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Abstract
We investigate structural features and processes associated with the onset of systemic conflict using an
approach which integrates complex systems theory with network modeling and analysis. We present
a signed network model of cooperation and conflict dynamics in the context of international relations
between states. The model evolves ties between nodes under the influence of a structural balance force and
a dyad-specific force. Model simulations exhibit a sharp bifurcation from peace to systemic war as struc-
tural balance pressures increase, a bistable regime in which both peace and war stable equilibria exist, and
a hysteretic reverse bifurcation from war to peace. We show how the analytical expression we derive for
the peace-to-war bifurcation condition implies that polarized network structure increases susceptibility to
systemic war. We develop a framework for identifying patterns of relationship perturbations that are most
destabilizing and apply it to the network of European great powers before World War I. We also show
that the model exhibits critical slowing down, in which perturbations to the peace equilibrium take longer
to decay as the system draws closer to the bifurcation. We discuss how our results relate to international
relations theories on the causes and catalysts of systemic war.

Keywords: social networks; political networks; complex systems; nonlinear dynamics; structural balance; community
structure; polarization; critical transitions; conflict escalation; alliances

1. Introduction
Signed networks, in which positive and negative ties denote cooperative and conflictual inter-
actions respectively, are a natural framework in which to represent militarized politics such as
international relations and civil wars. Structural balance theory, which assumes that realpolitik
maxims such as “the enemy of my enemy is my friend” are paramount in tie formation, has
been the focus of applications of signed networks to international relations. This research has
mostly involved tests of whether structural balance characterizes the structure of observed net-
works of alliances and clashes between nations (Maoz et al., 2007; Lerner, 2016; Kirkley et al.,
2019). However, fundamental questions involving the dynamics of signed international relations
have been neglected, such as how do feedbacks from competing mechanisms act to stabilize or
destabilize the system leading to transitions between peace and war; what patterns of alliances and
rivalries may be more susceptible to destabilization; and how does the system respond to pertur-
bations such as the flare-up of hostilities between particular countries. Models of signed network
dynamics in which network tie values evolve under their mutual influence, such as the one we
present here, can help illuminate such questions.
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Although the most straightforward dynamical formulation of structural balance theory with
continuous tie values has been successful in showing how different outcomes predicted by the
theory can arise from initial conditions (Kulakowski et al., 2005; Marvel et al., 2011; Morrison &
Gabbay, 2020), the intent to faithfully encode structural balance theory saddles it with significant
conceptual and mathematical shortcomings, limiting the ability to yield a richer and more real-
istic range of behaviors. The assumption that changes in tie strength between a pair of nodes are
determined only by their relations with third parties ignores dyad-specific drivers of rivalry or
friendship due, for instance, to territorial disputes or ideological similarities or differences. This
neglect of potentially countervailing processes implies that even if the initial tie magnitudes are
small, they will be amplified toward a balanced end state of either systemic two-faction war or
complete network harmony, whereas the international system is typically characterized by more
prosaic conditions of lower level conflict and cooperation. Furthermore, once the network evolves
into a state consistent with structural balance, it will stay there forever. Consequently, the absence
of competing mechanisms implies that a model of pure structural balance cannot address how a
system transitions from peace to war, or back again, as key conditions of the international system
such as the balance of power change. Moreover, the structural balance force in the simple model
is not bounded, generating infinite tie values of unlimited affinity or animosity.

We introduce a dynamical systemsmodel of signed network evolution that includes, along with
structural balance, a force that models direct dyadic interaction, thereby enabling it to capture
transitions between systemic peace and systemic war, where “systemic” refers to most, if not all,
of the nodes in the network. This direct dyadic force acts so as to pull a dyad toward a dyad-
specific tie value parameter, known as the “dyadic bias,” taken to represent their level of amicable
or contentious relations while at peace. When structural balance pressures are absent or weak, the
equilibrium tie value will be at or near the dyadic bias parameter. Along with incorporating this
dyadic force, we modify the form of the structural balance force itself so that its strength saturates
as mutual allies (or enemies) predominate rather than growing without bound.

Our model can display sharp transitions between the different equilibria corresponding to
peace and war. These transitions occur via a bifurcation which is a sudden change in the qual-
itative nature of the solution space as a model parameter is varied (Strogatz & Dichter, 2016). As
the parameter controlling the structural balance force increases, the system exhibits a bifurcation
from the systemic peace state to the systemic war state. An increase in the “structural balance
sensitivity” parameter reflects a systemic change in a sociopolitical network that impels nodes
to increasingly take mutual allies or enemies into account in their relations with others. For the
international system, this increased sensitivity to the network structure may be due to a narrowing
power gap in a rivalry between the dominant state and a rising challenger or technological devel-
opments perceived as favoring offense over defense, factors theorized as causes of major wars (Van
Evera, 1999; Copeland, 2000). The reverse transition from war to peace is also possible but occurs
at a different and lower structural balance sensitivity value. This phenomenon, known as hystere-
sis, reflects the underlying bistability of the system in a certain parameter regime. The capability to
account for both peace-to-war and war-to-peace transitions distinguishes our model from many
dynamics models which only address conflict onset.

We investigate the bifurcation behavior of our model in simulations and use stability analysis
to derive expressions relating to system parameters at the critical points where bifurcations occur.
We do so for both a special case that can be reduced to a one-dimensional system and the general
case involving matrix formalism. Spectral decomposition of the system of tie values evolved by
the model (the “dynamic network”) into eigenvalues and eigenvectors proves to be a useful tool
for illuminating the model behavior in simulations. It is also crucial in the stability analysis as the
bifurcations between peace and war are manifested as discontinuities in the first eigenvalue of the
matrix of dyadic biases (the “bias network”).

Community structure—tie density patterns that allow for node clustering—can be built into
the bias network; polarized community structure can be generated via a two-block structure
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Table 1. Summary of select network terms

Term Description

Dynamic network Set of time-dependent tie values, Xij(t) (also called the “system”)


Bias network Set of dyadic biases, XDij


Conflict A negative tie between two nodes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cooperation A positive tie between two nodes


Peace state Mostly low tie values: |Xij| ≈ XDij for most i, j


War state Mostly high tie values of both cooperation and conflict: |Xij| ≈ L/β for most i, j; must contain
many high-conflict ties: Xij ≈ −L/β for many i, j



Harmony state Only high cooperation ties: Xij ≈ L/β for all i, j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Communities Clusters of nodes with dense positive, sparse negative ingroup ties


Polarization Intra-community ties tend positive, inter-community ties tend negative


Balanced triad Three connected nodes with an odd number of positive ties between them


Balanced network A network where all triads are balanced

where intra-block biases tend to be positive and inter-block ones tend to be negative (Table 1).
Simulations show that the peace-to-war bifurcation occurs at a lower structural balance sensi-
tivity for networks with polarized community structure characterized by opposing factions than
those without such structure. The stability analysis reveals themathematical underpinnings of this
effect: the structural balance sensitivity at which the peace-to-war bifurcation occurs decreases in
inverse proportion to the first eigenvalue of the matrix of dyadic bias parameters, which is larger
for the polarized structure case. We use this result to argue more generally that polarized commu-
nity structure, in which hostile factions have a discernible signature in the eigenvalue spectrum,
will be more unstable to war than the case where the structure is disordered. As heightened polar-
ization between two rival alliances has been attributed as a cause of greater instability to systemic
war (Thompson, 2003), our analysis therefore explains how this behavior can emerge naturally
from signed network dynamics and generalizes it beyond the context of formal alliances.

Another aspect of our results bears upon the question of whether particular dyads are more
destabilizing than others in terms of catalyzing major war (Thompson, 2003). Standard stabil-
ity analysis, as employed in obtaining the results noted above, assumes a perspective in which a
parameter change causes an equilibrium to become unstable to even infinitesimal perturbations
in tie values. However, it is also possible to consider how finite perturbations, such as increased
cooperation or conflict among certain dyads, may destabilize the system, while keeping model
parameters fixed. This can occur in the bistable state where both the peace and war states are sta-
ble and so the dynamic network will remain at its present equilibrium unless shaken out to the
other one. We define an optimization framework which seeks to find the perturbation that can
trigger such a transition with the least “energy” in terms of the change in network tie values from
their present state. We illustrate this framework using a simplified World War I context consist-
ing of empirical networks of five great powers. We find that the ties that triggered the war require
relatively low energy to destabilize the system.

We also illustrate how the response of the dynamic network to perturbations changes as the
system nears the bifurcation point. In particular, the duration of the transient caused by the per-
turbation becomes longer in a power-law relationship universal to all systems that undergo a
saddle-node bifurcation, as our model does, in a phenomenon known as “critical slowing down”
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(Kuehn, 2011). The universality implies that critical slowing downmay be useful as an early warn-
ing signal for detecting impending major state transitions in complex systems, such as the climate,
ecosystems, and social systems, for which precise dynamical models are unavailable (Scheffer
et al., 2012).

Our signed network modeling approach integrates the nonlinear dynamics of complex systems
(Strogatz & Dichter, 2016; Roberts, 2015) with the rich, quantitative representation of structure
in complex networks (Newman, 2018; Doreian et al., 2020). Accordingly, it meshes two strands of
international relations research: one which casts world politics as a complex system where non-
linear feedback between system components can cause disproportional and dramatic responses
to small changes (Saperstein, 1999; Jervis, 1997; Thompson, 2003; Ferguson, 2010; Stauffer, 2021)
and the other which studies international relations with the concepts and methods of network
analysis (Maoz, 2011; Dorussen et al., 2016). The system of alliances and rivalries among states
has received much attention as a cause of systemic war (Snyder, 1984; Rasler & Thompson, 2010;
Levy & Mulligan, 2021) and our model can shed light on which patterns are particularly prone to
instability, as we will illustrate by our investigation of how the peace-to-war bifurcation is affected
by polarized community structure and in our application to World War I. The analytical expres-
sions for the bifurcation conditions we derive below will greatly facilitate more generalized study
of the effects of different types of community structure, both abstract and empirical, by eliminat-
ing the need to identify bifurcation points through computationally intensive parameter sweeps of
model simulations. And our finding that the interplay of the direct dyadic and structural balance
forces generates a saddle-node bifurcation can guide future efforts to use universal phenomena
such as critical slowing down as predictive indicators of conflict.

2. Background
2.1 Dynamical systemsmodeling and structural balance theory in international relations
Dynamical systems models have been useful in understanding and predicting the dynamics of
complex systems in a diversity of fields such as biology, engineering, and sociology (Strogatz &
Dichter, 2016). While statistical models are useful in classifying and predicting phenomena, statis-
tical models often fail to provide explicit mechanistic explanations (Midlarsky, 1984; Thompson,
1986; Roberts et al., 2016); dynamical systems models, on the other hand, can elucidate the mech-
anisms responsible for the observed underlying phenomena (Trotta et al., 2012; Morrison & Kutz,
2021). Dynamical systems models of the interaction between states or armed sub-state actors such
as insurgents can help identify mechanisms for system destabilization as well as mechanisms for
reinforcing stability. These models can be used to determine the risk for minor, localized con-
flicts to escalate and spread extensively to other nodes in the network. Moreover, they provide a
rich set of diagnostic tools for the analysis of escalating conflicts which result in the outbreak of
widespread wars.

The application of dynamical systems modeling to international relations has largely been built
upon Richardson’s pioneeringmodel of arms races (Gleditsch, 2020; Stauffer, 2021). However, this
stream of research predated the surge of scholarship on political networks and so did not engage
with questions of network structure, although the Richardson model itself is amenable to net-
work formulation (Ward, 2020). Nor did it leverage the concepts and tools of modern bifurcation
theory.

The application of network analysis to international relations has bloomed over the past two
decades. Most of this work has involved unsigned networks in which either cooperative or, less
frequently, conflictual ties are treated as separate networks between nations or militant groups
(Hafner-Burton et al., 2009; Maoz, 2011; Victor et al., 2016; Dorussen et al., 2016; Zech & Gabbay,
2016). Signed networks, however, allow for an integration of cooperation and conflict consistent
with the fact that alliances are usually formed with an eye toward a potential foe and decisions to
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militarily confront an opponent typically consider who might come to its aid. The investigation
of world politics using signed networks has overwhelmingly been through the lens of structural
balance theory (Cartwright & Harary, 1956), a strand of research that precedes by decades the
recent network turn in international relations study.

In its basic form, structural balance theory is formulated on (undirected) triads and asserts that
there are only two balanced, and hence enduring, triads: one with all positive ties (“the friend of
my friend is my friend”) and one with a single positive tie and two negative ones (“the enemy of
my enemy is my friend”). The two other possibilities—two positive ties and one negative or three
negative ties—are imbalanced and hence unstable. A network as a whole is considered balanced if
it is comprised of only balanced triads. These rules imply that a complete network can have only
two perfectly balanced states: a harmonious state in which all ties are positive and the two hostile
factions state in which the ties within a faction are positive while the ties between factions are
negative (Cartwright & Harary, 1956).

There has been a long-running back-and-forth about whether the international system is char-
acterized by structural balance (Harary, 1961; Healy & Stein, 1973;McDonald & Rosecrance, 1985;
Maoz et al., 2007) with more recent work tending to support an overall tendency toward bal-
ance (Lerner, 2016; Kirkley et al., 2019; Burghardt & Maoz, 2020). Going beyond the question
of whether the international system displays a tendency toward balance, its level of balance has
been observed to fluctuate considerably over time (Doreian & Mrvar, 2019; Burghardt & Maoz,
2020), which suggests that other forces beyond structural balance may be at work. Evidence for
structural balance processes has also been found in friendship networks (Kirkley et al., 2019), wild
mammals (Ilany et al., 2013), and gang networks where inter-gang violence increases among gangs
in imbalanced triads (Nakamura et al., 2020).

2.2 Modeling structural balance dynamics
Given a network of initial ties, dynamical systems models can be formulated that evolve ties over
time consistent with structural balance theory. The simplest formulation of structural balance
dynamics evolves a symmetric network of signed edge weights, X(t) ∈R

N×N , as the following
system of coupled, nonlinear differential equations:

dXij

dt
=

N∑
k=1

XikXkj (1)

If nodes i and j have either both positive ties or both negative ties with a third node k, the
product XikXkj will be positive and act so as to increase their tie value Xij. In contrast, if their ties
with k are of opposite sign, the effect will be to decrease Xij. Both of these effects act to increase the
balance in the system. The sum determines whether the net effect of all mutual ties increases or
decreases Xij.

Although this equation appears to have been first proposed by Lee et al. (1994), it was not inves-
tigated in that paper. It was proposed independently by Kulakowski et al. (2005) who found that
in simulations this model leads to perfectly balanced outcomes consistent with the static theory.
Marvel et al. (2011) used the matrix equation formulation of Equation (1),

dX
dt

=X2 (2)

to obtain an analytical solution forX(t). They showed that the network will generically evolve into
a balanced end state as determined by the eigenvector of the initial adjacency matrix X(0) having
themost positive eigenvalue, which grows the fastest. If this first eigenvector consists of all positive
components, then the system will evolve into the harmonious state. On the other hand, if the first
eigenvector has components of both positive and negative sign, then the system will evolve into

https://doi.org/10.1017/nws.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.10


Network Science 463

the two hostile factions state. Marvel et al. (2011) used this model to show good agreement with
the alliances which formed in World War II and the split of the Zachary karate club. Morrison
& Gabbay (2020) extended this model to initial conditions containing community structure gen-
erated by a two-block stochastic model. They found that phase transitions in the initial network
structure determine whether the two final factions align with the block structure or instead have
random memberships unrelated to the blocks or, alternatively, whether it is the harmonious state
that emerges.

