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Abstract— Positioning has recently received considerable atten-
tion as a key enabler in emerging applications such as extended
reality, unmanned aerial vehicles, and smart environments. These
applications require both data communication and high-precision
positioning, and thus they are particularly well-suited to be
offered in wireless networks (WNs). The purpose of this paper is
to provide a comprehensive overview of existing works and new
trends in the field of positioning techniques from both academic
and standard perspectives. The paper provides a comprehensive
overview of indoor positioning in WNs, covering the background,
applications, measurements, state-of-the-art technologies, and
future challenges. The paper outlines the applications of posi-
tioning from the perspectives of public facilities, enterprises, and
individual users. We investigate the key performance indicators
and measurements of positioning systems, followed by the review
of the key enabler techniques such as artificial intelligence/large
models and adaptive systems. Next, we discuss a number of
typical wireless positioning technologies. We extend our overview
beyond the academic progress, to include the standardization
efforts, and finally, we provide insight into the challenges that
remain. The comprehensive overview of existing efforts and new
trends in the field of indoor positioning from both academic
and standardization perspectives would be a useful reference to
researchers in the field.

Index Terms— Applications, adaptive systems, key perfor-
mance indicators, machine learning/large models, positioning
technologies.
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I. INTRODUCTION

A. Background and Motivation

H
IGH-PRECISION positioning has attracted increasing
attention in recent years. In emerging applications

such as extended reality (XR), unmanned aerial vehicles
(UAVs), and smart environments, positioning plays a key
role in accurately mapping a real-world environment to a
digital world [1]. In future 6G networks, it is envisioned
that positioning will become a key function, which can
improve the performance of communication, computing, and
control [2]. Therefore, several positioning technologies (PTs)
have been proposed in order to enhance the performance of
wireless communication networks and satisfy the demanding
requirements of emerging applications.

Global navigation satellite system (GNSS) is a prominent
PT, which can provide meter- to decimeter-level positioning
services on a global scale without relying on the ground-
based infrastructure [3], [4]. The accuracy can be further
enhanced to a centimeter level with the assistance of ground
infrastructure [5], [6]. However, using GNSS for positioning
faces several key challenges: (i) meeting the stringent real-time
requirements of certain emergent applications due to the
significant distance of satellites from the earth; and (ii) high
attenuation and reduced reliability in indoor environments due
to weak satellite signals and obstruction by roofs, wall, and
other solid structures [7].

Against this background, PTs based on wireless networks
(WNs) have attracted increasing attention. In this work, WNs
mainly refer to medium- to short-range WNs over radio
frequency and optical spectra, such as cellular networks,
WiFi, Bluetooth and visible light communications (VLC).
Compared to GNSS, WN-based PTs have limited coverage
and reliance on the ground-based infrastructure. Additionally,
WNs do not have a dedicated spectrum for positioning, and
thus the positioning algorithm needs to be carefully designed
to avoid negative impacts on data communication. However,
indoor environments usually already have existing infrastruc-
ture such as base stations, and the area is generally smaller
than in outdoor environments. Therefore, positioning using
WNs offers several advantages over GNSS systems in indoor
scenarios including (i) lower propagation latency, due to the
shorter signal propagation time of WNs compared to that
of satellites; (ii) improved coverage in indoor environments
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with a high level of reliability [8]; (iii) reuse of existing
WN infrastructure, which makes the solution more cost-
effective [9]; and (iv) enhanced positioning capabilities using
emerging technologies such as artificial intelligence (AI) [10],
large foundation models [11] and reconfigurable intelligent
surfaces (RIS) [12], [13]. Thus, there is an ongoing interaction
between new positioning needs and emerging technologies,
which requires a comprehensive review of the existing PT
requirements.

B. The Evolution of PT Over WNs

Cellular networks are one of the most representative types
of WNs, where the early generations were mainly designed
for communication services. Historically, positioning has been
considered as a byproduct of communications in 1G to 4G,
resulting in a limited level of positioning accuracy (PA). For
instance, during the 1970s, researchers attempted to locate
vehicles using 1G cellular networks based on signal strength,
since communication processes such as cell site selection
would benefit from knowing the location of the vehicle [14].
During the 2G era, as the standard lacked a built-in location
mechanism, global system for mobile communications (GSM)
positioning capabilities were confined to using training or
synchronization signals for computing ranging measurements.
Release 4 of 3G, as described in TS 22.071, introduced
location services with a horizontal location accuracy ranging
from 25 to 200 m [15]. As a result of limited advancements
in positioning in 4G networks, it has been demonstrated to
achieve a 50 m horizontal location accuracy as required by
the enhanced 911 (e911) location requirements defined by the
Federal Communications Commission (FCC) with long-term
evolution (LTE) location methods [15].

With 5G, location information has become increasingly
important, which offers reduced latency and enhanced scalabil-
ity and robustness. Meanwhile, due to the scarcity of wireless
spectrum, technologies using massive multiple-input-multiple-
out (mMIMO) based on millimeter waves (mmWave) are being
exploited, which have short wavelengths and large bandwidths,
thus providing more sensitive signal measurements and better
angular resolution, as well as higher PA [16]. The next gen-
eration wireless network (i.e., 6G and beyond), will introduce
terahertz (THz) and optical (both visible and infrared) bands
as enabler technologies with improved PA for both indoor
and outdoor environments. In 2004, a VLP system based on
VLC was proposed for the first time by Horikawa et al. [17].
It has since been extensively reported that indoor VLP systems
based on light emitting diode (LED) lights with line-Of-sight
(LOS) propagation paths and limited multipath interference
can achieve centimeter-level PA [18], [19], [20].

WiFi is another prevalent type of wireless network. In 1988,
the earliest Wireless Local Area Network (WLAN), named
WaveLAN, was born, which is considered to be the prototype
for WiFi design. In 1997, the IEEE issued the first generation
of WLAN standards, the IEEE 802.11 protocol, which stipu-
lated that WLANs operate in the 2.4 GHz Industrial, Scientific,
and Medical (ISM) radio band. In 1999, the IEEE 802.11b
protocol was released [21]. It was the first popular version of

WiFi with a maximum transmission rate of 11 Mbps, which
can achieve positioning by received signal strength indicator
(RSSI) [22], time difference of arrival [23] etc. In 2016, the
IEEE 802.11 mc was released, which provided a new feature of
round-trip-time (RTT) for precise localization between 1 and
2 m. The latest 802.11ax (WiFi 6E) extends to the 6 GHz
band, offering wider channel bandwidth and less congestion,
which helps to improve the positioning accuracy. In addition
to WiFi, a number of short range wireless technologies such
as Bluetooth, radio-frequency identification (RFID), and ultra-
wideband (UWB) are also available, which are indispensable
for future positioning applications.

C. Relevant Works

References [24] and [25] are earlier survey papers on
wireless positioning, providing a comprehensive introduc-
tion to the principles of positioning technologies based on
cellular networks, WiFi, and others. However, wireless posi-
tioning technologies have continuously evolved in recent
years, with new technologies, techniques, and applications
emerging constantly. To fill this gap, the latest technologies
on cellular networks [1], [15], mmWave [26], THz [27]
and VLP [19], [20], [28] were investigated. For instance,
Trevlakis et al. [1] comprehensively investigated the envi-
sioned applications, major technology enablers including
mmWave, THz and VLP, and key techniques including AI and
RIS for 6G. Chen et al. [27] provided a tutorial on THz, which
identifies the prospects, challenges, and requirements of THz
localization techniques. Although these papers provide a very
comprehensive survey, when considering from the perspective
of whole indoor positioning, both 5G/6G technologies (Cellu-
lar, mmWave THz and VLP) and short-range communication
technologies (WiFi, Bluetooth, UWB and RFID) may coexist,
and thus it is interesting to conduct a comprehensive survey
within the scope of whole indoor positioning. Note that there
are already some recent high-quality, generic survey papers
reported in the literatures [29], [30], and [31]. Yassin et al. [29]
investigated the theoretical aspects and applications of IPSs
including UWB, wireless local area networks, sensors-based
positioning systems, and cooperative positioning systems.
Zafari et al. [30] presented a detailed description of different
IPSs and technologies. However, some advanced IPSs such as
THz are not considered and the key enabler techniques of PTs
are not discussed in [29] and [30]. Moreover, Yang et al. [31]
presented key performance metrics, as well as machine learn-
ing (ML)-based and filter-based methods adopted in IPSs.
However, some key enabler techniques such as large models
and RIS are not discussed. The comparison of existing PTs is
also missing. Moreover, all [29], [30], [31] did not discuss the
standardization progress.

Compared with the existing survey papers on indoor posi-
tioning [1], [15], [20], [24], [25], [26], [27], [28], [29], [30],
[31], this comprehensive survey paper offers the following
key features: (i) reviewing a number of the latest enabling
techniques including ML, large models, RIS, adaptive systems
and soft-defined networks (SDN) for positioning; (ii) intro-
ducing the standardization progress of positioning in various
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WNs technologies; (iii) providing a comprehensive evaluation
criterion for wireless positioning systems (PSs); and (iv)
considering the fusion of different positioning technologies.
The organization of this paper is summarized as follows.

• In Section II, we discuss a series of possible applications
of positioning, and highlight their applications in public
utilities, enterprise, and individual users. We summarize
the key motivations for PSs by analyzing the needs of
these emerging positioning applications.

• In Section III, we summarize the key performance indi-
cators (KPIs) of a PS. We highlight privacy and security
aspects in KPIs. We also summarize the key measure-
ments used for positioning in this section.

• In Section IV, we introduce the advanced techniques used
for positioning including ML, adaptive systems, RIS, and
SDN. Especially, we introduce the possible application of
large models for indoor positioning.

• In Section V, we present different wireless technologies
for positioning. We primarily discuss cellular networks,
WiFi, Bluetooth, RFID, mmWave, UWB, THz, and visi-
ble light. We also discuss the advantages and challenges
of each technology.

• In Section VI, we summarize the challenges and future
research directions of positioning.

• In Section VII, we conclude this paper.

II. APPLICATIONS

It is reported that the market size for general positioning
was approximately $10.9 billion in 2023, and it is expected
to reach $29.8 billion by the end of 2028, with a compound
annual growth rate of 22.3% during the forecast period [32].
Here, we mainly categorize general positioning applications
into three types: public provision, enterprise, and individual
users.

A. Public Provision

In public places such as airports, museums and hos-
pitals, indoor positioning enables precise navigation and
location-based services, enhancing the visitor experience and
maximizing operational efficiency. Public spaces can be made
more accessible and manageable using pathfinding, asset
tracking, emergency response coordination, and personalized
information delivery.

1) Context Aware Location Based User Assistance: For
instance, PSs can enhance visitor experiences by providing
location-based services, such as guided tours, information on
books, and interactive content directly to visitor’s smartphones
or via AR devices. These systems leverage technologies like
Wi-Fi, Bluetooth beacons, and RFID to determine the visitor’s
location in indoor environments and deliver relevant content
accordingly. For example, Huang et al. [33] developed a
NO Donkey E-learning system addressing challenges related
to spatial and learning domain unawareness and navigation
within a library. Similarly, there are other applications such as
museums, airports, underground parking, and tourism services,
among others, that can benefit from positioning and navigation

services. Zhang and Zi [34] designs a museum positioning sys-
tem based on UWB and mobile devices, which represents an
innovative solution that is both cost-effective and highly accu-
rate, particularly suitable for large-scale indoor environments.
Moreover, by integrating mixed reality (MR) technology, this
positioning system is also capable of presenting visitors with
videos, 3D models, and audio information of the exhibits.

