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Abstract

Characterizing neuronal responses to natural stimuli remains a central goal in sensory
neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking
activity is summarized by a spectrotemporal receptive field (STRF) that relates
neuronal responses to the stimulus spectrogram. Though effective in characterizing
primary auditory cortical responses, STRFs of non-primary auditory neurons can be
quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs
hence impedes understanding how acoustic stimulus representations are transformed
along the auditory pathway. Here, we focus on the relationship between ferret primary
auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG).
We propose estimating receptive fields in PEG with respect to a well-established
high-dimensional computational model of primary-cortical stimulus representations.
These “cortical receptive fields” (CortRF) are estimated greedily to identify the salient
primary-cortical features modulating spiking responses and in turn related to
corresponding spectrotemporal features. Hence, they provide biologically plausible
hierarchical decompositions of STRF's in PEG. Such CortRF analysis was applied to
PEG neuronal responses to speech and temporally orthogonal ripple combination
(TORC) stimuli and, for comparison, to Al neuronal responses. CortRFs of PEG
neurons captured their selectivity to more complex spectrotemporal features than Al
neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses
to speech. Our results thus suggest that secondary-cortical stimulus representations can
be computed as sparse combinations of primary-cortical features that facilitate encoding
natural stimuli. Thus, by adding the primary-cortical representation, we can account for
PEG single-unit responses to natural sounds better than bypassing it and considering as
input the auditory spectrogram. These results confirm with explicit details the
presumed hierarchical organization of the auditory cortex.

Author summary

Spectrotemporal receptive fields (STRF) summarize how auditory neurons respond to
the time-lagged frequency content of acoustic stimuli. However, in non-primary auditory
cortex, where neurons can be sensitive to a wide range of spectrotemporal features,
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complex STRFs pose difficulty in understanding how stimulus representations change
along the auditory path. In this study, we focus on relating ferret primary auditory
cortex (A1) to a secondary area known as the posterior ectosylvian gyrus (PEG). We
propose a methodology in which we model PEG responses with respect to a
well-established computational model of the earlier primary cortical stage (A1), thus
estimating a “cortical receptive field” (CortRF). We demonstrate the utility of CortRF
analysis in application to single-unit recordings of PEG and A1 spiking responses to
speech and artificial frequency-modulated noise stimuli. CortRFs of PEG neurons were
found to capture their selectivity to more complex spectrotemporal features than Al
neurons; moreover, CortRF models were more predictive of PEG responses to speech.
Consistent with previous hypotheses about hierarchical organization in auditory cortex,
our results show that adding the primary-cortical representation accounts for PEG
single-unit responses to natural sounds better than otherwise and indicate that PEG
neurons encode natural stimuli better than earlier areas.

Introduction

Animals must be able to parse complex sensory inputs in order to navigate their
environments. In relation to audition, this includes scene analysis, semantic processing,
and vocal learning [1-5]. Neural representations of the acoustic environment must be
sufficiently rich to support such higher-order processing, and hence characterizing the
acoustic stimulus representations encoded by neuronal responses remains a central goal
in auditory neuroscience. Receptive field estimation continues to be a widely used
approach to characterize single-neuron level stimulus representations in all sensory
systems, especially auditory and visual systems [6-13]. The receptive field of a neuron
describes its feature selectivity, or equally, a stimulus transformation that the neuron
represents. Hence, the receptive fields of a neuronal population describes how stimuli
are represented by it, as shared receptive field properties elucidate the nature of the
stimulus transformation the population’s activity represents.

Conventionally, receptive fields are estimated by reverse-correlating the measured
neuronal responses to a diverse range of stimuli with features of the stimuli, assuming a
linear relationship with additive Gaussian observation noise [6,7,11,14-16]. However, if
insufficiently diverse stimuli are used, or if stimulus presentations are too few to obtain
smooth peristimulus time histograms (PSTH), an unconstrained linear-Gaussian
response model is susceptible to inaccurately characterizing the receptive fields. These
challenges have motivated the use of sparse or smooth receptive field priors (especially
when using responses to natural stimuli) [17-20] and generalized linear models (GLM)
for neuronal spiking activity [10,21-24]; individually and jointly, both assumptions have
been shown to improve the accuracy and generalizability of the receptive field.
Low-dimensional factorizations [9,25] have also been proposed to obtain tractable and
generalizable receptive field models. Notably, these approaches all utilize early-stage
stimulus representations to estimate the receptive fields irrespective of the cortical area
of interest. Specifically, auditory cortical neurons are typically characterized by
spectrotemporal receptive fields (STRFs) that act on spectrogram inputs - the neural
representations of acoustic signals at the earliest stages.

Such descriptions of response selectivity with respect to simple stimulus features can
provide intuitive interpretations of how stimuli are encoded by cortical neurons.
However, receptive fields estimated in non-primary areas are often highly complex,
reflecting the mixed selectivity that neurons in higher-order areas exhibit [9,26-30].
Consequently, studies of higher sensory processing have sought to characterize and
investigate the utility of hierarchical stimulus representations [3,31-38]. The advent of
deep learning has inspired computational models for higher-order areas that implement
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feed-forward neural network architectures. For example, convolutional neural networks
have been utilized to directly model neuronal responses in higher-order visual

areas [37,39-41], and similarly more recent studies have applied feed-forward neural
network models to the auditory system [32,42-45]. Estimating deep convolutional
models essentially characterizes receptive fields of each intermediate layer with respect
to embedded features produced through the composition of hierarchical stimulus
transformations over the preceding layers in the pursuit of interpretable decompositions
of complex features. Such models have been demonstrated post hoc to accurately
characterize the neural responses of higher-order visual [39,40] neurons and non-primary
auditory areas [32,42] in deeper network layers, with several intermediate network layers
resembling primary cortical responses. While neural network models describe
hierarchical schemes by which higher-order sensory areas encode complex stimulus
representations, they do not explicitly characterize hierarchical computations underlying
the neuronal responses along the sensory pathway. Therefore, to this end, we sought to
model directly how non-primary neuronal responses are related to primary-cortical
stimulus representations.

With a focus on the mammalian auditory system and using a ferret animal model,
we demonstrate here an approach to estimating the receptive fields of neurons in
secondary auditory cortex utilizing a well-established computational model of acoustic
signal representations in primary auditory cortex (A1) [33,46,47]. The spiking responses
of neurons in ferret dorsal posterior ectosylvian gyrus (PEG), a secondary auditory area
with direct inputs from Al, are modeled by GLMs that use primary-cortical features
obtained via multiresolution analysis of the spectrogram as regressors [46]. The
proposed model is conceptually similar to neural network models in that a hierarchical
stimulus representation is utilized to decompose complex STRFs. However, since the
stimulus regressors represent the neural responses in primary auditory cortex (Al), the
cortical receptive fields (CortRF) estimated in this proposed approach directly describe
the computations by PEG neurons involving primary-cortical features that produce a
secondary stimulus representation. Noting that the multiresolution primary-cortical
features are high-dimensional and that sparse priors in STRF estimation improve model
generalizability [9,17,24], we also impose sparsity constraints on the estimated CortRFs
by using orthogonal matching pursuit (OMP) [48,49] over an overcomplete dictionary
spanning the primary-cortical feature space. We demonstrate that the proposed
receptive field analysis can recover the true stimulus dependence of simulated spiking
activity generated in response to a wide range of stimuli. In its application to PEG
neurons, we show that estimated CortRF's are predictive of spiking responses,
specifically outperforming STRF-based predictions of unseen responses to speech. We
additionally analyze neurons in Al and find that not only is the predictive advantage
absent, but that substantial differences in receptive field properties emerge between
PEG and A1l. Thus, this proposed method provides new insights into the hierarchical
stimulus representations in the mammalian auditory system.

Results

In order to study how responses of neurons in non-primary auditory areas encode
features of acoustic stimuli, we analyzed the receptive fields of neurons in ferret
posterior ectosylvian gyri (PEG) recorded passively during the presentation of artificial
and natural acoustic stimuli. Specifically, we propose a new approach to receptive field
estimation in non-primary auditory neurons that, by leveraging the representation of
acoustic stimuli in primary auditory cortex (A1), can explain how complex
spectrotemporal selectivity arises downstream.

The proposed approach, illustrated in Fig 1, treats the spiking responses of PEG
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neurons as point processes whose conditional intensity functions (CIF) are modeled by
generalized linear models (GLM) [21] with both stimulus and spiking history regressors.
While conventionally the spectrogram over a specified integration window would be
used as stimulus regressors to estimate a spectrotemporal receptive field (STRF), we
instead utilize the representation of acoustic stimuli in primary auditory cortex [46].
This primary-cortical representation is obtained by a 2-D multiresolution analysis of the
spectrogram defined by a set of basis functions selective for different bandwidths (i.e.
scales) and for different modulation rates, examples of which are shown in Fig 1.
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Fig 1. Cortical receptive fields of PEG neurons are estimated with respect to the
primary-cortical representation of acoustic stimuli by fitting generalized linear models (GLM)
to spiking responses. Each scale-rate channel of the primary-cortical representation, obtained
by the convolving the stimulus auditory spectrogram by the associated basis function, is
convolved with the corresponding channel of the cortical receptive field. The outputs of each
scale-rate channel linearly combine to modulate the conditional intensity function (CIF), which
is logistically linked to stimulus and spiking history modulations. The equivalent
spectrotemporal receptive field (STRF) is thus computed as the linear combination of the
spectrotemporal filters of each scale-rate channel.

