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Abstract

Characterizing neuronal responses to natural stimuli remains a central goal in sensory
neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking
activity is summarized by a spectrotemporal receptive field (STRF) that relates
neuronal responses to the stimulus spectrogram. Though effective in characterizing
primary auditory cortical responses, STRFs of non-primary auditory neurons can be
quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs
hence impedes understanding how acoustic stimulus representations are transformed
along the auditory pathway. Here, we focus on the relationship between ferret primary
auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG).
We propose estimating receptive fields in PEG with respect to a well-established
high-dimensional computational model of primary-cortical stimulus representations.
These “cortical receptive fields” (CortRF) are estimated greedily to identify the salient
primary-cortical features modulating spiking responses and in turn related to
corresponding spectrotemporal features. Hence, they provide biologically plausible
hierarchical decompositions of STRFs in PEG. Such CortRF analysis was applied to
PEG neuronal responses to speech and temporally orthogonal ripple combination
(TORC) stimuli and, for comparison, to A1 neuronal responses. CortRFs of PEG
neurons captured their selectivity to more complex spectrotemporal features than A1
neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses
to speech. Our results thus suggest that secondary-cortical stimulus representations can
be computed as sparse combinations of primary-cortical features that facilitate encoding
natural stimuli. Thus, by adding the primary-cortical representation, we can account for
PEG single-unit responses to natural sounds better than bypassing it and considering as
input the auditory spectrogram. These results confirm with explicit details the
presumed hierarchical organization of the auditory cortex.

Author summary

Spectrotemporal receptive fields (STRF) summarize how auditory neurons respond to
the time-lagged frequency content of acoustic stimuli. However, in non-primary auditory
cortex, where neurons can be sensitive to a wide range of spectrotemporal features,
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complex STRFs pose difficulty in understanding how stimulus representations change
along the auditory path. In this study, we focus on relating ferret primary auditory
cortex (A1) to a secondary area known as the posterior ectosylvian gyrus (PEG). We
propose a methodology in which we model PEG responses with respect to a
well-established computational model of the earlier primary cortical stage (A1), thus
estimating a “cortical receptive field” (CortRF). We demonstrate the utility of CortRF
analysis in application to single-unit recordings of PEG and A1 spiking responses to
speech and artificial frequency-modulated noise stimuli. CortRFs of PEG neurons were
found to capture their selectivity to more complex spectrotemporal features than A1
neurons; moreover, CortRF models were more predictive of PEG responses to speech.
Consistent with previous hypotheses about hierarchical organization in auditory cortex,
our results show that adding the primary-cortical representation accounts for PEG
single-unit responses to natural sounds better than otherwise and indicate that PEG
neurons encode natural stimuli better than earlier areas.

Introduction 1

Animals must be able to parse complex sensory inputs in order to navigate their 2

environments. In relation to audition, this includes scene analysis, semantic processing, 3

and vocal learning [1–5]. Neural representations of the acoustic environment must be 4

sufficiently rich to support such higher-order processing, and hence characterizing the 5

acoustic stimulus representations encoded by neuronal responses remains a central goal 6

in auditory neuroscience. Receptive field estimation continues to be a widely used 7

approach to characterize single-neuron level stimulus representations in all sensory 8

systems, especially auditory and visual systems [6–13]. The receptive field of a neuron 9

describes its feature selectivity, or equally, a stimulus transformation that the neuron 10

represents. Hence, the receptive fields of a neuronal population describes how stimuli 11

are represented by it, as shared receptive field properties elucidate the nature of the 12

stimulus transformation the population’s activity represents. 13

Conventionally, receptive fields are estimated by reverse-correlating the measured 14

neuronal responses to a diverse range of stimuli with features of the stimuli, assuming a 15

linear relationship with additive Gaussian observation noise [6, 7, 11, 14–16]. However, if 16

insufficiently diverse stimuli are used, or if stimulus presentations are too few to obtain 17

smooth peristimulus time histograms (PSTH), an unconstrained linear-Gaussian 18

response model is susceptible to inaccurately characterizing the receptive fields. These 19

challenges have motivated the use of sparse or smooth receptive field priors (especially 20

when using responses to natural stimuli) [17–20] and generalized linear models (GLM) 21

for neuronal spiking activity [10, 21–24]; individually and jointly, both assumptions have 22

been shown to improve the accuracy and generalizability of the receptive field. 23

Low-dimensional factorizations [9, 25] have also been proposed to obtain tractable and 24

generalizable receptive field models. Notably, these approaches all utilize early-stage 25

stimulus representations to estimate the receptive fields irrespective of the cortical area 26

of interest. Specifically, auditory cortical neurons are typically characterized by 27

spectrotemporal receptive fields (STRFs) that act on spectrogram inputs - the neural 28

representations of acoustic signals at the earliest stages. 29

Such descriptions of response selectivity with respect to simple stimulus features can 30

provide intuitive interpretations of how stimuli are encoded by cortical neurons. 31

However, receptive fields estimated in non-primary areas are often highly complex, 32

reflecting the mixed selectivity that neurons in higher-order areas exhibit [9, 26–30]. 33

Consequently, studies of higher sensory processing have sought to characterize and 34

investigate the utility of hierarchical stimulus representations [3, 31–38]. The advent of 35

deep learning has inspired computational models for higher-order areas that implement 36
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feed-forward neural network architectures. For example, convolutional neural networks 37

have been utilized to directly model neuronal responses in higher-order visual 38

areas [37,39–41], and similarly more recent studies have applied feed-forward neural 39

network models to the auditory system [32,42–45]. Estimating deep convolutional 40

models essentially characterizes receptive fields of each intermediate layer with respect 41

to embedded features produced through the composition of hierarchical stimulus 42

transformations over the preceding layers in the pursuit of interpretable decompositions 43

of complex features. Such models have been demonstrated post hoc to accurately 44

characterize the neural responses of higher-order visual [39,40] neurons and non-primary 45

auditory areas [32,42] in deeper network layers, with several intermediate network layers 46

resembling primary cortical responses. While neural network models describe 47

hierarchical schemes by which higher-order sensory areas encode complex stimulus 48

representations, they do not explicitly characterize hierarchical computations underlying 49

the neuronal responses along the sensory pathway. Therefore, to this end, we sought to 50

model directly how non-primary neuronal responses are related to primary-cortical 51

stimulus representations. 52

With a focus on the mammalian auditory system and using a ferret animal model, 53

we demonstrate here an approach to estimating the receptive fields of neurons in 54

secondary auditory cortex utilizing a well-established computational model of acoustic 55

signal representations in primary auditory cortex (A1) [33,46,47]. The spiking responses 56

of neurons in ferret dorsal posterior ectosylvian gyrus (PEG), a secondary auditory area 57

with direct inputs from A1, are modeled by GLMs that use primary-cortical features 58

obtained via multiresolution analysis of the spectrogram as regressors [46]. The 59

proposed model is conceptually similar to neural network models in that a hierarchical 60

stimulus representation is utilized to decompose complex STRFs. However, since the 61

stimulus regressors represent the neural responses in primary auditory cortex (A1), the 62

cortical receptive fields (CortRF) estimated in this proposed approach directly describe 63

the computations by PEG neurons involving primary-cortical features that produce a 64

secondary stimulus representation. Noting that the multiresolution primary-cortical 65

features are high-dimensional and that sparse priors in STRF estimation improve model 66

generalizability [9, 17, 24], we also impose sparsity constraints on the estimated CortRFs 67

by using orthogonal matching pursuit (OMP) [48,49] over an overcomplete dictionary 68

spanning the primary-cortical feature space. We demonstrate that the proposed 69

receptive field analysis can recover the true stimulus dependence of simulated spiking 70

activity generated in response to a wide range of stimuli. In its application to PEG 71

neurons, we show that estimated CortRFs are predictive of spiking responses, 72

specifically outperforming STRF-based predictions of unseen responses to speech. We 73

additionally analyze neurons in A1 and find that not only is the predictive advantage 74

absent, but that substantial differences in receptive field properties emerge between 75

PEG and A1. Thus, this proposed method provides new insights into the hierarchical 76

stimulus representations in the mammalian auditory system. 77

Results 78

In order to study how responses of neurons in non-primary auditory areas encode 79

features of acoustic stimuli, we analyzed the receptive fields of neurons in ferret 80

posterior ectosylvian gyri (PEG) recorded passively during the presentation of artificial 81

and natural acoustic stimuli. Specifically, we propose a new approach to receptive field 82

estimation in non-primary auditory neurons that, by leveraging the representation of 83

acoustic stimuli in primary auditory cortex (A1), can explain how complex 84

spectrotemporal selectivity arises downstream. 85

The proposed approach, illustrated in Fig 1, treats the spiking responses of PEG 86
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neurons as point processes whose conditional intensity functions (CIF) are modeled by 87

generalized linear models (GLM) [21] with both stimulus and spiking history regressors. 88

While conventionally the spectrogram over a specified integration window would be 89

used as stimulus regressors to estimate a spectrotemporal receptive field (STRF), we 90

instead utilize the representation of acoustic stimuli in primary auditory cortex [46]. 91

This primary-cortical representation is obtained by a 2-D multiresolution analysis of the 92

spectrogram defined by a set of basis functions selective for different bandwidths (i.e. 93

scales) and for different modulation rates, examples of which are shown in Fig 1. 94

+

logit

history-dependence

noise

PEG Spiking Response
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.

Time lag

A1 Representation

+

STRF

Fig 1. Cortical receptive fields of PEG neurons are estimated with respect to the
primary-cortical representation of acoustic stimuli by fitting generalized linear models (GLM)
to spiking responses. Each scale-rate channel of the primary-cortical representation, obtained
by the convolving the stimulus auditory spectrogram by the associated basis function, is
convolved with the corresponding channel of the cortical receptive field. The outputs of each
scale-rate channel linearly combine to modulate the conditional intensity function (CIF), which
is logistically linked to stimulus and spiking history modulations. The equivalent
spectrotemporal receptive field (STRF) is thus computed as the linear combination of the
spectrotemporal filters of each scale-rate channel.

