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Abstract—Although great advances have been made in machine
learning (ML) based wireless communications and networking,
the performance of most ML-based schemes is heavily dependent
on the availability of large amounts of high quality radio
frequency (RF) data, which are more challenging and costly to
obtain than other forms of data. To address this challenge, we
propose to leverage diffusion models to generate high quality
RF data, and develop a novel lightweight AIGC model for
RF sensing, termed RFID-ACCDM (Activity Class Conditional
Diffusion Model). RFID-ACCDM can synthesize large amounts of
RF data at low cost, conditioned on a particular activity class. The
high quality of RFID-ACCDM generated data is demonstrated
by metrics of Structural Similarity Index (SSIM) and Frechet
Inception Distance (FID), as well as a representative downstream
task of human activity recognition (HAR), where the model
trained with sufficient synthesized data outperforms the model
trained by real data.

Index Terms—AIGC, Conditional diffusion, Data augmenta-
tion, human activity recognition, RFID sensing.

I. INTRODUCTION

The recent decade has witnessed considerable advances in

machine learning (ML) based wireless communications and

networking [1]. However, the performance of most ML-based

schemes is heavily dependent on the availability of large

amounts of high quality radio frequency (RF) data. Compared

to image or text, RF data has its unique features and high

quality RF data is much harder to collect. First, the captured

RF data is highly susceptible to the open-space channel; any

change in transceiver location and the propagation environ-

ment may result in a new data domain. Second, RF data

is also highly dependent on the frequency band, as well as

the transceiver devices and protocols (e.g., waveforms). For

instance, a 900 MHz RFID channel is fundamentally different

from a 60 GHz millimeter wave channel. Third, the wireless

channel is also time-varying: a WiFi channel during business

hours would look much different from that in the midnight.

Due to such spatial, spectral, and temporal dependencies, it is

very costly to collect RF datasets, while a collected RF dataset

may have limited use when the setting becomes different.

Therefore, how to obtain high quality RF data with high

diversity while at a low cost, would be the first barrier to

overcome to make “ML/AI for wireless” successful.

Another trend in the past couple of years is artificial

intelligence generated content (AIGC). Prominent products,

such as ChatGPT, DALL-E, and Codex, are paving the way

for Artificial General Intelligence (AGI). These applications

generally use transformer and diffusion models as backbone,

and are mostly used in the context of text-to-image generation

or text-prompted AI agents. A natural question is “can we

exploit AIGC to address wireless communication problems,

and in particular, to generate RF data?” Generative Adversarial

Networks (GANs) [2], as a relatively older generation of AIGC

technology, have been explored for data augmentation over

the years [3]–[5]. However, most works are only able to use

synthesized data to boost the performance of the existing

dataset via augmentation or fine-tuning [4]. The complications

of wireless data, coupled with the difficulty of training a GAN

model, usually result in synthesized data with low fidelity or

low diversity. The simple and low-dimensional synthesized

data would be of limited value for RF sensing applications

such as human activity recognition (HAR) [6], [7].
To this end, there have been several recent works on 3D

pose estimations in the computer vision (CV) domain [8]–

[10], which utilized diffusion models to generate 3D pose

animation data with great fidelity and diversity. Motivated

by these interesting works, in this paper, we propose to go

one-step further, to use diffusion models to generate high

quality RF data for HAR. Specifically, we shall develop a

novel lightweight AIGC model for RFID sensing, termed

RFID-ACCDM (Activity Class Conditional Diffusion Model)

to synthesize high quality RF data at low cost conditioned

on a particular activity class. The proposed RFID-ACCDM

system is illustrated in Fig. 1. As a representative example of

downstream tasks, we also design an RFID sensing system,

which queries the RFID tags attached to a test subject’s joints

to recognize human activity. The conditional diffusion based

RFID-ACCDM system will generate large amounts of high

fidelity, high diversity data at low cost for training the RFID

sensing system, thus saving the huge efforts on collecting

training RF data.
The main contributions made in this paper can be summa-

rized as follows:

• To the best of our knowledge, this is the first work that

harnesses the power of conditional diffusion models to

generate RF data. The quality of the synthesized data, in

terms of quantity, fidelity, and diversity, are all superior

over existing approaches. More important, the proposed

AIGC model only requires a small amount of real RF

training data to be effective.

