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1 | INTRODUCTION

1.1 |

| Wanyu Zhang” | Guanqun Cao’

| Yuan Huang’

Abstract

Functional data analysis is an evolving field focused on analyzing data that
reveals insights into curves, surfaces, or entities within a continuous domain.
This type of data is typically distinguished by the inherent dependence and
smoothness observed within each data curve. Traditional functional data anal-
ysis approaches have predominantly relied on linear models, which, while
foundational, often fall short in capturing the intricate, nonlinear relationships
within the data. This paper seeks to bridge this gap by reviewing the integra-
tion of deep neural networks into functional data analysis. Deep neural net-
works present a transformative approach to navigating these complexities,
excelling particularly in high-dimensional spaces and demonstrating unparal-
leled flexibility in managing diverse data constructs. This review aims to
advance functional data regression, classification, and representation by inte-
grating deep neural networks with functional data analysis, fostering a harmo-
nious and synergistic union between these two fields. The remarkable ability
of deep neural networks to adeptly navigate the intricate functional data high-
lights a wealth of opportunities for ongoing exploration and research across
various interdisciplinary areas.

This article is categorized under:
Data: Types and Structure > Time Series, Stochastic Processes, and Func-
tional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Deep
Learning
Statistical Learning and Exploratory Methods of the Data Sciences > Neural
Networks

KEYWORDS

deep learning, functional data analysis, neural networks

What is functional data analysis

Functional data analysis (FDA) is an evolving field that focuses on the analysis and theoretical exploration of data that
offers insights into curves, surfaces, or any entities within a continuous domain. This continuous domain can span one
dimension (1D), two dimensions (2D), or three dimensions (3D), encompassing aspects like a time span, a spectrum of
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pixels or voxels, among other relevant scenarios. The inherent complexity of this field arises from the infinite-
dimensional characteristic of the data.

In contrast to classical multivariate data, functional data is characterized by the inherent dependence and smooth-
ness observed within each data curve. Rather than focusing on random variables, FDA involves examining random pro-
cesses, which requires an implicit exploration of an infinite-dimensional function space. Over recent decades, FDA has
garnered increasing attention within the statistical community, resulting in an extensive body of literature on the sub-
ject. For thorough understanding and additional insights, readers are encouraged to refer to the recent review articles
(Morris, 2015; Salil & Staicu, 2023; Wang et al., 2016; Wang, Huang, & Cao, 2023).

There are three fundamental topics in FDA, which are functional data regression (Cardot, 2000; Rice & Wu, 2001),
functional data classification (Araki et al., 2009; Shin, 2008), and functional data representation (Hall et al., 2006;
Hall & Mohammad, 2006). Functional data regression encompasses a wide range of topics, such as exploring the rela-
tionships between functional responses and functional or scalar predictors, and reconstructing the underlying functions
from functional observations. These tasks aim to uncover and understand the underlying patterns in data that evolve
over a continuum. This form of analysis helps researchers make predictions and understand the dynamics of change
across the continuous domain. Second, functional data classification focuses on categorizing functional observations
into distinct groups or classes. This is especially useful in scenarios where the data can be naturally divided into catego-
ries, and there is interest in predicting the membership of new and unlabeled functional observation. Techniques used
in this area often involve finding decision boundaries in the infinite-dimensional space or its finite counterpart that best
separate different classes. Lastly, functional data representation seeks to efficiently identify the underlying structure of
functional data. This often involves extracting features, reducing dimensionality, or finding a basis set that succinctly
captures the essence of the data. Techniques such as functional principal component analysis (FPCA) are commonly
employed to represent the data in a low rank space while preserving its essential characteristics.

1.2 | Why using deep neural networks?

Despite flourishing for over two decades, traditional approaches in FDA frequently depend on linear models to explore
data structures. While these models serve as foundational tools, they pose substantial limitations by failing to capture
the intricate and often nonlinear relationships inherent in functional data. Typical examples include functional linear
regression model (Ramsay & Silverman, 2005), linear discriminant analysis for classification (Delaigle & Hall, 2012a),
and FPCA (Happ & Greven, 2018; Ramsay & Silverman, 2005). Furthermore, the effective dimensionality reduction
schemes intrinsic to conventional FDA methodologies typically yield a finite-dimensional representation of the data, an
approach that, albeit necessary, can oversimplify or miss intricate data features. However, the advent of deep learning,
particularly deep neural networks (DNNs), has ushered in a transformative approach to handling these complexities
within FDA. As a popular approach with applications on approximating and estimating of multivariate functions, DNN
is one of the most promising and vibrate areas in deep learning due to its learning capabilities of nonlinearities. In most
recent years, DNNs have been applied in various nonparametric regression problems and shown to successfully over-
come the curse of dimensionality in nonparametric regression. Examples include Schmidt-Hieber (2020); Bauer and
Kohler (2019); Liu, Boukai, and Shang (2021); Liu, Shang, and Cheng (2021). Additionally, recent literature has demon-
strated the significant success of DNNs in tackling classification problems with near optimal convergence rates Kim
and Lim (2022); Bos and Schmidt-Hieber (2022).

As a powerful tool in dealing with high-dimensional data, DNNs are far superior to their traditional counterparts.
They thrive in high-dimensional spaces, a characteristic that is particularly beneficial for functional data, often repre-
sented in many dimensions (Advani et al., 2020; Liu et al., 2017). The “curse of dimensionality” that plagues traditional
models is less of an issue for DNNs, thanks to their ability to derive latent representations and unveil essential, albeit
non-directly observable, structures within the data (Bauer & Kohler, 2019; Kim et al., 2021; Schmidt-Hieber, 2020).
Moreover, deep learning models offer unparalleled flexibility. They can seamlessly cater to various data types and struc-
tures, whether the functional data are represented as curves, shapes, or images (Gal & Ghahramani, 2016; LeCun
et al., 2015). This versatility in handling different data constructs is generally absent in more traditional statistical
methods, which are often constrained by rigid structural assumptions.

The employment of DNNs in FDA also facilitates the integration of advanced neural network architectures. For
instance, recurrent neural networks (RNNSs) excels in contexts where temporal sequences are critical (Giles et al., 1994;
Pearlmutter, 1989; Robinson, 1994). These sophisticated techniques enable a more profound extraction of spatial-
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temporal features, often overlooked by conventional methods. In terms of predictive accuracy, DNNs have an edge due
to their capacity for learning detailed, hierarchical representations of data (Ansuini et al., 2019; Raghu et al., 2019), sig-
nificantly enhancing the precision of predictions—an essential factor in fields requiring reliable forecasts. Additionally,
with the rise of computational power and parallel processing technologies, DNNs are uniquely scalable, capable of
managing the large-scale datasets commonly encountered in contemporary functional data applications.

To date, there has been limited research on FDA using DNNs, with many studies focusing primarily on
single-hidden-layer neural networks (Barron, 1993, 1994; White, 1990). Compared to DNNs, single-hidden-layer neural
networks are simpler, limiting them primarily to more fundamental tasks. They can perform only a more basic level of
feature extraction and are less capable in handling complex, nonlinear decision boundaries compared to their multi-
layered counterparts. Despite this, we include these studies to our review, as they offer critical insights into applying
neural networks to functional data regression, classification, and representation. Furthermore, they hold the potential
for future extension into the deeper realms of deep learning, paving the way for more advanced applications and under-
standing in this field.

