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Abstract—Functional connectivity is among the widely used
metrics to assess the network-level attributes of brain function.
While most existing analysis frameworks assume static functional
connectivity during the course of an experiment, to capture
neural dynamics over short time scales, a time-varying notion
of functional connectivity is required. By revealing how neural
networks reconfigure in response to changing external stimuli, in-
ternal states, and task demands, time-varying functional connec-
tivity can be leveraged to study flexible cognition, such as working
memory, attention, and decision-making. A major challenge
in estimating time-varying functional connectivity from high-
dimensional neural is the associated computational complexity.
Existing methods trade off accuracy for computational efficiency,
especially in applications that require real-time or near real-time
processing. Here, we build on existing work using covariance-
domain state-space models and introduce a framework based
on variational inference that allows low-complexity estimation of
time-varying functional connectivity and construction of confi-
dence intervals. We validate the performance of the proposed
method using simulation studies. Our results reveal significant
gains in computational complexity compared to existing methods,
while maintaining high accuracy.

Index Terms—Functional connectivity, Covariance-domain
state-space model, Variational inference, Filtering, Smoothing.

I. INTRODUCTION

Brain networks undergo rapid modulation and evolution
due to internal states and external stimuli [1]. Consequently,
they can be viewed as dynamic systems with numerous states
and transient connectivity patterns that emerge across various
time scales and contexts [2], [3]. Comprehending the complex
nature of these multi-scale neural networks, which are inter-
connected via short and long-range pathways, heavily relies
on the analytical tools’ capability to capture the stochastic and
dynamic behaviors of such data.

Functional connectivity, often described as the temporal
correlation among the activities of different neural assem-
blies indicating significant dependence between distant brain
regions [4], [S] can be analyzed through the covariance of neu-
rophysiological signals obtained from Electroencephalography
(EEG), Magnetoencephalography (MEG), Positron Emission
Tomography (PET), and functional Magnetic Resonance Imag-
ing (fMRI).
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The high dimensionality of modern-day neural data severely
limits current analysis techniques, compelling researchers to
choose between lower accuracy with faster processing or
higher accuracy at a significant computational cost. While
researchers have made significant progress in developing sta-
tistical and signal processing techniques for analyzing brain
connectivity patterns within complex, multi-channel neural
recordings, computational complexity remains a persistent
challenge that requires more focused attention.

The Gaussian assumption is a staple of neural data analysis.
Assuming Gaussian-distributed time series, the functional con-
nectivity (represented by the covariance of multi-sensor time
series) follows a Wishart distribution. Wishart distributions
are inherently constrained to a subset of the R™*™ space,
complicating the use of standard Bayesian state-space analysis
methods. To address this, the authors in [6] introduced a
state-space model [7] where observations and hidden states
are restricted to a subset of symmetric positive-definite ma-
trices as an extension to [8]-[11]. This model allows for
posterior distribution computation of hidden states and system
parameters, as well as filtered and smoothed densities, which
entail drawing sample paths from said densities. However, in
high-dimensional settings, the volume of data space grows
exponentially with the number of dimensions. As a result,
sampling methods require an impractically large number of
samples to accurately estimate quantities of interest leading to
a phenomenon known as ‘the curse of dimensionality’. Due
to this, functional connectivity analysis often uses regions of
interest, or employs sliding-window based analysis assuming
independence of adjacent windows. As such, most existing
methods trade off computational demands with information
loss or biases [12], [13].

In this work, we address this issue by proposing a novel
smoother via Variational Inference (VI). VI offers a powerful
alternative to sampling methods by presenting closed-form
solutions for the latent variables. Rather than sampling, it
leverages optimization by defining a family of approximate
densities over the latent variables. It then approximates com-
plex probability distributions with simpler, more tractable
distributions [14]-[17] by locating the member of this family
that minimizes the Kullback-Leibler (KL) divergence from the
true posterior.

Building on the state-space model introduced in [6], we
construct a variational smoother that allows inference with



significantly lower complexity, while preserving accuracy on
par with existing sampling-based methods. As an application
of the inference procedure, we construct estimators and con-
fidence intervals in closed-form. We evaluate the performance
of the proposed variational smoother using simulation studies
that resemble dynamic changes in brain functional connectiv-
ity. Our results reveal significant computational gains, while
achieving accuracy comparable to or better than sampling-
based methods.

