
1

Object as a Service: Simplifying Cloud-Native
Development through Serverless Object Abstraction

Pawissanutt Lertpongrujikorn , Mohsen Amini Salehi
High Performance Cloud Computing (HPCC) Lab, University of North Texas

Abstract—The function-as-a-service (FaaS) paradigm is envi-
sioned as the next generation of cloud computing systems that
mitigate the burden for cloud-native application developers by
abstracting them from cloud resource management. However, it
does not deal with the application data aspects. As such, devel-
opers have to intervene and undergo the burden of managing
the application data, often via separate cloud storage services.
To further streamline cloud-native application development, in
this work, we propose a new paradigm, known as Object as a
Service (OaaS) that encapsulates application data and functions
into the cloud object abstraction. OaaS relieves developers from
resource and data management burden while offering built-
in optimization features. Inspired by OOP, OaaS incorporates
access modifiers and inheritance into the serverless paradigm
that: (a) prevents developers from compromising the system via
accidentally accessing underlying data; and (b) enables software
reuse in cloud-native application development. Furthermore,
OaaS natively supports dataflow semantics. It enables developers
to define function workflows while transparently handling data
navigation, synchronization, and parallelism issues. To establish
the OaaS paradigm, we develop a platform named Oparaca that
offers state abstraction for structured and unstructured data with
consistency and fault-tolerant guarantees. We evaluated Oparaca
under real-world settings against state-of-the-art platforms with
respect to the imposed overhead, scalability, and ease of use. The
results demonstrate that the object abstraction provided by OaaS
can streamline flexible and scalable cloud-native application
development with an insignificant overhead on the underlying
serverless system.

Index Terms—FaaS, Serverless paradigm, Cloud computing,
Cloud-native programming, Abstraction.

I. INTRODUCTION

A. FaaS and Its Shortcomings

Function-as-a-Service (FaaS) is envisioned as the next
generation of cloud computing (Cloud 2.0) [18], mitigat-
ing burdens for programmers and architects. Major cloud
providers offer FaaS services (e.g., AWS Lambda, Google
Cloud Function, Azure Function), while open-source platforms
(e.g., OpenFaaS, Knative) enable on-premise deployments.
FaaS provides function abstraction for developing business
logic triggered by predefined events, with serverless platforms
handling resource management transparently and scalably. By
implementing scale-to-zero and pay-as-you-go charging, FaaS
reduces costs and aligns with modern development paradigms
like CI/CD and DevOps [8].

Since FaaS centers on stateless functions, it does not address
data management. However, most applications require state
data, and FaaS’s limited inter-function communication neces-
sitates remote storage for intermediate data. Consequently,

Application
Logic

FaaS Platform

Function

State
Management

Developer

Source Code Cloud

Workflow
Orchestrator

Workflow
Definitions

Data
Storage

(a) Function as a Service (FaaS)

Application
Logic

OaaS Platform

Data
Storage

Developer

Source Code

Cloud

Application
Logic

Application
Logic

Dataflow ManagementDataflow
Definitions

State Management

Function

(b) Object as a Service (OaaS)

Fig. 1: A bird-eye view of FaaS vs. OaaS.

developers must manage data through separate cloud services
(e.g., AWS S3 [6]). For instance, video streaming applica-
tions [13] require developers to maintain video files, metadata,
and access control alongside function development.

Beyond data management, FaaS lacks built-in sematic for
access control to functions’ internal mechanics. Unrestricted
access causes side effects like unintended function invocation
and data corruption. Developers must configure external ser-
vices (e.g., AWS IAM [4]) for access control.

Finally, FaaS lacks native workflow support. Developers
must chain functions through events, which becomes cum-
bersome for large workflows. While orchestrator services
(e.g., AWS Step Function [5], Azure Durable Function [10])
help, FaaS’s inherent limitations–(a) restricted inter-function
communication and (b) absent state management (Figure 1)–
force developers to use external storage for intermediate data
and manually navigate data throughout workflows [29]. Thus,
while FaaS abstracts resource management (e.g., auto-scaling),
it leaves data, access control, and workflow management to
developers.

B. Proposed Paradigm

To address these FaaS limitations, we propose a paradigm
that relieves developers from resource, data, and workflow
management burdens. We borrow the notion of “object”
from object-oriented programming (OOP) and develop a new
abstraction level within the serverless cloud, called Object as
a Service (OaaS), a new serverless cloud abstraction.

As Figure 1 shows, OaaS separates state management from
developer code, incorporating it into the serverless platform.

https://orcid.org/0009-0003-4106-2347
https://orcid.org/0000-0002-7020-3810
https://hpcclab.org

2

OaaS integrates workflow orchestration through dataflow ab-
straction with built-in cross-function data navigation. Unify-
ing application data and workflow in object abstraction en-
ables built-in optimizations–data locality, reliability, caching,
Quality-of-Service targets [26], software reusability [14], and
access control. OaaS lets developers declare object behavior
and properties as class and function. For complex work-
flows orchestrating multiple objects and functions, OaaS pro-
vides native dataflow interfaces that abstract data navigation
and synchronization details.

