


pixels or voxels, among other relevant scenarios. The inherent complexity of this field arises from the infinite-

dimensional characteristic of the data.

In contrast to classical multivariate data, functional data is characterized by the inherent dependence and smooth-

ness observed within each data curve. Rather than focusing on random variables, FDA involves examining random pro-

cesses, which requires an implicit exploration of an infinite-dimensional function space. Over recent decades, FDA has

garnered increasing attention within the statistical community, resulting in an extensive body of literature on the sub-

ject. For thorough understanding and additional insights, readers are encouraged to refer to the recent review articles

(Morris, 2015; Salil & Staicu, 2023; Wang et al., 2016; Wang, Huang, & Cao, 2023).

There are three fundamental topics in FDA, which are functional data regression (Cardot, 2000; Rice & Wu, 2001),

functional data classification (Araki et al., 2009; Shin, 2008), and functional data representation (Hall et al., 2006;

Hall & Mohammad, 2006). Functional data regression encompasses a wide range of topics, such as exploring the rela-

tionships between functional responses and functional or scalar predictors, and reconstructing the underlying functions

from functional observations. These tasks aim to uncover and understand the underlying patterns in data that evolve

over a continuum. This form of analysis helps researchers make predictions and understand the dynamics of change

across the continuous domain. Second, functional data classification focuses on categorizing functional observations

into distinct groups or classes. This is especially useful in scenarios where the data can be naturally divided into catego-

ries, and there is interest in predicting the membership of new and unlabeled functional observation. Techniques used

in this area often involve finding decision boundaries in the infinite-dimensional space or its finite counterpart that best

separate different classes. Lastly, functional data representation seeks to efficiently identify the underlying structure of

functional data. This often involves extracting features, reducing dimensionality, or finding a basis set that succinctly

captures the essence of the data. Techniques such as functional principal component analysis (FPCA) are commonly

employed to represent the data in a low rank space while preserving its essential characteristics.

1.2 | Why using deep neural networks?

Despite flourishing for over two decades, traditional approaches in FDA frequently depend on linear models to explore

data structures. While these models serve as foundational tools, they pose substantial limitations by failing to capture

the intricate and often nonlinear relationships inherent in functional data. Typical examples include functional linear

regression model (Ramsay & Silverman, 2005), linear discriminant analysis for classification (Delaigle & Hall, 2012a),

and FPCA (Happ & Greven, 2018; Ramsay & Silverman, 2005). Furthermore, the effective dimensionality reduction

schemes intrinsic to conventional FDA methodologies typically yield a finite-dimensional representation of the data, an

approach that, albeit necessary, can oversimplify or miss intricate data features. However, the advent of deep learning,

particularly deep neural networks (DNNs), has ushered in a transformative approach to handling these complexities

within FDA. As a popular approach with applications on approximating and estimating of multivariate functions, DNN

is one of the most promising and vibrate areas in deep learning due to its learning capabilities of nonlinearities. In most

recent years, DNNs have been applied in various nonparametric regression problems and shown to successfully over-

come the curse of dimensionality in nonparametric regression. Examples include Schmidt-Hieber (2020); Bauer and

Kohler (2019); Liu, Boukai, and Shang (2021); Liu, Shang, and Cheng (2021). Additionally, recent literature has demon-

strated the significant success of DNNs in tackling classification problems with near optimal convergence rates Kim

and Lim (2022); Bos and Schmidt-Hieber (2022).

As a powerful tool in dealing with high-dimensional data, DNNs are far superior to their traditional counterparts.

They thrive in high-dimensional spaces, a characteristic that is particularly beneficial for functional data, often repre-

sented in many dimensions (Advani et al., 2020; Liu et al., 2017). The “curse of dimensionality” that plagues traditional

models is less of an issue for DNNs, thanks to their ability to derive latent representations and unveil essential, albeit

non-directly observable, structures within the data (Bauer & Kohler, 2019; Kim et al., 2021; Schmidt-Hieber, 2020).

Moreover, deep learning models offer unparalleled flexibility. They can seamlessly cater to various data types and struc-

tures, whether the functional data are represented as curves, shapes, or images (Gal & Ghahramani, 2016; LeCun

et al., 2015). This versatility in handling different data constructs is generally absent in more traditional statistical

methods, which are often constrained by rigid structural assumptions.

The employment of DNNs in FDA also facilitates the integration of advanced neural network architectures. For

instance, recurrent neural networks (RNNs) excels in contexts where temporal sequences are critical (Giles et al., 1994;

Pearlmutter, 1989; Robinson, 1994). These sophisticated techniques enable a more profound extraction of spatial–
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temporal features, often overlooked by conventional methods. In terms of predictive accuracy, DNNs have an edge due

to their capacity for learning detailed, hierarchical representations of data (Ansuini et al., 2019; Raghu et al., 2019), sig-

nificantly enhancing the precision of predictions—an essential factor in fields requiring reliable forecasts. Additionally,

with the rise of computational power and parallel processing technologies, DNNs are uniquely scalable, capable of

managing the large-scale datasets commonly encountered in contemporary functional data applications.

To date, there has been limited research on FDA using DNNs, with many studies focusing primarily on

single-hidden-layer neural networks (Barron, 1993, 1994; White, 1990). Compared to DNNs, single-hidden-layer neural

networks are simpler, limiting them primarily to more fundamental tasks. They can perform only a more basic level of

feature extraction and are less capable in handling complex, nonlinear decision boundaries compared to their multi-

layered counterparts. Despite this, we include these studies to our review, as they offer critical insights into applying

neural networks to functional data regression, classification, and representation. Furthermore, they hold the potential

for future extension into the deeper realms of deep learning, paving the way for more advanced applications and under-

standing in this field.