2) Medical and Healthcare: In the medical and healthcare
domain, PSs are also useful to enhance operational efficiency,
patient care, and safety. With this capability, not only is asset
utilization, tracking, and management optimized and the time
spent looking for staff and equipment reduced, but emergency
response times are also improved. Furthermore, IPSs enable
hospitals to monitor patient movements, ensuring that patients
who require special care do not wait for too long and/or end
up in restricted areas. Additionally, these systems facilitate
navigation within complex hospital buildings, helping patients
and visitors to locate departments, wards, and amenities read-
ily. Luschi et al. [35] adopted a hybrid mobile application
architecture to deploy multiple platforms. It demonstrated that
the proposed indoor positioning and navigation system within
healthcare facilities can efficiently improve the navigational
experience for staff, patients, and visitors. Bibbò et al. [36]
designed an innovative home care system for the elderly and
patho-logical conditions by calculating the position informa-
tion of elderly patients and identify their behavior. The system
provides services to assist an integrated system for older
adults.

3) Public Security: A public security application requires
the rapid and precise determination of the location of individ-
uals in need of emergency services in order to dispatch police,
firefighters, and medical staff to the exact location of the inci-
dent as quickly as possible. The positioning delay, robustness,
and accuracy are vital in saving lives and reducing the time
it takes to provide assistance. Moder et al. [37] discussed
the use of IPSs in public transport environments to enhance
public safety and accessibility for visually impaired people.
This study demonstrated the potential of indoor positioning
technologies to improve the autonomy and safety of vulnerable
populations in complex indoor environments. Wang et al. [38]
employed a wireless positioning method to acquire the posi-
tional information of all carriages within the airport, utilizing
gyroscopes, magnetometers, and accelerometers. Furthermore,
based on the positional data of the carriages, the author
designed a collision avoidance safety positioning algorithm
that is capable of achieving precision at the centimeter level.

B. Enterprise

This subsection discusses positioning applications from the
perspective of enterprise.

1) UAVs: Nowadays, UAVs play an increasingly impor-
tant role in enhancing the efficiency and accuracy of task
execution, offering innovative and safe solutions for data
collection, monitoring, and logistics delivery, especially in
inaccessible or hazardous environments. For the application of
UAVs, the positioning technology is, therefore, of parament
importance. For instance, in logistics, UAVs use position-
ing to streamline delivery routes, demonstrating their pivotal
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Fig. 1. The general positioning applications.

TABLE I

LOCALIZATION REQUIREMENTS OF DIFFERENT APPLICATIONS

role in automating and optimizing UAV operations across
various sectors, from smart manufacturing plants to disaster
assessment and beyond [50]. Moreover, UAVs themselves can

also provide high-precision positioning services. For instance,
Wang et al. [51] proposed a UAV-based PS to provide
highly reliable positioning services for people in mountainous
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environments, where conventional wireless PSs offered limited
services. Due to their unique ability to navigate to locations
where both the signal propagation conditions and geometric
configurations are optimal for positioning, UAVs can outper-
form conventional ground-based wireless technologies. With
the advancement of positioning technology, UAVs are expected
to find more applications such as manufacturing, farming,
environmental monitoring, and warehouses, among others.
In an indoor environment, Queralta et al. [52] introduced
a positioning algorithm for UAVs based on UWB. This
algorithm not only achieves low energy consumption but also
maintains an error margin within 0 to 4 cm. In over 50% of
cases, the overall error is reduced to within 3 cm. The authors
have proposed a novel dataset for the positioning of aerial
robots based on UWB, which is currently the largest and most
comprehensive dataset available. Furthermore, positioning is
expected to play a key role in advanced air mobility scenarios,
which include a range of innovative use cases, including urban
air mobility for passengers and cargo [53].

2) Location Based Personnel and Customer Assistance:

Positioning can optimize paths and tasks based on the employ-
ees’ locations and deliver targeted advertisement to users based
on their locations, therefore enhancing enterprise efficiency.
It can also enhance safety through location-based alerts. More-
over, high-precision positioning allows enterprises to obtain
accurate information about their users, thereby increasing their
revenue. For example, online advertising is a valuable revenue
stream for providers, with location-based advertising emerging
as an effective means of enhancing the effectiveness of online
advertising. Cheng et al. [54] investigated a framework to
maximize the effectiveness of mobile advertising. The authors
concluded that both service providers and customers can ben-
efit from location information. Ghazal and Alzoubi et al. [55]
validated that the positioning algorithm like the Bluetooth
positioning can be highly beneficial to retailers in terms of cus-
tomer analytics, operational analytics, revenue improvement,
and partnering with service providers to improve customer
experience.

3) Asset Tracking and Management: Positioning allows
enterprises to monitor the location of equipment and assets
in real-time, thus reducing inventory tracking and manage-
ment time and resources. Real-time tracking of goods, for
example, ensures transparency from warehouse storage to
delivery, enhancing the reliability of supply chains in logis-
tics and supply chain management. In the context of smart
factories, indoor positioning is instrumental in optimizing
operational efficiency and safety. As a result, it facilitates
automated inventory management, enhanced workflow opti-
mization, and the prevention of accidents by ensuring workers
do not enter hazardous areas without the proper clearances.
By leveraging indoor positioning, factories can achieve higher
levels of automation, improve resource allocation, and enhance
the overall safety and productivity of their operations [56].
Terças et al. [57] presented and evaluated a Bayesian-based
localization method in the 3GPP indoor factory environment,
utilizing time difference of arrival (TDoA), angle of arrival
(AoA), and hybrid measurements for positioning of factory
goods. The proposed method achieved a decimeter-level and

centimeter-level accuracy, providing the latest industry solu-
tions for practical applications in commercial and industrial
IoT factory scenarios.

C. Individuals

In the online to offline (O2O) ecosystem, PSs play a crucial
role in bridging the gap between digital platforms and physical
stores. In contrast to the previous subsections that focused on
small enterprises and public facilities, this section is primarily
concerned with personal services.

1) Extended Reality: Positioning is a cornerstone of XR
encompassing virtual reality (VR), augmented reality (AR),
and MR. For example, in AR applications, PSs enable the
overlay of digital content over the real world in a way that
seamlessly interacts with the user’s environment. In navigation
aids, educational tools, and gaming the alignment of virtual
objects with the physical world enhances the user’s sense of
presence and engagement [58]. For room-scale experiences
in VR, location tracking is essential, as it allows users to
move freely within a virtual environment that is similar to their
physical environment. As a result of this capability, users are
not only able to interact more effectively within the virtual
domain, but they are also protected from collisions with real-
world objects. Sarlin et al. [59] developed a novel localization
algorithm that employs the method of laser SLAM to ascertain
the position of the user and the coordinates of spatial points,
thereby accurately capturing the AR scenes within large and
diverse environments. This system does not necessitate any
manual tagging or the setup of customized infrastructure,
and it has extended the existing technologies related to AR,
achieving a higher level of accuracy.

2) Smart Life: Positioning is essential in realizing the
vision of a smart life, where digital and physical worlds
converge in order to enhance the quality of life. In smart
homes/offices, location-based technology enables automation
systems to adjust lighting, temperature, and security settings
in accordance with the residents’ presence or absence, thereby
creating a more comfortable and energy-efficient living envi-
ronment. For personal health, wearable devices use location
tracking to monitor physical activities and provide person-
alized service. For example, a robust PS can provide rapid
location and rescue services for an elderly person who has
fallen or assist limited vision people in navigating within
buildings. In the field of transportation, location services can
provide real-time navigation, traffic updates and customized
personalized travel recommendations, thereby streamlining
commutes and reducing congestion. Spachos and Platanio-
tis [39] relies on the proximity and positioning capabilities
of BLE beacons to automatically provide users with cultural
content related to the artworks they observe. Additionally,
it employs a technique based on RSSI to estimate the positions
of visitors within the museum. The system has also developed
an android application to evaluate its performance, offering
the most advanced and satisfactory solutions for smart life.

D. Other Applications

In the above subsections, we showcase several typical
applications across public provision, enterprise, and individual
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use cases. It should be noted that the applications of posi-
tioning are unlimited to the above-outlined ones and can be
extended significantly from different dimensions. For example,
the subjects of positioning can be humans, animals, or objects.
The positioning space can be in the sky, indoors, outdoors,
or underwater. Generally, PT is needed whenever it is neces-
sary to determine the precise location of an object.

E. Motivations

There are several positioning modalities available to support
the above applications including GNSS-, sound-, camera- and
WN-based systems, each having its advantages and limitations.
In particular, GNSS-based PT can achieve accurate global
positioning primarily outdoors. Its performance degrades sig-
nificantly due to the obstructions and multipath effects unique
to indoor environments [60]. Sound-based PT can achieve
positioning without a LOS link but is sensitive to environmen-
tal conditions [61]. Additionally, camera-based PT can provide
accurate location and rich contextual information. However,
its application is mainly limited to object positioning. Here,
the object positioning refers to the process of determining the
position of observable objects like humans and cars. Moreover,
camera-based PT may involve privacy violations in sensitive
areas. Compared to these PTs, WN-based PT can reuse
the ubiquitous WN infrastructures and achieve reasonable
positioning accuracy even in complex indoor environments.
Moreover, due to the ubiquitous presence of wireless access
devices, WN-based PTs are widely used for both object and
transmitter positioning. Here, the transmitter positioning refers
to the process of determining the position of a signal-emitting
device. These advantages make WN-based PT one of the most
popular positioning modalities for the above applications.

A summary of the requirements of typical positioning
applications is given in Table I. As can be observed from
Table I, there are different key indicators for applications.
For example, XR typically requires a delay to be within
20 ms and centimeter-level PA. The intelligent adjustment
application, on the other hand, does not require such high
positioning precision and low latency, but it does require low
energy consumption in order to provide long-term service,
since many sensors are powered by batteries. As medical
and healthcare applications contain life-critical services, the
security of patients’ data is highly important. Therefore, it is
necessary to comprehensively analyze the KPIs, techniques,
and technologies of PSs, which will be discussed in detail in
the following sections.

III. KPIS AND MEASUREMENTS

A. KPIs

The primary objective of IPSs is to achieve high levels
of PA. There are, however, certain applications that require
additional metrics due to their specific features, thus the need
for KPIs. An overview of KPIs (accuracy, energy efficiency,
availability, cost, latency, scalability, robustness, and security)
for IPSs is provided in this subsection.

1) Accuracy: PSs rely heavily on accuracy, which measures
the degree to which the estimated location corresponds to
the actual position. It is typically quantified in terms of
root mean square error (RMSE) or cumulative distribution
function (CDF) of measurements with an error below a
specified threshold. There are different levels of PA, that are
capable of meeting various business functions, which require
a tailored analysis aligned with a specific application scenario.
The implementation of location-based store recommendation
services, for example, does not require highly accurate location
information. Note, a high degree of PA may result in additional
costs. An emergent application such as indoor AR navigation,
however, will benefit from the higher accuracy of the location
information, thus improving the experience for users.

2) Energy Efficiency: A crucial performance indicator is the
energy efficiency of PSs. This is because a PS that consumes
high amount of energy may lead to rapid battery drainage on
user devices, thus limiting its application and marketability.
As a result, a well-designed PS should be energy efficient,
which meets the energy requirement of next-generation wire-
less networks (i.e., 6G). Note, several factors influence energy
efficiency, including transmit power, algorithm complexity,
hardware design, etc., so a trade-off must be made between
them to achieve the best energy efficiency [30], [62].

3) Availability: Devices as well as services are affected by
availability issues. In the former, users can access the PS on
their own devices without the need for specialized terminal
equipment. For example, WiFi and Bluetooth are widely used
technologies that are available on almost all mobile devices.
For the latter, availability refers to the continuity and stability
of the PS’s services. PSs with good availability should con-
sistently provide accurate, reliable, and real-time positioning
services, ensuring users will always receive reliable results
regardless of the circumstances.