The structure of this paper is organized as follows. Section 2 presents various motivational examples encompassing
traditional and next-generation functional data, as well as a compilation of open-source tools and software pertinent to
functional data using DNNs. Preliminary notations, the dimension reduction framework for FDA, and the fundamen-
tals of neural networks are introduced in Section 3. In Section 4, we explore the applications of functional data regres-
sion using neural networks across four distinct models, accompanied by an in-depth discussion of the evaluation
criteria pertinent to each case. Section 5 pivots to the domain of classification, discussing the utilization of DNNs and
shedding light on the relevant theoretical underpinnings reflected in current studies. Section 6 delves into the represen-
tation of functional data through the prism of DNNs. The concluding remarks and discussions in Section 7 encapsulate
the paper, highlighting key findings and suggesting avenues for future exploration.

2 | FUNCTIONAL DATA AND ITS APPLICATIONS

This section is dedicated to showcasing the diverse and versatile applications of FDA across a range of fields. We
explore a variety of examples, extending from traditional functional data contexts to cutting-edge, next-generation sce-
narios. The aim is to highlight the wide-ranging utility and adaptability of FDA techniques. In addition, we will intro-
duce and discuss several open-source packages that are instrumental in integrating DNN into FDA challenges.

2.1 | Traditional functional data
2.1.1 | Daily temperatures data

The Daily Temperatures Dataset (Ramsay & Silverman, 2005), a prominent resource in FDA, offers a comprehensive
collection of daily temperature measurements, typically spanning several years. This dataset stands out for its represen-
tation of a continuous process—temperature over time—making it an ideal tool for exploring various aspects of sea-
sonal trends, variations, and long-term climate patterns. One of the most referenced versions of this dataset is the
Canadian Weather dataset, accessible through the fda package in R. It encompasses daily temperature and precipita-
tion measurements from 35 Canadian weather stations over the course of a year. See Figure 1 for a representative dis-
play of temperature profiles from selected weather stations.

2.1.2 | TIMIT speech data

The TIMIT speech data, sourced from the TIMIT Acoustic-Phonetic Continuous Speech Corpus, was meticulously com-
piled by the National Technical Information Service under the auspices of the United States Department of Commerce.
This database holds a significant place in advancing the fields of speech recognition and functional data classification
research. Key studies, such as those by Wang, Shang, et al. (2023); Rao and Reimherr (2023), have effectively utilized
DNNs to build classifiers using this dataset. Within the rich repository of the TIMIT database, five distinct phonemes
were carefully selected and transcribed: “sh” as in “she,” “dcl” as in “dark,” “iy” representing the vowel sound in “she,”
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FIGURE 1 Illustration of Daily Temperatures Dataset: Temperature and precipitation measurements from 35 Canadian weather
stations. Left: Daily measurements. Right: Monthly measurements.

aa” from the vowel in “dark,” and “ao” from the first vowel in “water.” Prior to any analytical processing, each speech
frame was subjected to a log-periodogram transformation, making the data optimally suited for speech recognition
applications. Typically, each frame in this dataset encompasses 400 samples, collected at a 16-kHz sampling rate, with
the analysis primarily focusing on the top 150 frequencies. To visualize these variances, Figure 2 displays 30 log-
periodograms from four different phoneme categories respectively, effectively highlighting the unique acoustic features
of each selected phoneme.

2.2 | Next-generation functional data
22.1 | Fashion-MNIST dataset

This 2D functional data example is derived from the Fashion-MNIST dataset, accessible at https://github.
com/zalandoresearch/fashion-mnist. Fashion-MNIST is an alternative to the traditional MNIST dataset, comprising
60,000 training images and 10,000 testing images. These images represent articles of clothing categorized into 10 dis-
tinct classes, including T-shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots.
Each image is meticulously normalized and centered within a 28 x 28 pixel frame, and features grayscale anti-aliased
renderings of fashion products. The pixel values range from 0 to 255, denoting varying intensity levels, which naturally
lends itself to a functional data interpretation. Each image can be viewed as a function mapped over a square domain.
This characteristic facilitates the application of functional data methodologies in constructing classifiers based on these
fashion item samples. Figure 3 depicts a selection of images from the Fashion-MNIST dataset, showcasing the diverse
intensity patterns and clothing categories.
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FIGURE 2 Illustration of TIMIT speech data: A sample of 30 log-periodograms for each of the “aa,” “ao,” “iy,” and “dcl” phonemes.

FIGURE 3

222 |

Selected images from Fashion-MINIST dataset.

Positron emission tomography scan dataset

The Alzheimer's Disease Neuroimaging Initiative (ADNTI) database, found at adni.loni.usc.edu, is an invaluable reposi-
tory for multidimensional functional data, particularly highlighted by its extensive collection of positron emission
tomography (PET) scans. Originating from a comprehensive longitudinal multicenter study, ADNI plays a crucial role
in advancing the identification and validation of key clinical, imaging, genetic, and biochemical biomarkers that are
essential for monitoring the onset and progression of Alzheimer's disease (AD). The dataset presents several unique
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FIGURE 4 Illustration of ANDI data. Selected images of the 15-th, the 25-th and the 35-th slices of AD group (left), EMCI group
(middle), and CN group (right).

challenges. For instance, reconstructing brain scans from AD patient samples requires the use of advanced functional
regression techniques to precisely capture the complex details in these scans. Moreover, effectively distinguishing
between various stages of Alzheimer's disease—from control group (CN) subjects, to those with early mild cognitive
impairment (EMCI), and patients with a formal AD diagnosis—necessitates the implementation of sophisticated binary
or multiclass classification systems to analyze the extensive PET imaging data.

In Figure 4, the imaging data is meticulously organized, categorizing the scans by distinct groups and specific slices.
Each image segment has undergone thorough spatial normalization and several post-processing steps to ensure the
integrity and completeness of the data for detailed analysis and accurate classification. These processed scans adhere to
a standardized format, each framed within dimensions of 79 x 95 x 68 voxels, resulting in 68 2D image slices per
patient. Each of these slices comprises 79 x 95 pixels, totaling 7,505 discernible pixels per 2D slice. In a 3D analysis con-
text, every complete brain scan encompasses a maximum of 510,340 voxels, derived from the calculation 79 x 95 x 68.
This stringent standardization guarantees a uniform and all-encompassing dataset, laying the groundwork for sophisti-
cated analytical methodologies. Addressing regression hurdles within both 2D and 3D ADNI data, Wang et al. (2021)
and Wang and Cao (2022) have pioneered deep neural network-based approaches for FDA, representing substantial
progress within this domain.

2.3 | Open-source software via neural networks

In the realm of machine learning, there exists a rich ecosystem of open-source software and extensive data resources.
However, this abundance is not mirrored in the field of FDA, particularly in its integration with deep learning. The
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FDA domain, especially in the context of deep learning applications, is still emerging and faces a notable shortage of
specialized software solutions tailored for advanced analysis. This lack of resources presents challenges in comparing
established methods and evaluating new algorithms. Despite these hurdles, our research includes a comprehensive
compilation of available public functions and packages, which are detailed in Table 1. It is important to note that some
of these resources primarily focus on single-hidden-layer neural networks, which might not fully align with the conven-
tional definition of DNNs. Nevertheless, for completeness and to aid the readers, these tools are also included in our
overview.

3 | PRELIMINARIES

Classical function data is a collection of independently and randomly observed curves which are real-valued functions
(Wang et al., 2016). Let X(¢) be a random process residing in X’ with mean function u(t) = E[X(t)] and covariance func-
tion Q(¢,t') = Cov(X(¢),X(t")) for t,t' € T, which is typically considered in a Hilbert space, such as L,(7), 7 € R. Gener-
ally speaking, the next-generation functional data can be extensively denoted as X(t) for some tc 7 C R¢, d >2. This
generalization finds widespread application in various fields, including imaging data, where the intensity value linked
to each pixel is considered the value of a function at the corresponding spatial location such that each image can be
viewed as a realization of a random function.