The structure of this paper is organized as follows. Section 2 presents various motivational examples encompassing

traditional and next-generation functional data, as well as a compilation of open-source tools and software pertinent to

functional data using DNNs. Preliminary notations, the dimension reduction framework for FDA, and the fundamen-

tals of neural networks are introduced in Section 3. In Section 4, we explore the applications of functional data regres-

sion using neural networks across four distinct models, accompanied by an in-depth discussion of the evaluation

criteria pertinent to each case. Section 5 pivots to the domain of classification, discussing the utilization of DNNs and

shedding light on the relevant theoretical underpinnings reflected in current studies. Section 6 delves into the represen-

tation of functional data through the prism of DNNs. The concluding remarks and discussions in Section 7 encapsulate

the paper, highlighting key findings and suggesting avenues for future exploration.

2 | FUNCTIONAL DATA AND ITS APPLICATIONS

This section is dedicated to showcasing the diverse and versatile applications of FDA across a range of fields. We

explore a variety of examples, extending from traditional functional data contexts to cutting-edge, next-generation sce-

narios. The aim is to highlight the wide-ranging utility and adaptability of FDA techniques. In addition, we will intro-

duce and discuss several open-source packages that are instrumental in integrating DNN into FDA challenges.

2.1 | Traditional functional data

2.1.1 | Daily temperatures data

The Daily Temperatures Dataset (Ramsay & Silverman, 2005), a prominent resource in FDA, offers a comprehensive

collection of daily temperature measurements, typically spanning several years. This dataset stands out for its represen-

tation of a continuous process—temperature over time—making it an ideal tool for exploring various aspects of sea-

sonal trends, variations, and long-term climate patterns. One of the most referenced versions of this dataset is the

Canadian Weather dataset, accessible through the fda package in R. It encompasses daily temperature and precipita-

tion measurements from 35 Canadian weather stations over the course of a year. See Figure 1 for a representative dis-

play of temperature profiles from selected weather stations.

2.1.2 | TIMIT speech data

The TIMIT speech data, sourced from the TIMIT Acoustic-Phonetic Continuous Speech Corpus, was meticulously com-

piled by the National Technical Information Service under the auspices of the United States Department of Commerce.

This database holds a significant place in advancing the fields of speech recognition and functional data classification

research. Key studies, such as those by Wang, Shang, et al. (2023); Rao and Reimherr (2023), have effectively utilized

DNNs to build classifiers using this dataset. Within the rich repository of the TIMIT database, five distinct phonemes

were carefully selected and transcribed: “sh” as in “she,” “dcl” as in “dark,” “iy” representing the vowel sound in “she,”
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“aa” from the vowel in “dark,” and “ao” from the first vowel in “water.” Prior to any analytical processing, each speech

frame was subjected to a log-periodogram transformation, making the data optimally suited for speech recognition

applications. Typically, each frame in this dataset encompasses 400 samples, collected at a 16-kHz sampling rate, with

the analysis primarily focusing on the top 150 frequencies. To visualize these variances, Figure 2 displays 30 log-

periodograms from four different phoneme categories respectively, effectively highlighting the unique acoustic features

of each selected phoneme.

2.2 | Next-generation functional data

2.2.1 | Fashion-MNIST dataset

This 2D functional data example is derived from the Fashion-MNIST dataset, accessible at https://github.

com/zalandoresearch/fashion-mnist. Fashion-MNIST is an alternative to the traditional MNIST dataset, comprising

60,000 training images and 10,000 testing images. These images represent articles of clothing categorized into 10 dis-

tinct classes, including T-shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots.

Each image is meticulously normalized and centered within a 28�28 pixel frame, and features grayscale anti-aliased

renderings of fashion products. The pixel values range from 0 to 255, denoting varying intensity levels, which naturally

lends itself to a functional data interpretation. Each image can be viewed as a function mapped over a square domain.

This characteristic facilitates the application of functional data methodologies in constructing classifiers based on these

fashion item samples. Figure 3 depicts a selection of images from the Fashion-MNIST dataset, showcasing the diverse

intensity patterns and clothing categories.

FIGURE 1 Illustration of Daily Temperatures Dataset: Temperature and precipitation measurements from 35 Canadian weather

stations. Left: Daily measurements. Right: Monthly measurements.
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2.2.2 | Positron emission tomography scan dataset

The Alzheimer's Disease Neuroimaging Initiative (ADNI) database, found at adni.loni.usc.edu, is an invaluable reposi-

tory for multidimensional functional data, particularly highlighted by its extensive collection of positron emission

tomography (PET) scans. Originating from a comprehensive longitudinal multicenter study, ADNI plays a crucial role

in advancing the identification and validation of key clinical, imaging, genetic, and biochemical biomarkers that are

essential for monitoring the onset and progression of Alzheimer's disease (AD). The dataset presents several unique

FIGURE 2 Illustration of TIMIT speech data: A sample of 30 log-periodograms for each of the “aa,” “ao,” “iy,” and “dcl” phonemes.

FIGURE 3 Selected images from Fashion-MINIST dataset.
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challenges. For instance, reconstructing brain scans from AD patient samples requires the use of advanced functional

regression techniques to precisely capture the complex details in these scans. Moreover, effectively distinguishing

between various stages of Alzheimer's disease—from control group (CN) subjects, to those with early mild cognitive

impairment (EMCI), and patients with a formal AD diagnosis—necessitates the implementation of sophisticated binary

or multiclass classification systems to analyze the extensive PET imaging data.

In Figure 4, the imaging data is meticulously organized, categorizing the scans by distinct groups and specific slices.

Each image segment has undergone thorough spatial normalization and several post-processing steps to ensure the

integrity and completeness of the data for detailed analysis and accurate classification. These processed scans adhere to

a standardized format, each framed within dimensions of 79�95�68 voxels, resulting in 68 2D image slices per

patient. Each of these slices comprises 79�95 pixels, totaling 7,505 discernible pixels per 2D slice. In a 3D analysis con-

text, every complete brain scan encompasses a maximum of 510,340 voxels, derived from the calculation 79�95�68.

This stringent standardization guarantees a uniform and all-encompassing dataset, laying the groundwork for sophisti-

cated analytical methodologies. Addressing regression hurdles within both 2D and 3D ADNI data, Wang et al. (2021)

and Wang and Cao (2022) have pioneered deep neural network-based approaches for FDA, representing substantial

progress within this domain.