• We qualitatively demonstrate the performance of RFID-

ACCDM through a visual comparison of its synthesized

data with ground truth. Furthermore, we quantitatively

show that our generated data is of high fidelity and

diversity through metrics of Structural Similarity Index

(SSIM) [11] and Frechet Inception Distance (FID) [12].
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Figure 1. The procedure of conditional RF data generation with RFID-
ACCDM. The reverse process p (see (4)) gradually converts random noises
into plausible time series data, conditioned on embedded class labels. The
structure of the noise predictor, the U-Net model, is illustrated in detail.

• Using a representative downstream task of HAR with

RFID sensing, we demonstrate that our RFID-ACCDM

generated data is highly effective in boosting the HAR

performance without the need for real RF data.

In summary, we address two important problems with an AIGC

for Wireless approach: how to avoid the high cost of collecting

RF data, and how to synthesize RF data with high fidelity and

high diversity for effective training of ML models.

The remainder of this paper is structured as follows. We

first review related work in Section II. We then introduce the

background of diffusion in Section III. Section IV describes

the proposed system design and Section V presents our exper-

imental study. Section VI summarizes this paper.

II. RELATED WORKS

AIGC applications based on diffusion have mostly been

concentrated in the field of CV. The pioneering Diffusion

Probabilistic Model (DPM) was applied to general medical

image segmentation in [13], where superior performance of

segmentation tasks have been demonstrated over state-of-the-

art methods. In [14], the authors leveraged conditional dif-

fusion models (CDM) for image-to-image translation, which

outperformed GANs. Recently, it has been proven that diffu-

sion models are also capable of generating continuous time-

series data. The authors in [15] leveraged a Conditional Score-

based Diffusion model to impute time-series healthcare and

environmental data, which outperformed classic RNN-based

models. A recent work [16] applied diffusion models to enable

reliable 3D monocular pose estimation, to effectively reduce

the inherent uncertainty and occlusion. RF data typically

involves time frames and RF features in multiple dimensions.

Since diffusion models are proficient with images and time-

series data, they should also be a good fit for RF sensing tasks.

Various RF sensing applications have been developed for

detecting human activities [6]. The impact of changes in the

environment, user location and orientation, and user herself,

tends to require large amounts of training data with high

quality and diversity, in order to train models with good gener-

alibility. To meet these requirements, GAN-based approaches

have been explored recently [3], [5], [17]. For example, Li et

al. [17] proposed the Amplitude-Feature Deep Convolutional

GAN (AF-DCGAN) to generate additional channel state in-

formation (CSI) amplitude feature maps in order to reduce

the effort of collecting WiFi fingerprints. However, Since

CSI data is quite sensitive to environmental dynamics, any

change in the indoor environment may result in a drop in

location accuracy. Furthermore, most GANs can only syn-

thesize additional data based on existing data with limited

diversity. In [18], a multimodal GAN was proposed to deal

with environmental changes. However, the multimodal system

is rather complicated, consisting of two generators and one

classification model. Overall, GANs have proved to be still

effective for data augmentation in the wake of diffusion and

transformer models, but generating useful and high-quality

synthesized data tend to depend on complex procedures and

mutlimodal systems.

III. DIFFUSION PRELIMINARIES

This work follows the philosophy of the most prominent

diffusion-based architecture proposed in [19]. The underlying

idea is that the model can progressively improve its output

through a series of small adjustments, ultimately yielding a

high-quality sample. Diffusion models are based on a rather

simple concept. They start with an input x0 and slowly corrupt

the input over a series of time steps (T ) into a Gaussian distri-

bution N (0, I) using fixed-variance-schedule defined Markov

chain kernels, which is referred to as the forward process,

given by [19]:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

At each time step t, Gaussian noise with a variance of βt is

added to xt−1, resulting in a new latent variable xt. I is the

identity matrix, ensuring that each and every dimension of the

multi-dimensional input have the same variance βt. Therefore,

the process, starting from input x0 to xT , can be tracked with

q(x1:T |x0) =
∏T

t=1
q(xt|xt−1). The sampling of xt can then

be admitted for any time step t in closed form, as [19]:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt is given by
∏t

τ=0
ατ and using βt, αt can be defined

as (1−βt). We then obtain xt using a reparameterization trick

in a recursive manner, as:

xt =
√
αt · xt−1 +

√
1− αt · εt−1

=
√
αtαt−1 · xt−2 +

√

1− αtαt−1 · εt−2 = ...

