve limited success only on some echograms.

Furthermore, the analysis of airborne radar data shows that the signal plus noise distribution
appears to deviate from “well-described” probability distributions. The non-stationary nature of
layer accumulation data, coupled with rapid decorrelation of the accumulation pattern across
space, presents a significant challenge. Consequently, constructing signal processing models that
fully capture the underlying data distribution, thus facilitating generalization to varied polar

regions with distinct spatiotemporal snow accumulation patterns, proves arduous.

Deep learning algorithms, however, hold the potential of generalizing easily across different
datasets and variations of the accumulation pattern captured in the echogram when correctly
trained [31], [32]. Machine learning (ML) and deep learning (DL) algorithms offer distinct
advantages over classical methods when addressing the radar echogram layer tracking problem.
Firstly, ML algorithms excel at detecting and modeling intricate patterns within data. This is
particularly useful in the echogram layer tracking problem where there exists a highly non-linear
relationship between the power-detected echogram pixel values input, and the output snow layer
coordinates in the echogram image. The highly parameterized deep learning architecture and
number of trainable parameters increases the degrees of freedom of the model leading to robust
modeling of the input-output shape. Also, the intermediate insertion of various non-linear
activation functions such as the rectified linear unit (ReLU) and the Gaussian Error linear unit

(GeLU) further enhances the ability to model non-linearity in the input-output mapping.

Furthermore, these models are adaptable to a variety of input modalities and frequencies such

that during inference on input echogram images from slightly different radar systems or
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accumulation patterns, the robustness of the trained model is evidenced in good one-shot
performance. This reduces the need to develop new models for slight variations in echogram
images or accumulation patterns. Even in the case of significant domain difference, the model
can be adapted by transfer learning and finetuning on a relatively small new dataset to optimize

the weights of the trained model to the differences in the new echogram set.

The potential for end-to-end learning of these algorithms to capture the input-output relationship,
without the need for manual feature engineering on the input is very attractive. While the current
models developed perform post-processing to extract the visibly identified layers from the output
activation map, no extra feature engineering is done on the input. This is critical since all the
information in the input echogram is available to the deep learning model during training. Hence,
the model can learn subtle relationships that are valuable to achieving good performance on the
echogram layer tracking problem but may be unknown to humans. Although the interpretability
of these models is currently limited which makes troubleshooting and parameter investigation
somewhat difficult, they overwhelmingly make up for their opaqueness by achieving sterling

results on a variety of problems.

On the echogram layer tracking problem, the models trained in this work achieve good
performance, as detailed in the evaluations in 3-2-4-2, 4-6, 4-6-2, 5-2-6 and 6-2-7-2 in laterally
tracking of consistent accumulation layers over several kilometers particularly in the dry snow

zones of polar ice sheets.

2-3-1 Fusion of signal processing and machine learning for the layer tracking problem
Machine learning and deep learning algorithms are argued to be extensions of concepts and ideas

that originated from adaptive signal processing, statistical modelling, and estimation theory.
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However, several modifications, such as improved optimization algorithms, introduction of non-
linear activation functions, very large model parameters and complex model architectures in
deep learning have helped it achieve better performance on complex problems with large
datasets. The significant overlap between both fields suggests that a fusion of ideas from both

will lead to better results on the layer tracking problem.

In this work, we combine approaches from both fields by applying signal processing techniques
like pulse compression, constant false alarm rate detection of the surface layer, coherent and
incoherent integration, and signal detrending in the pre-processing stages to improve the quality
of the echogram images. Subsequently, machine learning and deep learning algorithms were
developed to identify the layer pixels and track them in the improved images. Finally, a
combination of signal processing algorithms and computer vision algorithms were developed to

extract the identified layers in the deep learning model outputs.

2-3-2 Challenges in applying deep learning to echogram layer tracking

Despite the appeal of applying machine learning and deep learning algorithms to the layer
tracking problem, there are some inherent challenges that need to be addressed. First is
identifying the appropriate deep learning paradigm that best suits the problem. The deep learning
paradigm in this context refers to one of supervised, unsupervised or deep reinforcement
learning. The initial deep learning framework chosen for formulating the layer tracking problem
was to set it as “supervised deep learning” because of the flexibility of the approach and reported
success on similar problems in other fields. However, supervised deep learning algorithms suffer
from the circular problem of first requiring large amounts of labeled data to train the models
[74]. These large quality annotations are required to expose the model during the training phase

to the true underlying statistical distribution of the data to find the optimal layer weights and

27



parameters in the solution space. However, at the inception of this research, there is no such fully
annotated large radar echogram dataset. This prompts the need to progressively create a radar
echogram dataset large enough to train a deep learning model. The alternative of direct zero-shot
learning from weights of large models trained on optical images fails largely due to the
dissimilarity between the data domains. This precludes the application of off-the-shelf deep
learning algorithms which fail on the echogram layer tracking problem largely because of the

lack of overlap in the training data and radar echograms.

To train a supervised deep learning model for layer tracking, a key to achieving good
performance is the availability of high-quality input echogram images. This will facilitate the
ability of the models to understand the noise peculiarities inherent in remotely sensed radar data
to correctly discriminate signal and noise signals. However, signal attenuation and fading
through the snow medium, non-ideal radar system characteristics, aircraft roll and antenna
radiation pattern effects, off-nadir backscatter and multipath scattering are some of the
phenomena that combine to form the non-Gaussian noise distribution that result in the observed
imperfections in the echogram image. This invariably results in poor input image quality when
the effects are severe. These noise effects are particularly noticeable in images created from
radar data collected from wet or ablation snow zones where continuous melting introduces melt
run-off water that both disrupts the annual snow layering and attenuates the radar signal. For
these kinds of images, the presence of along-track fading particularly when the orientation of the
accumulation layers in the image is curved or arcuate, results in a challenging layer tracking

problem. Hence, the need for a robust custom deep learning algorithm.

Also, existing popular deep learning models are mostly designed for relatively small optical

input image sizes or images that can be resized with no harm to performance. For example,
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resizing a high quality 1280 x 720 pixel image of a dog to 256 x 256 does not affect a
classification model trained to identify the animal in the picture. However, this does not hold true
for echogram images. The high resolution of echogram images introduces additional
complexities in making the decision for the right training setup such as the choice of deep
learning architecture, the computing and memory resource requirements, training time and
inference time. Furthermore, the option of resizing requires additional care since arbitrary
resizing of the echograms to smaller dimensions can distort the spatiotemporal information,
particularly in the depth or fast-time axis information, making it impossible to tie tracked layers
back to the physical problem of estimating annual snow accumulation. This prompts the need to
either train on the large image size or find creative ways to decimate whilst preserving the output

layer resolution.

Additionally, a critical fact inherent in airborne radar subsurface mapping is that snow layer
interfaces in echogram images are more than one pixel thick. However, the labeling process used
to create the ground truth assigned just one pixel to each column of each layer in the echogram.
This has implications for training and evaluating deep learning models for layer tracking. First,
the tracking of echogram layers even by trained humans to create the ground truth label is
ambiguous since there are multiple layer pixels that can be chosen. Although there exist general
unwritten rules and guidelines regarding the selection of consistent layer pixels as ground truth, a
universally accepted scientific method remains elusive. Secondly, this ambiguity is significant in
model performance evaluation and the definition of evaluation metrics that truly reflect how well
the models are tracking the layers. A model might be reported to do poorly based on certain
metrics that compare with the human-annotated label even though the model chooses alternative

layer pixels that can be said to be equally correct.
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More so, the involvement of humans in creating the ground truth labels inevitably introduces
errors. Manual labelling of echogram layers is in fact very difficult, and errors are often
unavoidable due to human fatigue. This is of consequence in the design of the deep learning
architecture because some architectures are more susceptible to these errors than others. These
label ground-truth errors become more critical when evaluating the accuracy of automatically

tracked layers by different deep learning models.

In summary, the challenges to be considered when deciding the deep learning algorithm to use

for the radar echogram layer tracking problem include:

1. Existing ground truth annotations are imperfect, limited, and incomplete for each
echogram. Moreover, subtle ambiguity sometimes exists in the definition of a layer’s
exact pixel location since the layers are generally more than one pixel thick.

2. The fine resolution of the echogram image demands a higher GPU memory budget which
competes with the optimization of heavily parameterized algorithms. Although it is
possible to resize the images, care is needed to not distort the layer information.
Furthermore, when models are trained on decimated images, inference on real full-scale
echograms would require extra manipulation that may introduce subtle errors (e.g. odd
decimation factors).

3. The dimension of the echogram images in the dataset may vary. Even more critical is that
the number of layers that may exist in the image is unknown a priori. Most deep learning

algorithms prefer fixed input image sizes with a fixed number of output classes.

4. The output of the models needs to be a layer contour.
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Chapter 3: METHODOLOGY

At the inception of this research, the amount of echogram image and annotation pairs available
was very limited. Recognizing the strength of deep learning algorithms and their weakness of
requiring large amounts of annotation, a heuristic approach is first adopted to decompose the
radar echogram layer tracking problem into a simpler iterative problem. This chapter discusses
the iterative row block algorithm, the deep learning algorithms designed for this and the post-

processing step to reconstruct the decomposed echogram images.

3-1 Iterative RowBlock algorithm

In this paradigm, the dense prediction problem requiring each pixel in the echogram image to be
individually classified into different layers all in one go is reformulated as an iterative layer
detection problem where the goal is to identify a single layer at a time starting with the surface
whose position is known a priori. Concretely, instead of attempting to track all the layers in the
echogram image all at once by treating the image as a single input to the algorithm, the echogram
image is first broken down into smaller units and layer tracking is done on this one layer at a
time. This is achieved by employing the echogram image matrix decomposition routine

described below.

Consider the 2D matrix in Figure 3-1 depicting an echogram image. The surface layer (coded in
red) is always known a priori since simple thresholding algorithms can be used to track the
surface. It is expected that the next layer (the first internal layer in this case) will be a few rows
beneath the surface and that the subsequent layer (the second internal layer) will also be a few
rows after the first internal layer and so on. This assumption is because each layer is produced

from the net surface mass balance from the annual cycle of precipitation and evaporation, which
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is assumed to be positive each year in the dry snow zone. Therefore, the internal layers do not
cross each other even when there is some ice melting (i.e., the layer thickness is always positive).
Hence, to track the internal layers starting from the first internal layer, a fixed number of rows
starting from those immediately after the surface are extracted. We term these extracted
rows/pixels as a RowBlock because it is roughly parallel with the rows. Specifically, a
RowBlock is the region of the echogram image directly beneath a previously detected layer
which would contain the next layer and the algorithm is trained to determine the index of the
next layer from these. Usually, the initial layer that defines the first or top row block is the snow
surface. It is important to note that the RowBlock’s top and bottom edges do not follow constant
rows in the original image, since the top and bottom edges follow the layer above that defines the

RowBlock.

Thus, we pose the tracking problem as an iterative detection problem which is solved by tracking
one layer at a time from the iteratively formed RowBlocks. An example of forming the first two
row blocks of an image is shown in Figure 3-2. The number of pixels rows that are in a
RowBlock, N,, is a hyperparameter that is chosen based on statistics of internal layer spacing
collected from available manually tracked internal layers. It is chosen to be large enough so that
the next layer occurs within the row block. Sometimes, a row block may contain more than one
layer i.e., a deeper or subsequent layer after the next layer could be included in the row block.
The purpose of this is so that the neural network models can be trained to learn how to ignore

these deeper layers and only track the next layer.
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Figure 3-1 Depiction of an echogram image showing iterative RowBlock creation

The example in Figure 3-1 only shows RowBlocks with a single layer in each; if the number of
rows N, in each row block had been increased, then part of layer 2 would have shown up in row
block 1. A possible reason for restricting the number of rows in each row block (e.g., to N, =5
rows in Figure 3-1) is to reduce the size of the Neural Network (NN) and therefore the learning
time of the NN. However, this must be balanced with the need for N, to be large enough to

always ensure that the next layer will be completely contained in the row block.

Rather than passing a single column in a row block as the neural network’s input, we form a
“ColumnPatch” - a combination of the current column and the adjacent N.o;s columns to the left
and right. Using ColumnPatches as inputs to the model has the advantage of including local
spatial information that is shared by adjacent columns which improves the model's performance
and ensures a smooth column-to-column transition in the tracked layers. For columns with

insufficient support at the edge of the row blocks, available columns are mirrored to complete the
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required ColumnPatch size. Figure 3-2 illustrates how ColumnPatches are formed from the row

blocks in Figure 3-1

Col 2 NN input Col 3 NN input

Col 3 7~ N

‘ 7,3 \ ‘ 6,2 ‘ 7,3 ‘ 8,4 \

Row Block 1

Figure 3-2 ColumnPatch creation process

In this paradigm, the objective of the deep learning model is to identify the index of the next
layer in each column of the current row block, one column at a time. Concretely, to track the first
internal layers, N,., rows after the first layer are used to form the row block. For each column, the
input to the neural network is a ColumnPatch formed with 2N,;; + 1 columns centered on the
column for which the next layer is being estimated. The algorithm is trained with the
ColumnPatches as inputs and the outputs as the index of the pixel containing the next layer. The
tracked location of the first internal layer from all the columns in the row block is then used as
the base to form the next row block from which the next internal layer is to be tracked. This
process is iterated until a termination condition is met (and ideally all the detectable layers in the

echogram are tracked).

The advantage of this algorithm is reconstructing a complex problem of tracking an unknown
number of layers in a full echogram into a simpler problem of finding just the next layer in a
focused area of the echogram where the next layer is expected to be. Using RowBlocks to create
ColumnPatches, the complexity seen by the algorithm is reduced from having to identify and

track layer pixels in the entire echogram to only identifying the index of the next layer for a
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single column in a ColumnPatch. A direct consequence of this decomposition is substantial
expansion of training data by several orders of magnitude. The exact order of expansion depends
on the choice of N,,;s and N,,. By breaking the echogram into RowBlocks and then into
ColumnPatches, the unit input to the deep learning algorithm is no longer the entire echogram
image but sections of it. This helps circumvent the challenge posed by limited availability of

training data by providing millions of training examples.

It is important to note the difference in the algorithm’s routine during training and inference. For
training, the tracked internal layers (ground truth) are always available, therefore the RowBlock
for a layer is formed using the available tracked layer information. However, at inference time,
only the echogram and the tracked surface are provided to the models. The algorithm therefore

uses the prediction from the last step to form the RowBlock for the next iteration.

An early termination routine was also adopted to stop the iterative layer inference from
unnecessarily continuing till the bottom of the echogram when the previously returned prediction
suggests that there are no further layers in the echogram image after the current one. Some
echograms have fewer layers and as such do not span the entire depth of the echogram. It is
therefore not necessary to continue to search for deeper layers until the bottom of the echogram.
However, to prevent premature termination of the routine, the inference routine does not quit the
first time but after multiple tries with consecutive “no-layer” returns. Section 3-2-4 elaborates on

the implementation of the early termination routine used in this work.

Before applying this algorithm to “real” echogram data, we designed simulated echograms in

order of increasing complexity to investigate the viability of this deep learning approach. These
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simulated echograms were later combined with real echogram dataset to increase the dataset’s

size and diversity.

3-1-1 Heuristic-based simulated echogram

To assess the feasibility of applying deep learning for real echogram layer tracking, we
commence by designing a simulated echogram based on a simple heuristic and employing the
iterative layer tracking algorithm on it. The simulated echogram was created based on the
following assumptions:

(1) The data was collected from the dry snow zone where there is no melting and annual
stratigraphy is preserved

(i1) The surface is flat

(ii1) Backscatter from each pixel is not based on any scattering models but just a superposition of
many coherent point targets

(iv) To model the stochasticity and incoherence between adjacent rangelines, the coherent point
targets are randomly positioned in the image pixel and weighted by complex Gaussian weights
(v) The response is the ideal point target band-limited sinc function with no sidelobes.

(vi) Gaussian noise is added.

(vi) The layer statistics and the signal statistics are not rigorously derived from data but are based
on educated guesses.

Based on these assumptions, we created echogram images such as the one shown below in

Figure 3-3. We then applied the Row Block algorithm to iteratively track the layers one at a time.
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Figure 3-3 Heuristic-based simulated echogram

3-1-1-1 Shallow model for heuristic-based simulated echograms

A lightweight artificial neural network (ANN) with a single hidden layer, and multi-class output
layer was designed. The training set has M examples. The training input matrix is X =
[x®,x@, .., xM], where example x® is a n, = Ny, X (2Ngo;5 + 1) length column vector of
image pixels corresponding to the (i) row block example. The associated output matrix is Y =
[y®,y®@, ..., y™)], where example y© are one-hot encoded N, + 1 length column vectors
with the elements of the vector corresponding to {no-layer,layer in row 1, ...,layer in row N, }

where every element is zero except for a one in the position corresponding to the correct answer.
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The hidden layer has N nodes and the network learns the optimum bias vectors bl and b2

defined below, and weights W1 and W2l also defined below as matrices representing the

linear maps through the hidden layer and the output layer respectively.

The output of the hidden layer for input example (i) is given by:

d1® = g(Wlx® 4 p111) and A = g(WIx + pl1)) Q)

1

oz is the sigmoid activation function, label [1] in alt® refers to the first layer

where g(z) =

(11()

. AT
of activation outputs, al11® = [al , ...,al[\,l](l)]

is a column vector where the subscripts from

1 to N correspond to the outputs of each hidden node, A = [a[l](l), " a[l](M)] is the matrix
formed from the outputs from each training example, b1 is a bias vector term of size N x 1, and
wllisa N x n, matrix.
The output of the output layer for input example (i) is given by:

al2l® = g(W[Z]a[l](i) + b[Z]) and A2 = g(W[Z]X + b[Z]) (3)
where [2] refers to this being the second layer of activation outputs.

al2l® = {agz](i), . al[fr]l(,i)} is a column vector where the subscripts from 1 to N,, correspond to

the outputs of each output node, 4 = [al2®), ..., al21] is the matrix formed from the outputs

from each training example, b[?! is a bias vector term of size N,;, x 1, and W!# isa N,, x N

matrix.

A regularized logistic regression cost function J (W[l], W[Z]) using the cross-entropy loss

function is used for training the model over the entire training set
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where A is a scalar regularization hyperparameter which scales the Frobenius norm of the weight

matrices to prevent overfitting during training.

Backpropagation is used to calculate the partial derivatives of the cost function with respect to
the model parameters, W and W!2. The cost function optimization is done using the fmincg
conjugate gradient descent algorithm from MATLAB. The optimization goal is to find the model

parameters that minimize the overall cost function.

3-1-1-2 Shallow model result

The training set contains 307,200 ColumnPatches taken from a subset of all the RowBlocks
generated from 800 simulated Snow Radar echograms. The NN was trained on a 128 GB, 3.3
GHz, 8-core Red Hat Enterprise Linux server using MATLAB. The simulated 1000 by 256
echogram matrices were decimated to 125 by 64 to reduce the number of inputs and outputs of

the NN.

For testing, 200 simulated echograms with known surface were created. Using the surface
information, the first layer of each echogram was tracked, and this was used to form the row
block for the next/second layer and this process continued until the termination condition was

met. The following a priori information and hyper-parameters were used:
e The number of rows in a row block is set to N,;, = 16.

e A total of N.,;s = 15 neighboring columns were used on each input (7 to the left and 7 to

the right of the column being estimated).
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e The number of NN layers was set to L = 3.
e The number of nodes in hidden layer N = 50,
e no-layer termination threshold y = 0.5, and a regularization term 4 = 50.

An example echogram image is shown in Figure 3-4a with ground truth labels as dashed lines.
The NN layer tracks for this image are shown in Figure 3-4b as colored lines identifying each

layer in the simulated image.

The model’s performance is evaluated quantitatively using root mean squared error (RMSE)

defined below where y in this case represents the index of the selected row rather than the one-
hot encoded output vector. The term, y(i) — }7(0, then represents the difference in rows

between the NN estimated layer location and the ground truth layer location.

T )
RMSE = MZ(y(i) _ Y2

i=1

Overall, an accuracy of 92.8 % was achieved with an RMSE of 0.24 pixels. Accuracy here is
defined as the percentage of the model predictions that exactly match the ground truth. In other
words, the percentage of columns in the test data that the model predicted the exact row/no-layer
state. Also, of the inexact predictions (prediction pixel errors) made by the model, only 2% of

them were greater than 1 pixel.
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Figure 3-4: (a) Simulated echogram image with ground labels as dashed lines. (b) Image

with overlaid prediction for each layer in the echogram

3-1-2 Improved simulated echograms

Following the successful application of the RowBlock algorithm for layer tracking in a
simplified simulated echogram, efforts were made to enhance the simulated echogram’s fidelity
to match actual echogram images. The approach adopted involved identifying and replicating
key physical models underlying the layering and backscatter power of the Snow Radar. This was
achieved by incorporating noise, layer geometry, and echogram signal statistics, all derived from
actual echogram data. The simulator model was then parameterized using statistical estimates
obtained from data collected along a flight line extending from Central to Northwest Greenland,

which spans diverse snow accumulation conditions within the dry snow zone.

3-1-2-1 Layer generation
To simulate echogram images with “near-real” layers, we investigated the layer geometries that

exist in a sample dataset with over 200,000 rangelines (after stacking and other post-processing).
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The geometry of the layers in an echogram image depends largely on the geographic and
climatic conditions of the measurement site. Wet-snow and ablation snow zones usually have
fewer internal layers, with markedly sloped and undulating layer geometry while dry snow zones
have more internal layers which are relatively flat and parallel to each other. It should be noted
that most of the sample dataset used in parameterizing our model comes from the dry snow zone.
However, this is the zone of greatest interest for automated tracking due to the higher number of

persistent layers compared to other snow zones.

Simulating Laver Geometries

Using the manual annotations of the sample dataset, we computed the thickness (snow
accumulation) between consecutive tracked layers to understand the underlying accumulation
random process. The histogram of the layer thickness reveals a Gaussian process with a slowly
changing along-track mean. This suggests that, although there are local variations in each layer
thickness from rangeline to rangeline, there is also a slowly varying trend in the average layer
thickness over space. Another important process is the correlation between the layer thickness of
different layers at a particular location. This is seen qualitatively in an echogram image such that
the layers often share a similar trend in their layer geometry, and this can be attributed to the
weather and topography of the imaged location. This tends to be consistent over time as each
layer is deposited at a site. Therefore, to create layers with similar geometry to that in real data,

all three processes need to be incorporated.

To model the high-frequency local variations, the sample dataset was divided into blocks of 1000
rangelines. We then computed the power spectral density of each layer thickness after

subtracting the along-track mean in each section. Similarly, to capture the slowly varying along-
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track accumulation mean that describes how the mean thickness varies across space, we
computed the mean thickness and variance for each section. In future versions of the simulator,
the autocorrelation function of the low frequency (slowly varying) component of the layer
geometry could be considered instead of mean and variance. Given the different accumulation
rates over Greenland, accumulation can vary a lot between different locations, and this is seen in
the sample dataset. We, therefore, re-grouped the dataset into 4 groups of accumulation zones,
based on the accumulation/thickness of the first layer: shallow, medium, high, and very high

accumulation zones.

Lastly, to partly model the similar trend that exists in the thickness of the first layer and
subsequent layers and the geometry of layers in an echogram, we normalized the layer
thicknesses of all the layers relative to the thickness of the first layer to simulate the correlation
between the layers in an echogram. This was done for all four zones and since the distribution of
the normalized layer thickness is approximately Gaussian, we estimated the mean and variance

of each.

One additional image attribute to note is the number of traceable layers. This parameter is
defined as the number of layers in the echogram with a sufficiently high signal-to-noise ratio that
detection is possible. This parameter is treated as a wide-ranging value from a uniform
distribution for the training to avoid biasing the network's model parameters to a limited number
of layers. The number of layers is randomly chosen from a uniform distribution between a
minimum of 5 layers to a maximum of 40 for each simulated echogram. The mean thickness of
the first layer is then generated from a uniform distribution based on the distribution of the first
layer in the sample dataset and this determines the accumulation zone of the simulated

echogram. Next, the mean thickness of each of the deeper layers is computed by multiplying the
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mean thickness of the first layer with the multiplicative factor drawn from the normalized layer
thickness distribution of the accumulation zone. To add the high frequency rangeline to the
rangeline variation, a random Gaussian sequence with zero mean and unit variance is filtered to

match the power spectral density of the layer thickness as seen in the sample dataset.

The images in Figure 3-5 and Figure 3-6 show the power spectral density of the simulated layer
and real sample data respectively. Although the length of the simulated layer thickness sequence
for each layer is shorter — resulting in a sparser power spectral density compared to the real
data— the overall trend is consistent between them. This matching power spectral density profile
demonstrates that the simulated layer thickness closely resembles that of real data, which
significantly enhances the simulator's ability to generate echogram images that appear more

realistic.

Power spectral density of simulated layer
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Figure 3-5: Power spectral density of simulated layer
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- Real data layer thickness power spectral density
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Figure 3-6: Power spectral density of real data.

3-1-2-2 Layer Power Generation

Like the layer generation process described above, we modeled the backscatter power of the
simulated echogram using statistics derived from the received backscatter in the sample dataset.
The layer scattering response generally follows the shape predicted by the Moore convolution
model for surface altimetry [64]. The shape starts with a fast-rising edge (attributed to the RMS
height of the surface) followed by a slower, exponential-like, decay (attributed to the off-nadir

backscatter) with the tracked layer centered on the peak as shown in Figure 3-7.

Moore and Williams [64] show that the expectation of the power detected waveform for the
surface can be modeled as the convolution of several constitutive elements including the height
distribution of the layer, the pulse-limited footprint, and the expected backscatter. We assume the

Born approximation [65] so that the interaction or multipath between layers can be ignored. We
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model the set of layers as the superposition of each layer independently generated and then

incoherently summed.
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Figure 3-7: lllustration of the normalized average or expected backscatter from a layer.
Following the convolution model, we simulated the response of a layer by convolving a
Gaussian waveform, which approximates the height distribution of the layer, and an exponential
decay waveform, which approximates the combined pulse limited area and layer backscatter roll-
off. The peak of the Gaussian is aligned with the tracked layer location and the combined return
for a range line is the linear superposition of these convolved waveforms — one for each layer in
that range line. Snow Radar scattering tends to be incoherent because scatterers that form a layer
vary randomly throughout the snow volume that constitutes the layer. Therefore, rangelines

typically have minimal to no phase correlation with neighboring rangelines.

This incoherent backscattering assumption, which is the basis of the above convolution model, is
supported by the Doppler spectra along snow layers. In general, the spectrum is broad without

distinct coherent peaks. The histogram of the Snow Radar data in the sample dataset, which

46



includes along-track incoherent averaging, shows that the distribution of the peak power along a
layer fits a Chi-square distribution. Using the scaled superposition waveform as the mean power,
a Gaussian random process was created to simulate the expected power returns from each
rangeline. We then power detect and incoherently averaged multiple simulated rangelines to

create the final simulated rangeline with the appropriate Chi-square distribution.