Just as STRFs are estimated with respect to spectrotemporal features, we estimate 95

the “cortical receptive fields” (CortRF) of neurons with respect to these 96

primary-cortical features. However, in consideration of the high dimensionality of the 97

feature space and based on previous studies that demonstrate the generalizability of 98

sparsely estimated receptive fields [9, 17,24], we utilized a generalized Orthogonal 99

Matching Pursuit (OMP) algorithm over a dictionary of Gaussian atoms spanning the 100

primary-cortical feature space to impose sparse priors when estimating CortRFs. OMP 101

iteratively identifies a support set – the non-zero subset of parameters – over which the 102

model is optimized. In the context of the proposed model, OMP iteratively identifies 103

atoms of the dictionary and estimates their weights in order to obtain the CortRF. 104

Noting that the proposed system model is linear with respect to the spectrogram, 105

CortRFs have equivalent STRFs that are obtained by convolving the CortRF’s 106

scale-rate channels by the appropriate primary-cortical basis functions and computing 107
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the sum over all scale-rate channels. To distinguish STRFs computed in this manner 108

from those estimated directly, we denote them as CortSTRFs. 109

The following results validate the proposed hierarchical model of feature selectivity 110

in PEG neurons and indicate that PEG neurons likely capture encoding of natural 111

stimuli better than earlier areas. First, we simulated the spiking responses of a neuron 112

with a known receptive field in order to demonstrate the efficacy of our proposed 113

methods in recovering the receptive field and estimating a useful generative model. 114

Then, we applied the proposed analyses to PEG neurons recorded from ferrets during 115

the passive presentation of natural (specifically, speech) and artificial (temporally 116

orthogonal ripple combinations, or TORCs [15]) stimuli. We additionally compared how 117

well CortRF models vs. directly estimated STRF models of PEG neurons were able to 118

predict the spiking responses to unseen speech and TORC stimuli, and found that the 119

CortRF enabled significantly better predictions of responses to natural stimuli. We 120

sought to determine if this benefit was unique to PEG neurons and hence applied the 121

same CortRF and STRF analyses to neurons recorded in ferret A1, where we found no 122

improvement in response predictions. Hypothesizing that CortRF analysis describes 123

more complex spectrotemporal selectivity in PEG, we compared the complexity of the 124

CortSTRFs and STRFs of A1 and PEG neurons. Finally, we performed a clustering 125

analysis of the CortRFs to gain further insight into the auditory features that 126

distinguished PEG neurons from A1 neurons. 127

CortRF model of simulated neuron recovers true receptive field 128

We first demonstrated the efficacy of CortRF estimation through simulation. The 129

spiking activity of a simulated neuron was generated in response to a set of 30 TORCs 130

and 30 sentences from the TIMIT corpus, with six realizations (i.e. “trials”) per 131

stimulus. These stimuli were a subset of those presented to ferrets during in vivo 132

recordings. The simulated neuron’s spiking history dependence was set to be 133

self-exciting in order to mimic bursts of spiking activity observed in recorded neurons. 134

The ground-truth CortRF consisted of two positively-weighted atoms located at the 135

same scale-frequency channel and same time lag, but opposite rate channels. The true 136

CortRF, the CortRF convolved by the primary-cortical basis functions, and the 137

CortSTRF of the simulated neuron are shown in Fig 2A. 138

The CortRF was estimated by fitting a point process GLM to the simulated spiking 139

responses to 24 TORCs and 24 sentences by applying OMP over an overcomplete 140

dictionary of truncated Gaussian atoms spanning each scale-rate channel of the 141

primary-cortical features (see Methods). The estimated CortRF nearly exactly 142

recovered the ground-truth CortRF (Fig 2B); that is, the salient atoms in the greedily 143

estimated CortRF (circled in blue) coincide with the true CortRF. Consequently, the 144

convolved CortRF and CortSTRF closely match the ground truth. 145

We used the simulated responses to 6 TORCs and 6 sentences that were excluded 146

during estimation to quantify the model’s goodness-of-fit. Invoking the time-rescaling 147

theorem for point processes [50], we tested if the empirical distribution of time-rescaled 148

interspike intervals in test responses matched a uniform distribution and if the interspike 149

intervals were significantly correlated using graphical Kolmogorov-Smirnov (KS) and 150

autocorrelation function (ACF) tests, respectively. The results of this evaluation over 151

the entire test set, shown in Fig 2C with 95% confidence intervals, indicate that the 152

estimated model accounted for the spiking statistics of unseen responses with confidence. 153

We found this to be true of individual realizations of the simulation driven by speech 154

and TORC presentations, as shown in Fig 2D (respectively, 2E). Noting that the 155

estimated models include spiking history regressors as well as the stimulus, the 156

contribution of the former is evaluated in S1 Text; while important, spiking history is 157

not sufficient to obtain models with good statistical fits to spiking observations. 158
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Fig 2. CortRF analysis of a simulated neuron. A. Ground-truth receptive field of simulated
PEG neuron consisted of two components (circled in blue). B. Estimated cortical receptive
field nearly exactly recovered ground-truth receptive field. The dominant features are circled in
blue. C. Kolmogorov-Smirnov (KS) and autocorrelation function (ACF) tests of model
goodness-of-fit with 95% confidence intervals show the history-dependent GLM accounted for
simulated spiking statistics accurately. D–E. Single-realization goodness-of-fit tests showed
that spiking responses of individual simulated realizations in response to both speech and
TORC stimuli were well-modeled by the GLM. F–G. Estimated CIF vs. observed spiking. The
estimated CIFs for unseen realizations of the simulated spiking process closely matched the
spiking responses, with distinctive correlogram peaks close to 0-lag. Receptive fields have been
normalized for visualization.
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We additionally evaluated how well the estimated model predicted spiking responses 159

to stimuli excluded during estimation. For each realization, the predicted CIF was 160

computed using the estimated GLM and cross-correlated with the observed spiking 161

responses. Examples of the predicted CIFs and the observed spiking responses to a 162

TORC and a sentence are showng in Fig 2F and Fig 2G, respectively. Predicted CIFs 163

closely matched the simulated spiking responses; correlograms had distinct peaks close 164

to 0-lag. Specifically, predicted CIFs lagged behind simulated spiking by 1 sample due 165

to the group delay of the causally estimated moving average filter parameterized by the 166

spiking history modulation coefficients. Moreover, we computed the lag-corrected cosine 167

similarities between the observed spiking and the predicted CIFs; a value of 1 indicates 168

that both coincide exactly while a value of 0 indicates orthogonality. For speech 169

responses, the median cosine similarity of all test speech responses was 0.6526 and was 170

0.6579 for test TORC responses. Thus, the results of our simulation indicate that sparse 171

CortRF estimation using a point process model provides a descriptive and predictive 172

model of spiking responses to acoustic stimuli. 173

CortRFs facilitate predictions of speech responses in PEG 174

neurons 175

PEG neuronal responses are well-characterized by CortRF point process 176

models 177

We next applied CortRF analysis to the spiking responses of neurons recorded from 178

ferret PEG during behaviorally passive presentation of TORC and speech stimuli. A 179

total of 31 PEG neurons recorded across three animals were used in these analyses. 180

Animals were presented with stimulus sets consisting of 30 TORC samples and 30 181

sentences from the TIMIT corpus that were repeated between 4 − 6 times in 182

randomized orders (see Methods). The spiking responses to 24 TORCs and 24 sentences 183

were used for estimation, while the remaining responses were used for model validation. 184

The CortRFs of PEG neurons were estimated using OMP over an overcomplete 185

dictionary covering the primary-cortical feature space. Estimated CortRFs individually 186

consisted of a sparse number of atoms (Fig 3A), though the atoms selected over all 187

neurons were distributed across all scale-rate-frequency channels and time lags (S1 188

Figures). In order to visualize the spectrotemporal features that a CortRF described, 189

the corresponding CortSTRF was computed by first convolving the CortRF with the 190

primary-cortical basis function and then marginalizing over rates and scales (Fig 3A 191

and (S1 Figures). CortSTRFs demonstrated that PEG neurons were selective of 192

complex spectrotemporal features that had sparse representations in the 193

primary-cortical feature space. 194

In the absence of ground truth receptive fields to assess the accuracy of estimated 195

CortRFs, we evaluated the goodness-of-fit of estimated models. The KS and ACF tests 196

were applied to determine whether the distribution of time-rescaled interspike intervals 197

in unseen responses were uniformly distributed and independent, respectively. The KS 198

and ACF tests were applied both collectively and individually to each trial in the test 199

set. Examples of KS and ACF tests over the entire test set, for one speech trial, and for 200

one TORC trial are shown in Fig 3B–D, respectively. Graphical KS and ACF tests for 201

all PEG neurons are included in S1 Figures. We found that estimated models accounted 202

for the spiking statistics of unseen responses with confidence, both over the entire test 203

set and for single trials. 204

We additionally sought to characterize the estimated model’s predictive performance. 205