For simplicity, we let 7 = [0,1], and denote our functional data in L,(7") without further explanation. To distinguish
the data type, let Y(t) be the functional response, and Y be the scalar response. Similarly, let X, (¢),...,X,(t) be the func-
tional covariates, and X1,..., X, as the scalar covariates. Let €(t) € L,(7) be the random error curve with mean zero, and
€ be the random variable with mean zero and finite variance. Denote || - || as the L, norm.

3.1 | Neural networks

In the realm of machine learning, neural networks constitute a significant paradigm, capable of implementing complex
and high-dimensional mappings from inputs to outputs. These mappings are achieved through layers of interconnected
nodes or neurons, each responsible for processing input data, applying specific transformations, and forwarding the
result. Mathematically, a typical feedforward neural network can be described as follows: Consider an input vector
x € RY, the output of each neuron in the first hidden layer is calculated by applying a nonlinear activation function
o(-) to a linear transformation of the input. Specifically, if we denote the weight matrix connecting the input layer to
the first hidden layer by W; € RN1*4 and the bias vector by b; € R™, the output of the first hidden layer, z;, is given by

VAl :6(W1x+b1).
This process continues through subsequent layers until the final layer is reached. The ultimate output of the network,

Y, for regression tasks, or a class label for classification tasks, is then obtained by possibly a different transformation of
the final hidden layer. The expressiveness and flexibility of neural networks stem from their ability to approximate

TABLE 1 Key software functions (with supporting software) on GitHub for FDA using neural networks.

Article Task Function (software)

Wang et al. (2021) Regression FDADNN (R)

Yao et al. (2021) Regression AdaFNN (Python)

Wang and Cao (2022) Regression RDNN (R)

Wu et al. (2023) Regression fosr dp, fosr dppm (Julia)
Thind et al. (2023) Regression FNN (R)

Wang, Cao, and Shang (2023) Classification M dnn.1d,M dnn.2d (R)
Wang and Cao (2023b) Classification mfdnn.1d, mfdnn.2d (R)

Wang and Cao (2023a) Data representation funnol (Python)
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virtually any continuous function, as established by the universal approximation theorem. This quality makes them
particularly suited to tasks where the underlying data distribution or true function.

As technology and computational sciences progressed, the advent of DNNs marked a transformative point in
machine learning history. While traditional neural networks comprise only a couple of hidden layers, DNNs extend this
architecture dramatically. A “deep” network is characterized by having multiple, often dozens of, hidden layers, each
contributing to more refined and abstract representations of the input data. The formulation of a DNN can be viewed
as a continuation of the previous neural network model, with additional layers compounding the complexity of
transformations:

Z11 =h(Wiazi+byyy),

where [ represents the current layer, and z; the output from the previous layer. This recursive transformation through
each layer serves to build increasingly abstract features from the raw input. See Figure 5 for illustration.

The impetus behind the push for deeper networks is twofold. First, deep architectures allow for the hierarchical rep-
resentation of data, reflecting the multifaceted structures found in real-world information. Complex concepts are often
composed of simpler ones; deep networks can learn these hierarchies in an automated manner, creating intricate, lay-
ered representations. Second, DNNs have proven incredibly effective in practice, setting performance benchmarks
across various domains, such as image recognition, natural language processing, and even complex board games. This
efficacy is attributed to their capacity for high-dimensional function approximation, and, importantly, to their ability to
disentangle the factors of variation in the input data through successive stages of nonlinear transformation.

3.2 | Traditional dimension reduction of functional observations

In contrast to classical multivariate data, the inherently infinite-dimensional nature of functional data necessitates the
use of dimension reduction techniques for effective analysis. These techniques are crucial for a wide range of statistical
tasks in FDA, including regression, classification, and data representation. Broadly, there are two primary approaches
for handling functional data. The first approach involves applying dimension reduction techniques to the functional
observations, converting them into a more manageable lower-dimensional form. This transformed data can then be
processed using conventional multivariate classification methods. Techniques in this category include FPCA
(Karhunen, 1946), basis expansion (Ramsay & Silverman, 2005), partial least squares (Delaigle & Hall, 2012b), among
others. The second approach maintains the continuous nature of the functional data (Meister, 2016). Here, methods are
applied directly to the unaltered functional data, although some might still incorporate dimension reduction depending
on the technique used. This category includes distance-based methods and those that utilize the unique structure of
functional spaces, such as methods based in Reproducing Kernel Hilbert Space (Shin & Lee, 2016).

multivariate inputs deep neural network

input #1 ——

input #2 ——

—— output

input #3 ——

input #m-———

FIGURE 5 Visualization of DNN with three hidden layers and m-dimensional inputs.
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Notably, FPCA stands as the most prominent and widely utilized method for dimension reduction in FDA, cele-
brated for its efficacy and clarity in interpretation (Leng & Miiller, 2006; Miiller, 2005). Consider a stochastic process
X(t), where t € T, with the integral [ E[X (t)z]dt being finite. This process X(¢) is characterized by an undetermined
mean function g (t) and an unknown covariance function Q(t,t') for t,t' € 7.

For a given set of n random curves {X;(¢),...X,(¢t)}, the Karhunen-Loéve expansion allows each X;(t) to be
reformulated as:

Xi(O) =p(t)+ Y Edi(0), i=1,...n,
j=1

where &; = [ (Xi(t) — u(t))¢;(t)dt are uncorrelated variables with mean 0 and variance 4;, such that 4, > 4, >... >0, the
¢y (t) represents the corresponding orthonormal eigenfunction, such that f[,_,¢;(t)¢(t)dt =1(j=k), for jkeN".
These &; are known as the Functional Principal Component Scores.

In practical applications, FPCA typically utilizes a truncated expansion that leverages either a predefined functional
basis or a data-driven eigenbasis. This methodology affords enhanced adaptability and customization in the representa-
tion of functional data, enabling analyses that are both more detailed and accurate.

4 | FUNCTIONAL DATA REGRESSION
4.1 | Formulation of functional data regression

Regarding the functional data regression, researchers encounter a diverse array of tasks, each presenting unique chal-
lenges and complexities. These tasks range from reconstructing trajectories from functional observations to various
forms of regression analyses, including scalar-on-function, function-on-scalar, and function-on-function regression. His-
torically, the bulk of scholarly literature in this field has concentrated on linear models, which, while foundational,
often fall short in capturing the nuanced dynamics within the data. However, a recent surge in innovative research has
seen the application of DNNs come to the fore, providing new methodologies to unravel the intricate nonlinear rela-
tionships inherent in these regression models. DNNs offer a significant leap forward, delivering more nuanced, adap-
tive, and accurate modeling capabilities that are particularly suited to managing the complexity of functional data.

4.1.1 | Trajectory recovery

In the realm of FDA, the estimation of mean functions stands as the foundational step, critical to subsequent analysis.
For instance, when analyzing PET imaging data from Alzheimer's Disease patients, estimating the mean function of
this data enables researchers to discern common patterns and features within the patient cohort. This process involves
the precise determination of central tendencies within the infinite-dimensional functional data, serving as a basis for
further statistical exploration and interpretation in various complex FDA problems. Specifically, for multidimensional
functional data Y (t), t € 7% c RY, it follows that

Y(t) =f(t) +n(t) +(v),

where f is a map from 79 to R, € L, (Td) is an empirical process with mean zero. Conventionally, the literature pri-
marily focus on one-dimensional case, where d =1 (Cardot, 2000). When transitioning to higher dimensions with d > 2,
the complexity of the function f escalates. This rise not only hampers the efficiency of the estimation procedures, mak-
ing them more computationally intensive and challenging to navigate, but also introduces substantial obstacles in the
formulation of a uniform estimator for f. This multidimensional context demands more sophisticated analytical tools
and methodologies, as the intricacies of the functional behavior become increasingly difficult to approximate accurately
and consistently across various dimensions of the data space.