=
√
ᾱt · x0 +

√
1− ᾱt · ε0, (3)

where εt ∼ N (0, I), αt = 1− βt, and ᾱt =
∏t

τ=0
ατ .

On the other hand, the reverse process denoises the noisy

inputs, after the forward diffusion process applies noise steps

up to a certain point (t ≤ T ), to recover x0. The reverse

process is defined by the following Markov Chain [19]:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

pθ(x0:T ) = p(xT )
∏T

t=1
pθ(xt−1|xt).

(4)

In [19], the authors showed that the reverse process can be

trained by solving the optimization problem given below.

min
θ

Et,ε,x0
= ‖(ε− εθ(xt, t))‖2 , (5)
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where ε ∼ N (0, I) is the Gaussian noise added to the noisy

input xt, and εθ is a trainable denoising function that is often

learned through a neural network such as U-Nets [20]. So

one can interpret εθ(x, t) as the noise vector estimated by the

trained U-Net. This simplified training loss is made possible

by the parameterization of pθ(xt−1|xt), as:

µθ(xt, t) =
1√
αt

(

xt −
βt√
1− ᾱt

(ε− εθ(xt, t)

)

, (6)

After training the diffusion model, high-quality samples x0

can be obtained as given in (4).

IV. SYSTEM DESIGN

A. RFID Data Generation with Conditional Diffusion

In our prior work [6], we showed that by attaching RFID

tags to human joints, RF information describing joint move-

ments can be obtained, hence creating a complex high-

dimensional data that can enable high-performance 3D human

pose estimation and activity recognition. However, training

the models requires large amounts of synchronized RFID and

vision data, which is very costly to collect. Inspired by [16],

where complicated 3D human animations represented by 3D

joint coordinates are generated with high fidelity through diffu-

sion models, we propose a conditional diffusion system termed

RFID-ACCDM (i.e., RFID-based Activity Class Conditional

Diffusion Model) to synthesize RFID data for various activity

classes. Since the data are sampled when the test subject

continuously repeats the activities, the data samples capture

both short-range delicate movement information of human

joints and long-range time-series information of movement

trajectories. The proposed system can learn and leverage

the inherent relationship between RFID data and 3D human

movements to synthesize data with high fidelity for 3D human

pose tracking and HAR.

Let xRF
t denote the RFID data corresponding to a certain

human activity at a random time step t, and A represent

the class of human activity ranging from simple activities

(e.g., standing still) to complex activities (e.g., boxing). We

develop an RFID-sensing-specific reverse diffusion process

and a supervised training method. The class condition A is

taken as one of the inputs. The Markov chain for the reverse

process of RFID-ACCDM is defined as follows.

pθ(x
RF
t−1

|xRF
t ,A) = N (xRF

t−1
;µθ(x

RF
t , t | A),Σθ(x

RF
t , t | A))

pθ(x
RF
0:T |A) = p(xRF

T )
∏T

t=1
pθ(x

RF
t−1

|xRF
t ,A).

We then consider utilizing the following parameterization

for εθ, which is different from (6) in that the class label of

human activity A is taken as the condition in the newly defined

conditional denoising function εθ(·), given by:

µθ(x
RF
t , t) =

1√
αt

(

xRF
t − βt√

1− ᾱt

(ε− εθ(x
RF
t , t | A)

)

.