2.3 | Open-source software via neural networks

In the realm of machine learning, there exists a rich ecosystem of open-source software and extensive data resources.

However, this abundance is not mirrored in the field of FDA, particularly in its integration with deep learning. The

FIGURE 4 Illustration of ANDI data. Selected images of the 15-th, the 25-th and the 35-th slices of AD group (left), EMCI group

(middle), and CN group (right).
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FDA domain, especially in the context of deep learning applications, is still emerging and faces a notable shortage of

specialized software solutions tailored for advanced analysis. This lack of resources presents challenges in comparing

established methods and evaluating new algorithms. Despite these hurdles, our research includes a comprehensive

compilation of available public functions and packages, which are detailed in Table 1. It is important to note that some

of these resources primarily focus on single-hidden-layer neural networks, which might not fully align with the conven-

tional definition of DNNs. Nevertheless, for completeness and to aid the readers, these tools are also included in our

overview.

3 | PRELIMINARIES

Classical function data is a collection of independently and randomly observed curves which are real-valued functions

(Wang et al., 2016). Let X tð Þ be a random process residing in X with mean function μ tð Þ¼E X tð Þ½ � and covariance func-

tion Ω t, t0ð Þ¼Cov X tð Þ,X t0ð Þð Þ for t, t0 � T , which is typically considered in a Hilbert space, such as L2 Tð Þ, T �ℝ. Gener-

ally speaking, the next-generation functional data can be extensively denoted as X tð Þ for some t� T �ℝ
d, d≥ 2. This

generalization finds widespread application in various fields, including imaging data, where the intensity value linked

to each pixel is considered the value of a function at the corresponding spatial location such that each image can be

viewed as a realization of a random function.

For simplicity, we let T ¼ 0,1½ �, and denote our functional data in L2 Tð Þ without further explanation. To distinguish

the data type, let Y tð Þ be the functional response, and Y be the scalar response. Similarly, let X1 tð Þ,…,Xp tð Þ be the func-

tional covariates, and X1,…,Xp as the scalar covariates. Let ϵ tð Þ� L2 Tð Þ be the random error curve with mean zero, and

ϵ be the random variable with mean zero and finite variance. Denote
��� �
��� as the L2 norm.

3.1 | Neural networks

In the realm of machine learning, neural networks constitute a significant paradigm, capable of implementing complex

and high-dimensional mappings from inputs to outputs. These mappings are achieved through layers of interconnected

nodes or neurons, each responsible for processing input data, applying specific transformations, and forwarding the

result. Mathematically, a typical feedforward neural network can be described as follows: Consider an input vector

x�ℝ
q, the output of each neuron in the first hidden layer is calculated by applying a nonlinear activation function

σ �ð Þ to a linear transformation of the input. Specifically, if we denote the weight matrix connecting the input layer to

the first hidden layer by W1 �ℝ
N1�q and the bias vector by b1 �ℝ

N1 , the output of the first hidden layer, z1, is given by

z1 ¼ σ W1xþb1ð Þ:

This process continues through subsequent layers until the final layer is reached. The ultimate output of the network,

Y, for regression tasks, or a class label for classification tasks, is then obtained by possibly a different transformation of

the final hidden layer. The expressiveness and flexibility of neural networks stem from their ability to approximate

TABLE 1 Key software functions (with supporting software) on GitHub for FDA using neural networks.

Article Task Function (software)

Wang et al. (2021) Regression FDADNN (R)

Yao et al. (2021) Regression AdaFNN (Python)

Wang and Cao (2022) Regression RDNN (R)

Wu et al. (2023) Regression fosr_dp, fosr_dppm (Julia)

Thind et al. (2023) Regression FNN (R)

Wang, Cao, and Shang (2023) Classification M_dnn.1d, M_dnn.2d (R)

Wang and Cao (2023b) Classification mfdnn.1d, mfdnn.2d (R)

Wang and Cao (2023a) Data representation funnol (Python)
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virtually any continuous function, as established by the universal approximation theorem. This quality makes them

particularly suited to tasks where the underlying data distribution or true function.

As technology and computational sciences progressed, the advent of DNNs marked a transformative point in

machine learning history. While traditional neural networks comprise only a couple of hidden layers, DNNs extend this

architecture dramatically. A “deep” network is characterized by having multiple, often dozens of, hidden layers, each

contributing to more refined and abstract representations of the input data. The formulation of a DNN can be viewed

as a continuation of the previous neural network model, with additional layers compounding the complexity of

transformations:

zlþ1 ¼ h Wlþ1zlþblþ1ð Þ,

where l represents the current layer, and zl the output from the previous layer. This recursive transformation through

each layer serves to build increasingly abstract features from the raw input. See Figure 5 for illustration.

The impetus behind the push for deeper networks is twofold. First, deep architectures allow for the hierarchical rep-

resentation of data, reflecting the multifaceted structures found in real-world information. Complex concepts are often

composed of simpler ones; deep networks can learn these hierarchies in an automated manner, creating intricate, lay-

ered representations. Second, DNNs have proven incredibly effective in practice, setting performance benchmarks

across various domains, such as image recognition, natural language processing, and even complex board games. This

efficacy is attributed to their capacity for high-dimensional function approximation, and, importantly, to their ability to

disentangle the factors of variation in the input data through successive stages of nonlinear transformation.

3.2 | Traditional dimension reduction of functional observations

In contrast to classical multivariate data, the inherently infinite-dimensional nature of functional data necessitates the

use of dimension reduction techniques for effective analysis. These techniques are crucial for a wide range of statistical

tasks in FDA, including regression, classification, and data representation. Broadly, there are two primary approaches

for handling functional data. The first approach involves applying dimension reduction techniques to the functional

observations, converting them into a more manageable lower-dimensional form. This transformed data can then be

processed using conventional multivariate classification methods. Techniques in this category include FPCA

(Karhunen, 1946), basis expansion (Ramsay & Silverman, 2005), partial least squares (Delaigle & Hall, 2012b), among

others. The second approach maintains the continuous nature of the functional data (Meister, 2016). Here, methods are

applied directly to the unaltered functional data, although some might still incorporate dimension reduction depending

on the technique used. This category includes distance-based methods and those that utilize the unique structure of

functional spaces, such as methods based in Reproducing Kernel Hilbert Space (Shin & Lee, 2016).