The predicted CIFs were computed for stimuli excluded during model estimation and 206

cross-correlated with the observed spiking responses. Examples of the CIFs predicted 207

for one speech and one TORC trial are shown respectively in Fig 3E–F, along with the 208
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PEG: Estimated CortRF Speech TORC Goodness of Fit
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Fig 3. CortRF analysis of an example PEG neuron. A. The estimated CortRFs of PEG
neurons were sparse, but produced complex CortSTRFs. Here, three atoms from the dictionary
of primary-cortical features had non-zero weight, but correspond to a CortSTRF with wide
temporal tuning B. KS and ACF tests show spiking statistics were well-matched by the
estimated model over all speech and TORC stimulus repetitions withheld during model
estimation. C–D. Single-trial spiking statistics were also well-matched. E–F. Comparing the
predicted conditional intensity function (CIF) to withheld observed spiking responses showed
the estimated model was highly predictive of spiking responses. G. The 2-dimensional
convolution of a sample speech spectrogram with the estimated CortSTRF shows how the
sentence would be represented by a family of PEG neurons with similar receptive fields
translated in frequency. Spectrograms and receptive fields are normalized for visualization.
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respective correlograms. As in the simulated example, we consistently observed closely 209

matched predicted CIFs and spiking responses that were corroborated with correlogram 210

peaks close to 0-lag. Lag-corrected cosine similarities between observed spiking and 211

predicted CIFs were compute for each neuron to quantify these observations. The 212

median cosine similarity over all PEG neurons for speech responses and TORC 213

responses were 0.4051 and 0.4107, respectively, indicating that estimated models were 214

predictive of spiking responses to unseen stimuli. 215

To visualize the effect of the receptive field on acoustic stimuli, the 2-D convolution 216

of an example speech spectrogram with the CortSTRF was computed (Fig 3G). The 217

convolved spectrogram illustrates how a family of neurons centered at different 218

frequencies but with the same receptive field shape would represent the example 219

stimulus. The convolved spectrograms, like the CortSTRFs, suggested that PEG 220

neurons were responsive to complex spectrotemporal patterns produced through sparse 221

combinations of primary-cortical features and additionally indicated that the secondary 222

representations of acoustic stimuli have long latencies. 223

CortRF models are more predictive of speech responses than STRF models 224

The estimation of CortRFs for PEG neurons using point process models was shown to 225

be an effective approach to describing and predicting their spiking responses to acoustic 226

stimuli. We next sought to assess the utility of the primary-cortical representation 227

relative to the spectrogram representation of stimuli by comparing CortRF point 228

process models to STRF point process models of PEG neurons. 229

STRFs point process models were estimated for each PEG neuron using OMP over 230

an overcomplete dictionary of truncated Gaussian atoms spanning the spectrotemporal 231

feature space (see Methods); here, stimuli were represented using the spectrogram 232

rather than the primary-cortical features. The same training-testing partition of spiking 233

responses used for CortRF estimation was utilized here so that STRFs and CortRFs 234

were estimated and evaluated over the same sets of responses. 235

In general, STRFs estimated for PEG neurons did not resemble the estimated 236

CortSTRFs (Fig 4A and S1 Figures); rather, estimated STRFs suggested simpler 237

spectrotemporal feature selectivity as they were comprised of sparse combinations of 238

dictionary atoms. This mismatch was noteworthy since mixtures of an arbitrary number 239

of Gaussian components can approximate most distributions. This difference can also 240

be seen from the convolved speech spectrograms (Fig 4A), where the STRF-convolved 241

speech spectograms tend to either be more positive-valued (i.e. having excitatory effects 242

on spiking responses) or negative-valued (i.e. having inhibitory effects) rather than 243

combinations. 244

Despite these discrepancies, estimated STRF models were both descriptive and 245

predictive of spiking responses. The KS and ACF tests showed that estimated models 246

accounted for the spiking statistics of unseen responses with confidence, both over the 247

entire test set and for individual trials (Fig 4B–D). Additionally, the predicted CIFs for 248

test stimuli closely aligned with observed spiking responses as can be seen by inspection 249

and in correlograms (Fig 4E–F). The lag-corrected cosine similarities between observed 250

spiking and predict CIFs for TORC and speech responses further corroborated the 251

predictive capability of the STRF point process model: the median similarity for speech 252

responses and TORC responses were 0.4037 and 0.4096, respectively. 253

The CortRFs and STRFs could both be used to describe the responses of PEG 254

neurons to acoustic stimuli, but it remains unclear if CortRF analysis provided any 255

advantage in modeling PEG activity. As the point process modeling framework 256

produces generative models of neuronal responses, we expect that any advantages to 257

using the CortRF over the STRF would manifest as improved predictions of responses 258

to unseen stimuli. Hence, we computed the differences in cosine similarities involving 259
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PEG: Estimated STRF Speech TORC Goodness of Fit
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Fig 4. STRF analysis of a PEG neuron. A. The estimated STRF of PEG neurons generally
provided characterizations of neurons’ selectivity that diverged from the CortRF, as seen here.
The 2-dimensional convolution of a speech spectrogram with the estimated STRF suggested
shorter latency in the neural representation than when convolved with the CortSTRF. B–F.
Statistical tests for goodness-of-fit, both for each and over all speech and TORC stimulus
repetitions withheld during model estimation, indicated estimated models were well-matched to
the observed spiking statistics. Additionally, the withheld spiking responses were closely
matched by predicted CIFs. Spectrograms and STRFs are normalized for visualization.
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CortRF-predicted CIFs and STRF-predicted CIFs for both TORC and speech stimuli, 260

individually. The distributions of these differences (CortRF - STRF) are shown in Fig 5. 261

The median difference for TORC response predictions was −0.0001 and was 0.0005 for 262

speech response predictions. Recalling that the set of test responses when evaluating 263

CortRF and STRF models were identical for each neuron, we used the Wilcoxon signed 264

rank test to determine if the median differences in cosine similarity between matched 265

CortRF and STRF pairs were significantly different from 0. The difference in speech 266

response predictions was statistically significant (p = 0.018), while the difference in 267

TORC response predictions was not (p = 0.353). This suggests that CortRF estimation 268

provided a better characterization of PEG neurons’ feature selectivity because the 269

primary-cortical features of acoustic stimuli, which provide a richer representation than 270

the spectrogram, facilitated the prediction of responses to more complex stimuli. 271
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Fig 5. CortRF models of PEG neurons were more predictive of speech responses than STRF
models. Quantifying predictive performance by the cosine similarity between the predicted
CIFs and observed spiking responses, CortRF models were compared to the STRF models over
the same set of speech and TORC responses withheld from model estimation. The histograms
of differences in TORC (blue) and Speech (red) response predictions are shown in the left
panel. The empirical cumulative density function of these distributions is shown in the right
panel. While no difference between the two was found in predicting TORC responses
(p = 0.353, Wilcoxon signed rank test), a significant advantage in using the CortRF model to
predict speech responses was observed (p = 0.018, Wilcoxon signed rank test).

CortRFs provide no advantage in predicting A1 responses 272

The comparative analyses of estimated CortRF and STRF models of PEG neurons 273

demonstrated the utility of the primary-cortical representation of acoustic stimuli. Next, 274

we sought to determine whether the CortRF model was similarly beneficial in modeling 275

the spiking responses of A1 neurons, or it exclusively facilitates the prediction of PEG 276

neuronal responses. We repeated the CortRF and STRF analyses of spiking responses 277

to 30 TORCs and 30 sentences from the TIMIT corpus for 31 A1 neurons from one 278

animal. CortSTRFs and STRFs were estimated using the same data partitioning 279

procedure and algorithm as for PEG neurons. Estimated models for each neuron were 280

evaluated on test responses first for goodness-of-fit using the KS and ACF tests; and 281

then for predictivity by inspecting the correlograms of predicted CIFs vs. observed 282

spiking responses to test stimuli and computing lag-corrected cosine similarities. 283

The estimated CortRF and STRF of one A1 neuron are shown in Fig 6A–B; the 284

estimated CortRFs, estimated STRFs, and graphical goodness-of-fit tests of all A1 285

neurons may be found in S2 Figures. In contrast to PEG neurons, CortRF and STRF 286

estimation from A1 neurons described neurons’ feature selectivity more similarly. That 287

is, more A1 neurons had CortSTRFs and STRFs that resembled each other than PEG 288
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neurons. The neuron shown in Fig 6 was chosen as a representative example of this 289

trend; the estimated CortSTRF and STRF exhibit similar frequency tunings, latencies, 290

and receptive field shape. The convolution of each with an example speech spectrogram 291

corroborates this observation (Fig 6C). We note that for some A1 neurons (S2 Figures), 292

the estimated CortSTRF and STRF were almost identical, while for others still 293

CortSTRFs and STRFs were highly dissimilar. However, for all A1 neurons, CortRF 294

and STRF estimation produced descriptive models of spiking responses. The KS and 295

ACF tests (S2 Figures), when applied both over the entire test set of responses and 296

individually to each trial, indicated that both CortRF and STRF models of A1 neurons 297

accounted for the spiking statistics of unseen responses with confidence. 298
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Fig 6. CortRF models of A1 neurons provided no advantage over STRFs in predicting spiking
responses to speech or TORCs. A–B. CortRF analysis and STRF analysis of A1 neurons
characterized their feature selectivity similarly more often than for PEG neurons in the sense
that CortSTRFs and STRFs had similar frequency-tuning, latency, and receptive field shape.
C. The representations of a speech spectrogram, obtained via 2-dimensional convolution with
either the CortSTRF (left) or STRF (right) of the same A1 neuron reflected this similarity.
The latency and frequencies represented in both convolved spectrograms were much more
similar than in PEG neurons. D. In further contrast to PEG neurons, there was no significant
difference between the predictive performance of CortRF models and STRF models of A1
neurons for either TORC (p = 0.750, Wilcoxon signed rank test) or speech stimuli (p = 0.802,
Wilcoxon signed rank test). Spectrograms and receptive fields are normalized for visualization.