An exemplar use case that can take advantage of OaaS
is a cloud-based video streaming systems (e.g., [13], [28]),
requiring rapid implementation of services like harmful con-
tent blurring, face detection, and transcoding pipelines. FaaS
implementations require managing state data (videos) along-
side business logic. In this scenario, the OaaS paradigm can
mitigate the developer’s burden by offering encapsulation. The
videos are defined as persistent objects bound to a set of
functions that can be invoked by the viewer’s application and
potentially change the object’s (video’s) state. For example,
to blur gore segments in the video object v1, the developer
invokes v1.detect_gore() to obtain the output object g1
that contains a list of time stamps of gore segments—next,
blurring the video via invoking v1.blurs(g1).

C. Research and Contributions

The first challenge is to establish OaaS by providing the
“object” abstraction while ensuring the platform’s modularity
and extensibility. The primary requirement is to offer an
interface for developers to declare object behavior and state as
classes, functions, and dataflow. With the addition of access
modifiers, OaaS can encapsulate internal mechanics, allowing
objects to reference other objects and form dataflow functions.
This high-level abstraction enforces strong encapsulation, pre-
venting invalid access and thereby unraveling complexity. To
realize the OaaS paradigm, we develop Oparaca (Object
Paradigm on Serverless Cloud Abstraction), that is driven
by flexibility and modularity. It must accommodate multiple
use cases, remain extensible, and integrate seamlessly with
various execution (FaaS) and storage modules. By leveraging
pure functions, Oparaca avoids tight coupling with execution
modules and offloads tasks without side effects. A data tiering
scheme further abstracts storage, ensuring that changes in
storage types do not necessitate modifications in the function
code.

The second challenge is to reduce the overhead of data
movement between functions and the platform’s components.
For that purpose, the data tiering scheme within the Oparaca
platform diminishes the latency of accessing the object by
employing a distributed in-memory hash table [35]. However,
for unstructured data, also known as BLOB (e.g., multime-
dia), that cannot fit in memory, Oparaca persisted them in
a separate object storage. To further mitigate the overhead
of accessing objects, Oparaca is equipped with a presigned
URL with a redirection mechanism that reduces unnecessary
data movements within the platform instead of relaying (i.e.,
transferring) the object state.

The third challenge is to ensure fault tolerance and data
consistency. Concurrent requests to the same state can lead to
data inconsistencies due to race conditions, and system failures
may result in mismatched states across multiple data stores.
Oparaca introduces a fail-safe state transition mechanism that
maintains data consistency and fault tolerance to tackle these
issues. Additionally, Oparaca combines lightweight optimistic
locking [25] and localized locking to prevent concurrent mod-
ifications to the same object. Another aspect of fault tolerance
is the recovery mechanism from failure via retrying. However,
such a remedy can potentially lead to another problem—
repeating the execution more than once and falling into an
undesirable state. To cope with this challenge, we develop
a mechanism within Oparaca that establishes consistent state
transitioning by guaranteeing “exactly-once” execution for the
function calls.

In summary, the key contributions of this research are as
follows:
1) Proposing OaaS, a paradigm simplifying cloud-native de-

velopment by unifying application data, business logic,
and workflows into object abstraction. OaaS applies OOP
principles to serverless computing through cloud class
inheritance, enhancing software reusability across diverse
functions and runtimes.

2) Developing Oparaca1, an OaaS prototype supporting
structured and unstructured data with ensuring data consis-
tency via fail-safe state transitions and scalable localized
locking that avoids cluster-wide coordination overhead.

3) Devising a declarative dataflow abstraction that enables
developers to define workflows based on data dependencies
rather than task dependencies. Oparaca implements this
through efficient techniques, such as presigned URLs with
redirection and distributed in-memory caching, to minimiz-
ing performance overhead and improve scalability.

4) Analyzing Oparaca’s performance from the scalability,
overhead, and ease-of-use perspectives.

II. BACKGROUND AND PRIOR STUDIES

The idea of stateful serverless is explored in several research
works. These approaches primarily aim to address the stateless
nature of the FaaS model, where the burden of managing
application data, access control, and function workflows is
often shifted to the developer through separate cloud services.
As noted in Figure 2, these works can be categorized into actor
model, datastore abstraction, and pure function approaches
depending on how the platform manages data and allows
functions to access it.
Actor Model. In the actor model, the platform fetches the
state from persistent storage and places (i.e., caches) it inside
a worker instance, then dispatches the request to where the
state resides to achieve data locality. This approach, however,
can make maintainability difficult for bulky unstructured data.
The deployment granularity is an actor that contains multiple
functions sharing the same state. The foundational platform
in this space is Orleans [9], which introduces “virtual actors”.
Its influence is evident in modern platforms such as Azure

1The source code and example: https://github.com/hpcclab/OaaS

https://github.com/hpcclab/OaaS

3

Pure FunctionActor Model Datastore Abstraction
W

or
ke

r Actor
Func

State
Func

Persistent
Storage

Ingress

W
or

ke
r

Func Func

State API

Persistent
Storage

Ingress

W
or

ke
r

Func Func

Persistent
Storage

Ingress

State Management

Task
request state

Fig. 2: The illustrated comparison of three different models of
stateful serverless.