Just as STRFs are estimated with respect to spectrotemporal features, we estimate
the “cortical receptive fields” (CortRF) of neurons with respect to these
primary-cortical features. However, in consideration of the high dimensionality of the
feature space and based on previous studies that demonstrate the generalizability of
sparsely estimated receptive fields [9,17,24], we utilized a generalized Orthogonal
Matching Pursuit (OMP) algorithm over a dictionary of Gaussian atoms spanning the
primary-cortical feature space to impose sparse priors when estimating CortRFs. OMP
iteratively identifies a support set — the non-zero subset of parameters — over which the
model is optimized. In the context of the proposed model, OMP iteratively identifies
atoms of the dictionary and estimates their weights in order to obtain the CortRF.
Noting that the proposed system model is linear with respect to the spectrogram,
CortRF's have equivalent STRFs that are obtained by convolving the CortRF’s
scale-rate channels by the appropriate primary-cortical basis functions and computing
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the sum over all scale-rate channels. To distinguish STRFs computed in this manner
from those estimated directly, we denote them as CortSTRFs.

The following results validate the proposed hierarchical model of feature selectivity
in PEG neurons and indicate that PEG neurons likely capture encoding of natural
stimuli better than earlier areas. First, we simulated the spiking responses of a neuron
with a known receptive field in order to demonstrate the efficacy of our proposed
methods in recovering the receptive field and estimating a useful generative model.
Then, we applied the proposed analyses to PEG neurons recorded from ferrets during
the passive presentation of natural (specifically, speech) and artificial (temporally
orthogonal ripple combinations, or TORCs [15]) stimuli. We additionally compared how
well CortRF models vs. directly estimated STRF models of PEG neurons were able to
predict the spiking responses to unseen speech and TORC stimuli, and found that the
CortRF enabled significantly better predictions of responses to natural stimuli. We
sought to determine if this benefit was unique to PEG neurons and hence applied the
same CortRF and STRF analyses to neurons recorded in ferret A1, where we found no
improvement in response predictions. Hypothesizing that CortRF analysis describes
more complex spectrotemporal selectivity in PEG, we compared the complexity of the
CortSTRFs and STRFs of Al and PEG neurons. Finally, we performed a clustering
analysis of the CortRFs to gain further insight into the auditory features that
distinguished PEG neurons from A1l neurons.

CortRF model of simulated neuron recovers true receptive field

We first demonstrated the efficacy of CortRF estimation through simulation. The
spiking activity of a simulated neuron was generated in response to a set of 30 TORCs
and 30 sentences from the TIMIT corpus, with six realizations (i.e. “trials”) per
stimulus. These stimuli were a subset of those presented to ferrets during in vivo
recordings. The simulated neuron’s spiking history dependence was set to be
self-exciting in order to mimic bursts of spiking activity observed in recorded neurons.
The ground-truth CortRF consisted of two positively-weighted atoms located at the
same scale-frequency channel and same time lag, but opposite rate channels. The true
CortRF, the CortRF convolved by the primary-cortical basis functions, and the
CortSTRF of the simulated neuron are shown in Fig 2A.

The CortRF was estimated by fitting a point process GLM to the simulated spiking
responses to 24 TORCs and 24 sentences by applying OMP over an overcomplete
dictionary of truncated Gaussian atoms spanning each scale-rate channel of the
primary-cortical features (see Methods). The estimated CortRF nearly exactly
recovered the ground-truth CortRF (Fig 2B); that is, the salient atoms in the greedily
estimated CortRF (circled in blue) coincide with the true CortRF. Consequently, the
convolved CortRF and CortSTRF closely match the ground truth.

We used the simulated responses to 6 TORCs and 6 sentences that were excluded
during estimation to quantify the model’s goodness-of-fit. Invoking the time-rescaling
theorem for point processes [50], we tested if the empirical distribution of time-rescaled
interspike intervals in test responses matched a uniform distribution and if the interspike
intervals were significantly correlated using graphical Kolmogorov-Smirnov (KS) and
autocorrelation function (ACF) tests, respectively. The results of this evaluation over
the entire test set, shown in Fig 2C with 95% confidence intervals, indicate that the

estimated model accounted for the spiking statistics of unseen responses with confidence.

We found this to be true of individual realizations of the simulation driven by speech
and TORC presentations, as shown in Fig 2D (respectively, 2E). Noting that the
estimated models include spiking history regressors as well as the stimulus, the
contribution of the former is evaluated in S1 Text; while important, spiking history is
not sufficient to obtain models with good statistical fits to spiking observations.
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Fig 2. CortRF analysis of a simulated neuron. A. Ground-truth receptive field of simulated
PEG neuron consisted of two components (circled in blue). B. Estimated cortical receptive
field nearly exactly recovered ground-truth receptive field. The dominant features are circled in
blue. C. Kolmogorov-Smirnov (KS) and autocorrelation function (ACF) tests of model
goodness-of-fit with 95% confidence intervals show the history-dependent GLM accounted for
simulated spiking statistics accurately. D—E. Single-realization goodness-of-fit tests showed
that spiking responses of individual simulated realizations in response to both speech and
TORC stimuli were well-modeled by the GLM. F—G. Estimated CIF vs. observed spiking. The
estimated CIFs for unseen realizations of the simulated spiking process closely matched the
spiking responses, with distinctive correlogram peaks close to 0-lag. Receptive fields have been
normalized for visualization.
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We additionally evaluated how well the estimated model predicted spiking responses
to stimuli excluded during estimation. For each realization, the predicted CIF was
computed using the estimated GLM and cross-correlated with the observed spiking
responses. Examples of the predicted CIFs and the observed spiking responses to a
TORC and a sentence are showng in Fig 2F and Fig 2G, respectively. Predicted CIFs
closely matched the simulated spiking responses; correlograms had distinct peaks close
to 0-lag. Specifically, predicted CIFs lagged behind simulated spiking by 1 sample due
to the group delay of the causally estimated moving average filter parameterized by the
spiking history modulation coefficients. Moreover, we computed the lag-corrected cosine
similarities between the observed spiking and the predicted CIF's; a value of 1 indicates
that both coincide exactly while a value of 0 indicates orthogonality. For speech
responses, the median cosine similarity of all test speech responses was 0.6526 and was
0.6579 for test TORC responses. Thus, the results of our simulation indicate that sparse
CortRF estimation using a point process model provides a descriptive and predictive
model of spiking responses to acoustic stimuli.

CortRFs facilitate predictions of speech responses in PEG
neurons

PEG neuronal responses are well-characterized by CortRF point process
models

We next applied CortRF analysis to the spiking responses of neurons recorded from
ferret PEG during behaviorally passive presentation of TORC and speech stimuli. A
total of 31 PEG neurons recorded across three animals were used in these analyses.
Animals were presented with stimulus sets consisting of 30 TORC samples and 30
sentences from the TIMIT corpus that were repeated between 4 — 6 times in
randomized orders (see Methods). The spiking responses to 24 TORCs and 24 sentences

were used for estimation, while the remaining responses were used for model validation.

The CortRFs of PEG neurons were estimated using OMP over an overcomplete
dictionary covering the primary-cortical feature space. Estimated CortRFs individually
consisted of a sparse number of atoms (Fig 3A), though the atoms selected over all
neurons were distributed across all scale-rate-frequency channels and time lags (S1
Figures). In order to visualize the spectrotemporal features that a CortRF described,
the corresponding CortSTRF was computed by first convolving the CortRF with the
primary-cortical basis function and then marginalizing over rates and scales (Fig 3A
and (S1 Figures). CortSTRFs demonstrated that PEG neurons were selective of
complex spectrotemporal features that had sparse representations in the
primary-cortical feature space.

In the absence of ground truth receptive fields to assess the accuracy of estimated
CortRFs, we evaluated the goodness-of-fit of estimated models. The KS and ACF tests
were applied to determine whether the distribution of time-rescaled interspike intervals
in unseen responses were uniformly distributed and independent, respectively. The KS
and ACF tests were applied both collectively and individually to each trial in the test
set. Examples of KS and ACF tests over the entire test set, for one speech trial, and for
one TORC trial are shown in Fig 3B—D, respectively. Graphical KS and ACF tests for
all PEG neurons are included in S1 Figures. We found that estimated models accounted
for the spiking statistics of unseen responses with confidence, both over the entire test
set and for single trials.

We additionally sought to characterize the estimated model’s predictive performance.