In response to these challenges, Wang et al. (2021) spearheaded an innovative approach by employing DNNs for
FDA. In their methodology, the observed grid points of functional observations are utilized as inputs, enabling the
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recovered function to achieve the classical convergence rate characteristic of nonparametric regression. This technique
marked a significant departure from traditional methods, demonstrating the efficacy of deep learning in handling the
intricate structures inherent in functional data.

Building on this foundational work, Wang and Cao (2022) further advanced the field by extending the application
from Gaussian functional data to non-Gaussian contexts. This expansion enhanced the robustness of the estimator, all-
owing for more flexibility and reliability, particularly in scenarios where data do not adhere to the Gaussian assump-
tion. By accommodating a broader range of data distributions, this refined approach underscores the adaptability and
potency of DNNs in navigating the complex landscape of FDA.

41.2 | Scalar-on-function

As one of the most prominent regression models, scalar-on-function (SOF) regression enjoys widespread use across var-
ious fields, owing to its critical role in predicting a scalar outcome based on functional predictors, a scenario common
in numerous practical applications. This methodology is perfectly illustrated by the analysis of the Tecator dataset
(https://lib.stat.cmu.edu/datasets/tecator), where spectrometric curves, discretized across a grid of 100 wavelengths,
serve as the functional predictors. In this scenario, the scalar response variable is the fat content in meat samples, deter-
mined through analytical chemical processing. This approach allows for a nuanced understanding of how the spectral
data, representing various absorbance levels at different wavelengths, can effectively predict the fat composition in the
meat, a vital factor in food quality and processing.

In the realm of traditional linear and generalized linear models, several prominent methodologies are extensively
employed, such as the functional linear model (Eilers et al., 2009):

p
_ (DX (H)dt +e,
Y ﬂo+;/7ﬂj(t)X](t) t+e

the single-index model Ramsay and Silverman (2005):
P

Y=g(> /Tﬂj(t)Xj(t)dt +e,
=1

among others. However, the definite structure in parametric fashion lacks the flexibility to accommodate various types
of functional inputs. To generalize the regression model, consider

Y =A(X1(1),...X, (1)) + e, (1)

where A is a map from L,(7 )? to R.
To address the estimation of A, Delannay et al. (2004) propose the pioneer work, where they consider the functional
radial basis function networks, and the estimator is represented by the single-layer neural network:

A=Y ucor ( (Lo -u o) 1/2) ,

=1

where o, are the radial basis functions, u, are random weights, v, are scaling factors adjusted with the learning algo-
rithm, w(t) is the weight function, and p,(t) are centered functions adjusted by X;(t). The trivial choice of w(t) is
o(t) =1, X(t) and u,(t) are generally represented by same basis functions.

Rossi et al. (2005) employ the integral to the functional inputs, such that for each Xj, the first layer of neural net-
work is calculated by

ASUAOI] SUOWIO)) dANEAIL) d[qeaijdde ayy £q pauIaA0S are SA[OIIER () (2SN JO SN 10§ KIRIQI] AUI[UQ A3[IA UO (SUODIPUOD-PUB-SULI)/W0D K[1m " KIRIQIUI[Uo//:sdNY) SUONIPUO)) PUE SWLIAY, Ay} S *[S70T/21/0€] U0 Areiqi aurjuQ Ad[ip ‘soLeIqr ANsIoAtun) wngny £q [000L SAIM/Z001°01/10p/wod Ka[im Areiqiaurjuo’sairm//:sdny woly papeojumod ‘v ‘4707 ‘89006561



WANG ET AL. WIREs _Wl L EY 11 of 19

zj:umf (var/ng(t)Xj(t)dt)

where o is the activation function, g; are coefficient functions represented by some topological basis, and X are repre-
sented by some chosen basis functions. This methodology facilitates the transformation of functional inputs into scalar vari-
ables, which are then efficiently processed through subsequent layers of a multi-layer neural network. This nuanced
integration preserves the intricate characteristics of the functional data while leveraging the advanced pattern recognition
capabilities of DNNs. However, when representing the functional inputs X;, they do not take advantage of the key information
contained in the response Y during its dimension reduction stage, and the choice of basis functions are subjective. Simi-
lar strategy can be found in Thind et al. (2023) and the functional basis neural network in Rao and Reimherr (2023).

To address the issue of basis function, Yao et al. (2021) propose the Adaptive Functional Neural Network
(AdaFNN), which is an adaptive approach to find the optimal bases that utilizes the information on Y. Specifically, they
additionally model the basis function g; by the neural network, such that g;(t) = or(...c1(ust +v,)), where L is the num-
ber of layers. Besides, to promote the representation of diverse and uncorrelated information about the function
through different nodes in basis layer, a regularization strategy can be employed to maintain their orthogonality. This
approach ensures that each node captures unique features of the function, enhancing the overall capacity and effective-
ness of the model. Rao and Reimherr (2023) propose the similar functional direct neural network with regularization
and develop functional gradient based optimization algorithm to optimize the network parameters.

In essence, Rossi et al. (2005), Yao et al. (2021), Thind et al. (2023) and Rao and Reimherr (2023) utilize the func-
tional linear model as the initial layer in their methodologies. All subsequent operations within their frameworks build
upon the foundational structure provided by the functional linear model, ensuring a coherent integration with tradi-
tional FDA paradigms. Comparably, Wu et al. (2023) propose the utilization of projection scores {ékj}lr{jzl for the func-
tional covariates X, achieved through various dimension reduction techniques. These finite-dimensional projection
scores are then employed as inputs for the neural network. This approach effectively transforms the network into a con-
ventional feedforward neural network tailored for multivariate data, aligning with standard practices in the field. It is
important to highlight that when extracting the projection scores, the methodology employed involves adopting least
squares estimation, particularly applied to the discretely observed functional covariates. The choice of basis includes
the pre-fixed Fourier basis or the basis by the FPCA.

4.1.3 | Function-on-scalar

Function-on-scalar (FOS) regression is a statistical technique used when the response variable is a function and the pre-
dictors are scalar variables. This approach is particularly useful for analyzing data where the response is inherently
functional over a domain, such as time or space, and the predictors are fixed values. Using this method, the relationship
between fractional anisotropy curves, derived along the midsagittal skeleton of the corpus callosum, and a range of sca-
lar covariates—including gender, age, Alzheimer's disease status, mild cognitive impairment status, and so forth—was
investigated. The primary objective was to understand how these scalar variables influence the fractional anisotropy
curves, which are integral to assessing the integrity of white matter tracts. Conventionally, the linear FOS regression
model (Faraway, 1997; Ramsay & Silverman, 2005) is given by

P
Y () =Bo(6) + D Xip;(t) +e€(0).
j=1

Luo and Qi (2023b) further explore the nonlinear FOS for the one-dimensional functional data. Specifically, they
consider a general map & from R? to L,(7 ), and use &, to denote the value of & at t. Therefore, the linear model can
be considered as a trivial case of

Y (t) = F (X1, Xp) +€(0). (2)

Some other applications of Model (2) include the functional additive mixed models (Scheipl et al., 2015).
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To estimate &, they propose the least-squares objective function with smoothness penalty, and the estimation is via
~ p

single-hidden-layer functional neural network, such that &, = [5(t,x)o <y0(t,x) +3 X m(t,x)) dx, where § and {y}fzo
=1

are smooth bivariate functions on 7 x 7, and they are represented by the tensor product of basis functions. ¢ is an acti-
vation function which is bounded and Lipschitz continuous. Note that the popular ReL.U activation function in the classical
universal approximation theory is not qualified in the framework of function-valued maps. This is because the ReLU func-
tion is unbounded, unlike other activation functions such as sigmoid function, the hyperbolic tangent function, and the
Gaussian function, which violates the crucial assumption of the functional universal approximation theory. In particular,
Model (2) can also be applied to the imaging response, which was considered by (Zhang et al., 2023) using DNN approach.