Equation (1) can be analyzed for the case of a directed network in which case the system evolves
to four factions instead of two from random initial conditions (Veerman, 2018). It is also possible
to define a variant model for directed networks that replaces XikXkj on the right-hand side of (1)
with XikXjk, which can be shown to evolve into two factions for random initial conditions (Traag
et al., 2013). Although our focus here is on deterministic dynamical systems, structural balance
theory can also be implemented as a stochastic model (Antal et al., 2006).

As we employ a control theory framework to investigate the patterns of network perturbations
that are most destabilizing, we note some previous work applying control theory to structural
balance. Gao & Wang, (2018) have investigated the origins of balancing forces with respect to
nodal interactions and have considered how to control structural balance edge dynamics using
node dynamics, with the assumption that the dynamics of nodes and edges are interdependent.
Wongkaew et al. (2015) have considered how to control structural balance dynamics by introduc-
ing a “leader” to the system, while Summers & Shames (2013) have evaluated the control abilities
of existing nodes in a network by changing ties.

While the simple model of Equation (1) has yielded great insight into structural balance
dynamics and will serve as the main point of departure, it also has important shortcomings.
Although it is able to determine the outcomes that emerge from a network solely under struc-
tural balance dynamics, it has no equilibrium, evolving ties toward positive or negative infinity
(and does so in finite time (Marvel et al., 2011)). Once the model is turned on, the network
perforce evolves into a state of complete war or harmony and so it cannot capture the stable, pre-
escalatory state which characterizes the international system for long stretches of time before and
after systemic wars. Its empirical application therefore depends upon the assumption that struc-
tural balance dynamics are either off or on and so, while useful for predicting the composition
of the opposing sides once the war starts, the model is silent about what patterns of relationships
might set off such a war in the first place. Nor can themodel describe de-escalation dynamics, from
systemic war back to a peaceful state since it inherently seeks to increase balance. Accordingly, we
aim to build upon the dynamical systems model of conflict escalation in Equation (1) to create
a model that can manifest a wider range of behaviors in the international system—stability in a
peaceful, low-conflict state, transitions to systemic war, and de-escalation.

3. Signed network model of cooperation and conflict dynamics
We present a model for signed network edge dynamics that incorporates two major forces: (1)
a dyadic force that seeks to stabilize a dyad’s tie value at a low level of cooperation or conflict as
determined by the particular history and context of their relationship and (2) a bounded structural
balance force, rather than the unbounded force of Equation (1). In addition, we will allow for
transient perturbations of particular tie values to allow for investigation of how conflict flare-ups
or temporary cooperation may affect the stability of the whole system.

In our model, the dynamics governing the rate of change for edge Xij(t) between nodes i and j
in a network containing N nodes is given by

dXij

dt
= −β(Xij − XDij)+ L tanh

(
1
γ

N∑
k=1

XikXkj

)
+ XTij(t) (3)
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where −β(Xij − XDij) is the direct dyadic force, L tanh(γ −1 ∑N
k=1 XikXkj) is the bounded struc-

tural balance term, and XTij(t) represents fast-timescale perturbations. Although the above
equation can be applied to directed networks, we will only consider the undirected case here so
that Xij = Xji. The other matrix quantities, XDij and XTij, are similarly symmetric.

The strength of the direct dyadic force is scaled by the parameter β , which we take to be the
same for all dyads.1 We refer to XDij as the dyadic bias parameter, which can take on dyad-specific
values. Under the action of the direct dyadic force alone, Xij → XDij so that XDij is the equilib-
rium tie value. A weak structural balance force will cause only a small shift in the equilibrium
values from the XDij but, as will be seen, a sufficiently strong structural balance force will induce
a transition to a high level of equilibrium tie values. The dyadic bias parameters will be taken
to correspond to relatively low levels of cooperation and conflict (in comparison with wartime
cooperation and conflict). There are many factors that can affect the propensity for two states
to cooperate such as mutual trade interests or common ideology. Other factors such as com-
mon territorial aspirations or disparate ideologies predispose discordant states to hostility. We
will typically, but not always, use the bias parameters as the initial tie values in our simulations,
Xij(0)= XDij.

The bounded form of the structural balance force is produced by the S-shaped hyperbolic
tangent function, which asymptotes to ±L as its argument tends to ±∞. L therefore scales the
maximum magnitude of the structural balance force. The parameter γ is the characteristic half-
width of the transition region between the negative and positive plateaus. It will be convenient for
subsequent analysis to define the structural balance sensitivity, α, which is the characteristic slope
of the transition region, α = L/γ . In a small neighborhood around zero, the hyperbolic tangent is
approximately linear so that the structural balance force is approximately given by α

∑N
k=1 XikXkj

and so reduces to the unbounded form of structural balance in Equation (1) in this neighborhood
(apart from α, which is unnecessary in (1)). The strength of the balance force is also affected by the
size of the network N and the tie density. Either increasing the size or the density of the network
tends to increase

∑N
k=1 XikXkj.

Saturation, as occurs in the structural balance force in our model, is a pervasive phenomena in
natural systems. It appears in the dose-response curve in medicine and the saturation of informa-
tion transfer in neuroscience (Calabrese, 2016; Rioult-Pedotti et al., 2000; Prescott & De Koninck,
2003). Saturation parameters appear due to bounds on acting and sensing. Saturation terms have
been added to multi-agent models of nonlinear opinion dynamics in order to make the influence
of opinion exchanges on agents more realistic (Bizyaeva et al., 2022; Franci et al., 2021). Similar to
other models of natural phenomena, we assume the network structure’s influence on ties saturates
by bounding the structural balance term.

The term XTij(t) contains transient perturbations to the system caused by fast-timescale events
such as a militarized conflict between two states or cooperation against an adversary. It could take
the form of an impulse, positive or negative, to a given dyad or a set of dyads. These impulses
may knock the system out of its current equilibrium. Note that the XTij(t) corresponds to finite
perturbations as distinguished from the infinitesimal perturbations always assumed to be present
and which prevent the system from staying in unstable equilibria.

Wemake a few remarks regarding the interpretation of the quantities in ourmodel with specific
respect to its application to transitions between systemic peace and war. First, we assume that
the wartime levels of both conflict and cooperation are much larger than their peacetime values.
Denoting war and peace respectively by the subscripts W and P, this assumption can be written
mathematically as |XWij| � |XPij|. We can enforce this assumption in the war and peace equilibria
generated by the model by setting our parameter values such that L/β � |XDij|∀ i, j. In the peace
equilibrium, the tie values will be approximately given by their dyadic bias values, XPij ≈ XDij.
Similarly, the war equilibrium tie values will be characterized by |XWij| ≈ L/β . If we take β = 1,
then L can be interpreted simply as scaling wartime cooperation and conflict. There is a zone
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Table 2. Network tie value meanings in terms of international relations

Tie strength Alliance strength/Hostility level between two countries

Wartime cooperation scale 5 Allies in a war
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Offense pact, extensive military obligations, and scope
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Offense pact, modest military obligations, and scope
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Defense pact, states are allies
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Non-aggression pact, states are allies
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 Neutral
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 Hostile relations, states are rivals
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2 Threat to use force, states are rivals
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−3 Display of force
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−4 Use of force
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wartime conflict scale −5 States are at war

of tie values intermediate between these peace and war scales but they are only passed through
transiently in the model. The magnitude of the leading eigenvalue of the dynamic network can be
used to measure the network’s global state; increasing the magnitude of tie values increases the
leading eigenvalue of the system.

Our distinction between low versus high conflict and/or cooperation levels is synonymous with
this assumption of different scales for peace and war: low tie values have a magnitude at or below
the scale set by the bias network and therefore are much lower than the high tie magnitudes char-
acteristic of war. We say that the dynamic network as a whole is in a systemic “war state” if most,
if not all, of the ties between countries are high-strength ties of both cooperation and conflict.2
Note the presence of high cooperation in addition to conflict implies that the war state consists of
warring alliances rather than simply an amalgamation of uncoupled dyadic wars. In the systemic
“peace state,” most of the tie strengths are low, although there may be a few high-strength ties.
This representation of peace along a spectrum of low-level conflict and cooperation is in the spirit
of recent efforts to resolve peace in finer detail than simply the absence of war (Diehl, 2016).

Alliance strengths between nations are coded using the extensiveness of the commitments that
exist between them (Leeds et al., 2002; Gibler, 2009; Singer & Small, 1966), while rivalries are
coded by the level of hostility, perceived threat, and force used between nations (Palmer et al.,
2015; Thompson & Dreyer, 2011). Positive relations can range from ententes to extensive defense
and offense pacts while negative relations can range from mild rivalries to uses of force and even
war. Section 8 provides an example of how alliance strengths and hostility levels map onto network
tie values in our model (Table 2).

Our discussion on the bifurcations between the peace and war states below often centers
around varying the structural balance sensitivity α and identifying the critical value of α at
which the bifurcation occurs. The above identification of the war state scale of high tie values,
|XWij| ≈ L/β , helps provide a specific substantive interpretation of what varying α can signify. If
we hold L and β constant, thenwe also fix the scale of wartime cooperation and conflict. Increasing
α is then equivalent to decreasing γ so that the transition region of the structural balance force
curve becomes narrower, which implies that the tie value between a pair of countries becomes
more sensitive to changes in their relationships with other countries (to which they are both
connected).
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In addition to the peace and war states, there is a third possible equilibrium in which all the
network ties are high cooperation. We refer to this as the “harmony state.” Note that while the
harmony state certainly is peaceful, we reserve the term peace state to refer to the more prosaic
state of low-level cooperation and conflict that characterizes peace in the international system as
defined above. Table 1 summarizes the key network terms and equilibrium states.

Lastly, we note that the dynamics of this model results in nonzero self-ties, Xii. These ties will
always be positive because the structural balance term becomes a sum over X2

ik (unless one makes
the odd choice of a negative self-bias, XDii < 0, implying that the node has a conflictual relation-
ship with itself). Since it is not obvious how to empirically measure a self-tie, they are often set
to zero and we do so in the dyadic bias matrix XD. Yet, conceptually, a positive self-tie is not
problematic as it can be interpreted as self-cooperation. When a node is a composite entity such
as a country, a high self-cooperation, for instance, could correspond to greater mobilization of
the populace during a war. Whether or not the self-tie is set to zero would be simply a concep-
tual choice were it not for the fact that it does enter into the dynamics of the other ties, Xij. In
the roughly linear region of the hyperbolic tangent, the self-ties contribute a force α(Xii + Xjj)Xij,
which has the effect of adding a nonlinear term to the direct dyadic force. Given the positivity of
the self-ties, this self-ties force produces a tendency for a dyad to be further pushed in the direc-
tion of its present sign, toward more cooperation for Xij(t)> 0 and more conflict if Xij(t)< 0,
corresponding to mutually reinforcing behavior between the nodes in the dyad.3 However, this
self-ties contribution contains just two of N terms appearing in the structural balance force and
so becomes ever more negligible as the number of nodes grows larger.

4. Model behavior
In this section, we use simulations to explore the dynamics of the above model. The model shows
a peace-to-war bifurcation as the structural balance sensitivity α is increased, which reflects the
feed-forward escalatory conflict that spreads throughout the entire dynamic network, requiring
each node to participate in the global conflict and take one of two sides. Once the network has
stabilized at the war state of high conflict and cooperation, it requires a different bifurcation,
which occurs at a lower α value, to bring the system back to a peaceful state. We illustrate how
community structure affects the bifurcation threshold and how the bifurcation is manifested as
a discontinuity in the equilibrium dynamic network eigenvalue spectrum and in a measure of its
balance level. The existence of a bifurcation directly between the war and harmony states is also
observed which, however, does not display a discontinuity in the eigenvalue spectrum.

4.1 Bifurcations in simulation
Figure 1(a) and (b) compare the tie dynamics for a network governed by pure structural bal-
ance dynamics (Equation 1) versus a network governed by the simultaneous operation of the
direct dyadic and structural balance forces (Equation (3) with XTij = 0). As noted above, the pure
structural balance dynamics results in ties that blow up to positive or negative infinity. This phe-
nomenon occurs for all initial conditions with no means of reverting back to a peaceful state with
low tie values.

In Figure 1(b), the dyadic bias parameters, which also serve as the t = 0 tie values, are ran-
domly set but have an underlying two-block community structure. Roughly speaking, in signed
networks communities are characterized by a greater density of positive ties within communities
than between them and, conversely, a greater density of negative ties between communities than
within them (Traag et al., 2019). In two-block structure, the nodes are ordered so that each of the
two blocks consists of contiguous nodes. If the ties within each block clearly tend to be more posi-
tive than the ties between blocks, then the blocks correspond to distinct communities. Note that it
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(a)

(c)

(b)

Figure 1. Simulations of signednetworkmodel dynamics. (a) Time series of tie values Xij(t) for pure structural balancemodel,
Equation (1), showing unbound dynamics. (b) Top panel. Time series for the dyadic force and structural balance model,
Equation (3), as the balance sensitivity α is changed at the times indicated by the dotted lines; β = 1, L= 8, N= 10, XTij = 0,
and Xij(0)= XDij. XDij ∼ 0.8N (0, 1)+ 0.4NuCiuCj is a random symmetric matrix with polarized community structure, where uC
is the vector that generates the block structure (see Section 6). Middle panel. Snapshots of dynamic network tie matrices at
t = 10, 30, and 50. Note that the color scales are different for each matrix. Bottom panel. The standard deviation of network
ties, σ (X), over time. (c) Standard deviation of network ties as a function of the structural balance parameter α as well as the
initial state (war or peace). The vertical dotted lines are the predicted critical values of α for the peace-to-war and war-to-
peace bifurcations from Equations (6) and (20) respectively.

is possible for the blocks to comprise separate communities even when both intra and inter-block
ties tend to be positive as long as the former are denser or more positive. If, furthermore, the intra-
block ties tend to be positive while the inter-block ones tend to be negative then the community
structure of the bias network is said to exhibit “polarization” in that there is a hostile relationship
between the two communities.4 Both the bias and dynamic networks can exhibit polarization, but
the dynamic network, through its evolution by the model, has the potential to greatly exacerbate
the polarization built into the bias network (the bias parameters themselves are fixed during the
model simulation).

Figure 1(b) shows the dynamics of Equation (3) in which the structural balance sensitivity,
α = L/γ , is modified at times t = 15, 30, and 45 (by changing γ ). The initial state is given by the
bias network, which is taken to have polarized structure. At the parameter shift times, however,
the dynamic network state is not reset to XD, but rather the present tie values serve as the initial
conditions for the new α value and the system is allowed time to reach equilibrium.