The predicted CIFs were computed for stimuli excluded during model estimation and
cross-correlated with the observed spiking responses. Examples of the CIFs predicted
for one speech and one TORC trial are shown respectively in Fig 3E—F, along with the
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Fig 3. CortRF analysis of an example PEG neuron. A. The estimated CortRFs of PEG
neurons were sparse, but produced complex CortSTRFs. Here, three atoms from the dictionary
of primary-cortical features had non-zero weight, but correspond to a CortSTRF with wide
temporal tuning B. KS and ACF tests show spiking statistics were well-matched by the
estimated model over all speech and TORC stimulus repetitions withheld during model
estimation. C—D. Single-trial spiking statistics were also well-matched. E-F. Comparing the
predicted conditional intensity function (CIF) to withheld observed spiking responses showed
the estimated model was highly predictive of spiking responses. G. The 2-dimensional
convolution of a sample speech spectrogram with the estimated CortSTRF shows how the
sentence would be represented by a family of PEG neurons with similar receptive fields
translated in frequency. Spectrograms and receptive fields are normalized for visualization.
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respective correlograms. As in the simulated example, we consistently observed closely
matched predicted CIFs and spiking responses that were corroborated with correlogram
peaks close to 0-lag. Lag-corrected cosine similarities between observed spiking and
predicted CIFs were compute for each neuron to quantify these observations. The
median cosine similarity over all PEG neurons for speech responses and TORC
responses were 0.4051 and 0.4107, respectively, indicating that estimated models were
predictive of spiking responses to unseen stimuli.

To visualize the effect of the receptive field on acoustic stimuli, the 2-D convolution
of an example speech spectrogram with the CortSTRF was computed (Fig 3G). The
convolved spectrogram illustrates how a family of neurons centered at different
frequencies but with the same receptive field shape would represent the example
stimulus. The convolved spectrograms, like the CortSTRFs, suggested that PEG
neurons were responsive to complex spectrotemporal patterns produced through sparse
combinations of primary-cortical features and additionally indicated that the secondary
representations of acoustic stimuli have long latencies.

CortRF models are more predictive of speech responses than STRF models

The estimation of CortRFs for PEG neurons using point process models was shown to
be an effective approach to describing and predicting their spiking responses to acoustic
stimuli. We next sought to assess the utility of the primary-cortical representation
relative to the spectrogram representation of stimuli by comparing CortRF point
process models to STRF point process models of PEG neurons.

STRF's point process models were estimated for each PEG neuron using OMP over
an overcomplete dictionary of truncated Gaussian atoms spanning the spectrotemporal
feature space (see Methods); here, stimuli were represented using the spectrogram
rather than the primary-cortical features. The same training-testing partition of spiking
responses used for CortRF estimation was utilized here so that STRFs and CortRFs
were estimated and evaluated over the same sets of responses.

In general, STRFs estimated for PEG neurons did not resemble the estimated
CortSTRFs (Fig 4A and S1 Figures); rather, estimated STRFs suggested simpler
spectrotemporal feature selectivity as they were comprised of sparse combinations of
dictionary atoms. This mismatch was noteworthy since mixtures of an arbitrary number
of Gaussian components can approximate most distributions. This difference can also
be seen from the convolved speech spectrograms (Fig 4A), where the STRF-convolved
speech spectograms tend to either be more positive-valued (i.e. having excitatory effects
on spiking responses) or negative-valued (i.e. having inhibitory effects) rather than
combinations.

Despite these discrepancies, estimated STRF models were both descriptive and
predictive of spiking responses. The KS and ACF tests showed that estimated models
accounted for the spiking statistics of unseen responses with confidence, both over the
entire test set and for individual trials (Fig 4B—D). Additionally, the predicted CIFs for
test stimuli closely aligned with observed spiking responses as can be seen by inspection
and in correlograms (Fig 4E—F). The lag-corrected cosine similarities between observed
spiking and predict CIFs for TORC and speech responses further corroborated the
predictive capability of the STRF point process model: the median similarity for speech
responses and TORC responses were 0.4037 and 0.4096, respectively.

The CortRFs and STRF's could both be used to describe the responses of PEG
neurons to acoustic stimuli, but it remains unclear if CortRF analysis provided any
advantage in modeling PEG activity. As the point process modeling framework
produces generative models of neuronal responses, we expect that any advantages to
using the CortRF over the STRF would manifest as improved predictions of responses
to unseen stimuli. Hence, we computed the differences in cosine similarities involving
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Fig 4. STRF analysis of a PEG neuron. A. The estimated STRF of PEG neurons generally
provided characterizations of neurons’ selectivity that diverged from the CortRF, as seen here.
The 2-dimensional convolution of a speech spectrogram with the estimated STRF suggested
shorter latency in the neural representation than when convolved with the CortSTRF. B—F.
Statistical tests for goodness-of-fit, both for each and over all speech and TORC stimulus
repetitions withheld during model estimation, indicated estimated models were well-matched to
the observed spiking statistics. Additionally, the withheld spiking responses were closely
matched by predicted CIFs. Spectrograms and STRFs are normalized for visualization.
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CortRF-predicted CIFs and STRF-predicted CIFs for both TORC and speech stimuli,

individually. The distributions of these differences (CortRF - STRF) are shown in Fig 5.

The median difference for TORC response predictions was —0.0001 and was 0.0005 for
speech response predictions. Recalling that the set of test responses when evaluating
CortRF and STRF models were identical for each neuron, we used the Wilcoxon signed
rank test to determine if the median differences in cosine similarity between matched
CortRF and STRF pairs were significantly different from 0. The difference in speech
response predictions was statistically significant (p = 0.018), while the difference in
TORC response predictions was not (p = 0.353). This suggests that CortRF estimation
provided a better characterization of PEG neurons’ feature selectivity because the
primary-cortical features of acoustic stimuli, which provide a richer representation than
the spectrogram, facilitated the prediction of responses to more complex stimuli.

Difference in Response Predictivity (CortRF - STRF)
Empirical Distributions: TORC and Speech

TORC Responses feomnr =04107

psrri =0.4096
faie = —0.0001 0.9

p=10.353

Proportion (%)

-0.01 -0.008  -0.006  -0.004  -0.002 0 0.002 0.004 0.006 0.008 0.01 06

CDF

Speech Responses
* Hcortrp =0.4051 0.4

psrre =0.4037 03
faii =0.0005

*p=0.018

Proportion (%)

-0.01 -0.008  -0.006  -0.004  -0.002 0 0.002 0.004 0.006 0.008 0.01 -0.01 0 0.01

Difference in Cosine Similarity Difference in Cosine Similarity

Fig 5. CortRF models of PEG neurons were more predictive of speech responses than STRF
models. Quantifying predictive performance by the cosine similarity between the predicted
CIF's and observed spiking responses, CortRF models were compared to the STRF models over
the same set of speech and TORC responses withheld from model estimation. The histograms
of differences in TORC (blue) and Speech (red) response predictions are shown in the left
panel. The empirical cumulative density function of these distributions is shown in the right
panel. While no difference between the two was found in predicting TORC responses

(p = 0.353, Wilcoxon signed rank test), a significant advantage in using the CortRF model to
predict speech responses was observed (p = 0.018, Wilcoxon signed rank test).

CortRFs provide no advantage in predicting A1l responses

The comparative analyses of estimated CortRF and STRF models of PEG neurons
demonstrated the utility of the primary-cortical representation of acoustic stimuli. Next,
we sought to determine whether the CortRF model was similarly beneficial in modeling
the spiking responses of A1l neurons, or it exclusively facilitates the prediction of PEG
neuronal responses. We repeated the CortRF and STRF analyses of spiking responses
to 30 TORCs and 30 sentences from the TIMIT corpus for 31 A1l neurons from one
animal. CortSTRFs and STRF's were estimated using the same data partitioning
procedure and algorithm as for PEG neurons. Estimated models for each neuron were
evaluated on test responses first for goodness-of-fit using the KS and ACF tests; and
then for predictivity by inspecting the correlograms of predicted CIFs vs. observed
spiking responses to test stimuli and computing lag-corrected cosine similarities.

The estimated CortRF and STRF of one Al neuron are shown in Fig 6 A—B; the
estimated CortRFs, estimated STRFs, and graphical goodness-of-fit tests of all Al
neurons may be found in S2 Figures. In contrast to PEG neurons, CortRF and STRF
estimation from A1l neurons described neurons’ feature selectivity more similarly. That
is, more Al neurons had CortSTRFs and STRF's that resembled each other than PEG
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neurons. The neuron shown in Fig 6 was chosen as a representative example of this
trend; the estimated CortSTRF and STRF exhibit similar frequency tunings, latencies,
and receptive field shape. The convolution of each with an example speech spectrogram
corroborates this observation (Fig 6C). We note that for some Al neurons (S2 Figures),
the estimated CortSTRF and STRF were almost identical, while for others still
CortSTRFs and STRFs were highly dissimilar. However, for all A1 neurons, CortRF
and STRF estimation produced descriptive models of spiking responses. The KS and
ACF tests (S2 Figures), when applied both over the entire test set of responses and
individually to each trial, indicated that both CortRF and STRF models of A1l neurons
accounted for the spiking statistics of unseen responses with confidence.