To parameterize the layer power generation, the mean power for layer [, denoted, m;, is found by
taking the average power of the bin that is manually tracked across all rangelines where the layer
is defined. The mean power represents the backscatter received by the radar for each layer and
therefore encapsulates backscatter cross-section, attenuation, and other effects. We estimated the
width of a layer by calculating the range bins it took for the peak power to decline to e~! of the
layer peak return for all well-defined and tracked layers in the sample dataset. Based on the
resulting histogram of the estimated layer width, we approximate the width of the layer peaks,

d;, by a uniform distribution between 10 to 15 range bins or rows.

The estimated along track mean peak power, m;, for each layer is used to scale the convolved

exponential and Gaussian waveform and the resulting range line signal power is given by:

_ —(x — w)?
P = z m exPle & U(x) exp(—a;x) )

where

e P is the expected backscatter power waveform for each rangeline.
e x is the fast time pixel index

e U(x) is the unit step function
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e L is the number of layers in the range line

e m; is the mean peak power for layer

e 1 is the location or row of layer 1,

e d; is the width of layer / pulled from a uniform distribution from 10 to 15 rows, and

e q; is the exponential decay rate of the layer.

The values of m;, d;, and q; are all estimated from the sample data. To estimate the decay rate of
each layer, all rangelines in the sample data are grouped into K groups of 20 consecutive
rangelines each. Each group was then incoherently averaged in the along-track dimension to
produce a single filtered range line per group. Note that the data are already incoherently
averaged and decimated by five during the process to generate the echograms, so the total
number of incoherent averages is 100. This ensemble of K filtered rangelines is then used to find

the backscatter peak power, Ppeqk ik, and the minimum power, Pyyin ik, between this and the next

peak, for each filtered range line £ € 1,...,K and each layer / € 1,...,L.

The backscatter peak power Ppeqp 11 generally corresponds to the location of the layer since the

tracked layer follows the peak power. Using the range bin distance between the peak and the
minimum for each layer and filtered range line, b;;,, we compute the estimated decay rate for

each layer as follows:

(7

K
1 P
a = _z(—l / bu) * 108( mmlk)
Kk:l Ppeak,lk
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As described in Equation (7), the decay rate, «;, is estimated from the average of the exponential
curve fitted between peak power Ppeqp 1 and minimum power, P i » for K adjacent

rangelines.

We concluded the signal statistics analysis by estimating the background thermal noise power,
P,, from the sample dataset by estimating the power of the received signal before the surface
return arrives under the assumption that there are no targets above the surface so that only
thermal noise is present in the part of the image used to estimate the thermal noise. The expected
thermal noise power is also assumed to be constant. The complex signal and additive noise are
both pulled from additive white complex circular Gaussian noise which is then scaled by the
expected signal, P;(x), and noise power P,. Thus, the power detected rangeline with signal and

noise is given below as

Py = |S(x)vf’s(x) +n(x)y/P, |2 (8)

The distribution of the power detected signal follows an exponential distribution. The final step
in the simulator is to incoherently average M = 100 rangelines together followed by decimation
in along-track by M. This results in a Chi-squared distribution with 2M degrees of freedom. This
is done in the data processing to reduce signal fading which helps produce smoother and better-
delineated layering in the images. Examples of echogram images simulated from this approach

are shown in Figure 3-8 and Figure 3-9.
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Figure 3-8: Simulated echogram image using improved model

Figure 3-9: More simulated echograms with different number of layers and layer shape
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3-2 Row Block on actual echogram images

The enhanced simulated echograms exhibit greater realism, closely resembling actual
echograms. This improvement also increases the flexibility in manipulating echogram features,
such as the number of layers, the shape of internal layers, and the along-track distance of the
echogram, enabling the creation of a diverse simulated echogram dataset. To further supplement
the limited supply of manually annotated real echograms, these simulated echograms were
combined with additional synthetic images generated by conditional Generative Adversarial

Networks (cGANSs) to produce "near-real" echogram images.

However, despite these improvements, applying models trained on simulated images directly to
real echograms did not yield the anticipated results, with minimal performance gains observed.
This outcome, though somewhat expected, underscores the models' insufficient robustness in
capturing the complex features inherent in echogram images. While visually improved, the
simulated echograms still fail to encapsulate the underlying random processes necessary for deep

learning models to effectively track layers.

Echograms, unlike optical images, are characterized by specific challenges such as signal fading,
speckle noise, interference from non-nadir scatterers, and other system imperfections typical of
SAR data. These factors, when severe, degrade image quality and complicate layer tracking,
even for human analysts. Although further investigation could potentially improve the simulator
and clarify why simulated images did not significantly enhance performance, the research focus

was shifted to working directly with real echogram images.
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Plot of data flight line over Greenland
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Figure 3-10: Map of Greenland showing the flight line used for estimating the statistics used

Sfor the simulated RowBlock echograms

Next, we began experimenting with various deep learning architectures using manually
annotated datasets to identify the most effective architecture for modeling and learning from real
echogram data. To begin, a pilot dataset with echogram image and annotated ground truth was
selected. Figure 3-10 shows the flightline from which the initial manually annotated echogram
dataset was derived. This dataset comprises of 1,272 training echograms created from one
flightline. The performance outcomes and limitations of tested architectures are detailed in the

following sections.

3-2-1 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are a specialized class of deep learning models designed

to process and analyze visual data, though they have also been effectively applied to other data
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types such as audio and text. They have become the cornerstone of modern computer vision tasks
such as image classification, object detection and image segmentation. They are particularly
effective because they can automatically and adaptively learn spatial hierarchies of features from
input images, which allows them to handle the complexity of visual data more efficiently than

traditional neural networks.

CNN s are composed of multiple layers, each responsible for extracting different levels of

abstraction from the input data. The key layers in a CNN include:

1. Convolutional Layer: This layer is the core building block of a CNN. The convolutional
layer applies a set of filters (also known as kernels) to the input image. This set of
learnable filters scans the input image, performing a dot product between the filter
weights and the input data. These filters are usually small matrices (e.g., 3x3, 5x5) but
could be larger for specific applications. They slide over the input data to extract features
such as edges, textures, or patterns. This operation is called a "convolution," which gives
CNN s their name. The output of the convolution operation is the “feature map” that

represents the presence of specific features in the input image.

2. Activation layer: After the convolution operation, the output is passed through an
activation layer (usually the ReL U activation function). This is an element-wise operation
that replaces all negative pixel values in the feature map with zeros, which introduces
non-linearity into the model, allowing it to learn more complex patterns. The sigmoid

activation is also a common choice particularly on the output layer.

3. Pooling layer: This layer is used to reduce the spatial dimensions of the feature maps

while retaining the most important information in the input. The most common type of
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pooling operation is max pooling, where the maximum value is selected from a group of

values in the feature map.

4. Fully connected layers: This layer is used in classification CNN models but not in
segmentation networks. After the series of convolutional and pooling layers with
intermediate non-linear activation layer insertion, the final high-level reasoning in the
neural network to determine the appropriate class is done with the fully connected layer
in the classification network. The alternative is the segmentation head in segmentation

networks.

CNNs are widely used in deep learning due to their ability to perform template matching at
different image scales, translation and illumination invariance to achieve remarkable results.
Fundamental to the success of CNNss is the pooling operation. Its key function is to reduce the
spatial size (width and height) of feature maps while trying to preserve the most important

features within them. This reduction in dimensionality offers several advantages.

Pooling makes CNNs more efficient by lowering the number of parameters and computations
after convolution. It reduces the number of values needing processing in subsequent layers,
leading to faster training and reduced processing power demands. It also improves the robustness
of the network by capturing the essential features within a local area making the network less
sensitive to slight positional variations in the input data. This property, known as translation
invariance, allows the network to recognize the same object even if it appears slightly shifted in
the image. This translational invariance property of convolutional neural network is mostly due
to the convolution operation performed at each image scale, but the pooling operation also

contributes to this. Importantly, pooling helps to control overfitting which happens when a model
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memorizes the training data too well and performs poorly on unseen examples. Pooling reduces
the complexity of the data representation, making it harder for the model to simply memorize

details and encouraging it to learn more generalizable features.

However, the attempt to implement 1D and 2D CNNs did not yield good performance. This is
most likely due to the small dimensions of the input ColumnPatch. This precludes the application
of successive pooling operations which ultimately limits the performance of the CNN
architecture. Exploring larger ColumnPatch sizes by removing the undersampling in their
generation or inclusion of a greater portion of the image is a potential avenue for future work that

would allow testing this hypothesis of the CNNs poor performance.

3-2-2 Multilayer Perceptron (MLP)

MLP is a supervised learning algorithm architecture consisting of fully connected feed-forward
artificial neurons with an input layer, one or more hidden layer(s) and an output layer. It is a
specific type of artificial neural network with all the nodes in the layers densely connected.
During training, through a series of forward pass and error back propagation, the network learns
to approximate the latent input-output distribution. The MLP is known to be close to the
universal approximator when given sufficient depth and/or width. This property makes it a good
candidate for modeling input-output relationships between rangeline backscatter and the internal

layer range index.

However, there are limitations to the vanilla implementation of the MLP. Having just one hidden
layer with a lot of nodes makes it susceptible to overfitting the training data and will also suffer

performance degradation with increased layer depth [75]. To combat this limitation, we trained a
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variant of the classical MLP termed “Skip-MLP” which uses ResNet blocks and successive skip
connections between all adjacent blocks. The skip connections serve as identity functions that
easily allow gradient flow during model forward and backward optimization pass, effectively

increasing convergence speed while mitigating vanishing or exploding gradients.

Skip connection
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Column
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Fully connected layer
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Dense layer D
BatchNorm X
Activation
Dropout

Figure 3-11: Architecture of the SkipMLP model

The SkipMLP network (shown in Figure 3-11) consists of D, repeated blocks of sandwiched
dense layers, batch normalization layers and non-linear activation functions. The nodes in the
dense layers act as an approximation of a universal estimator whose weights are optimized
during the training. The batch normalization layer normalizes the network weights every training
batch to settle the learning process, thereby drastically reducing the number of training epochs. A
Rectified Linear Unit (ReLU) differentiable activation function is applied before the dropout

layer to help the model learn nonlinear mappings that may exist in the data.
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The depth D, of the network and the width (number of nodes in the hidden layer) are
hyperparameters carefully chosen to achieve desired model performance. To avoid overfitting
the training data due to increased parameterization, both batch normalization layer and dropout

layer are used to provide regularization in each block.

Taking inspiration from the popular ResNet architecture, each block is connected to previous
blocks through the skip connections. However, we extend this to form interconnection between
all the blocks instead of just adjacent blocks i.e. all the blocks are connected to one another
through skip connections. Skip connections have been shown to significantly reduce model
inference cost by as much as 50% on datasets such as CIFAR-10 [76]. The strength of the
SkipMLP architecture is that with the interconnected skip connections between all the blocks,
every layer of the model can learn from all prior layers thereby reducing the chance of
information loss during training. The skip connections also serve the additional purpose of
preventing exploding or diminishing gradients while also preventing information degradation
problem due to architecture depth since earlier inputs are always available. We used the softmax
activation function on the output layer consisting of N,.;, + 1 nodes as described in the basic

single-hidden layer ANN earlier in this chapter.

3-2-3 Long Short-Term Memory with Position Embedding (LSTM_PE)

Given the inherently sequential nature of the geospatial information captured in the columns of a
ColumnPatch, a recurrent neural architecture is a good fit to exploit this implicit property. Of the
known Recurrent Neural Network (RNN) deep learning architectures, the LSTM is reported to
have better performance on similar tasks because of its ability to model longer-range patterns

[77], [78]. The long-term dependency modeling ability of LSTM helps it achieve better
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performance by allowing the network to effectively capture and remember important information
from earlier in the sequence, which is crucial for making accurate predictions or decisions later
in the sequence. Therefore, we designed a version of the LSTM to track the index of layers in

each training ColumnPatch.

LSTM’s major component is the memory cell also known as “cell state” which keeps track of the
information state in the network as weights are updated during training. LSTMs also have the
forget, input and output gates that act as filters to control information that can be added or
removed from the cell state based on the current input x; and the output from previous time

step hy_q.

Figure 3-12: Architecture of the LSTM model

The equations in (9) describes all the gates, their interconnections and activation functions used

in a LSTM model based on the seminal paper [79].
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F, = o(x, U + he_ W)
i, = o(x Ut + he_ W)
Z; = tanh(x,U% + hy_ W?) ©)
0 = o(x,U° + hy_ W?°)
Ct = 0(Fy x Cpoq + g x Zt)

ht = tanh(Ct) * O¢
where t is the time step, x is the current input, and
h;_4 is the previous hidden state.

U is the weight matrix that connects the inputs to the hidden layer while W is the recurrent

connection between the previous hidden layer and the current one.

F, I, Z describe the forget gate, input gate and the candidate hidden state. C is the next cell state

formed while o is the output gate which is also the next hidden state.

Although the RowBlock creation and the number of resulting ColumnPatch’s drastically expands
available training data needed for deep neural network training, there is a tradeoff in the depth
information captured by each ColumnPatch. However, this can be easily compensated for. A
ColumnPatch from a RowBlock captures spatial information from adjacent columns that helps in
tracking the layers in the RowBlock columns but does not fully capture depth correlation with
deeper layers contained in the echograms. Concretely, if two ColumnPatches come from
different RowBlocks (layers), but the same echogram, are provided as input to the neural
network, the ColumnPatches, by themselves do not contain explicit information that would help
the network learn the relationship that exists between layers at a given geographic location. This
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distinction is important because of the radar power fading phenomena associated with returns for
deeper internal layers. In this sense, although ColumnPatch’s can be viewed as independent and
identically distributed (i.i.d) inputs to the model, auxiliary depth information will improve the

model’s performance.

We therefore supplement each ColumnPatch with its location index in the originating echogram
and provide this as auxiliary input to the LSTM. The integer location index is derived from the
originating echogram as the index of the total ColumnPatch formed from the echogram. For
example, for an echogram with a total of 1500 ColumnPatches, the location index of the first and
last ColumnPatch are 1 and 1500 respectively. The location index effectively adds depth and
additional spatial information to each ColumnPatch input which considerably improves the

model’s performance.

Similar to image patches used in Vision Transformers [30], the derived location index is
projected onto a learnable position embedding space spanning the entire training ColumnPatches.
The weights of the embedding are randomly initialized and eventually learned during training.
Conclusively, the input to the LSTM_PE model is the sum of the ColumnPatch and its embedded

location index.

Deep LSTMs are usually prone to overfitting because of the large number of parameters when
the model is unrolled. To avoid this, we apply recurrent dropout which uses the same pattern of
dropped units instead of varying dropout mask at every timestep. Finally, similar to SkipMLP,
we apply a softmax activation function on the final layer to output the index of the next layer in a

given input ColumnPatch.
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3-2-4 Experimental setup

As shown in Figure 3-10, the dataset used for creating the RowBlock dataset was collected in the
Spring of 2012 from the dry snow facies around the ridge of the Greenland ice sheet. Owing to
high elevation and low temperature, little to no annual melt occurs in this region resulting in
well-preserved annual stratigraphy. As a result, the imaged echograms capture historical
accumulation spanning over four decades. The internal layers in the echograms were manually
tracked using semi-automated layer picking software in the Open Polar Radar Toolbox
developed at CReSIS [80]. The picking tool is based on the Viterbi algorithm [81] with
implementation details in [45], [48]. A total of 1786 echogram blocks were tracked, with 50%
overlap between consecutive blocks. Also, only the top 28 layers were tracked to maintain

consistency in the tracked echograms.

Splitting the echogram matrix into RowBlocks and ColumnPatches effectively expands the
limited manually annotated ground truth data to a total of 2,094,400 ColumnPatches which forms
a dataset large enough to train a deep neural network. However, a methodological approach is

required to divide the data into echogram training, validation, and test sets.

First, the ColumnPatches in each set should be diverse and represent the different accumulation
patterns in the entire dataset to train a “generalizable” model. Secondly, and more importantly, it
is crucial to carefully separate ColumnPatches derived from echograms in the training set from
those in the test and validation sets. Creating ColumnPatches first from all available echograms
and dividing them into train and evaluation sets can result in data leakage because
ColumnPatches overlap each other so that using a ColumnPatch in training that has a lot of

overlap with a ColumnPatch in the other sets could lead to biased results.
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To avoid both issues, we employed a simple interspersing of the echograms following the order
of the echograms along the contiguous flight path which transverse different accumulation
conditions, although the flight path was mostly over the dry snow zone. Concretely, the final test
set was created by alternating every 20 echograms to make a total of 200 echogram test set. We
followed the same pattern to create the training and validation set to give a split of 1232 training
echograms and 354 validation echograms. This approach ensures that each set is independent
with no leakage of information between sets and that each set covered a diverse set of snow

accumulation patterns in order to reduce the chance of covariance shifts between the sets

Distribution of targets in Training set Distribution of targets in Testing dataset
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Figure 3-13: Distribution of targets (number of rows to the next layer) in the training set, test

set, validation set and the entire dataset.
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3-2-4-1 Implementation details

Initial echogram matrices of size 1664x256 were decimated by 4 to 416x64 to keep the training
time and compute expense tractable. The RowBlocks are formed from the decimated echograms
invariably dictating the layer spacing and the value of N,,,. We set N, = 21 and Ny = 7
resulting in an input shape of 21x15 for both models. The training and validation set consist of
1,508,660 and 377,164 samples respectively. For SkipMLP, we used 512 nodes in each dense
layer and a dropout of 0.3 in each block. A total of D,, = 10 blocks were used to increase the

representation power of the model.

Similar hyperparameters were chosen for the LSTM_PE model. Each layer has 512 hidden nodes
and a recurrent dropout rate of 0.3 between each layer. We limited the depth of layers in

LSTM _PE to D, =3 to avoid overfitting the training set. This resulted in 7M and 10M trainable
parameters for the SkipMLP and LSTM_PE models respectively. Adam optimizer was used for
both models with an initial learning rate of 1e-3 that is reduced by a factor of 0.25 after 30
epochs at a plateau and trained for a total of 200 epochs. We trained both models with a batch
size of 128 on a single Intel(R) Core(TM) 19-10900K 5.3GHz CPU with NVIDIA RTX A5000

GPU.

3-2-4-2 Model Results

We report Accuracy, Precision, Recall, and F1-score for both models in Table 2. The accuracy is
defined as the percentage of predictions made by the model that exactly match the ground truth
labels (i.e. the total of all the correct predictions divided by the total of all predictions). This

domain-specific accuracy provides a direct measure of the model's performance in correctly
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identifying the correct layer pixel in each test ColumnPatch. Precision refers to the proportion of
correct predictions for a particular class (true positives) divided by all predictions to that class
including predictions that should have predicted a different class (true positives plus false
positives). Precision indicates how well the model avoids false positives. Recall is similar but
divides the correct predictions (true positives) for a class by the total number of instances for that
class including predictions that were assigned to other classes (true positives plus false
negatives). Recall reflects the model’s ability to capture all instances of a class. The reported
values of Recall and Precision are the weighted average of the recall and precision of each class
where the weighting is based on the frequency of each class in the test dataset. This weighted
approach ensures that the performance metrics reflect the distribution of classes, providing a
more balanced evaluation of the model's ability to generalize across different classes. Finally, the
F1-score is the harmonic mean of precision and recall (i.e. the reciprocal of the mean of the
reciprocals of precision and recall) — the harmonic mean is designed for averaging rates or

percentages.

Table 2: Performance metrics for the Skip-MLP and LSTM-PE

Metric Skip-MLP LSTM-PE
Accuracy 0.81 0.88
Precision 0.78 0.89
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Metric Skip-MLP LSTM-PE

Recall 0.81 0.88

F1-score 0.80 0.89

For all the metrics reported, the LSTM_PE model achieves better performance than the

Skip MLP. This is likely because of the latent sequential structure in rangeline information that
is exploited by the LSTM architecture. While the Skip MLP model's performance is fair, the
flattening of the input ColumnPatches obliterates spatial information in the data and this might
be responsible for the slight performance dip. This proves that incorporating “some” of our
knowledge of the data in the design of the model architecture has potential gains. The recurrence
of the LSTM architecture is able to take advantage of the sequential layer information in the
columns of the input ColumnPatch to achieve better performance. However, attempts to increase

the modeling power of the LSTM by increasing D, > 3 led to the exploding gradient RNN issue.

3-2-4-3 Reconstruction of Echograms from ColumnPatch predictions, result and discussion

The goal of the automatic trackers is to track the internal layers in radar echograms; not in the
independent ColumnPatches. Therefore, we apply the models to track internal layers in the 200

test echograms forming RowBlocks and ColumnPatches and report the performance.
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Again, we highlight the difference in the algorithm's routine during training and inference. For
training, the tracked internal layers (ground truth) are available and the row block for a layer is
formed using the tracked layer from ground truth. However, at inference time, only the echogram
and the tracked surface are available. The routine to reconstruct the echograms from the

ColumnPatches and track the internal layers is outlined below.

Given an echogram and its tracked surface, the goal is to track all the internal layers with the
total number of layers unknown apriori. The first row block is formed using the available surface
and the model is used to predict the next layer location in each ColumnPatch. The result of this is
then used to form the next row block from which the next (second) internal layer will be traced.
This continues until all the internal layers in the echogram are traced and the model returns "no-
layer" for all the columns in the last row block formed. However, there are few situations that

might affect the overall tracking performance in an echogram.

First, due to the sequential nature of the layer predictions, an error in an earlier row block can
cascade to deeper layers resulting in overall poor performance. An example of this is when the
prediction for a ColumnPatch in the current row block is wrong e.g. it is several pixels different
from what it should be. In simple cases where there are only rare occurrences of this, it is
somewhat easy to detect and correct. Since it is expected that the predictions of adjacent columns
should be similar, then, a sudden spike in layer location is not physically meaningful and can be
detected. We detect such few occurrences using a simple local mode filter applied to each layer
prediction to detect predictions that may be off. The identified wrong predictions are replaced
with the modal values of neighboring ColumnPatches. This solution is not robust to larger

groups of errors.
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In cases where some ColumnPatches in a row block incorrectly return a "no-layer" class, it
becomes difficult to create the next row block since a complete prior layer prediction is needed
to create the next row block. We can categorize these missing layer detections into three main

scenarios:

a. Deeper Layer: The “no layer” might be correct and the true layer is located
deeper in the snowpack than the current row block size can capture. This can
happen when there is a lot of snow accumulation in a single year so that the layer

is thick enough to be thicker/deeper than our row block is.

b. Truly Missing Layer: The scattering from an annual layer may not be enough to

distinguish it from the background.

c. Model Prediction Error: In some cases, the model might simply make a

mistake.

The adjacency of the missing layers can help distinguish which situation is at play - if all the
columns return the "no-layer" class, it is believed that there truly is no layer in those columns,

otherwise, it is deemed a false negative prediction. To correct the issue and form the next row

block, we use % as a "placeholder layer" but do not include this in the saved tracked layer.

Lastly, the tracker could stop too early if it receives a "no-layer" class for all the ColumnPatches
in a row block. To avoid this, the inference routine does not stop the first time all the

ColumnPatch predictions return "no-layer" except when the prediction is already at the bottom of
the input echogram. Again, we use % as a placeholder layer to form a "tentative row block" to
search if there are still deeper layers. It is when this also returns all "no-layer" class that the

iterative routine quits.
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3-2-4-4 Tracking error analysis

The metrics reported in Table 2 highlights the performance of the models on the ColumnPatches
and not directly on the tracking accuracy in echogram images. Hence, new metrics that
investigate the tracking efficiency of the models are introduced. We used a variant of the well-
known mean absolute error termed N-pixel accuracies. The N-pixel accuracy is calculated by
comparing the prediction with the ground truth and reporting the percentage of absolute errors

that are above a certain number of pixels.

M
1 . .
Npixel—accuracy = MZ |y(l) - y(l)l <=N

i=1

(10)

where y(i)is the ground truth and jl\(i) is the model’s prediction both for the (i)th example.

M is the total number of echograms in the test set.

Table 3 shows the N-pixel accuracy for the 200 test echograms for both models. This result is on
the decimated echogram of size 256 x 64. In all 3 reported accuracies, LSTM_PE performs better
than Skip MLP. The 1-pixel accuracy is the toughest to achieve because it requires that the
prediction and the ground truth label match exactly. 2-pixel and 3-pixel accuracies allow some
room for imprecision in the models’ predictions.

Table 3: N-pixel accuracy for the Skip-MLP and LSTM-PE

Metric Skip-MLP LSTM-PE

1- pixel accuracy 0.725 0.782
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Metric Skip-MLP LSTM-PE

2- pixel accuracy 0.762 0.798

3- pixel accuracy 0.805 0.830

Figure 3-14: (a) Decimated and filtered echogram (b.) Annotated Ground truth (c) Skip MLP

predictions and (d) LSTM_PE predictions
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Figure 3-15: (a) Echogram with Skip_ MLP predictions (in red) and LSTM_PE predictions (in cyan)

(b) magnified view

3-2-4-5 Application to other untracked flight lines

There were setbacks when attempting to apply the models trained with the RowBlock algorithm
to echograms from flightlines other than the one used for training. Initially, these flightline
echograms needed to be decimated to match the training configuration. The model performed
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moderately well on a few handpicked echograms that were very similar to the training set but
was very brittle when the echograms slightly differed. This poor generalization is likely because
the N,= 21 used for training did not match the layer statistics of the new dataset. While
extensive research can be done to optimize the choice of Ny, that will generalize broadly to the
large untracked dataset, the high variability of spatial accumulation over the polar ice sheet

suggests that there is likely not one value that can generalize to multiple flightlines.

3-2-5 Initial efforts of applying deep learning models to Skm echograms frames

The success of the RowBlock algorithm on its test set demonstrated that deep learning
algorithms are a viable option for snow layer tracking. However, given the limitations of the
current implementation of the RowBlock algorithm, the focus was shifted toward exploring deep
learning models that can process "full echograms" without the need to first disassemble them
into smaller units. Such algorithms will take full advantage of long-range spatiotemporal
information inherent in full echograms, enabling them to not only identify the layer pixels but
learn generalizable features such as the spatiotemporal correlation between layer pixel values and

layer spacing in both along-track and layer depth axis.

This approach, however, comes with the associated challenge of requiring a large dataset to
effectively train the models. Along with this are the required computational resources needed to
train such models. To begin this effort, we experimented with decimated echograms to mitigate

the computational needs.
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The initial goal at this stage of the research is to train using the available decimated echograms to
assess the feasibility of using deep learning models for accurate snow layer tracking in full
echogram images. If successful, these models can be scaled to handle full-sized echograms, with
the expectation that more ground-truth echograms will be generated to support further model

development and validation.

3-2-5-1 Binary segmentation on decimated echograms

Two models were designed to investigate two different image segmentation paradigms: namely
binary image segmentation and deep-tiered multi-layer segmentation. Details of the training
paradigm and model architecture are delayed to sections 4-4-1 and 4-4-2 respectively. Here, we
only show the qualitative performance of the designed model as proof of concept for applying

image segmentation deep learning models directly to “whole” echogram images.