Both CortRF and STRF models were also predictive of A1 spiking responses to 299

unseen TORC and speech stimuli. We computed correlograms between predicted CIFs 300

and observed spiking responses and observed dominant peaks at near-zero lags, similar 301

to the correlograms computed for simulated and PEG neurons. Quantitatively, the 302

lag-corrected cosine similarities between predicted CIFs and observed spiking 303

corroborated this assessment. For TORC stimuli, CortRF-predicted CIFs had median 304

cosine similarity of 0.5286 while for STRF-predicted STRFs the median cosine similarity 305
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was 0.5382. For speech stimuli, the median cosine similarities of CortRF-predicted CIFs 306

and STRF-predicted CIFs were 0.5637 and 0.5677, respectively. However, for neither 307

TORC nor speech stimuli were there significant differences in cosine similarity (Fig 6D). 308

The median differences for TORC and speech responses were 2.74 × 10−5 and 309

7.58 × 10−5, respectively; using the Wilcoxon signed rank test, the differences between 310

CortRF and STRF predictions for the same A1 neurons were determined not to 311

significantly differ from 0 (p = 0.750 for TORC stimuli, and p = 0.802 for speech 312

stimuli). 313

The absence of such a difference between CortRFs and STRFs in predicting the 314

responses of A1 neurons suggests that the spectrogram is a sufficiently rich feature 315

space with which to characterize their auditory feature selectivity. This contrasts with 316

the advantage that CortRF estimation provided for PEG neurons, where the use of 317

primary-cortical features facilitated the prediction of speech responses. Our analyses of 318

response predictivity in A1 and PEG neurons thus suggest a transformation of stimulus 319

representations between primary and non-primary auditory cortex, captured in part by 320

the primary-cortical feature space, that facilitates encoding natural acoustic stimuli. 321

We examined this hypothesized role of the primary-cortical features by comparing 322

the response predictivity of CortRFs and STRFs in both PEG and A1 trained 323

exclusively on either TORC or speech stimuli (S2 Text). These results indicated that, 324

while there are features in speech stimuli that can only be captured when training 325

receptive fields on speech responses (irrespective of are or stimulus feature space), the 326

primary-cortical feature space can represent more speech-like features than the 327

spectrogram. In this sense, the functional role of the primary-cortical representation 328

resembles that of nonlinearities such as synaptic depression and gain normalization that 329

facilitate natural stimulus encoding [51,52]. Differences in response predictivity by area 330

were not apparent when training exclusively on TORC or speech stimuli. Such a 331

restriction serves as a strong prior on the distribution of stimulus features; the effect of 332

training stimulus likely dominated over differences between PEG and A1. Training 333

receptive fields on both speech responses and TORC responses mitigated this bias, 334

enabling the observation of differences between the two areas in Fig 5 and Fig 6D. 335

PEG neurons encode more complex features than A1 neurons 336

Through comparisons of the predictive performance of CortRF and STRF models for 337

both PEG and A1 neurons, our results thus far suggest that feature selectivity in PEG 338

neurons is better characterized with respect to primary-cortical features than 339

spectrotemporal features directly. Additionally, we have speculated that PEG neurons 340

benefit from a richer feature space because they are selective of more complex 341

spectrotemporal features than A1 neurons. We next addressed this hypothesis formally. 342

In particular, we considered two notions of complexity: concentration of energy and 343

receptive fields shape. If PEG neurons do indeed encode more complex spectrotemporal 344

features, we would expect that their receptive fields should have less concentrated 345

energy and more complex shapes than A1 neurons. Moreover, these differences should 346

occur irrespective of the stimulus representation; hence, we compared the complexities 347

of both the CortSTRFs and STRFs. 348

First, we described the concentration of energy in receptive fields to characterize 349

differences in the ranges of frequencies and latencies to which PEG and A1 neurons 350

were most sensitive. The normalized magnitudes of CortSTRFs and STRFs were first 351

approximated by Gaussian mixture density functions obtained via a boosting algorithm 352

with Gaussian weak learners whose covariances were varied (see Methods). The 353

approximation procedure for the CortSTRF of an example PEG neuron using both 354

large-covariance and small-covariance weak learners is visualized in Fig 7A (top row, 355

third and fourth columns respectively); similarly, an example A1 neuron is also 356
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visualized in Fig 7A (bottom row, third and fourth columns). The determinant of an 357

approximate distribution’s covariance was used as a measure of concentration; smaller 358

determinants indicate that the energy in the receptive field is more concentrated. As 359

shown in Fig 7B, using large-covariance weak learners we found that determinants were 360

larger for PEG CortSTRFs than for A1 CortSTRFs (PEG: 1.10× 10−3 ± 1.50× 10−3 vs. 361

A1: 3.74× 10−4 ± 6.87× 10−4; p < 0.001, Wilcoxon rank sum test) and for PEG STRFs 362

than for A1 STRFs (PEG: 2.40 × 10−3 ± 2.50 × 10−3 vs. A1: 8.05 × 10−4 ± 1.50 × 10−3; 363

p = 0.002, Wilcoxon rank sum test). Moreover, we found that determinants were larger 364

for PEG CortSTRFs than for A1 CortSTRFs in approximations using small-covariance 365

weak learners as shown in Fig 7C, (PEG: 6.15 × 10−4 ± 4.14 × 10−4 vs. A1: 366

1.90 × 10−4 ± 1.77 × 10−4; p < 0.001, Wilcoxon rank sum test) and for PEG STRFs 367

than for A1 STRFs (PEG: 2.32 × 10−3 ± 9.03 × 10−4 vs. A1: 7.18 × 10−4 ± 5.24 × 10−4; 368

p = 0.001, Wilcoxon rank sum test). These results suggests that A1 neurons are most 369

sensitive to narrower ranges of frequencies and latencies than PEG neurons. However, 370

measuring the concentration of energy in receptive fields fails to capture the 371

spectrotemporal resolution of features encoded by PEG and A1 neurons. Hence, we 372

next considered the shape complexity of receptive fields. 373

We computed singular value decompositions of the normalized magnitudes of 374

CortSTRFs and STRFs, and identified the number of eigenvalues that accounted for 375

75% of the spectral power (i.e. sum of all singular values). This threshold was the 376

smallest proportion for which all k-rank approximations of CortSTRFs and STRFs had 377

small mean squared errors (at most 0.001). The k-rank approximation of an example 378

PEG CortSTRF is shown in Fig 7A (top row, fifth column), as well as an example A1 379

CortSTRF in Fig 7A (bottom row, fifth column). A larger number of singular values 380

indicates the linear combination of more eigenmodes are required to approximate the 381

receptive field and hence a more complex shape. As shown in Fig 7C, we found that the 382

necessary number of singular values was significantly larger for PEG CortSTRFs than 383

for A1 CortSTRFs (PEG: 5.87 ± 2.03 vs. A1: 4.39 ± 1.15; p = 0.002, Wilcoxon rank 384

sum test); and that the same was true of their respective STRFs (PEG: 3.71 ± 1.22 vs. 385

A1: 3.03 ± 1.08; p = 0.023, Wilcoxon rank sum test). These results indicate that not 386

only do PEG neurons tend to selective of wider ranges of frequencies and latencies than 387

A1 neurons, but that features encoded by PEG neurons have more complex shapes than 388

those by A1 neurons. 389

CortRF clusters reveal features that segregate by cortical area 390

By comparing PEG and A1 neurons based on two measures of receptive field 391

complexity, we found that PEG neurons tended to encode more complex features than 392

A1 neurons. Next, we further investigated the differences between features encoded in 393

PEG and A1 through unsupervised clustering of their CortRFs. By clustering the 394

CortRFs estimated from PEG and A1 neurons, we sought to identify groups of receptive 395

fields that corresponded to distinct primary-cortical features and to determine how 396

prevalent these features were in PEG and A1. 397

Constructing a similarity matrix by computing the absolute cosine similarities 398

between all pairs of CortRFs, we employed spectral clustering to obtain 6 receptive field 399

clusters in an unsupervised fashion (see Methods). The number of clusters was chosen 400

in relation to the number of small eigenvalues of the graph Laplacian associated with 401

the similarity matrix. For each cluster, we computed the size (i.e. number of neurons in 402

that cluster), the proportion of PEG neurons, and the average convolved CortRFs. 403

Three large clusters consisting of at least 10 neurons were found (clusters 1, 4, and 5, as 404

indexed in Fig 8A); the remaining clusters (S3 Figure) had at most 6 members, and 405

were subsequently excluded in order to avoid biased inferences based on cluster 406

properties. The three large clusters segregated CortRFs by cortical area, as 80% of 407
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Fig 7. PEG neurons encoded more complex features than A1 neurons. A. The complexity of
CortSTRFs and STRFs was quantified using two approaches to determine if PEG neurons (top
row) were selective of more complex acoustic features than A1 neurons (bottom row). The
magnitudes of STRFs were computed (second column) and approximated by a probability
distribution function for a Gaussian mixture model (GMM) fit with a boosting algorithm with
large- and small-covariance Gaussian weak learners (third and fourth columns, respectively)
and by k components of its singular value decomposition (fifth column). Here, k was the
smallest number of singular values that accounted for at least 75% of the spectral power,
ensuring the mean-squared errors of all k-rank approximations were small. Receptive fields are
normalized for visualization. B. The concentration of energy in STRFs was measured by the
determinant of the covariance of the GMM likelihood; smaller values indicate more
concentration of energy. GMMs were fit using a boosting algorithm with large-covariance weak
learners. The energy in CortSTRFs and STRFs of PEG neurons was more dispersed than
those of A1 neurons (CortSTRF: p < 0.001, STRF: p = 0.002; Wilcoxon rank sum test). C.
The analysis of energy concentration in STRFs was repeated with small-covariance weak
learners, demonstrating robustness to the choice of base learner and further indicating that the
energy in CortSTRFs and STRFs of PEG neurons was more dispersed than those of A1
neurons (CortSTRF: p < 0.001, STRF: p = 0.002; Wilcoxon rank sum test). D. The receptive
field shape complexity, quantified by the number of eigenmodes, was higher for both the
CortSTRFs (p = 0.002, Wilcoxon rank sum test) and STRFs (p = 0.023, Wilcoxon rank sum
test) of PEG neurons than of A1 neurons.
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neurons in cluster 1 were from A1 while 80% and 75% of neurons in clusters 4 and 5, 408

respectively, were from PEG. As indicated in Fig 8A, these proportions deviated 409

significantly from chance level (Cluster 1: p = 0.004, Cluster 4: p = 0.024, Cluster 5: 410

p = 0.028, t-test). Moreover, there was a significant interaction between the cluster 411

labels (PEG or A1) and the true cortical areas to which neurons belonged as 412

determined by a Fisher exact test (p < 0.001). 413

The variability of discovered clusters was quantified by comparing intra-cluster 414

similarities to inter-cluster similarities. For all 6 clusters, intra-cluster similarity was 415

significantly larger than inter-cluster similarity (Wilcoxon rank sum test, p < 0.05), 416

where the former are an order of magnitude larger than the latter (Table 1).