A Al: Estimated CortRF B Al: Estimated STRF
CortRF CortSTRF STRF
Tl N 5 S Speech Spectrogram 5 3575 o t
: _4 [ 3w -t
: 6 £ - u £ |
" h ) = Boa . 0 ™ 0
3 Lags (ms) Lags (ms)
& o
w0 w0 a0 om0
! Time (ms) I l
Convolved CortRF J 2D
P C l Speech Stimulus Representations l
i h a)
I _{ V) Convolved Speech Spectrogram (CortSTRF) Convolved Speech Spectrogram (STRF)
3 u o T T T T T T T T T T
% " 5059 N -~ MU | _ S |
3 g ] RN AN R e
3 02 o ; - > — =
£ [
o £ ! |
Rates (Hz
ates (Hz) 12 - - - -
: 1 1 1 . . . . . . .
W w0 w0 w0 w0 0 w0 ew s tow 1w
Time (ms) Time (ms)
D Difference in Response Predictivity (CortRF - STRF)

TORC Responses Empirical Distributions: TORC and Speech
1

Jicormr = 0.5286
nsTRE = 05382

0.9
pain = 2.74 -5

Proportion (%)

-0.02 -0.015 001 -0.005 0 0.005 0.01 0.015 0.02 04

CDF

Speech Responses
p p Hcorrr = 0.5637 0.4

Jain = 758 o5

p=0802

Proportion (%)

0.02 -0.015 0.01 -0.005 0 0.005 001 0.015 0.02 -0.01 0 0.01

Difference in Cosine Similarity Difference in Cosine Similarity

Fig 6. CortRF models of Al neurons provided no advantage over STRFs in predicting spiking
responses to speech or TORCs. A—B. CortRF analysis and STRF analysis of A1 neurons
characterized their feature selectivity similarly more often than for PEG neurons in the sense
that CortSTRFs and STRF's had similar frequency-tuning, latency, and receptive field shape.
C. The representations of a speech spectrogram, obtained via 2-dimensional convolution with
either the CortSTRF (left) or STRF (right) of the same Al neuron reflected this similarity.
The latency and frequencies represented in both convolved spectrograms were much more
similar than in PEG neurons. D. In further contrast to PEG neurons, there was no significant
difference between the predictive performance of CortRF models and STRF models of Al
neurons for either TORC (p = 0.750, Wilcoxon signed rank test) or speech stimuli (p = 0.802,
Wilcoxon signed rank test). Spectrograms and receptive fields are normalized for visualization.

Both CortRF and STRF models were also predictive of Al spiking responses to
unseen TORC and speech stimuli. We computed correlograms between predicted CIFs
and observed spiking responses and observed dominant peaks at near-zero lags, similar
to the correlograms computed for simulated and PEG neurons. Quantitatively, the
lag-corrected cosine similarities between predicted CIFs and observed spiking
corroborated this assessment. For TORC stimuli, CortRF-predicted CIFs had median
cosine similarity of 0.5286 while for STRF-predicted STRF's the median cosine similarity
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was 0.5382. For speech stimuli, the median cosine similarities of CortRF-predicted CIF's
and STRF-predicted CIFs were 0.5637 and 0.5677, respectively. However, for neither

TORC nor speech stimuli were there significant differences in cosine similarity (Fig 6D).

The median differences for TORC and speech responses were 2.74 x 107° and

7.58 x 1075, respectively; using the Wilcoxon signed rank test, the differences between
CortRF and STRF predictions for the same Al neurons were determined not to
significantly differ from 0 (p = 0.750 for TORC stimuli, and p = 0.802 for speech
stimuli).

The absence of such a difference between CortRFs and STRFs in predicting the
responses of Al neurons suggests that the spectrogram is a sufficiently rich feature
space with which to characterize their auditory feature selectivity. This contrasts with
the advantage that CortRF estimation provided for PEG neurons, where the use of
primary-cortical features facilitated the prediction of speech responses. Our analyses of
response predictivity in A1 and PEG neurons thus suggest a transformation of stimulus
representations between primary and non-primary auditory cortex, captured in part by
the primary-cortical feature space, that facilitates encoding natural acoustic stimuli.

We examined this hypothesized role of the primary-cortical features by comparing
the response predictivity of CortRFs and STRFs in both PEG and A1 trained
exclusively on either TORC or speech stimuli (S2 Text). These results indicated that,
while there are features in speech stimuli that can only be captured when training
receptive fields on speech responses (irrespective of are or stimulus feature space), the
primary-cortical feature space can represent more speech-like features than the
spectrogram. In this sense, the functional role of the primary-cortical representation
resembles that of nonlinearities such as synaptic depression and gain normalization that
facilitate natural stimulus encoding [51,52]. Differences in response predictivity by area
were not apparent when training exclusively on TORC or speech stimuli. Such a
restriction serves as a strong prior on the distribution of stimulus features; the effect of
training stimulus likely dominated over differences between PEG and Al. Training
receptive fields on both speech responses and TORC responses mitigated this bias,
enabling the observation of differences between the two areas in Fig 5 and Fig 6D.

PEG neurons encode more complex features than A1l neurons

Through comparisons of the predictive performance of CortRF and STRF models for
both PEG and A1 neurons, our results thus far suggest that feature selectivity in PEG
neurons is better characterized with respect to primary-cortical features than
spectrotemporal features directly. Additionally, we have speculated that PEG neurons
benefit from a richer feature space because they are selective of more complex

spectrotemporal features than Al neurons. We next addressed this hypothesis formally.

In particular, we considered two notions of complexity: concentration of energy and
receptive fields shape. If PEG neurons do indeed encode more complex spectrotemporal
features, we would expect that their receptive fields should have less concentrated
energy and more complex shapes than Al neurons. Moreover, these differences should
occur irrespective of the stimulus representation; hence, we compared the complexities
of both the CortSTRFs and STRFs.

First, we described the concentration of energy in receptive fields to characterize
differences in the ranges of frequencies and latencies to which PEG and A1 neurons
were most sensitive. The normalized magnitudes of CortSTRFs and STRF's were first
approximated by Gaussian mixture density functions obtained via a boosting algorithm
with Gaussian weak learners whose covariances were varied (see Methods). The
approximation procedure for the CortSTRF of an example PEG neuron using both
large-covariance and small-covariance weak learners is visualized in Fig 7TA (top row,
third and fourth columns respectively); similarly, an example A1l neuron is also
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visualized in Fig TA (bottom row, third and fourth columns). The determinant of an
approximate distribution’s covariance was used as a measure of concentration; smaller
determinants indicate that the energy in the receptive field is more concentrated. As
shown in Fig 7B, using large-covariance weak learners we found that determinants were

larger for PEG CortSTRFs than for A1 CortSTRFs (PEG: 1.10 x 1072 4-1.50 x 1073 vs.

Al: 3.74 x 107 £ 6.87 x 10~%; p < 0.001, Wilcoxon rank sum test) and for PEG STRFs
than for A1 STRFs (PEG: 2.40 x 1072 +2.50 x 1072 vs. Al: 8.05 x 1074 4 1.50 x 10~3;
p = 0.002, Wilcoxon rank sum test). Moreover, we found that determinants were larger
for PEG CortSTRFs than for A1 CortSTRFs in approximations using small-covariance
weak learners as shown in Fig 7C, (PEG: 6.15 x 107* £4.14 x 10~ vs. Al:

1.90 x 107* £ 1.77 x 10~%; p < 0.001, Wilcoxon rank sum test) and for PEG STRFs
than for A1 STRFs (PEG: 2.32 x 1072 £9.03 x 1074 vs. Al: 7.18 x 1074 4+ 5.24 x 10~%;
p = 0.001, Wilcoxon rank sum test). These results suggests that Al neurons are most
sensitive to narrower ranges of frequencies and latencies than PEG neurons. However,
measuring the concentration of energy in receptive fields fails to capture the
spectrotemporal resolution of features encoded by PEG and A1l neurons. Hence, we
next considered the shape complexity of receptive fields.

We computed singular value decompositions of the normalized magnitudes of
CortSTRFs and STRFs, and identified the number of eigenvalues that accounted for
75% of the spectral power (i.e. sum of all singular values). This threshold was the
smallest proportion for which all k-rank approximations of CortSTRFs and STRFs had
small mean squared errors (at most 0.001). The k-rank approximation of an example
PEG CortSTRF is shown in Fig 7A (top row, fifth column), as well as an example A1l
CortSTRF in Fig 7TA (bottom row, fifth column). A larger number of singular values
indicates the linear combination of more eigenmodes are required to approximate the
receptive field and hence a more complex shape. As shown in Fig 7C, we found that the
necessary number of singular values was significantly larger for PEG CortSTRF's than
for A1 CortSTRFs (PEG: 5.87 4+ 2.03 vs. Al: 4.39 &+ 1.15; p = 0.002, Wilcoxon rank
sum test); and that the same was true of their respective STRFs (PEG: 3.71 £ 1.22 vs.
Al: 3.03 4+ 1.08; p = 0.023, Wilcoxon rank sum test). These results indicate that not
only do PEG neurons tend to selective of wider ranges of frequencies and latencies than
A1 neurons, but that features encoded by PEG neurons have more complex shapes than
those by Al neurons.