For binary segmentation, we designed the well-known U-Net [82] architecture with slight
modifications. The U-Net architecture is so-called because the encoder and decoder network are
stacked beside each other to form a U-shaped architecture with skip connections between
corresponding levels. Figure 3-16 shows the symmetrical U-Net encoder-decoder architecture

with shared skip connections between contemporary feature map stages.
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Figure 3-16: U-Net binary segmentation architecture

At the input of the encoder, decimated echogram images of size 416x64 are fed in and this is
followed by blocks of convolutional layers. The first convolutional layer has an asymmetric filter
size of 7x5 to account for the difference in the height and width of the radar image. Other filters
used in the convolutional layers in the contraction and expansion path are symmetric 3x3 filters.
The subsequent convolutional layers have a dropout layer, batch normalization and ReLU

activation function but these are not shown in the figure to avoid overcomplicating the diagram.

Each convolution block, dropout, and batch normalization layer in the encoder path is followed
by a 2x2 max pooling represented by the gray arrow to downsize the image so that the next
convolutional layers can learn local features from a downsized image. Similarly, each block in
the decoder path is first concatenated with the corresponding image of equal resolution in the

encoder path, followed by two convolutional layers, and then is upsampled by a 2x2 kernel to

73



resample the image to finer resolution. The up-convolution operation is depicted by the “black”
arrow in the network image. The series of convolution, downsampling, upsampling and
concatenation of the encoder and decoder blocks helps the model to learn both global features at
low resolution and local features at fine resolution and the correlation between them — hence the
ability of the network to perform the segmentation of the layers.

The model is trained with the Nesterov-accelerated Adaptive Moment Estimation (NAdam)
optimizer using a binary-cross entropy loss function for 100 epochs. To combat the effect of
class imbalance between the less abundant layer pixels and more abundant no-layer pixels, we
applied a 1:10 ratio class weighting and also used focal loss in addition to cross entropy loss as

the model’s objective function.

Figure 3-17 and Figure 3-18 are qualitative outputs of the model when used for inference on the
test set. As can be seen from both images, the model shows promising results in tracking the
layers in the decimated echograms. This indicates that training the models on the complete
echogram is a viable approach. In Figure 3-17, the echogram has a very simplistic and almost
perfectly straight layer structure which may suggest that the trained model can only track those

but Figure 3-18 shows that the model can learn sloped orientations too.
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Figure 3-17: Example binary segmentation algorithm qualitative output on a decimated image

(a.) Decimated image (b.) Ground truth (c.) Model Output
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Figure 3-18: Two more examples of binary segmentation algorithm qualitative output on
decimated images. (a.) Decimated image (b.) Model output

3-2-5-2 Multiclass semantic segmentation on decimated images

76



Similarly, a vision-transformer based model was developed to apply multi-class semantic
segmentation architecture on the decimated echogram. Again, although this architecture is
introduced here, a comprehensive discussion of the multi-class semantic segmentation
architecture is deferred to Sections 4-4-2 and 5-2.

The vision-transformer architecture employs the layer isomorphism paradigm such that no
decimation was done in the architecture to ensure that the input dimension matches the output

dimension needed for pixel-wise dense classification.

The number of multiclass layers in the training echograms was limited to the top 30 layers in

each echogram. Table 4 shows the training hyperparameters.

Table 4: EchoViT training hyperparameters

Echogram Vision Transformer Training Hyperparameters
Batch size 4

Learning rate le-3

Number of heads 20

Number of Transformer layers 10

Input image shape 416x64

Embedding dimension 416

MLP dense units [2048, 1024, 512, 64]
Convolution stem activation function GeLU

Prediction Full Convolution activation Softmax

function

Number of prediction classes 30
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Number of epochs 250
Loss function Categorical Cross Entropy

Test Accuracy 93%

Accuracy is usually not regarded as a good metric for segmentation tasks because of the class

imbalance and possible misalignment of ground truth and prediction pixel values. Instead, other

metrics that more accurately reflect model performance are presented in the table below.

Table 5: Semantic segmentation metrics for semantic segmentation of decimated echograms

Layer Precision Recall Fl-score Class support
0 0.990 0.990 0.990 2486464
1/0.970 0.970 0.970 142912
21 0.950 0.970 0.960 196928
3 0.950 0.950 0.950 154112
410.920 0.940 0.930 115520
510.940 0.930 0.940 109056
6| 0.930 0.950 0.940 87232
71 0.970 0.950 0.960 135936
81 0.960 0.960 0.960 125888
91 0.950 0.950 0.950 123776

10 |1 0.940 0.940 0.940 126720
11/ 0.940 0.940 0.940 129600
12 1 0.940 0.940 0.940 143168
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Figure 3-19: Two examples of semantic segmentation algorithm qualitative output on

decimated images. (a.) Decimated image (b.) GT (c.) Raw prediction (d.) Filtered prediction
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The promising results of the binary segmentation and multiclass segmentation on the decimated

echogram images motivated the pursuit of a more extensive implementation on full echograms.

However, a detailed look at the segmentation results, particularly the semantic segmentation,
suggests overfitting of the model but further work was not done to verify or correct this since the
initial goal was only to confirm the viability of the approach using the decimated images but to

train a larger dataset with full sized echograms.
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Chapter 4 METHODOLOGY (2)

4-1 — Creating large-scale dataset of full echograms.

An important goal of this research is to create a larger and standardized echogram dataset
consisting of well delineated training, test, and validation sets that can support the training of
various deep learning algorithms. Standardized datasets are crucial for applying deep learning to
novel scientific problems. They establish a common ground for researchers, enabling fair
comparisons of deep learning model performance across different architectures and training
methods. Reproducibility of results is ensured, fostering scientific progress through verification
and iterative development. Moreso, collaboration and data sharing become efficient which is
particularly valuable for data-intensive problems such as the radar echogram layer tracking. The
hope is that providing such standardized datasets will streamline the future research efforts by
eliminating the need for individual data pre-processing, saving researchers valuable time and

effort and paving the way for efficient scientific discovery through deep learning.

While the volume of training data is undeniably important for the success of deep learning, true
progress depends equally on the quality and diversity of that data. This implies leveraging prior
knowledge gained from earlier experiments to better condition the data used to create the dataset,
thereby achieving performance gains. The integration of domain-specific insights into the data

preparation process is crucial for optimizing the dataset's utility in training effective models

For instance, an examination of echogram images reveals certain characteristics that may be
challenging for algorithms to correctly identify and track internal layers. Using the echogram

image in Figure 4-1 as an example, although some layers beneath the surface can be seen, many
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are faint and may be difficult to track by traditional methods. This suggests that additional signal
processing-based preconditioning of the echograms could enhance the delineation of the layers,
thereby improving the performance of the proposed automatic layer trackers. Such preprocessing
steps are essential to highlight the features in the echograms that are critical for accurate layer

tracking.

Therefore, prior to applying the deep learning algorithm to the echograms, the following
preprocessing steps were applied in the order outlined below to better delineate the interface

between successive snow layers.
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Figure 4-1: Snow Radar echogram image
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4-1-1 Surface tracking

Figure 4-1 depicts an echogram before surface flattening. Variations in terrain relief and aircraft
elevation cause the surface index of the received backscatter to vary along the flight line.
However, to enhance the visualization of internal layers and facilitate along-track processing -
such as incoherent averaging of neighboring rangelines - it is crucial to represent the surface in

the echogram image as perfectly flat.

Since the surface bin in a rangeline typically corresponds to the first significant peak in received
backscatter, adaptive threshold techniques can be readily employed for its detection and tracking.
Consequently, traditional signal processing approaches are used for surface tracking, while deep

learning is reserved for the more challenging task of tracking closely spaced internal layers.

The air-snow interface, or surface, is the first layer detected within an echogram data matrix.
This surface marks the initial point of interaction between the radar signal transmitted from the
aircraft and the ground snow, resulting in a significant increase in backscatter power compared to
earlier received signals. Although the surface return is not confined to a single fast-time bin,

there is a noticeable rise in backscatter as the radar pulse encounters the surface.

Due to variations in backscatter power and surface return across different rangelines, an adaptive
threshold is required to accurately track the surface bin. To address this, an adaptive detection
algorithm was developed, utilizing each rangeline’s data to estimate the threshold. This approach

ensures reliable and precise surface tracking despite the inherent variability in the echogram data

Concretely, we employ a form of Cell Averaging - Constant False Alarm Rate (CA-CFAR)

algorithm to set the dynamic threshold for each rangeline. The noise floor estimation for each

84



rangeline is achieved by applying a finite median filter to returns preceding the surface which
comprise only noise since there are no detectable targets above the surface. A constant power
offset (P_offset) is then added to this estimated noise floor to dynamically set the minimum
surface bin power threshold for each rangeline, corresponding to the rising edge of the peak

return.

These thresholds are further constrained using the surface index estimated from a digital
elevation model (DEM) obtained from radar altimetry. Each rangeline’s DEM surface bin
estimate is derived by synchronizing DEM data with the radar’s location and fast time sampling
to get the corresponding radar two-way travel time and range bin index. The CA-CFAR
threshold and the DEM estimate are combined to create a constrained search window from which
the maximum return index is chosen as the rangeline’s surface bin. Finally, a Savitzky-Golay
filter is applied to the tracked surface bins from all the rangelines in the echogram to create a

smoothed surface-bin 1-D contour vector.

4-1-2 Surface flattening

The tracked surface serves as the reference layer for subsequent layers that may exist in an
echogram. After tracking the surface bin in each rangeline, these bins are aligned to create an
echogram representation that mimics a perfectly flat surface. This improves visualization of
internal layers, their correspondence to annual accumulation, and facilitates subsequent signal
processing like along-track filtering. To align the surface bin, a rangeline (typically the first in
the echogram matrix), is set as the reference and other rangelines or image columns are shifted
up or down so that the fast time index of their surface bin matches the reference. The shift is
implemented using linear interpolation. This operation is also reversible allowing the flattened

echogram to be returned to its original state if necessary.
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4-1-3 Averaging and filtering

The backscatter from a resolution cell of snow volumetric scattering at S and C-band is usually
modeled as a random process [83] due to the snow grain size and its interaction with the radar
signal wavelength. This stochasticity is seen in the high variance of the backscattered power for
each rangeline which can obscure the snow internal layers, particularly for weak deeper layers.
Prior to coherent and incoherent averaging, it is difficult or sometimes impossible to identify the
layer peaks. To enhance the visibility of the layers and the performance of the layer tracker
algorithms, a boxcar moving-average filter is applied in both fast-time and slow-time dimensions
to smooth the returns. Filtering is done in the linear power domain. We chose low-order (order 3
and order 5) boxcar filters in along-track and fast-time dimensions, respectively, to improve the
delineation of the internal layers since an aggressive filter can broaden the layer peaks and

introduce subtle artifacts.

4-1-4 Detrending

One of the challenges associated with automated tracking of layers in echogram data is the
inherent power loss experienced by the radar signal as it penetrates to deeper snow layers. As the
transmitted radar signal propagates through the snow layers, the combination of spherical
spreading loss, media attenuation, and scattering causes the signal power to be attenuated.
Hence, the radar backscatter power from deeper layers is often lower than those from earlier
layers. This results in a large dynamic range for each rangeline, which if not mitigated, can make
it difficult for deep learning models to effectively detect and track deeper layers. The detrending
step attempts to remove the power loss as a function of depth trend. By pre-processing the
echogram data with detrending algorithms, we can create a more uniform signal profile down the

entire rangeline. This pre-processing step allows the deep learning model to focus on the
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variations in backscatter power that are more likely to be associated with the actual internal

layers of interest, leading to improved tracking performance.

A low order polynomial fit to the log-power data is used to remove the trend in the received
power. Given an echogram with a tracked surface and the deepest layer index for each rangeline,
we identify three distinct regions (see Figure 4-2) in the backscatter data - (I) signal in air before
the surface, (II) signal in snow/ice (with possible internal layers) and (III) signal after the deepest
layer. Due to the distinct characteristics of each region, a different trend is estimated for each

region as shown in Figure 4-2.

First, the trend for region (II) is found by fitting a low-order (5" degree) polynomial (in a least-
squares sense) to the backscatter in region (II). After this is found, the polynomial is evaluated at
the surface bin which corresponds to the top of region (II) — this evaluation is used to set the
detrend value for region (I). Since the signal prior to the surface is mostly dominated by the
thermal noise of the system, the trend for region (I) is forced to be constant so that the noise is
not amplified during detrending and the constant value is set equal to the polynomial evaluation
at the surface bin to avoid a discontinuity here. Region III was not used in this work since the
echograms were truncated to mostly not include the deeper regions and the low-order polynomial

proved effective in fitting the noise region when present.

4-1-5 Normalization

Inputs to most machine learning models are usually normalized to either [0,1] or [-1,1]. This is
done to achieve similar scales between the input images and the model's output to facilitate fast
convergence during training. We apply a linear transformation to the original log-domain

echogram image to map the signal portion of the echogram to a normalized scale of [0,1].
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Figure 4-2: Plot of backscatter power of a rangeline showing detrending regions

4-1-6 Multi-distance multi-looking echogram blocks

To further diversify the dataset and maximize the available manually annotated echograms, a
multi-distance multi-looking approach was implemented. Given that the data generally comes
from long flightlines, the data can be segmented up in different ways with varying lengths and
overlap. This strategy helps in constructing a larger and more diverse dataset. Consequently, we
treat the coverage distance of each echogram as a flexible pre-training hyperparameter rather

than maintaining a uniform distance across the dataset.

This method of using staggered flight line distances to form echogram blocks for training deep

learning models has several advantages. It simulates a range of spatial accumulation patterns
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within the dataset, which enhances the robustness of the models against "unseen" spatial
distributions. By exposing the models to varied spatial accumulation patterns, we improve their
ability to learn and accurately represent the true underlying snow layering phenomena. This
approach significantly boosts the models’ potential to generalize to new echograms that were not
part of the training set, thereby increasing the likelihood of successful inference on echograms
from future surveys. We also evaluate the performance of the models as a function of the along-

track length.

To create the SnowRadar Dataset v1, echogram blocks of along-track distances of 2 km, 5 km,
10 km, 20 km and 50 km were created. The training, validation and test sets all include a mixture
of these different lengths of images. However, to ensure uniformity of dimensions of all the
echograms in the training set, along-track averaging (multi-looking), and linear interpolation

were used to resample the data to create fixed size images of N, = 1664 and N,, = 256.
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Figure 4-3: Image of echogram after applying steps 1- 5

The dimensional uniformity is crucial because it standardizes the dataset samples, enabling an
accurate assessment of the performance of different deep learning models. By ensuring that each
echogram block adheres to a consistent format, we eliminate variability that could otherwise
skew the evaluation of model performance, thus allowing for a more reliable comparison across

different architectures and training methodologies.

To facilitate easy distinction and identification, the specific distance associated with each

echogram block is appended to its filename. This practice not only aids in organizing the dataset
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but also allows researchers to quickly reference and analyze the spatial coverage of each

echogram block, contributing to more efficient data management and model training processes.

Figure 4-4 compares 2 km and 5 km echogram blocks created from approximately the same
geographical location. Although the echogram images appear visually similar due to their
overlapping geolocation, a closer examination reveals differences in the along-track spatial
accumulation patterns. These variations are encoded in the echogram layer variance, which is

significantly different for the two images.

During training, the models are exposed to this subtle yet critical information, allowing them to
better identify and track accumulation layers. This nuanced variance serves as a valuable source
of data, enhancing the model's ability to accurately learn and predict snow layering patterns

across different spatial scales.
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Figure 4-4: Echogram blocks created from 2km and 5km line distances respectively
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4-2 Snow Radar ML_Dataset vl

4-2-1 Dataset echograms

The Snow Radar Dataset vl is created from selected flight lines from the NASA Operation Ice
Bridge (OIB) campaigns in 2012. The dataset comprises 11 flight lines, covering a total distance
of 28,369 line kilometers. While the primary objective was to create a dataset that captures the
rapidly varying spatiotemporal accumulation patterns across the ice sheet, the majority of the

available annotated data originates from the dry snow zone.

The training and validation set uses 9 of the 11 flight lines spanning the different snow zones and

accumulation patterns across Greenland. Consequently, only a small portion of the data is from

other zones such as the wet snow zone and transition zones.
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Figure 4-5: Spatial plot of dataset flight lines and neighboring ice cores. Flight lines in blue
represent training data while those in red (L1), green (L2), and yellow (L3) are the test data.
Black squares mark the locations of some of the existing ice cores and snow pits in Greenland

The test set is carefully divided into 3 groups; L1, L2, and L3 each represent different snow
accumulation patterns that exist in most polar ice sheets. The L1 test set is derived from the dry
snow zone characterized by well-preserved annual accumulation stratigraphy. L3, on the other
hand, is close to the coast and contains echograms from the wet snow zone where older
stratigraphy might have been eroded due to melting. The L2 test echograms capture the transition
between both zones.
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The quality of the echograms varies across these zones. Echograms from the L1 section of the
test data are of the highest quality, exhibiting clear visibility of snow layers. Conversely, the
radar backscatter from L2 and L3 zones is often diffused due to the presence of refrozen melted
snow. This reduction in visual quality is important for assessing the performance of deep-
learning models on echograms from different snow zones with varying image quality. The split
of the test data into these 3 sections is done to investigate how deep-learning models perform on

echograms from different snow zones and of varying image quality.

Additionally, there are some test echograms (in L2 and L3) that coincide closely with existing
ice cores which can be used for corroborating ice-depth-age measurements for radar data
facilitating synchronization between radar data and ice core data. This alignment is intended to
encourage further studies comparing radar measurements with coinciding and neighboring ice

core and ice pit measurements.

Summarily, the Snow Radar dataset v1 has 11,302 training set echograms, 1,322 validation
echograms and a total of 1,292 test echograms. The test echograms are further subdivided into

127 L1 echograms, 1049 L2 echograms and 116 L3 test echograms.

Since L3 test echograms primarily originate from the wet snow zone, some images capture no
internal snow layers or exhibit very low quality. Despite their poor quality, they are important for
model training because most flight lines include at least one of these echograms. The objective is
for deep learning algorithms to learn to correctly identify these low-quality echogram images and
either ignore them or track only the surface layer when possible. The overall distribution of the

dataset is shown in Figure 4-6
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Figure 4-6: Distribution of the dataset along-track distances in the train, validation, and
testing sets. The testing set subdivision into 3 levels L1, L2, and L3 corresponding to different
Snow Zones are also shown in the insert plot. The numbers in each bar represent the frequency
of occurrence of each along-track distance in each of the set

4-2-2 Dataset metadata

In creating the Snow Radar Dataset v1, we included metadata for each echogram. The Snow
Radar is equipped with Inertial Measurement Unit (IMU) and Global Positioning System (GPS)
to provide precise auxiliary information about the surveyed location and aircraft's orientation at
every point during the data collection. These additional meta-data, such as the antenna phase
center geolocation, aircraft elevation, and other GPS data have been synchronized with the radar
echogram to provide additional information for each rangeline. This provides additional context
and description to further ground the understanding of the users what each echogram represents

and provides context for accurate interpretation. Moreso, there are new deep learning paradigms

where relevant metadata are included in training to achieve performance gains.

95



Each entry in the dataset is provided as a .PNG file and has an associated .MAT file. Some of the

important fields in the files are described below. The data fields are described first followed by

metadata fields.

Data [ Ny X N,]: This is the echogram image and is the primary training input. It is the
log-normalized backscatter received from the surface and other internal layers at the
imaged location.

Layers [ N, X N,]: This is a form of the ground truth created through a combination of
semi-automated and manually corrected annotation. It is provided as a 2D matrix that is a
stack of N; rows of 1D contour vector representing each tracked layer. Regardless of the
deep learning architecture or tracking method, this is the final and preferred format for
saving the tracked snow layers. In this form, the accumulation between successive annual
layers can be estimated. The values are oftentimes in the range bin domain depicting the
fast time bin the layer is localized in each rangeline. However, this can be converted to
radar two-way travel time using the ADC fast time sampling rate (also provided in the

metadata) which is eventually used to estimate the layer depth or accumulation in meters.

Layers bitmap or raster [ N, X N, ]: This is another form of the ground truth annotation
containing the same information as the “Layers” field. It is, however, provided in a
binary raster format. This format is typically used as the training “target” for a binary
segmentation task. It is a sparse binary matrix of equal dimensions with the echogram
image, but its pixel only contains one (1) when there is a layer and zero (0) otherwise.
This form of the ground truth has an imbalanced class distribution with many more zeros

than ones which might need to be accounted for during model training.
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e Layer segment [ N; X N,]: This is a dense matrix and is another form of ground truth. It
has the same dimension as the echogram image and is created as the label for training
deep multi-tiered segmentation models. In this 2D matrix, each accumulation layer is
assigned a unique index starting from the topmost layer as 0 and the index is repeated

until the next accumulation layer.

Other important GPS and IMU metadata

e Latitude [N, X 1]: This is the associated WGS-84 geodetic latitude coordinate reported
by the GPS and IMU and is synchronized with each rangeline of the echogram. The
position fields can be used to synchronize radar measurements with other sources such as
LIDAR, satellite image, weather models, etc.

e Longitude [N, X 1]: This is the corresponding pair of Latitude.

e Elevation [N, X 1]: This is the elevation relative to the WGS-84 ellipsoid surface.

e Time [N, X 1]: This is the radar system Analog-to-Digital Converter (ADC) fast time
axis corresponding to each row of the image. Zero time corresponds to the time the
transmit signal was sent. This field is important for converting tracked echogram layers in
range bins (or row-index) back to radar two-way-travel time.

e Roll [N, X 1]: This measures the rotation of the aircraft about its longitudinal axis.
Positive roll corresponds to ring wing tip down. It is provided in radians and has a
relationship with the backscatter received because the radiation pattern of the antenna
rotates with the aircraft since the antenna is fixed (i.e. not mounted on a gimbal). Non-
zero roll angles mean that the antenna’s boresight or mainlobe points away from nadir

resulting in a reduction in received power.

97



e GPS Time [N, X 1]: This is the GPS time corresponding to when each rangeline's data

was collected. It is saved in the ANSI C standard (seconds since Jan 1, 1970 00:00:00).

4-3 Synchronization of dataset with Model Atmospheric Regional (MAR) weather model
data

Regional weather models, such as the Modelle Atmospherique Regionale (MAR), provide
historical meteorological and climatic data that can complement radar measurements to enhance
the accuracy of annual snow accumulation estimates in Greenland. To further enrich the Snow
Radar dataset, MAR model data is synchronized with radar measurements, providing auxiliary
information that deep-learning models can potentially leverage to improve layer detection and
tracking performance. This integration also opens avenues for comparative studies between radar

imagery and weather model outputs.

In this work, we utilize MAR model data version 3.10, which provides climate data at a 15 km
grid resolution across Greenland. The synchronization of MAR outputs (e.g., density,
temperature, etc.) with radar data is achieved using the latitude and longitude coordinates of each
rangeline in the echograms. A 2D Delaunay triangulation interpolation algorithm is employed to

align the gridded MAR outputs with the radar data.

Surface Mass Balance (SMB) is selected as a primary measurement to be synchronized with
radar data, as it provides estimates of annual accumulation layers that correspond to the internal
layers observed in echogram images. The annual SMB is computed by summing daily

measurements from the weather model for each accumulation cycle, covering the past three
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decades up to the year of the radar measurement. The MAR daily SMB is calculated as the sum
of daily snowfall and rainfall, minus sublimation, evaporation, runoff meltwater, and surface
water. The accumulation cycle used spans from September of one year to September of the
following year, reflecting the snow layer captured by the Snow Radar during the summer-to-
winter transition. In cases where summer melt exceeds winter accumulation, resulting in a

negative annual SMB, the deficit is subtracted from the previous year's mass balance.

We estimate annual accumulation from the weather model and convert it into equivalent Snow
Radar internal layers, creating a model-derived product equivalent to the annotated ground truth.
To achieve this, the SMB is accumulated from the date of acquisition to the date of each
summer-to-winter transition. These net accumulations, measured in millimeters of water
equivalent (mmWe), are then converted to snow layer depth in meters. By combining this
information with a depth-density profile and a density-permittivity conversion model, an
estimate of the radar's two-way travel time to each weather model-estimated annual layer can be

derived.
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Figure 4-7: MAR map of mean annual surface mass balance for the Greenland ice sheet

To estimate how the initial snow density varies with snow depth for each flightline, the mean

Mean annual surface mass balance mmWe

annual accumulation, initial snow density, and mean annual surface temperature from MAR data

are used as inputs to the Herron and Langway firn densification model [84]. The output of this is

a density versus depth profile (p,) for the imaged location. The derived density-depth profile is

subsequently used as input to the simple mixture model in Equation (11) to estimate the snow

permittivity vs snow depth profile.
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Finally, the estimated two-way travel time is synchronized with the radar imagery layering using
the radar ADC fast-time sampling rate. This estimate can be considered as equivalent to the
annotated echogram layer vector ground truth, albeit, from the MAR model's perspective. It is
provided as “weather layers” metadata associated with each echogram. However, due to the
coarse spatial resolution of the MAR data, the MAR weather layers fail to capture fine along
track layer details that are on the order of tens to hundreds of meters. Like the annual weather
data layer estimated from SMB, other measurements from MAR were interpolated onto the radar
measurement flight lines to create annual measurements for echograms in the datasets. These
include annual meltwater production (ME), mean surface temperature, mean surface density,
run-off of meltwater and rainwater (RU), meltwater refreezing and deposition (RZ), Snow height

change due to melt (SHC), Snowpack height total (SNHS), etc.

Each row of these fields in the echogram data corresponds to annual MAR output synchronized
to the radar rangelines starting from the date of radar data collection back to the summer-to-
winter transition of each earlier year in the dataset (in this case 2012 back to 1980) making a
total of 32 annual measurements. For example, the first row in the “curr_smb” field is the
estimated SMB from the MAR output for the year 2012 while the 5th row is the estimation for
the year 2008. It is important to note that while the number of snow layers seen by the radar (i.e.

the number of layers in the echogram) might vary from one echogram to the other depending on
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the snow zone the echogram measurement was taken from, the number of MAR “layers"

estimated from MAR data remains the same for all the echograms in the dataset.

More details about the MAR model and its outputs can be found in [85].

4-4 - Full echogram image layer tracking

With the relative increase in the training dataset, we set out to train and predict on the entire
echogram at one go as opposed to iteratively tracking the layers one at a time. However, it is
important to correctly define and formulate the problem within the appropriate deep learning

framework.

Many of the state-of-art performance reported in computer vision tasks are from classification
models. Deep learning classification models are those trained to identify a single class for each
input image. They are a type of supervised learning algorithm used to categorize data points into
predefined classes by learning a mapping from input features to discrete output labels, essentially
building a decision boundary between the different classes it was exposed to during training.
When probed with an input image during inference, the objective is to identify the correct class
of the input from the set of inputs it was trained on. As an example, if a model is trained on a set
containing different types of cat and dog images, at inference, the model is supplied a new cat
image, one not used for training, the performance of the model is evaluated based on how well it
is able to correctly classify the new image. These classification models do not output the pixels
associated with each object but just the class of the object in the test image. This paradigm does
not fit the echogram layer tracking problem which needs to identify the pixels associated with

each layer.
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The goal of the echogram layer tracking problem is to design a deep vision algorithm that can
identify each snow accumulation layer in the echogram as a 1-dimensional contour which
describes which image pixels the layer passes through and has the same cardinality as the
number of rangelines in the echogram image. The final output will therefore be a 2D matrix of
all the identified 1D contours vectors corresponding to the orientation of all the snow layers in

the echogram image.