The first time segment from t = 0 to t = 15 with α = 0.05 shows that the system quickly reaches
an equilibrium in which the tie values are close to their initial XDij ones. Thus, unlike pure struc-
tural balance dynamics, our model possesses a stable state spanning a range of relatively small,
positive and negative tie values as seen in the low standard deviation of the ties in the bottom
plot of Figure 1(b), which corresponds to the peace state defined in the preceding section. It
accords with recent work that seeks to provide a finer-grained characterization of peace as shades
of rivalry and friendship, rather than as an undifferentiated state of simply “not war” as has often
been assumed in conflict studies (Diehl, 2016). Observe that the polarization of the dynamic net-
work in the peace state (and hence the bias network) is reflected in the X(10) matrix plot by the
yellowish-green color of the diagonal blocks signifying overall positive intra-community ties and
the bluish color of the off-diagonal blocks signifying overall negative inter-community ties.
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In the second time segment from t = 15 to t = 30, α is doubled to 0.1 and the peace state
destabilizes and the system transitions to the war state. The ties diverge into two bunches of strong
positive and negative tie values, yielding a much larger standard deviation than the peace state.
The increase in structural balance has greatly increased the polarization in the dynamic network
as seen in the X(30) matrix plot: not only are the intra and inter-block ties uniformly positive and
negative respectively, but their magnitudes are much higher as well. At t = 30, α is lowered back
down to 0.05, its value in the first time segment. Yet, this does not bring the system back to the
peace state. α must be decreased even further, to 0.01 at t = 45, to induce the transition back to the
low-deviation peace state. This behavior is an example of hysteresis, where a system’s future state
is determined not only by its parameter values but also by its current state (Strogatz & Dichter,
2016).

Figure 1(c) shows the tie standard deviation, σ (X), for various α values and initial conditions.
For α < 0.018, only the peace state is stable and the dynamic network will converge to it regardless
of whether the initial condition corresponds to the peace or war state. For α ∈ (0.018, 0.053), both
the peace and war states are stable and the system is bistable as is consistent with hysteresis; which
of the two equilibria the network converges to is dependent on initial conditions. For α > 0.053,
only the war state is stable, and the network will converge to it for both peace and war state initial
conditions.

4.2 Bifurcations in the eigenvalue spectrum
It will be helpful to analyze the matrix of the dynamic network and its time evolution in terms of
its eigenvalues and eigenvectors. The set of eigenvectors si of the real, symmetric matrix X satisfy
the following equation:

Xsi = λisi (4)

where the eigenvalues λi are real and ranked in order of descending value. The eigenvectors si
form an orthonormal set when the eigenvalues are distinct and X is a full-rank matrix. We make
these assumptions in our analysis. In Section 5.1, however, consider a special case in which X is
not full rank. In matrix form, the eigenvector decomposition can be written as

X= S�ST , (5)

where the columns of S are the si and � is a diagonal matrix containing the corresponding eigen-
values λi. The eigenvectors form an alternative, and often more intuitive, coordinate basis for X.
In unsigned networks, for example, the first eigenvector components are proportional to the node
eigenvector centralities whereas, for signed networks, strong two-faction structure will be reflected
in the first eigenvector in which the factional memberships are of opposite sign.

Figure 2 compares the simulation results in which the matrix of the bias network, XD, is either
completely random with no structure at all or contains polarized community structure, where as
noted previously, polarization is a subset of community structure marked by two blocks where
positive ties form preferentially within blocks and negative ties between them. Polarized structure
can be generated and studied using stochastic block models (Section 6). The dyadic biases also
serve as the initial conditions X(0)=XD for each simulation run. In Figure 2(a), we plot the adja-
cency matrix spectrum as α is increased. Each horizontal slice contains all the eigenvalues of X
at equilibrium for a given α value. The peace-to-war bifurcation occurs at the critical value of the
α parameter, α∗

P→W . For α < α∗
P→W , the system is stable in the peace state and the eigenvalues

form a dense band although the first two eigenvalues show some small growth as α is increased
from zero. For α > α∗

P→W , the peace state is destabilized and the system transitions to the war
state. The leading eigenvalue is now much larger than the others, making the equilibrium net-
work close to rank 1. The curves in Figure 2(a-b) show that the analytically computed leading
eigenvalue in the peace and war states (Equations (17) and (19)), and the bifurcation value for α
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Figure 2. Effect of increasing structural balance sensitivity, α on eigenvalues, λi , and balance levels, η, of the dynamic net-
work at equilibrium. L= 2, β = 1, and N= 10. (a) Stable state eigenvalues as a function of α resulting from a random bias
network containing no community structure, XDij ∼ 0.8N (0, 1). Theoretically computed bifurcation value α∗

P→W (Equation
(6)),λP (Equation (17)), andλW (Equation (19)). (b) Stable state eigenvalues resulting fromabias networkwith polarized com-
munity structure, XDij ∼ 0.8N (0, 1)+ 0.8NuCiuCj. (c) Equilibrium dynamic networks and tie time series for α = 0.1, α = 0.07,
and α = 0 for XD without community structure. (diagonals set to zero) (d) Equilibrium dynamic networks and tie time series
forα = 0.1,α = 0.03, and α = 0 forXD with community structure. (e) Balance levels η of the equilibriumnetwork (blue circles)
as a function of α for the no initial community structure case. Lower and upper range of η values fromnull model simulations
shown as gray lines. (f) Equilibrium network balance levels for the initial community structure case. The green curves in (a)
and (b) show the analytical expression, (17), for the first eigenvalue in the peace state.

(Equation (6)) are in good agreement with the simulation results. These approximations are good
despite the small value for L, which makes such approximations less robust. Figure 2(c) visualizes
the equilibrium dynamic network at three α values as well as the corresponding time series of the
tie weights. At low α values, the network ties remain close to the random initial conditions set
by XD, while beyond α∗

P→W the final network is polarized into two camps with large positive ties
within each group and large negative ties between the two groups (the nodes could be reordered
so the communities appear as contiguous blocks).

The spectrum of the case where XD contains polarized community structure is shown in
Figure 2(b). For α = 0, there is no structural balance force and the tie values remain at their dyadic
biases as seen in the time series of Figure 2(d), so the equilibrium X spectrum is the same as XD.
Unlike the no structure case, the first eigenvalue is substantially larger than the rest reflecting the
underlying two-block structure of XD, which can be seen in the α = 0 matrix visualization. This
community structure results in a much smaller α∗

P→W than the no structure case. This suggests
that bias networks exhibiting clear polarized structure, strong enough to appear in the first eigen-
value, may be more easily destabilized than those without. We present a more general argument
about this behavior in Section 6.

Structurally balanced networks are comprised of balanced triads—those containing either one
or three positive ties. Balance levels in signed networks can be measured by counting the num-
ber of balanced versus imbalanced triads that exist in the network. Kirkley et al. (2019) develop a
global balance metric η, where η = 0 corresponds to perfect balance and η = 1 corresponds to the
average level of balance generated in null model simulations where the null models are generated
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by randomly swapping the signs of the ties in the observed network. Figure 2(e–f) shows the
balance level of the network at its final equilibrium state relative to the range of balance levels
observed in the null model instances, shown by the gray bands. When the blue dot moves outside
of the gray band this indicates that the system is significantly more balanced than expected polar-
ized the null process. The no initial community structure case does not show a significant level of
balance until after the bifurcation (Figure 2(e)) at which point the dynamic network transitions
to the war state and becomes perfectly balanced. The case where the bias network has initial com-
munity structure, in contrast, shows significant levels of balance, which smoothly increases with α

even before the bifurcation (Figure 2(f)). These plots show that the onset of war greatly increases
the level of structural balance in the dynamic network. Yet, the community structure plot also
reveals that it is possible for the dynamic network to be balanced in a statistical sense in the peace
state. The fact that structural balance tends to characterize peace and increases due to major war
has been observed empirically for the international system as noted above (See Section 2).

The peace-to-war bifurcation threshold is given by

α∗
P→W = β

4λD1
, (6)

where λD1 is the leading eigenvalue of XD. We derive this expression in Appendix A. The values
for α∗

P→W predicted by this formula are in good agreement with the observed thresholds as shown
by the red dashed lines in Figure 2(a) and (b). The community structure case has a higher λD1 than
the no structure case as seen in the α = 0 spectra, which by (6) lowers the bifurcation threshold.

Even without the derivation, Equation (6) can be motivated intuitively. That increasing the
direct dyadic force strength β increases α∗

P→W makes sense as the dyadic force seeks to maintain
the peace state of low conflict and cooperation. When the elements of XD are drawn from a zero
mean distribution as in Figure 2, the squared eigenvalue, λ2Di

, is proportional to the variance of
XD carried by each eigenvector.5 The appearance of λD1 in the denominator of (6) then reflects
the fact that networks with greater values of λD1 are more polarized in the peace state and so more
unstable to war.

We note that for sufficient net positivity in XD, a bifurcation between the peace state and the
harmony state of universal high cooperation occurs as the balance sensitivity α is increased, anal-
ogous to the peace-to-war transition. It is also possible to have a direct transition between the war
and harmony states. In the pure structural balance dynamics model, Equation (1), the war-to-
harmony transition occurs when strong two-faction community structure becomes subordinate
to harmonious one-faction structure in the initial network (Morrison &Gabbay, 2020).We conse-
quently expect our model (3) to likewise undergo this bifurcation for sufficiently strong structural
balance and bias network structure. To illustrate this bifurcation, instead of varying α, we will vary
the dyadic bias parameters via the outgroup affinity p+

out, the (conditional) probability of forming
a positive tie with the outgroup in the stochastic block model which can be used to generate XD
(see Section 6). In Figure 3(a-b), the reversal of dominant structure is observed in the crossing in
the spectrum of XD and in the qualitative change in its leading eigenvector from polarized struc-
ture to a homogeneous structure. Recall that XD plays a double role as the initial value of the
dynamic network and as persistent parameters in the dyadic bias force. For low p+

out values the
leading eigenvector contains two factions while for large p+

out values the leading eigenvector con-
tains homogeneous structure (Figure 3(b)). The spectrum of the final network, however, does not
display a crossing (Figure 3(c)); nor is there a discontinuity in the first eigenvalue as in Figure 2.
Instead, it is the components of the first eigenvector which manifest the discontinuous signature
of the bifurcation (Figure 3(d)). The block structure of the first eigenvector components below
p+
out = 0.5 yields the war state (Figure 3(b)), whereas the uniformly positive components above
p+
out = 0.5 yields the harmony state.
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Figure 3. Simulation illustrating war-to-harmony bifurcation. (a) Eigenvalue spectrum of XD, also equivalent to initial
dynamic network X(0), for varying outgroup affinity p+

out . Sample matrices at left depict how the ties are more positive
and community structure is weaker above the crossing at p+

out = 0.5 than below. (b) Components of leading eigenvector
of XD. When the leading eigenvector only has values≥ 0, the corresponding leading eigenvalue is labeled as “homogeneous”
while when the leading eigenvector has both positive and negative values, the corresponding eigenvalue is labeled as “fac-
tional”. (c) Eigenvalues of the equilibrium network after simulation of Equation (3) with N= 100, β = 1, α = 0.02, and L= 4.
(d) Components of leading eigenvector of equilibrium network. Other stochastic block model parameters (see Section 6):
din = dout = 0.4, p+

in = 1.

5. Stability analysis
We now provide a mathematical explanation underlying the bifurcations seen in the simulations.
First, we treat a simple special case that can be reduced to a one-dimensional system, yet illus-
trates the central aspects of the bifurcation behavior. We determine approximate formulas for the
equilibria, both stable and unstable, in our dynamical system and use these to predict the critical
value of the structural balance sensitivity at which the bifurcation occurs. We then summarize the
results for the general case, which are derived in the Appendix.

5.1 Special case: Equal and opposite factions
Consider the special case where there are two equally sized, opposing factions in which all dyadic
bias parameters have the same magnitude μ, but are positive for ties within the same faction
and negative between factions so that XDij = ±μ. We set the initial condition to be Xij(0)= XDij.
Equation (3) then reduces to two equations,

dx
dt

= −β(x− μ)+ L tanh
(

αN
L

x2
)

(7)

dy
dt

= −β(y+ μ)− L tanh
(

αN
L

y2
)

(8)

for ingroup ties x and outgroup ties y, with initial conditions, x(0)= μ and y(0)= −μ. However,
if we substitute y= −x in the bottom equation, we recover the top one and its initial condition,
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Figure 4. Strength of structural balance (purple) and direct dyadic (blue) forces and behavior of the equilibria in the special
case. The approximations of the structural balance force (dashed) used in (9) and (10) agree well with the exact form (7)
(solid), but are less accurate in the shoulder region. Stable (solid circles) and unstable (open circles) fixed points occur at
intersections of balance and dyadic forces. α = 0.03, L= 6, N= 10, andμ = 1/2.

showing that the two equations are not independent. The system therefore reduces to one equa-
tion as solving for x using (7) then determines y; the conflictual inter-faction ties are simply the
negative of the cooperative intra-faction ties.

We make Equation (7) more tractable by replacing the hyperbolic tangent term on the positive
axis with a piecewise linear approximation consisting of a line of unit slope connecting the origin
to a plateau of height L such that L∗ tanh (θ/L)→ θ for 0≤ θ < L and L∗ tanh (θ/L)→ L for θ ≥
L, where θ = αNx2. This approximation for the structural balance term is shown by the purple
dashed line in Figure 4 (note it is piecewise linear in θ not x, which is why the transition section is
concave upwards). Under this approximation, Equation (7) becomes

dx
dt

= −β(x− μ)+ αNx2, 0≤ x<

√
L

αN
(9)

dx
dt

= −β(x− μ)+ L, x≥
√

L
αN

(10)

Using these equations, we can derive simple formulas for the fixed points in the system: the
peace and unstable fixed points will be obtained from (9) and the war fixed point from (10).

The equilibria of the above equations are found by setting dx/dt = 0, which implies that the
direct dyadic and structural balance forces are of equal magnitude but of opposite sign. The right-
hand side of Equation (9), being quadratic, has two roots. One yields the peace equilibrium, xp,
which is stable and occurs at

xP = β − √
β(β − 4Nαμ)
2Nα

(11)

The other fixed point is unstable and occurs at

xU = β + √
β(β − 4Nαμ)
2Nα

(12)

Setting the right-hand side of Equation (10) to zero yields the fixed point corresponding to the
war state, xw which is stable:

xW = L
β

+ μ (13)

The above fixed points refer to the ingroup tie values—the outgroup tie values are their nega-
tives. We observe that the structural balance force enters into these fixed points differently: for the
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war state via its maximum value, L, whereas for the peace and unstable states via the sensitivity
α, which affects how much the structural balance force grows in response to changes around its
neutral point. Equation (13) also explains our identification of the war tie value scale with L/β (see
Section 3). Since the peace tie value scale is μ, our assumption that the war tie values are much
higher than the peace ones is equivalent to L/β � μ.

Figure 4 shows how the nature of the equilibrium solutions changes as the dyadic force strength
parameter β is varied while the structural balance parameters remain constant. The fixed points
are located at the intersections of the linear dyadic force and the nonlinear structural balance
force, where their magnitudes are equal but point in opposite directions with the dyadic force
acting to decrease x (toward μ) and the balance force acting to increase x. The stability of a fixed
point with respect to small perturbations is determined by the relative magnitudes of the forces on
either side of it. At moderate levels of the dyadic strength, β = 1, there are three fixed points in the
system. The war equilibrium at xW ≈ 6 is stable since perturbations to its left (right) will be pulled
back by the stronger balance (dyadic) force. The peace equilibrium at xP ≈ 0.6 is similarly stable.
But the intermediate fixed point, xU is unstable since the stronger balance force pulls positive
perturbations away from xU and towards xW and negative perturbations are drawn toward xP
by the stronger dyadic force so that x→ xW , when x> xU and x→ xP, when x< xU . When the
dyadic strength is strong, β = 2, the stable peace state in the only fixed point, so that x→ xP for
all x. Finally, when the dyadic stability is weak, β = 1/2, the stable war state at xW ≈ 12.5 is the
only fixed point so that x→ xW for all x (although it is difficult to discern in the figure, the dyadic
and balance forces do not intersect at low x).