41.4 | Function-on-function

When the analysis involves both response variables and covariates represented as functional data, it is categorized
under the function-on-function (FOF) regression model. This approach is widely applied across various domains, one
notable example being the analysis of the Capital Bike Share System in Washington, DC (Cao et al., 2020). In this study,
FOF regression was utilized to model hourly bike pick-up counts as a functional response, with observed hourly humid-
ity and wind speed serving as functional predictors. The primary objective of this analysis was to forecasting hourly bike
rental volumes and taking into account weather conditions and whether it was a working day. Such insights are crucial
for effective trip planning and the efficient management of the bike-sharing system. There are a few existing models for
FOF regression, including the linear FOF regression model:

Y (1) = folt) + /T X3 (s)B(s, )ds + (1),

or the linear concurrent model:
Y () = po(t) + X1(2)B(t) +€(2).

See Ramsay and Silverman (2005) for more details.
To explore a flexible relationship between the functional response and functional covariates, Luo and Qi (2023a)
consider general nonlinear FOF regression model, where

Y(t) =7 (X1) +e(0), (3)

where % is the value of a map & at ¢, and map # is from 7 to 7. To estimate &, they propose the least-squares
objective function with smoothness penalty, and the estimation is via single-hidden-layer functional neural network,
such that Z, = [,6(t,x)6 (yo(t,X) + [;X1(s)71(t,x,5))dx, where 8,7, €T x T and y; € 7 x T x T are infinitely differen-
tiable functions. Similar to Luo and Qi (2023b), the bivariate functions §8,y, are approximated by tensor product basis
functions, and the trivariate function is depicted through basis functions with reduced dimensions to enhance computa-
tional efficiency.

4.2 | Evaluation of functional regression

To evaluate the regression estimators, approximation error and estimation error are two fundamental concepts, each
reflecting distinct aspects of the analytical process. On the one hand, approximation error essentially reflects the gap
between the true function and the best possible prediction we can achieve within the chosen hypothesis space or model
family. Estimation error, on the other hand, emerges from the randomness in the data sample utilized for training the
model. Given that we almost never have access to the entire population of data, we rely on samples to train our models.
In practice, both types of errors coexist, and their interplay is a central focus in developing statistical models.

For example, the approximation error is generally associated with the concept of bias in the bias-variance tradeoff,
where a more complex model (such as neural network space) might have less approximation error (or bias). On the
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contrary, estimation error is related to the variance component, highlighting the variability that comes from the data's
randomness and the learning algorithm's sensitivity to this randomness. In the realm of DNNs, the estimation error
tends to be substantial due to the sheer number of parameters involved, making its computation intricate owing to the
system's overparameterization and the indefinite characteristics of the estimators involved. These factors pose signifi-
cant challenges to advanced theoretical methodologies, as the unconventional architecture of these networks goes
beyond the traditional statistical frameworks typically applied to more straightforward, well-defined forms.

In the existing literature, most of the work provide the universal approximation error of the proposed algorithms.
The universal approximation theorem asserts that a neural network has the capability to approximate any desired func-
tion to a certain degree of accuracy, given carefully selected parameters. For the single-hidden-layer neural network,
Thind et al. (2023) provide the universal approximation theory for SOF on hypercube, which has the same dimension
as the sample size; Luo and Qi (2023a) and Luo and Qi (2023b) deliver similar functional universal approximation theo-
rems for functional outputs, where the nonlinear map under FOS and FOF regression model can be approximated by
some functional neural network with one hidden layer, and the error is arbitrarily small. For neural networks with
multiple layers, Yao et al. (2021) show the universal approximation theory when the integral of functional components
is well approximated.

In comparison, there has been limited research on estimation error of DNNs, particularly in providing non-
asymptotic convergence rates as a function of sample size. Wang et al. (2021) and Wang and Cao (2022) have
established the convergence rate of the DNN estimator in empirical norms, achieving a minimax rate of convergence
comparable to that presented in Stone (1982), up to a logarithmic factor. Leveraging insights from the deep learning
field, their derived convergence rate remains uninfluenced by the dimensionality of the functional inputs. Furthermore,
they present a data-driven neural network structure along with its non-asymptotic rate, offering valuable guidance on
choosing an optimal structure to expedite convergence in practical applications.

5 | FUNCTIONAL DATA CLASSIFICATION

There is less literature on functional data classification compared to functional data regression. However, this domain
holds significant potential, as illustrated by datasets like the Berkeley Growth Study and the TIMIT speech data. The
Berkeley Growth Study provides functional data through growth curves, tracking children's heights at different ages,
which can be used to distinguish gender (Rao & Reimherr, 2023). On the other hand, the TIMIT dataset, sourced from
the TIMIT Acoustic-Phonetic Continuous Speech Corpus, offers a wealth of speech signals as functional data. This
dataset is employed for classifying various phonemes, such as “sh” in “she” and “dcl” in “dark,” demonstrating the
diverse applications of functional data classification (Wang, Shang, et al., 2023).

While certain methodologies from Section 4, as illustrated by Yao et al. (2021); Thind et al. (2023); Rao and
Reimherr (2023), can be seamlessly adapted to classification tasks by incorporating a link function, and their proposed
network structures remain applicable, it is important to note that even though these methods offer broad applicability
across varied tasks, they might not be the most optimal solution for specific problems. Thus, our primary emphasis is
on literature explicitly addressing functional data classification, which substantiates the optimality of the functional
classifier. To elucidate the existing literature on functional classifiers, we begin by thoroughly outlining the construc-
tions of these classifiers in Section 5.1. Subsequently, we provide the evaluations in Section 5.2.

5.1 | Deep neural network classifier for functional data

For K > 2, suppose we examine a K-class classification problem, wherein the functional observations are defined over
the space X. Let (X;,Y;), i=1,...,n, be i.i.d. random pairs of observations, where X; € X and Y; € {1,..,K}. For a new
observation X, the classification task is to predict the class label Y by a classifier C: X — {1,...,K}, based on finite sam-
ple {(X;Y:)},. More specifically, the classification rule based on finite sample is defined as
Cn=Cn((X1,Y1),.s(Xn,Y3)). We denote the prior probability =y =P(Y =k), and the posterior probabilities
D(x)=P(Y=k|X=x),k=1,...,K.

To address the fundamental binary classification task, Wang, Shang, et al. (2023) and Wang, Cao, and Shang (2023)
propose the Functional Deep Neural Network (FDNN) method, where they assume that the functional observations

admit the general decomposition
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X() = gdu() k=12,
=1

where {d)jl} and {d)jz} are the orthonormal basis of some function spaces, and {éj };il represent random func-
1 j=1 -

tional projection scores (FPS), each following a unique distribution that varies given different k values. Particularly,

FDNN first obtains the estimation of basis functions {(A/)jk} by performing Karhunen-Loéve decomposition for the sam-

ple covariance functions . Subsequently, for some integer J, they extract the truncated J FPS from the sample data
function X; by integration, as

J
Xi(-)~ Zflﬂ%k( ), i=1,..,0.
=1

Denote Ey) = (Eu, ...,EL,), and the training sample set {(X;,Y;)};, is reformulated as { (Eﬁ”,yi) } . Let the FDNN dis-
criminant function be -

g(-)=argming¢ D%Zn: max(l ,g(’g\y)) Yl-,O) ,
i=1

which minimizes the hinge loss function, and D is some DNN class with data-driven structure. Specifically, the selec-
tion of the class D is contingent upon the complexity inherent in the Bayes discriminant rule, as exemplified by the
analysis of Gaussian functional data in Wang, Shang, et al. (2023) and non-Gaussian functional data in Wang, Cao, and
Shang (2023). Based upon g, the FDNN classifier is constructed by