4) Cost: Cost is an important aspect of the design and appli-
cation of PSs, which necessitates a thorough consideration
of the costs throughout the development process. The PS’s
cost is influenced by a variety of factors, including hardware
expenditures, time investment, human resources, as well as
maintenance and expansion of the system. In order to minimize
overall cost, an ideal PS should reduce the need for additional
infrastructure and avoid relying on high-end user equipment
or systems that are difficult to deploy widely.

5) Latency: The term “latency” refers to the amount of
time that elapses between sending a request and receiving the
corresponding location results. Latency can have a significant
impact on the user experience in many real-time applications
and can even be life-critical in some circumstances. For
example in intelligent transportation systems, the delay in
positioning may prevent vehicles from avoiding obstacles or
adjusting direction in time, thereby increasing the chance of
accidents.

6) Scalability: Scalability refers to a system’s ability to
expand geographically and to deal with the increasing number
of devices. As the number of users or devices that rely on the
PS increases, a system with good scalability should maintain
a stable performance and accuracy. As the demand increases.
scalability also implies that the system can effectively manage
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its resources, such as bandwidth and power consumption, in an
effective manner. In addition, as technology develops and
advances, a scalable PS should also be able to integrate new
technologies and standards.

7) Robustness: The robustness of PSs refers to their ability
to withstand disturbances and signal losses that may impair
their functionalities. In practice, the positioning environment
is complex with different situations, such as extreme weather
conditions, obstructions, noise and interference, etc. PSs
should adapt to different environmental conditions and provide
accurate positioning service even in harsh conditions that can
affect the transmission of signals.

8) Security and Privacy: The privacy issues in positioning
primarily involve the disclosure of user location information
and surrounding environmental information [63]. User location
information can now be easily correlated with the locations
of multiple IoT devices, potentially exposing personal infor-
mation such as user health and hobbies. Therefore, it is also
crucial to fully consider privacy issues during positioning.
Additionally, the disclosure of user location information also
implies security threats to the localization system. In particular,
the main security threats to IPSs include [45] 1) database cor-
ruption; 2) radio frequency interference; 3) malicious nodes; 4)
IoT privacy protocol devices; and 5) network security. Gener-
ally, common security issues are related to protecting network
nodes, communication links, and data for positioning purposes.
Therefore, security and privacy are also important performance
indicators, especially for future intelligent applications that
contain a significant amount of personal information and
life-critical applications that may lead to serious consequences.

B. Measurement

1) TOA: A time of arrival (TOA) or time of flight (TOF)-
based distance estimation is based on the propagation time of
the signal from the transmitter to the receiver. Two common
methods are employed to obtain TOA information. The first
method involves estimating the round-trip time (RTT) by
including timestamps in the transmission and reception times
of the signal. Alternatively, if the system is synchronized, TOA
can be directly inferred from the signal, and the time resolution
is primarily dependent on the bandwidth of the signal.

ToA-based two-dimensional (2D) positioning algorithms
require at least three non-coplanar access points (AP) or
anchors, to ensure unique positioning results [64], see Fig. 2.
Assume that the transmitter sends a signal at time 0, and the
i-th AP receives the signal at time ti. The distance between
the transmitter and i-th AP can be calculated as di = c · ti,
where c = 3×108 m/s is the propagation speed. The distances
between the three APs and the transmitter are d1, d2, and
d3, respectively. Assuming that the AP location is the center
and the measured distance is the radius, the target can be
located by drawing three circles intersecting at one point. The
least square method can be used to calculate the approximate
position of the target [65]. Alternatively, a three-dimensional
(3D) PS requires a minimum of four APs. Khalaf-Allah [66]
proposed a solution for the three-anchor ToA-based 3D PS
without the need for an initial position guess in order to reduce
the hardware deployment costs.

Fig. 2. TOA positioning schematic diagram.

TOA directly measures the arrival time of the signal and
can filter out the multipath effects, thereby improving the
PA. This technique, however, has the drawback of requiring
highly accurate time synchronization between the transmitter
and the receiver. A synchronization error of one nanosecond
results in a positioning error of 0.3 m [67]. The process of
achieving synchronization among all units is often challenging
and costly, and there are some solutions for PSs using the TOA
algorithm when synchronization is imperfect [68], [69]. For
TOA-based PSs [70], position estimation accuracy typically
falls within the range of millimeters or centimeters under
perfect synchronization between the transmitter and receiver.

2) TDOA: To relieve the critical strict synchronization
requirement between the transmitter and the receiver, TDOA
is proposed. TDOA determines the receiver position by mea-
suring the difference in signal arrival time, and thus it only
requires strict synchronization between APs [71]. Here, TDOA
can either refer to the TDOA of multiple nodes or the TDOA of
multiple signals [72]. In approaches based on TDOA of mul-
tiple nodes, several receivers are placed at different locations
and kept synchronized in time. Periodically, the transmitter
transmits signals and the receivers record the time at which
they are received. The time difference between signal arrivals
is then calculated. For approaches based on TDOA of mul-
tiple signals, the transmitter transmits two different types of
signals with different propagation speeds [73], and the distance
between these two devices can be determined by measuring
the difference in time between the arrival of these two types
of signals [74].

The TDOA with multiple nodes requires at least three
synchronized APs to locate the transmitter, see Fig. 3. The
technique measures the time difference ti,j between a pair
of APs, i.e., AP i and j. The distance difference between a
pair of APs is defined as L = c · ti,j . Using AP A2 and AP
B2 as an example, a hyperbola can be obtained by combining
the distance difference between the two APs. Similarly, using
APs A2 and C2, another hyperbola can be obtained, and the
intersection point of the two hyperbolas is the position of the
user equipment (UEs) [24]. The hyperbola can be expressed
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Fig. 3. TDOA positioning schematic diagram.

Fig. 4. AoA positioning schematic diagram.

as:

L =

√

(xi − x)
2

+ (yi − y)
2

+ (zi − z)
2

−

√

(xj − x)
2

+ (yj − y)
2

+ (zj − z)
2
, (1)

where (xi, yi, zi) is the coordinate of i-th AP and (x, y, z)
is the coordinate of the transmitter. The system of hyperbola
equations can be solved either through linear regression or by
linearizing the equation using Taylor series expansion [75].

In general, the TDOA eliminates the need for synchroniza-
tion between the transmitter and receiver, which simplifies
the PS design and enhances its scalability. However, the
PA of TDOA is susceptible to environmental factors such
as multipath effects, noise, and non Line-Of-Sight (NLOS).
Compared to the RSS-based positioning, the TOA/TDOA-
based positioning is more secure since it relies on signal
propagation time estimates, which cannot be controlled by the
attacker due to the fixed speed of light [76].

3) AoA: The AoA technique estimates the angle of the
transmitter to the receiver by equipping the receiver with
an antenna array. As shown in Fig. 4, a multi-antenna array
produces a time difference in the reception of signals arriving
from different angles, which corresponds to the arrival angle
of the signals. The AoA algorithm requires at least two APs
with known positions. Starting from the AP, the ray formed
will pass through the target, which is located at the intersection
of the two rays.

AoA-based PS does not require time synchronization and
offers higher flexibility compared to TOA or TDOA-based

systems, as it only requires the deployment of two APs
equipped with antenna arrays. AoA offers accurate estimates,
particularly in scenarios where the distance between the
transmitter and receiver is relatively short [45]. For example,
in Bluetooth 5.1 standard, the application of AoA greatly
enhances the PA. Zhao and Yang [77] implemented an AoA
IPS based on Bluetooth 5.1 to realize the asset positioning in
the warehouse, which has the advantages of simplicity, low
installation costs, and sub-meter PA.

The practical implementation of the AoA technology faces
several challenges. In the absence of AoA not combined with
distance information, only a relative coordinate system can
be used for estimating a position. For accurate positioning,
hybrid algorithms integrating AoA with other PS, such as
TOA or TDOA, have been proposed [78], [79], [80]. Moreover,
blockage and multipath propagation may result in inaccurate
estimation of AoA.

4) POA: The phase of arrival (POA) utilizes the phase of
the carrier signal to estimate the distance between the transmit-
ter and the receiver. POA measures the phase of the signal at
the receiver, which is modulated with different frequencies and
has the same initial phase at the transmitter. By calculating the
phase difference, the distance between the two can be obtained.
The POA measurement can be combined with ToA, TDoA,
or RSSI to improve the accuracy and performance of the PSs.
Since distance information is related to the signal phase, POA
has relatively lower requirements for signal synchronization,
thereby avoiding the impact of time synchronization inaccu-
racies on positioning results. POA-based methods have the
disadvantage of requiring LOS propagation paths to achieve
high precision positioning, which is challenging to realize in
real-world situations [30]. The POA-based PS is vulnerable
to various range reduction attacks. An attacker can reduce the
distance measured by a multi-carrier position system to an
arbitrary value, thereby compromising its security [81].

5) RSS: Received signal strength (RSS) is one of the most
popular measurements in IPS due to its simplicity and low
costs. Here, RSS typically refers to the absolute measure of
the signal strength in dBm or mW at the receiver. A concept
closely related to RSS is RSS indicator (RSSI), which is
a relative measure of RSS in arbitrary units. Often, RSSI
values are often mapped to a scale defined by the hardware
manufacturer, which makes is easier to interpret than RSS
values. For instance, Atheros WiFi chipset utilizes an RSSI
range between 0 and 60; Cisco, on the other hand, uses a
broader RSSI range of 0 to 100 [30].

As we know, RSS attenuates with the transmission distance.
Therefore, given the channel model, the distance between
the transmitter and the receiver can be determined. Here, the
channel model varies depending on the types of transmission
signals. For instance, for visible light signals, the deterministic
Lambertian channel model is typically employed to calculate
the distance between the transmitter and the receiver [82],
while for terahertz (THz) signals, deterministic, statistical, and
hybrid approaches channel models may be used depending to
the specific application scenarios [83]. Considering the VLP,
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for example, its RSS in mW can be expressed as:

Pr =
U

dm+3
, (2)

where d is the distance between the transmitter and the
receiver, and U is a parameter related to the transmit power,
the configurations of the transmitter and the receiver, and
the emergence and incidence angles of the transmission link.
Therefore, when the system parameters are known, U can then
be calculated, and d can be determined from measured Pr

according to (2).
Based on RSS, two types of positioning algorithms can

be used: (i) the fingerprinting algorithm, where the collected
data from various known locations is stored in a database.
To localize a device, it measures in real-time the RSS values
from the surrounding APs in real-time, and compares them
with fingerprints stored in the device. Common matching
techniques include the following methods [30]: probabilistic,
artificial neural networks, k-nearest neighbor, and support
vector machine. (ii) The second type is proximity, which is
a simple matching strategy that estimates the location of the
device to be the same as that of the nearest access point
(AP). However, its accuracy is limited and heavily dependent
on the density of APs. RSS-based positioning is particularly
advantageous due to its low hardware requirements and ease
of implementation, making it a preferred method for situations
where advanced PSs may not be practical or cost-effective.
It is widely used in a variety of environments, from commer-
cial settings for tracking customers to industrial settings for
monitoring assets. However, RSS also faces some challenges.
In complex indoor environments, factors such as multipath
propagation can significantly distort the RSS values, resulting
in inaccuracies in positioning. Additionally, environmental
dynamics such as human movement and changes in interior
layout negatively affect RSS-based methods. The RSS- and
AoA-based PSs are among the least secure ones since the
adversary can increase the signal strength or build special
antennas to fabricate incorrect measurements [84].