The bifurcation responsible for the changes between the different solution regimes is a saddle-
node bifurcation. Two fixed points disappear when a stable fixed point collides with the unstable
one as a parameter is changed. For example, if we increase β starting from the β = 1 condition of
Figure 4, the intersections determining xU and xW will draw closer together until they coincide
when the dyadic force is tangent to the shoulder of the exact structural balance force (or intersects
the corner of the approximate one). This coincidence point marks the war-to-peace bifurcation as
it disappears upon further increase in β , leaving only the xP fixed point. Analogously, the peace-
to-war bifurcation occurs when xP and xU collide, leaving only xW .

We can now derive expressions relating to the parameters at the bifurcation points. The peace-
to-war bifurcation occurs when xP = xU . Equating (11) and (12) implies that the square root
term must vanish, which yields the condition (ignoring the β = 0 solution, which is simply pure
structural balance),

α∗
P→W = β

4Nμ
(14)

where we have solved for the critical value of the structural balance sensitivity. Similarly, the war-
to-peace bifurcation occurs when xU = xW . Equating (12) and (13) yields

α∗
W→P = L

N(μ + L/β)2
(15)

Equation (14) shows that the peace-to-war transition occurs at larger α values for larger dyadic
force strengths, β , a behavior that accords with the dyadic force’s role in stabilizing the peace
equilibrium. Increasing the dyadic bias parameter, μ, destabilizes the system at a lower α∗

P→W ,
signifying that greater polarization in the peace state makes it more susceptible to war. Increasing
the number of nodes N also causes the peace state to become more fragile.6 The dependence on L
on the right-hand side of Equation (15) implies that the war-to-peace bifurcation sees the height
of the balance force plateau, unlike the peace-to-war transition. Since α∗

W→P → 0 as L→ ∞, a
larger L, which corresponds to a larger level of cooperation and conflict in the war state, makes it
more difficult for the system to transition back to the peace state.
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5.2 General results
We consider bifurcations in the dynamics for the general case where the dyadic bias parameters
can be different for each dyad. In addition, we allow for application of a transient perturbation
which can induce a transition from the peace to the war state (or more generally a state of high
tie values). We state the key results in this section and show the derivations leading to them in
Appendix A.

Our dynamical system of edges, Equation (3), can be written succinctly as a matrix dynamical
system

dX
dt

= −β(X−XD)+ L tanh
(

αX2

L

)
+XT(t) (16)

where X is the symmetric matrix of ties Xij, XD is the matrix of the dyadic bias parameters, XDij,
and XT(t) is the matrix of the transient perturbations XTij(t). We can analyze the stability of
the dynamics in the low-dimensional eigenvalue-eigenvector space of X and derive the system’s
bifurcation conditions in terms of the leading eigenvalue of XD.

We first state the results in the absence of an imposed perturbation XT(t). As in the special
case, the peace-to-war transition is a saddle-node bifurcation. It occurs when the respective eigen-
values, λP and λU , of the peace and unstable equilibria, XP and XU , merge. The general analysis
approximates the structural balance term using tanh θ ≈ θ for small θ as in the special case. The
leading eigenvalue of the peace state is given by

λP = β − √
β2 − 4αβλD1
2α

(17)

where λD1 is the leading eigenvalue of the dyadic bias matrix XD. The lowest eigenvalue of the
unstable state is the same as the expression for λP, but with a positive sign in front of the square
root term (see Equation (A18)). Setting λP = λU , equivalent to the vanishing of the square root
term above, yields the critical value for the structural balance sensitivity in the war-to-peace
bifurcation,

α∗
P→W = β

4λD1
(18)

After the peace-to-war bifurcation, the system converges to the war equilibrium, XW , which
has leading eigenvalue λW . Using the flat plateau approximation of the structural balance force,
L tanh θ ≈ ±L for large |θ | yields the following approximation for λW ,

λW = λD1 + LN
β

(19)

The bifurcation from the war state back to the peace state occurs via a different saddle-node
bifurcation where λU = λW . The approximate condition for the war-to-peace bifurcation is then
given by

α∗
W→P = NL

(λD1 +NL/β)2
(20)

The general expressions for the critical α values, (18) and (20), are the same as in the special
case except that Nμ has been replaced by λD1 (the next section shows that λD1 =Nμ in the spe-
cial case). Figures 1 and 2 demonstrate how the analytically computed bifurcation values match
the bifurcations observed through simulation. However, the peace-to-war estimated bifurcation
is more accurate than the war-to-peace estimated bifurcation.

The analysis of the system with the transient perturbation term is restricted to the case when
XT(t) is applied as an impulse in which all of its elements are constant for the duration of the
impulse. In this case, the impact of XT(t) can be accounted for by a modified dyadic bias matrix,
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X̃D, that combines XD and XT via

X̃D(t)=XD + XT(t)
β

(21)

The threshold condition forXT(t) to induce the system to switch from the peace to the war state
is analogous to the peace-to-war bifurcation in which λP = λU . However, the leading eigenvalue
of the dyadic bias matrix in Equation (17) for λP as well as that for λU (Equation (A18)) is replaced
by the leading eigenvalue of X̃D, which we write as λ̃D1. Accordingly, the threshold condition is
the same as the peace-to-war bifurcation condition, Equation (18), but with λ̃D1 instead of λD1.
For the imposed perturbation context, however, we keep the model parameters fixed and varyXT ,
so it is more appropriate to cast the condition in terms of the critical value of λ̃D1,

λ̃∗
D1 = β

4α
(22)

6. Enhancement of instability due to polarized community structure
We now use the results of the stability analysis above to generalize the behavior seen in the
simulations in Figure 2 showing the greater instability of polarized community structure as com-
pared with the no structure case, that is, its peace-to-war bifurcation occurs at a lower critical
value α∗

P→W . We will show that systems whose bias networks have evident polarized structure
have a lower α∗

P→W than systems with bias networks for which such structure is not discernible.
Discernible structure may be lacking because there is simply no tendency for preferential tie for-
mation built into the stochastic process that generates the dyadic bias parameters XDij (also taken
as the initial conditions for the dynamic network); alternatively, the tendency is present but too
weak to be discerned in the eigenvalue spectrum.

We can create polarized community structure in XD with a signed network stochastic block
model which assigns a positive, negative, or zero tie value between nodes with probabilities depen-
dent on whether the nodes are drawn from the same block or different blocks (Morrison &
Gabbay, 2020). The probability of a dyad being connected by any tie, whether positive or negative,
is given by the ingroup tie density, din, for intra-block dyads and the outgroup tie density, dout , for
inter-block dyads. The ingroup and outgroup affinities, p+

in and p+
out , for the intra and inter-block

dyads respectively are the probabilities of a positive tie conditional upon a tie being present. There
are two blocks of equal size with the first comprising the first N/2 nodes, (1, . . . ,N/2) and the
other consisting of the next N/2 nodes, (N/2+ 1, . . . ,N). The generated bias network matrices
can be written as the sum of an average “signal” matrix 〈XD〉 and a zero mean random “noise”
matrix. The signal matrix can be decomposed as the sum of two matrices formed by the outer
products of its eigenvectors as follows:

〈XD〉 =NωuHuTH +NμuCuTC (23)

where uH = 1√
N [1, 1, . . . , 1]

T and uC = 1√
N [1, . . . , 1,−1, . . . ,−1]T are orthonormal vectors (the

first negative component of uC is at N/2+ 1). The first term generates an N ×N matrix all of
whose elements are equal to ω, the expected average of all the tie values in 〈XD〉. The second term
generates a matrix where the block diagonal ties are given by +μ and the off-diagonal blocks
are −μ. We refer to uH and uC as “signal eigenvectors.” As uH generates a uniform matrix, it is
called the “homogeneous” eigenvector, whereas uC is the “contrast” eigenvector as it generates
the difference between intra-block and inter-block behavior. The noise matrix then accounts for
the fact that, probabilistically, some ties will be absent or of opposite sign than expected for their
block.

The contrast parameter μ controls the level of polarization in the bias network. The block
structure resulting from μ > 0 could reflect the operation of a homophily process, which results
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in preferential tie formation due for instance to similar ideology, religion, or ethnicity (the μ < 0
case is not relevant here). The relative values of ω and μ determine which kind of signal structure
dominates: homogeneous if ω > μ and contrast if μ > ω. The eigenvalues that go with uH and uC
are given by, respectively, λH =Nω and λC =Nμ. Consequently, we can also use the relative val-
ues of λH and λC to assess whether homogeneous or contrast structure dominates the signal. Note
that the special case of equal and opposite factions above in which all intra-faction dyadic biases
are +μ and all inter-faction ones are −μ can be completely constructed by the contrast eigenvec-
tor so that XD =NμuCuTC. The first (and only) eigenvalue of XD is then Nμ. This connects the
special case result for the critical point α∗

P→W = β/(4Nμ) (Equation (14)) with the general result
α∗
P→W = β/(4λD1) (Equation (6)).
If a signal eigenvalue is sufficiently large, then it will appear outside of the dense band of eigen-

values due to the noise. For example, in Figure 3(a), the contrast eigenvalue starts out as the
leading eigenvalue at the bottom of the plot becomes the second eigenvalue after the signal cross-
ing at p+

out = 0.5, and then merges into the noise band around p+
out = 0.8. This point corresponds

to a phase transition for large N, known as the community detectability transition (Nadakuditi
& Newman, 2012; Morrison & Gabbay, 2020). Past the detectability transition, even though the
stochastic model still favors ingroup positive ties, p+

in > p+
out , this community structure cannot be

identified given only the observed network.
With this framework relating community structure to the bias network spectrum, we can

address how polarized structure in the bias network affects the peace-to-war bifurcation thresh-
old. The first eigenvector of XD contains polarized structure if it has components of opposite sign.
That property alone, however, does not imply that the polarization is discernible—the first eigen-
value, λD1 must also lie outside the positive edge of the noise band. This implies that λD1 is larger
in the discernible polarization case than for the case when XD is generated from the noise only.
Therefore, since Equation (6) states that α∗

P→W is inversely proportional to λD1, α∗
P→W will be

lower in the discernible polarization case as compared to the no polarization case. Consequently,
the dynamical system in the discernible polarization case will be more prone to become unstable
with respect to changes in system parameters that increase the balance sensitivity α. However, the
operation of a homophily process presumed to generate polarization will not enhance instability
if it is weak enough so that its spectral signature lies below the noise band.

Although the above argument is based on two equal-sized blocks, stochastic block models with
multiple, unequal blocks also display a spectral signature consisting of a noise band and out-
lying eigenvalues.7 As long as the first bias network eigenvector contains community structure
and its eigenvalue is discernible outside the noise band, then the system will be more sensitive to
the peace-to-war bifurcation than when the structure is absent or submerged in the noise band.
Therefore, instability will be enhanced whenever community structure is present in the first eigen-
value of XD, regardless of whether the blocks in the generating model are equal in size or how
many blocks there are.

Random matrix theory provides tools to analyze the noise matrix and so quantitatively assess
the question of whether the first eigenvalue lies outside the band (Potters & Bouchaud, 2021).
Expressions for the eigenvalue spectrum have been derived such as the Wigner semicircle law. In
particular, the mean value of the band edge can be calculated as a function of the noise variance
and the number of nodes, and the expected deviation of the band edge from the mean can be
calculated as well. Consequently, the first eigenvalue can be taken as signal if it is sufficiently far
outside the band edge expected from noise only.

7. Destabilizing directions of finite perturbations
Complex systems often exhibit nonlinear dynamics that have multiple stable states between which
the system can transition (Strogatz & Dichter, 2016; Roberts, 2015). Random perturbations can
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induce transitions between states but it is also possible to investigate the effect of particular per-
turbations. Methods integrating bifurcation and control theories have been used to understand
how targeted perturbations can be employed for control purposes in nonlinear dynamical net-
works, such as the hypothesized use of transient signals to shift between stable states in nematode
locomotion or jumping between memory states in artificial neural networks (Morrison & Kutz,
2021; Morrison et al., 2021, 2017). However, these methods can also be applied to the identifica-
tion of deleterious perturbations, such as those that might trigger a major war. Identifying such
perturbations may ultimately help in preventing them.

We now turn to the situation where our dynamical system, (16), can be shifted from one equi-
librium to another, not by parameter changes, but by finite perturbations as contained in the
matrix XT . Our goal here is to discover which patterns of dyads, if perturbed, are most dangerous
in terms of destabilizing the peace state. We investigate this by determining what perturbations,
XT , of a given size, ||XT || = c, move the system closest to the critical bifurcation threshold; these
are the perturbation directions that aremost dangerous as they aremost likely to cause destabiliza-
tion if they are too large. We measure how close the system is to a bifurcation by measuring how
close the leading eigenvalue is to the critical bifurcation eigenvalue. First, we develop the mathe-
matical framework for identifying these patterns according to different optimization conditions.
We then illustrate how this framework can be applied using the network of five great power just
before the onset of World War I.

Destabilization of the peace state can be achieved through a change in model parameters as
occurred in Figure 1(b) when the balance sensitivity was increased from 0.05 to 0.1; the peace
equilibrium disappeared and the system shifted to the war state, the only equilibrium remaining.
However, α = 0.05 resides in the bistable regime where both the peace and war equilibria are
stable, as seen in Figure 1(c). Consequently, an alternative mode of destabilizing the peace state in
the bistable regime is via a perturbation strong enough to kick the system into the war state. These
perturbations may be localized to particular nodes, for example, a military crisis between two
states. They are also assumed to be transient in duration so that, absent an escalation to system-
wide war, the perturbed dyads will return to their equilibrium tie values.

In our stability analysis results for the general case (Section 5.2), perturbations in XT were
incorporated into a modified bias matrix, X̃D, with leading eigenvalue, λ̃D1. To shift from the
peace to the war state in the bistable regime then requires that λ̃D1 equal or exceed the eigenvalue
of the unstable equilibrium, λU , with the critical eigenvalue denoted by λ̃∗

D1. The effect of the
perturbation can therefore be seen as equivalent to a temporary change in the bias parameters
of the system so that a saddle-node bifurcation is induced. This condition is given by Equation
(22), λ̃∗

D1 = β/4α, for the peace-to-war bifurcation. We analyze the types of perturbations, XT ,
that can most readily destabilize a system for a given XD. We first consider a special case for
the perturbation matrix where XT can be analytically calculated. We then present computational
schemes to identify other destabilizing perturbations including those that may produce final states
other than the war state that results from the peace-to-war bifurcation.