The outline of this paper is as follows. In Section II we give
an overview of existing results and formulate the problem. In
Section III, we present our proposed variational smoothing
solution. Numerical validations are presented in Section 1V,
followed by our concluding remarks in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a p-dimensional time series vector of duration K,
representing an observed process. In the context of neural
activity, p represents the number of sensors, and K the
recording duration. Let Z; ; € R denote the observation from
the jth sensor at time ¢, j = 1,2,---,p, 7 = 1,2,---, K.
By segmenting the time series into 7' non-overlapping win-
dows of length w, such that K = Tw, we assume that
let Z; = [Z;1 Zia, -+, Z;ip) € RP follows a zero-mean
multivariate Gaussian distribution with covariance C, for
(t—Dw+1 < i < tw, where t = 1,2,---,T denotes
the window index. It then follows that the un-normalized
sample covariance Y; := Z:i(t—l)w-i-l ZiZ; ~ Wy (w,Cy),
where W, (w, Cy) is the p-dimensional Wishart distribution
with degrees of freedom w and scale matrix C; [18].

A key challenge in capturing the covariance dynamics is the
constraint that for all ¢ = 1,2,--- 7T, C; must be a positive
semi-definite matrix. As such, common additive state-space
models are not suitable, since unlike the Gaussian family, the
Wishart family is not distributionally closed under addition. In
[6], [8], the following state evolution model is proposed:
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where X; = C} L s the precision matrix, U;_; is the

upper Cholesky factor of X;_1, §,(-,-) is multivariate beta

distribution, and A > 0 is a scaling parameter. It can be shown
that if X;_; is Wishart distributed, X; will also be.

In conjunction with the evolution model in Eq. (1), we
consider a general Wishart model for the observations, given

by [6]:
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where the degrees of freedom %k can be chosen as w, if the

Xt:

data are generated as explained earlier. Note that C; = k()%l/\,
which is a modiﬁgation of the observation model in [6] that
assumes C; = X,{;” . As we will show later, the role of \ in
our model is to provide further smoothness when performing
one-step ahead prediction.

A. Inference via Forward Filtering and Backward Sampling

The inference method proposed in [6] is based on the
common forward filtering and backward sampling procedure.
Let D; = {Y;} U D;_; denote the available observations at
time ¢, for t = 1,...,T with Dy = {¥p} where X, is some
initial positive semi-definite matrix. It can be shown that the
filtering posterior of X, is given by [6]:

(Xe|Dy) ~ Wy (k +n, (k) 7) 3)
where,
=2+ (1 - MY, 4

In other words, >, := Zq;o ANY. . Using the recursion (4),
one can compute >y, t = 1,2, ---, T and thereby have access
to the filtering density at all times. Note that by restricting
A < 1, the recursion of ¥; provides a convex combination of
the past and present observations, in which the contribution
from the past decreases over time [19].

In order to obtain the smoothing density, i.e.,
p({X¢}£ | D7) for inference, the authors in [6] leverage the
following decomposition:

T-1
p({X: L1 1Dr) = p(X7|Dr) [] 0 (XalXig1, D1)  (5)
t=1
and show that (X|X;y1, D) has a shifted Wishart distribu-
tion, i.e., given X;4+; and D, X; can be expressed as

Xy = AX41 + Ziga, 6)

where Zip1 ~ Wy(k,(k¥:)~!). While this decomposi-
tion does not provide a convenient closed-form smoothing
distribution, it can be used to draw sample paths from
p({X¢}7_,|D7). Suppose that a total of L sample paths
to be drawn. Starting at ¢ = T, we have (Xp|Dp) ~
Wy(k + n, (kX7)~1). Thus, for the (" sample path, one
can draw a sample from p(Xr|Dr) denoted by XFEFZ )o =
1,2,---, L. Using the backward recursion in Eq. (6) for
t=T-1,T-2,---,1, given a sample Xt(_?l at time £+1, one
can draw a sample Zt(_?l ~ W,(k, (kX;)~1) and form Xt(e) as
)‘Xt(-l;-)l + Zt(?r

The L sample paths can be used for inference and estimation
procedures. For example, we can approximate the expectation
of a function f ({X;}{_,) using the sample average as:

Bl (0]~ 1 2 (X)), @
{=1

for large enough L.