Table 1. Cluster variability.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Intra-Cluster 0.0309 ± 0.0135 0.2255 ± 0.0758 0.0892 ± 0.0588 0.0195 ± 0.0141 0.0073 ± 0.0041 0.0773 ± 0.0981
Inter-Cluster 0.0014 ± 0.0005 0.0014 ± 0.0010 0.0025 ± 0.0012 0.0006 ± 0.0003 0.0008 ± 0.0004 0.0005 ± 0.0004

The average intra-cluster and inter-cluster cosine similarities (±2 SEM) for each of the six discovered clusters were computed
and compared. For every cluster, there was a significant difference between intra- and inter-cluster similarity (Wilcoxon rank
sum test, p < 0.05).

417

The clusters were visualized (Fig 8B–D) by computing average convolved CortRFs 418

and their marginalizations over scale and rate channels, both individually and jointly; 419

note that marginalizing over both scales and rates together yields the average 420

CortSTRF of each cluster. When marginalizing across scale channels, we observed that 421

in the A1 cluster, CortRFs tended to have more energy in fast than slow rate channels. 422

In contrast, the Cluster 4 (a PEG cluster) had most of its energy in slow rate channels; 423

Cluster 5 intermediated the A1 cluster and Cluster 4, with energy dispersed across most 424

rate channels. A similar contrast between the A1 and PEG clusters was seen when 425

marginalizing across rate channels. In both PEG clusters, the energy was predominantly 426

restricted to wide bandwidth scale channels, whereas in the A1 cluster, the average 427

CortRF also included narrow bandwidth components. Consequently, the average 428

CortSTRF of the A1 cluster was sensitive to a narrow range of frequencies and time 429

lags, consistent with the analysis of receptive field complexity. These trends were 430

highlighted by visualizing how each cluster would represent an acoustic stimulus. The 431

2-dimensional convolution of a speech spectrogram with each cluster’s average 432

CortSTRF was computed; the convolved spectrograms are shown in Fig 8E. The 433

convolved spectrogram of Cluster 1 had shorter latency and narrower bandwidth than 434

either Cluster 4 or 5. Corroborating observations about the rate-scale composition of 435

Cluster 5, its convolved speech spectrogram had narrower bandwidth than Cluster 4 but 436

longer latency than Cluster 1. 437

In summary, unsupervised clustering of estimated PEG and A1 CortRFs 438

corroborated differences in feature selectivity between the two areas quantified through 439

receptive field complexity analyses. Stimulus representations by PEG and A1 clusters 440

exhibited longer latencies and narrower bandwidth, respectively. However, two distinct 441

PEG clusters were found, possibly indicating that there are different classes of 442

secondary stimulus representations that combine primary-cortical features differently. 443

Discussion 444

In this study, we demonstrated that sparsely estimated receptive fields of neurons in 445

ferret PEG with respect to primary-cortical features of acoustic signals provides a 446

hierarchical model that decomposes the complex spectrotemporal selectivity of 447

secondary auditory neurons in a biologically interpretable manner. We found that 448

December 20, 2024 16/32



E Speech Stimulus Representation by Cluster

4.63e+06

Fr
eq

. (
H

z)

200 400 600 800 1000

Lag (ms)

355

1127

3575

Fr
eq

. (
H

z)

Speech Spectrogram

Cluster 1: Convolved Speech Spectrogram

Time (ms)

A

Fr
eq

. (
H

z)

355
1127
3575

100 2000
Lags (ms)

Sc
al

es
 (c

yc
le

s /
 o

ct
av

e)

0.25

0.5

1

2

Rates (Hz)
-48 48-32 -16 -8 -4 4 8 16 32

Convolved CortRF

CortSTRF

Fr
eq

. (
H

z)

355
1127
3575

100 2000
Lags (ms)

Sc
al

es
 (c

yc
le

s /
 o

ct
av

e)
0.25

0.5

1

2

Rates (Hz)
-48 48-32 -16 -8 -4 4 8 16 32

Convolved CortRF

CortSTRF

Fr
eq

. (
H

z)

355
1127
3575

100 2000
Lags (ms)

Sc
al

es
 (c

yc
le

s /
 o

ct
av

e)

0.25

0.5

1

2

Rates (Hz)
-48 48-32 -16 -8 -4 4 8 16 32

Convolved CortRF

CortSTRF

B

DC

200 400 600 800 1000 1200

Cluster 5: Convolved Speech Spectrogram

Time (ms)

31   

112   

398   

1420   

5059   

4.63e+06

Fr
eq

. (
H

z)

Cluster 4: Convolved Speech Spectrogram

31   

112   

398   

1420   

5059   

CortRF Clusters:
 Composition and Size

Cluster 1: Average CortRF 

Cluster 5: Average CortRF Cluster 4: Average CortRF 

200 400 600 800 1000 1200
Time (ms)

31   

112   

398   

1420   

5059   

4.63e+06

Fr
eq

. (
H

z)

-0.5

0

0.5

1

1.5

1 2 3 4 5 6
0

5

10

15

20 Cluster Size

# 
of

 N
eu

ro
ns

Cluster Index

PEG Neurons per Cluster

Pr
op

or
tio

n 
of

 
N

eu
ro

ns PEG

A1

* * *

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

0

1

Fig 8. Unsupervised clustering of CortRFs segregated PEG and A1 receptive fields by cortical
area. A. Spectral clustering, applied jointly to the CortRFs estimated for PEG and A1
neurons, yielded 6 clusters. The proportion of PEG neurons in each cluster ±2 SEM was
computed (top), and clusters were designated as representative of distinct PEG features if at
least half its members were from PEG (green). A1 clusters were designated similarly (teal).
The three clusters with at least ten members (bottom) were inspected further. One was an A1
cluster (Cluster 1), and the other two were PEG clusters (Clusters 4 and 5). Each of these
three clusters were confirmed to deviate significantly from chance-level proportion of PEG
neurons (t-test, p < 0.05). Moreover, a Fisher exact test confirms a significant interaction
between neurons’ cluster labels (PEG or A1) and cortical area (p < 0.05). B–D. The average
CortRF convolved by the primary-cortical basis functions are displayed for each cluster. The
convolved CortRF was marginalized over scales (below), over rates (left), and over both to
compute the average CortSTRF. Cluster 1, the A1 cluster, had more energy in fast than slow
rate channels (B). In contrast, Cluster 4 (C) had more energy in slow rate channels; Cluster 5
(D) intermediated these two, but did have more energy in slow rate channels. Clusters 4 and 5,
the PEG clusters, predominantly had energy in wide-bandwidth scale channels, while Cluster 1
had more narrow bandwidth components. E. The representations of a speech spectrogram by
each of these clusters were obtained by computing the 2-dimensional convolution with the
cluster-average CortSTRFs. The convolved spectrogram of Cluster 1 (top right) had shorter
latency and narrower bandwidth than either Cluster 4 or 5. Corroborating observations about
the rate-scale composition of Cluster 5, its convolved speech spectrogram had narrower
bandwidth than Cluster 4 but longer latency than Cluster 1. Spectrograms and receptive fields
are normalized for visualization.
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estimated CortRFs provided a significant advantage over estimated STRFs in predicting 449

the responses of PEG neurons to speech, an advantage that was absent when comparing 450

CortRF- and STRF-based predictions of A1 spiking responses. Quantitative 451

comparisons between the complexity of PEG and A1 CortSTRFs indicated that the 452

improved predictions of speech responses in PEG were due to more complex 453

spectrotemporal selectivity, a trend corroborated when comparing STRFs from the two 454

areas. Moreover, unsupervised clustering of PEG and A1 CortRFs revealed that the 455

sparse combinations of primary-cortical features into which complex spectrotemporal 456

features were decomposed had distinct patterns that segregated by cortical area. Our 457

findings thus suggest that the proposed hierarchical model of spectrotemporal selectivity 458

in PEG captures a transformation in neural representations of acoustic signals between 459

A1 and PEG that serves to encode complex features of natural stimuli. 460

CortRF analysis and related approaches 461

CortRF analysis utilizes two central assumptions: receptive field sparsity and choice of 462

feature space. Sparse priors of various forms for receptive field estimation have 463

previously been explored. In the following, we speculate about their trade-offs. For 464

point process GLMs and linear-Gaussian models of auditory neurons, biasing receptive 465

field estimates towards zero using regularized maximum likelihood estimation or 466

boosting has been demonstrated to improve predictions of responses to novel acoustic 467

stimuli [17, 24]. The greedy estimation algorithm used in this work, OMP, is closely 468

related to these methods [48,49], and its usage to encourage sparsity was motivated in 469

part by model generalizability. Empirical Bayes estimators have also been demonstrated 470

to capture the spatiotemporal localization of receptive fields in early visual areas [18,19]. 471