Finally, we formalize the training objective for the RFID-

ACCDM system as a minimization problem, given by:

min
θ

Lθ = min
θ

Et,ε,x0
=

∥

∥

(

ε− εθ(x
RF
t , t | A)

)
∥

∥

2

. (7)

Algorithm 1 Training Procedure of RFID-ACCDM

Input: A
1: repeat

2: Ã = Embedding(A);
3: xRF

0
∼ q(xRF

0
);

4: t ∼ Uniform(1, 2, ..., T );
5: ε ∼ N (0, I);
6: xRF

t =
√
ᾱtx0 +

√
1− ᾱtε;

7: t̃ = t
⊕ Ã;

8: Take gradient descent step on

∇θ =
∥

∥

(

ε− εθ(x
RF
t , t̃)

)∥

∥

2
;

9: until Convergence

Algorithm 2 Sampling Procedure of RFID-ACCDM

Input: A
1: Sample xT ∼ N (0, I) with label A;

2: for t = T, ..., 1 do

3: if t > 1 then

4: z ∼ N (0, I);
5: else

6: z = 0;

7: end if

8: xRF
t−1

= 1√
α

t

(

xRF
t − 1−αt√

1−ᾱ
t

εθ(x
RF
t , t | Ã

)

;

9: end for

10: Return xRF
0

;

Algorithm 1 and Algorithm 2 describe the training and sam-

pling procedures of RFID-ACCDM, respectively.

B. U-Net for Denoising

As in [19], we adopt a U-Net [20] based on a wide ResNet

for its desirable ability to facilitate the diffusion process. It

takes in a noisy input at a particular time step and returns the

predicted noise with the same size as the input data. The loss

between the actually introduced noise ε and the predicted noise

εθ is then used as the training objective. Loss minimization

can be easily implemented via an MSE (mean squared error)

function between εθ and ε at the current time step t in each

training epoch. Sinusoidal positional encodings are applied to

encode the time step t (also the noise level). The encodings

help the network understand the particular time step it is at

for each input within a batch during the diffusion process.

The activity class label A is embedded using a Pytorch

package. This embedding layer works as an MLP (multilayer

perceptron) layer, which is represented as a high-dimensional

vector. MLP layers typically apply a linear transformation

followed by a non-linear activation to obtain the embedding.

The embedded label is next concatenated with time step t
to integrate the class embedding into U-Net. This is possible

because t is already implemented as a condition in the dif-

fusion process. The resulting time step is denoted as t̃. The

input RFID data, along with time step and class embedding,

undergoes the standard encoder to decoder structure in the

U-Net model. Our U-Net network has two downsampling

operations realized by the maxpooling2D function in the
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encoder, which reduce the spatial dimension to 16×3. At

each downsampling step, we double the number of feature

channels from 64 all the way to 256. Each downsampling

operation is followed by a residual block and a convolutional

block. The self attention mechanism is implemented right

after the convolutional block with a multi-head self attention

module to capture richer representations. The bottleneck (the

middle block that keeps the feature size unchanged) has

three convolutional blocks. A convolutional block has two

2D convolutional layers connected by a GeLU activation layer

followed by a GroupNorm layer, with the final layer being

another GroupNorm layer right after the second convolutional

layer. A residual block is the same except for the addition of

skip connections. The decoder is simply built with the reverse

order as the encoder to recover the original input dimension,

while concatenating the feature maps from the encoder. The

basic convolution module has a kernel size of three. A deeper

network can be used if there are larger numbers of joints. The

complete conditional diffusion process along with a detailed

structure of our implemented U-Net model are shown in Fig. 1.

V. EXPERIMENTAL STUDY

A. Implementation and Experiment Setting

We develop an RFID sensing system, as a representative

downstream task, to evaluate the performance and benefits of

our generative network. The system consists of an off-the-

shelf Impinj R420 reader, passive ALN-9634 (HIGG-3) tags,

and three S9028PCR polarized antennas. 12 RFID tags are

attached to the test subject’s joints (i.e., hip, neck, left upper

leg, left knee, right upper leg, right knee, left shoulder, left

arm, left forearm, right shoulder, right arm, and right forearm).

An Lenovo Legion gaming laptop with an Nvidia GTX 1660

Ti GPU is used as the processor for signal processing and

network training. The setup of the system is illustrated in

Fig. 2. RFID data and vision pose data are collected simulta-

neously in front of the RFID system and an Xbox Kinect 2.0

device, when test subjects are performing different activities.

The vision data will be used as labels for supervised training in

the original, baseline system, where joint kinematics of vision

data are transformed to the variations between RFID phase

values from two consecutive time frames.