CortRF clusters reveal features that segregate by cortical area

By comparing PEG and A1 neurons based on two measures of receptive field
complexity, we found that PEG neurons tended to encode more complex features than
A1 neurons. Next, we further investigated the differences between features encoded in
PEG and A1l through unsupervised clustering of their CortRFs. By clustering the
CortRFs estimated from PEG and A1l neurons, we sought to identify groups of receptive
fields that corresponded to distinct primary-cortical features and to determine how
prevalent these features were in PEG and Al.

Constructing a similarity matrix by computing the absolute cosine similarities
between all pairs of CortRF's, we employed spectral clustering to obtain 6 receptive field
clusters in an unsupervised fashion (see Methods). The number of clusters was chosen
in relation to the number of small eigenvalues of the graph Laplacian associated with
the similarity matrix. For each cluster, we computed the size (i.e. number of neurons in
that cluster), the proportion of PEG neurons, and the average convolved CortRFs.
Three large clusters consisting of at least 10 neurons were found (clusters 1, 4, and 5, as
indexed in Fig 8A); the remaining clusters (S3 Figure) had at most 6 members, and
were subsequently excluded in order to avoid biased inferences based on cluster
properties. The three large clusters segregated CortRFs by cortical area, as 80% of
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STRF Approximations for Complexity Analysis
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Fig 7. PEG neurons encoded more complex features than Al neurons. A. The complexity of
CortSTRF's and STRFs was quantified using two approaches to determine if PEG neurons (top
row) were selective of more complex acoustic features than Al neurons (bottom row). The
magnitudes of STRFs were computed (second column) and approximated by a probability
distribution function for a Gaussian mixture model (GMM) fit with a boosting algorithm with
large- and small-covariance Gaussian weak learners (third and fourth columns, respectively)
and by k components of its singular value decomposition (fifth column). Here, k was the
smallest number of singular values that accounted for at least 75% of the spectral power,
ensuring the mean-squared errors of all k-rank approximations were small. Receptive fields are
normalized for visualization. B. The concentration of energy in STRFs was measured by the
determinant of the covariance of the GMM likelihood; smaller values indicate more
concentration of energy. GMMs were fit using a boosting algorithm with large-covariance weak
learners. The energy in CortSTRFs and STRFs of PEG neurons was more dispersed than
those of Al neurons (CortSTRF: p < 0.001, STRF: p = 0.002; Wilcoxon rank sum test). C.
The analysis of energy concentration in STRFs was repeated with small-covariance weak
learners, demonstrating robustness to the choice of base learner and further indicating that the
energy in CortSTRFs and STRF's of PEG neurons was more dispersed than those of Al
neurons (CortSTRF: p < 0.001, STRF: p = 0.002; Wilcoxon rank sum test). D. The receptive
field shape complexity, quantified by the number of eigenmodes, was higher for both the
CortSTRFs (p = 0.002, Wilcoxon rank sum test) and STRFs (p = 0.023, Wilcoxon rank sum
test) of PEG neurons than of Al neurons.
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Table 1. Cluster variability.

neurons in cluster 1 were from Al while 80% and 75% of neurons in clusters 4 and 5, 408

respectively, were from PEG. As indicated in Fig 8 A, these proportions deviated 409
significantly from chance level (Cluster 1: p = 0.004, Cluster 4: p = 0.024, Cluster 5: 410
p = 0.028, t-test). Moreover, there was a significant interaction between the cluster a1
labels (PEG or Al) and the true cortical areas to which neurons belonged as a12
determined by a Fisher exact test (p < 0.001). a13

The variability of discovered clusters was quantified by comparing intra-cluster a14
similarities to inter-cluster similarities. For all 6 clusters, intra-cluster similarity was s
significantly larger than inter-cluster similarity (Wilcoxon rank sum test, p < 0.05), a16

where the former are an order of magnitude larger than the latter (Table 1).

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Intra-Cluster

0.0309 £ 0.0135

0.2255 £ 0.0758

0.0892 £ 0.0588

0.0195 £ 0.0141

0.0073 £ 0.0041

0.0773 £ 0.0981

Inter-Cluster

0.0014 £ 0.0005

0.0014 £ 0.0010

0.0025 £ 0.0012

0.0006 £ 0.0003

0.0008 £ 0.0004

0.0005 £ 0.0004

The average intra-cluster and inter-cluster cosine similarities (£2 SEM) for each of the six discovered clusters were computed
and compared. For every cluster, there was a significant difference between intra- and inter-cluster similarity (Wilcoxon rank

sum test, p < 0.05).

The clusters were visualized (Fig 8B—D) by computing average convolved CortRFs
and their marginalizations over scale and rate channels, both individually and jointly;
note that marginalizing over both scales and rates together yields the average
CortSTRF of each cluster. When marginalizing across scale channels, we observed that

in the A1 cluster, CortRF's tended to have more energy in fast than slow rate channels.

In contrast, the Cluster 4 (a PEG cluster) had most of its energy in slow rate channels;
Cluster 5 intermediated the A1 cluster and Cluster 4, with energy dispersed across most
rate channels. A similar contrast between the A1 and PEG clusters was seen when
marginalizing across rate channels. In both PEG clusters, the energy was predominantly
restricted to wide bandwidth scale channels, whereas in the A1l cluster, the average
CortRF also included narrow bandwidth components. Consequently, the average
CortSTRF of the Al cluster was sensitive to a narrow range of frequencies and time
lags, consistent with the analysis of receptive field complexity. These trends were
highlighted by visualizing how each cluster would represent an acoustic stimulus. The
2-dimensional convolution of a speech spectrogram with each cluster’s average
CortSTRF was computed; the convolved spectrograms are shown in Fig 8E. The
convolved spectrogram of Cluster 1 had shorter latency and narrower bandwidth than
either Cluster 4 or 5. Corroborating observations about the rate-scale composition of
Cluster 5, its convolved speech spectrogram had narrower bandwidth than Cluster 4 but
longer latency than Cluster 1.

In summary, unsupervised clustering of estimated PEG and A1 CortRF's
corroborated differences in feature selectivity between the two areas quantified through
receptive field complexity analyses. Stimulus representations by PEG and Al clusters
exhibited longer latencies and narrower bandwidth, respectively. However, two distinct
PEG clusters were found, possibly indicating that there are different classes of
secondary stimulus representations that combine primary-cortical features differently.

Discussion

In this study, we demonstrated that sparsely estimated receptive fields of neurons in
ferret PEG with respect to primary-cortical features of acoustic signals provides a
hierarchical model that decomposes the complex spectrotemporal selectivity of
secondary auditory neurons in a biologically interpretable manner. We found that
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Fig 8. Unsupervised clustering of CortRF's segregated PEG and Al receptive fields by cortical
area. A. Spectral clustering, applied jointly to the CortRFs estimated for PEG and Al
neurons, yielded 6 clusters. The proportion of PEG neurons in each cluster £2 SEM was
computed (top), and clusters were designated as representative of distinct PEG features if at
least half its members were from PEG (green). Al clusters were designated similarly (teal).
The three clusters with at least ten members (bottom) were inspected further. One was an Al
cluster (Cluster 1), and the other two were PEG clusters (Clusters 4 and 5). Each of these
three clusters were confirmed to deviate significantly from chance-level proportion of PEG
neurons (t-test, p < 0.05). Moreover, a Fisher exact test confirms a significant interaction
between neurons’ cluster labels (PEG or Al) and cortical area (p < 0.05). B—D. The average
CortRF convolved by the primary-cortical basis functions are displayed for each cluster. The
convolved CortRF was marginalized over scales (below), over rates (left), and over both to
compute the average CortSTRF. Cluster 1, the A1l cluster, had more energy in fast than slow
rate channels (B). In contrast, Cluster 4 (C) had more energy in slow rate channels; Cluster 5
(D) intermediated these two, but did have more energy in slow rate channels. Clusters 4 and 5,
the PEG clusters, predominantly had energy in wide-bandwidth scale channels, while Cluster 1
had more narrow bandwidth components. E. The representations of a speech spectrogram by
each of these clusters were obtained by computing the 2-dimensional convolution with the
cluster-average CortSTRFs. The convolved spectrogram of Cluster 1 (top right) had shorter
latency and narrower bandwidth than either Cluster 4 or 5. Corroborating observations about
the rate-scale composition of Cluster 5, its convolved speech spectrogram had narrower
bandwidth than Cluster 4 but longer latency than Cluster 1. Spectrograms and receptive fields
are normalized for visualization.
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estimated CortRFs provided a significant advantage over estimated STRFs in predicting
the responses of PEG neurons to speech, an advantage that was absent when comparing
CortRF- and STRF-based predictions of A1l spiking responses. Quantitative
comparisons between the complexity of PEG and A1l CortSTRFs indicated that the
improved predictions of speech responses in PEG were due to more complex
spectrotemporal selectivity, a trend corroborated when comparing STRF's from the two
areas. Moreover, unsupervised clustering of PEG and A1 CortRF's revealed that the
sparse combinations of primary-cortical features into which complex spectrotemporal
features were decomposed had distinct patterns that segregated by cortical area. Our
findings thus suggest that the proposed hierarchical model of spectrotemporal selectivity
in PEG captures a transformation in neural representations of acoustic signals between
Al and PEG that serves to encode complex features of natural stimuli.