Formally, given an input 2D grayscale echogram image E € {R¥*Nx : 0 < E(m,n) < 1}, E
represents the two-dimensional spatial distribution of the firn layer backscatter in the along-track
or slow time (N,.) axis and depth layer or fast time (N;) axis. A deep learning model is to
identify which of the 2D echogram matrix E pixels contain a snow layer and track at most N,
consecutive columns for each layer. The output of the algorithm for L unique layers would then

be O € RNLXNx

In the context of supervised deep learning, we cast the echogram layer tracking problem in two

different ways:

(1) binary segmentation and

(i1) deep-tiered multi-layer segmentation problem.

4-4-1 Binary image segmentation

In the binary segmentation paradigm, the model is trained to classify each pixel in the image as

either containing a layer (1) or not (0) using the associated ground truth binary matrix annotation
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of identical dimension: G, € {RN*Nx : G, (m,n) = {0,1}} (see Figure 4-8b). It is important to
note that in binary image segmentation, only one pixel is designated as the layer pixel for each
layer in each rangeline which differentiates it from traditional segmentation tasks that generally

do not explicitly constrain the shape or number of pixels associated with any given class.

While there can be a variety of inner architectures for the model, the output layer of the binary
segmentation neural network generally has a sigmoid activation function for each pixel that is
subsequently thresholded to produce binary outputs. This thresholding step is critical, as it reveals
the sensitivity and specificity of the model in correctly identifying layer pixels, directly impacting
the accuracy of layer tracking. During inference, the trained model is given a test grayscale
echogram image E, to output a binary matrix classifying each input pixel into one of "layer" or
"no-layer" classes depending on whether or not the pixel contains a layer. Since accumulation
layers in the echogram image have spatial correlation along-track, correctly identified pixel layers
in adjacent columns naturally trace out the layer geometry. This inherent spatial coherence allows
the model to effectively capture the underlying structure of the snow layers. This approach is
simple, relatively easy to train, but powerful and generalizable because it makes less assumptions

about the task.

4-4-2 Deep-tiered multi-layer segmentation:

Given that each layer in the echogram image corresponds to a chronological snow deposition,
typically assumed to be annual, the multi-layer segmentation task aims to uniquely identify the
pixels associated with each year’s deposition. The most recent accumulation prior to the data
collection is seen as the first layer, with older years arranged sequentially in chronological order.

This structure informs the ground truth annotation as depicted in Figure 4-8 where each snow layer
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is assigned a unique class label. Hence, the deep learning model is trained to identify pixels

corresponding to each year’s accumulation and to delineate boundaries between adjacent layers.

Concretely, the ground truth annotation is a 2D matrix G, € {RN*Nx : G, (m,n) € {0,1,2, Liax}}-

Each pixel is assigned a tiered label L based on its associated year of deposition:

e L = 0 represents the pixels in the signal-in-air portion before the transmit signal interacts

with the surface,

e [ =1 represents the first year's accumulation,

e [ = 2 represents the second year's accumulation,

e And so on until L = L,,,, which corresponds to the deepest accumulation layer in the

input echogram image.

105



Echogram data Binary map Segmentation map

1200

Figure 4-8: Example image echogram and the corresponding binary segmentation and multi-

class segmentation labels
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Figure 4-9: Example qualitative result of multi-layer transformer-based architecture

This approach resembles multi-class image segmentation of optical images, with the distinction
that, in deep-tiered multi-layer segmentation, accumulation layers are naturally ordered by the year
of the snowfall. Also, layers share horizontal boundaries only with adjacent accumulation layers
(the year before and after) but with no other layer. This approach to the radar echogram layer
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tracking problem has the advantage of directly estimating each year's annual accumulation range
bins since it uniquely identifies each layer pixel in the along-track axis and delineates its

boundaries with adjacent accumulation layers.

However, this approach comes at the cost of increased parameterization of the model and the

inherent need for more training data, and consequent longer training time.

For the preliminary stages of this work, we truncated the echograms to only contain the top 30
layers with the intention to extend this to include all deeper snow layers in the echogram after the
initial analysis. Figure 4-8 shows a sample echogram image, the binary mask, and the multi-layer

segmentation mask.

4-5 Deep learning models for full echogram image tracking

Detecting and tracking snow layers in echogram images can be conceptualized as a semantic
segmentation task where the model is designed to classify each pixel in the input image instead
of just assigning a label to the entire image as in image classification. To provide the desired
pixel-wise dense prediction output, a fully convolutional output layer is pivotal in the design of
semantic segmentation models. The fully convolutional layer uses a 1x1 filter kernel on the
penultimate convolutional filter outputs to produce dense output prediction. This paradigm is

employed in most well-known semantic segmentation architectures.

To benchmark the performance of the Snow Radar Dataset v1 dataset, we trained the following

well-known segmentation models with slight adaptations to their original architecture for our

particular problem.
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1. Fully Convolutional Networks (FCN) [86],
2. U-Net [82],

3. Attention-U-Net [87],

4. DeepLabv3+ [88],

5. and a soft ensemble of all four models.

We train these models for the dense binary segmentation tasks, i.e. to predict for every pixel in
the echogram image if it contains a layer or not. A brief description of each of the models is

provided below.

4-5-1 Models’ description

1. Fully Convolutional Network: This model is generally regarded as one of the pioneer
deep learning architectures for binary and multi-class image segmentation and was
proposed in [86]. The work represents a significant advancement in the field of computer
vision, particularly for the task of semantic segmentation. Traditional convolutional neural
networks (CNNs) end with fully connected layers which produce a small, fixed number of
outputs, unsuitable for pixel-wise predictions required in segmentation tasks. FCNs address
this by replacing these fully connected layers with convolutional layers that maintain
spatial information, allowing the network to output a spatially dense prediction map that
corresponds directly to the input image dimensions. This architecture effectively

transforms a classification network into a dense, pixel-wise prediction model.

The FCN architecture starts with an encoder-decoder structure where the encoder part
consists of convolutional and pooling layers. The encoder stage is made from a sequence

of 2D convolutional layers applied to the input image with intermediate spatial
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downsampling. After each stage of 2D convolution, the number of applied filters is
increased while the spatial dimension is reduced to increase the representation power of

the model while progressively learning local-to-global features in the input image.

For echogram layer tracking, a key part of the original architecture was altered in our
implementation. Instead of upsampling directly from the bottle-neck layer in the encoder
to the decoder output, the transposed convolution was done in equal amounts of stages as
it was in the encoder. This approach helps preserve low-level information learned by the
network, such as curves and lines, which are crucial for the echogram layer tracking task.
However, no skip connection was inserted between the corresponding encoder layer.
Finally, the decoder fully-convolutional layer is used as the output layer to produce pixel-

wise segmentation prediction.
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Figure 4-10: Schematic diagram of the Fully Convolutional Network (FCN) architecture

2. U-Net model — The U-Net model remains one of the classic segmentation models till date.
Prior to this work, traditional approaches to segmentation often struggle with limited
training data and the challenges posed by complex structures and variations in niche
domain images. Although the original U-Net architecture was specifically tailored for
biomedical image segmentation tasks, the solution proffered to these issues by employing
an encoder-decoder structure with skip connections addresses the underlying challenge for

a number of related fields.

The U-Net architecture consists of a contracting path, which captures context and reduces

spatial dimensions, and an expansive path, which enables precise localization. The
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contracting path comprises a series of convolutional and max-pooling layers that
progressively downsample the input image, extracting high-level features. The expansive
path consists of upsampling layers followed by convolutional layers that increase the
spatial resolution of feature maps. Crucially, skip connections are introduced to connect
corresponding layers between the contracting and expansive paths, allowing the network
to retain fine-grained spatial information from earlier stages while incorporating high-level

context.

This unique architecture enables the U-Net to effectively learn intricate spatial
relationships within input images and produce accurate segmentation masks. The original
authors demonstrated the efficacy of U-Net on various biomedical segmentation tasks,
including cell tracking in microscopy images and delineation of neuronal structures in
electron microscopy data. U-Net's ability to leverage both local information and global
context, facilitated by skip connections, proved instrumental in achieving state-of-the-art

performance in biomedical image segmentation then.

For the binary segmentation task for echogram layer tracking, we designed four stages of
the encoder-decoder with double convolution at each stage. Each block has a sandwich of
convolution, max-pooling, batch normalization and ReLU activation function. A
progressive number of filter channels of size 32, 64, 128 and 256 was applied at each stage

with skip connections between feature maps of similar spatial resolution.
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Figure 4-11: U-Net segmentation architecture showing each block and the skip connections

3. Attention U-Net: The Attention U-Net, as introduced in the paper "Attention U-Net:
Learning Where to Look for the Pancreas," [87] represents a significant advancement in
medical image segmentation, particularly for identifying the pancreas in abdominal CT
scans. Traditional segmentation approaches often struggle with accurately delineating
small and intricate structures like the pancreas due to its variability in shape, size, and
appearance. The Attention U-Net addresses this challenge by incorporating an attention
mechanism into the U-Net architecture, allowing the network to dynamically focus on
relevant regions while suppressing irrelevant background information. This ability is

critical in echogram layer tracking.
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The Attention U-Net architecture extends the standard U-Net by integrating an attention
gate module into its contracting path. This attention gate module learns to assign different
weights to feature maps based on their importance, directing the network's focus towards
informative regions. During training, the attention mechanism enables the model to learn
where to concentrate its attention for accurate important local features necessary for
segmentation. Importantly, the attention gate module is designed to be lightweight,
ensuring computational efficiency while enhancing the network's ability to capture fine-

grained details crucial for pancreas localization.
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Figure 4-12: AttentionU-Net architecture showing the insertion of attention gates into the U-Net

architecture

The attention mechanism computes an attention map that weighs the importance of each
pixel or region in the feature maps. This map is used to scale the feature maps, emphasizing
important areas and diminishing less important ones. They are inserted into the skip
connections between the encoder and decoder paths in the U-Net architecture. Each
attention gate receives two inputs: the feature map from the encoder (which is being passed
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to the decoder via the skip connection) and the feature map from the corresponding decoder
layer. The gate computes an attention map that modulates the encoder feature map,
allowing only the most relevant features to be passed to the decoder. The attention gate
uses additive attention, where the importance of each spatial location is computed based
on the combination of the encoder and decoder features. The gate outputs a map that
highlights areas of interest, which is then multiplied by the encoder feature map before it
is passed to the decoder. By dynamically attending to relevant regions, the Attention U-
Net is meant to achieve superior performance compared to traditional U-Net models and
other similar segmentation methods. The attention mechanism allows the network to
adaptively adjust its focus, improving segmentation accuracy and robustness across diverse

patient datasets.
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Figure 4-13: Magnified view of the additive attention operation

For our implementation, instead of using a squeeze attention module along the channel

axis, attention gates were designed to filter the features by suppressing what the network
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deems as irrelevant regions and highlighting salient features that are considered critical to

the task at hand.

DeepLab v3: The key innovation of DeepLab lies in its employment of atrous convolution,
also known as dilated convolution, which enables capturing multi-scale contextual
information without significantly increasing computational complexity. By applying atrous
convolution at multiple dilation rates, DeepLab effectively enlarges the receptive field of
convolutional filters, allowing the model to integrate contextual information across

different scales while preserving spatial resolution.

Furthermore, DeepLab incorporates the use of atrous spatial pyramid pooling (ASPP),
which further enhances its ability to capture multi-scale contextual information. The atrous
convolutional layer, also known as dilated convolution, uses a dilation rate to control the
spacing between kernel elements, effectively expanding the receptive field without
increasing the number of parameters or reducing the spatial resolution. When the dilation
rate is set to values greater than 1, the convolution operation skips over input pixels,
allowing the network to capture features from a larger context, similar to downsampling.
This is because, with a higher dilation rate, the convolution can aggregate information from
a wider range of pixels while maintaining the same input size. As a result, the model can
perceive a larger area of the input image (or feature map) without explicitly reducing its
spatial dimensions, making atrous convolution a powerful alternative to downsampling,

especially in tasks like this where preserving spatial resolution is crucial.

ASPP utilizes multiple parallel atrous convolutional layers with different dilation rates to

capture context at various scales. This allows DeepLab to efficiently integrate information
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from different receptive fields, enabling accurate segmentation of objects at different sizes.
Additionally, DeepLab employs a fully convolutional network (FCN) architecture,
facilitating end-to-end training and enabling the model to produce pixel-wise segmentation

masks directly from input images.

For our implementation to track echogram layers, ResNet50 was used as the backbone of
the encoder taking outputs from two resolution scales and combining them as the input to
the decoder. This is further upsampled (decoded) to extract features at the image scale.
Given the encoder-decoder network with spatial pyramid pooling in the DeepLab
architecture, it can extract contextual information from multiple scales, as well as refine

them through sharp object boundaries which is crucial for the layer tracking task.
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Figure 4-14: Schematic of DeepLab architecture
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5. Soft ensemble: Soft ensemble is a simple routine in deep learning where the output of
different models are naively combined without any further training. It is similar to using
majority votes of the constituent models to decide the class of each input image pixel. To
harness the strength of each of the previous four models, the soft ensemble model was
created from their combination. Concretely, the ensemble is the average of the prediction
map of FCN, U-Net, Attention U-Net, and DeepLabv3 models. This has the advantage of
emphasizing details agreed on by most or all the models. However, it has the downside of

ignoring important features identified by one or a minority of the models.

4-5-2 Training implementation details
For conciseness, we provide a summary of the dataset and implementation details for training the

models below.

The models were trained on the Snow Radar dataset version 1 (detailed in Section 4-2). The
echogram images and their corresponding binary labels are used for training the binary
segmentation models. We employ very mild augmentation techniques such as color jitter,
contrast transformation, left-right-flip, and slight elastic deformation to increase the robustness
of the models. Random zooming and cropping were not used to avoid erasing the depth and
spatial information in the range bin/depth and along-track axis respectively. These operations,
particularly in the depth axis, make it difficult, sometimes impossible, to convert the tracked
layer vectors back to depth in meters and stall the accumulation rate estimation process. To
standardize the data, we enforced uniform dimensions across all echograms in the dataset by

setting N, = 1664 and N,, = 256.
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For training, the Fully Convolutional Networks (FCN), U-Net, and Attention U-Net all have four
stages of downsampling in their encoder paths. Each convolution block in the encoders consists
of a sequence of convolution, dropout, batch normalization, and activation layers. The ReLU
activation function is used in each convolution block. A similar pattern is followed in the
decoder paths. In the decoder paths of U-Net and Attention U-Net, the naive upsampling
operation was replaced with the parameterized Conv2DTranspose, and the ReLLU activation

function was also applied within the decoder convolution blocks.

Also, unlike the conventional FCN which applies a single upscaling of the final downsampled
feature map, we applied sequential stages of upsampling to generate the output binary map.
However, there are no skip connections between the contraction and expansion paths. This
makes it very similar to the U-Net model except that U-Net applies a double convolution block at
each stage and skip connections exist between feature maps of similar spatial resolution in the

encoder and decoder paths.

The Attention U-Net model is also similar to the U-Net except for the added attention gates. Our
DeepLabv3 implementation uses ResNet50 architecture as the backbone with ImageNet pre-

trained weights and dilation rates of [6,12,18] in the spatial pyramid pool.

All the models were trained with Binary focal loss with @ = 0.25 and B = 2 to mitigate the
inherent binary class imbalance. Further details about the loss functions is delayed till section 6-
2-4-2. The Adam [89] optimizer was used with an initial learning rate of 1e-3 that is decreased
by a factor of 0.25 after 10 iterations at a plateau and EarlyStopping was implemented after a
patience of 30 epochs at a plateau without improvement in the validation loss. Consequently,

although the models were set to train for a fixed number of epochs, the terminating epoch for
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each of the model differs slightly. However, we observed a mean epoch of 120 for all four

models.

Table 6: Model training hyperparameter summary

Training hyperparameters

Value

Input image dimension

Batch size

Initial learning rate

Number of encoder blocks
Number of decoder blocks
Convolution filters per block
Convolution non-linear function

Output convolution activation function

Number of prediction classes
Number of epochs

Loss function

Class balancing factor (a)

Focusing parameter (f8)

N, = 1664 and N,, = 256.
4

le-3

4

4

[16, 32, 64, 128]

RelLU

Softmax

1
Varies

Binary focal cross entropy

0.25
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4-5-3 Hyperparameter tuning

Hyperparameter tuning is a critical step in machine learning model development. Unlike model
parameters, which are learned from training data, hyperparameters are preset before training
begins. These hyperparameters control aspects of the training such as learning rate,
regularization strength and the architecture of the model. The selection of optimal
hyperparameters is critical to improve model accuracy, reduce overfitting and overall predictive
power of the model. However, finding the right combination of hyperparameters is often
complex and computationally expensive. This can be alleviated by adopting some generally

accepted benchmark values based on reported training schemes in literature.

To train the models a basic hyperparameter search was performed, focusing on key parameters
such as batch size, convolution filter sizes, learning rate, and optimal training epochs. Due to the
large dimensions of the input echogram, using a large batch size was not feasible on the available
hardware. As the UNet family of models shares similar architectures, we adopted comparable
hyperparameters. A batch size of 4 was ultimately chosen, as larger sizes frequently led to out-
of-memory errors, especially when running multiple training sessions concurrently. Although
exploratory runs with batch sizes of 8 and 16 were attempted, models like AttentionUNet often
crashed due to limited GPU resources, reinforcing the decision to use a mini-batch size of 4 for

the final model training.

Similarly, the size of the convolution block filters is also limited by available hardware. While
larger filter sizes could theoretically improve the model’s representational power, they frequently
led to GPU memory exhaustion. Although some of the UNet model variants could have been

trained with larger filter sizes, to ensure uniformity and consistency which is important for easy
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comparison of their performance, filter sizes of 16, 32, 64 and 128 were used to train the UNet-

family models.

An initial search was conducted to determine the optimal learning rate. Various constant learning
rates—0.1, 0.01, 0.003, 0.001, and 0.0001—were tested over 100 epochs for the UNet model.
Higher rates (0.1 and 0.01) failed to converge quickly, resulting in a large gap between training
and evaluation loss. Rates of 0.003 and 0.001 performed better, with 0.001 slightly
outperforming 0.003. However, constant learning rates proved inadequate, particularly in later

training stages, where a slower rate is needed to navigate toward a local or global minimum.

To address this, a learning rate scheduler was implemented. The scheduler started with an initial
learning rate, decreasing it gradually by a factor of 0.25 when training plateaued (i.e., when the
validation loss did not decrease for 10 consecutive epochs). This adaptive learning rate was
valuable, as it responded to the needs of each model’s training cycle, reducing sensitivity to the
initial learning rate. For all convolution-based models, an initial rate of 1e-3 was used,

decreasing to 5e-6 in 0.25 increments.

Other hyperparameters, such as kernel size and network depth, were kept relatively uniform
across models (except in specific cases like DeepLab). The Adam optimizer was chosen over

RMSprop and SGD for its superior performance.

4-6 Model evaluation and discussion
In this section, we report the performance of the deep learning models on each section of the test

set in three different stages.
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4-6-1 Binary output evaluation

The immediate output of the binary segmentation models is probability heat maps derived from
applying the sigmoid activation function to the logits output of the models. Visually inspecting
the probability heat maps reveals the detected layers but the domain of the values in the heat
maps are real numbers from 0 to 1 (sometimes containing negative values but this corresponds to
noise). To convert these outputs into binary images, the probability maps are first thresholded
followed by a simple non-maximum suppression algorithm. Details of our implementation of the
non-maximum suppression algorithm is in 6-2-6-1. Qualitative examples of the binary output are

shown in Figure 4-15 and Figure 4-16.

To assess how well the models classify “layer” and “no-layer” pixels in the echogram, we
employ two evaluation metrics from the image processing domain: Optimal Dataset Scale (ODS)
and Optimal Image Scale F-scores evaluation metrics. Both metrics utilize the F1-score (see
section 3-2-4-2 for definitions of F1-score, recall, precision and accuracy), but they differ
slightly in how they determine the optimal threshold for converting the edge probability map into
a binary image. ODS considers a single threshold for the entire test set of the probability maps
and finds the threshold that yields the highest average F1-score across all the images. Hence, it
gives a general idea of how well the models are performing on the entire test set using a single
setting. OIS, on the other hand, calculates the average of the best F1 score for each image in the

test set by finding the optimal threshold for each specific image.

The SSIM metric (Structural Similarity Index Metric) is a measure of image quality that
compares two images based on their structural similarity. It considers factors like luminance,

contrast, and structural information, providing a more detailed assessment of image similarity
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than traditional pixel-wise differences. More detailed discussion of SSIM is delayed until Section

6-2-4-4.

Table 7: Optimal dataset scale and optimal image scale F1 scores

U-Net AttentionU- DeepLab FCN Ensemble
Net
ODS 0.800 0.910 0.881 0.909 0.886
OIS 0.801 0911 0.882 0.910 0.887

After binarizing, the one-pixel thick binary output for each model produced is also used to
compute the recall, precision, accuracy and structural similarity index measure (SSIM) for the

models. The result is summarized in Table .

Table 8: Weighted average metrics for each of the models

Model Recall Precision Accuracy SSIM F1

U-Net 0.9790 0.9778 0.9790 0.9583 0.9784
AttentionU-Net 0.9779 0.9780 0.9779 0.9588 0.9780
DeepLab 0.9780 0.9781 0.9780 0.9586 0.9780
FCN 0.9779 0.9784 0.9779 0.9605 0.9782
Ensemble 0.9781 0.9783 0.9781 0.9588 0.9782
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Figure 4-15: Full echogram image, (b) Ground truth annotation and models’ binary outputs

from (c¢) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-16: Another full echogram image, (b) Ground truth annotation and models’ binary

outputs from (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-17: Echogram image with overlaid 1D contour tracked layer model outputs (b)

Ground truth annotation (c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble
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Figure 4-18: Another echogram image with overlaid 1D contour tracked layer model outputs
(b) Ground truth annotation (c¢) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft

Ensemble
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Figure 4-19: Echogram image and model binary outputs using (b) Ground truth annotation

(c) U-Net (d) AttentionU-Net (e) DeepLab (f) FCN (g) Soft Ensemble

The values in Table 8 indicate near-perfect performance and are similar for all the models

making it difficult to identify which model is performing consistently better than others.

However, on a closer look, we see this is because of the domination of the prominent 0 class in
the task which skews the metrics. Separating the classes and computing the metric for each class
reveals that the models are not performing too well on the layer (1) class pixels which we are

more interested in.
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Table 9: Recall, Precision and F'1 score for each binary class.

Models Recall Precision F1

Class Class | Unweighted | Class Class | Unweighted | Class Class | Unweighted

0 1 average 0 1 average 0 1 average

U-Net 0.990 | 0.068 | 0.529 | 0988 |0.077 | 0.532 |0.989]0.072| 0.531

AttentionU- 0.988 | 0.084 | 0.536 |0.989]0.083 | 0.535 ]0.989|0.083 | 0.536

Net

DeepLab 0.989 | 0.089 | 0.539 |0.989|0.088 | 0.538 |0.9890.089| 0.539
FCN 0.989 | 0.104 | 0.564 |0.989|0.099 | 0.544 |0.989|0.101 | 0.545
Ensemble 0.988 | 0.095| 0.541 |0.989|0.094| 0.541 |0.9880.094| 0.541

Table 9 shows the unweighted Recall, Precision and F1 scores for each class and their average.
This result shows that the ensemble model and FCN are the best performing with an F1 score of
about 10% on the positive class. It is important to note that a perfect score of 1, implying a
perfect overlap, is not expected for these metrics. This is because the layers are multiple pixels
wide and the optimal pixel within the layer’s thickness is not well defined. A result that is only
one pixel off from the ground truth will get a poor score even though the result is acceptably
good. A consistent criterion for selecting the layer pixel (e.g. always tracking the leading edge or
always tracking the middle of the layer) is required to ensure that the estimation of the
accumulation between successive layers is accurate. Thus, the low recall, precision and F1 scores
of the models on class 1 does not necessarily mean that they are very poor and not useful models

for layer tracking. However, it does show that there may be room for improvement.
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Hence, there is a need for a different metric (other than the classic computer vision pixel
accuracy) to convey how well the models are performing on the layer tracking and accumulation

estimation task.

4-6-2 Tracking evaluation

For a metric that better assesses the results, we employ the N-pixel accuracy earlier defined in
Equation (10) to investigate how well each model tracks the layers. This calculates the accuracy
of the positive class prediction in the neighborhood of the ground truth annotation. First, the
model segmentation maps are thresholded and binarized to 0 (no layer pixel) and 1 (layer pixel)
before each individual layer 1-D contour can be extracted. Since the width of each snow layer in
the echograms is several pixels thick, the result of initial thresholding to create the binary output
is similarly more than one pixel thick for each rangeline of the identified layer. This requires
additional processing to thin the prediction to identify a single layer pixel for each layer’s
rangeline. This is similar to the non-maximum suppression post-processing algorithm in the

computer vision community.

Concretely, the models' binary raster output (i.e. the matrix of 0's and 1's of dimension N; X N,)
is post-processed to create layer vectors (N, X N,) that uniquely track and identify each of the
annual snow layers in the echogram. This is done using a post-processing routine that extracts
the row index (range bin) of all layer-containing pixels and clusters them into individual layers.
The row indices of all pixels containing a layer (i.e. 1s in the models' binary output) are first
extracted. Next, exploiting the fact that no two snow layers cross each other because of the snow
accumulation between them, each annual snow layer is inherently distinct and can be separately

identified. The post-processing algorithm, therefore, clusters the extracted row indices for each
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snow layer to form the N; X N, layer vector output (N; layers of size 1 X N,.). This format
uniquely identifies the range bin in each layer for all the echogram's N, rangelines and encodes it
as a single row vector which is identical in structure to the ground truth layer vector (explained

in Section 4-4-1).

Using the tracked 1D layer contour, the N-pixel accuracy (% of layer pixels that are less than or
equal to N pixels from the ground truth) for N =2, 5 and 10 are computed as well as the mean
absolute error (MAE). Here, the MAE is the average absolute error between the prediction and

the ground truth for all layer pixels as defined in Equation (12):

N<Necho SN[ JSNy (12)

1 ~
MAE = —— Z Z z o v
Necho NNy i j=1| nlj n,l,]l

Table 10: N-pixel accuracies and Mean Absolute error of each model

2px Spx 10px MAE
U-Net 0.1125 0.5499 0.8489 6.5227
AttentionU-Net 0.1309 0.7293 0.9434 4.7331
DeepLab 0.1679 0.6523 0.9237 5.0119
FCN 0.2946 0.8015 0.9638 3.8132
Ensemble 0.1780 0.6671 0.9274 4.9081

The result in Table 10 shows that 71 to 89% of the layer predictions are more than or equal to 2
pixels from the ground truth. This error rate drops to 4 to 15% when the error margin is increased
to more than or equal to 10 pixels. The FCN model shows superior performance for all metrics

compared to the other models (71% error rate for > 2 pixels and 4% for > 10 pixels).
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To tie the pixel margins and MAE estimation back to the layer tracking estimation physical
problem, we can find the layer thickness error in meters instead of pixels. The Snow Radar
image fast-time sampling is A; = 0.08517 ns and assuming a dielectric of €, = 2, which is in
between fresh fallen snow (€,,~1.5) and solid ice (€,~3.15), gives a fast-time or row pixel
height of

cAr (13)

This shows that the worst performing model (U-Net) with MAE = 6.5 pixels and best performing
model (FCN) with MAE = 3.8 pixels have mean errors of 5.9 cm and 3.4 cm respectively. Note
that the reported MAE and N-pixel accuracies are only reported for pixels where the models and

ground truth annotation simultaneously have valid predictions.