7.1 Minimum energy destabilization using dyadic bias leading eigenvector
The perturbation to the peace state that requires the least amount of energy, ||XT ||, to destabilize
is along the direction of the leading eigenvector ofXD, denoted by sD1. The resulting perturbation
matrix can be written as XT = σ sD1sTD1. We solve for the minimum value of σ that will destabi-
lize the system (||XT || = σ ). Destabilization requires that the leading eigenvalue of the modified
dyadic bias matrix, λ̃D1, is at least as large as the critical eigenvalue so that

λ̃∗
D1 ≤ λ̃D1 (24)
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Making use of Equation (22) and the definition of X̃D, (21), then gives
β

4α
≤ λ1

(
XD + XT

β

)
(25)

≤ λ1

(
XD + σ

β
sD1sTD1

)
(26)

≤ λD1 + σ

β
(27)

where the notation λ1(·) refers to the first eigenvalue of its argument and we have used XDsD1 =
λD1sD1 and sTD1sD1 = 1 to show that sD1 is also an eigenvector of X̃D. Solving for σ we find the
condition required for destabilization,

σ ≥ β

(
β

4α
− λD1

)
(28)

It is also useful to write this condition as
σ ≥ β(λ̃∗

D1 − λD1) (29)

7.2 Destabilizing directions for perturbations
Although XT = σ sD1sTD1 is the perturbation that destabilizes the system with the minimum
amount of energy (minimum ||XT ||), there are other, slightly higher energy perturbations that
can also destabilize the system. We can search for perturbation directions within the space of per-
turbations ||XT || = σ that come closest to destabilizing the system. These are the perturbation
directions that are most likely to destabilize the system since they require less energy to destabilize
the system than other perturbations. We use the following optimization scheme to find perturba-
tion directions XT that are closest to destabilizing the system for a given energy level ||XT || = σ :

Energy minimizing scheme: Xop
T = argmin

XT∈A

[
||λ̃∗

D1 − λ̃D1||
]

(30)

where A= {X : ||X|| = σ }, λ̃D1 is the leading eigenvalue of X̃D, and λ̃∗
D1 is the stability threshold

(Equation (22)). Energy minimizing perturbations result in minimal changes, on average, in tie
strengths, whether positive or negative, since ||XT || has been minimized. Equation (30) brings the
system close to destabilization by perturbing the system in a direction close to the leading mode.
We describe the destabilization scheme in more detail in Appendix B and Figure B1.

We now present two alternative destabilization schemes. The low-rank war state structure that
appears after destabilizing the peace state will not necessarily contain two equally sized factions.
The leading eigenvector could instead contain all nodes or mostly all nodes of the same sign.
The interpretation of destabilization in this case would be instead the formation of a tightly-knit
alliance structure where, due to structural balance dynamics, nodes are compelled to form posi-
tive ties with other nodes due to mutual allies. We can use the “eigenvector polarization” measure
of the leading eigenvector, φ1, to determine the extent to which the leading eigenvector con-
tains community structure or a lack of community structure close to homogeneity (Morrison &
Gabbay, in preparation). The eigenvector polarization φi of eigenvector si of the adjacency matrix
X is φi = sTi Msi, whereM is the signed modularity matrix (Traag et al., 2019; Newman, 2006). The
modularity matrix clusters nodes into communities.8 If φ1 is the largest eigenvector polarization,
then the network structure is dominated by polarization between two hostile factions.

We use φ1 to define the following two schemes, which seek to: (1) bring the system close to
destabilization with a widespread two-faction conflict (Equation (31)), or, alternatively, (2) bring
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the system close to destabilization with a widespread alliance bloc (Equation (32)). XF
T indicates

a perturbation that promotes factional structure in the leading eigenvector. A destabilizing per-
turbation that promotes factional structure will induce polarization in the system. XH

T indicates
a perturbation that promotes homogeneous structure in the leading eigenvector. A destabilizing
perturbation that promotes homogeneous structure will induce harmony in the system.

Polarizing: XF
T = argmin

XT∈A

[
||λ̃∗

D1 − λ̃D1|| + ε
1
φ1

]
(31)

Harmonizing: XH
T = argmin

XT∈A

[
||λ̃∗

D1 − λ̃D1|| + εφ1
]

(32)

Here, φ1 is the first eigenvector polarization measure of X̃D, which changes as the perturbation
XT is varied, and ε is its weighting. Forcing large changes in ties, whether increasing positive rela-
tions or increasing hostility requires more “energy” (a larger ||XT ||) than smaller perturbations
in relations between countries. Because the leading eigenvector of the adjacency matrix may not
contain factions, energy minimizing perturbations may not result in factions. The polarizing per-
turbation includes a faction-promoting term 1

φ1
, weighted by ε, that is minimized when φ1 is large.

This promotes a solution where the leading eigenvector of the system contains factions. The extent
to which factions are promoted is determined by the strength of ε (small enough values for ε may
not produce solutions that contain factions). The harmonizing perturbation, in contrast, dein-
centivizes factions in the leading eigenvector by including the faction-suppressing term φ1. The
homogeneous perturbation is minimized when φ1 is small which promotes a solution where the
leading eigenvector of the system does not contain factions. These perturbation schemes assume
that XT can be made large enough to result in a transition from the peace state to an equilibrium
with high conflict and cooperation tie values (Figure B1(b)). If the maximum structural balance
force strength, L, is sufficiently large, then the final state of the system will be determined by the
first eigenvector of X̃D (see Equation (A24)). Therefore, asXT can cause the leading eigenvector of
X̃D to be very different from that of XD, the high tie value state produced by the perturbation may
contain very different factions than those in the war state arising from the peace-to-war bifurca-
tion. While Equation (31) promotes factions in the systemic war equilibrium state and Equation
(32) promotes a large alliance bloc encompassing most, if not all of the nodes, Equation (30) does
not favor a particular structure in the war state, it simply emphasizes the structure most present
in the dyadic bias matrix.

8. Application to onset of World War I
8.1 World War I onset due to triggering perturbations
We use the maximally destabilizing directions formulas, Equations (30), (31), and (32), to find
destabilizing directions for perturbations XT for the network of great powers leading up to the
First World War under the dynamics of Equation (16). World War I is considered a classic exam-
ple of a systemic war that emerged from the complex dynamics of five European great powers, the
United Kingdom, France, Germany, Austria-Hungary, and Russia. We will compare our compu-
tationally derived destabilizing perturbation directions to ties that have been historically identified
as critical to the outbreak of the Great War.

In order to illustrate our method on a simple system, we chose to only include the five most
powerful European countries in the year 1913 in our network, as measured by the “Composite
Index of National Capability” (CINC) score (Singer et al., 1972; Singer, 1987). The scores range
from 0.16 (Germany) to 0.06 (Austria-Hungary). We exclude countries below this threshold as
we do not weight the ties by country power and including the ties of less relevant countries adds
“noise” to the relevant network structure. The next most powerful country below the cutoff is Italy
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with a score of 0.03, half that of Austria-Hungary. The political science literature also identifies
these five countries as the most relevant to the outbreak of WWI (Kagan, 1995; Taylor, 1954).
In other work we consider larger networks with many more countries (Morrison & Gabbay, in
preparation); we are able to incorporate countries of vastly different sizes into the same network in
this work by weighting each country’s ties by country power, resulting in a network that accurately
reflects the relevance of each tie.

We initialize the system using empirical data as follows. XD is set to the tie values in the
year 1913 using the militarized interstate disputes (MIDs), alliances, and rivalries data from the
Correlates ofWar dataset and the Handbook of International Rivalries (Palmer et al., 2015; Gibler,
2009; Singer & Small, 1966; Thompson & Dreyer, 2011). Alliances contribute positive weights,
MIDs contribute negative weights for states on opposite sides of a dispute and positive weights for
states on the same side of a dispute, and rivalries contribute negative weights. Weights between
states are added and scaled to range from−2 (rivals) to+ 2 (allies), making all values in the dyadic
bias matrix low-conflict/cooperation in comparison with the war levels of±5 as is roughly consis-
tent with our assumption of peace and war having different tie scales.9 (Table 2). Self-tie values are
set to zero in the bias network. The dyadic force strength is set to β = 1, the balance sensitivity to
α = 0.03, and L= 5.With these parameter values the nonlinear dynamics contain two stable equi-
librium, the peace state and war state, with the peace state sitting close to the unstable equilibrium.
With initial conditions close to XD, the network dynamics stabilize close to the bias network tie
values. SinceXD contains values in the range (−2, 2), the network stabilizes at the peace state when
no perturbation is added to the system. The size of α does not affect the perturbation direction that
is most destabilizing but instead the magnitude of perturbation necessary to surpass the destabi-
lization threshold. We assume the system is sufficiently close to the peace-to-war bifurcation so
that it resides in the bistable zone where both the war and peace equilibria are stable and that it
can be destabilized with perturbations smaller than the dyadic bias matrix, ||XT || < ||XD||. Setting
α = 0.03 accomplishes these objectives. Making α significantly larger would move the threshold
past the necessity for a perturbation and the peace state would destabilize without the need for
a perturbation. Setting α significantly smaller would indicate that a destabilizing perturbation
larger than the dyadic bias matrix would be required to destabilize the system and so perturbations
would be unlikely to disrupt the status quo.

The left panel of Figure 5(a) shows the dyadic bias matrix, XD while the middle panel plots
the eigenvalues of XD, the eigenvalues of the modularity matrix M associated with XD, and the
associated eigenvector polarization φ of all the eigenvectors. The leading eigenvalue of XD has
value λD1 = 6.01, which is observed to be well separated from the remainder of the spectrum as is
the first eigenvalue of the modularity matrix. The fact that φ1 is the largest eigenvector polariza-
tion signifies thatXD’s first eigenvector sD1 contains contrast-like community structure consisting
of hostile factions (Morrison & Gabbay, in preparation). The two factions present in the leading
eigenvector are the United Kingdom (UKG), France (FRN), and Russia (RUS) versus Germany
(GMY) and Austria-Hungary (AUH). Also displayed is the critical eigenvalue of the modified
dyadic bias matrix for destabilization, calculated from Equation (22) to be λ̃∗

D1 = 8.33. The opti-
mum perturbation Xop

T that enables destabilization with the minimum energy is displayed in the
right panel of Figure 5(a). It is proportional to the matrix formed by the first eigenvector of XD
and is given by Xop

T = σ sD1sTD1 as explained in Section 7.1. The outer product of the leading eigen-
vector shows that FRN, GMY, AUH, and RUS are strongly entrenched in their respective factions
while the outer product values for UKG are much closer to zero, indicating a looser affiliation with
its faction. The minimum energy is calculated from Equation (29), which yields σ = 2.32.

Substantively, the optimal perturbationmatrix,Xop
T , is marked by two tight factions—Germany

and Austria-Hungary versus France and Russia; the United Kingdom is loosely aligned with the
Franco-Russian bloc. This structure is consistent with the antagonisms and alliances that were
most entwined in the several years before the war (Taylor, 1954; Kagan, 1995) Russia and Austria-
Hungary competed for influence in the Balkans while France and Germany had severe territorial
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Figure 5. (a) XD is set to the tie weights of the great powers in 1913, immediately preceding WWI (left). Eigenvalue spectrum
of XD and modularity matrix, and eigenvector polarization spectrum (middle). Note that φ1 is rightmost eigenvector polar-
ization. For α = 0.03 and β = 1, the bifurcation threshold is λ̃∗

D1 = 8.33. The leading eigenvalue of XD is λD1 = 6.01 resulting
in σ = 2.32. Minimum energy perturbation XopT (right) leads to final state below. (b) Three perturbation directions requiring
minimal energy (Equation (30)). Perturbations applied in these directions result in two factions in the leading eigenvector,
and therefore two factions in the final state, X(t → ∞). The factional structure perturbations (Equation (31)) are the same as
theminimum energy perturbations for the WWI network. (c) Maximally destabilizing directions that have harmonizing struc-
ture (Equation (32)) result in a leading eigenvector with an almost homogeneous structure. Error minimized, E = λ̃∗

D1 − λ̃D1.
Equation (A24) approximates equilibrium war states. Diagonal values in equilibrium states manually set to zero in network
visualizations.

disputes and a history of animosity. France and Russia were allies as were Germany and Austria-
Hungary. It is therefore reasonable that a crisis which activated tensions between the members
of these alliances would be most efficient in triggering a war. In contrast, although the United
Kingdom was aligned with France and Russia as a member of the Triple Entente, it was reluctant
to get involved in Continental conflicts and its participation in the event of a war was uncertain.

The rightmost panel of Figure 5(b) shows the equilibrium state, X(t → ∞), to which our
dynamical model evolves the system as a result of a transient perturbation in the direction of
Xop
T . The war state reached by the system matches the two opposing sides present during WWI

with the United Kingdom, France, and Russia in one faction and Germany and Austria-Hungary
in the other.

Going beyond the least energy perturbation, Xop
T , we solve for alternative, sparse perturbation

directions using the optimization functions delineated above, setting σ = 2.32, the energy level
for the optimal solution. We compute the error as the amount to which the leading eigenvalue
deviates from the stability threshold E= λ̃∗

D1 − λ̃D1. The error tells us how close the system with
a perturbation ||XT || = σ in the given direction is to destabilizing. Smaller values mean that the
system is close to a bifurcation.
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Figure 5(b) shows three optimal sparse perturbation directions, XT , computed using Equation
(30) from 100,000 randomly generated perturbations. These sparse perturbations have a substan-
tial component in the direction of Xop

T . All three involve only the Continental powers. The middle
one,XT2, depicts flare-ups in the two core rival dyads, France vs. Germany and Russia vs. Austria-
Hungary. It was the assassination of Austrian Archduke Franz Ferdinand by a Serbian nationalist
that set off a crisis between Austria-Hungary and Russia, Serbia’s ally, which ultimately led to
the war. The right-hand perturbation, XT3, reflects increased cooperation between Germany and
Austria-Hungary and between France and Russia as well as escalating tensions within the Austro-
Hungarian–Russian and German–French rivalries. During the crisis, both Germany and France
promised to come to the aid of their respective allies in the event of war whereas Britain, absent
from this perturbation, was much more ambiguous about its intentions (Kissinger, 1994). The
lowest energy one, XT1, represents an alternative scenario in which the conflicting dyads are
France vs. Austria-Hungary and Russia vs. Germany with, again, support between allies. As with
the optimal perturbation in Figure 5(a), all three perturbations when evolved by the dynamical
model converge to the same two factions as present duringWWI, as seen on the rightmost matrix
of Figure 5(b).

We use Equation (31) to compute sparse perturbations that promote polarized structure and
find the same perturbations as those found using the minimum energy scheme, and hence the
polarizing scheme is not displayed as the results are identical to Figure 5(b). This occurs because
the leading eigenvector of XD is already factional. These sparse perturbations have a substantial
component in the direction of Xop

T . If the leading eigenvector of XD does not contain factional
structure, then the perturbations obtained via Equation (31) will differ from the perturbations
obtained via Equation (30). However, since the leading eigenvector of the WWI matrix does
contain factional structure, Equations (31) and (30) return similar perturbations. As with the
optimal perturbation, the perturbations in Figure 5(b) show that the United Kingdom’s ties with
Continental Europe do not appear as significant in triggering conflict. This aligns with historical
accounts that the United Kingdom was reluctant to get involved in Continental conflicts (Taylor,
1954; Kagan, 1995).