CortRF analysis and related approaches

CortRF analysis utilizes two central assumptions: receptive field sparsity and choice of
feature space. Sparse priors of various forms for receptive field estimation have
previously been explored. In the following, we speculate about their trade-offs. For
point process GLMs and linear-Gaussian models of auditory neurons, biasing receptive
field estimates towards zero using regularized maximum likelihood estimation or
boosting has been demonstrated to improve predictions of responses to novel acoustic
stimuli [17,24]. The greedy estimation algorithm used in this work, OMP, is closely
related to these methods [48,49], and its usage to encourage sparsity was motivated in
part by model generalizability. Empirical Bayes estimators have also been demonstrated

to capture the spatiotemporal localization of receptive fields in early visual areas [18,19].

However, similar spectrotemporal localization assumptions could not be made for PEG
neurons; in fact, PEG receptive fields were differentiated from those in A1l by their
comparative lack of localization. Both regularized and Bayesian estimators scale poorly
with feature dimensionality. However, since OMP iteratively selects a subset of features
over which the receptive field is estimated, it is more tractable to implement when
features are high-dimensional.

The tractability of receptive field estimation has previously been addressed through
assumptions about the stimulus feature space with respect to which models are
estimated. Parameterizing receptive fields with basis functions is one such assumption
that yields a potentially low-dimensional representation [8]. Gabor functions, closely
related to the primary-cortical basis functions used in this work [46], have been
established as useful idealized receptive field models of both auditory and visual
neurons [8,53,54], and applied in sparse coding models [55-57]. CortRF analysis
essentially estimates a sparse representation of an STRF using an overcomplete
dictionary of Gabor-like spectrotemporal functions where the weights of dictionary
atoms comprise the CortRF. Recently, the use of spline functions has been proposed to
parsimoniously capture the localization and smoothness of visual receptive fields [20],
though, as noted previously, similar assumptions for PEG neurons are somewhat
tenuous. Low-rank factorized receptive field models also present a scalable alternative
and have been utilized to obtain low-dimensional characterizations of auditory and
visual receptive fields [9,25]. Crucially, factorized models and basis functions still
parameterize receptive fields with respect to early-stage stimulus features (i.e. images or
spectrograms) and hence, when applied to non-primary sensory neurons, would
characterize complex feature selectivity without accounting for intermediate neural
representations. In contrast, utilizing primary-cortical features of acoustic stimuli
enabled us to describe a hierarchical transformation in stimulus representations between
Al and PEG.

In this sense, CortRF analysis imposes a similar modeling assumption as

December 20, 2024

18/32

449

450

451

452

453

454

455

456

457

458

459

460

461

463

464

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

486

487

488

489

491

492

493

494

496

497

498

499



convolutional neural network (CNN) models of higher-order auditory and visual areas,
though in a more restricted manner. Namely, the architecture of CNNs require the
stimulus representation at a given network layer to be based on the composition of
hierarchical convolutions over the preceding layers. In our proposed model, a PEG
neuron can analogously be thought of as a single unit in the second layer of a CNN,
while a CortRF are layer weights connecting the preceding layer (A1, in this analogy).
Post hoc comparisons with neural data from auditory and visual cortex have indicated
that task-optimized CNNs produce models whose intermediate and deeper layers
correspond to neural responses (recorded via fMRI and electrophysiologically in
separate instances) in low- to mid-level and downstream areas,

respectively [32,37,40,44,45]. However, the correspondence is ambiguous; for example,
several shallower CNN layers may be seen to correlate with primary sensory cortical
responses. Hence, while existing CNN models indeed describe a hierarchical scheme by
which stimuli are encoded for higher-order sensory processing, it is difficult to ascertain
a detailed correspondence with sensory cortical organization. CortRF analysis in the
present study, while comparatively limited in its scope to single neurons in a secondary
auditory area, does suggest a hypothesis about secondary representations of acoustic
stimuli. Our results suggest that secondary stimulus representations in PEG arise
through sparse combinations of primary-cortical features. Though PEG neurons
individually pooled few primary-cortical features, they collectively spanned a large
portion of the primary-cortical feature space. Moreover, improved speech response
predictions in PEG neurons by CortRF models suggest that hierarchical representations
in auditory cortex facilitate encoding natural stimuli.

Recently, a theoretical study proposed a similar hypothesis about non-primary
auditory cortical stimulus representations [58]. The study sought to explain how
low-level spectrotemporal features may be combined downstream using spectrotemporal
kernels learned to approximate natural stimuli as an analog of the primary-cortical
model. Secondary features were modeled as sparse combinations of these learned
spectrotemporal kernels, which consisted of a diverse range of rates and scales.
Secondary features were combinations of positively or negatively weighted kernels,
reminiscent of the sparse CortRF's estimated in the present study. While we did not
explore if primary-cortical feature combinations characterized by CortRFs matched
features of natural stimuli, it is notable that a sparse hierarchical encoding scheme can
emerge from statistical learning over the wide range of sounds encountered in natural
environments.

Feature selectivity in primary versus secondary auditory cortex

Although studies comparing the tuning properties of primary and secondary auditory
cortical neurons recorded passively in ferrets (or other animals) are limited, our results
comparing the receptive field properties of PEG and A1 neurons were consistent with
previous findings. The complexity and clustering analyses in the present study showed
that A1 receptive fields had more compact spectrotemporal tuning (i.e. narrower
bandwidth and integration window) than PEG neurons while also having less complex
receptive field shapes and were hence selective of simpler features. These results
corroborate previous studies that showed ferret PEG neurons had broader tuning
properties than Al [59,60]. Additionally, the STRFs of PEG neurons have been shown
to be less sparse than STRFs of Al neurons [60], mirroring the greater dispersion of
energy in PEG receptive fields described in this study.

Clustering CortRFs highlighted differences in feature selectivity between PEG and
A1, but also within PEG. Two CortRF clusters consisting mostly of PEG neurons were
found, differentiated by the presence or absence of high-rate and high-scale components
observed in the cluster of mostly Al neurons. This separation within PEG might be
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reflective of different schemes for combining primary-cortical features to form secondary
representations. Interestingly, the aforementioned theoretical study of hierarchical
auditory processing noted different classes of secondary features as well [58]. Secondary
units either pooled spectrotemporal kernels that were frequently coactive or pooled
positively and negatively weighted kernels that were unlikely to occur concurrently.
Additionally, a recent neural network approach to STRF characterization in ECoG data
suggests the emergence of different classes of spectrotemporal features [42].

Comparable receptive field studies in animals are sparse, but STRF analyses in
ECoG studies of human speech perception do suggest different classes of feature
transformations in superior temporal gyrus (STG), a non-primary area in human
auditory cortex. Speech responses in STG have been shown to be selective of various
speech-specific features that endure over differing timescales [5,61,62]. In particular,
spatially organized differences in receptive fields estimated using speech stimuli have
been observed within STG, quantified by modulation transfer functions that summarize
changes in scale and rate components of STRFs [61]. Namely, receptive fields varied
from high-rate low-scale selectivity to low-rate high-scale selectivity, tracking either fast
temporal dynamics of speech across frequencies or slow temporal dynamics of speech
with high spectral variation. Despite the substantial divergence between the
higher-order acoustic representations of ferrets and humans [63], these results are
consistent in suggesting that secondary auditory cortical areas have classes of
hierarchical features that combine low-level representations distinctly in order to
support higher-order processing, though the nature of such classification is likely
species-specific. The crucial contrast with previous studies is that our results indicate
that the hierarchical auditory cortical organization is based on single-unit responses.
Thus, the proposed CortRF model and related analyses provide a framework that, when
applied at scale, could describe the emergence of non-primary features that support
higher-order auditory processing.

Methods

Experiments and Stimuli

Receptive field analysis of ferret PEG and A1 neurons was performed on data recorded
at the Neural System Laboratory at the Institute for Systems Research at University of
Maryland, College Park. Data from PEG neurons were recorded from three animals,
and include recordings previously published in [64]. Data from A1 neurons were
recorded from one animal and include recordings previously published in [65]. We refer
the reader to each work for a complete description of experimental procedures.

Ferrets were presented with two types of acoustic stimuli: speech samples arbitrarily
selected from the TIMIT corpus; and temporally orthogonal ripple combinations
(TORCs). TORCs are broadband spectrotemporally modulated noise signals [16]. Sets
of 30 distinct speech and TORC stimuli were presented, each repeated between 4 — 6
times in randomized order. Stimulus presentation lasted for 1.5 or 3 seconds; the
duration varied across recording sessions but not within a set of speech or TORC
samples. The first 0.5 seconds after stimulus onset are omitted from all spiking
responses in order to exclude transient effects in all analyses. Spiking responses, initially
sampled at 1 kHz, were binned using 5 ms long bins.