Cases where only the model or only the ground truth produced a result have been excluded. This
situation typically arises from low-probability segmentation mask values, which may be due to
either poor pixel quality in the echogram image or errors in the deep learning model. In both
scenarios, the layer pixels fail to be converted to 1 during binarization. In certain sensitive
applications and some geographical locations (e.g. wet snow zones), it is desired that consecutive
predictions are available for all rangelines. The predicted layers need to be continuous with no
missed layer detections that can cause gaps in the predictions. Therefore, we also investigate and

report the percentage of missed pixels for each model.

In the tables below, “whole-layer pixels” refers to echograms where the entire layer is missing.
“Intra-layer pixels” refers to layer pixels where only a portion of the layer is missing. The total

number of layers in the test set across all images is 24,407 layers and the total number of layer
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pixels is 6,184,704. There are 3165 and 21,242 layers in test groups L1 and L2 respectively. The
results for both test groups are shown separately and combined. It should be noted that L2

includes echogram imagery that are more difficult to track.

Table 11: Missing layer pixel evaluation showing “whole layer pixels”, “intra-layer pixels” and

the combined percentage of layer pixels missed for the models.

Whole layer pixels Intra-layer pixels Combined
Percentage
L1 L2 |L1+L2 L1 L2 L1+L2
U-Net 33 1418 1451 42,228 | 618,038 660,266
1.04% | 6.67% | 7.72% | 5.23% | 11.49% 16.73% 24.44%
Attention 14 407 421 4,171 | 137,555 141,726
U-Net 0.44% | 1.92% | 2.36% | 0.52% | 2.56% 3.07% 5.43%
DeepLab 11 248 259 15,215 | 265,010 280,225
0.35% | 1.17% | 1.52% | 1.89% | 4.93% 6.81% 8.32%
FCN 16 328 1.46 3,883 | 133,847 137,730
0.51% | 1.54% | 2.05% | 0.48% | 2.49% 2.97% 5.02%
Ensemble 10 232 0.99 13,176 | 246,719 259,895
0.32% | 1.09% | 1.41% | 1.63% | 4.59% 6.22% 7.63%

4-6-2-1 Evaluation of layer tracking based on echogram image quality and along-track

distance

As discussed in Section 4-2-1, the Snow Radar ML Dataset versionl contains echograms from
different parts of Greenland that are representative of the different snow accumulation patterns
over the ice sheet. The absence of moisture and melting in a polar region such as the dry snow

zone where little or no melting occurs all year long ensures that the annual snow deposition
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stratigraphy is always maintained. As a result, echograms from such locations have crisp layers
resulting in better deep learning algorithm results. Here, we investigate the classification and
tracking performance of the models on the different categories (particularly the L1 and L2
groups) of test echogram images. L1 echogram images have the best image quality with distinct
layers and high signal-to-noise ratio (SNR) between the layer pixel signal energy and the
background noise. L2 echogram images are not as easy to trace as L1 images, but the snow

layers in the echograms are still visible and can be identified and tracked.

The L3 images are generally of low quality and may lack discernible snow layering. However,
their characterization is crucial due to their frequent occurrence, sometimes at the beginning or
the end of a survey flight line. To design a deep learning model that can consistently track snow
accumulation over several kilometers of ice accumulation, the model needs to be exposed during
training to these “imperfect and difficult” echogram images. This allows the model to either
learn to disregard them or effectively track the snow surface despite their image quality
limitations. However, for most tracking performance evaluation in this work, the L3 images are
omitted as the priority is on L1 and L2 images that make up the bulk of the layers that need to be

tracked.

4-6-2-2 Model performance evaluation based on echogram image quality

Here, we investigate the models’ ODS and OIS F1 scores and mean absolute error for each of the

L1, L2 and L3 Snow zones.
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Table 12: ODS and OIS for L1, L2 and L3

L1 L2 L3 Combined
L1+L2+L3

ODS OIS ODS OIS ODS OIS ODS OIS

U-Net 0916 | 0917 | 0.789 | 0.790 | 0.214 | 0.214 | 0.800 | 0.801

AttentionU-Net | 0971 | 0972 | 0.908 | 0909 | 0.218 | 0.218 | 0.910 | 0911

DeepLab 0.959 | 0960 | 0.880 | 0.881 | 0.159 | 0.159 | 0.881 | 0.882
FCN 0957 | 0958 | 0913 | 0914 | 0.187 | 0.187 | 0.909 | 0.910
Ensemble 0962 | 0963 | 0.885 | 0.886 | 0.167 | 0.167 | 0.886 | 0.887

Table 13: Mean absolute error (MAE) for L1, L2 and L3

L1 L2 L3
U-Net 4.222 6.872 70.987
AttentionU-Net 3.466 4.970 69.266
DeepLab 3.956 5.118 41.661
FCN 3.982 3.742 47.084
Ensemble 3.873 5.010 42.672

The noticeable decline in the performance of most of the models as the echogram image quality
decreases confirms the hypothesis that the performance of the models is strongly linked to the
quality of the echogram images. Therefore, to achieve broad generalization to echogram images
from different snow zones and image quality, a robust deep learning architecture that can

maintain good performance irrespective of image quality is required. Of the examined deep

136



learning architectures, the FCN model exhibits better robustness to the declining echogram

image quality.

Table 14 : N _pixel accuracies for each echogram image quality segment

L1 L2 L3

2px Spx 10px | 2px Spx | 10px | 2px Spx | 10px
U-Net 0.141 0.719 0.973 | 0.108 | 0.524 | 0.831 | 0.001 | 0.077 | 0.225
Attention 0.269 0.806 0.986 | 0.110 | 0.719 | 0.939 | 0.001 | 0.050 | 0.174
U-Net
DeepLab 0.124 0.761 0.987 | 0.175 | 0.637 | 0.916 | 0.001 | 0.022 | 0.175
FCN 0.095 0.788 0.979 | 0.325 | 0.805 | 0.963 | 0.001 | 0.084 | 0.278
Ensemble 0.141 0.768 0.988 | 0.184 | 0.653 | 0.920 | 0.001 | 0.044 | 0.183

4-6-2-3 Model performance evaluation based on along-track length and echogram quality

We also examine the effect of the along-track length of the echograms on the performance of the

models and how this performance is influenced by image quality. In Table 15, the performance

of the models is reported based on the echogram along-track distance. The 10-km echograms

have the lowest MAE compared to 2-km and 5-km echograms. This strongly suggests that future

work should explore the use of longer echograms to more confidently find the optimal value for

this hyperparameter. To further scrutinize the relationship, Table 16 shows the performance of

the models as a function of the along-track distance and echogram image quality simultaneously.

Table 15: Mean absolute error (MAE) based on along-track length

2 km 5 km 10 km
(Count=911) (Count = 366) (Count = 15)
U-Net 6.793 7.263 3.875
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Attention U-Net 5.049 5.394 3.750

DeepLab 5.177 5.231 4.006
FCN 4.027 3.959 4.193
Ensemble 5.064 5.168 3.909

Combining the result in Table 15 and Table 16 shows that the performance of the models on
2 km and 5 km echograms are comparable. However, in L2 echograms (which are most

common), the FCN architecture has low MAE for 5 km echograms.

It should be noted that the Snow Radar Dataset version 1 test set contains a very limited number

of 10 km echograms. This would be increased in the next iteration of the dataset to allow for a

fair comparison of the performance of models on echogram images with long along-track length.

Table 16: Mean absolute error (MAE) based on echogram zone and along-track length

L1 L2 L3

2 km 5 km 10 km 2 km 5 km 2 km 5 km

U-Net 4.337 4.092 3.875 6.797 7.062 | 68.717 | 74.328

AttentionU-Net | 3.376 3.565 3.745 5.020 4.843 53.642 | 91.834

DeepLab 3.956 3.931 4.006 5.145 5.052 | 42.629 | 40.381
FCN 3.928 4.020 4.193 3.791 3.620 51.727 | 40.377
Ensemble 3.870 3.862 3.909 5.030 4959 | 42.162 | 43.345
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4-6-3 Generalization evaluation

The overall goal of this work is to have a deep learning model that performs well, not just on the
test set of the dataset but on echograms other than those in the training set. While it is not
expected that the models would generalize (without extra finetuning or pre-training) to
echograms that are characteristically very different such as echograms from the Multichannel
Coherent Radar Depth Sounder (MCoRDS) whose center frequency is orders of magnitude
different from the Snow Radar and focuses on a different section of the ice column, it is,
however, expected that the models should generalize to echograms from similar radar systems
and snow zones. Particularly given the large amount (approximately 50-60% of available
echograms) that are yet to be tracked and several new science missions scheduled to collect more
data, a model that can generalize to echograms in the wild would be valuable to automatically

track layers to extract ice accumulation information.

As such, we test the trained models on echograms outside the training set. These “new” test
echograms are mostly from the same campaign year (2012) but not from the ML SR _dataset vl
dataset and include data collected in later years with similar radar hardware settings. These
echograms are first pre-processed in a similar way to the preprocessing of the echograms in the
dataset. However, these echograms do not have ground truth annotation, and therefore, they can

only be evaluated qualitatively at this time.

Figure 4-20 and Figure 4-21 demonstrate the generalization abilities of the models. The test
echogram is from the dry snow zone and contains well defined snow layers. When used to
perform inference, most of the models correctly classified and tracked the individual snow layers

in the echograms. The DeepLab model shows its limitations by missing some of the snow layers.
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Figure 4-20: “New” echogram from 2017 data tracked with trained models
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Figure 4-21: Another “new” echogram from the dry snow zone

The test was conducted on several dry snow zone echograms and the models (including the U-
Net model) perform satisfactorily when the echogram image quality is good, and the snow layers
can be easily identified. Specifically, these “good” echogram images have layer pixels with high
SNR and clear discrimination between the layer’s pixel peaks and the “no-layer” pixel

background noise floor between layers.
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4-6-3-1 Model limitations

Despite the performance of the models on dry snow zone echograms and their ability to
generalize broadly to other echograms from different data collection years and slightly different
radar hardware configurations, the models failed to reproduce similar performance on some
echograms with certain features. The echogram in Figure 4-22 is an example of an echogram
where all the models failed to correctly classify al/ the layer pixels and consequently failed to
track the layers. Accurate tracking of the layers in post-processing is contingent on identifying
most (if not all) the layer pixels correctly. For these types of echograms, where the layer
stratigraphy orientation is curved or tubular, it is crucial for the models to identify all the layers

pixels in the curved region to ensure accurate layer tracking.
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Figure 4-22: Sample echogram and activation maps where all the models fail to identify the

snow layers

The failure of all the models on these types of echograms prompted a closer examination of the
characteristics of the echograms and model architectures to understand why the models did well

on some echograms but failed on others.
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Figure 4-23: A scope plot of all the rangelines in a sample echogram from the dry snow zone

The figure above shows the plot of the normalized power as it is depicted by the echogram image
but plotted as a function of depth. The A-scope (Amplitude scope) plot shows the same dataset
as the echogram image but with a different visualization where the columns are plotted as
vectors instead of a 2D color-coded surface map. It is created by plotting the linear normalized
power of each column (rangelines) in the echogram image. The echogram image from which the
A-scope was plotted is shown in Figure 4-24. As shown in the A-scope plot in Figure 4-23, when
the snow zone has well-preserved layer stratigraphy, the radar received backscatter as the aircraft
flies along-track shows that the layer peaks align with each other for each range line. The quasi-
stationarity of the snow layers in this snow zone causes all the received backscatter for the layers

to co-localize which corresponds to the “almost perfectly straight” layers seen in the echogram
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image. It must be noted that this A-scope is for a processed echogram whose rangeline is formed
from coherent and incoherent averaging and has undergone some fast time filtering to reduce the

high frequency component in the received backscatter.

Corresponding echogram image
T T

200

400

Depth axis
(o)]
8

800

50 100 150 200 250
Along-track

Figure 4-24: Echogram image corresponding to the A-scope plot

Figure 4-25 is the annotated A-scope plot highlighting the layers (signal peaks) with blue arrows
and the interlayer background noise floor (signal troughs) with red lines. In these echograms, the
peaks corresponding to the layer are easily distinguishable due to its high backscatter SNR

relative to the adjacent power trough before the next layer.
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As such, it is seen that when the layer pixels, which corresponds to signal peaks, are
considerably higher than the intra-layer noise floor and the peaks cluster together (blue arrows)
in the A-scope, the models can identify and track the layers along track. This property is similar
to the decision boundaries between the probability density functions (PDF) of the two classes in
a binary detection problem. In such binary detection problem, a clear separation between the
PDFs of the classes implies that there is a detection statistic that can be used to distinguish the
classes. However, the decision boundaries of the deep learning models are not based on the pixel
values alone but includes the spatiotemporal relationship information between the neighboring
layer pixels. The spatiotemporal relationship learned by the models is why layers well below the
surface (such as the last blue arrow) can still be detected and tracked despite having lower pixel
values than the earlier intra-layer noise floor such as the one between the surface and layer 1

(first red line).

In contrast, the echograms with curvilinear layer orientation due to rapidly varying accumulation

rates are more likely to have a poor distinction between the layer (1) peaks and no layer (0)

throughs due to the presence of refrozen melt water features.
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Figure 4-25: Annotated A-scopes to show each layer and linear power trough between layers

The varying spatial accumulation pattern between different geographical regions is a key factor
causing the models to fail. Another issue is reduction in SNR due to the aircraft roll angle. As the
aircraft maneuvers along the flight path, oftentimes, the aircraft’s orientation changes to stay on
course or make a turn. This causes the radar antenna to tilt, making the radar beam deviate from
nadir, which lowers the signal power coming from the desired normal-incidence layer scattering
and increases unwanted off-nadir backscatter. As such, these rangelines appear faded and blurred

in the echograms.

Concretely, echogram layer tracking is successful when these two sequential processes are
completed accurately: layer pixel classification and along-track tracking. Layer pixel
classification identifies the candidate layer pixels, and this must be done accurately to ensure

successful layer tracking. However, as earlier mentioned, multiple pixels around the layers’ peak
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are returned as the layer pixels in the model output heat map. The subsequent goal is to identify
which of the candidate layer pixels for each rangeline coincide with the layer peak and achieve

optimal connectivity between adjacent layer pixels to form a smooth tracked layer.
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Figure 4-26: A-scope plot of all the rangelines in a sample echogram from a transition snow

ione

For dry snow zones, the layer tracking problem is easier because the layers are flatter, and even
when there is a reduction in SNR for some rangelines, it is easy to use information from
neighboring rangelines to estimate or interpolate the faded ones. However, for the non-flat and
curved orientation of the layers in the wet snow zone echograms, the relationship between
neighboring lines is more complicated making the along-track tracking task difficult in these

types of echograms.
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Figure 4-27: Qualitative example of the tracking performance of the models on echograms

with curved snow layer orientation. (a) AttentionU-Net (b) DeepLab (c) U-Net (d) FCN

This situation is sometimes further worsened by the presence of small clusters of noisy peak
pixels and artifact pixels caused either by the imperfections in the radar system or inherent in the
remote data collection method. These artifact pixels are usually around the layer troughs of
deeper layers (sometimes with low SNR) and mimic layer pixels. They often trick the models to
classify them as valid layer pixels. These erroneous layer peaks are difficult to see on a cursory
look at the echograms but closer inspection of the rangeline A-scopes reveal these peaks. In
Figure 4-27, the models (AttentionU-Net, U-Net and FCN) incorrectly identified and tracked

these artifact pixels around the deeper layers causing the incorrect along-track tracking.

Dealing with these data artifacts is non-trivial and can mislead the post-processing tracking if the
models have not learned to disregard such pixels. As such, the models need to be given some
awareness of rangeline-to-rangeline (sequential) tracking during training and learn to ignore

pixels that do not cluster with others to form a uniform and smooth track along the rangelines.

It is also important to note that the mixed performance of the models (good tracking on the dry

snow zone echograms but poor on wet snow zone) can also be attributed to the sparsity of wet
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snow zone echograms in the training dataset. The dominance of dry snow zone echograms

during training biases the model towards the most encountered echogram type.

Approaches to improve the performance and generalizability of the models, particularly on

echograms from non-flat accumulation zones are investigated in the next chapter.
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Chapter S METHODOLOGY (3)

5-1 Improving model generalizability

The quest to improve the trained models’ ability to automatically track snow layers in echogram
images beyond only those in the dry snow zone is critical since most of the collected data
(fragmented into “segments”) rarely only contain dry snow zone echograms. Some flights target
the transition and wet snow zones. Therefore, deep learning models robust to the different

accumulation zones would be a valuable tool.

The result obtained from the trained models revealed that the echogram snow layer tracking
problem is a combination of layer pixel classification and along-track tracking problem. A model
with good pixel classification performance is sufficient for dry snow zone echograms with nearly
flat layers since the layer pixels are naturally aligned. However, layers with curvature require
that the models learn spatial correlation in the along-track axis to not only classify individual
layer pixels but also fill gaps where data quality is low due, for example, to the curvature or

increased scattering that occurs more frequently outside the dry snow zone.

We approached this by developing a new model architecture adept at taking advantage of the

intrinsic sequential information in the fast-time and slow-time axis of the echogram data.

5-2 Echogram vision transformer (EchoViT)

Echogram images can be viewed as a sequence of 1D rangeline data stacked in the along-track
axis. As a result, the layer contour tracing problem can be framed as a sequential identification of
the layer edge from one echogram column to the next. This sequential nature lends itself readily

to auto-regressive and sequential deep learning model architectures.
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In section 3-2-3, the sequential recurrent neural network (RNN) architecture was explored on
the RowBlock problem, and it had better success than its convolutional based SkipMLP
counterpart largely because it took advantage of the recurrence in the echogram data. The long
short-term memory network (LSTM) was once deemed as the gold standard variant of the
recurrent neural network but suffered major drawbacks of precluding parallel computation and
having limited long-range dependency. It is also very susceptible to the vanishing gradient
problem and very sensitive to training hyperparameters which all make the model difficult to

train.

In recent years, the transformer architecture [29] with attention modules have been introduced to
overcome some of the limitations of the earlier RNN architecture. It was first introduced in the
Natural Language Processing (NLP) domain but has since become the de facto standard for
almost all language tasks and many vision tasks given its fast computation time and support for

parallel computation.

Transformers rely on a mechanism called self-attention, which allows the model to weigh the
importance of different elements in the input sequence, irrespective of their position in the

original input sequence.

5-2-1 Self-attention mechanism

As earlier mentioned, the self-attention mechanism is the cornerstone of the transformer
architecture. It allows the model to weigh the importance of different elements in the input
sequence when processing it. The attention mechanism takes the input data and learns the

relationship between each “token” (the unit input into the transformer, an image patch for
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computer vision problems) and how they are related to others and the impact that each input
token has on others in the context of the entire input sequence. It mixes this information to output
a context-aware and semantically rich representation of the input first before passing it on to
other processing stages in the transformer architecture. The self-attention mechanism can be
broken down into:

a) computation of Query, Key and Value vectors

b) calculation of attention scores

c) scaling the attention scores

a.) Computation of Query, Key and Value vectors: It does this by creating 3 copies of the input

known as the query (Q), key (K) and value (V) vectors. These vectors are obtained by

multiplying the embedded input tokens by the corresponding weight matrices Wy, Wy, and Wy,.

Q = EW,
K = EWg (14)
vV =EW,

where E represents the input 2D echogram data and W, Wy, and W, are the learnable weight
matrices of the model. These learned matrices Q, K, V are now used as inputs to subsequent

layers of the model.

b.) Attention scores calculation: The soft attention module creates a representation of the

sequential echogram data that is semantically rich containing the inter-relationship between the
input tokens and how they contribute to the model output. The attention score is computed by
taking the dot product of the query vector of one token with the key vector of another token in

the sequence of image patches resulting in Q K. The score between a pair indicates how much

151



focus one element should have on the other. In the context of echogram layer tracking, this
parallel attention score forces sequential elements (rangelines or range bins) that need to be
connected to form a 1D contour to learn to focus on the important pixels (those with higher

attention scores) and to disregard others (those with lower scores).

c.) Scaling the scores: To prevent the dot products from growing too large in magnitude, which

can push the output softmax function into a region where the gradients are small enough that

gradient descent slows down too much, the scores are scaled by the square root of the dimension

) okT
of the key vectors (d},) to give Nen)

The attention mechanism is concluded by applying the softmax operation to scaled scores to
normalize them into a pseudo probability density function with the attention weight sum
equaling one. However, it is important to note that certain transformations are applied to the
input before the self-attention mechanism. This is represented by the input patch and embedding

layer in Figure 5-1.
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Figure 5-1: Complete transformer auto-regressive architecture
5-2-2 Embedding layer and positional encoding
Similar to NLP tokens, the input patches are first embedded into a high dimensional manifold

before passing them into the encoder. In NLP, each word is represented by a high-dimensional
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vector obtained from an embedding matrix. In the case of echogram images, the patch, chosen
based on a patchification scheme, is passed through a convolutional base layer and the feature
vectors from this serve as the layer embedding. However, unlike deterministic embeddings such
as eigen-value decomposition, Fourier transform, wavelet basis, etc., this embedding space is
learnt entirely from the data, therefore, it can achieve better performance by making less
assumptions and learning entirely from the input data. Starting with a random initialization of the
transformation basis weights, the model during the forward and backward propagation phase of

training learns the appropriate basis that best explains the latent information in the input images.

Next, since the self-attention module is position and order-agnostic, the initial position of each
patch in the image is provided as additional information through position embedding. The
positional encodings are added elementwise to the embedding output. The initial approach used
in the seminal paper [29] was to use sinusoidal functions which vary smoothly and provide
unique encodings for each position. This is static and not updated during training. However, a
more recent way of implementing this is to also use a trainable embedding layer that is optimized

with other weights in the network during training.

The transformed input patches with added positional information are then passed as input to the
earlier described self-attention module. Importantly, the power of the self-attention module is
harnessed by performing multiple parallel copies (known as “heads”) of the operation. This is
referred to as “multi-head self-attention” and is repeated several times to form the compound
“multi-layer multi-head self-attention,” drastically improving the overall representation power of

the architecture.
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5-2-3 Layer normalization, skip connections and feed-forward networks

As shown in Figure 5-1, the transformer encoder (where the self-attention operation is
performed) consists of the normalization layer, self-attention layer, skip connections and
multilayer perceptron head. The output of the multi-head self-attention goes through the
normalization layer which normalizes the inputs to each layer (as opposed to batch
normalization) to mitigate potential covariate shift in the transformed input. This is critical
considering the residual connections that add previous inputs which can cause the scale of the
activations of the attention layer output and the skip connection to vary. Without normalization,
the network could experience exploding or vanishing gradients, which can hinder the training

Process.

Skip or residual connections are a well-established technique that allows easier optimization of
deep learning models and enables the training of deeper networks. In the transformer
architecture, residual connections are inserted between the incoming transformed input to the
encoder and the output of the self-attention module to ensure no information is lost due to
processing. It is also inserted between the output of the attention module and input of the feed-
forward network. This is done to maintain strong gradients between the input and output of the
network’s intermediate layer by providing an alternate path for information to be directly passed

across the layers without degradation.

Finally, the feed-forward network is a dense fully connected network that applies a non-linear
transformation to the inputs. It enhances the model’s capacity to learn complex patterns from the
input data by processing each position in the input sequence independently although using the
same feed forward network. It consists of two linear transformation layers and a ReLU activation

between them. While the feed-forward network in the transformer does not perform direct
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mixing between different positions in the input sequence, it significantly enhances the
transformer's ability to model complex patterns and relationships within each position
independently. The feed-forward network introduces nonlinearity, transforms the dimensionality
of the data, and, when combined with layer normalization and residual connections, improves

training stability and performance.

5-2-4 Segmentation output head

A major alteration to the traditional vision transformer in the EchoViT architecture is the final
prediction layer. Most vision transformer models are trained on optical images (ImageNet,
ImageNet1000) as classification models. However, the echogram layer tracking problem is a
tiered-image segmentation task where dense prediction is required for each pixel and subsequent
tracking in along-track axis. Therefore, the final prediction layer is changed from a classification

head to a fully convolutional layer that predicts the class of every pixel in the echogram.

To match the size of the output decision matrix to the input image, network hyperparameters
such as the dimension of the embedding layer and feedforward layer are chosen to match the

dataset’s echogram input dimension.

5-2-5 EchoViT model architecture
To best leverage the vision transformer architecture for the echogram layer tracking problem, we
investigated multiple patchification schemes to identify those that harness the natural rangeline-

to-rangeline sequence in the echogram which will be instrumental for layer tracking along-track.
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5-2-5-1 Patch methodologies

The EchoViT architecture is setup as a binary segmentation task which incorporates a pairwise
self-attention mechanism to capture spatial correlations between echogram patches. EchoViT is
an encoder-only transformer architecture that features a specifically designed binary

segmentation output layer tailored to the input's patchifying scheme.

The input to the encoder layer E is the patched echogram pixels mixed with corresponding

learnable positional embedding Z,,,; as shown in Figure 5-1. Given a grayscale input echogram

G € {RV*Nx : 0 < G (m,n) < 1} where N, is the number of fast-time bins and N, is the

number of slow-time bins.

We explored three patching schemes:
1. Fast time patch Py, € RNt *? to give patch sequence Zp, = L[Pfyy, Prra, .., Prwx| +

Zpos_ft

2. Slow time patch P, € R *Nx to give patch sequence Zg; = L[Pgtq, Peta, - Psne] +

Zpos_st

3. Cropped patch P., € RPt*bx to give patch sequence Z,, = L[Perq, Pergy ooy Pern] +

Zpos_cr

. . . N¢Ny .
where b; and b, are the respective dimensions of the patch and N = ﬁ is the number

tlx

of cropped patches.
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For each scheme, L is the linear embedding operation and Z,,; . is the corresponding

position encoding for the patch.

The positional embedding for each patchification scheme differs slightly depending on the
number of patch tokens created by the scheme. For each scheme, the operation uses the integer
position of each token in the input sequence (starting from 0) and maps this integer position to a
continuous vector representation. This is done using an embedding matrix whose weights are
learned during training that transforms the discrete positional information into a continuous
vector space of the same dimension as the echogram patch embeddings. The context-rich

outputs Zs, Zgt, Zor are now the inputs to the self-attention layer in the EchoViT model.

The patching schemes are visually illustrated in Figure 5-2 below.
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Figure 5-2: lllustration of the patching scheme (a) Echogram with annual layer annotation

(b) Slow time patch (c) Fast time patch (d) Crop patch

5-2-5-2 EchoViT training experimental setup

The EchoViT model architecture is a multi-head/multi-output model with each patching scheme
as an output head, but all trained together. An additional head that combined the final outputs of
the three patchification schemes was added to take advantage of the combination of all the

schemes.