Figure 5(c) shows the harmonizing perturbations XH
T computed using Equation (32). The

factional structure is much more dominant than other structures in XD resulting in a larger
perturbation required to obtain a harmonious final state, ||XH

T || = 4σ . Ideally, the harmonizing
perturbations would result in a homogeneous structure among all nodes in the final equilibrium
state. With a low level of perturbation energy, however, the system only manages to positively
coalesce four of the five countries in a positive alliance bloc. Perturbations XH

P1 and XH
P3 lead to

a homogeneous coalition against Germany while XH
P2 leads to a homogeneous coalition against

Austria-Hungary.
Because the network, in this case, contains relatively few nodes (N = 5), self-ties become amore

relevant part of the dynamics. If self-ties are set to zero initially, the self-tie contribution to the
force, α(Xii + Xjj)Xij, is also initially zero, yet grows in relevance as the self-ties grow, reinforcing
the sign and strength of each tie. This adds to the escalation and makes it easier for the system to
pass the destabilization threshold. We can also consider adding self-ties to the dyadic bias matrix,
for example XD →XD + cI, where cI is the identity matrix scaled by c. In this case the spectra of
XD is shifted by c, moving the system closer to the peace-to-war bifurcation. In both of these cases,
self-ties contribute to system instability.

8.2 World War I onset due to changes in dyadic bias community structure
We now take a different approach and evaluate which individual ties between two countries are
most critical for increasing the leading eigenvalue and polarization of the dyadic bias matrix, XD,
using tie values from the year 1913, preceding the outbreak ofWWI. Given that increasing the first
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(a)

(b)

(c)

(e)

(d)

(f)
Change in leading eigenvalue 
after FRN-AUH perturbation 

perturbation

Figure 6. (a) Great powers network in 1913. (b) Increasing hostilities between France and Austria increases the leading eigen-
value of the network connectivity matrix. (c) Changes in φ1 for a ε = −1 edge perturbation applied individually to each
pair of nodes. Colors for each box in the matrix indicate the change in φ1 when a perturbation is applied to that pair of
nodes. (d) Changes in φ1 for ε = +1 perturbations. (e) Changes in λ1 for ε = −1 perturbations. (f) Changes in λ1 for ε = +1
perturbations. Self-ties were not considered.

eigenvalue and polarization makes the system more susceptible to war, this analysis can identify
which dyadsmost destabilize the system (or stabilize it if the first eigenvalue decreases). In Figure 6
we systematically shift the ties of XD by ε = ±1 and observe the change each edge perturbation
produces in the leading eigenvalue λ1 and polarization φ1, of XD. Despite XT consisting of only
a single edge perturbation in each experiment, this small perturbation applied to XD can result
in large shifts in the leading eigenvalue and eigenvector polarization measure (Figure 6(a-b)). For
example, Figure 6(b) illustrates how increasing hostilities between France and Austria, ε2,4 = −1,
results in an increase in the leading eigenvalue. We represent each edge perturbation’s effect on
λ1 and φ1 in a succinct matrix format in Figure 6(c-f).

Figure 6(c-f) shows that the tie between France and Germany as well as the tie between
Germany and Austria-Hungary were the most crucial in increasing polarization in the network.
The ties between Great Britain and the Continental countries appear to be the least important,
implying that while Great Britain formed an important part of the network, changes in ties with
this state least impact the stability of the system. Other significant ties include FRN-AUH, FRN-
RUS, GMY-RUS, and AUH-RUS. This finding is to be expected as the German alliance with
Austria-Hungary and their disputes with Russia as well as the alliance between Russia and France
were all factors that proved integral to the development of World War I (Kagan, 1995; Taylor,
1954).

9. Critical slowing down near bifurcations
The destabilization analyses in the preceding section required knowledge of the dynamical system
governing state dynamics and therefore the location of the bifurcation point could be calculated.
However, a fully descriptive and predictive model governing the dynamics of real-world complex
systems—physical, biological, and social—is often unknown in the sense that precise and accu-
rate functional forms and parameter values are not available. This makes it difficult to empirically
determine the distance in parameter space from a bifurcation. Yet, the fact that the behavior in
the vicinity of a bifurcation is universal for all systems that undergo that type of bifurcation can
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Figure 7. Critical slowing down near bifurcation. Recovery rate r is a function of the distance d to the bifurcation in the
parameter α, d = α∗ − α. N= 10, β = 1, L= 10, Xij(0)= XDij, XDij ∼ 0.8N (0, 1). The perturbations, XT (t), used to measure
recovery rate, are in the direction of the system’s stable state. (a) System perturbed when α is far from the bifurcation,
d = 0.015, results in a fast recovery to the stable peaceful state. (b) System perturbed when α is close to the bifurcation,
d = 7.6× 10−4, results in a slow recovery to the stable peaceful state. (c) System perturbed when α = α∗ results in the sys-
tem evolving to the war state. (d) The log of the recover rate (r) scales linearly with the log of the distance to the bifurcation
(d = α∗ − α), r ≈ 3.42

√
d.

help with this task. The theory of critical transitions seeks to develop early warning signals of
impending bifurcations based on this universality (Kuehn, 2011; Scheffer et al., 2012). One com-
mon signature is critical slowing down, in which the transients due to perturbations take longer
to die down as the bifurcation is neared. Critical slowing down has been empirically observed in
transitions in the climate, ecosystems, and neurons (Dakos et al., 2008; Bury et al., 2021; Meisel
et al., 2015).

Saddle-node bifurcations exhibit critical slowing down and so it should occur in our model
dynamics and could be used to infer distance to the bifurcation in a real system in the absence of
exact governing equations. Meisel et al. (2015) found that for saddle-node bifurcations occurring
in neural dynamics the recovery rate r = 1

τ
, where τ is the decay time, scales with the square root of

the distance from the bifurcation, r ∝ √
d, a scaling law that can be derived from the saddle-node

normal form. Accordingly, we investigate whether our model follows this same scaling law.
In Figure 7, wemeasure the leading eigenvalue of the system in the peaceful state while applying

small perturbations to Equation (16). We then compute the recovery rate for these perturbations
as α → α∗. Perturbations are applied in the direction of the state at which the system has stabilized
prior to the perturbation. When α is far from its bifurcation point and small perturbations are
applied to the system the network activity decays quickly back to equilibrium (Figure 7(a)). When
α is close to its bifurcation point and small perturbations are applied to the system the network
activity decays back to equilibriummuch more slowly (Figure 7(b)). The system moves to the war
state when small perturbations are applied to the system when α = α∗ (Figure 7(c)). Figure 7(d)
shows that log(r) scales linearly with log(d). A linear fit to the data finds that log(r)= 0.49 log(d)+
1.23. This means that the recovery rate and distance to the bifurcation are related by r ≈ 3.42d 0.49

in good agreement with the square root scaling predicted for saddle-node bifurcations.
The scaling law may be used to estimate the distance to a bifurcation based on empirical

measurements of the recovery rate. We investigated using recovery rates to assess bifurcation
proximity for the four decades prior to World War I for the network of the five great powers.
We used the alliance and militarized interstate disputes (MIDs) data from the Correlates of War
dataset and rivalries from the Handbook of International Rivalries as in Section 8. The tie values
in the equilibrium state of the system were taken to be the alliances and rivalries which endure
on a relatively long timescale in comparison with the MIDs, which emerge and decay rapidly.
Hence, the MIDs were taken to be the perturbations. The recovery rate in the standard deviation
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was measured after each MID, which was then used to estimate the distance to the bifurcation.
The recovery rates showed significant variance, however, and they did not display a consistent
decrease as the war grew closer, preventing consistent estimates of the distance to the bifurcation.
Using the full network of European states would provide more complete data in which to test
critical slowing down.

10. Discussion
This section discusses connections between our dynamical systems model of signed networks and
risk factors and signatures associated with conflict escalation as identified in the literature on
international relations. These connections include the role of nonlinear interactions; community
structure and alliance polarization; network size; system variables that could play the role of a
bifurcation parameter; perturbations and the catalysts of systemic war; and empirical implications
of war as bifurcation.

Systemic wars, those involving a breakdown of the international system that entrains most if
not all of the great powers in a region, have been classified as either “wars of mobilization” or
“structural wars” (Midlarsky, 1986). Wars of mobilization arise from the overtly hegemonic and
expansionist aspirations of a revolutionary or revisionist state, such as Napoleonic France or Nazi
Germany. Structural wars are instead attributed to a complex interaction of factors including rival
alliances, security dilemmas, and triggering crises. Examples include the Peloponnesian War, the
Thirty Years’ War, andWorldWar I (Kagan, 1995, 2004; Midlarsky, 1986). Structural wars anchor
our perspective in this section (although we do discuss World War II briefly).

Nonlinear interactions between tightly coupled relationships of rivalry and alliance have been
theorized as characterizing the lead-up to systemic wars (Lebow, 2000; Thompson, 2003). In our
model, these nonlinear interactions appear in the structural balance term which contains the
products of the values of adjacent ties. However, unlike the pure structural balance dynamics of
Equation (1), the presence of the direct dyadic force competes with the balance force, seeking to
pull a relationship back to its bias value. This competition and the nonlinear nature of the bal-
ance force give rise to a bifurcation between an equilibrium of low tie strength (peace) and one of
high tie strength (war), and so the dynamics of the model itself provides an intrinsic distinction
between peace and war as two qualitatively different states. Transitions between peace and war,
which can go in either direction, then correspond to changes in the equilibrium state of the sys-
tem. Given our assumption that the scale of tie strengths in the war state is much larger than their
scale in the peace state, there is no need to set an arbitrary threshold between peace and war as
would be the case in a model where there is a single equilibrium that changes smoothly.

10.1 Polarized community structure and network size
Factors thought to influence the stability of the international system can be investigated in our
model via their effect in facilitating shifts between the peace and war states. The emergence of
two rival alliances, sometimes referred to as bipolarization, is a factor commonly believed to
increase the chance of systemic war, as occurred prior to the Peloponnesian War and World
War I (Wayman, 1984; Thompson, 2003; Kagan, 2004). Our finding that polarized networks,
those whose dominant structure consists of two opposed factions, are most prone to instabil-
ity provides a dynamical basis for the dangers of bipolarization. This result stems from the fact
that the critical value of the structural balance sensitivity at which the peace-to-war bifurcation
occurs is inversely proportional to the first eigenvalue of the matrix of dyadic biases (Equation
(6)).10 The first eigenvalue increases as polarization becomes more dominant so that a lower bal-
ance sensitivity is needed to transition to the war state as seen in Figure 2. Polarization is the
dominant structure when the first eigenvector has both positive and negative components and

https://doi.org/10.1017/nws.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.10


486 M. Morrison et al.

its eigenvalue lies outside the main band formed by the noise eigenvalues (Section 6). The polar-
ization metric, which measures the alignment of the modularity matrix and the first eigenvector,
can be used to distinguish between when the first eigenvector is polarized and when its com-
ponents are of uniform sign, corresponding to homogeneous structure (Morrison & Gabbay, in
preparation).

The instability-enhancing effect of polarized community structure arises naturally from the
interplay of the dyadic and balance forces in our model. The more polarized the bias network is,
the more balanced it is. At the limit, the matrix formed by the contrast eigenvector is perfectly
balanced. Given that the tie values of the system in the peace equilibrium lie near their dyadic
bias values, a polarized peace state will experience a greater balance force than a non-polarized
state; the argument of the hyperbolic tangent function in Equation (3) for the polarized state will
have a larger magnitude because its greater balance implies that the mutual relationships between
node pairs are correlated (or anti-correlated) whereas the uncorrelated relationships in the non-
polarized state will result in an argument near zero. This greater balance force for the polarized
peace state drives its greater instability. We also note that the model dynamics enables a precise
definition of the emergence of polarization via the appearance of a (polarized) first eigenvalue out-
side the noise band, which can be determined via random matrix theory. This enables prediction
of how strong polarizing structure must be in order to affect stability.

That model-driven dynamics define the critical bias network structure for instability confers a
level of generalizability difficult for qualitative theory, and metrics derived from it, to attain. Note
that it is the first eigenvalue that appears in the bifurcation condition, Equation (6), underlying the
polarization instability not a measure of polarization per se. While not as immediately intuitive
as polarization, eigenvectors, and their eigenvalues are intrinsic properties of matrices, furnishing
a natural coordinate basis for them, and hence networks as well. They also play a crucial role in
dynamical systems theory (Strogatz & Dichter, 2016). Consequently, this dynamics-defined crit-
ical structure allows for an integrated investigation of the impact upon stability of a broad array
of different structural features, such as community structure, network size, degree distribution,
and noise variance. It affords immediate prediction of the effects of such features via their impact
on the first eigenvalue whereas it is often unclear how to infer their effects from qualitative the-
ory. In addition, although qualitative reasoning can shed insight into how such features impact
stability in isolation, it cannot readily integrate them theoretically or quantitatively. Furthermore,
since the first eigenvalue is generated by the network itself, it can directly accommodate what-
ever cooperative and conflictual relationships are in the empirical network, without the need for
a priori coarse graining as is often done in metrics customized for particular features; for exam-
ple, Wayman’s (1984) bipolarization metric relies upon the counting of alliance cliques. Lastly, we
point out that the ability to analytically derive the critical network structure dramatically facilitates
the model’s generalizability, obviating the need to laboriously conduct and synthesize simulation
sweeps over multiple parameters.

The behavior of the first eigenvalue can be used to address that larger networks are less stable.
We consider two separate effects, the behavior of the noise and that of the contrast signal-
producing polarized structure (Section 6). If the bias network of dyadic biases is generated solely
from noise with tie variance σ 2, the band edge is equal to σ

√
N (Morrison & Gabbay, 2020).

As the (positive) band edge in the noise-only case is the leading eigenvalue, the critical balance
sensitivity, α∗

P→W , decreases as 1/
√
N. Therefore, if we keep the variance constant, then noise-

generated random structure will become less stable as the number of nodes is increased. This is
similar to findings by May (1972) that increasing connectivity in large complex systems decreases
the system’s stability. Allowing for signal, the contrast eigenvalue grows as N so that polarized
structure as well becomes less stable with increasing network size, as is also seen in the special case
expression for α∗

P→W , Equation (14). In addition, the faster growth of the contrast eigenvalue as
compared with the noise implies that weaker polarizing processes (i.e., smaller μ) can emerge as
dominant structure for larger networks.
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10.2 Candidate variables for the bifurcation parameters
We have shown how bifurcations can occur as our model parameters are changed. We now
briefly discuss potential relationships between the model parameters and variables considered
in the international relations literature on systemic war. The dyadic bias parameters, represent-
ing longer time scale relationships of low-level cooperation and conflict between states are fairly
straightforwardly associated with alliances and rivalries (Thompson, 2003). The structural bal-
ance sensitivity, which determines how sharply the balance force rises before plateauing, is less
clearly associated with a particular variable. In part, this ambiguity stems from the many variables
scholars have put forward as underlying causes of systemic war. Any candidate for the balance
sensitivity, however, must be associated with a dynamic whereby the decisions states make with
respect to cooperation and conflict with other states becomes increasingly based on considerations
of the extent to which they share friends and foes. We consider two such candidates: a shrinking
power differential between the leading power and an ascending rival and the perceived dominance
of offense over defense.

The decline in power of a dominant state relative to an ascending state has been claimed to be
a major source of systemic conflict (Kugler & Organski, 1980; Doran & Parsons, 1980; Copeland,
2000). The rising challenger’s chafing at the status quo and the sense of threat felt by the leader cre-
ate tension in the international system. Decreasing power differentials makes the dominant state
less averse to war as its security is threatened by changes to the status quo (Doran& Parsons, 1980).
The increasing specter of conflict generates pressure for other states to choose sides, thereby mak-
ing structural balance dynamics more intense. This implies that the power differential between the
leading state and the challenger can potentially correspond to the structural balance sensitivity,
with the peace-to-war bifurcation occurring near zero.