6) CSI: CSI refers to the fine-grained characteristics of the
wireless propagation path such as attenuation and phase shift,
which is crucial in both data transmission and positioning.
In contrast to RSS which measures the average amplitude of
the signal across its entire bandwidth and aggregates signal
strength from all antennas, CSI measures both the amplitude
and the phase of each carrier frequency [85]. Zheng et al. [86]
proposed a support vector machine model for an NLOS-based
system based on CSI amplitude, which outperformed the
Rician-K and Skewness NLOS detection methods. Moreover,
both the channel impulse response (CIR) and the channel
frequency response (CFR), which are two variations of CSI
techniques, are commonly used in multipath environments for
different PSs including geometrical methods [87], fingerprint-
ing [88], [89], or ML-based method [90], [91], [92].

It is generally acknowledged that CSI provides a high level
of granularity for precise location estimation and is more
robust in multipath and NLOS scenarios than RSS-based PSs.
Additionally, CSI provides a wealth of information that can
be used by ML algorithms to further enhance PA. However,

in dense, cluttered indoor environments, signal reflection, and
occlusion can have a significant impact on CSI, which further
affects the PA. Moreover, the calibration of the CSI-based
PSs can also be laborious in site surveying. Compared with
RSS, CSI can provide finer-grained information over multi-
ple channels and is more robust to environmental changes.
However, the leakage of CSI data will expose the user’s
location to attackers and compromise the user’s privacy [93].
Table II summarizes and compares the key features of all
measurements. Note computation in Table II refers to the
computation cost of the positioning measurements.

IV. KEY ENABLER TECHNIQUES

A. Machine Learning

ML enables computers to analyze data (i.e., user behavior
data, wireless network, and environmental data) for IPS.
In particular, ML has two key roles in PSs. (i) ML can
extract the positioning features from wireless pilot signals to
build a relationship between them and user positions. Here,
ML algorithms can be viewed as black boxes with the inputs
being wireless pilot signals (in the time or frequency domain)
or features (i.e., RSS) of CSI signals and the output being
the user’s position. As opposed to traditional methods such as
TOA methods [94], which manually extract user positioning
features (i.e., the distance between the access point and the
user), ML-based PSs can automatically extract user positioning
features. Hence, ML-based PSs can extract more features from
signals in order to determine a user’s position. The ML meth-
ods, however, require several labeled data points for training,
which is a time-consuming and labor-intensive process. (ii)
ML extracts CSI from pilot signals and the extracted CSI,
which will be used for traditional positioning methods. For
example, one can use ML methods to (i) determine whether
the transmission link is LOS or NLOS; (ii) predict the arrival
time of the signal; (iii) estimate the distance between the BS
and the user; and (iv) estimate the angle differences between
two antennas. The ML methods, as opposed to traditional
methods [95] not being able to extract CSI features accurately
in NLOS-based systems, is capable of analyzing the hidden
wireless environmental features, resulting in accurate CSI
features that can be used to perform traditional positioning.
In addition, ML methods for CSI feature extraction can
be trained by using the simulated data, which reduces the
overhead associated with generating labeled data.

Next, we discuss several recent works on the use of ML
algorithms for both user positioning and CSI feature extrac-
tion. Current works [10], [96], [97], [98] have studied the
use of multilayer perceptron, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), generative mod-
els, and attention-based networks (i.e., transformer) to process
CSI data and directly output user positions. Note, (i) a CNN
is used when the CSI data can be viewed as an image
(i.e., CSI data generated from multiple antennas); and (ii)
RNNs are used when the CSI data are time-dependent, while
attention-based networks are used to extract CSI features that
can significantly contribute to estimation of the user position.
Meanwhile, some current works [99], [100] have studied the
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TABLE II

POSITIONING MEASUREMENT COMPARISON

use of previously mentioned NNs for CSI feature prediction.
In [99], the deep neural network (DNN) method was proposed
to learn the distribution of known RSS samples by estimating
a user’s location by comparing the similarity of online RSS
samples with the reference fingerprints. In [100], three DNN
models were developed using pre-proposed data for training.
Following training, a subset of samples is selected from the
training set for assessing the models, which are then employed
during the testing phase to predict real-time CSI data.

To further improve the user position and CSI feature
prediction accuracy, current works [101], [102] [103] also
investigated the use of ML to analyze multi-modal data (i.e.,
camera images, CSI data, earth magnetic field readings) for
user positioning. In [101], a system based on deep long-short-
term memory (LSTM) was proposed for indoor positioning
using magnetic and light sensors embedded in smartphones.
In [102], the amplitude information extracted from the CSI
together with the calibrated phase information as fingerprints
were used to train a DNN-based regression model in order
to estimate the target location. The authors [103] utilized a
CNN-based image retrieval strategy that represented the scene
by CNN features and matches the query image with database
images. In [92], a VLC-IPS with a camera-based receiver was
proposed, where the receiver’s position is precisely estimated
based on the decoded block coordinate and backpropagation
ANN with a mean PA of 1.49 cm.

B. Large Models

Large models belong to the field of ML. To distinguish large
models from positioning methods based on traditional ML
methods, we introduce them separately due to their immense
potential. The traditional ML-based method has two issues:
(i) largely relying on labeled data, resulting in the need
for a significant amount of manual labor; and (ii) limited
adaptability to new environments. Large models are expected
to alleviate these problems. First, large models are expected to
be universal, indicating that they can handle a wide array of

tasks and applications within the wireless domain, irrespective
of the network architecture and standards [104]. Therefore,
a pre-trained large model will be capable of accurately locating
multiple users within the network [11]. In this case, like
GPTs in natural language processing, one may directly use
pre-trained large models tailored for WNs, thus significantly
alleviating the reliance on labeled data. Moreover, multimodal
large models, through the integration of multimodal data, are
expected to parse and comprehend various information in
the environment, including RF-based feedback signals, visual
gestures, inertial measurement unit (IMU) motion sensor data,
and 3D maps [104], thus introducing sensing and prediction
of the surrounding environment in complex settings. Second,
multimodal large models should be able to understand the
connections between RF, visual, and inertial data among other
modal data types, thereby reducing the need for labeled RF
data and the manual labor costs associated with data anno-
tations. Moreover, considering the generative capabilities of
multimodal large models, it is anticipated that limited wireless
data will be able to generate super-resolution 3D images of
the surrounding environment. Incorporating 3D image data
with the RF data may provide a better understanding and
prediction of user behavior [11], resulting in better proactive
positioning, beamforming, power distribution, switching, and
spectrum management.

Overall, large models have a wide range of applications in
positioning. Although large models are promising for wireless
positioning, several challenges still persist. First, due to the
variability of wireless channels, ensuring that large models
maintain accurate positioning performance across different
devices, geographic locations, and network conditions requires
effective learning and training of diverse datasets, including
communication standards, wireless signals and images, which
is challenging. Moreover, wireless positioning often requires
real-time or near real-time responses, which imposes stringent
demands on the response time and processing speed of the
models. Third, hallucination is a persistent challenge of large
models [105], which could cause serious consequences for
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positioning applications, especially for life-critical applications
such as medical and healthcare. Therefore, further research is
needed on how to eliminate the above challenges.

C. Adaptive Filter

Adaptive filter refers to a digital filter that dynamically
adjusts its coefficients to adapt to changing properties of
the signal or the environment in which it operates. It is
widely used in fusion positioning to track mobile targets based
on the continuous motion information of the target. Note
that robust and efficient mobile positioning is an important
prerequisite for applications like public safety. Compared to
snapshot positioning, adaptive filtering-based positioning fully
utilizes the continuous state transition of targets during motion.
It integrates positioning results from different methods at
each node and adaptively weights them to output the optimal
result. The method enables efficient and precise continuous
tracking, satisfying the requirements of applications such as
robot navigation and target tracking. Note different sources of
data may have varying levels of accuracy and features, which
change over time due to environmental factors like signal
obstruction or sensor errors. Inertial navigation methods, for
example, provide continuous estimation of target orientations
and positions but suffer from the problem of cumulative
errors [106]. PSs based on the UWB can provide valuable
precious position observations, albeit with the limitation of
intermittent output. UWB can assist in the correction of inertial
navigation errors, while inertial navigation can provide stable
positioning services when UWB fails. Therefore, exploiting
the complementary nature of deeply fusing diverse position-
ing methods based on adaptive filters and fusing them to
obtain more accurate estimates of position and orientation has
received considerable attention [107]. The two most employed
filters in PSs are the Kalman filter (KF) and the particle filter
(PF) [108].

1) Kalman Filter Based Methods: Kalman filter is designed
to process a sequence of measurements observed over time,
which may contain statistical noise and various inaccuracies.
It generates more precise estimates of unknown variables than
those derived from a single measurement. This is achieved
by estimating a joint probability distribution of the variables
for each timeframe, thereby enhancing the accuracy of the
output. This technique involves the acquisition of two sets
of data: the estimation from the previous time step and
the real-time measurement [109]. As a result of combining
these two sets of data in real-time estimation, the obtained
estimation represents the transition process of the system state.
This approach addresses the challenging task of estimation in
non-stationary random processes. However, the initial imple-
mentation of KF primarily relied on the state equation, making
it only applicable to linear systems. In subsequent research,
various improved KF techniques have been developed for the
optimization of estimates in nonlinear systems. Among them,
the most representative ones are the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF).

The EKF introduces Jacobian matrices to address the chal-
lenges in nonlinear systems by means of local linearizing.

Feng et al. [110] proposed an integrated IPS using EKF,
demonstrating that the proposed algorithm can significantly
reduce the complexity and costs of base station deploy-
ment. In [111], an adaptive feedback extended Kalman filter
(AFEKF) algorithm was proposed to fuse Bluetooth low
energy (BLE) and pedestrian dead reckoning (PDR), in which
the range measurement is deeply fed back to the estimated
position at the next moment. Experimental results showed
that the AFEKF algorithm improves the accuracy by 23.4%
compared with the classical EKF algorithm.

The UKF scheme combines the unscented transform (UT)
with KF framework, thereby making the equations of a non-
linear system compatible with the standard KF framework.
In [112], a multisensor fusion technology based on UKF
was used to avoid the issue of neglecting the high-order
terms of the nonlinear observation equations of UWB and
IMU, which have the potential to improve PA. In [113],
an adaptive maximum correntropy unscented Kalman filter
(AMCUKF) was proposed to fuse IMU and UWB data. Using
the maximum correntropy criterion, the algorithm suppresses
the non-Gaussian noise, thus improving the PA and robustness
in complex environments.

In addition to the enhancements to the KF mentioned above,
other fusion solutions based on KF have been introduced. The
authors in [114] proposed an adaptive federated Kalman filter
(AFKF) algorithm, where the sharing factors of information
fusion and distribution in the FKFr are adaptively adjusted
based on the information of sub-filters. The results showed that
the PA is improved by more than 10% compared with other
FKF algorithms. In [115], an enhanced ensemble transform
Kalman filter (ETKF) was proposed, which fused the predicted
position by a PDR and the positional measurement by RSS
fingerprinting, thereby estimating the user position based on
the ensemble transformation. The experimental results showed
that the enhanced ensemble ETKF can achieve higher PA than
ETKF and other ensemble-based KFs [115].

2) Particle Filter Based Methods: PF is a nonparametric
Bayesian filter algorithm based on Monte Carlo methods and is
employed for the estimation of states in hybrid PSs. Compared
with the KF algorithm, a unique feature of the PF algorithm
is its sampling approach, which utilizes a set of randomly
sampled particles with the associated weights to approximate
the posterior distribution of the state [116]. Note that by
(i) relaxing the constraints of linearity and Gaussianity, it is
possible to handle nonlinear models and non-Gaussian noise
distributions; and (ii) adjusting the weights and positions of
particles, the algorithm yields an estimate of the state of
the system, i.e., the position of the user. The selection and
computation of the weights depend on the PSs to be fused.
In [117], a feasible method utilizing particle filter to fuse
data-driven inertial navigation and BLE was proposed for
indoor positioning. The proposed fusion algorithm reduced
the mean positional error by more than 25% compared with
Bluetooth-based positioning.