The model was trained with the SR ML _Datasetvl where each echogram image has a fixed

dimension N; = 1664 and N, = 256. We set b, = b, = 4 for the cropped patch scheme.
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Consequently, the dimensions of each fast time patch Pr, = 1664 X 1, slow time patch P;; =

1 X 256, and cropped patch P, = 416 X 64.

Table 17: Binary EchoViT training hyperparameters

Training hyperparameter Value
Batch size 8

Starting learning rate 3e-3
Number of heads 12
Number of Transformer layers 15

Input image shape 1664 X 256
Embedding dimension 1664

MLP dense units [512, 256]
MLP activation function GeLU
Convolution head activation function Softmax
Number of prediction classes 2

Training epochs 200
Learning rate schedule Reduce LR by a factor of 0.25 on

plateau after 10 epochs

The training hyperparameters are listed in Table 17. The training was performed on a Core 19

machine with an RTX A5000 GPU.
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5-2-5-3 Qualitative output

@ (b) (c) (d)

Figure 5-3: EchoViT outputs (a) Echogram image (b) Fast Time patch activation (c) Slow

time patch activation (d) Cropped patch activation

5-2-5-4 EchoViT binary output evaluation

Like the outputs of the convolution-based models in Section 4-5-1, the immediate output of the
binary EchoViT architectures are also probability heat maps derived from applying the sigmoid
activation function to the logits output of the models. Visually inspecting the probability heat

maps in Figure 5-3 reveals that the models (except the cropped patch scheme) correctly
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distinguish between snow layer pixels and non-layer pixels. As before, the domain of the values

in the heat maps is from 0 to 1 requiring a threshold to binarize the output.

Figure 5-3 shows the output of the models on an echogram image from the L1 test set. As seen
from the performance of the convolution-based models, these echograms are relatively easy to
track. Similarly, for the row and column patching schemes, the EchoViT models correctly
identified the layer pixels. However, the cropped patching scheme output shows inferior
performance for the same training hyperparameters that other schemes had. This shows that this
patching scheme is suboptimal and confirms the hypothesis that arbitrary cropping of the
echograms to form patches distorts the naturally occurring sequence formed both in the rows and
columns of the echograms. To achieve good tracking performance in the along-track axis, it is
best to design architectures that take advantage of this. Hence, the cropped patch scheme is
excluded in the model evaluations because the output gets poorer for more challenging

echograms.

Next, we evaluate the classification performance of the models to correctly distinguish “layer”
and “no-layer” pixels in the echogram. The EchoViTs demonstrate good performance which is
indicated by the significant separation between the foreground and the background classes as
shown in the histogram plot in Figure 5-4. Due to the superior ability of the EchoViTs to
correctly classify the layer pixels, the average of the ODS and OIS threshold values was used to

binarize the outputs.
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Figure 5-4: Histogram of Fast time patch output showing concentration of background pixels

in first three bins. Inset is the zoomed image showing the first few bins.

Table 18 shows the ODS and OIS F1 scores for the different EchoViT architectures. The

performance shows signs of improvement over convolution-based models.

Table 18: Optimal Dataset Scale and Optimal Image Scale F'1 scores for EchoViTs

Slow time Fast time Combined
patch patch
ODS 0.978 0.985 0.969
OIS 0.979 0.983 0.969

Next, the recall, precision, F1 score and SSIM for the combined L1 and L2 test sets is computed

and reported in the table below.
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Table 19: Weighted average metrics for the EchoViT models

Model Recall Precision Accuracy SSIM F1

Slow time 0.9778 0.9781 0.9778 0.9585 0.9779
Patch

Fast time 0.9780 0.9781 0.9780 0.9588 0.9780
Patch

Combined 0.9779 0.9779 0.9779 0.9576 0.9780

Similarly, the performance of the models on each binary class is examined. As reported in Table

20, the performance of all three versions of the EchoViT performs better on both binary classes,

particularly the minority layer (1) class.

Table 20: Recall, precision and F1 score for each of the binary class.

Recall Precision F1
Class 0 | Class1 | Unweighted | Class 0 | Class1 | Unweighted | Class 0 | Class1 | Unweighted

average average average
Slow time | 0.9886 | 0.1195 0.5540 | 0.9889 | 0.1168 0.5528 0.9887 | 0.1181 0.5534
patch
Fast time | 0.9887 | 0.1199 | 0.5543 0.9889 | 0.1182 | 0.5536 | 0.9888 | 0.1191 0.5540
patch
Combined | 0.9887 | 0.1158 | 0.5523 0.9888 | 0.1150 | 0.5519 | 0.9888 | 0.1154 | 0.5521




As was the case with the convolutional-based models, these metrics tell us how well the
prediction pixels coincide with the ground truth annotation, however, the thickness of the snow

layers is more than one pixel thick which introduces an extra ambiguity in the model evaluation.

The N-pixel accuracies for N = {2,5,10}, MAE, and missed pixels for the models provide a

better metric and are listed in the tables below for the two patchification methods.

5-2-6 EchoViT tracking evaluation

Table 21: N-pixel accuracies and Mean Absolute error of each model

2px Spx 10px MAE
DeepLab 0.1679 0.6523 0.9237 5.0119
FCN 0.2946 0.8015 0.9638 3.8132
Slow time patch 0.3239 0.7989 0.9605 3.7649
Fast time patch 0.3262 0.7998 0.9612 3.7286
Combined 0.3150 0.8051 0.9600 3.7604

The result in Table 21 for DeepLab, FCN and the three transformer-based models shows that the
transformer architecture takes advantage of the sequential and local spatial information between
adjacent rangelines to improve not just the classification performance of the model but its along
track tracking performance. Compared to the convolution-based models, with FCN having the
best performance with MAE = 3.8132, transformer-based models show good consistent tracking
performance and a noticeable drop in their mean absolute error compared to the convolution-

based models. This is further evidenced in the close to zero intra-layer pixels missed as reported
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in Table 22. The intra-layer pixels are important to ensure that there is no gap in the layer’s

activation map which is crucial for the 1D layer contour extraction in post-processing especially

for wet snow zone echograms. These values are for the combined L1 and L2 echograms

excluding the L3 set.

Table 22: Consecutive layer pixel prediction evaluation

Whole layer pixels Intra-layer pixels Combined Percentage
DeepLab 1.52% 6.81% 8.32%
FCN 2.05% 2.97% 5.02%
Slow time patch 1.43% 0.25% 1.68%
Fast time patch 1.33% 0.22% 1.55%
Combined 2.27% 0.23% 2.50%
5-2-6-1 EchoViT tracking performance based on echogram image quality
Table 23: Mean absolute error (MAE) for L1, L2 and L3
L1 L2 L3
DeepLab 3.956 5.118 41.661
FCN 3.982 3.742 47.084
SlowTime Patch 3.880 3.748 38.042
FastTime Patch 3.858 3.709 36.935
Combined 3.499 3.799 36.837
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Table 24: N pixel accuracies for each echogram image quality segment

L1 L2 L3

2px Spx 10px | 2px Spx | 10px | 2px Spx | 10px

SlowTime Patch | 0.155 | 0.769 0.988 | 0.358 | 0.803 | 0.956 | 0.007 | 0.077 | 0.358

FastTime Patch | 0.176 | 0.777 | 0.990 | 0.361 | 0.803 | 0.957 | 0.007 | 0.112 | 0.381

Combined 0.168 | 0.828 | 0.991 | 0.337 | 0.801 | 0.955 | 0.006 | 0.094 | 0.345

We continue the evaluation of the models in terms of the echogram image quality. The mean
absolute error for L1, L2 and L3 is computed individually in Table 23. The three models show
improved performance particularly on L2 and L3 echogram images with the fast time patch
architecture achieving the best performance compared to the convolutional-based architectures
and other transformer models. The N-pixel accuracy also shows significant improvement in all
the image quality segments including the very poor quality L3 images. Particularly, the 10-pixels
accuracies for both L1 and L2 images are above 95% showing that the model is doing well not

just on the binary classification task but also on the along-track tracking task.

In Table 25 below, the intra-layer pixels missed in the L1 and L2 segments are enumerated
separately. The L2 missed layer pixels dominates the overall combined percentage missed pixels.
This again corroborates the impact of image quality on deep learning models. However,
compared to the convolutional-based models, the transformer models achieved less than 0.1%
intra-layer pixel missed as compared with the FCN (the best convolution-based model) with
2.97% intra-layer pixel missed. This is very significant particularly for echograms with curved
layer orientation and poor image quality such as those in the wet snow zone. As discussed in

Section 4-6-3-1, missed pixels in the curved regions of snow layer prediction make it difficult
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and sometimes impossible to automatically track such layers in the model output. The
transformer self-attention mechanism takes advantage of the inherent sequential information in
rangelines and range bins to improve the along track tracking thereby reducing the frequency of

missed intra-layer pixels.

Table 25: Consecutive layer pixel prediction evaluation

Whole layer pixels Intra-layer pixels Combined
Percentage
L1 L2 |L1+L2 L1 L2 L1+L2
DeepLab 11 248 259 15,215 | 265,010 280,225
0.35% | 1.17% | 1.52% | 1.89% | 4.93% 6.81% 8.32%
FCN 16 328 1.46 3,883 | 133,847 137,730
0.51% | 1.54% | 2.05% | 0.48% | 2.49% 2.97% 5.02%
Slow time 10 236 246 1645 2424 4,069
0.32% | 1.11% | 1.43% | 0.20% | 0.05% 0.25% 1.68%
patch
Fast time 10 215 225 1447 2379 3,826
0.32% | 1.01% | 1.33% | 0.18% | 0.04% 0.22% 1.55%
patch
Combined 19 388 407 1447 2557 4,004
0.44% | 1.83% | 2.27% | 0.18% | 0.05% 0.23% 2.50%

5-2-7 Generalization evaluation

Similar to earlier developed models, the EchoViT models are tested on a wide range of unlabeled
data both from the same campaign year, 2012, and other years with similar radar hardware. As
shown in the quantitative metrics, the vision transformer-based models achieve both better
classification results as well as along-track tracking performance. For echograms from the dry
snow zone, EchoViTs have excellent tracking performance (see Figure 5-5 below) and even on

echograms with noticeable along-track fading as in Figure 5-6.
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Figure 5-5: Echogram image from dry snow zone overlaid with EchoViT outputs (b) FastTime

patch layers (c) SlowTime patch layers (d) Combined layers
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Figure 5-6: Echogram image with some along track fading overlaid with EchoViT outputs (b)

FastTime patch layers (c) SlowTime patch layers (d) Combined model

The figures below (Figure 5-7 through Figure 5-10) show qualitative examples of cases where
the convolutional-based echograms had a hard time tracking the layers but the transformer-based

model successfully tracked the layers.
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Figure 5-7: (a) Echogram image overlaid with (b) U-Net layers (c) AttentionU-Net layers (d)

DeepLab layers (e) FCN layer (f) Ensemble layer

FastTime SlowTime Combined

Figure 5-8: Echogram image overlaid with EchoViT outputs (b) FastTime patch layers (c)

SlowTime patch layers (d) Combined layers
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Figure 5-9: Another echogram image overlaid with convolution-based model outputs (b) U-Net

layers (c) AttentionU-Net layers (d) DeepLab layers (e) FCN layers (f) Ensemble layers

FastTime SlowTime Combined

Figure 5-10: The same echogram image overlaid with EchoViT outputs (b) FastTime patch

layers (c) SlowTime patch layers (d) Combined layers
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5-2-8 Limitations of transformer-based models

While transformer-based models have demonstrated improved tracking performance, certain
architectural subtleties introduce limitations that vary in significance depending on the specific
application and required tracking precision. In some cases, these limitations may be negligible
and can be overlooked; however, in others, they may necessitate exploring alternative

architectures.

A key limitation of transformer-based architectures, particularly in the context of echogram layer
tracking, is the requirement for a fixed input size, which stems from the predefined patch size
necessary at model initialization. Transformers architecture design currently requires that the
number of input tokens and the patching scheme be defined in advance, resulting in a need for
consistent input dimensions. This means that the echograms fed into the model must have the
same number of rangelines and range bins—an often-unrealistic scenario. In optical images,
where transformers excel and achieve state-of-the-art performance, each pixel typically lacks a
direct physical interpretation, allowing for arbitrary resizing or cropping without distorting the

image's meaning.

While it is possible to carefully reshape the echogram images to fit the defined input shape of the
transformer model by appropriately upsampling and downsampling as needed, the data
interpolation is not entirely perfect since the frequency content of the image is not perfectly
bandlimited leading to a loss in the high frequency content of the echogram image and
introduction of subtle artifact because of the interpolation. A mild consequence of this is lower
along-track resolution of the tracked echogram layers when the interpolation leads to loss of
details and blurred edges in the input echogram image. Another implication of reshaping the

image size to a fixed dimension is that the slopes of layers change and would no longer be

173



representative of the true snow accumulation layer slopes. Unless this is accounted for by
training with echograms having the same ranges of distortions, this would result in layer
orientations that were not encountered by the model during training. Consequently, the model's

performance on such accumulation layer slopes during inference will likely be lower.
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Chapter 6: METHODOLOGY (4)

6-1 Optimizing convolutional-based model for performance consistency

The improvements made by the transformer-based models indicate that further enhancements
can be made to the convolutional-based model to achieve better performance. The transformer-
based architecture, being an auto-regressive model, exploits the inherent spatiotemporal structure
in the echogram images to outperform our previous convolutional networks. However,
convolutional-based architectures are desirable for the echogram layer tracking problem because
of their lack of restriction on the echogram input shape meaning that they can take any shape of
input echogram and are not constrained by what the model was trained with during inference.
This eliminates the need for resizing, which could otherwise degrade along-track resolution.
Such flexibility, without performance loss, is critical, especially since many echogram images
outside the training set differ significantly in size from the fixed dimensions used during model

training.

Typically, echograms in a deep learning training set are best set to be of the same shape to
facilitate the mini batch grouping for parameter optimization during training. When this is done,
some architectures such as the transformer-based models, require that the test images are first
resized to match the training set dimensions during inference. After obtaining the prediction, the
results are subsequently reshaped back to the original dimensions of the input image. This is
often not a challenge in many image domain problems but as earlier described, the pixel
resolution of echogram images has a direct relationship with the physical phenomenon being
measured. Downsampling and upsampling of the echogram images results in the loss of fine
details of the accumulation layers particularly in the along-track axis. As such, convolutional-

based models are particularly attractive because they perform well on echogram images outside
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the training set as well as future echograms that will be created from upcoming scientific

missions.

Consequently, a new convolutional-based model is designed to improve on the weaknesses of
earlier models. Particularly, earlier convolutional-based models, despite their good performance
on dry snow zone echograms with good image quality, were noticed to suffer significant
performance dip on echograms with poorer image quality and less obvious delineation of the
snow layers. The model’s tracking performance deteriorates significantly when these two
conditions coexist:

1. Weaker backscatter from the snow layer relative to the background clutter due to the presence
of meltwater in the mapped region, and,

2. Curving accumulation layer coincides with signal power fading in the echogram rangelines.

The coincidence of these two effects causes gaps in the thinned layer predictions which are
difficult to merge and combine to form the desired output layer 1D contours. To tackle this
problem, a multi-pronged approach is adopted to improve multiple sections of the entire
echogram layer tracking pipeline starting from the pre-training image processing to the training
architecture, and the layer contour post-processing extraction. Notably, a new convolutional-
based architecture that builds on the strength of earlier models but enforces autoregressive
cohesion between adjacent layer pixels using a composite loss function is designed. Also, a

larger dataset with improved echogram diversity is created and used to train the model.
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6-2 Training pipeline modifications

6-2-1 Echogram image pre-processing

The performance of all the earlier trained models proves that the performance is hinged, not
surprisingly, on the input echogram image quality. Hence, efforts were made to improve the
training set echogram image quality as much as possible but to also increase the diversity in the
training set to include more lower quality images to learn with. Of the several image pre-
processing steps listed in Section 4-1, echogram filtering, averaging and detrending were noticed

to considerably affect the tracking performance of the models.

6-2-1-1 Detrending

Rangeline power detrending was also noticed to have a significant effect on the model tracking
performance. As explained earlier, deeper layers often have less SNR compared to shallower
layers, and the lower SNR makes it difficult to distinguish the layer peaks from noise at these
depths. As a result, some models failed to correctly classify and track such layers. In the new
training scheme, rangeline detrending is used to make it so peak pixel intensities are more
comparable regardless of the depth of the layer. To increase the training set diversity, a few
training echograms were left undetrended to give the model the opportunity to learn from these
kind of echogram images too. Specifically, copies of detrended and undetrended echogram
images of the 18™ and 28™ April 2012 (segment 01) flightlines were added to the new training
set. Both segments include a total of 860 undetrended images added to the training set which

includes echogram data of along-track lengths of 2 km and 5 km.
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6-2-1-2 Fast time filtering

The length of the fast-time filter is critical in handling noise in the rangeline data. A short filter
does not fully eliminate low-amplitude noisy peaks, while longer filters (21 pixels or more) may
blur weak layers along with removing noise. The ideal filter length varies across echograms and
requires further experimentation for optimal performance. In the new training set, the filter
length was randomly varied between 3, 5 and 7 pixels for the echograms in the training set. This

further contributes to the diversity in the training set.

6-2-1-3 Deep learning-based image filtering and denoising

As established from earlier models and experiments, a deep learning model performs better when
the input echogram image has good image quality with crisp delineation between the noise
background and the layer pixels. However, despite the application of traditional signal
processing methods such as detrending, coherent and incoherent averaging, etc., the image
quality is still limited for some echograms. Worse still, the incorrect application of some
processing due to wrong hyperparameter choices, such as fast time filter length, can remove vital
information from the data which will negatively affect the model tracking performance. This
proves that adaptive hyperparameters are needed to best condition the echogram for optimal deep

learning processing.

To address this challenge, deep learning-based denoisers and filters are explored to learn and
adaptively remove noise from the echogram image. This is critical for echogram image filtering
and denoising where the noise characteristics are dynamic, making it difficult to choose a fitting

filter type or tune an optimal filter length.
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There exists a number of classical and deep learning-based filters in the literature [90], [91], [92],
[93] which have been reported to surpass traditional signal processing approaches. In this work,
we adopt the deep plug-and-play image restoration (DPIR) [94] learning-based image denoising

algorithm.

The algorithm combines model based and learning-based paradigms, consolidating the strength
of both approaches to train a variable splitting (half-quadratic splitting) CNN-based denoiser that
employs both U-Net and ResNet in its denoiser architecture. Concretely, the grayscale image
deep CNN denoiser termed (DRU-Net) has a U-Net backbone that consists of four image scales
that each have skip connections between the downscaled and transposed convolved image pair.
Starting with the initial convolutional layer with N = 64 channels, the number of channels is
doubled for each successive scale with the last layer having N = 256 channels. The convolution
layers’ weights discard the bias weight term, and each residual block only contains one ReLU
activation function — an architecture choice that has been noticed to improve deep denoiser

super-resolution.

As shown in the network diagram in Figure 5-9, the model has 4 stages of 2x2 decimation in the
encoder path and corresponding stages in the decoder path. The Residual Block is made up of 4
consecutive convolutions with similar number of features and a skip connection addition
between the initial input and the residual block output. This is done to increase the representation
power of the network. This is then followed by sequential standard convolution blocks (SConv)
in the encoder and transposed convolution blocks (TConv) in the decoder with intermediate

downsampling.
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Although the denoiser is not applied on the training echograms, it is included in the inference
pipeline to handle the different noise levels that may exist in the test echogram, particularly other
echograms outside the dataset. It adaptively removes Gaussian and non-Gaussian noise in the
image. The output of the denoiser, with improved PSNR, is then passed to the model to predict

the layers.

Convolution

g

I>*

Figure 6-1: Block diagram showing overview of the DPIR denoiser architecture
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Filtered echogram image

6-2-1-4 Vesselness filter

Vesselness filters [95], [96], [97] are designed to enhance tubular structures in images that
traditional filters have limited performance on due to the curved orientation of the feature of
interest in the image. Originally designed for medical images of blood vessels, airways and other
tubular anatomical structures that require specialized filters, echogram images with arcuate snow
layers share similar feature orientations. Owing to the curved and river-like nature of the feature
of interest in the image, the application of classical boxcar filters that operate on adjacent pixels
has limited performance and can sometimes be detrimental especially in the case of a weak snow

layer transversing only a few pixels out of the overlaid filter length.

These filters utilize the Hessian matrix which contains second-order partial derivatives of the

image intensity to analyze the local shape and structure of the image features. As such, they can
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identify pixels that contribute to elongated features like snow layers in the echogram image while
ignoring other non-vessel features that correspond to noise.
The Hessian matrix H at a point (x, y) in a 2D image is defined as

= [Ixx Ixy]

Ly Ly

where Iy, Iy, I, are the second-order partial derivatives of the image intensity I. The
eigenvalues A, and A, of the Hessian matrix provide insight into the local curvature of the image
intensity surface. These eigenvalues are critical for identifying tubular structures, with different
magnitudes indicating structural characteristics and their orientation. This is important since
snow layer structures typically go from left-to-right (horizontally orientated) while noise features

such as image and processing artifacts, rangeline fading, often result in vertically oriented

features.

In this work, we adopt the Meijering vessel filter [98] designed to enhance curvilinear structures
while being robust to noise and variations in the vessel diameter or intensity discontinuities along
the travel path. The filter enhances neurite-like features even in low contrast neighborhoods such
as is the case with diffused layer backscatter in wet snow zone echograms. It achieves this using
multi-scale analysis where the image is analyzed at multiple scales by convolving with a
Gaussian derivative of different standard deviations. This creates a scale-space representation
that helps in capturing structures of different pixel widths. The standard deviation o of the
Gaussian kernel is varied across the multiple scales provided which allows the filter to identify

consistent tubular features across the scale-space created.

As with the DRU-Net denoiser, the Meijering filter is used only in the inference pipeline. The

aim is to train the segmentation models with a variety of poor and good echogram images to

181



improve their robustness but perform inference on cleaned images. The Meijer filter also has the
drawback of introducing vertical ridge-like artifacts, but the sequential application of the above-

mentioned processing steps combined with the segmentation model can get rid of these.
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Figure 6-2: (a) Echogram with curvilinear layers (b) mild boxcar filtered echogram (N = 5) (c)

aggressive boxcar filtered echogram (N=21) (d) Meijer filter output

6-2-2 Increasing echogram image diversity in the training and test set

To improve the performance of the new model, echograms with specific characteristics were
added to the training set. The goal was to simultaneously improve the model’s performance both
on wet snow zone echograms and dry snow echograms with very deep layers e.g. echograms
with more than 50 snow layers. To achieve this, more echograms with few layers and undulating
orientation were manually traced and added to the training set. Particularly since the first set of
models had challenges predicting wet snow zone echograms partially due to the sparsity of these
kinds of echograms, increasing the population of such echograms in the training set becomes
imperative. Also, simulated echograms with few layers and varying layer curvature representing

echograms from the wet snow zone were added to the training and testing datasets.

Also, to improve the model performance on echograms with very deep layers such as those from
the summit of Greenland which may have more than hundred (100) layers with the lower layers
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being very faint, closely packed and difficult to distinguish, more of such echograms were
manually tracked and added to the training set. This updated training pipeline was deployed
using the active learning paradigm to create the SR ML Dataset version 2 with 50,000 training,

validation and testing set examples.

6-2-3 Improved binary segmentation training label

In the earlier training set, the output ground truth was generated with single-pixel thick layers.
However, this makes training more difficult since the layers themselves are multiple pixels thick.
Assigning a single pixel as the layer is a harder training objective and increases the susceptibility
of the model output to having undesired gaps in the tracked layers since it is being trained to
have just one pixel for each layer. Therefore, we relax the training criteria by including the
neighboring 3 pixels above and below the candidate layer pixel so that the output ground truth is
generated with 7-pixel thick layers. Figure 6-3 below illustrates the difference between the
previous binary ground truth and the new ground truth. By relaxing the layer thickness, the
model learns to focus on the band of pixels around a layer, instead of just a single pixel, thereby
reducing the possibility of a disconnected tracked layer even when some of the echogram
rangelines suffer noticeable fading. It is important to note that although multiple pixels are
assigned higher probability values relative to the no-layer pixels, a single pixel is eventually
chosen as the layer pixel in post-processing. The selected pixel is the one with the maximum
probability in the model’s output probability map and the one that makes an 8-pixel connection

with its neighboring pixels. This is further explained and illustrated in the post-processing set up.
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Figure 6-3: Examples of (left) zoomed echogram images with (middle) previous binary GT labels

and (right) new multi-pixel binary GT labels
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6-2-4 Custom hybrid model cost function

To train the new architecture, a hybrid cost function is developed to improve on the strength of
earlier models while also ensuring connectivity between adjacent pixels. The cost function (also
known as objective function or loss function) measures how well a deep learning model’s
prediction matches with the actual data. It quantifies the error between the predicted values and
the true values. The selected optimizer takes the output of the cost function to minimize its value
by adjusting the model’s weight parameters during training. It is an important part of training a
deep learning model because it dictates how well a model is trained and its success on test and
out-of-sample data. An incorrectly defined cost function could either lead to the model not
training well, the model not learning expected features from the data or worse, the model

overfitting the training data.

6-2-4-1 Binary cross-entropy (BCE) loss
Some of the earlier trained models were trained with the most common supervised deep learning

classification cost function — binary cross-entropy defined as

Loce = = 9 [wilogG) + (1 =) log( = )] (1

where y; is the actual label (0 or 1) and y, is the predicted probability of the instance being in
class 1.

The BCE cost function has the good attribute of producing a probabilistic interpretation of the
model’s output when used with a sigmoid activation layer. Its reputation on binary tasks is

earned because of its non-negative loss and convexity which makes it well behaved for gradient
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optimization. However, it might be too simplistic particularly for highly imbalanced classes like

the binary segmentation echogram layer tracking task.

6-2-4-2 Binary focal cross entropy loss

In some problems, particularly those with highly imbalanced classes, the binary cross entropy
loss can reach a plateau where it becomes insensitive to further changes in the model’s
parameters during training. This can make it difficult to continue optimizing the model
parameters to improve performance on the minority class. The binary focal cross entropy loss

[99] is designed to address the issue of class imbalance.

It introduces a modulating factor to the BCE loss giving less weight to the well-classified

examples and focusing on the hard-to-classify ones.

n % 16
Lp, = L ) at(l - Pt,i) log(p,:) (16
1=

where p; is the predicted probability for the true class, a; is the balancing factor parameter that
helps balance the importance of positive vs negative examples. y is the focusing parameter that
adjusts the rate at which easy examples are down weighted. When y = 0, focal loss is
equivalent to BCE loss but as y increases, the focusing effect is intensified, putting more
emphasis on the hard examples.

However, the introduction of new hyperparameters in focal loss introduces a new challenge too.
Hyperparameter tuning of the focusing parameter y which differs from one dataset to another
adds a layer of complexity since its value dictates the effectiveness of the focal loss. Although

further experimentation is needed, the values y = 2and @ = 0.25 were used for training.
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6-2-4-3 Intersection over union (IoU) loss

While BCE focuses on pixel-wise accuracy and focal loss on class imbalance, there is still the
need to ensure patch-level segmentation quality to avoid potential gaps in the snow layer output
segmentation map. To achieve this, the IoU loss, also known as Jaccard index loss, is added to

the custom composite loss function.