FIGURE 5 Visualization of DNN with three hidden layers and m-dimensional inputs.
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Notably, FPCA stands as the most prominent and widely utilized method for dimension reduction in FDA, cele-

brated for its efficacy and clarity in interpretation (Leng & Müller, 2006; Müller, 2005). Consider a stochastic process

X tð Þ, where t� T , with the integral
R
T  X tð Þ2
� �

dt being finite. This process X tð Þ is characterized by an undetermined

mean function μk tð Þ and an unknown covariance function Ω t, t0ð Þ for t, t0 � T .

For a given set of n random curves X1 tð Þ,…,Xn tð Þf g, the Karhunen–Loève expansion allows each X i tð Þ to be

reformulated as:

X i tð Þ¼ μ tð Þþ
X∞

j¼1

ξijϕj tð Þ, i¼ 1,…,n,

where ξij ¼
R
T X i tð Þ�μ tð Þð Þϕj tð Þdt are uncorrelated variables with mean 0 and variance λj, such that λ1 ≥ λ2 ≥…≥ 0, the

ϕk tð Þ represents the corresponding orthonormal eigenfunction, such that
R
t � T ϕj tð Þϕk tð Þdt¼  j¼ kð Þ, for j,k�ℕ

þ.

These ξij are known as the Functional Principal Component Scores.

In practical applications, FPCA typically utilizes a truncated expansion that leverages either a predefined functional

basis or a data-driven eigenbasis. This methodology affords enhanced adaptability and customization in the representa-

tion of functional data, enabling analyses that are both more detailed and accurate.

4 | FUNCTIONAL DATA REGRESSION

4.1 | Formulation of functional data regression

Regarding the functional data regression, researchers encounter a diverse array of tasks, each presenting unique chal-

lenges and complexities. These tasks range from reconstructing trajectories from functional observations to various

forms of regression analyses, including scalar-on-function, function-on-scalar, and function-on-function regression. His-

torically, the bulk of scholarly literature in this field has concentrated on linear models, which, while foundational,

often fall short in capturing the nuanced dynamics within the data. However, a recent surge in innovative research has

seen the application of DNNs come to the fore, providing new methodologies to unravel the intricate nonlinear rela-

tionships inherent in these regression models. DNNs offer a significant leap forward, delivering more nuanced, adap-

tive, and accurate modeling capabilities that are particularly suited to managing the complexity of functional data.

4.1.1 | Trajectory recovery

In the realm of FDA, the estimation of mean functions stands as the foundational step, critical to subsequent analysis.

For instance, when analyzing PET imaging data from Alzheimer's Disease patients, estimating the mean function of

this data enables researchers to discern common patterns and features within the patient cohort. This process involves

the precise determination of central tendencies within the infinite-dimensional functional data, serving as a basis for

further statistical exploration and interpretation in various complex FDA problems. Specifically, for multidimensional

functional data Y tð Þ, t� T d �ℝ
d, it follows that

Y tð Þ¼ f tð Þþη tð Þþϵ tð Þ,

where f is a map from T d to ℝ, η� L2 T d
� �

is an empirical process with mean zero. Conventionally, the literature pri-

marily focus on one-dimensional case, where d¼ 1 (Cardot, 2000). When transitioning to higher dimensions with d≥ 2,

the complexity of the function f escalates. This rise not only hampers the efficiency of the estimation procedures, mak-

ing them more computationally intensive and challenging to navigate, but also introduces substantial obstacles in the

formulation of a uniform estimator for f . This multidimensional context demands more sophisticated analytical tools

and methodologies, as the intricacies of the functional behavior become increasingly difficult to approximate accurately

and consistently across various dimensions of the data space.

In response to these challenges, Wang et al. (2021) spearheaded an innovative approach by employing DNNs for

FDA. In their methodology, the observed grid points of functional observations are utilized as inputs, enabling the
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recovered function to achieve the classical convergence rate characteristic of nonparametric regression. This technique

marked a significant departure from traditional methods, demonstrating the efficacy of deep learning in handling the

intricate structures inherent in functional data.

Building on this foundational work, Wang and Cao (2022) further advanced the field by extending the application

from Gaussian functional data to non-Gaussian contexts. This expansion enhanced the robustness of the estimator, all-

owing for more flexibility and reliability, particularly in scenarios where data do not adhere to the Gaussian assump-

tion. By accommodating a broader range of data distributions, this refined approach underscores the adaptability and

potency of DNNs in navigating the complex landscape of FDA.

4.1.2 | Scalar-on-function

As one of the most prominent regression models, scalar-on-function (SOF) regression enjoys widespread use across var-

ious fields, owing to its critical role in predicting a scalar outcome based on functional predictors, a scenario common

in numerous practical applications. This methodology is perfectly illustrated by the analysis of the Tecator dataset

(https://lib.stat.cmu.edu/datasets/tecator), where spectrometric curves, discretized across a grid of 100 wavelengths,

serve as the functional predictors. In this scenario, the scalar response variable is the fat content in meat samples, deter-

mined through analytical chemical processing. This approach allows for a nuanced understanding of how the spectral

data, representing various absorbance levels at different wavelengths, can effectively predict the fat composition in the

meat, a vital factor in food quality and processing.

In the realm of traditional linear and generalized linear models, several prominent methodologies are extensively

employed, such as the functional linear model (Eilers et al., 2009):

Y ¼ β0þ
Xp

j¼1

Z

T

βj tð ÞX j tð Þdtþϵ,

the single-index model Ramsay and Silverman (2005):

Y ¼ g
Xp

j¼1

Z

T

βj tð ÞX j tð Þdt

 !
þϵ,

among others. However, the definite structure in parametric fashion lacks the flexibility to accommodate various types

of functional inputs. To generalize the regression model, consider

Y ¼A X1 tð Þ,…,Xp tð Þ
� �

þϵ, ð1Þ

where A is a map from L2 Tð Þp to ℝ.