We illustrate the association between a narrowing power differential and factional alignments
as represented in the first network eigenvector for the pre-WWI period in Figure 8. We use
the “Composite Index of National Capability” (CINC) score to measure each country’s relative
power (Singer et al., 1972; Singer, 1987). The rise of Germany upon its consolidation in 1871
led to a steady shrinking of the power differential between it and Britain in the ensuing decades
(Figure 8(a)). The shifting factional alignments among the five great powers during this period
can be observed in the leading eigenvector of the network (Figure 8(b)). The states with positive
components (yellow shades) are aligned with Germany while those aligned against it have neg-
ative components (blue shades). Bismarck’s skillful diplomacy in the years after consolidation
had prevented the rise of a counter-coalition. After his ouster in 1890, however, a clear anti-
German alignment between Russia and France arose but Britain was not yet a member of this
coalition. This changed as Germany pursued a more provocative foreign policy along with a naval
buildup that presented a threat to British maritime supremacy. In a manifestation of how intense
structural balance pressures had become, to counter Germany Britain abandoned its longtime
policy of “splendid isolation” agreeing to military cooperation with its colonialist rivals, France
and Russia; the eigenvector components show Britain as belonging to the anti-German faction in
1905. Figure 8(c) shows how the power balance, as seen through the power-weighted first eigen-
vector, between the pro and anti-German coalitions shifted over time. The components of the
first eigenvector over time, v(t), are weighted by the corresponding country’s power over time,
p(t). Since the eigenvector components of common sign form a community and the magnitude
of a country’s component reflects how strongly it belongs to that community, the power-weighted
component is a gauge of how much power a country effectively commits to its coalition. One can
then compare the total power committed to each coalition. This can be accomplished by the inner
product, pT(t)v(t). When pT(t)v(t) is positive, the German coalition has more committed power
while when pT(t)v(t) is negative, the anti-German coalition has more power. When pT(t)v(t)≈ 0,
the power in the network is relatively balanced. The balance tips in favor of the anti-German
coalition in 1905, realizing German fears of encirclement and helping to set the stage for the war
(Taylor, 1954; Kissinger, 1994; Kagan, 1995).
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Figure 8. (a) Power difference between Great Britain and Germany. (b) Dominant eigenvector of the network of alliances
and rivalries. (c) Sum of the dominant eigenvector weighted by relative power. Germany’s value in the eigenvector is always
positive, meaning that positive sums indicate the German coalition is dominant while negative sums indicate the opposing
coalition is dominant.

Although the First World War did not start when Figure 8(a) shows the power differential
passing through zero in 1904, the war did start in 1914 when the differential was small, slightly in
the anti-German coalition’s favor. In addition, the polarization of the system did increase in 1905
and some consider that the structural factors priming the system for war were already in place by
then (Levy & Mulligan, 2021). This is consistent with the fact that our model allows for war to be
triggered in the bistable regime, prior to crossing the peace-to-war bifurcation threshold, as we
discuss further below. Accordingly, the power differential can be viewed as a plausible driver for
the balance sensitivity, particularly given the considerable empirical support that power transition
theory has received (Rasler & Thompson, 2010).

The perception among political and military leaders that offense dominates defense is another
factor theorized as an important cause of systemic war (Van Evera, 1999). Paradoxically, although
known for trench warfare and static front lines, World War I is the paradigmatic example of this
perception. Despite some recognition of how recent technological developments in firepower had
advanced defense, an offensive doctrine in which superior elan andmorale were the keys to victory
dominated military thought among the great powers prior to the war (Howard, 1986). The belief
that offense had the advantage fed the concern that, if a power left its ally unassisted when attacked
by another great power, the ally would be quickly defeated, thereby leaving the power exposed to
fight this belligerent alone (Christensen & Snyder, 1990). This worry encouraged “chain gang-
ing” in which the great powers bound themselves more tightly to their allies and concomitantly
assumed more confrontational stances toward their friends’ foes. Conversely, a perceived advan-
tage for defense loosens alliance commitments. Therefore, the extent to which warfare is viewed as
favoring offense over defense, whether justified technologically or not, impacts structural balance
pressures and so the offense-defense may be associated with the structural balance sensitivity.

Just as in the WWI case, the WWII factions emerge in the leading eigenvector prior to the
start of the war. We observe the dominant structure in world powers leading up to World War
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(a) (b)

Figure 9. (a) Ties between countries in the year 1939—the beginning of WWII. Countries shown are the eight largest globally
by CINC score. (b) Dominant eigenvector of the network leading up to WWII.

II in Figure 9. Similar to the WWI analysis, we generate the pre-WWII network using the MIDs,
alliances, and rivalries data from the Correlates ofWar dataset and the Handbook of International
Rivalries (Palmer et al., 2015; Gibler, 2009; Singer & Small, 1966; Thompson & Dreyer, 2011). We
find that the factions that formed duringWWII (Allies versus Axis powers) arose in the network’s
dominant eigenvector prior to the outbreak of the war (Figure 9(b)). The factions that became the
Allied and Axis forces are present in the dominant eigenvector starting in 1936, three years prior
to the start of WWII in 1939 (Figure 9(b)).11 The dominant structure latent in the network prior
to bothWWI andWWII came to define the factions after conflict escalation. This is in agreement
with our model’s prediction that a network’s dominant structure will be enhanced by structural
balance forces and come to define the war state if the bifurcation point is reached.

10.3 Bifurcation structure and the catalysts of war
The bifurcation structure of our model can be used to more precisely formulate the debate about
the nature of the triggers of systemic wars. The unstable quality of the international system prior
to structural wars has been likened to a powder keg and spark, in which the former signifies
the systemic conditions creating the instability, while the latter represents the immediate episode
triggering the war. The debate, which has been most keenly engaged for World War I, concerns
whether the spark must be drawn from a narrow set of specific catalysts or, instead, a wider, more
generic set. In favor of a narrow set, Lebow (2000) and Levy and Mulligan (2021) argue that the
onset of the First WorldWar was highly contingent upon a crisis in the Balkans and, furthermore,
upon the assassination of Archduke Franz Ferdinand, which removed the most influential voice
of moderation in Austria-Hungary; if he had not been assassinated, the war might never have
happened. On the other side, Thompson (2003) subscribes to the “streetcar” view of the war: the
structural factors destabilizing Europe were so intense that, like missing a streetcar, even if one
crisis passed without sparking a war, another one would have come along sooner or later to do
the job. In essence, these two views differ as to whether the war can be considered contingent or
inevitable.

The bistable dynamics exhibited in our model can accommodate both generic and specific
paths to war. The generic route essentially corresponds to the system having reached the peace-
to-war bifurcation in which the peace equilibrium vanishes, leaving only war (as occurs at α∗

P→W
in Figure 1(c)). Here, any perturbation will cause the system to go from peace to war. Actually, it
would be more precise to say that the system is just shy of the bifurcation so that a wide range
of small (but not infinitesimal) perturbations will destabilize it. Turning to the specific route,
that corresponds to the system being firmly in the bistable zone where both the peace and war
equilibria are possible (say at α = 0.03 in Figure 1(c)), the system requires a substantially larger
kick to jump from peace to war. The system, however, may be particularly vulnerable to specific
perturbation patterns; for example, the pattern that fully counterposes the Franco-Russian and

https://doi.org/10.1017/nws.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.10


490 M. Morrison et al.

Austrian-German alliances minimizes the required energy (Figure 5(a)). If one sufficiently con-
strains the maximum size of a perturbation, then only a relatively narrow set of perturbations will
shake the system into war. These most efficient perturbations then comprise the specific catalysts
upon which war is contingent.

Although the qualitative debate by necessity contrasts the war as either being inevitable or
highly contingent, the model allows for a non-dichotomous formulation through use of the dis-
tance, in parameter space, from the peace-to-war bifurcation point. In the bistable zone, war onset
is always considered to be contingent but the degree of contingency decreases as the system draws
closer to the peace-to-war bifurcation point. In other words, the pool of destabilizing perturba-
tions expands near the critical point. Note that, in the model, war is indeed inevitable beyond the
peace-to-war bifurcation and, conversely, it is impossible prior to the war-to-peace bifurcation.

10.4 Empirically testing war as bifurcation
The most fundamental prediction arising from the model is that the transition from peace to
war, whether via the generic or specific triggers, involves bifurcation structure. Remarkably, this
prediction is amenable to empirical testing without the need to fit an explicit model to the data.
This ability is a consequence of the universality of behavior for all systems in the vicinity of a given
type of bifurcation, such as the saddle-node bifurcation displayed by our model. Critical transition
theory identifies signatures associated with bifurcations, and critical slowing down in particular,
such as increased variance, autocorrelations, and spatial correlations, longer recovery times, and
power spectrum sharpening. These predictions involve not simply the direction of change in the
signatures, but their quantitative scaling as a function of distance from the bifurcation (Kuehn,
2011; Scheffer et al., 2012; Meisel et al., 2015; Bury et al., 2020).

Our preliminary look at the recovery rate response to militarized interstate disputes among the
five great powers in the decades prior to World War I did not find evidence of critical slowing
down. However, consistent with critical slowing down, Midlarsky (1984, 1986) theorized that as
the onset of war grows closer, disputes would take longer to resolve and hence accumulate, finding
evidence for such accumulation prior toWorldWar I. Importantly, disputes involving lesser pow-
ers formed a critical part of his theory and findings. This suggests that future research on critical
slowing down in international relations should involve wider networks beyond the great powers.

Given these mechanisms for destabilization, the formation of new alliances, increased con-
nectivity, the addition of more countries to a system, or fluctuations in relative power could all
increase the instability in a system of states and lead to systemic war. While at the dyadic level,
forming new connections may not add much conflict to a system or be detrimental for the par-
ties involved, it could inadvertently make a system less stable by allowing for more nonlinear
interactions between edges, increasing community structure, or equalizing a power imbalance.
Dynamical system models, such as the one introduced here, may be useful in assessing how
changes to ties impact not only the countries involved but the entire system; models for system-
wide impact could be beneficial in assessing systemic risk and designing de-escalation strategies.

11. Conclusion
We have presented a model of the dynamics of cooperation and conflict that integrates complex
systems and complex network approaches. Our workmakes contact with elements of complex sys-
tems theory including nonlinear dynamics, bifurcations, stability analysis, and critical transition
signatures. With respect to complex networks, our work involves signed networks, structural bal-
ance theory, and community structure. Spectral decomposition into eigenvalues and eigenvectors,
and in particular the dimension reduction so afforded, provides a unifying framework for both
the complex systems and networks aspects, allowing for calculation of bifurcation conditions, the
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compact representation of dominant polarized community structure, and empirical application
to great power politics.

In our model, the tie value between two nodes evolves under the influence of a direct dyadic
force biasing the nodes toward a low-level equilibrium, and a structural balance force, which shifts
the nodes toward greater cooperation or conflict if they have similar or dissimilar relationships
with mutual neighbors. We focused on the situation when the dyadic bias matrix can give rise
to two possible stable equilibrium states: a peace state of low-level conflict and cooperation in
which the equilibrium tie values are near their dyadic biases and a war state of high-level conflict
and cooperation. Varying the structural balance sensitivity, which determines how sharply the
balance force increases or decreases around the neutral point, then results in three regimes: a
monostable peace state, a bistable regime where both peace and war states exist, and a monostable
war state. Saddle-node bifurcations mark the transitions between these regimes. The sandwiching
of the bistable regime between the peace and war monostable regimes results in a form of path
dependence known as hysteresis: as the balance sensitivity is increased and then decreased past
the peace-to-war bifurcation, the system does not return back down to the peace state at the same
value it transitioned up to the war state, but rather a lower one.

We used our model to investigate structural features that make systemic war in a network
more likely and identify patterns of perturbations that have the most impact on system stabil-
ity. We derived approximate analytical solutions for the bifurcation conditions in both a special
case and generally, which reveal the key role of the first eigenvalue of the dyadic bias matrix.
This enabled us to show how polarized community structure as contained in the first eigenvec-
tor makes the network more prone to systemic war by lowering the critical balance sensitivity
at which the peace-to-war bifurcation occurs. This finding concords with theory emphasizing
the destabilization effects of alliance polarization, but is also generalizable to structural features
beyond polarization via the impact of those features on the first eigenvalue.

When the system is in the bistable regime, we considered the ability of finite, transient per-
turbations to induce a transition from peace to war. The most destabilizing perturbation pattern
is constructed from the first eigenvector of the dyadic bias matrix. We also developed a scheme
to find other destabilizing perturbations of low energy. We illustrated the empirical application
of this perturbation analysis framework on the great power network immediately prior to World
War I. The minimum energy perturbation excited cooperation and conflict, respectively, within
and between the alliances involving the four Continental powers but not Great Britain. This pat-
tern is consistent with the strong commitments exhibited within the Continental alliances in the
crisis that triggered the war while Britain took a more ambiguous stance even though it was allied
with France and Russia.

There are many empirical avenues for future research to build upon this work. The model’s
prediction of war as bifurcation could be tested via a systematic search for critical slowing down
behaviors. The linkage between network structure and greater risk of systemic war could be found
in network spectra as the emergence from the main spectral band of a polarized first eigenvector.
Another line of empirical investigation would endeavor to identify variables in the international
system that affect structural balance pressures, which could involve testing their correlation with
a metric of structural balance (Kirkley et al., 2019; Burghardt & Maoz, 2020). Although our
substantive focus here has been international relations between states, other contexts involving
cooperation and conflict driven by both dyad-specific and structural balance dynamics could serve
as testing grounds, such as fragmented civil wars in which a multiplicity of armed groups fight and
ally with each other.

We note a few ways in which the model can be extended. The products of the ties in the struc-
tural balance sum could be weighted by power so that powerful nodes contribute more to it than
weaker ones. The ties could also be made directed to represent asymmetric relationships of aid or
aggression. Other mechanisms influencing tie dynamics beyond the dyadic and structural balance
forces could be incorporated into themodel. One significant force that is not currently represented
is power balancing dynamics in which state alliance decisions are driven by power calculations
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rather than existing alliances or enmities as in structural balance. States may ally with an erstwhile
adversary to balance against a looming threat from an aggressive power. They may also abandon
an existing ally to bandwagon with a powerful aggressor (Walt, 1990). As maintaining the bal-
ance of power has long been claimed to be crucial to sustaining equilibrium in the international
system, (Healy & Stein, 1973; Kissinger, 1994; Rasler & Thompson, 2010), incorporating both
power balancing and structural dynamics within the same model could be a fruitful way of better
understanding how they interact to produce peace and war.