To practically select the optimal structure of D, including the truncation parameter J, Wang, Cao, and Shang (2023) rec-
ommend a data-splitting method through validation techniques.
5.2 | Evaluation of functional classifiers

When evaluating a classifier's performance, two primary benchmarks are commonly used. The first involves assessing
the misclassification risk, defined as

R(Ca) =B(Y # CX) | (X1, Y12)ooor (X, Ya)),

which represents the probability of incorrect classifications, given collected samples. This measure offers a direct and
intuitive evaluation of the classifier's accuracy. The second benchmark examines the classifier's consistency with the
Bayes classifier. This approach is considered highly reliable, as it evaluates how closely a classifier approximates the
optimal classification strategy. Specifically, a classifier is deemed consistent if its misclassification risk converges to the
Bayesian risk, expressed as

E[R(an)] —R(C*)—0asn— oo,

.....
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The effectiveness of a classifier is often measured by its risk convergence toward the Bayesian classifier, a critical
benchmark in classifier assessment. However, distinguishing between two classifiers that exhibit similar convergence
rates poses a challenge, as consistency alone may not suffice to identify the superior option. In such cases, incorporating
additional evaluation criteria is essential for a more discerning comparison. Moreover, the discovery of a proficient clas-
sifier naturally raises interest in its ability to achieve the optimal convergence rate, a feat matched only by the Bayesian
classifier. This aspect of classifier performance, especially in the context of multivariate data classification, has been
explored in depth by Yang (1999); Mammen and Tsybakov (1999); Tsybakov (2004).

Suppose G represents a class of measurable functions that includes the naive Bayesian classifier C*, and Minimax
Excess Misclassification Risk (MEMR) is defined as:

igf;lleng [R ((AJ,,) —R(C*)},

where the infimum encompasses all functional classifiers constructed from the training samples. This definition of
MEMR offers a theoretical framework to gauge the approximation to the Bayes risk using the finite training samples.
For any general classifier C,, it holds that:

inf sup E|R(Cx) ~R(C")| < sup E[R(Ca) ~R(C")],
c, C €6 ceg

indicating that the excess risk inherently sets an upper bound for MEMR. However, identifying the lower bound of con-
vergence requires consideration of all possible classifiers. In the context of DNNs classifiers, minimax optimality is
achieved if and only if the classifier's excess risk matches the lower bound of MEMR, thereby establishing it as the opti-
mal choice among all classifiers.

To summarize, Wang, Shang, et al. (2023) demonstrate that to achieve EMER, the FDNN is optimally minimax
(accounting for a logarithmic factor relative to sample size) in situations involving both fully and discretely observed
data, provided that the truncation parameter is optimally chosen. Their work significantly advances the theoretical
understanding of minimax optimality in functional classifiers, though it is noted that the study's parameters may not be
broad enough to apply in scenarios requiring perfect classification. Building upon these findings, Wang, Cao, and Shang
(2023) explore deeper into the realm of minimax optimality, moving beyond Gaussian functional data. They suggest
that the log-likelihood ratio belongs to a complex function space characterized by Holder smoothness, transitioning
from the parametric framework of Wang, Shang, et al. (2023) to a more comprehensive nonparametric approach. Their
proposed methods not only reaffirms EMER but also validates the minimax optimality of FDNN classifiers in this
broader context. These two pivotal discoveries underscore the capability of DNN classifiers to be the optimal choice in
highly intricate function spaces, thus positioning them as a formidable tool for tackling complex classification tasks in
diverse functional data scenarios.

6 | FUNCTIONAL DATA REPRESENTATION

As mentioned in Section 3.2, FPCA has been considered as the most classical approach to represent functional data.
See Ramsay and Silverman (2005); Hall and Mohammad (2006); Hall et al. (2006) for univariate FPCA and Happ and
Greven (2018) for multivariate FPCA. However, as a linear projection approach, the FPCA have several drawbacks in
representing functional data with complicated structures. Primarily, this method fails to capture the nonlinear struc-
tures inherent in functional data, often not providing any more effective information than the original observations. It
also struggles with multivariate functional data, resorting to inadequate linear components when forced to combine all
dimensions. Furthermore, FPCA assumes a common covariance function across observations, an assumption that, if
incorrect, compromises the entire functional principal space, especially when data contain specific labels for individual
trajectories.

In response to the inherent limitations of linear projections previously discussed, Wang and Cao (2023a) propose
the Functional Nonlinear Learning approach. This methodology is inspired by the concept of an autoencoder, which
was first applied to functional data by Hsieh et al. (2021). When the functional data is observed discretely across M
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points, the data collection can be represented as {X,}n_,, where X, = (X1(tm), .. Xp(tm)). The procedure they intro-
duced is summarized as follows:

« Step 1 (encoding). Model the recurrent neural network (RNN) as

fm = G(WXm + Ufmfl),
and the latent feature z is represented by z=o(Vfy).

« Step 2 (decoding). Model the recurrent neural network as

£,, :a(wszm,l),

and the reconstruction x,, for each m is represented by x,, = ¢ (Vf‘ M) .

+ Step 3 (supervised learning if necessary). Model the response variable Y by the latent feature z with a single-layer
neural network, such that Y =¢(Hz).

By incorporating the RNN, the proposed method ensures continuity in the observed trajectories, making it more suit-
able for functional observations.

In conclusion, it is important to note that while the proposed method is not strictly a deep neural network approach
due to its use of only a single-hidden-layer, it is still relevant to include here for its potential insights. The field of func-
tional data representation through deep learning is indeed an emerging and rapidly evolving area. Currently in its early
stages, it demands more thorough research and attention to fully explore its capabilities and broader implications in
various applications.

7 | DISCUSSION

In summary, we have strived to offer an exhaustive understanding of the evolving landscape of functional data method-
ologies that leverage (deep) neural networks. Our exploration underscores not only their groundbreaking concepts but
also their multifaceted applications, spanning regression, classification, and data representation. While we shed light
on various methodologies, a critical component of our review has been the evaluation and comparison of these
methods, ensuring readers obtain a panoramic view of the prevailing literature on this critical subject. Rather than
restricting our scope to the conventional realm of 1D functional data, we have broadened our lens to encompass
research grounded in 2D and 3D functional data as well. One of our core aspirations has been to serve as a bridge, con-
necting the domains of machine learning, computer science, and other applied sciences, spotlighting the myriad chal-
lenges and opportunities intrinsic to FDA. The fusion of DNNs into this field signifies a momentous shift away from
the orthodox linear methodologies. By tapping into the nonlinear modeling prowess, adaptability, and superior feature
extraction capabilities inherent to DNNs, we posit that researchers and practitioners are better positioned to extract pro-
found insights from functional data, thereby catalyzing innovation across a spectrum of scientific fields.

Despite advancements in this field, there remains ample scope for further progression. For instance, several studies
discussed in this review, such as Luo and Qi (2023b), are limited to neural networks with a single-hidden-layer. An
exciting prospect lies in the exploration of multi-layer neural networks and the incorporation of multiple functional
covariates, potentially facilitating intricate functional relationships. Furthermore, the potential applications of deep
learning extend well beyond their current use. Areas ripe for exploration include functional data clustering and the
analysis of functional time series, where the advanced capabilities of DNNs could uncover new insights and foster
deeper understanding. The recent work by Ma et al. (2024) sheds lights on using DNN to handle functional time series.
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Moreover, there is a notable absence of deep learning methodologies tailored to high-dimensional functional data,
where the selection of critical functional features is paramount. A recent endeavor by Xue et al. (2023) addresses the
classification of such data, where each observation is potentially linked with numerous functional processes. They
introduced a penalized classifier and established discriminant set inclusion consistency, ensuring that the classification-
responsible functional predictors encompass those of the optimal underlying classifier. This pioneering effort offers
insights into high-dimensional FDA, charting possible future trajectories for both regression and classification tasks
involving functional data using DNNs. Collectively, these evolutions underscore the burgeoning potential in addressing
the intricacies of high-dimensional and intricate functional data, amplifying the call for intensified research in this
sphere.