To address the estimation of A, Delannay et al. (2004) propose the pioneer work, where they consider the functional

radial basis function networks, and the estimator is represented by the single-layer neural network:

bA¼
XN

ℓ¼1

uℓσℓ v�1
ℓ

Z

T

ω tð Þ X1 tð Þ�μℓ tð Þdtð Þ

� �1=2
 !

,

where σℓ are the radial basis functions, uℓ are random weights, vℓ are scaling factors adjusted with the learning algo-

rithm, ω tð Þ is the weight function, and μℓ tð Þ are centered functions adjusted by X1 tð Þ. The trivial choice of ω tð Þ is

ω tð Þ¼ 1, X tð Þ and μℓ tð Þ are generally represented by same basis functions.

Rossi et al. (2005) employ the integral to the functional inputs, such that for each X j, the first layer of neural net-

work is calculated by
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XN

ℓ

uℓσℓ vℓþ

Z

T

gj tð ÞX j tð Þdt

� �
,

where σ is the activation function, gj are coefficient functions represented by some topological basis, and X j are repre-

sented by some chosen basis functions. This methodology facilitates the transformation of functional inputs into scalar vari-

ables, which are then efficiently processed through subsequent layers of a multi-layer neural network. This nuanced

integration preserves the intricate characteristics of the functional data while leveraging the advanced pattern recognition

capabilities of DNNs. However, when representing the functional inputs X j, they do not take advantage of the key information

contained in the response Y during its dimension reduction stage, and the choice of basis functions are subjective. Simi-

lar strategy can be found in Thind et al. (2023) and the functional basis neural network in Rao and Reimherr (2023).

To address the issue of basis function, Yao et al. (2021) propose the Adaptive Functional Neural Network

(AdaFNN), which is an adaptive approach to find the optimal bases that utilizes the information on Y . Specifically, they

additionally model the basis function gj by the neural network, such that gj tð Þ¼ σL …σ1 uℓtþ vℓð Þð Þ, where L is the num-

ber of layers. Besides, to promote the representation of diverse and uncorrelated information about the function

through different nodes in basis layer, a regularization strategy can be employed to maintain their orthogonality. This

approach ensures that each node captures unique features of the function, enhancing the overall capacity and effective-

ness of the model. Rao and Reimherr (2023) propose the similar functional direct neural network with regularization

and develop functional gradient based optimization algorithm to optimize the network parameters.

In essence, Rossi et al. (2005), Yao et al. (2021), Thind et al. (2023) and Rao and Reimherr (2023) utilize the func-

tional linear model as the initial layer in their methodologies. All subsequent operations within their frameworks build

upon the foundational structure provided by the functional linear model, ensuring a coherent integration with tradi-

tional FDA paradigms. Comparably, Wu et al. (2023) propose the utilization of projection scores ξkj
	 
rj

k¼1
for the func-

tional covariates X j, achieved through various dimension reduction techniques. These finite-dimensional projection

scores are then employed as inputs for the neural network. This approach effectively transforms the network into a con-

ventional feedforward neural network tailored for multivariate data, aligning with standard practices in the field. It is

important to highlight that when extracting the projection scores, the methodology employed involves adopting least

squares estimation, particularly applied to the discretely observed functional covariates. The choice of basis includes

the pre-fixed Fourier basis or the basis by the FPCA.

4.1.3 | Function-on-scalar

Function-on-scalar (FOS) regression is a statistical technique used when the response variable is a function and the pre-

dictors are scalar variables. This approach is particularly useful for analyzing data where the response is inherently

functional over a domain, such as time or space, and the predictors are fixed values. Using this method, the relationship

between fractional anisotropy curves, derived along the midsagittal skeleton of the corpus callosum, and a range of sca-

lar covariates—including gender, age, Alzheimer's disease status, mild cognitive impairment status, and so forth—was

investigated. The primary objective was to understand how these scalar variables influence the fractional anisotropy

curves, which are integral to assessing the integrity of white matter tracts. Conventionally, the linear FOS regression

model (Faraway, 1997; Ramsay & Silverman, 2005) is given by

Y tð Þ¼ β0 tð Þþ
Xp

j¼1

X jβj tð Þþϵ tð Þ:

Luo and Qi (2023b) further explore the nonlinear FOS for the one-dimensional functional data. Specifically, they

consider a general map ℱ from ℝ
p to L2 Tð Þ, and use ℱt to denote the value of ℱ at t. Therefore, the linear model can

be considered as a trivial case of

Y tð Þ¼ℱt X1,…,Xp

� �
þϵ tð Þ: ð2Þ

Some other applications of Model (2) include the functional additive mixed models (Scheipl et al., 2015).
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To estimate ℱt, they propose the least-squares objective function with smoothness penalty, and the estimation is via

single-hidden-layer functional neural network, such that bℱt ¼
R
T δ t,xð Þσ γ0 t,xð Þþ

Pp

j¼1

X jγj t,xð Þ

 !
dx, where δ and γf g

p
j¼0

are smooth bivariate functions on T �T , and they are represented by the tensor product of basis functions. σ is an acti-

vation function which is bounded and Lipschitz continuous. Note that the popular ReLU activation function in the classical

universal approximation theory is not qualified in the framework of function-valued maps. This is because the ReLU func-

tion is unbounded, unlike other activation functions such as sigmoid function, the hyperbolic tangent function, and the

Gaussian function, which violates the crucial assumption of the functional universal approximation theory. In particular,

Model (2) can also be applied to the imaging response, which was considered by (Zhang et al., 2023) using DNN approach.