The current research primarily focuses on enhancing the
weight strategy and modifying the structure of filters. The
authors in [133] proposed an optimized particle filter algorithm
that fused PDR and geomagnetic positioning by introducing
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TABLE III

ADAPTIVE FILTER BASED FUSION POSITIONING COMPARISON

a firefly algorithm to optimize PF, thereby enhancing parti-
cle updating and target state detection. Compared with the
conventional particle filter, the PA was improved by 120%.
In [120], a federated particle filter (FPF) with information
sharing was proposed to fuse PDR and WiFi. The system
is comprised of multiple sub-filters and a primary filter. The
observed data input was initially optimized for the corre-
sponding sub-filters. Subsequently, the obtained output was
applied to the primary filter for the final estimation. The
experimental results demonstrated that the proposed method
can effectively control the accuracy to within approximately
1 m. The authors in [119] proposed TrackInFactory, a solution
based on PF that fuses INS and WiFi information in a novel
way. The scheme dynamically updates the particles’ weights
using a new and reliable metric that defines the confidence
of each position estimate, with a mean error of 0.81 m.
Also, in [121], a novel maximum likelihood particle filter was
proposed to ensure that all particles are efficiently used. The
performance of the algorithm exceeded the requirements of the
5G NR Release 16 standard from 3GPP. In [134], the authors
developed a high-precision PS that completed an enhanced
particle filter with an adaptive reassignment of weights to
different positioning modules. The system outperformed the
current state-of-the-art PSs and achieved an average PA of
0.4 m.

In summary, adaptive filters have gained widespread
application in fusion positioning due to their ability to

autonomously update filter coefficients depending on the envi-
ronment in which they are used. There are, however, some
challenges associated with adaptive filters including the coef-
ficient adjustment delays and slow convergence rates, which
makes them less suitable for real-time data fusion tasks with
stringent timing requirements [135]. Table III summarizes the
current research and provides an evaluation of the attributes
of the fusion PSs based on adaptive filter [110], [111], [112],
[113], [114], [115], [117], [118], [119], [120], [121], [122],
[123], [124], [125], [126], [127], [128], [129], [130], [131],
[132].

D. Reconfigurable Intelligent Surface

RIS is a plane composed of numerous tiny antenna
components, which can be programmatically controlled to
dynamically modify the propagation characteristics of elec-
tromagnetic waves (i.e., amplitude, phase, and polarization)
[136], [137], [138]. RIS optimizes the performance of wireless
communication networks by efficiently controlling wireless
signals through altering the electromagnetic wave propagation
environment [13]. RIS operates on the principle of electro-
magnetic wave reflections. Specifically, when electromagnetic
waves, such as wireless signals, encounter the RIS, each
scattering element of RIS independently adjusts the phase
and amplitude of the reflected waves. By precisely adjusting
these parameters, RIS can change the propagation direction
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of electromagnetic waves, and concentrate or disperse energy,
thus controlling the propagation of signals in specific direc-
tions.

In PSs, RIS generally plays two roles: (i) as passive reflec-
tors, which are most used [12]; and (ii) active reflectors (i.e.,
active transceivers) [13]. When RIS acts as reflectors, it can
create additional signal propagation paths to bypass blocking
and shadowing, thus introducing extra degrees of freedom
in the design of PSs [139]. In [140], a reflector-based RIS
was introduced in a mmWave multiple-input multiple-output
(MIMO)-based PS. Also introduced were Fisher information
matrix (FIM) and Cramer–Rao lower bound (CRLB) for the
standard deviation of the positioning estimation error as well
as the orientation estimation error, which demonstrated that
the proposed PS is superior to the traditional PS. The authors
in [141] used reflector-based RIS in the scenarios with no LOS
paths, and derived the FIM and CRLB in order to estimate
the absolute position of the mobile station. By optimizing the
reflect beamforming design to minimize CRLB, the PA was
improved by the decimeter level or even the centimeter level
[142], [143]. By acting as transmitters [144] or receivers [145],
the RIS can be operated as a reconfigurable lens in PSs.

The advantages of applying RIS in PSs are as follows:
(i) significantly enhanced PA by adjusting signal propagation
paths [146]; (ii) enhancing the coverage area by smartly
reflecting signals to avoid obstacles, thereby establishing adap-
tive virtual LOS connections in areas with poor coverage
or limited vision spots [147]; and (iii) cost-effective, using
reflective components, miniature antennas, and diodes. The
challenges of RIS in PSs, however, are in the design and
implementation complexity, highly precise control, standard-
ization, and compatibility [12]. In addition, the RIS technology
lacks unified standards [148], and more research works need
carrying out on protocols [149].

E. SDN

SDN represents a new paradigm of network architecture
designed to enhance network flexibility, manageability, and
programmability [150], [151]. The fundamental idea of SDN is
to separate the network control layer from the data forwarding
layer [152], which allows more agile handling of network
traffic and policies [153]. In conventional networks, each
network device, such as switches and routers, possesses its
own control logic and forwarding functions. As a result of
SDN, network management is simplified and optimized by
abstracting the control logic (which determines how and where
data is forwarded) from physical devices and centralizing it
into a single point of control,i.e., the SDN controller [153],
[154], [155], [156], [157].

In wireless sensor networks, SDN can enhance the efficiency
and accuracy of positioning services [158]. In PSs, SDN can be
used with either gainful methods or ungainful methods [159],
where in the former the focus is on enhancing PA and
reducing energy consumption. Kim et al. [158] proposed an
SDN-based positioning node selection algorithm that used
a linear least square algorithm and RSS measurements to
implement Euclidean position estimation. Simulation results

showed up to 45% increase in PA. In [160], a centralized
anchor scheduling scheme was proposed, which used the SDN
controller to broadcast messages among nodes and localized
mobile agents. Based on simulation results with a 14,400
m2 sensor field with 200 randomly placed anchor nodes and
10 mobile agents, it was shown that the scheme reduced the
number of active anchor nodes and reduced the PA with
a significant reduction in the energy consumption, thereby
increasing the network lifetime. Some similar works can be
found in [161], [162], and [163]. In ungainful methods, SDN
does not typically incorporate the computational requirements
of positioning in the control-plane [164]. Instead, they explore
the potential of combining SDN with positioning.

SDN can enhance various aspects of positioning, such as
reducing energy consumption and improving accuracy [165].
Specifically, SDN can not only provide an energy-efficient
method for managing sensors but also manage networks,
thereby reducing convergence time. Due to these two char-
acteristics, SDN can reduce energy consumption and reduce
positioning latency in PSs [165]. Based on high centrality
and global perspective on positioning nodes [153], SDN has
improved PA [158], [159], [162].

V. TECHNOLOGIES AND SOLUTIONS

A. Celluar Networks

Positioning has always been an integral component of stan-
dardized 3GPP technologies. In 3GPP 5G New Radio (NR),
UEs are provided with enhanced positioning capabilities.
In terms of frequency bands, NR operates with wide frequency
spectrum at both lower frequency range (FR1, below 6 GHz)
and mmWave range (FR2, above 24.25 GHz). This allows
NR to leverage a wide signal bandwidth to achieve higher
PA with timing measurements. A 5G enabler with higher data
throughput and coverage areas, massive antenna arrays, and
beamforming techniques can also be leveraged to locate UEs
through accurate angular measurements.

3GPP 5G NR has supported positioning features since
its inception in Release-15. However, Release 15 position-
ing support is limited to the so-called RAT (Radio Access
Technology)-independent positioning methods (i.e., using sig-
nals from the UE’s various sensors and WiFi/Bluetooth
receivers) and LTE-based positioning. 3GPP 5G NR Release-
16 introduces native 5G positioning signals and extends the
standardized positioning capability beyond those defined in
4G LTE. Release-16 specifies a range of PSs to satisfy the
needs of regulations, such as FCC’s e911 emergency calls
requirements, and commercial use cases, such as emergency
calls, indoor factories, and vehicle-to-everything (V2X). The
target requirement for commercial use cases is to achieve
a 2D positioning accuracy of less than 3 m and 10 m for
80% of UEs in indoor and outdoor scenarios, respectively.
The regulatory requirement mandates a 2D PA of 50 m for
both indoor and outdoor applications. The PSs include those
using the timing measurements between the UE and multiple
transmission-reception points: downlink or uplink TDoA and
multi-cell round trip time (multi-RTT). In terms of reference
signals, the uplink-sounding reference signal (UL-SRS) for
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positioning and the downlink positioning reference signal (DL-
PRS) were introduced in Release-16. Both can be configured
with a bandwidth in the range of 24 to 276 PRBs in steps
of 4 PRBs. This provides a large bandwidth of up to 100 MHz
for a 30 kHz subcarrier spacing in FR1, and up to 400 MHz
for a 120 kHz subcarrier spacing in FR2. As a result of large
bandwidth, timing measurement can be much more precise
than that of LTE. Additionally, positioning methods are defined
to leverage angular measurements from antenna arrays, namely
the downlink angle of departure (DL-AoD) and the uplink
angle of arrival (UL-AoA).

3GPP Release-17 addresses the stringent requirements of
new applications and industry verticals, including increased
accuracy and lower latency, while maintaining high integrity
and reliability [166]. For general commercial use cases, the
target requirements for 90% of UEs are horizontal and vertical
PAs of < 1 and < 3 m, respectively. For industry IoT (IIoT)
use cases (e.g., factory automation), the target requirements for
90% of UEs are horizontal and vertical PAs of < 0.2 and <
1 m, respectively. Release-17 specified numerous enhancement
features to satisfy the tight requirements [167]. These include
methods to mitigate transmission and reception timing errors
at the UE and gNB; methods to improve angular measurements
for DL-AoD and UL-AoA; LOS -NLOS indicator; positioning
of UEs in the inactive state; on-demand transmission and
reception of DL PRS; and GNSS positioning integrity deter-
mination.

In 2023, the work on 3GPP Release-18 for positioning is
being carried out [168], where 5G NR positioning features are
further enhanced, including:

• Two methods are specified for achieving higher PA:
(i) increasing the transmission/reception bandwidth of
the DL and UL reference signals for positioning by
bandwidth aggregation of intra-band contiguous carriers;
and (ii) using the NR carrier phase measurements to
achieve centimeter-level PA, similar to GNSS carrier case
positioning defined for outdoor applications.

• Sidelink (UE-to-UE) positioning is supported in all
coverage scenarios (in-coverage, partial coverage and out-
of-coverage) with a focus on V2X and public safety use
cases.

• Low power high accuracy positioning (LPHAP) is sup-
ported for IIoT use cases such as massive asset tracking
and automated guided vehicles (AGV) tracking in facto-
ries. The emphasis is on lower UE power consumption
while achieving a target accuracy of < 1 m, where the
device battery life is expected to last from 6 months to a
year.

• PA enhancement features are introduced in Redcap UEs,
to deliver high-accuracy positioning even for devices with
a limited RF bandwidth.

• Positioning integrity is supported for mission-critical use
cases that rely on positioning estimates and uncertainty
estimates [167]. The integrity of RAT-dependent position-
ing methods provides a measure of trust in the accuracy
of the position-related data as well as the capability to

Fig. 5. Direct AI/ML positioning.

Fig. 6. AI/ML assisted positioning.

provide timely alerts when the accuracy may deteriorate
beyond acceptable levels.

In parallel to the Release-18 work item for positioning,
a study on ML-based positioning is being conducted from
May 2022 to November 2023, which is a representative use
case of Release-18 study on ML for the physical layer [169].
Two approaches are investigated: (i) direct ML positioning
shown in Fig. 5, where the model output is the UE position;
and (ii) ML assisted positioning shown in Fig. 6, where the
model output is one or more intermediate measurements (e.g.,
LOS/NLOS indicator and time-of-arrival) that can be utilized
by conventional positioning methods to determine the UE
position.