Compared to traditional FDA methods, DNN-integrated FDA approaches require more advanced computational
skills. As with all deep learning approaches, computational time may increase due to the large number of tuning
parameters and training strategies. This generally varies with the depth and width of the neural network, as well as
with training epochs, batch sizes, algorithms, and other factors. In terms of model interpretability, although DNN-based
methods provide a more flexible structure for addressing the problem, they lack the interpretability of classical statisti-
cal models. For example, in a functional linear model, the coefficient function represents the contribution of the
corresponding covariate to the response variable at each point within the domain, offering clear interpretability. This
level of interpretability is not evident in Equation (1). Therefore, it is recommended to apply existing DNN-based
approaches when prediction is the primary focus. A future direction in this field may involve combining both interpret-
ability and predictive ability, such as through semi-parametric modeling (Wang & Huang, 2024; Zhong & Wang, 2023).

AUTHOR CONTRIBUTIONS

Shuoyang Wang: Data curation (equal); methodology (equal); validation (equal); visualization (equal);
writing — original draft (equal); writing - review and editing (equal). Wanyu Zhang: Data curation (equal); methodol-
ogy (equal); visualization (equal); writing — review and editing (equal). Guanqun Cao: Methodology (equal); validation
(equal); writing - original draft (equal); writing — review and editing (equal). Yuan Huang: Methodology (equal); vali-
dation (equal); writing — review and editing (equal).

FUNDING INFORMATION
Cao's research was also partially supported by National Science Foundation under Grants CNS-2319342 and CNS-
2319343.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Shuoyang Wang ‘© https://orcid.org/0000-0001-6963-6267
Guanqun Cao ‘2 https://orcid.org/0000-0002-6454-3210

RELATED WIREs ARTICLES

On semiparametric regression in functional data analysis
Review on functional data classification

Model-based clustering and classification of functional data

REFERENCES

Advani, S. M., Saxe, M. A., & Sompolinsky, H. (2020). High-dimensional dynamics of generalization error in neural networks. Neural Net-
works, 132, 428-446.

Ansuini, A., Laio, A., Macke, J. H., & Zoccolan, D. (2019). Intrinsic dimension of data representations in deep neural networks. Advances in
Neural Information Processing Systems, 32.

Araki, Y., Konishi, S., Kawano, S., & Matsui, H. (2009). Functional logistic discrimination via regularized basis expansions. Communications
in Statistics. Theory and Methods, 38, 2944-2957.

ASUAOI] SUOWIO)) dANEAIL) d[qeaijdde ayy £q pauIaA0S are SA[OIIER () (2SN JO SN 10§ KIRIQI] AUI[UQ A3[IA UO (SUODIPUOD-PUB-SULI)/W0D K[1m " KIRIQIUI[Uo//:sdNY) SUONIPUO)) PUE SWLIAY, Ay} S *[S70T/21/0€] U0 Areiqi aurjuQ Ad[ip ‘soLeIqr ANsIoAtun) wngny £q [000L SAIM/Z001°01/10p/wod Ka[im Areiqiaurjuo’sairm//:sdny woly papeojumod ‘v ‘4707 ‘89006561



18 of 19 Wl L EY_ WIREs WANG ET AL.

Barron, A. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39,
930-945.

Barron, A. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, 14, 115-133.

Bauer, B., & Kohler, M. (2019). On deep learning as a remedy for the curse of dimensionality in nonparametric regression. The Annals of Sta-
tistics, 47, 2261-2285.

Bos, T., & Schmidt-Hieber, J. (2022). Convergence rates of deep relu networks for multiclass classification. Electronic Journal of Statistics, 16,
2724-2773.

Cao, G., Wang, S., & Wang, L. (2020). Estimation and inference for functional linear regression models with partially varying regression coef-
ficients. Stat, 9, e286.

Cardot, H. (2000). Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. Journal of Nonparamet-
ric Statistics, 12, 503-538.

Delaigle, A., & Hall, P. (2012a). Achieving near-perfect classification for functional data. Journal of the Royal Statistical Society, Series B, 74,
267-286.

Delaigle, A., & Hall, P. (2012b). Methodology and theory for partial least squares applied to functional data. Annals of Statistics, 40, 322-352.

Delannay, N., Rossi, F., Conan-Guez, B., & Verleysen, M. (2004). Functional radial basis function networks (FRBFN). In Proceedings of the
12th European Symposium on Artificial Neural Networks (ESANN 2004) (pp. 313-318). https://perso.uclouvain.be/michel.verleysen/
papers/esann04nd.pdf

Eilers, P. H., Li, B., & Marx, B. D. (2009). Multivariate calibration with single-index signal regression. Chemometrics and Intelligent Labora-
tory Systems, 96, 196-202.

Faraway, J. J. (1997). Regression analysis for a functional response. Technometrics, 39, 254-261.

Gal, Y., & Ghahramani, Z. (2016). A theoretically grounded application of dropout in recurrent neural networks. Advances in Neural Infor-
mation Processing Systems, 29, 1019-1027.

Giles, C. L., Kuhn, G. M., & Williams, R. (1994). Dynamic recurrent neural networks: Theory and applications. IEEE Transactions on Neural
Networks, 5, 153-156.

Hall, P., & Mohammad, H.-N. (2006). On properties of functional principal components analysis. Journal of the Royal Statistical Society, Series
B, 68, 109-126.

Hall, P., Miiller, H. G., & Wang, J. L. (2006). Properties of principal component methods for functional and longitudinal data analysis. The
Annals of Statistics, 34, 1493-1517.

Happ, C., & Greven, S. (2018). Multivariate functional principal component analysis for data observed on different (dimensional) domains.
Journal of the American Statistical Association, 113, 649-659.

Hsieh, T.-Y., Sun, Y., Wang, S., & Honavary, V. (2021). Functional autoencoders for functional data representation learning. In Proceedings
of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 1-11). Society for Industrial and Applied Mathematics.

Karhunen, K. (1946). Zur spektraltheorie stochastischer prozesse. Annales Academiae Scientiarum Fennicae. Series A, 1(34), 1-7.

Kim, H., & Lim, Y. (2022). Bootstrap aggregated classification for sparse functional data. Journal of Applied Statistics, 49, 2052-2063.

Kim, Y., Ohn, I., & Kim, D. (2021). Fast convergence rates of deep neural networks for classification. Neural Networks, 138, 179-197.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444.

Leng, X., & Miiller, H. (2006). Classification using functional data analysis for temporal gene expression data. Bioinformatics, 22, 68-76.

Liu, B., Wei, Y., Zhang, Y., & Yang, Q. (2017). Deep neural networks for high dimension, low sample size data. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence. AAAI Press.

Liu, R., Boukai, B., & Shang, Z. (2021). Optimal nonparametric inference via deep neural network. Journal of Mathematical Analysis and
Applications, 505, 125561.

Liu, R., Shang, Z., & Cheng, G. (2021). On deep instrumental variables estimate. arXiv:2004.14954.

Luo, R, & Qi, X. (2023a). General nonlinear function-on-function regression via functional universal approximation. Journal of Computa-
tional and Graphical Statistics, 33, 1-10.

Luo, R., & Qi, X. (2023b). Nonlinear function-on-scalar regression via functional universal approximation. Biometrics, 79, 3319-3331.