4.1.4 | Function-on-function

When the analysis involves both response variables and covariates represented as functional data, it is categorized

under the function-on-function (FOF) regression model. This approach is widely applied across various domains, one

notable example being the analysis of the Capital Bike Share System in Washington, DC (Cao et al., 2020). In this study,

FOF regression was utilized to model hourly bike pick-up counts as a functional response, with observed hourly humid-

ity and wind speed serving as functional predictors. The primary objective of this analysis was to forecasting hourly bike

rental volumes and taking into account weather conditions and whether it was a working day. Such insights are crucial

for effective trip planning and the efficient management of the bike-sharing system. There are a few existing models for

FOF regression, including the linear FOF regression model:

Y tð Þ¼ β0 tð Þþ

Z

T

X1 sð Þβ s, tð Þdsþϵ tð Þ,

or the linear concurrent model:

Y tð Þ¼ β0 tð ÞþX1 tð Þβ tð Þþϵ tð Þ:

See Ramsay and Silverman (2005) for more details.

To explore a flexible relationship between the functional response and functional covariates, Luo and Qi (2023a)

consider general nonlinear FOF regression model, where

Y tð Þ¼ℋt X1ð Þþϵ tð Þ, ð3Þ

where ℋt is the value of a map ℋ at t, and map ℋ is from T to T . To estimate ℋt, they propose the least-squares

objective function with smoothness penalty, and the estimation is via single-hidden-layer functional neural network,

such that bℋt ¼
R
T δ t,xð Þσ γ0 t,xð Þþ

R
T X1 sð Þγ1 t,x,sð Þ

� �
dx, where δ,γ0 � T �T and γ1 � T �T �T are infinitely differen-

tiable functions. Similar to Luo and Qi (2023b), the bivariate functions δ,γ0 are approximated by tensor product basis

functions, and the trivariate function is depicted through basis functions with reduced dimensions to enhance computa-

tional efficiency.

4.2 | Evaluation of functional regression

To evaluate the regression estimators, approximation error and estimation error are two fundamental concepts, each

reflecting distinct aspects of the analytical process. On the one hand, approximation error essentially reflects the gap

between the true function and the best possible prediction we can achieve within the chosen hypothesis space or model

family. Estimation error, on the other hand, emerges from the randomness in the data sample utilized for training the

model. Given that we almost never have access to the entire population of data, we rely on samples to train our models.

In practice, both types of errors coexist, and their interplay is a central focus in developing statistical models.

For example, the approximation error is generally associated with the concept of bias in the bias-variance tradeoff,

where a more complex model (such as neural network space) might have less approximation error (or bias). On the
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contrary, estimation error is related to the variance component, highlighting the variability that comes from the data's

randomness and the learning algorithm's sensitivity to this randomness. In the realm of DNNs, the estimation error

tends to be substantial due to the sheer number of parameters involved, making its computation intricate owing to the

system's overparameterization and the indefinite characteristics of the estimators involved. These factors pose signifi-

cant challenges to advanced theoretical methodologies, as the unconventional architecture of these networks goes

beyond the traditional statistical frameworks typically applied to more straightforward, well-defined forms.

In the existing literature, most of the work provide the universal approximation error of the proposed algorithms.

The universal approximation theorem asserts that a neural network has the capability to approximate any desired func-

tion to a certain degree of accuracy, given carefully selected parameters. For the single-hidden-layer neural network,

Thind et al. (2023) provide the universal approximation theory for SOF on hypercube, which has the same dimension

as the sample size; Luo and Qi (2023a) and Luo and Qi (2023b) deliver similar functional universal approximation theo-

rems for functional outputs, where the nonlinear map under FOS and FOF regression model can be approximated by

some functional neural network with one hidden layer, and the error is arbitrarily small. For neural networks with

multiple layers, Yao et al. (2021) show the universal approximation theory when the integral of functional components

is well approximated.

In comparison, there has been limited research on estimation error of DNNs, particularly in providing non-

asymptotic convergence rates as a function of sample size. Wang et al. (2021) and Wang and Cao (2022) have

established the convergence rate of the DNN estimator in empirical norms, achieving a minimax rate of convergence

comparable to that presented in Stone (1982), up to a logarithmic factor. Leveraging insights from the deep learning

field, their derived convergence rate remains uninfluenced by the dimensionality of the functional inputs. Furthermore,

they present a data-driven neural network structure along with its non-asymptotic rate, offering valuable guidance on

choosing an optimal structure to expedite convergence in practical applications.

5 | FUNCTIONAL DATA CLASSIFICATION

There is less literature on functional data classification compared to functional data regression. However, this domain

holds significant potential, as illustrated by datasets like the Berkeley Growth Study and the TIMIT speech data. The

Berkeley Growth Study provides functional data through growth curves, tracking children's heights at different ages,

which can be used to distinguish gender (Rao & Reimherr, 2023). On the other hand, the TIMIT dataset, sourced from

the TIMIT Acoustic-Phonetic Continuous Speech Corpus, offers a wealth of speech signals as functional data. This

dataset is employed for classifying various phonemes, such as “sh” in “she” and “dcl” in “dark,” demonstrating the

diverse applications of functional data classification (Wang, Shang, et al., 2023).

While certain methodologies from Section 4, as illustrated by Yao et al. (2021); Thind et al. (2023); Rao and

Reimherr (2023), can be seamlessly adapted to classification tasks by incorporating a link function, and their proposed

network structures remain applicable, it is important to note that even though these methods offer broad applicability

across varied tasks, they might not be the most optimal solution for specific problems. Thus, our primary emphasis is

on literature explicitly addressing functional data classification, which substantiates the optimality of the functional

classifier. To elucidate the existing literature on functional classifiers, we begin by thoroughly outlining the construc-

tions of these classifiers in Section 5.1. Subsequently, we provide the evaluations in Section 5.2.