We utilized TORCs consisting of a dynamic spectrotemporal profile characterized by
the combinations of either 6 temporally orthogonal ripples (4 — 24Hz TORCs) or 12
temporally orthogonal ripples (4 — 48Hz TORCs). Ripples composing the TORCs had
linear sinusoidal spectral profiles; peaks were equally spaced from between 0.25 — 1.2
cycles per octave. The ripple envelopes drift temporally either up or down a logarithmic
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frequency axis spanning 0.125 — 4 kHz, 0.25 — 8 kHz, or 0.5 — 16 kHz at a constant
velocity; TORC frequencies ranges were chosen based on the best frequencies of the
recorded population. All speech and TORC acoustic signals were initially sampled at 40
kHz; if the TORCs used had a maximum frequency of at most 8 kHz, both stimuli were
downsampled to 16 kHz.

Primary-Cortical Representation of Auditory Stimuli

Responses in primary auditory cortex are modeled by the cortical representation of
auditory stimuli [46]. The cortical analysis consists of two stages: the extraction of the
auditory spectrogram, modeling the highly non-linear transformation of the inner

ear [66]; and its multi-scale multi-rate decomposition via a wavelet-like analysis
operating along both the spectral and temporal axes [46]. We refer the reader to the
respective references for a more detailed description, but provide an overview for
completeness.

First, an affine wavelet transform modeling the basilar membrane is applied to the
acoustic signal. Nonlinear rectification and compression, which model the effects of the
hair-cell stage, are employed next, after which a lateral inhibitory network is used to
sharpen features. The rectified output is then integrated over short time windows to
produce the auditory spectrogram. The cortical transformation of the auditory
spectrogram is, in essence, a 2-dimensional wavelet transformation whose
spectrotemporal basis functions perform multi-resolution analysis along both the
spectral and temporal axes separably. Scale (i.e. bandwidth) channels represent the
spectrogram with different degrees of spectral smoothing; each of S complex-valued
spectral filters are parameterized by their spectral tuning (cycles/octave). Multi-rate
analysis is performed by applying R antiphasic pairs of modulation-selective filters
parameterized by their center rates (Hz). Example basis functions of the cortical
analysis is shown in Fig 1.

We generate spectrograms with F' = 32 frequency channels that log-uniformly span
the frequency range of the TORC stimuli presented to the neuron, and whose highest
frequency corresponds to the Nyquist frequency. Namely, for TORCs whose frequencies
range between 0.125 — 4 or 0.25 — 8 kHz (and were downsampled to 16 kHz), the
spectrogram frequency channels span 0 — 8 kHz; and for TORCs with frequencies
spanning 0.5 — 16 kHz (whose sampling rates remained at 40 kHz), the spectrogram
frequency channels span 0 — 20 kHz. Spectrograms were generated with 5ms long
frames, matching the bin sizes of spiking observations. The cortical basis filters consist
of S = 4 scale channels and R = 5 rate channels. The spectral tuning parameters of the
scale filters, in octave intervals, spanned 0.25 — 2 cycles per octave; the rate filters were
centered at +{4, 8,16, 32,48} Hz, covering the range of rates used to generate TORC
stimuli. The cortical representation of stimuli thus consisted of F'- S - 2R = 1280
frequency-scale-rate channels, and like the spectogram, had 5ms long time frames.

We note the following regarding the use of two frequency axes for different groups of
TORC stimuli. Though different frequency ranges were used, the spectrogram channels’
critical frequencies were spaced using the same intervals, log-uniformly; hence, they
differ simply by translation along the log-frequency axis. Thus, group-level comparative
analyses of receptive fields describe properties indifferent to absolute frequency.

Point Process Model-Based Cortical Receptive Field Estimation

In order to estimate the cortical receptive fields (CortRF) of PEG and A1l neurons, we
treated their spiking responses as observations of discretized point processes used to fit
generalized linear models (GLM) to the conditional intensity function (CIF) [21,23].

That is, the probability of a spike event in a time bin is equated to the CIF weighted by
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the bin size, where the CIF is non-linear function of the linear combination of spiking
history and stimulus history regressors. This generative approach is used for neural
encoding models and has been shown to be more predictive of neural spiking responses
than linear models [22-24]. The parameters of a GLM can be estimated by maximizing
the likelihood of the observed spiking data, and the goodness-of-fit of the estimated
model can be evaluated using results from point process theory. In the following, we
first formulate CortRF estimation as a maximum likelihood problem, then describe our
estimation procedures and measures for model goodness-of-fit.

Problem Formulation

Let {ng;)}thl, a sequence of T Bernoulli observations, denote the spiking response
binned with bin size A = 5ms to the ;™ repetition of the &t stimulus, where trial
indices range from j =1,...,J; and the stimulus indices from k =1,..., K. The
success probabilities of the spiking process, conditioned on the stimulus and recent
spiking history, are given by the conditional intensity function (CIF) {)\g?A}thl. The
CIF is modeled as a GLM with logistic link function:

T T
e'u+h7(t{€j> w+s§k) o

ARA = . 1
t,J 1 n eM"l‘hi{Cj)Tw"rsik)Te ( )

The model is parameterized by the baseline firing rate parameter, u, the history
modulation vector, w, and the stimulus modulation vector (i.e. the receptive field), .

and the stimulus, sgk) collectively constitute the model

The recent spiking history, hi?,
regressors.

The modulation of the CIF due to recent spiking history is assumed to depend on a
short integration window. The integration window consists of M = 5 subdivisions of
non-overlapping windows with lengths {W,,}M_, = {2m=1}M = Accordingly, the
spiking history vector has elements

.
k k k k
h@}:[%jp.“,@jmw.JﬁgM}.

These are defined as
t_l_bm,fl

k k
hg,j),m = Z nz(,j)’ (2)

i=t—1—bm,

where b,,, = 27;1 Wi with by = 0. Thus, the history integration window covers L = 31
bins (equivalently, 155ms) with M = 5 parameters.

We assume the stimulus history dependence of spiking responses is limited to the
preceding 200ms, i.e. P = 40 bins. The stimulus vector sgk) is the flattened cortical
representation with F' - S - 2R - P = 51200 elements. However, for tractability, we
assume the receptive field is sparsely comprised of elements of an overcomplete
dictionary of truncated Gaussian atoms. That is, for each rate-scale channel, truncated
Gaussian kernels spanning 5 frequency channels and 5 bins cover the F' x P
spectro-temporal receptive field with stride 3. Two such atoms are visualized in the
cortical receptive field shown in Fig 1, circled in blue. Thus, the receptive field is
equivalently represented by 8 = W&, where £ is a sparse lower-dimensional vector and
the W the dictionary of Gaussian atoms. The stimulus modulation term has the
following equivalency: Hngk) = (lIl£)Ts§k) = §T§§k), where §§k> = \Ilngk). The
receptive field is thus tractably estimated by optimizing over &.
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The Bernoulli log-likelihood of the spiking statistics of the j™ repetition of the kth
stimulus is given by

[nif“j)log (AE?A) + (1 _ ni’?) log (1 _ )‘i,kj)A)}

T
T T
= 3 [t T o (1)) g
X(k?) T X My
;w—1 log(1+e ,

where the log(-) and e(") operations in the third line are element-wise. In the compact
notation utilized in Eq. (3), the parameter vector w = [p,w ', £"] T and the

(k) ®T w7
augmented model regressors , ; = {17ht,j ,8; } . Additionally, the covariate

T

matrix is defined as X J(»k) = {azgkj), cee scg,fg H and the spiking observations are denoted
T

as the vector ngk) = [ngk]) yeee ,n¥ H ; the CIF in vector form is expressed similarly as

-
(k) . [y (k) (k)
AP = A aBa)
The estimated parameters w are obtained by maximizing the log-likelihood of all
spiking observations across the repeated presentations of K stimuli, i.e. by maximizing
lw) = Zszl Z;]il E;k) (w). With the total covariate matrix

" @’ (k)" cul
X = [Xl s Xy X X } , and similarly defined total spiking
T
T T T
observation vector n := [ngl) e ,n§k) sy n(,];) } , the total data log-likelihood
may be expressed as
{(w) :=n"Xw—1"log (1 + eX“’) , (4)

and estimated parameters obtained by solving the maximum likelihood problem

W := arg max {(w). (5)

w

Sparse Cortical Receptive Field Estimation

Though utilizing an overcomplete dictionary to represent the primary-cortical feature
space reduces the number of parameters, the problem in Eq. (5) remains
high-dimensional. As such, direct solutions to Eq. (5) would be prone to overfitting
limited data. To mitigate overfitting, a sparsity constraint on w is imposed by using the
Orthogonal Matching Pursuit (OMP) to estimate the model [48,49], as detailed in
Algorithm 1. The use of sparse priors to estimate receptive fields from responses to
natural stimuli has been demonstrated to improve the their ability to predict responses
to unseen stimuli [17,24].