The frame rate of Kinect is 30 frames per second (fps),

while the RFID data sampling rate is approximately 110 Hz.

All data undergoes preprocessing and synchronization before

being downsampled to 7.5 Hz. Throughout the experiment,

both RFID phase variation data and 3D pose data are set

to have a length of 8.53 seconds. A sliding window of 1.33

seconds is leveraged to create 4 basic data units with a length

of 4 seconds. Their dimension is set to (30, 12, 3), with 30

being the frame number, 12 being the number of joints, and

3 being the number of antennas.

As for the diffusion training, we utilize a fixed linear βt

schedule from β1 = 10−4 to βT = 0.02 with T = 1, 000.

Inspired by [21], a simple and elegant implementation of clas-

sifier free guidance is applied. In each epoch during training,

we set the model to train unconditionally for 10% of the time;

And in each epoch during sampling, we linearly interpolate

from unconditional towards conditional sampling. This trick

Figure 2. The configuration of the experimental system for RFID sensing.

Figure 3. A visual comparison of generation quality between the real RFID
data (left) and the generated RFID data (right) in the form of surface plots
when the activity performed was walking.

greatly enhances the stability of the model’s ability to generate

RFID phase variation data with corresponding classes, and

simultaneously, the quality of the generated samples. A total

of six RFID data files with a length of 64 frames per activity

class are used as the U-Net’s training data. These data are

captured from three test volunteers with similar body shapes.

B. Qualitative Results

In Fig. 3, we provide a visual comparison of the generated

RFID phase variation data with the real RFID phase variation

data captured for the activity. The surfaces are plotted in detail

for a complicated activity of walking involving the movements

of all limbs and torso. It can be seen that the generated

RFID data, in the form of phase values, closely follows the

movement trends along each joint and across time. There are

small discrepancies between the generated and ground truth

data, which help to enhance the diversity of the generated

data.

C. Quantitative Results

In computer vision, the Structural Similarity Index

(SSIM) [11] has been recognized as a useful metric to evaluate

how similar the generated data is to the real data, since it not

only measures the average intensity (luminance) and standard

deviation (contrast), but also the details and general pattern

of features inside an image using the structure index. For a

regular image containing, say, a car or portrait, the structure

index can locate the important features across all pixels,

and similarly, the index is naturally suitable for evaluating

the pattern of movement features across time frames and

human joints. We choose a complicated activity of boxing to

demonstrate the similarity in Fig. 4. The SSIM score is 0.65

in this case. From the SSIM map in Fig. 4(c), we can see that

despite having matching patterns and periodicity, there is a

certain amount of discrepancies between the real and generated

data.
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Figure 4. Generated (left) and real (middle) RFID data for boxing presented
as images with scaled colors. On the right is the SSIM map showing the
differences in each pixel between the generated and real data.

Table I
COMPARISON OF FID SCORES: RFID-ACCDM VS. RFPOSE-GAN

Standing still Waving Walking

RFID-ACCDM (proposed) 8.7926 8.2465 20.6782
RFPose-GAN [5] 36.1981 32.2464 45.3412

Our proposed model also excels at generating high-quality

RFID data with great diversity, instead of only generating

homogeneous data similar to the training set (which yield

high SSIM scores). Such diversity is critical for training a

robust model, but cannot be accurately captured by SSIM.

Also note that SSIM could introduce more bias as it focuses

more on the evaluation of a single pair of real and generated

data. Therefore, we also use the Frechet Inception Distance

(FID) [12] to evaluate the distribution similarity between

collections of generated and real RFID data. The FID score

measures the distance between the feature vectors in the high

dimensional latent space. The lower the FID score, the higher

the fidelity of the generated RFID data as compared to the real

data. Specifically, the FID score is defined as:

ϕ2 = ‖µ1 − µ2‖22 + Tr(Cov1 + Cov2 − 2
√

Cov1 × Cov2),

where µ1 and µ2 refer to the feature-wise mean of the real and

generated feature vectors, respectively, Cov1 and Cov2 are the

covariance matrix of the real and generated feature vectors,

respectively, and Tr is the trace linear algebra operation. A

neural network, i.e., the inceptionv3 model, is used to

obtain the feature vectors between the two distributions.