5.1 | Deep neural network classifier for functional data

For K ≥ 2, suppose we examine a K-class classification problem, wherein the functional observations are defined over

the space X . Let X i,Y ið Þ, i¼ 1,…,n, be i.i.d. random pairs of observations, where X i �X and Y i � 1,…,Kf g. For a new

observation X , the classification task is to predict the class label Y by a classifier C :X ! 1,…,Kf g, based on finite sam-

ple X i,Y ið Þf gni¼1. More specifically, the classification rule based on finite sample is defined as
bCn � bCn X1,Y 1ð Þ,…, Xn,Ynð Þð Þ. We denote the prior probability πk ¼P Y ¼ kð Þ, and the posterior probabilities

pk xð Þ¼P Y ¼ kjX ¼ xð Þ, k¼ 1,…,K .

To address the fundamental binary classification task, Wang, Shang, et al. (2023) and Wang, Cao, and Shang (2023)

propose the Functional Deep Neural Network (FDNN) method, where they assume that the functional observations

admit the general decomposition
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X �ð Þ¼
X∞

j¼1

ξjϕjk �ð Þ, k¼ 1,2,

where ϕj1

n o∞

j¼1
and ϕj2

n o∞

j¼1
are the orthonormal basis of some function spaces, and ξj

	 
∞
j¼1

represent random func-

tional projection scores (FPS), each following a unique distribution that varies given different k values. Particularly,

FDNN first obtains the estimation of basis functions bϕjk

n o
by performing Karhunen–Loéve decomposition for the sam-

ple covariance functions bΩk. Subsequently, for some integer J , they extract the truncated J FPS from the sample data

function X i by integration, as

X i �ð Þ≈
XJ

j¼1

bξijbϕjk �ð Þ, i¼ 1,…,n:

Denote bξ
ið Þ

J ¼ bξi1,…,bξiJ
� �

, and the training sample set X i,Y ið Þf gni¼1 is reformulated as bξ
ið Þ

J ,Y i

� �n on

i¼1
. Let the FDNN dis-

criminant function be

bg �ð Þ¼ argmin f � D
1

n

Xn

i¼1

max 1� g bξ
ið Þ

J

� �
Y i,0

� �
,

which minimizes the hinge loss function, and D is some DNN class with data-driven structure. Specifically, the selec-

tion of the class D is contingent upon the complexity inherent in the Bayes discriminant rule, as exemplified by the

analysis of Gaussian functional data in Wang, Shang, et al. (2023) and non-Gaussian functional data in Wang, Cao, and

Shang (2023). Based upon bg, the FDNN classifier is constructed by

bC
FDNN

X ið Þ¼
1, bg ξ

ið Þ
J

� �
≥ 0,

�1, bg ξ
ið Þ
J

� �
<0:

8
><

>:

To practically select the optimal structure of D, including the truncation parameter J , Wang, Cao, and Shang (2023) rec-

ommend a data-splitting method through validation techniques.

5.2 | Evaluation of functional classifiers

When evaluating a classifier's performance, two primary benchmarks are commonly used. The first involves assessing

the misclassification risk, defined as

R bCn

� �
¼P Y ≠C Xð Þ j X1,Y 1ð Þ,…, Xn,Ynð Þð Þ,

which represents the probability of incorrect classifications, given collected samples. This measure offers a direct and

intuitive evaluation of the classifier's accuracy. The second benchmark examines the classifier's consistency with the

Bayes classifier. This approach is considered highly reliable, as it evaluates how closely a classifier approximates the

optimal classification strategy. Specifically, a classifier is deemed consistent if its misclassification risk converges to the

Bayesian risk, expressed as

E R bCn

� �h i
�R C�ð Þ! 0 asn!∞,

where C� xð Þ¼ argmax k¼1,…,Kpk xð Þ denotes the naive Bayesian classifier.

14 of 19 WANG ET AL.

 1
9

3
9

0
0

6
8

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
ires.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/w
ics.7

0
0

0
1

 b
y

 A
u

b
u

rn
 U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [3

0
/1

2
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



The effectiveness of a classifier is often measured by its risk convergence toward the Bayesian classifier, a critical

benchmark in classifier assessment. However, distinguishing between two classifiers that exhibit similar convergence

rates poses a challenge, as consistency alone may not suffice to identify the superior option. In such cases, incorporating

additional evaluation criteria is essential for a more discerning comparison. Moreover, the discovery of a proficient clas-

sifier naturally raises interest in its ability to achieve the optimal convergence rate, a feat matched only by the Bayesian

classifier. This aspect of classifier performance, especially in the context of multivariate data classification, has been

explored in depth by Yang (1999); Mammen and Tsybakov (1999); Tsybakov (2004).

Suppose G represents a class of measurable functions that includes the naive Bayesian classifier C�, and Minimax

Excess Misclassification Risk (MEMR) is defined as:

inf
bCn

sup
C�

� G

E R bCn

� �
�R C�ð Þ

h i
,

where the infimum encompasses all functional classifiers constructed from the training samples. This definition of

MEMR offers a theoretical framework to gauge the approximation to the Bayes risk using the finite training samples.

For any general classifier ~Cn, it holds that:

inf
bCn

sup
C�

� G

E R bCn

� �
�R C�ð Þ

h i
≤ sup

C�
� G

E R ~Cn

� �
�R C�ð Þ

� �
,

indicating that the excess risk inherently sets an upper bound for MEMR. However, identifying the lower bound of con-

vergence requires consideration of all possible classifiers. In the context of DNNs classifiers, minimax optimality is

achieved if and only if the classifier's excess risk matches the lower bound of MEMR, thereby establishing it as the opti-

mal choice among all classifiers.

To summarize, Wang, Shang, et al. (2023) demonstrate that to achieve EMER, the FDNN is optimally minimax

(accounting for a logarithmic factor relative to sample size) in situations involving both fully and discretely observed

data, provided that the truncation parameter is optimally chosen. Their work significantly advances the theoretical

understanding of minimax optimality in functional classifiers, though it is noted that the study's parameters may not be

broad enough to apply in scenarios requiring perfect classification. Building upon these findings, Wang, Cao, and Shang

(2023) explore deeper into the realm of minimax optimality, moving beyond Gaussian functional data. They suggest

that the log-likelihood ratio belongs to a complex function space characterized by Hölder smoothness, transitioning

from the parametric framework of Wang, Shang, et al. (2023) to a more comprehensive nonparametric approach. Their

proposed methods not only reaffirms EMER but also validates the minimax optimality of FDNN classifiers in this

broader context. These two pivotal discoveries underscore the capability of DNN classifiers to be the optimal choice in

highly intricate function spaces, thus positioning them as a formidable tool for tackling complex classification tasks in

diverse functional data scenarios.