However, similar spectrotemporal localization assumptions could not be made for PEG 472

neurons; in fact, PEG receptive fields were differentiated from those in A1 by their 473

comparative lack of localization. Both regularized and Bayesian estimators scale poorly 474

with feature dimensionality. However, since OMP iteratively selects a subset of features 475

over which the receptive field is estimated, it is more tractable to implement when 476

features are high-dimensional. 477

The tractability of receptive field estimation has previously been addressed through 478

assumptions about the stimulus feature space with respect to which models are 479

estimated. Parameterizing receptive fields with basis functions is one such assumption 480

that yields a potentially low-dimensional representation [8]. Gabor functions, closely 481

related to the primary-cortical basis functions used in this work [46], have been 482

established as useful idealized receptive field models of both auditory and visual 483

neurons [8, 53,54], and applied in sparse coding models [55–57]. CortRF analysis 484

essentially estimates a sparse representation of an STRF using an overcomplete 485

dictionary of Gabor-like spectrotemporal functions where the weights of dictionary 486

atoms comprise the CortRF. Recently, the use of spline functions has been proposed to 487

parsimoniously capture the localization and smoothness of visual receptive fields [20], 488

though, as noted previously, similar assumptions for PEG neurons are somewhat 489

tenuous. Low-rank factorized receptive field models also present a scalable alternative 490

and have been utilized to obtain low-dimensional characterizations of auditory and 491

visual receptive fields [9, 25]. Crucially, factorized models and basis functions still 492

parameterize receptive fields with respect to early-stage stimulus features (i.e. images or 493

spectrograms) and hence, when applied to non-primary sensory neurons, would 494

characterize complex feature selectivity without accounting for intermediate neural 495

representations. In contrast, utilizing primary-cortical features of acoustic stimuli 496

enabled us to describe a hierarchical transformation in stimulus representations between 497

A1 and PEG. 498

In this sense, CortRF analysis imposes a similar modeling assumption as 499
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convolutional neural network (CNN) models of higher-order auditory and visual areas, 500

though in a more restricted manner. Namely, the architecture of CNNs require the 501

stimulus representation at a given network layer to be based on the composition of 502

hierarchical convolutions over the preceding layers. In our proposed model, a PEG 503

neuron can analogously be thought of as a single unit in the second layer of a CNN, 504

while a CortRF are layer weights connecting the preceding layer (A1, in this analogy). 505

Post hoc comparisons with neural data from auditory and visual cortex have indicated 506

that task-optimized CNNs produce models whose intermediate and deeper layers 507

correspond to neural responses (recorded via fMRI and electrophysiologically in 508

separate instances) in low- to mid-level and downstream areas, 509

respectively [32,37,40,44,45]. However, the correspondence is ambiguous; for example, 510

several shallower CNN layers may be seen to correlate with primary sensory cortical 511

responses. Hence, while existing CNN models indeed describe a hierarchical scheme by 512

which stimuli are encoded for higher-order sensory processing, it is difficult to ascertain 513

a detailed correspondence with sensory cortical organization. CortRF analysis in the 514

present study, while comparatively limited in its scope to single neurons in a secondary 515

auditory area, does suggest a hypothesis about secondary representations of acoustic 516

stimuli. Our results suggest that secondary stimulus representations in PEG arise 517

through sparse combinations of primary-cortical features. Though PEG neurons 518

individually pooled few primary-cortical features, they collectively spanned a large 519

portion of the primary-cortical feature space. Moreover, improved speech response 520

predictions in PEG neurons by CortRF models suggest that hierarchical representations 521

in auditory cortex facilitate encoding natural stimuli. 522

Recently, a theoretical study proposed a similar hypothesis about non-primary 523

auditory cortical stimulus representations [58]. The study sought to explain how 524

low-level spectrotemporal features may be combined downstream using spectrotemporal 525

kernels learned to approximate natural stimuli as an analog of the primary-cortical 526

model. Secondary features were modeled as sparse combinations of these learned 527

spectrotemporal kernels, which consisted of a diverse range of rates and scales. 528

Secondary features were combinations of positively or negatively weighted kernels, 529

reminiscent of the sparse CortRFs estimated in the present study. While we did not 530

explore if primary-cortical feature combinations characterized by CortRFs matched 531

features of natural stimuli, it is notable that a sparse hierarchical encoding scheme can 532

emerge from statistical learning over the wide range of sounds encountered in natural 533

environments. 534

Feature selectivity in primary versus secondary auditory cortex 535

Although studies comparing the tuning properties of primary and secondary auditory 536

cortical neurons recorded passively in ferrets (or other animals) are limited, our results 537

comparing the receptive field properties of PEG and A1 neurons were consistent with 538

previous findings. The complexity and clustering analyses in the present study showed 539

that A1 receptive fields had more compact spectrotemporal tuning (i.e. narrower 540

bandwidth and integration window) than PEG neurons while also having less complex 541

receptive field shapes and were hence selective of simpler features. These results 542

corroborate previous studies that showed ferret PEG neurons had broader tuning 543

properties than A1 [59,60]. Additionally, the STRFs of PEG neurons have been shown 544

to be less sparse than STRFs of A1 neurons [60], mirroring the greater dispersion of 545

energy in PEG receptive fields described in this study. 546

Clustering CortRFs highlighted differences in feature selectivity between PEG and 547

A1, but also within PEG. Two CortRF clusters consisting mostly of PEG neurons were 548

found, differentiated by the presence or absence of high-rate and high-scale components 549

observed in the cluster of mostly A1 neurons. This separation within PEG might be 550
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reflective of different schemes for combining primary-cortical features to form secondary 551

representations. Interestingly, the aforementioned theoretical study of hierarchical 552

auditory processing noted different classes of secondary features as well [58]. Secondary 553

units either pooled spectrotemporal kernels that were frequently coactive or pooled 554

positively and negatively weighted kernels that were unlikely to occur concurrently. 555

Additionally, a recent neural network approach to STRF characterization in ECoG data 556

suggests the emergence of different classes of spectrotemporal features [42]. 557

Comparable receptive field studies in animals are sparse, but STRF analyses in 558

ECoG studies of human speech perception do suggest different classes of feature 559

transformations in superior temporal gyrus (STG), a non-primary area in human 560

auditory cortex. Speech responses in STG have been shown to be selective of various 561

speech-specific features that endure over differing timescales [5, 61,62]. In particular, 562

spatially organized differences in receptive fields estimated using speech stimuli have 563

been observed within STG, quantified by modulation transfer functions that summarize 564

changes in scale and rate components of STRFs [61]. Namely, receptive fields varied 565

from high-rate low-scale selectivity to low-rate high-scale selectivity, tracking either fast 566

temporal dynamics of speech across frequencies or slow temporal dynamics of speech 567

with high spectral variation. Despite the substantial divergence between the 568

higher-order acoustic representations of ferrets and humans [63], these results are 569

consistent in suggesting that secondary auditory cortical areas have classes of 570

hierarchical features that combine low-level representations distinctly in order to 571

support higher-order processing, though the nature of such classification is likely 572

species-specific. The crucial contrast with previous studies is that our results indicate 573

that the hierarchical auditory cortical organization is based on single-unit responses. 574

Thus, the proposed CortRF model and related analyses provide a framework that, when 575

applied at scale, could describe the emergence of non-primary features that support 576

higher-order auditory processing. 577

Methods 578

Experiments and Stimuli 579

Receptive field analysis of ferret PEG and A1 neurons was performed on data recorded 580

at the Neural System Laboratory at the Institute for Systems Research at University of 581

Maryland, College Park. Data from PEG neurons were recorded from three animals, 582

and include recordings previously published in [64]. Data from A1 neurons were 583

recorded from one animal and include recordings previously published in [65]. We refer 584

the reader to each work for a complete description of experimental procedures. 585

Ferrets were presented with two types of acoustic stimuli: speech samples arbitrarily 586

selected from the TIMIT corpus; and temporally orthogonal ripple combinations 587

(TORCs). TORCs are broadband spectrotemporally modulated noise signals [16]. Sets 588

of 30 distinct speech and TORC stimuli were presented, each repeated between 4 − 6 589

times in randomized order. Stimulus presentation lasted for 1.5 or 3 seconds; the 590

duration varied across recording sessions but not within a set of speech or TORC 591

samples. The first 0.5 seconds after stimulus onset are omitted from all spiking 592

responses in order to exclude transient effects in all analyses. Spiking responses, initially 593

sampled at 1 kHz, were binned using 5 ms long bins. 594

We utilized TORCs consisting of a dynamic spectrotemporal profile characterized by 595

the combinations of either 6 temporally orthogonal ripples (4 − 24Hz TORCs) or 12 596

temporally orthogonal ripples (4 − 48Hz TORCs). Ripples composing the TORCs had 597

linear sinusoidal spectral profiles; peaks were equally spaced from between 0.25 − 1.2 598

cycles per octave. The ripple envelopes drift temporally either up or down a logarithmic 599
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frequency axis spanning 0.125 − 4 kHz, 0.25 − 8 kHz, or 0.5 − 16 kHz at a constant 600

velocity; TORC frequencies ranges were chosen based on the best frequencies of the 601

recorded population. All speech and TORC acoustic signals were initially sampled at 40 602

kHz; if the TORCs used had a maximum frequency of at most 8 kHz, both stimuli were 603

downsampled to 16 kHz. 604

Primary-Cortical Representation of Auditory Stimuli 605

Responses in primary auditory cortex are modeled by the cortical representation of 606

auditory stimuli [46]. The cortical analysis consists of two stages: the extraction of the 607

auditory spectrogram, modeling the highly non-linear transformation of the inner 608

ear [66]; and its multi-scale multi-rate decomposition via a wavelet-like analysis 609

operating along both the spectral and temporal axes [46]. We refer the reader to the 610

respective references for a more detailed description, but provide an overview for 611

completeness. 612

First, an affine wavelet transform modeling the basilar membrane is applied to the 613

acoustic signal. Nonlinear rectification and compression, which model the effects of the 614