Table I presents the superior FID scores achieved by the

proposed model over our previous work RFPose-GAN [5].

RFPose-GAN deploys a supervised GAN that is capable of

mapping one particular 3D pose data into its corresponding

synthesized RFID data. GAN models are usually harder to

train as they are in constant competition to synthesize data that

rivals the distribution of real data. Synthesizing RF data for

specific activities with minimal variations across time frames

under interference and noise is highly challenging, hence the

high FID scores of RFPose-GAN. The much lower FID scores

achieved by the proposed RFID-ACCDM system are indicative

of the high quality of the synthesized RFID data.

D. Human Activity Recognition Results

Perhaps the ultimate test for the synthesized RFID data is

to examine how useful it is for training the ML model of

a downstream task. We proceed to test the quality of our

generated data utilizing a 6-activity-class RFID-based HAR

system. A simple CNN model is employed for the classifica-

tion task. There are 3 convolution layers, each followed by a

dropout layer. A maxpooling2D layer is located after the

second convolution layer. The convolution output is flattened

and fed into a fully connected layer for the final accuracy

calculation. Since a basic unit for activity classification has a

length of 4 seconds, it takes about 30 minutes for the CNN

model to achieve a modest 6-class HAR performance. This

is why our proposed model becomes highly useful to mass-

produce synthesized RFID data of high fidelity and diversity

for any required activity. The test data are the collected ground

truth data including two different subjects at locations slightly

different from where the training data was collected.

Fig. 5 presents the confusion matrices for RFID-based

human activity classification obtained by models trained by

32 minutes of real data (left), 32 minutes of RFID-ACCDM

generated data, and 128 minutes of RFID-ACCDM generated

data. When using the same amount of synthesized data, the

accuracy and F1 score are both slightly lower than training

with real data. However, with 128 minutes of synthesized

data, both the accuracy and F1 score outperform the case of

training with real data with considerable margins (about 8.3%

improvements). This is an interesting finding, since the 128

minutes of synthesized data come at not much additional cost

than running the RFID-ACCDM code a little bit longer.

Fig. 6 presents a comparison of F1 scores for progressively

increased amounts of synthesized data using our proposed

model at different training epochs. It can be seen that the

F1 score is progressively improved as more synthesized data

are used in model training. With 320 synthesized samples

(i.e., 128 minutes), the F1 curve reaches 0.89 at 400 epochs.

Compared with the case of using a modest amount of real data,

the proposed approach achieves an approximately 8.3% gain

in F1 score. Models trained on the generated data converge

faster and achieve better results within the first 40 epochs. The

model trained on real data suffers a more severe overfitting

effect due to the lack of diversity, and converges at a slower

pace. When there are 96 minutes or more of synthesized data,

the F1 score exceeds that of 32 minutes of real data for all

training epochs. This implies that more generated data help

close the domain gap between real and generated data whereas

RFPose-GAN synthesized data exhibit a rather large domain

gap, causing performance issues. This will be further explored

in the extended journal version of this work.

It is worth noting that the improved F1 scores are obtained

by using pure synthesized data: this is an AIGC for wireless

sensing method, rather than a data augmentation method. This

experiment proves that the generated data by the proposed

RFID-ACCDM method can effectively improve the accuracy

of CNN-based HAR, further validating the fidelity and diver-

sity of the AIGC RFID data using our model.

VI. CONCLUSIONS

In this paper, we addressed the RF data challenge with

an AIGC for Wireless approach. The proposed RFID-

ACCDM framework leverages a CDM to generate useful high-

dimensional RFID sensing data conditioned on a class label.

Through metrics of SSIM and FID, as well as a representative

downstream task HAR, we demonstrated the high quality and

usefulness of the synthesized data by the proposed RFID-
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Figure 5. The confusion matrices obtained with the CNN model trained on 32 minutes of real data (left), 32 minutes of RFID-ACCDM generated data
(middle), and 128 minutes of RFID-ACCDM generated data (right).
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Figure 6. The F1 score of the classification with a progressively increase
amount of generated data.

ACCDM system. The proposed AIGC for wireless sensing ap-

proach provided a compelling solution to the timely problems

of how to avoid the high cost of RF data collection and how

to synthesize high quality RF data.
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