6 | FUNCTIONAL DATA REPRESENTATION

As mentioned in Section 3.2, FPCA has been considered as the most classical approach to represent functional data.

See Ramsay and Silverman (2005); Hall and Mohammad (2006); Hall et al. (2006) for univariate FPCA and Happ and

Greven (2018) for multivariate FPCA. However, as a linear projection approach, the FPCA have several drawbacks in

representing functional data with complicated structures. Primarily, this method fails to capture the nonlinear struc-

tures inherent in functional data, often not providing any more effective information than the original observations. It

also struggles with multivariate functional data, resorting to inadequate linear components when forced to combine all

dimensions. Furthermore, FPCA assumes a common covariance function across observations, an assumption that, if

incorrect, compromises the entire functional principal space, especially when data contain specific labels for individual

trajectories.

In response to the inherent limitations of linear projections previously discussed, Wang and Cao (2023a) propose

the Functional Nonlinear Learning approach. This methodology is inspired by the concept of an autoencoder, which

was first applied to functional data by Hsieh et al. (2021). When the functional data is observed discretely across M
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points, the data collection can be represented as xmf gMm¼1, where xm ¼ X1 tmð Þ,…,Xp tmð Þ
� �

. The procedure they intro-

duced is summarized as follows:

• Step 1 (encoding). Model the recurrent neural network (RNN) as

fm ¼ σ WxmþUfm�1ð Þ,

and the latent feature z is represented by z¼ σ VfMð Þ:

• Step 2 (decoding). Model the recurrent neural network as

~fm ¼ σ ~Wzþ ~U~fm�1

� �
,

and the reconstruction xm for each m is represented by xm ¼ σ ~V~fM

� �
:

• Step 3 (supervised learning if necessary). Model the response variable Y by the latent feature z with a single-layer

neural network, such that Y ¼ σ Hzð Þ.

By incorporating the RNN, the proposed method ensures continuity in the observed trajectories, making it more suit-

able for functional observations.

In conclusion, it is important to note that while the proposed method is not strictly a deep neural network approach

due to its use of only a single-hidden-layer, it is still relevant to include here for its potential insights. The field of func-

tional data representation through deep learning is indeed an emerging and rapidly evolving area. Currently in its early

stages, it demands more thorough research and attention to fully explore its capabilities and broader implications in

various applications.

7 | DISCUSSION

In summary, we have strived to offer an exhaustive understanding of the evolving landscape of functional data method-

ologies that leverage (deep) neural networks. Our exploration underscores not only their groundbreaking concepts but

also their multifaceted applications, spanning regression, classification, and data representation. While we shed light

on various methodologies, a critical component of our review has been the evaluation and comparison of these

methods, ensuring readers obtain a panoramic view of the prevailing literature on this critical subject. Rather than

restricting our scope to the conventional realm of 1D functional data, we have broadened our lens to encompass

research grounded in 2D and 3D functional data as well. One of our core aspirations has been to serve as a bridge, con-

necting the domains of machine learning, computer science, and other applied sciences, spotlighting the myriad chal-

lenges and opportunities intrinsic to FDA. The fusion of DNNs into this field signifies a momentous shift away from

the orthodox linear methodologies. By tapping into the nonlinear modeling prowess, adaptability, and superior feature

extraction capabilities inherent to DNNs, we posit that researchers and practitioners are better positioned to extract pro-

found insights from functional data, thereby catalyzing innovation across a spectrum of scientific fields.

Despite advancements in this field, there remains ample scope for further progression. For instance, several studies

discussed in this review, such as Luo and Qi (2023b), are limited to neural networks with a single-hidden-layer. An

exciting prospect lies in the exploration of multi-layer neural networks and the incorporation of multiple functional

covariates, potentially facilitating intricate functional relationships. Furthermore, the potential applications of deep

learning extend well beyond their current use. Areas ripe for exploration include functional data clustering and the

analysis of functional time series, where the advanced capabilities of DNNs could uncover new insights and foster

deeper understanding. The recent work by Ma et al. (2024) sheds lights on using DNN to handle functional time series.
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Moreover, there is a notable absence of deep learning methodologies tailored to high-dimensional functional data,

where the selection of critical functional features is paramount. A recent endeavor by Xue et al. (2023) addresses the

classification of such data, where each observation is potentially linked with numerous functional processes. They

introduced a penalized classifier and established discriminant set inclusion consistency, ensuring that the classification-

responsible functional predictors encompass those of the optimal underlying classifier. This pioneering effort offers

insights into high-dimensional FDA, charting possible future trajectories for both regression and classification tasks

involving functional data using DNNs. Collectively, these evolutions underscore the burgeoning potential in addressing

the intricacies of high-dimensional and intricate functional data, amplifying the call for intensified research in this

sphere.

Compared to traditional FDA methods, DNN-integrated FDA approaches require more advanced computational

skills. As with all deep learning approaches, computational time may increase due to the large number of tuning

parameters and training strategies. This generally varies with the depth and width of the neural network, as well as

with training epochs, batch sizes, algorithms, and other factors. In terms of model interpretability, although DNN-based

methods provide a more flexible structure for addressing the problem, they lack the interpretability of classical statisti-

cal models. For example, in a functional linear model, the coefficient function represents the contribution of the

corresponding covariate to the response variable at each point within the domain, offering clear interpretability. This

level of interpretability is not evident in Equation (1). Therefore, it is recommended to apply existing DNN-based

approaches when prediction is the primary focus. A future direction in this field may involve combining both interpret-

ability and predictive ability, such as through semi-parametric modeling (Wang & Huang, 2024; Zhong & Wang, 2023).
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