The IoU loss is popular in segmentation tasks for evaluating the overlap between the predicted
segmentation mask and the actual segmentation label. Hence, it is useful for evaluating the
accuracy of the model’s predicted masks and how well the model’s predicted snow layer

boundaries align.

The 10U loss is derived from the IoU metric with the loU metric defined as the ratio of the

intersection of the prediction and ground truth to their union

|A n B (17)

IoU metric = m

The IoU loss is computed as ¢ = 1 — [oU metric to approximate a convex, optimizable loss
function. A small smoothing factor is sometimes added to prevent instability when the

intersection or union is zero and to ensure that the loss is differentiable.
Unlike BCE and focal loss that operate solely on pixel-per-pixel basis, the IoU loss emphasizes

the overall shape and boundary accuracy of the model’s segmentation map which is crucial for

predicting the curved boundaries of snow layers in echogram images.
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6-2-4-4 Structural Similarity Index Measure (SSIM) loss

Structural Similarity Index Measure (SSIM) is a perceptual metric used to measure the similarity
between two images. Unlike traditional loss functions like BCE, focal loss and IoU loss which
focus on pixel-level accuracy and overlap, SSIM performs image-level evaluation by estimating
the perceptual quality and structural information of the echogram images. It considers subtleties

like luminance, contrast, and other structural differences.

The SSIM between two images x and y is computed as

(2|J-x|J—y + Cl) (Zo-xy + CZ) (18)
(p-xz + p-yz + Cl) (ze + O-y2 + CZ)

SSIM(x,y) =

where:
e |, and p, are the mean intensities of x and y;
e 0,%and O'y2 are the variances of x and y and oy, is the covariance of x and y;

e (; and C, are small constants to stabilize the division with a weak denominator.

Like the IoU loss, SSIM loss is computed by estimating 1 — SSIM to ensure that maximizing the
SSIM is equivalent to minimizing the SSIM loss. Including SSIM loss in the composite cost
function forces the model to consider local patterns of intensities that have strong
interdependencies such as the layer edges and boundaries which may be missed by BCE, Focal
loss or IoU loss. SSIM is also more robust to changes in illumination and contrast in pixel values

which is what happens in rangeline fading scenarios.
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6-2-4-5 Custom 8-pixel connectivity loss

As earlier discussed, a major challenge noticed in previous model outputs was the gaps and
disjoints that occurred in the tracking of a snow layer when the echogram rangelines suffer
severe fading. To specifically address this, the custom 8-pixel connectivity loss is included in the
composite loss function. The connectivity loss function encourages the predicted segmentation
mask to have smooth and connected regions by penalizing discrepancies between a pixel and its
neighbor in all 8 possible directions. This ensures that neighboring pixels in the mask are
consistent with each other since structural continuity of the prediction regions is critical for

tracking the snow layers in the echograms.

Given the model output segmentation map ¥, where each element y (i, j) represents the
predicted value (probability or confidence score) at pixel location (i, j), the 8-pixel connectivity
10SS Lonn is defined as the sum of the absolute differences between the predicted value ¥ (i, j)

and its neighboring pixels in all 8 directions:

Sy L S g ) (19)
Lo @) = ), 1) = YA +dxj + d)l

where shifts = {(-1,-1),(-1,0),(-1,1),(0,—1),(0,1),(1,-1),(1,0), (1,1) } represents the
8 neighboring pixels around each pixel (i, ). N = 8 is the total number of neighboring pixels.

In summary, the composite loss function used to train the model is defined below:

Leomp = Lece + Lpr + Loy + Lssiv + Leonn (20)
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The composite loss which combines Binary Cross-Entropy (BCE) Loss, Focal Loss, Intersection
over Union (IoU) Loss, Structural Similarity Index Measure (SSIM) Loss, and Connectivity Loss

leverages their individual strengths to collectively enhance segmentation model performance.

Binary Cross-Entropy (BCE) Loss is pivotal for precise pixel-wise classification, ensuring each
pixel in the segmentation mask is correctly classified based on predicted probabilities. Focal
Loss supplements this by addressing class imbalance, concentrating more on challenging classes
to achieve balanced predictions. Intersection over Union (IoU) Loss measures overlap between
predicted and ground truth masks, crucial for accurate boundary delineation. It emphasizes the

quality of segmentation outputs, ensuring predicted regions align well with ground truth masks.

Structural Similarity Index Measure (SSIM) Loss evaluates perceptual quality by considering
local patterns, luminance, and contrast in images. It enhances visual similarity and structural
consistency in segmentation outputs, aligning closely with human perception while the
Connectivity Loss enforces 8-pixel connectivity, promoting smooth transitions and consistency
between neighboring pixels. This maintains structural integrity in segmentation masks, reducing

artifacts and discontinuities.

Collectively, these loss functions provide a comprehensive evaluation of segmentation quality.
They address pixel-level accuracy, class balance, overlap accuracy, perceptual quality, and
structural consistency. This holistic approach enhances the model’s robustness, improves
generalization across diverse datasets, and ultimately enhances the segmentation performance of

the new convolutional model on the challenging echogram layer tracking problem.
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6-2-5 The EchoRefine Model

A new convolutional-based architecture was designed to build on the success of the fully
convolutional network (FCN) that achieved better performance compared to the other models
tested. The FCN, although sharing a very similar architecture with U-Net and AttentionU-Net,
achieved better tracking performance. This is likely due to the gradual upscaling in the decoder
but significantly the absence of any connection between the encoder-decoder counterpart layers.
The echogram layer tracking problem is an edge/contour detection problem which should be
learned in the earlier layers of a deep neural network. Although more experimentation is needed
to confirm the hypothesis, it is possible that the plain and unassuming architecture of the FCN
forces it to truly understand the underlying layering process which leads to its better

performance.

Since the challenge of the earlier developed convolutional models was their inability to
consistently track the layers especially along the contour edges and layer boundary in the arcuate
layer regions with faded rangeline power, we developed the EchoRefine model which introduces
an extra refine module that takes the front “FCN-like” model output as its input combined with
supplementary information of neighboring rangelines to further refine the layer edges and
correctly delineate the layer boundaries. It must be noted, however, that the model is trained end-

to-end.

The EchoRefine model has a simple yet effective architecture with 2 stages — first is a shortened
FCN-like network at the front and an additional refinement network to gradually refine the
coarse output of the initial network to create fine and continuous boundary predictions. The
EchoRefine takes inspiration from the Deep Coarse-to-Fine family of models that takes the

probability maps of the earlier model but builds an auxiliary detached model to improve the
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earlier prediction. Unlike many of these models with detached component models, the
EchoRefine is a consolidated model that exists as a single unit. Examples of such models include
RefineNet [100] that uses long-range residual connections to preserve information during the
downsampling path, SRM [101] that uses cascaded stages of intermediate segmentation maps
that are refined to produce high resolution outputs. Other coarse-to-fine models include C2S

[102], DHSNet [103] and DGRL [104].

Concretely, the EchoRefine model has an FCN-like encoder-decoder front-model which contains
3 stages of sandwiched convolution, batch normalization, ReLU activation function with dropout
and a 2x2 max pool layer. These convolutional layers share a similar architecture with the first 3
stages of the notable ResNet-34 [105] which facilitates feature extraction from the ResNet 34
model pretrained on ImageNet images [106]. The 3 encoder stages are followed by matching-in-
size Conv2DTranspose upsampling units in the decoder to restore the feature map to the original

input shape.

Like the residual refinement module in [107], the EchoRefine’s refinement network uses an
encoder-decoder architecture which has a single convolution layer in each of the 4-stage encoder
layers with 64 filters each. An intermediate bridge stage is inserted prior to the decoder stages
which uses small 3 x 3 receptive field filters to focus the refined segmentation map. The
refinement network decoder performs non-overlapping progressive upsampling in equivalent 4-

stages before inserting a prediction head to create the final output of the EchoRefine model.
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Figure 6-4: EchoRefine Model architecture diagram

6-2-6 The 1-D layer contour extraction routine

Before going on to discuss the EchoRefine tracking performance, we first discuss the steps

followed to convert the segmentation model output to individual 1-D layer contours for each

identified snow layer. The 1-D layer contour extraction can be summarized into the following

sequential steps:

(a) Pixel thresholding

(b) Individual layer patch identification

(c) Thinned layer range bin value extraction

193



First, the binary segmentation model produces a probability map with values between 0 and 1
because of the sigmoid activation output on the final layer (See Figure 6-5). Typically, the values
of the non-layer pixels are low and close to zero while the layer pixels are higher. However, the
exact value of the layer pixels varies depending on the model architecture and training
effectiveness. The separation between the layer pixels and the non-layer pixels probabilities is a
measure of the model’s performance and ability to distinguish between both classes. When there
is a clear separation (large value) between both classes, it is easy to find a threshold to classify
each pixel into the correct class. This is often the case for most models when the echogram has
good image quality like in Figure 6-5. However, this is not always true particularly for poorer
quality echogram images with deeper snow layers in echograms that are closer to each other and
sometimes have poor SNR. Also critical is the ability of the model to distinguish between artifact
pixels (and ignore them) but still identify layer pixels that have low values due to echogram

image artifacts or rangeline power fading in the echogram image.
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Figure 6-5: (a) Example good quality echogram image and (b) EchoRefine model output
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Figure 6-6: (a) Example poorer quality echogram image and (b) EchoRefine model output
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Figure 6-7: (a) Example poorer quality echogram image and (b) EchoRefine model output

196



6-2-6-1 Pixel thresholding

To extract the 1-D contours of each identified snow layer from the segmentation output map, the
first step is to set a threshold to distinguish between layer pixels and background (no-layer)
pixels. Using the Optimal Dataset Scale and Optimal Image Scale, one can get a threshold
estimate for the training dataset and individual image respectively, but this computation is
expensive since it performs a grid search, and the returned value does not always give optimal
performance. Alternatively, we employ a simple adaptive search for each test image. This is
done by estimating an optimal value that separates both classes based on the distribution of
detrended echogram pixels. For echogram images with distinct layers, obtaining a good threshold
value is easy as shown in Figure 6-8 below. The first histogram bin typically corresponds to most
of the background class so choosing the fourth histogram bin is often sufficient to discriminate
both classes. However, finding an optimal threshold value for images with poorer quality
requires extra care. The current implementation uses an affine combination of the 90" percentile
and the Otsu threshold[108]. Concretely, all pixel values below the threshold are set to zero

while those greater are set to one to give the binarized output as in Figure 6-8(d).
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Figure 6-8: (a) Example echogram image with distinct snow layers (b) EchoViT FastTime-patch

model output (c) Zoomed model output distribution with the threshold in red (d) binarized output

6-2-6-2 Individual layer patch identification

From Figure 6-8, the output of the thresholding stage is a binarized map of the model prediction.
The region (patch) for each layer can be clearly identified although it is represented by a few
pixels. Also, although each layer is visually identified, it needs to be thinned to a single pixel per
rangeline and extracted as a 1-D contour. The output in Figure 6-8d is a binary map that only
identifies layer pixels from non-layer pixels. To extract the 1-D layer contour, it is important to
first identify all the pixels that contribute to each layer uniquely. This is done using mathematical
morphological tools specifically using connected components analysis. The theoretical

fundamentals are introduced in [109] and further developed in [110], [111].
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Connected components analysis (CCA) is a fundamental concept in image processing and
computer vision that involves the identification of contiguous regions in a binary image. A
connected component is a maximal set of foreground pixels such that there exists a path between
any pair of pixels within the set. Formally, let G = (V, E) be an undirected graph where each
vertex v € V corresponds to a pixel, and each edge e € E represent the adjacency between the
pixels. A connected component G is a subgraph in which any two vertices are connected to each

other by paths, and which is connected to no additional vertices in the supergraph.

Building from the foundational work of Carlo and Luigi in [112], [113] to works in [114],
[115],[116], several algorithms have been proposed for the efficient computation of connected
components. Classical approaches include depth-first search (DFS) and breadth-first search
(BFS) which traverse the image from top left to bottom right to label each component. More
advanced methods such as Union-Find offer improved performance for larger images and

datasets.

Due to the chronological deposition age of each snow layer, each layer is distinct and ideally, all
the pixels in the echogram image corresponding to each layer ought to be 8-pixel connected.
Hence, components analysis was adopted given its relative simplicity to implement particularly

for small to medium-sized echogram images.
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Figure 6-9: (a) Example echogram image with distinct snow layers (b) EchoViT FastTime-patch

model output (c) binarized output (d) Individual layer patch identified using CCA

In Figure 6-9, the CCA outputs a 2D map in Figure 6-9d that is of similar dimension with the
input echogram image. Also, all its 24 layers have been uniquely identified based on the
segmentation map predicted by the EchoViT deep learning model in Figure 6-9b. All the pixels
in the binarized map (Figure 6-9c) belonging to a specific layer has now been assigned the

correct label of the layer in Figure 6-9d. Now, this output can then be iterated over, one layer at a
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time, to retrieve the single pixel corresponding to the layer’s peak and its range bin values as a 1-

D layer contour.

6-2-6-3 Thinned layer range bin 1-D layer contour extraction

Given the output of CCA with each layer uniquely identified, the multi-pixel wide layer needs to
be thinned into a single pixel corresponding to the snow layer peaks. This process is often termed
“skeletonization” in the computer vision community. This is achieved using dynamic
programming technique to track the peaks across all the rangelines for each layer.

Concretely, a Greedy Search with a connectivity constraint is performed using both the identified
layer in the CCA output and the probability map output from the deep learning model. Although
the probability map from the deep learning model returns more than one pixel for each rangeline
of each layer, the peak probability value along the rangelines of the layer often corresponds to
the true index of the single pixel layer peak. The Greedy Search, therefore, goes through the
rangelines for each layer to identify the layer peaks that best achieve 8-pixel connectivity
between the layer peak pixels. As a result, the peak probability may occasionally be disregarded
if it does not connect with the adjacent pixel, and instead, the nearest probability index is used.
This step is repeated starting from the first identified layer by CCA to the last layer and the
resulting output is a 2D matrix with each row being the 1-D range bin index which traces out the

contour of each layer as shown in Figure 6-10e.
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Figure 6-10: (a) Echogram image with distinct snow layers (b) FastTime-patch model output (c)

binarized output (d) Individual layer patch identified using CCA (e) Extracted and plotted 1D

layer contours
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6-2-6-4 Addressing issues due to echogram imperfections before 1-D layer contour

extraction

The description of the thresholding and CCA as described in Figure 6-9 is straightforward for the
ideal case where the snow layers are distinct and there is clear separation between consecutive
layers. While this is true for most echograms, it is not always the case especially for poor quality
echogram images. Consequently, additional processing is required to deal with the ensuing

complications.

Despite the simplicity of CCA, it suffers two potential drawbacks that can degrade the accuracy
of the layer 1-D contour extraction. First, CCA requires strict 8-pixel connectivity between
adjacent rangeline pixels in a layer without allowing as little as a single pixel gap. When there
exists a gap of a pixel or more between the pixels that cluster to form a layer, CCA treats them as
separate and distinct components by assigning different labels to them. As will be described, this
can be difficult to resolve in some cases e.g. steeply curved contour edges. Secondly, if multiple
layers are mistakenly merged due to imprecise threshold to separate them, CCA reports these
layers as one. If the incorrectly merged layers are not separated, the layer contour extraction
process will report them as a single 1-D contour. This often results in a confusing 1D layer
contour that is a jumbled mixture of the range bins from two or more constituent layers. Both
drawbacks significantly compromise the accuracy of layer tracking and completely hinder the
ability to correctly estimate snow accumulation in the echogram because of the incorrect layer

1D contours estimated.

Finding the optimal threshold to separate the two classes into a binarized map is challenging in

echograms with less distinct snow layer boundaries coupled with significant rangeline fading
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effects. In many of these cases, it is impossible to find such a threshold without merging two or
more neighboring layers as one. This leads to the challenge of optimizing for a threshold that
satisfies the dual condition of ensuring strict connectivity between adjacent rangeline pixels of a

layer while preventing two or more neighboring layers from merging as one.
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Figure 6-11: (a) Echogram image with fading effects towards the right edge (b) FCN model
output (c) binarized output (d) magnified section of the binarized image to illustrate layer
merging

Typically, one or both conditions are violated in snow layer tracking in echograms with image
artifacts and poor image quality. While trying to find the lowest permissible threshold to avoid

layer gaps in a section of the echogram (usually the deeper layers), shallower layers with a lower
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noise floor merge. While the use of adaptive thresholds (such as adaptive mean or adaptive
Gaussian thresholds) for each echogram pixel alleviates the “layer merging” challenge, it is not

totally eradicated.

Separating the merged layers is achieved by computing the statistics of the connected
components elements returned by CCA such as the number of columns and rows for each
detected component. Merged layers have the characteristics of spanning more rows than the
average of a single layer component but having gaps between consecutive rows for some of its
rangelines. Once this condition is detected, a custom grid-based row-wise dynamic programming

technique can be used to identify the joining pixels and separate the merged layers.

To correct the layer gap issue for dry snow zone echograms with disjointed, but relatively
horizontal layers, connected component elements can be done without many complications.
Since the layers are flat, despite the gaps, the separated elements (that ideally should be seen as
one element) are merged based on a heuristic rule. However, this is usually complicated for
closely spaced disjointed curvy layers in echogram images where the disjointed pieces are
known to be difficult to order in a 2D plane. This is why rangeline fading coinciding with arcuate
layer curves are often difficult to deal with. Although more sophisticated methods such as greedy
beam search exist to correct the layer gap issues, a preliminary application of this algorithm

indicates that the challenge persists for some images.
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Figure 6-12: (a) Example echogram image with severe fading effects towards the right edge (b)

FCN model output (c) Binarized output (d) Zoomed binarized output

As seen in the binarized echogram image above, both complications of layer gap and layer

merging occurs for the deeper layers. While the layer merge issue can be resolved fairly quickly,

automating the assignment of the disjointed layers as a single connected component requires

further attention. This is because the length and orientation of the “broken” pieces of a layer

varies widely across the dataset, a simple heuristic of correctly combining such disjointed parts

remain elusive.
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6-2-7 EchoRefine tracking evaluation

6-2-7-1 Qualitative model performance

Before the quantitative analysis of the EchoRefine model, we first illustrate the improvements

achieved by the model over earlier models.
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Figure 6-13: Outputs of earlier models on a challenging echogram image
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Figure 6-14: EchoRefine model output
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Figure 6-15: Outputs of earlier models on another challenging echogram image
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6-2-7-2 Tracking Evaluation

Table 26: N-pixel accuracies and mean absolute error of ViT models and EchoRefine

2px Spx 10px MAE
SlowTime Patch 0.3239 0.7989 0.9605 3.7649
FastTime Patch 0.3262 0.7998 0.9612 3.7286
Combined 0.3150 0.8051 0.9600 3.7604
EchoRefine 0.3612 0.8178 0.9947 3.5425

Table 27: Consecutive layer pixel prediction evaluation of ViT models and EchoRefine

Metric Slow time | Fast time Combined EchoRefine
patch patch
Whole layer pixels 1.43 1.33 2.27 1.26
Intra-layer pixels 0.25 0.22 0.23 0.15
Combined 1.68 1.55 2.50 1.41
6-2-7-3 EchoRefine tracking performance based on echogram image quality
Table 28: Mean absolute error (MAE) for L1, L2 and L3
L1 L2 L3
SlowTime Patch 3.880 3.748 38.042
FastTime Patch 3.858 3.709 36.935
Combined 3.499 3.799 36.837
EchoRefine 3.539 3.546 38.433

Table 29: Consecutive layer pixel prediction evaluation based on image quality segments
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Whole layer pixels Intra-layer pixels Combined
Percentage
L1 L2 |L1+L2 L1 L2 L1+L2
DeepLab 11 248 259 15,215 | 265,010 280,225
0.35% | 1.17% | 1.52% | 1.89% | 4.93% 6.81% 8.32%
FCN 16 328 1.46 3,883 | 133,847 137,730
0.51% | 1.54% | 2.05% | 0.48% | 2.49% 2.97% 5.02%
Slow time 10 236 246 1645 2424 4,069
0.32% | 1.11% | 1.43% | 0.20% | 0.05% 0.25% 1.68%
patch
Fast time 10 215 225 1447 2379 3,826
0.32% | 1.01% | 1.33% | 0.18% | 0.04% 0.22% 1.55%
patch
Combined 19 388 407 1447 2557 4,004
0.44% | 1.83% | 2.27% | 0.18% | 0.05% 0.23% 2.50%
EchoRefine 10 201 211 1040 1638 2,678 1.41%
0.32% 1 0.94% | 1.26% | 0.12% | 0.03% 0.15%
Table 30: N _pixel accuracies for each echogram image quality segment
L1 L2 L3
2px Spx 10px | 2px | Spx | 10px | 2px | Spx | 10px
SlowTime Patch | 0.155 | 0.769 | 0.988 | 0.358 | 0.803 | 0.956 | 0.007 | 0.077 | 0.358
FastTime Patch | 0.176 | 0.777 0.990 | 0.361 | 0.803 | 0.957 | 0.007 | 0.112 | 0.381
Combined 0.168 | 0.828 | 0.991 | 0.337 | 0.801 | 0.955 | 0.006 | 0.094 | 0.345
EchoRefine 0.192 | 0.808 0.996 | 0.370 | 0.778 | 0.957 | 0.010 | 0.088 | 0.341
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Table 31: MAE based on along-track distance for each echogram image quality segment

L1 L2 L3
2km | Skm | 10km 2km Skm 2km Skm
SlowTime Patch 3.851 | 3.918 | 3.959 3.766 3.702 39.491 36.024
FastTime Patch 3.846 | 3.851 | 3.946 3.761 3.577 39.744 36.664
Combined 3.426 | 3.579 | 3.740 3.817 3.757 40.571 31.542
EchoRefine 3.635 | 3.382 | 3.343 3.549 3.538 40.084 34.570

The results from Table 26 to

Table 31 record the performance of the EchoRefine model compared to the vision transformer

models. This shows that EchoRefine generally outperforms other models across most metrics,

especially in terms of N-pixel accuracies. It achieves the lowest MAE across all echogram image

quality segments, indicating superior performance. Although its performance is comparable to

some ViT models on some tasks (e.g. the combined model is competitive on the 5px accuracy

and has lower L1 MAE), the EchoRefine model generally performs better than the transformer

models.
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Also, EchoRefine shows superior performance with the lowest percentage of missed pixels
across all categories. It also has relatively consistent performance across L1 and L2 but has a
high MAE for L3. Both EchoRefine and Combined ViT models exhibit some inconsistencies in
the L3 segment performance across the experiments which reflects the inconsistency in the L3
echogram data. While the slow time patch and fast time patch models show consistent
performance, they are generally outperformed by the EchoRefine model.

6-2-8 Generalization evaluation

The performance of the improved pipeline surpassed all previous implementations and was
successfully used to track several previously unlabeled flightline with an estimate of over 10,000
5 km echogram frames. The performance of the model is consistent over dry snow zone
echograms and most wet snow zone echograms. It also records strong performance on “L3-like”
echograms that usually do not contain a clearly defined snow layer. Currently, the algorithm has
been integrated into the Open Polar Radar Toolbox to automatically track all the layers in any

given Snow Radar echogram image.

However, there are a few corner cases, particularly for very poor-quality echogram images,
where the model tracking result might need manual adjustment. These corrections can be easily
done using the Open Polar Radar Toolbox picker tool using any of the semi-automated

algorithms.

The figures below show some examples of its performance on echogram images from different
snow zones. The examples images are grouped based on how similar they are to L1, L2 and L3
test echogram images. The first image is the echogram, followed by the Refine Model activation

and finally the tracked 1-D layer contours plotted over the echogram image.
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Figure 6-17: EchoRefine model output on echograms similar to L1 echograms
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Figure 6-18: EchoRefine model output on echograms similar to L2 echograms
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Figure 6-19: EchoRefine model output on echograms similar to L3 echograms
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6-2-9 Ablation studies

In the implementation of the EchoRefine model and the updated training and inference pipeline,
several changes were simultaneously integrated to address observed shortcomings in the
previous models. This naturally raises the question of the relative importance of each

modification and how earlier models might have performed with these updates.

To comprehensively answer this question, an elaborate ablation study, systematically removing
each component, re-training the model and observing its impact on performance is needed.
Despite the intention to conduct a comprehensive ablation study, the time constraints posed by
the experimental setup makes it challenging to explore all the possible experiment
configurations. Currently, each run of the training requires approximately one week to complete,
as such, performing the more than 32 necessary runs for a thorough ablation analysis would
extend the project timeline significantly. While the importance of this study is crucial in
evaluating the contribution of individual features, we have opted to prioritize the development

and validation of a working solution at this stage in the research.

However, it must be noted that the new features added to the updated training and inference
pipeline were strategically added to mitigate specific deficiencies identified in earlier models.
For example, the initial convolution-based models had limited performance on echogram images
from the wet snow zone producing blurry edge delineations in the segmentation outputs that are
difficult to binarize. To improve on this, the EchoRefine implemented a follow-up refinement
module to further improve the boundaries of the “FCN-like” front architecture to improve the
separation between the foreground and background pixel classes. The modified composite cost
function follows the same thinking: to improve the along-track tracking performance of the

convolution-based models to achieve similar performance as the transformer-based models.
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However, there is still the need to return to the ablation studies to gain a deeper understanding of
the individual contributions of each of the features. The insights gained from the current training
and inference pipeline will provide a good foundation to support further refinement and
optimization in future work. It is anticipated that these subsequent studies will not only validate
the design choices but also reveal additional opportunities for enhancement, thereby further

solidifying the models’ performance.

6-2-10 Retrospective analysis of EchoRefine model modifications

Considering the several modifications made simultaneously to the EchoRefine model training
pipeline such as the updated training dataset, improved echogram image preprocessing, etc., a
retrospective analysis discussing how the new features might impact the performance of earlier

models is imperative.

In the following sections, we will explore each of the earlier training paradigms that were
implemented and examine how they might have benefited from the enhancements introduced in
the new training pipeline. It should be noted, however, that these particular experiments have not
yet been conducted at the time of this writing. Nevertheless, they remain an important area for
future investigation, as further experimentation could provide a deeper understanding of the
impact of these modifications and offer valuable insights that could inform subsequent studies
and model refinements.

6-2-10-1 Retrospective comparison with the RowBlock algorithm

The RowBlock algorithm is characteristically different from the convolution-based or
transformer models because it performs a form of feature engineering on the echogram image to

create the input ColumnPatches used for training. This, coupled with the difference in the input
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and output of the RowBlock models, being a multi-class classification model, makes it difficult
to directly compare its performance with convolution and transformer-based segmentation
models. The modifications made were informed primarily from the deficiencies noticed in earlier

trained convolution models, hence more suited to segmentation models.

However, the RowBlock algorithm might be able to profit from the improved echogram
preprocessing. The combination of the application of the hessian based vesselness filter and the
deep learning-based echogram image denoiser adaptively removes the inter-layer noise which
improves the distinction between the echogram layer pixel and no-layer pixels. This is shown in

the EchoRefine model performance to contribute to the improved layer tracking performance.