OMP iteratively selects the model support set: at each iteration, the out-of-support
parameter that maximizes the magnitude of the partial gradient with respect to it is
added to the model support; the log-likelihood is then maximized over the updated
support set. The sparsity level s*, i.e. the maximum size of the support set, is a

hyperparameter that restricts the number of non-zero elements in the sparse estimate w.

CortRF's were estimated by applying the following procedure to each neuron. First,
two-fold cross-validation was used to determine the optimal sparsity level s* over the
range of values s = 1,...,100. Spiking response data were partitioned into a training
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Algorithm 1 Point Process Orthogonal Matching Pursuit (OMP)
Input: n, X, s*

Output: w
1: S(O) =0
2: ’127(0) = 0
3: for r =1 to s* de -
4: /\(113(7«71)) — ew(rran/ (1 + ew(rfl)X

5: Vﬁ(’li?(,«_l)) =X (TL — A(’li)(r_l)))
6: j = arg mMax; ¢ g(r—1) |VE('HA)(T_1))|Z
7. S =80y ;)

8 W(y) = Arg MaXy,pp(w)csm L(W)
9: end for

10: return w = we-)

set consisting of the responses to 24 TORCs and 24 sentences, and a testing set
consisting of the remaining 6 TORC and 6 speech responses. The training set was used
for model estimation as well as cross-validation, while the testing set was used
exclusively to evaluate the model’s goodness-of-fit and its predictivity of responses to
data unseen during training. The range of rate-scale channels covered in the TORC and
speech testing sets were verified to be redundant with the range of rate-scale channels
covered in the training sets. To cross-validate for s*, the training set was divided evenly
in two, with each subset consisting of 12 TORC and speech responses; a model was fit
to the first subset and the log-likelihood computed with respect to the second, and vice
versa. The sparsity level s* was chosen to maximize the sum of the log-likelihoods over
each training subset. Then, the s*-sparse greedy estimate of the GLM parameters were
then obtained by solving the maximum likelihood problem in Eq. (5) over the training
set using OMP.

Evaluating Model Goodness-of-F'it

We validate the OMP-estimated point process GLMs for neuronal spiking responses by
inspecting both the statistical fit and predictive capability of estimated models on the
test set of spiking responses. The statistical goodness-of-fit of point process models can
be evaluated using the time-rescaling theorem [50], which establishes that the
time-rescaled interspike intervals should be independent and distributed uniformly on
the interval (0,1). Two graphical tests are employed to validate these
properties [21,49,50]: the autocorrelation function (ACF) test is used to determine if
the interspike intervals are uncorrelated; and the Kolmogorov-Smirnov test is used to
determine if the time-rescaled interspike intervals are uniformly distributed. The ACF
and KS tests were applied both individually and collectively to each repetition of every
stimulus in the test set. Following [50], 95% confidence intervals for the KS test are
computed as +1.96/v/N around the 45° line; similarly, the 95% confidence interval for
the ACF test is computed as :t1.96/\/ﬁ. Here, N denotes the total number of spikes.
The predictive capability of an estimated model was evaluated by comparing the
estimated CIF with the observed spiking response for each repetition of every stimulus
in the test set. The cross-correlation between the estimated CIF and the observed
spiking response visually indicates their alignment. The peak cross-correlation occurred
at non-zero lags (differing between but constant for each neuron), reflecting the group
delay of the history-dependence filter. The alignment between the estimated CIF and
observed spiking response was quantified using the cosine similarity between the average
estimated (and group delay-corrected) CIF and the PSTH of the observed spiking
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response.

Spectrotemporal Receptive Field Estimation

We compared the characterization of neurons’ stimulus tuning by CortRF estimation to
spectrotemporal receptive field (STRF) estimation in order to examine the utility of the
primary-cortical feature space over the spectrogram. We estimated STRF's using a point
process GLM using training and testing data partitions identical to the partitions used
for cortical receptive field estimation. The procedure was identical to that for
estimating the cortical receptive fields, excepting the representation of the stimulus
regressors. Stimulus history dependence was assumed to be limited to the preceding
200ms, i.e. 40 bins, so that the size of the STRF is consistent with each rate-scale
channel of the CortRF. For consistency in maximum likelihood estimation, the STRF
was assumed to be sparsely comprised of elements of an overcomplete dictionary of
truncated Gaussian kernels; the weights of these atoms were estimated using OMP. A
closely related approach to sparse STRF estimation was utilized in [24], but used
{1-regularization of the STRF rather than greedy estimation over a dictionary of
features. Goodness-of-fit and predictivity were evaluated in the same manner as for the
cortical receptive field estimation problem.

Complexity Analysis of STRF's

The complexity of auditory features for which a neuron was selective was characterized
by the concentration of energy in and shape of its STRF. Measuring the concentration
of energy in the STRF describes the range of frequencies and latencies to which neurons
were most sensitive. This is complemented by a measure of complexity of features in
that range. The distinction between these descriptors of complexity is highlighted when
comparing a Gabor function to a Gaussian density, where the latter corresponds to the
envelope of the former. The energy is concentrated similarly in both functions, but the
Gabor function has a more complex shape.

To quantify the concentration of an STRF’s energy, we approximated the normalized
magnitude of the STRF by the density function of a Gaussian mixture model and
computed the determinant of the distribution’ covariance matrix. Smaller values of the
determinant indicate that energy in the STRF is more concentrated. The Gaussian
mixture density approximation was obtained iteratively by a boosting algorithm
(Algorithm 2) in which the weak learners were Gaussian kernels with fixed and equal
covariances whose means are determine at each iteration. Defining y to be the F' x P
normalized magnitude of the STRF, (") to be its approximation after m iterations,
and (™ =y — 4™~ the algorithm was as follows.

Here, ¢, 5)(f,p) denotes the Gaussian probability density function with mean g
and covariance Y evaluated at the frequency channel and time lag index (f,p). The
covariance was first set to ¥ = 5Z to be greater than the covariances of the Gaussian
atoms that comprised the overcomplete dictionary for primary-cortical features; these
weak learners instantiated the large-covariance GMM approximation. For comparison,
the covariance was set to ¥ = 2.5Z to instantiate the small-covariance GMM
approximation. The covariance matrix used to summarize energy concentration of
STRFs was that of the approximating distribution, ¢, obtained from Algorithm 2.

To quantify the shape complexity of an STRF, we computed singular value
decomposition of its normalized magnitude and determined how many singular values
are required to account for 75% of the spectral power. This was the smallest that
proportion ensured that the squared error of each k-rank approximation was less than
1073, A larger number of singular values indicates the linear combination of more
eigenmodes are required to produce the STRF, thus indicating a more complex shape.
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Algorithm 2 Gaussian Mixture Density Function Fitting

Input: y € RE*P M, %
Output: g, m*
1: 90 =0
2: for m =1to M do
3. M =gy — glm-1

4: [ll(m) = [fmaxvpmax] ‘= argmaxy , { [T(m)]f,p}

f=1:Fp=1:P
. m) _
& {[2( ]f*p}f:l:F,p:l:P = (0o (1P} rpperir
N A Alm T 3 L
a=[a,... 6™ = argming.aso17am [y = X aP2OF

6
7. g =3 a0
s e =l =g
9: end for

10: m* = min,,—q.p €™
11: return § =9, m

*

Spectral Clustering Analysis of Cortical Receptive Fields

In order to determine whether patterns in CortRFs were unique to PEG neurons, we
performed unsupervised clustering of all cortical receptive fields from both Al and PEG
neurons. A similarity matrix was constructed by computing the absolute cosine
similarity between each pair of CortRFs; the diagonal components of the matrix were
set to 0. The number of clusters, 6, was determined as twice the number of eigenvalues
(of the normalized Laplacian associated with the similarity matrix) smaller than 0.1;
this threshold corresponded approximately to the 5™ percentile in the distribution of
the Laplacian matrix’s eigenvalues. We opted to use 6 rather than 3 clusters so that
cluster representatives would be less susceptible to skew from outliers.

We performed spectral clustering using the MATLAB native function
“spectralcluster”. For each cluster, we noted the number of member neurons, the
proportion of PEG neurons, and computed the average cortical receptive field. Each
cluster average was considered as a distinct auditory feature. If a cluster consisted of at
least 50% PEG (respectively, Al) neurons, the corresponding auditory feature was
interpreted to be characteristic of PEG (resp., Al). For subsequent normative
comparisons, only the largest of these clusters were considered.

Supporting information

S1 Text Contribution of spiking history. This file contains results showing that
spiking history, while important, is not sufficient to obtain good statistical fits to
observed responses to acoustic stimuli.

S2 Text Response predictivity by training stimulus and by stimulus feature
space. This file contains results that compare the response predictivity of CortRF's and
STRFs that were trained exclusively on either speech or TORCs.

S1 Figures CortRF and STRF analysis of PEG neurons. This file contains
figures showing the CortRFs, STRFs, and goodness-of-fit measures of each for all PEG
neurons.
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S2 Figures CortRF and STRF analysis of A1 neurons. This file contains
figures showing the CortRFs, STRFs, and goodness-of-fit measures of each for all A1l
neurons.

S3 Figure CortRF cluster analysis. This figures show all 6 CortRF clusters.
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