hair-cell stage, are employed next, after which a lateral inhibitory network is used to 615

sharpen features. The rectified output is then integrated over short time windows to 616

produce the auditory spectrogram. The cortical transformation of the auditory 617

spectrogram is, in essence, a 2-dimensional wavelet transformation whose 618

spectrotemporal basis functions perform multi-resolution analysis along both the 619

spectral and temporal axes separably. Scale (i.e. bandwidth) channels represent the 620

spectrogram with different degrees of spectral smoothing; each of S complex-valued 621

spectral filters are parameterized by their spectral tuning (cycles/octave). Multi-rate 622

analysis is performed by applying R antiphasic pairs of modulation-selective filters 623

parameterized by their center rates (Hz). Example basis functions of the cortical 624

analysis is shown in Fig 1. 625

We generate spectrograms with F = 32 frequency channels that log-uniformly span 626

the frequency range of the TORC stimuli presented to the neuron, and whose highest 627

frequency corresponds to the Nyquist frequency. Namely, for TORCs whose frequencies 628

range between 0.125 − 4 or 0.25 − 8 kHz (and were downsampled to 16 kHz), the 629

spectrogram frequency channels span 0 − 8 kHz; and for TORCs with frequencies 630

spanning 0.5 − 16 kHz (whose sampling rates remained at 40 kHz), the spectrogram 631

frequency channels span 0 − 20 kHz. Spectrograms were generated with 5ms long 632

frames, matching the bin sizes of spiking observations. The cortical basis filters consist 633

of S = 4 scale channels and R = 5 rate channels. The spectral tuning parameters of the 634

scale filters, in octave intervals, spanned 0.25 − 2 cycles per octave; the rate filters were 635

centered at ±{4, 8, 16, 32, 48} Hz, covering the range of rates used to generate TORC 636

stimuli. The cortical representation of stimuli thus consisted of F · S · 2R = 1280 637

frequency-scale-rate channels, and like the spectogram, had 5ms long time frames. 638

We note the following regarding the use of two frequency axes for different groups of 639

TORC stimuli. Though different frequency ranges were used, the spectrogram channels’ 640

critical frequencies were spaced using the same intervals, log-uniformly; hence, they 641

differ simply by translation along the log-frequency axis. Thus, group-level comparative 642

analyses of receptive fields describe properties indifferent to absolute frequency. 643

Point Process Model-Based Cortical Receptive Field Estimation 644

In order to estimate the cortical receptive fields (CortRF) of PEG and A1 neurons, we 645

treated their spiking responses as observations of discretized point processes used to fit 646

generalized linear models (GLM) to the conditional intensity function (CIF) [21,23]. 647

That is, the probability of a spike event in a time bin is equated to the CIF weighted by 648
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the bin size, where the CIF is non-linear function of the linear combination of spiking 649

history and stimulus history regressors. This generative approach is used for neural 650

encoding models and has been shown to be more predictive of neural spiking responses 651

than linear models [22–24]. The parameters of a GLM can be estimated by maximizing 652

the likelihood of the observed spiking data, and the goodness-of-fit of the estimated 653

model can be evaluated using results from point process theory. In the following, we 654

first formulate CortRF estimation as a maximum likelihood problem, then describe our 655

estimation procedures and measures for model goodness-of-fit. 656

Problem Formulation 657

Let {n(k)
t,j }Tt=1, a sequence of T Bernoulli observations, denote the spiking response 658

binned with bin size ∆ = 5ms to the jth repetition of the kth stimulus, where trial 659

indices range from j = 1, . . . , Jk and the stimulus indices from k = 1, . . . ,K. The 660

success probabilities of the spiking process, conditioned on the stimulus and recent 661

spiking history, are given by the conditional intensity function (CIF) {λ(k)
t,j ∆}Tt=1. The 662

CIF is modeled as a GLM with logistic link function: 663

λ
(k)
t,j ∆ =

eµ+h
(k)
t,j

⊤
ω+s

(k)
t

⊤
θ

1 + eµ+h
(k)
t,j

⊤
ω+s

(k)
t

⊤
θ
. (1)

The model is parameterized by the baseline firing rate parameter, µ, the history 664

modulation vector, ω, and the stimulus modulation vector (i.e. the receptive field), θ. 665

The recent spiking history, h
(k)
t,j , and the stimulus, s

(k)
t collectively constitute the model 666

regressors. 667

The modulation of the CIF due to recent spiking history is assumed to depend on a 668

short integration window. The integration window consists of M = 5 subdivisions of 669

non-overlapping windows with lengths {Wm}Mm=1 = {2m−1}Mm=1. Accordingly, the 670

spiking history vector has elements 671

h
(k)
t,j =

[
h
(k)
t,j,1, . . . , h

(k)
t,j,m, . . . h

(k)
t,j,M

]⊤
.

These are defined as 672

h
(k)
t,j,m :=

t−1−bm−1∑
i=t−1−bm

n
(k)
i,j , (2)

where bm =
∑m

l=1 Wl with b0 = 0. Thus, the history integration window covers L = 31 673

bins (equivalently, 155ms) with M = 5 parameters. 674

We assume the stimulus history dependence of spiking responses is limited to the 675

preceding 200ms, i.e. P = 40 bins. The stimulus vector s
(k)
t is the flattened cortical 676

representation with F · S · 2R · P = 51200 elements. However, for tractability, we 677

assume the receptive field is sparsely comprised of elements of an overcomplete 678

dictionary of truncated Gaussian atoms. That is, for each rate-scale channel, truncated 679

Gaussian kernels spanning 5 frequency channels and 5 bins cover the F × P 680

spectro-temporal receptive field with stride 3. Two such atoms are visualized in the 681

cortical receptive field shown in Fig 1, circled in blue. Thus, the receptive field is 682

equivalently represented by θ = Ψξ, where ξ is a sparse lower-dimensional vector and 683

the Ψ the dictionary of Gaussian atoms. The stimulus modulation term has the 684

following equivalency: θ⊤s
(k)
t = (Ψξ)⊤s

(k)
t = ξ⊤s̃

(k)
t , where s̃

(k)
t = Ψ⊤s

(k)
t . The 685

receptive field is thus tractably estimated by optimizing over ξ. 686
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The Bernoulli log-likelihood of the spiking statistics of the jth repetition of the kth 687

stimulus is given by 688

ℓ
(k)
j (w) =

T∑
t=1

[
n
(k)
t,j log

(
λ
(k)
t,j ∆

)
+

(
1 − n

(k)
t,j

)
log

(
1 − λ

(k)
t,j ∆

)]
=

T∑
t=1

[
n
(k)
t,j x

(k)
t,j

⊤
w − log

(
1 + ex

(k)
t,j

⊤
w

)]
= n

(k)
j

⊤
X

(k)
j w − 1⊤log

(
1 + eX

(k)
j w

)
,

(3)

where the log(·) and e(·) operations in the third line are element-wise. In the compact 689

notation utilized in Eq. (3), the parameter vector w =
[
µ,ω⊤, ξ⊤

]⊤
, and the 690

augmented model regressors x
(k)
t,j =

[
1,h

(k)
t,j

⊤
, s̃

(k)
t

⊤
]⊤

. Additionally, the covariate 691

matrix is defined as X
(k)
j :=

[
x
(k)
1,j , . . . ,x

(k)
T,j

]⊤
and the spiking observations are denoted 692

as the vector n
(k)
j :=

[
n
(k)
1,j , . . . , n

(k)
T,j

]⊤
; the CIF in vector form is expressed similarly as 693

λ
(k)
j :=

[
λ
(k)
1,j∆, . . . , λ

(k)
T,j∆

]⊤
. 694

The estimated parameters ŵ are obtained by maximizing the log-likelihood of all 695

spiking observations across the repeated presentations of K stimuli, i.e. by maximizing 696

ℓ(w) =
∑K

k=1

∑Jk

j=1 ℓ
(k)
j (w). With the total covariate matrix 697

X :=

[
X

(1)
1

⊤
, . . . ,X

(1)
J1

⊤
, . . . ,X

(k)
j

⊤
, . . . ,X

(K)
JK

⊤
]⊤

, and similarly defined total spiking 698

observation vector n :=

[
n

(1)
1

⊤
, . . . ,n

(k)
j

⊤
, . . . ,n

(K)
JK

⊤
]⊤

, the total data log-likelihood 699

may be expressed as 700

ℓ(w) := n⊤Xw − 1⊤log
(
1 + eXw

)
, (4)

and estimated parameters obtained by solving the maximum likelihood problem 701

ŵ := arg max
w

ℓ(w). (5)

Sparse Cortical Receptive Field Estimation 702

Though utilizing an overcomplete dictionary to represent the primary-cortical feature 703

space reduces the number of parameters, the problem in Eq. (5) remains 704

high-dimensional. As such, direct solutions to Eq. (5) would be prone to overfitting 705

limited data. To mitigate overfitting, a sparsity constraint on ŵ is imposed by using the 706

Orthogonal Matching Pursuit (OMP) to estimate the model [48,49], as detailed in 707

Algorithm 1. The use of sparse priors to estimate receptive fields from responses to 708

natural stimuli has been demonstrated to improve the their ability to predict responses 709

to unseen stimuli [17, 24]. 710

OMP iteratively selects the model support set: at each iteration, the out-of-support 711

parameter that maximizes the magnitude of the partial gradient with respect to it is 712

added to the model support; the log-likelihood is then maximized over the updated 713

support set. The sparsity level s∗, i.e. the maximum size of the support set, is a 714

hyperparameter that restricts the number of non-zero elements in the sparse estimate ŵ. 715

CortRFs were estimated by applying the following procedure to each neuron. First, 716

two-fold cross-validation was used to determine the optimal sparsity level s∗ over the 717

range of values s = 1, . . . , 100. Spiking response data were partitioned into a training 718
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Algorithm 1 Point Process Orthogonal Matching Pursuit (OMP)