B. Key Challenge and Our Contribution

The key bottleneck in the usage of this backward sampling
solution is it’s computational complexity: computing empiri-
cal averages using L backward sample paths (X;| X1, D;)
inherently suffers from the ’curse of dimensionality’. Our key
contribution to this work is to provide a low-complexity alter-
native to the computationally demanding backward sampling
via variational inference. As we will show in the following



section, our proposed method provides smoothed estimates
and their confidence intervals in closed-form. In addition,
our numerical simulations show that variational smoothing
achieves superior mean square error and significantly lower
runtime compared to backward sampling.

III. PROPOSED VARIATIONAL SMOOTHING SOLUTION

Variational inference approximates complex posterior dis-
tributions by employing a computationally efficient alternative
to demanding procedures that require sampling from the
posterior. The objective function of variational inference is
known as the Evidence Lower Bound (ELBO):

ELBO = Ey(x,yr [m [p ({Xt}tT—ll{Yt}tT—l)]]

®)

= Egixary) [ln [q ({Xt}$:1)]

where ¢(-) is a member of predefined family of distributions.
By carefully picking this family, maximizing the ELBO strikes
a balance between effectively explaining the data and adhering
to prior assumptions.

A. Variational Formulation

Given that our latent variables are precision and/or covari-
ance matrices, we consider a mean-field variational family
consisting of product-form Wishart distributions:

g ({X:}21) Hth ©)
where ¢(X;) ~ W,(m,V;) is Wishart distributed with m
degrees of freedom and covariance V;. The parameters m and
(V;)L_, are unknown variational quantities to be estimated by
maximizing the ELBO.

The log-posterior of (X;)7_, is given by:
hl‘Xt —
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Given that the expectation of In|X;—AX; | does not have a
closed-form solution, we expand this term up to the first-order
in \, resulting in In| X, — AX; 4 1|= In| Xy |- tr(X;, ' Xip) +
O(A?). We can thus use the following identities regarding the
entropy and expected log-det of a Wishart random variable:

p+1
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where H|[-] denotes the information entropy of the Wishart
distribution, I',(-) denotes the multivariate gamma function

(10)

and 1, (-) is the multivariate digamma function (the derivative
of the log of the multivariate gamma function), and

Elln|Xi|) =, (5) +pl@) + Vi, (D
as well as the first and second-order moments of the Wishart
and Inverse Wishart matrices [20]-[22] to compute the ELBO
as given by:
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After taking the derivative of Eq. (12) with respect to Vi,
we seek a solution of the form V; = V(O) +)\V( ) , Where V(O)

and Vt( ) are to be found. After simplification, these quantities
are given by: )
VY=o (13)
m
and
k—p—1) (k—=p—1) < 1. 1w_
yo = Vit — —— 2= sy s
¢ km—p—1) "7 km(m—p—1)"t 17
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where Vi1 = Vt(ﬂ + )\Vt(ﬂ and V;—1 = V;(,O)l + )\Vtg)1
The form of Eq. (14) allows recursive computation, akin to
a backward filter. Given the estimated V;’s, m can be found
by numerically maximizing the ELBO. Thus, one can iterate
between estimating V;’s and m. We have observed empirically
that setting m to be a small integer multiple of k provides a
near-optimal solution. Thus, the computation of V;, may only
be done once.

B. Estimation with Confidence Intervals

As an application of the inference aforementioned proce-
dures, we consider constructing estimators and their respective
confidence intervals. For the forward filter, we take the mean
of the posterior density as the estimator:

k4+n__

X/ =E{X,|D,} = it (15)

Given that both the mean and variance of the elements of a
Wishart distributed random variable linearly scale with the de-
gree of freedom, in the large degree regime, i.e., n+k > 1, the
standard deviation is much smaller than the mean. Thus, we
use Gaussian approximation to construct confidence intervals.