ML-based positioning is designed to target challenging
scenarios. For example, in a cluttered factory indoor scenario,
where links are scarce and the conventional methods that rely
on timing (e.g., multi-RTT) and/or angular measurements (e.g.,
UL-AoA) tend to fail. For example, the probability of LOS
paths is 0.8% in a factory environment with dense clutter
and a high base station height, and the clutter parameter
settings are clutter density = 60%, clutter height = 6 m, clutter
width = 2 m. If using conventional positioning methods, the
horizontal PA is around 15.8 m at 90% CDF, indicating very
poor PA. In contrast, when using the ML-based positioning
method, a PA as low as 20 cm is achievable, depending on
design factors such as ML model input, model architecture and
size, and training dataset size. Such excellent PA demonstrates
that ML-based positioning is a very worthwhile objective for
standards to pursue.

In comparison to conventional (i.e., non-ML) positioning
methods, ML-based positioning requires a paradigm shift in
the design. With conventional methods, a snapshot of the
wireless signals is measured and processed to extract the
timing and/or angular information, after which the location of
the UE can be estimated by triangulation. With the ML-based
positioning methods, an ML model is trained to learn from a
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large training dataset, where the training dataset contains fea-
tures that are representative of the target deployment scenario.
The quality and quantity of the training dataset significantly
affect the PA of the model. To support the ML model, a set of
ML life cycle management issues need addressing, including
training data collection, model training, model monitoring,
and model update. The protective privacy of user location
in mobile systems has received an increasing interest more
particularly. By comparing previous standards for 5G cellular
networks, recently proposed by 3GPP, it was found that each
had improved in the security and privacy levels [170].

B. WiFi

With WiFi, electronic devices are able to connect to a
wireless local area network (LAN) via the ISM radio band.
In addition to providing high data-rate communication ser-
vices, WiFi sensing has emerged as an innovative approach in
environmental sensing. Positioning is one of the most common
tasks for WiFi sensing [171], due to the increasing demands
for locating humans and devices in smart environments. There
are typically two techniques for WiFi positioning. The first
type is RSS-based in order to estimate the devices’ position
using WiFi networks. An early RADAR system based on
RSS was demonstrated in [172], followed by a series of
other schemes such as Redpin [173], LoCo [174] and Open-
WRT [175]. The second type is CSI, in which finer granularity
channel information is provided compared to RSS. However,
manufacturers often limit access to CSI due to security and
complexity reasons [176]. In addition, there are other types of
PSs, such as time-based WiFi, which is rather complex due to
the measurement of the time delay and sensitivity to channel
conditions, thus needing further investigations [177].

The latest WiFi standard is 802.11ax, which further
enhances wall penetration performance compared to WiFi
standards. 802.11ax can provide as large as 80 MHz of band-
width coarsely corresponding to a resolution of 1.88 m [178].
802.11 is based on a new structure of high-efficiency frames,
which reduces the subcarrier spacing and includes more sub-
carriers within the same bandwidth, which is beneficial in
positioning. It is expected that IEEE 802.11be (i.e. WiFi 7)
will extend the bandwidth to 160 MHz, thus further increasing
the range resolution [179]. As a result of greater resolution
in the frequency domain, a receiver can distinguish a greater
number of multipath components. Through this enhanced
discrimination, it is possible to improve the estimation of
channel parameters such as the AoA and TOF, which are
essential measurements for positioning. Furthermore, some
WiFi amendments, such as IEEE 802.11mc, include the
fine-time measurement (FTM) protocol. This also motivates
time-based WiFi positioning studies [180]. WiFi security
mechanisms traditionally reside above the physical layer. This
can be augmented by using physical layer characteristics (e.g.,
channel fading, interference, hardware impairments), which
further enhance the security of WiFi [181]. The ubiquitous
availability of WiFi makes it a promising indoor positioning
technology, however, it consumes a relatively high amount of
power compared to cellular or Bluetooth [182]. Moreover, the

existing RSS/CSI-based positioning method is based on an
extensive dataset. However, RSS/CSI values may change over
time (months or years), and adapting to these variations is also
a prominent challenge in WiFi.

C. Bluetooth

Bluetooth is a popular short-range RF technology. Blue-
tooth low energy (BLE) is a low-power Bluetooth wireless
communication standard developed by the Bluetooth special
interest group (SIG), which is widely used in current devices.
Both BLE and classic Bluetooth operate in the 2.4 GHz band
[183] and use the Gaussian frequency shift keying modulation
scheme. Typically, BLE uses devices such as beacons or
Bluetooth positioning tags as transmitters, and devices such
as smartphones or Bluetooth gateways as receivers, RSSI is
used for estimating the receiver distance from the transmitter
in. In these systems, the receiver estimates its distance from the
transmitter based on the RSSI value. To achieve positioning
with this scheme, at least three beacons are needed for
trilateration [184]. Additionally, the fingerprint method has
also been extensively studied. Pu and You [185] proposed
a fingerprint PS using the k-nearest neighbor (kNN) classi-
fication method, while Nguyen and Thuy Le [186] used an
improved weighted kNN and Gaussian process regression to
achieve BLE-based positioning. Echizennya and Kondo [187]
investigated a method to simultaneously detect the location
and motion direction of a pedestrian walking in an indoor
environment using a trained deep NN with a PA of 0.439 m
and an average direction accuracy of 81.2% in 9 directions.

In addition to RSS-based positioning, Bluetooth 5.1 further
proposed a centimeter-level PS based on AoA/AoD algo-
rithms. The AoA algorithm uses positioning tags such as
beacons or Bluetooth bracelets as transmitters and positioning
base stations as antenna arrays as receivers. In order to
achieve positioning, the positioning tag transmits a signal to
the antenna array to generate a phase difference to determine
the AoA. An antenna array transmitter is used for the AoD
positioning, which determines the signal departure angle for
positioning. He et al. [188] proposed an AoA estimation based
on multiple antenna arrays, which improved the AoA estima-
tion accuracy with an average error of less than 3.9◦ compared
with multiple signal classification. Zhu and Yan [189] pro-
posed a CNN Bluetooth indoor positioning algorithm based
on hybrid RSSI-AoA with improved PA. Note, generally, the
PA of AoA/AoD is higher than that RSSI.

In addition to Bluetooth 5.1, SIG has released Bluetooth
5.2 [190] and 5.3 [191], which add new features such as LE
isochronous channels, enhanced attribute protocols, LE power
control, low-rate connections, enhanced encryption control,
enhanced periodic broadcasting, etc.. In this way, Bluetooth
technology has greatly improved the transmission rate, secu-
rity and stability of PSs. The main challenge faced by the
RSSI-based PS is that it is affected by complex and unpre-
dictable indoor environments and noise, where RSSI values
fluctuate greatly, resulting in unstable positioning results.
Furthermore, factors such as signal reflection interference
and antenna array errors may also affect the performance
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of AoA/AoD positioning. The security of BLE interfaces
has become a major concern. The Bluetooth specification
offers security measures against most of the potential threats,
introducing multiple device pairing schemes like optional
encryption and authentication of connections, or address ran-
domization [192].

D. RFID

In RFID, objects tagged with RF transceivers are automat-
ically identified and tracked, and the information collected is
stored in the computer [193], [194]. An RFID system typically
consists of RFID tags and RFID readers with microchips for
data storage and antennas [193]. Active RFID tags emit RF
signals using their own power sources [195], whereas passive
RFID tags are activated on receiving reader signals [196],
[197]. RFID readers transmit signals to tags and receive
responses from them. When a tag is within the reader’s signal
range, it responds, allowing the reader to capture and relay the
data stored for processing [198], [199], [200].

The RFID protocol standards are broadly classified into
three categories based on frequency bands: ISO 14443, ISO
15693, and ISO 18000-6C. ISO 14443 is a protocol for close-
range reading, with tag read-write transmission range of 0 to
10 cm. ISO 15693 is designed for longer-range reading, with
the tag read-write distances of 0 to 100 cm. ISO 18000-6C
supports tag read-write over a range of 0 to 1000 cm, making
it suitable for mid-to-long-range applications. ISO 18000-
6Cs defines physical and logical requirements for a passive-
backscatter, interrogator-talks-first RFID system operating at
860-960 MHz [201].

Both active tags and passive tags can be used for position-
ing. Active tags are mainly used for long-range positioning
and object tracking [202], [203], [204]. In practice, passive
RFID tags are more commonly employed in PSs compared
to active RFID tags [205]. Panigrahi and Tripathy [194]
proposed a graph-based simulated model for planning the
shortest path, where RFID tags were arranged in an equidis-
tance manner in grid-based surroundings to determine the
robot’s position. Recent years have witnessed rapid progress
in RFID positioning, where many novel technical solutions
are reported in the literature [206]. Besides classic methods
like RSSI-based positioning [207], various algorithms such as
TOA/TDOA [208], POA [209], AoA [210] are also widely
used in positioning based on the RFID technology. Moreover,
hybrid RFID systems based on KF, vision and Bayesian
models are investigated in [211], [212], [213], and [214].

By exploiting RFID antenna sensing techniques, RFID tags
can also be used as battery-less sensors [215]. In RFID-based
backscatter communication systems, the tag reflects the radio
signal transmitted by the reader and modulates the reflection
by controlling its own reflection coefficient [216]. This process
helps the reader extract useful information from the intended
tag [217], thus allowing RFID to be more widely used in
various application scenarios.

The RFID-based system is well suited in indoor environ-
ments due to its precise path estimation and low positioning
error [218]. Active RFID tags are characterized by a

greater detection range, and higher power consumption and
costs [199], [205]. Passive RFID tags are used for short-range,
static point positioning in small spaces [219]. The low costs of
passive tags make RFID technologies highly popular in many
applications [220]. However, privacy is a concern, especially
in passive RFID tags with insufficient computing capability to
support cryptographic data protection [221].

E. UWB

UWB is a short-range wireless technology that uses fre-
quencies between 3.1 and 10.6 GHz, which has much wider
bandwidth than narrow-band transmissions such as WiFi. The
wider bandwidth of UWB allows for better time and distance
estimates, resulting in enhanced positioning performance.
UWB has been primarily used for positioning purposes in
recent years.

PSs using UWB can determine the user’s position utilizing
various methods, including both ranging and non-ranging tech-
niques. UWB typically achieves positioning using time-based
measurements (i.e., TOA/TDOA), but with strict time synchro-
nization. To eliminate the need of synchronization, a two-way-
ranging (TWR) method has been proposed, in which round-trip
time (RTT) at the anchor was used to calculate ToF without
tag-anchor or anchor-anchor synchronization. With AoA, the
location of a tag can be estimated using a single anchor
equipped with at least two antennas. Several systems have
already been implemented [222], EUROPCOM [223], and
Ubisense [224], while others are being used as experimental
testbeds as in Decawave [225] and Bespoon [226]. In recent
years, some scholars have proposed hybrid PSs by fusing
UWB with other technologies. For example, in [227], a PS
based on UWB and dead reckoning algorithm was proposed
to overcome the problem of large errors and instability.

Standards and protocols for UWB PSs have been defined by
several organizations including IEEE, FiRa, Car Connectivity
Consortium (CCC), etc. IEEE 802.15.4 is a prominent exam-
ple, where IEEE 802.15.4a was first released in 2007, and
since then it has been revised and improved. In 2020, IEEE
802.15.4z was released with increased integrity and improved
accuracy of ranging measurements. Enhancements include
additional coding and preamble options, resulting in propor-
tionally fewer zero-valued elements and improved detection.
The application of UWB has expanded rapidly, so task groups
and organizations (IEEE Task Group 15.4ab, Omlox) have
been formed to propose new protocols and standards. It is
expected that the cross-system, cross-platform information
exchange model between UWB solutions of different vendors
and various positioning technologies could be standardized
to permit multiple systems to communicate and interoperate
with each other, thereby improving context information and
resolving positioning errors [228]. Furthermore, standardiza-
tion of antenna design and new performance metrics are also
desirable since improper antenna design may lead to severe
pulse distortion and undesired phase center variations. This
also motivates AoA UWB positioning studies.