Ma, T., Yao, F., & Zhou, Z. (2024). Network-level traffic flow prediction: Functional time series vs. functional neural network approach. The
Annals of Applied Statistics, 18, 424-444.

Mammen, E., & Tsybakov, A. B. (1999). Smooth discrimination analysis. The Annals of Statistics, 27, 1808-1829.

Meister, A. (2016). Optimal classification and nonparametric regression for functional data. Bernoulli, 22, 1729-1744.

Morris, S. J. (2015). Spline estimators for semi-functional linear model. Annual Review of Statistics and its Application, 2, 321-359.

Miiller, H.-g. (2005). Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32, 223-240.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural Computation, 1, 263-269.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., & Dickstein, J. S. (2019). On the expressive power of deep neural networks. In Proceedings of
the 34th International Conference on Machine Learning (Vol. 70, pp. 2847-2854). PLMR.

Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer Series in Statistics.

Rao, A. R., & Reimherr, M. (2023). Nonlinear functional modeling using neural networks. Journal of Computational and Graphical Statistics,
32, 1-10.

Rice, J., & Wu, C. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics, 57, 253-259.

Robinson, A. (1994). An application of recurrent neural nets to phone probability estimation. IEEE Transactions on Neural Networks, 5,
298-305.

ASUAOI] SUOWIO)) dANEAIL) d[qeaijdde ayy £q pauIaA0S are SA[OIIER () (2SN JO SN 10§ KIRIQI] AUI[UQ A3[IA UO (SUODIPUOD-PUB-SULI)/W0D K[1m " KIRIQIUI[Uo//:sdNY) SUONIPUO)) PUE SWLIAY, Ay} S *[S70T/21/0€] U0 Areiqi aurjuQ Ad[ip ‘soLeIqr ANsIoAtun) wngny £q [000L SAIM/Z001°01/10p/wod Ka[im Areiqiaurjuo’sairm//:sdny woly papeojumod ‘v ‘4707 ‘89006561



WANG ET AL. WIREs _Wl L EY 19 of 19

Rossi, F., Delannay, N., Conan-Guez, B., & Verleysen, M. (2005). Representation of functional data in neural networks. Neurocomputing, 64,
183-210.

Salil, K., & Staicu, A.-M. (2023). Second-generation functional data. Annual Review of Statistics and its Application, 10, 547-572.

Scheipl, F., Staicu, A.-M., & Greven, S. (2015). Functional additive mixed models. Journal of Computational and Graphical Statistics, 24,
477-501.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with relu activation function. The Annals of Statistics, 48,
1875-1897.

Shin, H. (2008). An extension of fisher's discriminant analysis for stochastic processes. Journal of Multivariate Analysis, 99, 1191-1216.

Shin, H., & Lee, S. (2016). An RKHS approach to robust functional linear regression. Statistica Sinica, 26, 255-272.

Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression. The Annals of Statistics, 10, 1040-1053.

Thind, B., Multani, K., & Cao, J. (2023). Deep learning with functional inputs. Journal of Computational and Graphical Statistics, 32,
171-180.

Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32, 135-166.

Wang, H., & Cao, J. (2023a). Functional nonlinear learning. Journal of Computational and Graphical Statistics, 33, 1-11.

Wang, J. L., Chiou, J. M., & Miiller, H. G. (2016). Functional data analysis. Annual Review of Statistics and its Application, 3, 257-295.

Wang, S., & Cao, G. (2022). Robust deep neural network estimation for multi-dimensional functional data. Electronic Journal of Statistics, 16,
6461-6488.

Wang, S., & Cao, G. (2023b). Multiclass classification for multidimensional functional data through deep neural networks. arXiv:2305.13349.

Wang, S., Cao, G., & Shang, Z. (2021). Estimation of the mean function of functional data via deep neural networks. Stat, 10, e393.

Wang, S., Cao, G., & Shang, Z. (2023). Deep neural network classifier for multi-dimensional functional data. Scandinavian Journal of Statis-
tics, 50, 1667-1686.

Wang, S., & Huang, Y. (2024). Dp2lm: Leveraging deep learning approach for estimation and hypothesis testing on mediation effects with
high-dimensional mediators and complex confounders. Biostatistics, 25, 818-832.

Wang, S., Huang, Y., & Cao, G. (2023). Review on functional data classification. WIREs Computational Statistics, 16, €1638.

Wang, S., Shang, Z., Cao, G., & Liu, S. J. (2023). Optimal classification for functional data. Statistica Sinica, 34, 1545-1564.

White, H. (1990). Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks,
3, 535-550.

Wu, S., Beaulac, C., & Cao, J. (2023). Neural networks for scalar input and functional output. Statistics and Computing, 33, 118.

Xue, K., Yang, J., & Yao, F. (2023). Optimal linear discriminant analysis for high-dimensional functional data. Journal of the American Statis-
tical Association, 119, 1055-1064.

Yang, Y. (1999). Minimax nonparametric classification. I. Rates of convergence. II. Model selection for adaptation. IEEE Transactions on
Information Theory, 45, 2271-2292.

Yao, J., Miiller, J., & Wang, J.-L. (2021). Deep learning for functional data analysis with adaptive basis layers. In Proceedings of the 38th Inter-
national Conference on Machine Learning, Vol. 139 of Proceedings of Machine Learning Research (pp. 11898-11908). PMLR.

Zhang, D., Li, L., Sripada, C., & Kang, J. (2023). Image response regression via deep neural networks. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 85, 1589-1614.

Zhong, Q., & Wang, J.-L. (2023). Neural networks for partially linear quantile regression. Journal of Business & Economic Statistics, 42,
603-614.

How to cite this article: Wang, S., Zhang, W., Cao, G., & Huang, Y. (2024). Functional data analysis using deep
neural networks. WIREs Computational Statistics, 16(4), €70001. https://doi.org/10.1002/wics.70001

ASUAOI] SUOWIO)) dANEAIL) d[qeaijdde ayy £q pauIaA0S are SA[OIIER () (2SN JO SN 10§ KIRIQI] AUI[UQ A3[IA UO (SUODIPUOD-PUB-SULI)/W0D K[1m " KIRIQIUI[Uo//:sdNY) SUONIPUO)) PUE SWLIAY, Ay} S *[S70T/21/0€] U0 Areiqi aurjuQ Ad[ip ‘soLeIqr ANsIoAtun) wngny £q [000L SAIM/Z001°01/10p/wod Ka[im Areiqiaurjuo’sairm//:sdny woly papeojumod ‘v ‘4707 ‘89006561



	Functional data analysis using deep neural networks
	1  INTRODUCTION
	1.1  What is functional data analysis
	1.2  Why using deep neural networks?

	2  FUNCTIONAL DATA AND ITS APPLICATIONS
	2.1  Traditional functional data
	2.1.1  Daily temperatures data
	2.1.2  TIMIT speech data

	2.2  Next-generation functional data
	2.2.1  Fashion-MNIST dataset
	2.2.2  Positron emission tomography scan dataset

	2.3  Open-source software via neural networks

	3  PRELIMINARIES
	3.1  Neural networks
	3.2  Traditional dimension reduction of functional observations

	4  FUNCTIONAL DATA REGRESSION
	4.1  Formulation of functional data regression
	4.1.1  Trajectory recovery
	4.1.2  Scalar-on-function
	4.1.3  Function-on-scalar
	4.1.4  Function-on-function

	4.2  Evaluation of functional regression

	5  FUNCTIONAL DATA CLASSIFICATION
	5.1  Deep neural network classifier for functional data
	5.2  Evaluation of functional classifiers

	6  FUNCTIONAL DATA REPRESENTATION
	7  DISCUSSION
	AUTHOR CONTRIBUTIONS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	RELATED WIREs ARTICLES
	REFERENCES