While this paper has concentrated on destabilizing factors and perturbations that make sys-
temic war more likely, the model also has implications for preventing war and transitioning from
war to peace. One example is that a perturbation pattern opposite to that calculated above as most
dangerous will most efficiently keep the system from destabilizing. Another is that, in the bistable
regime, optimal perturbations for kicking the system from the war to the peace state can be cal-
culated rather than the reverse direction we treated herein. Alternatively, lowering the balance
sensitivity beneath its critical value for the war-to-peace bifurcation would yield a monostable
peace state. If the balance sensitivity were related to a power differential between key states, then
increasing its war-to-peace critical value would correspond to lowering the power disparity at
which peace is restored, implying that the losing side need not be defeated as decisively to bring the
war to an end; Equation (6) shows that decreasing the first eigenvalue of the bias network would
have that effect. Finally, although it still lies in the realm of political philosophy and prophetic
visions (at least for the international system), the model also possesses an equilibrium of high-
level universal cooperation, the harmony state, which can be reached from both the peace and
war states.
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Notes
1 Technically, β can be removed from (3) by rescaling t → βt and L→ L/β (ignoring the perturbation term), which implies
that L and β should only enter the dynamics via their ratio. However, β is needed if one wants t to correspond to a
conventional unit of time.
2 Themodel examples in this paper will have systemic war states in which all the nodes have high-strength ties. The definition
includes the possibility of most, but not all, ties to make connection with real-world systemic wars in which some states sit
out the conflict.
3 Such mutually reinforcing behavior was included in the model of Lee et al. (1994). They added a dyadic force proportional
to +Xij to Equation (1) so that friendship breeds greater friendship and likewise for hostility. This dyadic force also causes
tie values to blow up as does (1) rather than the stabilization to equilibrium produced by the linear restoring dyadic force
appearing in (3).
4 This conforms to the strong sense of polarization referred to in Neal (2020). A polarization metric based on the network
eigenvalue spectrum is defined in Section 7.2
5 This is because the eigenvectors of X2

D (proportional to the covariance matrix) are the same as XD but the eigenvalues are
squared.
6 We also observe that the bifurcation conditions, (14) and (15), are applicable to the N = 2 case, showing that the self-tie
contributions to the structural balance force dynamics noted in Section 3 result in bifurcations between peace and war in the
two-node case as well.
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7 The relationship between the phase transition in spectral structure and community detectability, however, only holds for
equal-size blocks and breaks down for unequal ones (Zhang et al., 2016).
8 M=X− kkT

2m , where k is the vector of node degrees andm is the total number of edges.
9 Our numerical scale was chosen to simply parallel the Correlates of War scale rather than to optimize fidelity to the model
tie scale assumption.
10 Similar dependence of bifurcations upon the leading eigenvalue of a network is observed in multi-agent nonlinear opinion
dynamics (Bizyaeva et al., 2022).
11 We note that Russia appears on the Allies side in 1939 despite the non-aggression pact it signed with Germany in August
1939. This may be due in part to that pact’s positive effect on their tie value being watered down by their ongoing rivalry.
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Appendix A. General treatment
We provide the derivations of the approximate bifurcation conditions stated in Section 5.2 for a
general dyadic bias matrix.

A.1 Approximate system
We replace the full matrix dynamical system, Equation (16), with analytically tractable forms by
using approximations for the hyperbolic tangent function in the transition and plateau regions.
In the transition region, θ = (α/L)X2 � 1, using tanh θ ≈ θ yields
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dX
dt

= −β(X−XD)+ αX2 +XT(t) (A1)

This system has approximately the same stable peace and unstable fixed points as Equation
(16) for large L, but does not have the stable war fixed point. Because the unstable fixed points of
Equation (A1) approach the unstable fixed points of Equation (16) as L→ ∞, theoretical results
derived from Equation (A1) are less accurate for smaller L values.

In the plateau region, |θ | � 1, we use tanh θ ≈ ±1 to yield
dX
dt

= −β(X−XD)+ L sign
(α

L
X2

)
+XT(t) (A2)

where the use of sign(αX2/L) assumes that all the components of X2 are sufficiently large to be
approximated as being on the positive or negative plateaus. We furthermore assume that sign(X2)
can be approximated using the signs of the components of the first eigenvector of X, s1. Denoting
the vector of signs as u, we then have u= sign(s1). We can then replace sign(αX2/L) by uuT in
Equation (A2) yielding

dX
dt

= −β(X−XD)+ LuuT +XT(t) (A3)

This approximation is valid for L sufficiently large so that, for trajectories heading from the
peace state of low tie values to a high tie value equilibrium, the feed-forward growth has time
to preferentially amplify the leading eigenvector s1, similar to the behavior in the pure structural
balance model of Equation (2).

A.2 Stable and unstable fixed points
We now find fixed points of the approximate system in the transition region, Equation (A1), in the
absence of the transient term (XT = 0) by expressing it in terms of the dynamics of its eigenvalues
and eigenvectors. We denote the tie matrix at a fixed point byX0 and write its eigenvector decom-
position as X0 = S0�0ST0 and that of the dyadic bias matrix as XD = SD�DSTD. For simplicity, we
assume that X0 and XD are full-rank matrices, allowing us to perform an eigendecomposition.
Setting dX

dt = 0, using these decompositions, and rearranging yields

0= −β(X0 −XD) + αX2
0 (A4)

0= αX2
0 − βX0 + βXD (A5)

0= αS0�2
0ST0 − βS0�0ST0 + βSD�DSTD (A6)

S0(α�2
0 − β�0)ST0 = −βSD�DSTD (A7)

where we have used the orthonormality of the eigenvectors, ST0 S0 = I in the third line.
We diagonalize the left-hand side bymultiplying by ST0 and S0 on the left and right, respectively,

α�2
0 − β�0 = −βST0 SD�DSTDS0 (A8)

α�2
0 − β�0 = −βD�DDT (A9)

where D= ST0 SD. Since the left-hand side is diagonal then the right-hand side must also be diag-
onal. Because S0 and SD are orthonormal matrices, these diagonal values generated by the inner
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product sT0isDi must be equal to 1. Therefore, Dmust be the identity matrix, ST0 SD = I. Therefore,
S0 = SD. This implies that the eigenvectors of X0 are the same as the eigenvectors of XD. This
allows us to diagonalize the matrix dynamical system equation at the fixed points and solve for
the eigenvalues of X there. As the right-hand side of (A9) simplifies to −β�D, we rearrange to
obtain

0= α�2
0 − β�0 + β�D (A10)

which expressed in terms of the individual eigenvalues λ0i is

0= αλ20i − βλ0i + βλDi (A11)

Solving yields

λ0i = β ± √
β2 − 4αβλDi
2α

, i= 1, . . . ,N (A12)

for the fixed point eigenvalues. Eigenvalues of the stable fixed point are given by the negative sign
and those of the unstable fixed point by the positive sign as we now show.

For a stable fixed point, small perturbations will decay, whereas they will grow for an unsta-
ble fixed point. The response is given by the eigenvalues of the linearized system. Denoting the
perturbation by δX, the linearized system is

dδX
dt

= −βδX + α(X0δX + δXX0) (A13)

Using the above result that the eigenvectors of X0 are the same as XD, we expand the fixed
point and the perturbation in terms of the eigenvectors, sD, so that X0 = ∑N

i=1 λ0isDisTDi and
δX0 = ∑N

i=1 ai(t)sDisTDi, where ai(t) is the time-dependent amplitude of the ith mode. Using these
expansions in Equation (A13), we find that each mode evolves independently via

dai
dt

=(−β + 2αλ0i) ai (A14)

Taking the modes to have an exponential time dependence, ai ∼ eνit , the growth rate νi is
given by

νi = −β + 2αλ0i (A15)

Substituting for λ0i using (A12) then gives

νi = ±
√

β2 − 4αβλDi (A16)

The positive and negative signs in Equation (A12) therefore correspond, respectively, to grow-
ing and decaying perturbations and so are associated with the unstable and stable fixed points as
claimed above.

The stable fixed point corresponds to the peace state and its leading eigenvalue λP is given by

λP = β − √
β2 − 4αβλD1
2α

(A17)

For the unstable fixed point, the leading eigenvalue is not of concern but rather the lowest one,

λU = β + √
β2 − 4αβλD1
2α

(A18)

as the peace-to-war bifurcation occurs when it equals λP.
The case when a finite, transient perturbation, XT(t), is applied to the system can be treated

similarly if we take it to have the form of an impulse where all its elements are constant over the
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duration of the transient. Defining the modified dyadic bias matrix, X̃D(t)=XD +XT(t)/β , we
can rewrite Equation (A1) as

dX
dt

= −β
(
X− X̃D(t)

) + αX2 (A19)

This modification in dyadic biases results in a new effective peace state eigenvalue given by

λP = β −
√

β2 − 4αβλ̃D1(t)
2α

(A20)

Similarly, the lowest eigenvalue of the unstable state becomes

λU = β +
√

β2 − 4αβλ̃D1(t)
2α

(A21)

If the perturbation is sufficiently small, then λP and λU will be real and nonzero. The corre-
sponding fixed points will exist, and, in particular, the system will settle into a new peace state as
shifted by the perturbation, assuming that the transient duration is long enough. A large pertur-
bation, however, can cause the square root in (A20) and (A21) to be imaginary, in which case the
stable and unstable fixed points do not exist; the system will head toward a stable equilibrium of
high conflict and/or cooperation as we now discuss.

We calculate the high conflict and cooperation fixed points using the plateau approximation
of the dynamics as given by Equation (A3). Setting dX

dt = 0 and solving for the fixed point X0
produces

X0 =XD + LuuT +XT(t)
β

(A22)

When no transient perturbation is applied, the stable state which results from the peace-to-war
bifurcation will be the war state as determined by the leading eigenvector of XD and we write the
sign vector as uD1 = sign(sD1). The war state in the plateau approximation is then given by

XW =XD + L
β
uD1uTD1 (A23)

When an applied perturbation does shift the system out of the peace state, the first eigenvector,
s̃D1, of the modified dyadic bias matrix will grow to dominate the network if L/β is large in com-
parison with ||X̃D||. In this case, after the perturbation has ended, the final high tie value state of
the system, XH , will be approximately

XH = L
β
ũD1ũTD1 (A24)

where ũD1 = sign(s̃D1). This expression was used to calculate the final states in Figure 5. However,
if L is not large enough to provide enough time for ũD1 to grow to dominate the network, the final
network structure will have noticeable contributions from other eigenvectors of X̃D.

A.3 Bifurcation transition from peace to war
The peace-to-war transition occurs when the first eigenvalue of the linearized system at the peace
state is zero, corresponding to a saddle-node bifurcation. Setting ν1 = −√

β2 − 4αβλD1 to zero
and solving for the critical balance sensitivity yields

α∗
P→W = β

4λD1
(A25)
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The vanishing of the discriminant in Equation (A17) yields the critical value of the peace state
eigenvalue at the bifurcation,

λ∗
P = β

2α∗
P→W

(A26)

Equation (A18) shows that the unstable state eigenvalue also has this value at the bifurcation
so that λ∗

P = λ∗
U . This equality of the stable and unstable critical eigenvalues corresponds to the

merging of the stable and unstable fixed points that occurs in a saddle-node bifurcation.
For the case where the impulse perturbation XT is applied to the peace equilibrium XP, the

system parameters α and β are fixed and we seek the critical eigenvalue, λ̃∗
D1, of the modified

dyadic bias matrix X̃D. This will occur when the effective peace and unstable eigenvalues due to
the perturbation are equal. This yields a condition analogous to (A25) but which we express in
terms of the critical eigenvalue,

λ̃∗
D1 = β

4α
(A27)

If λ̃D1 > λ̃∗
D1, then the perturbation will kick the system out of the peace state into a high conflict

and cooperation state.

A.4 Bifurcation transition fromwar to peace
We consider the bifurcation from the war state, XW , back to the peace state as illustrated in
the hysteresis curve of Figure 1(c). No external perturbation is imposed in this case (XT = 0).
Equation (A23) shows that the war state is the sum of XD and a rank-one matrix. We therefore
approximate λW by the expression for the upper bound of the leading eigenvalue of the sum of a
symmetric matrix and a rank-one modification (Bunch et al., 1978),

λW = λD1 + LN
β

(A28)

Note that increasing the size of the network as well as L/β increases λW . A larger λD1 has
similar effect implying that a polarized peace state is not only more susceptible to war (Section 6)
but results in more intense conflict should that war arise.

The transition from the war to the peace state is also generated by a saddle-node bifurca-
tion, one distinct from the peace-to-war transition. The war-to-peace bifurcation occurs when
the stable war fixed point and the unstable fixed point collide, leaving only the stable peace state as
the remaining equilibrium. Given that our approximate dynamical systems in the transition and
plateau regions do not mesh smoothly, we cannot perform a linear stability analysis for the war
state (which is always stable in the plateau approximation) as we did for the peace state. However,
we can make a rough calculation of the bifurcation condition by setting λW equal to λU from
Equation (A18). Doing so and solving for the critical balance sensitivity yields

λD1 + LN
β

= β + √
β2 − 4αβλD1
2α

(A29)

α∗
W→P = NL

(λD1 +NL/β)2
(A30)

Thus, for L/β large, the transition back from war to peace will take place at a much lower α

value than for the transition from peace to war, Equation (A25).
Figure A1 visualizes the bifurcation structure of our system as approximated by the dynamics

of the first eigenvalue, λ1(t), under the expansion of the network by the dyadic bias matrix eigen-
vectors, X(t)= ∑

k λi(t)sDksTDk. Its rate of change, dλ1/dt, is plotted as a function of λ1 for the
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(a)

{

(b) (c)Peace to war transition War to peace transition

Stable states

Figure A1. (a) Dynamics of the leading eigenvalue as a function of initial conditions. λP and λW are stable fixed points sepa-
rated by an unstable fixed point λU. Curves approximate the eigenvalue dynamics. α = 0.08, β = 0.5, L= 6, and λD1 = 1. (b)
A saddle-node bifurcation of the stable and unstable fixed points λP and λU underlies the peace-to-war transition. α = 0.08,
β = 0.5, L= 6, and λD1 = 1.6. (c) A saddle-node bifurcation of λW and λU underlies the war to peace transition. α = 0.052,
β = 0.5, L= 6, and λD1 = 1.6. Arrows show the direction of movement of the eigenvalues.

transition and plateau approximations (dotted curves) for which the modes evolve independently.
Also shown is as a smooth approximation that retains the hyperbolic tangent (solid curve). Points
where dλ1/dt = 0 correspond to fixed points and the arrows indicate their stability. Figure A1(a)
shows the bistable regime in which λ1 is stable at λP and at λW , with the unstable fixed point resid-
ing between them. For an increased value of λD1, Figure A1(b) shows the saddle-node bifurcation
point corresponding to the peace-to-war transition in which λP and λU have merged. The other
saddle-node bifurcation, in which λU merges with λW , is shown in Figure A1(c) and corresponds
to the war-to-peace transition when α is decreased.

Appendix B. Destabilizing directions for perturbations
Figure B1 shows schematically the optimally destabilizing perturbation direction Xop

T for a given
network as well as how alternative perturbations relate to Xop

T . Matrices X size n× n are depicted
as 2-dimensional vectors in Figure B1. The destabilization threshold occurs when XT is such that
λ̃D1 = λ̃∗

D1 which defines a hyperplane across which perturbations are destabilizing.
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Destabilization threshold

Optimally 
destabilizing 

radius = radius = 

(a) (b)

E

E

E
Destabilizing 
direction 

Optimally
stabilizing 

Figure B1. (a) Schematic of the optimally destabilizing direction,XopT , which pushes the system to the perturbation threshold
with the minimum amount of energy (σ ), Equation (30). The opposite direction, −XopT , is the maximally stabilizing pertur-
bation direction. Other destabilizing directions, XT , of size σ push the system close to the perturbation threshold. Error,
E = λ̃∗

D1 − λ̃D1, is measured as the distance to the destabilization threshold. (b) Destabilizing directions that prioritize polar-
ization XFT (Equation (31)) or harmonization XHT (Equation (32)) along with energy minimization may require more energy to
reach the destabilization threshold.
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