The security and privacy of UWB have been improving
by recent standardization efforts, such as the ones of the
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IEEE 802.15.4z task group [229], which have focused on
increasing the security of UWB-based systems and propos-
ing physical-layer enhancements and changes to the medium
access control layer, allowing for an improved authentication
of ranging measurements [230].

Despite the above advancements, UWB still faces several
challenges in practice. For instance, due to high propaga-
tion loss and poor penetrating ability, UWB systems are
range-limited and require LOS paths between receivers and
transmitters, which raises the cost for a greater number of
transmitters in indoor environments [231].

F. mmWave-Band Positioning

mmWave is an emerging wireless technology working
in the 30-300 GHz frequency band. Besides higher-rate
communications, its short wavelength allows for accurate
location estimates and lower location error bounds. More-
over, mmWave propagation characteristics yield higher spatial
scanning resolution [26]. mmWave positioning algorithms
typically make use of signal parameters related to received
signal power (RSSI/SNR), time information (ToA/TDoA),
angle information (AoA/AoD), CSI, or hybrid approaches to
obtain location estimates with high PA. Among these schemes,
AoA is the most accurate, due to the exploitation of directional
beamforming and antenna arrays in mmWave systems [232].
Li et al. [233] proposed a novel hybrid dual-polarized antenna
array and studied an adaptive AoA and polarization state
estimation, showing a significant improvement in SNR. Using
both the angle and time has led to improved PA in mmWave
systems [234]. For example, Jia et al. [235] proposed an
improved least mean square algorithm to refine AoA estima-
tion, and used a modified multi-path AoA-ToA UKF algorithm
to track UE’s position with 2 times angle estimation gain and
a centimeter PA using a single AP in an office environment.

In addition, mmWave-based device-free positioning and
sensing has also been recognized as an energy-efficient
and feasible technology for environmental sensing [26].
It typically depends on radar systems that operate over
short distances. There are various types of mmWave radars,
including pulsed wave radars, frequency shift keying radars,
frequency-modulated continuous wave (FMCW) radars, etc,
[236]. FMCW radar is widely used in remote sensing, due
to its high resolution, in applications such as human activity
detection, object detection, health monitoring, etc. In addition
to traditional key processing techniques like micro-Doppler,
KF and ML are being successfully used in mmWave-based
radar sensing systems [26]. Jin et al. [237] used a 4-D
mmWave radar and a hybrid variational RNN autoEncoder for
fall detection of people with a 98% detection rate. Based on
sparse mmWave radar point clouds with a novel DL classifier,
Pegoraro and Rossi [238] proposed a real-time multi-target
tracking and identification system with an identifying accuracy
of 91.62% for up to three mobile subjects in an indoor
environment.

In 2012, IEEE 802.11ad standard was released with
60.0 GHz wireless communication features [239], which is
the first WiFi standard for the mmWave technology used in

indoor applications. In 2018, IEEE 802.11aj was released
with improved frequency bands, bandwidth (i.e., higher data
rates), transmission distances, and more stable connection
quality compared to IEEE 802.11ad standard. In 2021, IEEE
released the 802.11ay standard [240], with added single-user
and MIMO modes of operation in dense mmWave hotspots.
The introduction of MIMO in IEEE 802.11ay offers improved
performance and reliability. It is important to note that the
support for up to 256-QAM high-order modulation schemes
not only increases the transmission bandwidth and rate, but
also improves the rate of time resolution. Furthermore, the
enhanced beamforming training improves the quality and
coverage of wireless signals. All these advancements have
enhanced the accuracy and stability of mmWave-based posi-
tioning and sensing technology.

The positioning algorithms based on mmWave are also
subject to several challenges including (i) the modeling of the
channel state and accurately compensating for the received sig-
nal parameters, due to the complexity of indoor environments;
(ii) the requirement for universal applicability to a variety of
devices has also raised the bar for these algorithms; and (iii)
detection reliability and robustness of positioning and sensing
in an environment with mobility and other sources of noise for
mmWave radar-based systems. Security research in mmWave
communication systems is also a promising direction. Beam-
forming and precoding provide a useful mechanism to improve
security and privacy for mmWave communications [241].

G. THz-Band Positioning

With increasing data traffic within wireless communication
networks, THz is emerging as a potential solution for pro-
viding ultra-broadband capabilities for 6G. The THz spectrum
ranges from 0.1 THz to 10 THz, which fills the utilization gap
between mmWaves and optical bands. THz-based PSs have
attracted increasing attention for two main reasons: (i) accurate
positioning, which is a prerequisite in THz communications
because of resource allocation, beamforming, and channel
estimation; and (ii) key features such as high directionality,
compact antenna arrays, and large communication bandwidth
that are essential in accurate PSs. Therefore, the interaction
between communication and positioning plays a key role in
the THz band.

In recent years, THz PSs have received considerable atten-
tion. Various methods based on RSS [242], CSI [243],
AoA [244], etc., have been studied in the THz band.
Meanwhile, there are several features associated with THz
positioning: (i) RIS plays an important role in THz- position-
ing, since it can overcome blocking/shadowing and path losses,
thereby increasing the received power level and improving
PA [12], [244]; and (ii) the use of learning-based positioning
methods. For instance, Fan et al. [243] proposed a structured
bidirectional long short-term memory (LSTM) recurrent NN
architecture to achieve a 3D indoor positioning with a mean
distance error of 0.27 m.

In early 2008, the IEEE established “Terahertz Interest
Group” (IGthz) within the 802.15 working group. This is
followed by the first IEEE standard for sub-band wireless
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communications IEEE 802.15.3d in 2017 [245], which is an
amendment of the IEEE Std. 802.15.3, providing a wireless
physical layer operating up to 100 Gbit/s. In view of the
main objective of IEEE 802.15.3d, which is to demonstrate
the feasibility of fixed point-to-point THz communication,
research on THz positioning is relatively limited. In 2019, the
FCC unanimously agreed to lift restrictions on frequencies
above 95 GHz, thereby allocating 21.2 GHz of spectrum
for unlicensed use and authorizing experimental activities
in the electromagnetic spectrum up to 3 THz. This is also
beneficial for research on positioning using the THz band.
At THz frequencies, there are significant challenges in terms
of hardware imperfections and synchronization. Furthermore,
since THz signal experience substantial path losses, their
design must be carefully tailored to meet the needs of users
with a range of performance requirements, thereby maximizing
energy efficiency. Moreover, a realistic THz channel model
is still required that comprehensively addresses the THz-
specific characteristics, such as LOS, NLOS and hardware
impairments. Because of characteristics like high directionality
and high path loss offered by THz wireless links, THz wireless
systems present new opportunities to engineer security and
resilience against eavesdropping attacks. The issue of security
in these future wireless systems has also become an active
research topic [246].

H. VLP

The RF-based PSs are less accurate mostly due to multi-
path induced fading and signal penetration. Optical wireless
technology-based PSs utilizing infrared (IR), ultraviolet, and
visible bands have been introduced in recent years with high
PA. Note, at low levels, all light sources are harmless to
humans and depending on the wavelength have different uses
in many applications. The IR technology has been used for PSs
with active beacon transmitters or receivers placed at known
locations and mobile transmitters or receivers with unknown
positions [247]. In [248], Microsoft Kinect has used a contin-
uously projected IR structured light to detect the environment
using an infrared camera. The implementation of RSS-based
IPSs is simpler compared with TOA and AoA, since (i) there is
no requirement for highly accurate transceiver synchronization
and for a receiver with efficient detection of the incidence
angle; and (ii) have high PA due to the availability of LOS
paths for most indoor environments. Several challenges must
be overcome, however, including the concurrent transmission
of the optical signals using multiple LED light sources may
make it difficult to recover the signals using a single PD-based
receiver; and transmitters and receivers are often assumed to
be parallel (i.e., without tilting angle) which may reduce the
PA.

In contrast, VLPs have received significant attention over
the past decade, in which LED lights are used for positioning,
illumination, and data communications. It used LED lights
at transmitters and photodiodes (PDs) or camera sensors as
the receiver. VLP offers inherent security at the physical
layer since lights emitted from the sources and reflected
surfaces are maintained within a confined space, abundant

license-free spectrum, immunity to RF-induced electromag-
netic interference, low costs, and high PA compared with
the RF-based PSs [28], [249], [250], [251], [252]. There are
numerous applications for VLP, including location tracking,
navigation, vehicular communications, shelf-label advertising
in supermarkets, medical surveillance, street advertising, and
robot movement control [253].

VLPs are categorized based on fingerprinting, proximity,
triangulation, sensor-assisted, ML, and filtering techniques.
In fingerprinting, also known as scene analysis, distinct fea-
tures of signals together with AoA, ToA, TDoA, and RSS
are used for estimating positioning. In [254], VLP using a
correlation approach to match the pre-estimated address for
each LED light with the detected signals at the receiver was
investigated experimentally in an indoor environment with PA
of 1.495 cm. In [255], VLP with time division multiplexing
was proposed to mitigate interferences with an average PA
of 1.68 cm. The proximity method is very simple but with
the PA as good as the resolution of the grid and the number
of transmitter reference nodes. For example, in [256] VLP
based on the LED light and a mobile phone was proposed
for to determine the precise location. Both passive and active
beacons were investigated with error-free range of up to
4.5 m. Using LED lights and a geomagnetic sensor, in [257]
VLP was adopted to accurately determine position and travel
directions for visually impaired people. Based on rotation
matrix and support vector machines, the precise limits of field
of view as well as azimuth and tilt angulations were calcu-
lated with 80% less computation than conventional geometric
optics [258].

In triangulation, the target’s position is determined by
distance measurement from at least three reference locations
using RSS, TOA, TDOA, and direct detection techniques [28],
[70], [259], [260]. Perfect synchronization between the trans-
mitter (Tx) and receiver (Rx) is required for TOA and
TDOA [14], [15]. In RSS, the optical receiver should receive
signals from multiple LED transmitters with no interference.
Note that the coordinates of LED transmitters in the real world
are unknown prior to determining the position of the receiver.
Therefore, it is critical to establish the link between the LEDs
and the receiver to obtain the coordinates of the LEDs. The
implementation of RSS-based IPSs is simpler compared with
TOA and AoA, since (i) there is no requirement for highly
accurate transceiver synchronization and for a receiver with
efficient detection of the incidence angle; and (ii) have high
PA due to the availability of LOS paths for most indoor
environments. Several challenges must be overcome, however,
including the concurrent transmission of the optical signals
using multiple LED light sources may make it difficult to
recover the signals using a single PD-based receiver; and
transmitters and receivers are often assumed to be parallel (i.e.,
without tilting angle) which may reduce the PA.

Since in VLC-IPS the transmission data rate is not an issue,
both camera (image sensor) and PD-based receivers could be
used.

1) PD-Based VLP Systems: At the transmitter, the encoded
address and identification (ID) information of each LED are
broadcast via free space. At the receiver, the optical signals

Authorized licensed use limited to: Auburn University. Downloaded on December 31,2025 at 07:08:20 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: POSITIONING USING WNs: APPLICATIONS, RECENT PROGRESS, AND FUTURE CHALLENGES 2167

are detected using a PD-based optical receiver for regeneration
of the electrical signal. The channel gain can be expressed by
Lambertian model [250]. From the perspective of measure-
ment, PD-based VLP algorithms can be classified into several
categories: i) Proximity [256], [261], ii) TOA/TDOA [70],
[262], [263], iii) AoA [264], iv) RSS [265], and v) Finger-
printing [266].