As such, confidence interval for ()A(if )i; at a significance level
« is given by:

k+n

T(Zt_l)ij :I:z% \/n]jzk ((Zt_l)?jJr(Zt_l)ii(zt_l)jj)]7

where zg is the z-score at level 3.

For the backward sampling, one needs to evaluate the mean
and variance using the L sample paths. For the (4, j) element
of (X;|Dr), the sample mean forms the estimator:

L
Sba 1 ‘
(X =7 D (), (16)
£=1

The sample variance is also given by:

L
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Thus, the confidence interval for ()A(fs)ij at a significance level
« is given by [()A(fs)” +ze0py; |
Finally, for the proposed variational smoother, given the

closed-form variational density X;|Dr ~ Wp(m,V,), the

estimator is given by:
X7 = mV,, (18)

and the confidence interval for ()?fs)ij at a significance level
« is given by:
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Noting the relation between X; and C; as C; = % and
the fact that the inverse of a Wishart distributed matrix is
distributed according to an Inverse Wishart, estimators and
confidence intervals for C; can be obtained in a similar
fashion, but are omitted here for brevity.

IV. RESULTS

We generated a simulation study, inspired by changes in
brain functional from one state to another. We thus considered
20 x 20 covariance structure with the following dynamics:
consider a transition window of duration 7}, samples in which
the system changes from an initial to a final state. For a total
duration of T' > Ty, samples, we considered 3 segments: first,
the covariance remains at an initial value C;,; for the first
segment of length %(T —T,), then changes in a convex linear
fashion from Cj,; to some final value C'y;,, for a total of T},
samples, i.e., C, = (1 — ﬁ)Cﬁn + ﬁCW, followed by a
final segment of staying constant at C'f;,, totaling 7" samples.

Fig. 1 shows the structures of Cjy,; and C'sy, used in this
simulation study. Here, p = 20, T' = 600 samples, and T}, =
200 samples. For all the algorithms considered, we fixed A =
0.5, kK = w = 50, computed n using the relation % =1+
n_’; — [6], and for the variational smoother chose m = 5k.
For the backward sampling, we considered L = 10,100, and
1000 sample paths.

Fig. 2 shows sample time traces of the estimated precision
and covariance matrices for the (1,2) element. Colored hulls

Cini

Fig. 1. Initial and final covariance matrices C'p; and C'y;,,. The covariance
in the transition window of length 7%, is a convex linear combination of Cl,;
and Cyip.

show the 95% confidence intervals. As it can be observed
visually, our proposed method exhibits superior performance
in terms of both its variance and size of the confidence
intervals.

To quantify this observation, Table I compares three differ-
ent performance metrics: total normalized mean square error
(NMSE), the NMSE of the off-diagonal elements only, and the
CPU time. Note that the off-diagonal elements are of higher
importance in precision/covariance estimation, as they allow
to quantify the coupling between different variables, hence we
used the off-diagonal NMSE as an additional metric here.

Boldface numbers show the best performance in each row.
In estimating the precision matrix, our proposed variational
smoother provides more than 3 dB gain in both NMSE metrics,
and has comparable runtime to the forward filter. It is notewor-
thy that the backward sampling smoother has a significantly
higher runtime for a range of sample sizes L = 10, 100, 1000
considered here. In estimating the covariance matrices, our
proposed method outperforms the others in terms of off-
diagonal NMSE, but has about 2 dB loss in terms of total
NMSE.

V. CONCLUSION

The brain’s inherent dynamic function demands analytical
tools that go beyond traditional static measures of functional
connectivity. Time-varying functional connectivity analysis
allows us to investigate the flexible reconfiguration of neural
networks, giving us crucial insights into fundamental cognitive
processes and the disruption of those processes in neurological
and psychiatric disorders. Our work addresses a key challenge
in this field, often referred to as the ’curse of dimensionality’.
By utilizing Bayesian modeling and variational inference,
we have developed a computationally efficient technique for
analyzing time-varying functional connectivity. This approach
demonstrates promising accuracy with very low computational
costs in our simulation studies, making it a potentially pow-
erful alternative tool for understanding the complex dynamics
of the brain. Future work includes validating our proposed
methodology in application to large-scale EEG and MEG
recordings.
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