Input: n, X, s∗

Output: ŵ
1: S(0) = ∅
2: ŵ(0) = 0
3: for r = 1 to s∗ do
4: λ(ŵ(r−1)) = eŵ

⊤
(r−1)X

/(
1 + eŵ

⊤
(r−1)X

)
5: ∇L(ŵ(r−1)) = X

(
n− λ(ŵ(r−1))

)
6: j = arg maxi/∈S(r−1)

∣∣∇L(ŵ(r−1))
∣∣
i

7: S(r) = S(r−1) ∪ {j}
8: ŵ(r) = arg maxsupp(w)⊆S(r) L(w)
9: end for

10: return ŵ = ŵ(s∗)

set consisting of the responses to 24 TORCs and 24 sentences, and a testing set 719

consisting of the remaining 6 TORC and 6 speech responses. The training set was used 720

for model estimation as well as cross-validation, while the testing set was used 721

exclusively to evaluate the model’s goodness-of-fit and its predictivity of responses to 722

data unseen during training. The range of rate-scale channels covered in the TORC and 723

speech testing sets were verified to be redundant with the range of rate-scale channels 724

covered in the training sets. To cross-validate for s∗, the training set was divided evenly 725

in two, with each subset consisting of 12 TORC and speech responses; a model was fit 726

to the first subset and the log-likelihood computed with respect to the second, and vice 727

versa. The sparsity level s∗ was chosen to maximize the sum of the log-likelihoods over 728

each training subset. Then, the s∗-sparse greedy estimate of the GLM parameters were 729

then obtained by solving the maximum likelihood problem in Eq. (5) over the training 730

set using OMP. 731

Evaluating Model Goodness-of-Fit 732

We validate the OMP-estimated point process GLMs for neuronal spiking responses by 733

inspecting both the statistical fit and predictive capability of estimated models on the 734

test set of spiking responses. The statistical goodness-of-fit of point process models can 735

be evaluated using the time-rescaling theorem [50], which establishes that the 736

time-rescaled interspike intervals should be independent and distributed uniformly on 737

the interval (0, 1). Two graphical tests are employed to validate these 738

properties [21,49,50]: the autocorrelation function (ACF) test is used to determine if 739

the interspike intervals are uncorrelated; and the Kolmogorov-Smirnov test is used to 740

determine if the time-rescaled interspike intervals are uniformly distributed. The ACF 741

and KS tests were applied both individually and collectively to each repetition of every 742

stimulus in the test set. Following [50], 95% confidence intervals for the KS test are 743

computed as ±1.96/
√
N around the 45◦ line; similarly, the 95% confidence interval for 744

the ACF test is computed as ±1.96/
√
N . Here, N denotes the total number of spikes. 745

The predictive capability of an estimated model was evaluated by comparing the 746

estimated CIF with the observed spiking response for each repetition of every stimulus 747

in the test set. The cross-correlation between the estimated CIF and the observed 748

spiking response visually indicates their alignment. The peak cross-correlation occurred 749

at non-zero lags (differing between but constant for each neuron), reflecting the group 750

delay of the history-dependence filter. The alignment between the estimated CIF and 751

observed spiking response was quantified using the cosine similarity between the average 752

estimated (and group delay-corrected) CIF and the PSTH of the observed spiking 753
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response. 754

Spectrotemporal Receptive Field Estimation 755

We compared the characterization of neurons’ stimulus tuning by CortRF estimation to 756

spectrotemporal receptive field (STRF) estimation in order to examine the utility of the 757

primary-cortical feature space over the spectrogram. We estimated STRFs using a point 758

process GLM using training and testing data partitions identical to the partitions used 759

for cortical receptive field estimation. The procedure was identical to that for 760

estimating the cortical receptive fields, excepting the representation of the stimulus 761

regressors. Stimulus history dependence was assumed to be limited to the preceding 762

200ms, i.e. 40 bins, so that the size of the STRF is consistent with each rate-scale 763

channel of the CortRF. For consistency in maximum likelihood estimation, the STRF 764

was assumed to be sparsely comprised of elements of an overcomplete dictionary of 765

truncated Gaussian kernels; the weights of these atoms were estimated using OMP. A 766

closely related approach to sparse STRF estimation was utilized in [24], but used 767

ℓ1-regularization of the STRF rather than greedy estimation over a dictionary of 768

features. Goodness-of-fit and predictivity were evaluated in the same manner as for the 769

cortical receptive field estimation problem. 770

Complexity Analysis of STRFs 771

The complexity of auditory features for which a neuron was selective was characterized 772

by the concentration of energy in and shape of its STRF. Measuring the concentration 773

of energy in the STRF describes the range of frequencies and latencies to which neurons 774

were most sensitive. This is complemented by a measure of complexity of features in 775

that range. The distinction between these descriptors of complexity is highlighted when 776

comparing a Gabor function to a Gaussian density, where the latter corresponds to the 777

envelope of the former. The energy is concentrated similarly in both functions, but the 778

Gabor function has a more complex shape. 779

To quantify the concentration of an STRF’s energy, we approximated the normalized 780

magnitude of the STRF by the density function of a Gaussian mixture model and 781

computed the determinant of the distribution’ covariance matrix. Smaller values of the 782

determinant indicate that energy in the STRF is more concentrated. The Gaussian 783

mixture density approximation was obtained iteratively by a boosting algorithm 784

(Algorithm 2) in which the weak learners were Gaussian kernels with fixed and equal 785

covariances whose means are determine at each iteration. Defining y to be the F × P 786

normalized magnitude of the STRF, ŷ(m) to be its approximation after m iterations, 787

and r(m) := y − ŷ(m−1), the algorithm was as follows. 788

Here, ϕ(µ,Σ)(f, p) denotes the Gaussian probability density function with mean µ 789

and covariance Σ evaluated at the frequency channel and time lag index (f, p). The 790

covariance was first set to Σ = 5I to be greater than the covariances of the Gaussian 791

atoms that comprised the overcomplete dictionary for primary-cortical features; these 792

weak learners instantiated the large-covariance GMM approximation. For comparison, 793

the covariance was set to Σ = 2.5I to instantiate the small-covariance GMM 794

approximation. The covariance matrix used to summarize energy concentration of 795

STRFs was that of the approximating distribution, ŷ, obtained from Algorithm 2. 796

To quantify the shape complexity of an STRF, we computed singular value 797

decomposition of its normalized magnitude and determined how many singular values 798

are required to account for 75% of the spectral power. This was the smallest that 799

proportion ensured that the squared error of each k-rank approximation was less than 800

10−3. A larger number of singular values indicates the linear combination of more 801

eigenmodes are required to produce the STRF, thus indicating a more complex shape. 802
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Algorithm 2 Gaussian Mixture Density Function Fitting

Input: y ∈ RF×P
+ , M , Σ

Output: ŷ,m∗

1: ŷ(0) = 0
2: for m = 1 to M do
3: r(m) := y − ŷ(m−1)

4: µ(m) = [fmax, pmax] := arg maxf,p

{[
r(m)

]
f,p

}
f=1:F,p=1:P

5:

{[
z(m)

]
f,p

}
f=1:F,p=1:P

=
{
ϕ(µ(m),Σ)(f, p)

}
f=1:F,p=1:P

6: α̂ =
[
α̂(1), . . . , α̂(m)

]⊤
= arg minα:α>0,1⊤α=1 ||y −

∑m
l=1 α

(l)z(l)||2F
7: ŷ(m) =

∑m
l=1 α̂

(l)z(l)

8: ε(m) = ||y − ŷ(m)||2F
9: end for

10: m∗ = minm=1:M ε(m)

11: return ŷ = ŷ(m
∗), m∗

Spectral Clustering Analysis of Cortical Receptive Fields 803

In order to determine whether patterns in CortRFs were unique to PEG neurons, we 804

performed unsupervised clustering of all cortical receptive fields from both A1 and PEG 805

neurons. A similarity matrix was constructed by computing the absolute cosine 806

similarity between each pair of CortRFs; the diagonal components of the matrix were 807

set to 0. The number of clusters, 6, was determined as twice the number of eigenvalues 808

(of the normalized Laplacian associated with the similarity matrix) smaller than 0.1; 809

this threshold corresponded approximately to the 5th percentile in the distribution of 810

the Laplacian matrix’s eigenvalues. We opted to use 6 rather than 3 clusters so that 811

cluster representatives would be less susceptible to skew from outliers. 812

We performed spectral clustering using the MATLAB native function 813

“spectralcluster”. For each cluster, we noted the number of member neurons, the 814

proportion of PEG neurons, and computed the average cortical receptive field. Each 815

cluster average was considered as a distinct auditory feature. If a cluster consisted of at 816

least 50% PEG (respectively, A1) neurons, the corresponding auditory feature was 817

interpreted to be characteristic of PEG (resp., A1). For subsequent normative 818

comparisons, only the largest of these clusters were considered. 819

Supporting information 820

S1 Text Contribution of spiking history. This file contains results showing that 821

spiking history, while important, is not sufficient to obtain good statistical fits to 822

observed responses to acoustic stimuli. 823

S2 Text Response predictivity by training stimulus and by stimulus feature 824

space. This file contains results that compare the response predictivity of CortRFs and 825

STRFs that were trained exclusively on either speech or TORCs. 826

S1 Figures CortRF and STRF analysis of PEG neurons. This file contains 827

figures showing the CortRFs, STRFs, and goodness-of-fit measures of each for all PEG 828

neurons. 829
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S2 Figures CortRF and STRF analysis of A1 neurons. This file contains 830

figures showing the CortRFs, STRFs, and goodness-of-fit measures of each for all A1 831

neurons. 832

S3 Figure CortRF cluster analysis. This figures show all 6 CortRF clusters. 833
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