2) Image Sensor (IS)-Based VLP Systems: Different from
the PD that relies on the Lambertian channel model, IS-
based VLP systems rely on capturing the images of intensity
modulated the LED luminaire and using image processing
algorithms to determine the required position of objects and
people [70]. The information on the LED light in the image
is provided based on the image coordinates. A wide usage
of cameras including those in smart devices can be used
in IS-based VLPs. The IS-based VLPs have several unique
features compared to PD-based systems, such as a larger field
of view and spatial and wavelength separation of light [171].
A complementary metal-oxide semiconductor (CMOS) camera
is typically used in IS-based VLP systems. The rolling shutter
exposure model of CMOS camera can help decode the VLC
information by capturing black and white stripes. Additionally,
the camera can also capture the visual information of the LED
luminaires for analyzing the geometric relationship between
the LED luminaires and the receiver. This characteristic has
been taken into account by several recent works [267], [268],
[269], [270]. For instance, Huang et al. [267] proposed
to use camera to capture reflected lights of a single LED
luminaire from the floor, and the highlights were regarded
as the projections formed by virtual LEDs and deriving a
geometric relationship between two virtual LEDs for final
position estimation. In addition, there are also the contour
shapes of the luminaire considered for VLP when an IS-based
receiver is used. Bai et al. [268] considered exploiting the
rectangular features of a single luminaire an IS-based VLP
algorithm. The circular luminaire features were also used to
estimate the orientation and location of the receiver [269],
[270].

A variety of fusion algorithms have emerged to exploit
the advantages of the single PD- and IS-based VLP system
in recent years. Some works focused on fusing RSS and
image sensing to achieve positioning by simultaneously using
PD- and IS-based receivers. For instance, Hua et al. [271]
introduced the fusion VLP system that leveraged ensemble
KF to fuse the measurements from the PD and camera for
real-time positioning. Bai et al. [82], [272] proposed the use
of measurements from the camera to provide incident angle
information to RSSR algorithm so that the receiver can be
located regardless of orientation. In addition, researchers have
tried to fuse AoA and image sensing [273], in which, the
incident angle derived from the image was used by the AoA
algorithm. In [274], a triangulation algorithm based on AoA
and RSS measurements was proposed to estimate the receiver’s
position by implementing the least squares estimator and
trigonometric considerations. Overall, the fusion of different
VLP measurements makes the system more accurate and
practical, such as reducing the required LED luminaires, and
relaxing the orientation limitation of the receiver.

Despite centimeter-level accuracy, VLP still faces the chal-
lenges of industrialization, reliability, and cost challenges.
These include: (i) impact of the transmitter tilting angles;
(ii) limited frame rates, therefore limited data rates; (iii) light
flickering; (iv) multipath reflections. In practice, VLP is sus-
ceptible to occlusion, ambient light, and other environmental
factors, which may lead to positioning failure. Moreover,
integrating a VLP system necessitates merging with existing
frameworks, such as building management systems or mobile
applications. Table IV shows the IS-based VLP.

I. Hybrid RF-Optical Positioning

Researchers are advocating the development of a hybrid PS
that combines the advantages of visible light and RF signals to
harvest the advantages of both. The current mainstream fusion
positioning solutions have successfully integrated VLP with
RF technologies such as WiFi, 5G, and Bluetooth, as reported
in the literatures [281], [282], [283], [284], [285], and [286].

For instance, a heterogeneous PS incorporating LiFi and
WiFi was conceptualized to enhance indoor PA [281]. In addi-
tion, Shi et al. [283] proposed a 5G IPS centered on VLC and
broadband communications, specifically designed for museum
applications. The system utilized unlicensed visible light to
provide visitors with high-accuracy positioning on a mobile
device, achieving a mean positioning error of 0.18 m.

Combined with Bluetooth, a hybrid PS was introduced
in [285], where the initial location based on VLC proximity
was collected prior to, determining the location of the receiver
using Bluetooth RSS trilateration, yielding a notable accuracy
of up to 0.03 m. Another approach by Luo et al. [284] involved
a spring model based on Bluetooth signals for hybrid VLP and
Bluetooth positioning. The intensity of visible light signals was
detected through the Bluetooth beacon set in advance to match
the fingerprint database. Simulation results showed that the
system can achieve an average PA of 6 cm. Hussain et al. [286]
used a VLC-based indoor mapping application to facilitate
Bluetooth MAC address mapping. In this way, the advantages
of VLC and Bluetooth can be combined to achieve superior
positioning performance. The key features of the existing
positioning technologies are summarized in Table V. Note the
complexity in Table V refers to the hardware complexity of
PTs.

VI. CHALLENGES

This section summarizes the key challenges of current
PSs. The challenges and pitfalls of PSs require technological
innovation and interdisciplinary integration to improve the link
reliability and achieve PA, which are outlined in the following.

A. Cost

Positioning cost is essential in the design of PSs, yet achiev-
ing a low-cost PS remains a challenge since it may restrict the
PA in PSs. For instance, systems such as cellular networks
and WiFi offer the advantage of low-cost positioning by
leveraging the existing infrastructure. However, their accuracy
may not meet the demands of applications like AR/VR that
require centimeter-level accuracy. Conversely, systems like
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TABLE IV

IS-BASED VLPS

TABLE V

POSITIONING TECHNOLOGY COMPARISON

UWB and VLP can achieve accurate positioning. Nonetheless,
they necessitate additional infrastructure, leading to higher
costs. In particular, the high deployment cost is a prominent
issue in UWB [292]. As for VLP, while the cost of retrofitting
each light is insignificant, due to the limited coverage range
of each light, the cost of large-scale deployment still needs
further verification. Therefore, the quest to reduce positioning
costs while satisfying the accuracy requirement continues to
be a daunting task in the realm of indoor positioning. As the
field progresses, it is essential to focus not only on developing
new algorithms but also on enhancing the cost-effectiveness of

the system. It is through this dual approach that technological
advancements will be both practically applicable and eco-
nomically viable, thus enabling broader implementation and
accessibility. By prioritizing the development of cost-effective
solutions along with cutting-edge algorithmic improvements,
it is possible to drive the widespread adoption of IPSs. As a
result of this strategy, high-precision technologies will become
more accessible to a broad range of applications, ranging
from consumer electronics to industrial automation, thereby
bridging the gap between theoretical excellence and practical
applications.
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B. Coverage

Positioning environments are often characterized by their
complexity, especially in indoor scenarios. Moreover, these
environments are often cluttered with obstacles such as walls,
furniture as well as people moving around, which can result
in multipath propagation (i.e., full or partial fading and signal
dispersion) and partial or full blocking. Due to the complexity,
systems with large coverage, such as cellular networks, tend
to suffer from limited accuracy due to the long propagation
path between the transmitter and the receiver. In contrast,
systems such as THz and VLP, which offer limited coverage
are reported to achieve centimeter-level PA. Note that short
propagation paths ensure simple transmission links but with
limited availability and robustness, making them less versatile
in various scenarios. To navigate the coverage challenge,
future developments should focus on innovative approaches
that can either extend the effective coverage of high-accuracy
PSs or enhance the PA of wide-coverage PSs. For instance,
by combining multiple positioning technologies, it may be
possible to leverage their respective strengths in order to
achieve promising pathways. In addition, it is also a possible
way to employ advanced signal processing and ML algorithms
to mitigate the effects of signal obstruction and multipath
propagation. The next generation of PSs can achieve wide
coverage and high accuracy by pushing the boundaries in these
areas, thus enhancing their utility across a broader range of
applications.

C. Security and Privacy

Human and device location information is considered as
sensitive data that can expose users to a variety of risks
including stalking, theft, and even security threats. Location
security and privacy are essential components of compre-
hensive cybersecurity efforts. These efforts are dedicated to
safeguarding the confidentiality, integrity, and availability of
geographical information, which is becoming increasingly
pivotal in the development of new applications. However,
security and privacy issues in positioning have not garnered
as much focus as those in the field of communications. Since
PSs often operate within strict energy constraints, they are
unable to employ complex methods for ensuring the privacy
and security of location data. Moreover, PSs may use diverse
technologies based on different methodologies, and each of
them has its own vulnerabilities and security implications. This
diversity complicates the tasks of creating a universal solution
for security and privacy.

From a technological perspective, enhancing location data
security requires a multi-faceted approach. This could involve
the development of lightweight cryptographic algorithms
suitable for energy-constrained devices, advanced anonymiza-
tion techniques to protect user identities, and robust access
control mechanisms. Additionally, standardized security pro-
tocols across different positioning technologies should also
be considered to ensure a cohesive and secure framework.
By addressing these challenges, it is possible to foster trust and
promote broader adoption of indoor positioning applications,

balancing the benefits of precise location services with the
imperative of protecting individual privacy and security.

D. Complex and Dynamic Environments

Positioning environments change over time. ML-based
methods have been applied to dynamically update parameters
based on the data for continuous improvement and adaptation
to environmental changes. In addition, ML-based methods are
used to effectively integrate and process data from various
sources. These methods, however, typically require a large
amount of labeled data, which is closely related to the envi-
ronment and can be labor-intensive. Complex and dynamic
environments can adversely affect the performance degrada-
tion. On one hand, the controlled environment in existing
methods can differ from the practical environment. On the
other hand, long-term changes in the environment may lead
to inaccurate tag data, thereby affecting the results of position
estimation. Therefore, positioning methods need to adapt to
variable and complex environments and reduce the reliance
on labels.

To overcome these challenges, semi-supervised or unsuper-
vised learning can be used to learn from limited or unlabeled
data. In addition, adaptive models are expected to be developed
for PSs that can dynamically update their parameters in
response to environmental changes, to enhance their effective-
ness in the face of the variability and complexity of real-world
environments. With their powerful ability to understand and
predict environments, large models may play a crucial role in
solving these challenges.

E. Diverse Requirements and Applications

The PSs should be able to cater to a wide array of
applications including those for public utilities, enterprises,
and individuals, as well as applications for online and offline
use, and applications for 2D and 3D localization. Each has its
own set of requirements for accuracy, latency, and scalability.
Compared to 2D positioning, 3D positioning algorithms have
several challenges including the need for more APs and
determining three or more variables [268] when calculating
the pose of the receiver, which is more than 2D position-
ing. This process often involves more complex algorithms
or extra hardware devices like a gyroscope, both of which
will increase the computation/complexity of the positioning.
Therefore, there is a significant challenge in tailoring PSs
to meet these diverse requirements without compromising
performance, and it is necessary to develop flexible positioning
techniques that can be tailored to meet the needs of different
users and applications. The integration of multiple data sources
and sensors, for example, could enhance the ability to sense
the environment, so as to meet specific accuracy, latency, and
scalability requirements of different applications.

VII. CONCLUSION

In this paper, we provided a comprehensive review of exist-
ing positioning technologies. To begin with, we reviewed the
evolution of positioning over wireless networks. Then, we dis-
cussed the applications of positioning technology from the
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perspectives of public facilities, enterprises, and individuals.
Next, we have summarized the existing KPIs and measure-
ments for positioning and conducted a detailed comparison.
We further investigated the key techniques of positioning
such as large models, adaptive systems, and RIS, which may
significantly enhance the performance of a PS in the future.
As a step forward, we discussed various typical wireless
positioning technologies. We not only focused on the progress
of these technologies in the academic community but also
covered their standardization process. Meanwhile, we provided
an in-depth comparison of these technologies and summarized
the KPIs that each technology needs to focus on more.
Finally, we summarized the key challenges of positioning
systems. Although positioning technology currently still faces
many challenges, we firmly believe that positioning will play
an increasingly important role in wireless networks in the
future.
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