Incorporating this preprocessing into the RowBlock algorithm pipeline would also improve the
layer pixel delineation resulting in the ColumnPatches of higher image quality. As a result, this
will potentially improve the classification result of the model. Further gains could also be
achieved by supplementing the higher quality input ColumnPatches with classification model
architectures with increased representation power to better learn the input-output mapping in the

improved training data.

6-2-10-2 Retrospective comparison with the convolution-based algorithms

The earlier trained convolution models in Chapter 4 are better suited to take advantage of all the
EchoRefine training pipeline modifications introduced. While these experiments are yet to be
performed, it is expected that the models would also achieve better performance. Given that the
echogram image preprocessing steps introduced produced better training and testing images, the

additional incorporation of increased training echogram diversity, increasing the ground truth
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label width and the neighboring-pixel-aware composite cost function all justify the hypothesis
that all the convolution models will produce better segmentation outputs than values reported in
4-6-2. However, it is still expected that the EchoRefine will likely surpass their improved

performance. We hypothesize that it has a more robust architecture for the following reasons.

First, the additional refinement module in the EchoRefine model has the advantage of hindsight
(which is not available in earlier models). Although the model is trained end-to-end, the
architecture affords it the ability to further improve the imperfections of the first stage to further
refine and trace out the along-track layering of the snow layers. Also, the end-to-end 2-stage
architecture of the EchoRefine model increases the count of the model parameters and therefore
the representation power of the model, putting it in a better position to correctly model the
layer/no-layer pixel distinction and perform better on echogram images with less obvious layer

pixel distinction such as wet snow zone echograms due to its auxiliary refinement module.

6-2-11 Accessing Python Code and Dataset

The code for the models and the datasets created can be found here:

https://gitlab.com/openpolarradar/opr/-/wikis/Machine-Learning-Guide
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Chapter 7 CONCLUSION

This work presents our findings in developing a generalizable machine learning and deep
learning computer vision algorithm for the echogram layer tracking problem. Given the
enormous amount of radar sounding data that has been collected over several decades, there is a

need for an automatic layer tracker to extract ice layers from the radar echograms.

Using machine learning and deep learning algorithms, infused with advanced signal processing
to pre-process the images, custom models were designed to track the snow accumulation layers
in echogram images from the dry snow and wet snow zones. The RowBlock algorithm took
advantage of the chronology of layers in each rangeline and spatial correlation among
neighboring rangelines to track the layers one at a time, reconstructing the complex layer

tracking problem as a sequential multiclass classification task.

Multiple convolution-based deep learning algorithms were also developed to process the whole
echogram image at once. While these excelled on echograms from the dry snow zone,

their limited utilization of along-track layer correlation prompted the need for algorithms that can
exploit the correlation that exists in the columns and rows of the echogram matrix. Consequently,
transformer-based vision models were designed with three patchification schemes. These
implementations resulted in improved along track tracking surpassing most of the earlier
convolution-based methods. However, the fixed embedding layer of transformer-based

models requires that echogram images are reshaped to match the fixed dimensions which could

potentially lead to loss of resolution in either fast time or slow time dimensions.
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Combining the lessons learned from the different architectures that were investigated, a multi-
pronged approach was employed to improve several sections of the convolution-based deep
learning model pipeline leading to the EchoRefine model with the 8-pixel

connectivity constraint cost function. This resulted in improved along-track tracking
performance and satisfactory performance even in echograms from the wet snow zone. Finally,
an improved 1-D accumulation layer contour extraction algorithm was developed to efficiently
return each 1-D layer contour from the segmentation model heat map output. This algorithm has
been integrated into the Open Polar Radar Toolbox to automatically track many of the previously
untracked echograms created from science campaigns from 2012 to 2021 which were not part of

the training data.

As a result of the progress made in this work, two standard deep learning Snow Radar datasets
with 11,000 and 50,000 echograms synchronized with climate fields from the Modele
Atmosphérique Régional climate model have been created and made available to the deep

learning and science communities to boost further studies.

221



[1]
[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

N. United, “Climate change ‘biggest threat modern humans have ever faced’”, [Online].
Available: https://press.un.org/en/2021/sc14445.doc.htm

W. Health Organization, “We must fight one of the world’s biggest threats - climate
change.”

S. K. Gulev ef al., “Changing state of the climate system,” in Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A.
Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M.
Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O.
Yelekei, R. Yu, and B. Zhou, Eds., Cambridge, United Kingdom and New York, NY,
USA: Cambridge University Press, 2021, pp. 287—422. doi: 10.1017/9781009157896.001.
S. I. Seneviratne et al., “Weather and climate extreme events in a changing climate,” in
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V.
Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y.
Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T.
K. Maycock, T. Waterfield, O. Yelek¢i, R. Yu, and B. Zhou, Eds., Cambridge, United
Kingdom and New York, NY, USA: Cambridge University Press, 2021, pp. 1513—-1766.
doi: 10.1017/9781009157896.001.

R. Ranasinghe et al., “Climate change information for regional impact and for risk
assessment,” in Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S.
Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.
B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekgi, R. Yu, and B. Zhou, Eds.,
Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press,
2021, pp. 1767-1926. doi: 10.1017/9781009157896.001.

National Snow and Ice Data Center, “Why Ice Sheets Matter.” [Online]. Available:
https://nsidc.org/learn/parts-cryosphere/ice-sheets/why-ice-sheets-matter

E. Rignot, J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M.
Morlighem, “Four decades of Antarctic Ice Sheet mass balance from 1979-2017,” Proc.
Natl. Acad. Sci., vol. 116, no. 2019, pp. 1095-1103, 2019.

H. Yu, E. Rignot, H. Seroussi, and M. Morlighem, “Retreat of Thwaites Glacier, West
Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios
and basal friction laws,” The Cryosphere, vol. 12, no. 2018, pp. 3861-76, 2018.

A. Post and et al, “A complex relationship between calving glaciers and climate,” Eos
Trans. Am. Geophys. Union, vol. 92, no. 37, pp. 305-306, 2011.

G. Lewis and et al, “Regional Greenland accumulation variability from Operation
IceBridge airborne accumulation radar,” The Cryosphere, vol. 11, no. 2, pp. 773-788,
2017.

B. Medley and et al, “Constraining the recent mass balance of Pine Island and Thwaites
glaciers, West Antarctica, with airborne observations of snow accumulation,” 7The
Cryosphere, vol. 8, no. 4, pp. 1375-1392, 2014.

B. Zalatan and M. Rahnemoontfar, “Recurrent Graph Convolutional Networks for
Spatiotemporal Prediction of Snow Accumulation Using Airborne Radar,” ArXiv Prepr.
ArXiv230200817,2023.

222



[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]

[32]

B. Panzer and et al, “An ultra-wideband, microwave radar for measuring snow thickness
on sea ice and mapping near-surface internal layers in polar firn,” J. Glaciol., vol. 59, no.
214, pp. 244-254, 2013.

L. Shi and et al, “Multichannel coherent radar depth sounder for NASA operation ice
bridge,” in 2010 IEEE international geoscience and remote sensing symposium, IEEE,
2010.

E. Arnold and et al, “CReSIS airborne radars and platforms for ice and snow sounding,”
Ann. Glaciol., vol. 61, no. 81, pp. 58-67, 2020.

F. Rodriguez-Morales and et al, “Advanced multifrequency radar instrumentation for
polar research,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2824-2842, 2013.
J.Liand et al, “Snow stratigraphy observations from Operation IceBridge surveys in
Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated
continuous wave) radar,” The Cryosphere, vol. 17, no. 1, pp. 175-193, 2023.

B. Feng and et al, “Firn stratigraphic genesis in early spring: evidence from airborne
radar,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 9, no. 6, pp. 24292435,
2016.

Z. Wang and et al, “Mapping age and basal conditions of ice in the Dome Fuji region,
Antarctica, by combining radar internal layer stratigraphy and flow modeling,”
Cryosphere Discuss., pp. 1-22, 2023.

C. Miege and et al, “Southeast Greenland high accumulation rates derived from firn cores
and ground-penetrating radar,” Ann. Glaciol., vol. 54, no. 63, pp. 322-332, 2013.

A. Garcia-Garcia and et al, “A review on deep learning techniques applied to semantic
segmentation,” ArXiv Prepr. ArXivi70406857,2017.

M. Orsic and et al, “In defense of pre-trained imagenet architectures for real-time
semantic segmentation of road-driving images,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn: Fast semantic segmentation
network,” ArXiv Prepr. ArXiv190204502, 2019.

S. Gao and et al, “Large-scale unsupervised semantic segmentation,” /[EEE Trans. Pattern
Anal. Mach. Intell., vol. 2022, pp. 141800-141818, 2022.

S. Graham and et al, “One model is all you need: multi-task learning enables
simultaneous histology image segmentation and classification,” Med. Image Anal., vol. 83,
p. 102685, 2023.

H. Cao and et al, “Swin-unet: Unet-like pure transformer for medical image
segmentation,” in Computer Vision—ECCV 2022 Workshops: Tel Aviv, Israel, October 23—
27, 2022, Proceedings, Part 111, 2023.

D. Luo and et al, “GDN: Guided down-sampling network for real-time semantic
segmentation,” Neurocomputing, vol. 520, pp. 205-215, 2023.

J. Schlemper and et al, “Attention gated networks: Learning to leverage salient regions in
medical images,” Med. Image Anal., vol. 53, pp. 197-207, 2019.

A. Vaswani and et al, “Attention is all you need,” in Advances in neural information
processing systems, 2017.

A. Dosovitskiy and et al, “An image is worth 16x16 words: Transformers for image
recognition at scale,” ArXiv Prepr. ArXiv201011929, 2020.

K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generalization in deep learning,” in
arXiv preprint arXiv:1710.05468, 2017.

B. Neyshabur and et al, “Exploring generalization in deep learning,” in Advances in
neural information processing systems, 2017.

223



[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

D. Yu and L. Deng, “Deep learning and its applications to signal and information
processing [exploratory dsp],” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 145-154,
2010.

P. Lang and et al, “A comprehensive survey of machine learning applied to radar signal
processing,” ArXiv Prepr. ArXiv200913702, 2020.

M. Jia and et al, “Human activity classification with radar signal processing and machine
learning,” in 2020 International conference on UK-China emerging technologies (UCET),
IEEE, 2020.

Z. Geng and et al, “Deep-learning for radar: A survey,” IEEE Access, vol. 9, pp. 141800—
141818, 2021.

C. M. Gifford and et al, “Automated polar ice thickness estimation from radar imagery,”
IEEE Trans Image Process, vol. 19, no. 9, pp. 24562469, 2010.

A. Ferro and L. Bruzzone, “Analysis of radar sounder signals for the automatic detection
and characterization of subsurface features,” /[EEE Trans. Geosci. Remote Sens., vol. 50,
no. 11, pp. 4333-4348, 2012.

A.-M. Ilisei, A. Ferro, and L. Bruzzone, “A technique for the automatic estimation of ice
thickness and bedrock properties from radar sounder data acquired at Antarctica,” in 2012
IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2012.

B. Medley and et al, “Airborne-radar and ice-core observations of annual snow
accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal
variability of global and regional atmospheric models,” Geophys. Res. Lett., vol. 40, no.
14, pp. 3649-3654, 2013.

M. Rahnemoonfar, G. C. Fox, M. Yari, and J. Paden, “Automatic Ice Surface and Bottom
Boundaries Estimation in Radar Imagery Based on Level-Set Approach,” IEEE Trans
Geosci Remote Sens, vol. 55, no. 9, pp. 5115-5122, 2017.

J. E. Mitchell, D. J. Crandall, G. C. Fox, and J. D. Paden, “A semi-automatic approach for
estimating near surface internal layers from snow radar imagery,” in International
Geoscience and Remote Sensing Symposium, 2013, pp. 4110-4113.

V. de Paul Onana and et al, “A semiautomated multilayer picking algorithm for ice-sheet
radar echograms applied to ground-based near-surface data,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 1, pp. 51-69, 2014.

M. Rahnemoonfar and et al, “Automatic ice thickness estimation in radar imagery based
on charged particles concept,” 2017 IEEE Int. Geosci. Remote Sens. Symp. IGARSS, 2017.
D. J. Crandall, G. C. Fox, and J. D. Paden, “Layer-finding in radar echograms using
probabilistic graphical models,” in Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), 2012, pp. 1530-1533.

S. Lee, J. Mitchell, D. Crandall, and G. Fox, “Estimating bedrock and surface layer
boundaries and confidence intervals in ice sheet radar imagery using MCMC,” in
International Conference on Image Processing, 2014, pp. 111-115.

M. Xu, D. Crandall, G. Fox, and J. Paden, “Automatic Estimation of Ice Bottom Surfaces
from Radar Imagery,” in IEEE International Conference on Image Processing, 2017.

V. L. Berger Pereira da Silva, “Probabilistic Methods for Ice Thickness Estimation Using
Radar Imagery,” PhD Thesis, The University of Texas at Austin, 2019.

“Automatic Enhancement and Detection of Layering in Radar Sounder Data Based on a
Local Scale Hidden Markov Model and the Viterbi Algorithm | IEEE Journals &
Magazine | IEEE Xplore.” Accessed: Jul. 09, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/7731235

H. Kamangir, M. Rahnemoonfar, D. Dobbs, J. Paden, and G. Fox, “Deep Hybrid Wavelet
Network for Ice Boundary Detection in Radra Imagery,” in IGARSS 2018 - 2018 IEEE

224



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

International Geoscience and Remote Sensing Symposium, Jul. 2018, pp. 3449-3452. doi:
10.1109/IGARSS.2018.8518617.

M. Xu, C. Fan, J. D. Paden, G. C. Fox, and D. J. Crandall, “Multi-task Spatiotemporal
Neural Networks for Structured Surface Reconstruction,” in 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), Mar. 2018, pp. 1273—-1282. doi:
10.1109/WACV.2018.00144.

D. Varshney, M. Rahnemoonfar, M. Yari, and J. Paden, “Deep Ice Layer Tracking and
Thickness Estimation using Fully Convolutional Networks,” in 2020 IEEE International
Conference on Big Data (Big Data), Dec. 2020, pp. 3943-3952. doi:
10.1109/BigData50022.2020.9378070.

Y. Cai, S. Hu, S. Lang, Y. Guo, and J. Liu, “End-to-End Classification Network for Ice
Sheet Subsurface Targets in Radar Imagery,” Appl. Sci., vol. 10, no. 7, Art. no. 7, Jan.
2020, doi: 10.3390/app10072501.

M. Yari, M. Rahnemoonfar, and J. Paden, “Multi-Scale and Temporal Transfer Learning
for Automatic Tracking of Internal Ice Layers,” in IGARSS 2020 - 2020 IEEE
International Geoscience and Remote Sensing Symposium, Sep. 2020, pp. 6934-6937. doi:
10.1109/IGARSS39084.2020.9323758.

Y. Wang, M. Xu, J. Paden, L. Koenig, G. Fox, and D. Crandall, “Deep Tiered Image
Segmentation For Detecting Internal Ice Layers in Radar Imagery,” arXiv.org. Accessed:
Jul. 09, 2024. [Online]. Available: https://arxiv.org/abs/2010.03712v3

“Radar Sensor Simulation with Generative Adversarial Network | IEEE Conference
Publication | IEEE Xplore.” Accessed: Jul. 09, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/9323676

M. Rahnemoonfar, M. Yari, J. Paden, L. Koenig, and O. Ibikunle, “Deep multi-scale
learning for automatic tracking of internal layers of ice in radar data,” J. Glaciol., vol. 67,
no. 261, pp. 39-48, Feb. 2021, doi: 10.1017/jog.2020.80.

M. Yari et al., “Airborne Snow Radar Data Simulation With Deep Learning and Physics-
Driven Methods,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 12035—
12047, 2021, doi: 10.1109/JSTARS.2021.3126547.

“Learning Snow Layer Thickness Through Physics Defined Labels | IEEE Conference
Publication | IEEE Xplore.” Accessed: Jul. 09, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/9884370

R. Ghosh and F. Bovolo, “TransSounder: A Hybrid TransUNet-TransFuse Architectural
Framework for Semantic Segmentation of Radar Sounder Data,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1-13, 2022, doi: 10.1109/TGRS.2022.3180761.

Y. Cai, F. Wan, S. Hu, and S. Lang, “Accurate prediction of ice surface and bottom
boundary based on multi-scale feature fusion network,” Appl. Intell., vol. 52, no. 14, pp.
16370-16381, Nov. 2022, doi: 10.1007/s10489-022-03362-1.

J. Liet al., “Snow Radar Measurements over Alaska Mountains, Icefields and Glaciers as
part of the Operation IceBridge”.

D. Young et al., “Comprehensive multi frequency airborne mapping of the southern flank
of Dome A: results of the COLDEX airborne program.,” Copernicus Meetings, EGU24-
12995, Mar. 2024. doi: 10.5194/egusphere-egu24-12995.

X. Tang et al., “Glaciological and Meteorological Conditions at the Chinese Taishan
Station, East Antarctica,” Front. Earth Sci., vol. 8, Aug. 2020, doi:
10.3389/feart.2020.00250.

J. Liand et al, “Snow stratigraphy observations from Operation IceBridge surveys in
Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated
continuous wave) radar,” The Cryosphere, vol. 17, no. 1, pp. 175-193, 2023.

225



[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]
[77]
[78]
[79]
[80]
[81]

[82]

[83]
[84]

[85]

S. Rahman, “FMCW Radar Signal Processing for Antarctic Ice Shelf Profiling and
Imaging”.

A. A. W. Fitzpatrick et al., “Ice flow dynamics and surface meltwater flux at a land-
terminating sector of the Greenland ice sheet,” J. Glaciol., vol. 59, no. 216, pp. 687-696,
2013, doi: 10.3189/2013J0G12]143.

S. K. Meher and G. Panda, “Deep learning in astronomy: a tutorial perspective,” Eur.
Phys. J. Spec. Top., vol. 230, no. 10, pp. 2285-2317, Sep. 2021, doi: 10.1140/epjs/s11734-
021-00207-9.

D. Baron, “Machine Learning in Astronomy: a practical overview,” Apr. 15, 2019, arXiv:
arXiv:1904.07248. doi: 10.48550/arXiv.1904.07248.

K. Choudhary et al., “Recent advances and applications of deep learning methods in
materials science,” Npj Comput. Mater., vol. 8, no. 1, pp. 1-26, Apr. 2022, doi:
10.1038/s41524-022-00734-6.

M. Ge, F. Su, Z. Zhao, and D. Su, “Deep learning analysis on microscopic imaging in
materials science,” Mater. Today Nano, vol. 11, p. 100087, Aug. 2020, doi:
10.1016/j.mtnano.2020.100087.

W. S. Alharbi and M. Rashid, “A review of deep learning applications in human genomics
using next-generation sequencing data,” Hum. Genomics, vol. 16, no. 1, p. 26, Jul. 2022,
doi: 10.1186/540246-022-00396-x.

T. Yue et al., “Deep Learning for Genomics: A Concise Overview,” Oct. 04, 2023, arXiv:
arXiv:1802.00810. doi: 10.48550/arXiv.1802.00810.

C. Baur, S. Albarqouni, and N. Navab, “Semi-supervised deep learning for fully
convolutional networks,” in Medical Image Computing and Computer Assisted
Intervention— MICCAI 2017: 20th International Conference, Quebec City, QC, Canada,
September 11-13, 2017, Proceedings, Part 111, Springer International Publishing, 2017.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet: Learning Dynamic
Routing in Convolutional Networks,” Jul. 25, 2018, arXiv: arXiv:1711.09485. doi:
10.48550/arXiv.1711.09485.

C. B. Vennerad, A. Kjarran, and E. S. Bugge, “Long Short-term Memory RNN,” May 14,
2021, arXiv: arXiv:2105.06756. doi: 10.48550/arXiv.2105.06756.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” Dec. 14, 2014, arXiv: arXiv:1409.3215. doi: 10.48550/arXiv.1409.3215.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9,
no. 8, pp. 1735-1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

K. CReSIS, Open Polar Radar Toolbox. [Online]. Available:
https://gitlab.com/openpolarradar/opr/

“The viterbi algorithm | IEEE Journals & Magazine | IEEE Xplore.” Accessed: May 15,
2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1450960

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical
Image Segmentation,” May 18, 2015, arXiv: arXiv:1505.04597. doi:
10.48550/arXiv.1505.04597.

M. A. Richards, Fundamentals of radar signal processing, Third edition. New York:
McGraw Hill, 2022.

M. M. Herron and C. C. Langway, “Firn Densification: An Empirical Model,” J. Glaciol.,
vol. 25, no. 93, pp. 373-385, Jan. 1980, doi: 10.3189/S50022143000015239.

X. Fettweis et al., “GrSMBMIP: intercomparison of the modelled 1980-2012 surface
mass balance over the Greenland Ice Sheet,” The Cryosphere, vol. 14, no. 11, pp. 3935—
3958, Nov. 2020, doi: 10.5194/tc-14-3935-2020.

226



[86]
[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation,” Mar. 08, 2015, arXiv: arXiv:1411.4038. doi: 10.48550/arXiv.1411.4038.
O. Oktay et al., “Attention U-Net: Learning Where to Look for the Pancreas,” May 20,
2018, arXiv: arXiv:1804.03999. doi: 10.48550/arXiv.1804.03999.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution for
Semantic Image Segmentation,” Dec. 05, 2017, arXiv: arXiv:1706.05587. doi:
10.48550/arXiv.1706.05587.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 29, 2017,
arXiv: arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D
Transform-Domain Collaborative Filtering,” IEEE Trans. Image Process., vol. 16, no. §,
pp. 2080-2095, Aug. 2007, doi: 10.1109/TIP.2007.901238.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process., vol.
26, no. 7, pp. 3142-3155, Jul. 2017, doi: 10.1109/TIP.2017.2662206.

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted Nuclear Norm Minimization with
Application to Image Denoising,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA: IEEE, Jun. 2014, pp. 2862—-2869. doi:
10.1109/CVPR.2014.366.

K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a Fast and Flexible Solution for CNN
based Image Denoising,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4608-4622, Sep.
2018, doi: 10.1109/TIP.2018.2839891.

K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-Play Image
Restoration with Deep Denoiser Prior,” Jul. 12, 2021, arXiv: arXiv:2008.13751. Accessed:
Jul. 02, 2024. [Online]. Available: http://arxiv.org/abs/2008.13751

Y. Sato et al., “Three-dimensional multi-scale line filter for segmentation and
visualization of curvilinear structures in medical images,” Med. Image Anal., vol. 2, no. 2,
pp. 143-168, Jun. 1998, doi: 10.1016/S1361-8415(98)80009-1.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel
enhancement filtering,” in Medical Image Computing and Computer-Assisted Intervention
— MICCAI’'98, W. M. Wells, A. Colchester, and S. Delp, Eds., Berlin, Heidelberg:
Springer, 1998, pp. 130—137. doi: 10.1007/BFb0056195.

C.-C. Ng, M. H. Yap, N. Costen, and B. Li, “Automatic Wrinkle Detection Using Hybrid
Hessian Filter,” in Computer Vision -- ACCV 2014, D. Cremers, 1. Reid, H. Saito, and M.-
H. Yang, Eds., Cham: Springer International Publishing, 2015, pp. 609-622. doi:
10.1007/978-3-319-16811-1_40.

E. Meijering, M. Jacob, J.-C. f. Sarria, P. Steiner, H. Hirling, and M. Unser, “Design and
validation of a tool for neurite tracing and analysis in fluorescence microscopy images,”
Cytometry A, vol. 58A, no. 2, pp. 167-176, 2004, doi: 10.1002/cyto.a.20022.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object
Detection”.

G. Lin, A. Milan, C. Shen, and 1. Reid, “RefineNet: Multi-path Refinement Networks for
High-Resolution Semantic Segmentation,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 5168-5177. doi:
10.1109/CVPR.2017.549.

T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu, “A Stagewise Refinement Model for
Detecting Salient Objects in Images,” in 2017 IEEE International Conference on
Computer Vision (ICCV), Venice: IEEE, Oct. 2017, pp. 4039—4048. doi:
10.1109/ICCV.2017.433.

227



[102] X. Li, F. Yang, H. Cheng, W. Liu, and D. Shen, “Contour Knowledge Transfer for Salient
Object Detection,” in Computer Vision — ECCV 2018, vol. 11219, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds., in Lecture Notes in Computer Science, vol. 11219. ,
Cham: Springer International Publishing, 2018, pp. 370-385. doi: 10.1007/978-3-030-
01267-0_22.

[103] N. Liu and J. Han, “DHSNet: Deep Hierarchical Saliency Network for Salient Object
Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 678—686. doi:
10.1109/CVPR.2016.80.

[104] T. Wang et al., “Detect Globally, Refine Locally: A Novel Approach to Saliency
Detection,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT: IEEE, Jun. 2018, pp. 3127-3135. doi: 10.1109/CVPR.2018.00330.

[105] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA: IEEE, Jun. 2016, pp. 770-778. doi: 10.1109/CVPR.2016.90.

[106] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Commun ACM, vol. 60, no. 6, pp. 84-90, May 2017, doi:
10.1145/3065386.

[107] X. Qin et al., “Boundary-Aware Segmentation Network for Mobile and Web
Applications,” May 11, 2021, arXiv: arXiv:2101.04704. doi: 10.48550/arXiv.2101.04704.

[108] N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms”.

[109] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical
Morphology,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 4, pp. 532-550,
Jul. 1987, doi: 10.1109/TPAMI.1987.4767941.

[110] J. Serra and P. Soille, Mathematical Morphology and Its Applications to Image
Processing. Springer Science & Business Media, 2012.

[111] P. Maragos, R. W. Schafer, and M. A. Butt, Mathematical Morphology and Its
Applications to Image and Signal Processing. Springer Science & Business Media, 2012.

[112] C. Arcelli, L. P. Cordella, and S. Levialdi, “From Local Maxima to Connected Skeletons,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-3, no. 2, pp. 134-143, Mar. 1981, doi:
10.1109/TPAMI.1981.4767071.

[113] D. P. McKay and S. C. Shapiro, “Using Active Connection Graphs for Reasoning with
Recursive Rules.,” in ZJCAI, Citeseer, 1981, pp. 368-375.

[114] L. Di Stefano and A. Bulgarelli, “A simple and efficient connected components labeling
algorithm,” in Proceedings 10th International Conference on Image Analysis and
Processing, Sep. 1999, pp. 322-327. doi: 10.1109/ICIAP.1999.797615.

[115] R. M. Haralick, “Model-based morphology: Simple and complex shapes,” Vis. Form Anal.
Recognit., pp. 275-285, 1992.

[116] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component labeling,” Pattern
Recognit., vol. 42, no. 9, pp. 1977-1987, Sep. 2009, doi: 10.1016/j.patcog.2008.10.013.

228



ProQuest Number: 31561581

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality
and completeness of the copy made available to ProQuest.

ProQuest

Part of Clarivate

Distributed by
ProQuest LLC a part of Clarivate ( 2025).
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata
associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway
Ann Arbor, Ml 48108 USA