Entity Functions [16]. While effective for certain use cases,
this model can tightly couple state and compute within a single
language and environment. In contrast, Oparaca manages the
object abstraction at the platform level, allowing functions
implemented in different languages or runtimes to operate on
an object, thereby offering greater flexibility.
Datastore Abstraction. The datastore abstraction is a hy-
brid approach where the platform provides an API for the
function to access data on demand. Like pure functions,
it relaxes the need for state and function co-location, but
can utilize caching to preserve data locality. Several systems
utilize this pattern. Cloudburst [34] uses a shared distributed
key-value database, while Boki [22] provides API access to
a distributed logging system. This log-based approach for
consistency differs from Oparaca’s mechanisms, which use a
combination of fail-safe state transitions for unstructured data
and localized locking to handle race conditions. Beldi [39],
on the other hand, provides the database and transaction
API to the state. While providing direct transactional APIs
offers strong guarantees, Oparaca abstracts these concerns
from developers through its fail-safe versioning scheme and
guarantees of exactly-once execution, aiming for a higher-
level resilience model. FAASM [32] optimizes the function-
state interaction by using WebAssembly [17]. Although this
enables multiple functions to share memory and achieve data
locality, it requires compiling code to WebAssembly, which
can limit library compatibility. Oparaca’s hybrid model avoids
this limitation by combining the pure function and datastore
abstraction approaches, offering broader language support.
Pure Function. In the pure function approach, the state
is placed on another system and transferred to the worker
instance upon invocation, appearing as part of the function’s
input arguments. This disaggregates state management and
computation for system design simplicity, but can compromise
data locality. Apache Flink Stateful Function (StateFun) [15]
is a solution based on this approach. Oparaca combines the
pure function approach for structured data with a lazy-fetch
mechanism for unstructured data, practically employing both
the pure function and datastore abstraction approaches.
Process Abstractions. While OaaS simplifies development
by increasing abstraction, a competing trend in recent work
involves stepping back from abstraction to grant developers
more control for performance. This trend of using OS-inspired
abstractions is evident in various contexts. For serverless
platforms, Process-as-a-Service (PaaS) [11] introduces a cloud
process to optimize execution, while for traditional always-on

services, Nu [31] utilizes migratable logical processes.
Serverless Workflow and Dataflow Beyond state manage-
ment for individual functions, composing them into com-
plex applications is another significant challenge. Commer-
cial orchestrators, such as AWS Step Functions and Azure
Durable Functions, can mitigate the burden of chaining events;
however, developers are often still required to navigate data
between steps manually. The research community has pro-
posed more integrated solutions. For instance, DataFlower [29]
introduces a dataflow paradigm specifically for serverless
workflow orchestration to optimize data movement between
functions. Netherite [10] focuses on the efficient execution
of these workflows through techniques like partitioned state
management and collocated execution. While these systems
significantly advance workflow performance and orchestration,
OaaS approaches the problem from a different angle by
integrating workflow directly into its core object abstraction.

Oparaca’s dataflow functions allow developers to declara-
tively define a workflow as a DAG based on data dependencies
rather than task dependencies. The platform transparently
manages parallelism, data navigation, and state consistency,
abstracting these complexities from the developer.

III. OBJECT AS A SERVICE (OAAS) PARADIGM

A. Conceptual Modeling of OaaS

To realize OaaS, first, we need to establish the notion of
cloud object as an entity that possesses a state (i.e., data) and is
associated with one or more functions. We empower objects to
support both structured (e.g., JSON records) and unstructured
(e.g., video) forms of state. Upon calling an object’s function,
OaaS creates a task that can safely take action on the state.

Second, OaaS provides the class semantic as a framework
to develop objects. Inspired by OOP, the developer has to
define a set of functions and states within the class. Then, an
arbitrary number of objects—that is bound to the functions and
states declared in that class—can be instantiated. To improve
cloud software reusability and maintainability, we enable class
inheritance for cloud functions and states from other classes,
plus the ability to override any derived function.

Third, OaaS offers built-in access control to provide the
ability to declare the “scope of accessibility” for a state or
function. Importantly, when defining a set of classes, the
developer can declare it within a single package that includes
the access modifier to prevent unauthorized access from other
packages. This is particularly useful when cloud application
developers utilize imported third-party packages.

Fourth, OaaS enables higher-level abstractions by allowing
cloud objects to be nested, where a high-level object references
lower-level objects. Functions can use these references to fetch
inputs or invoke dataflow functions (called macro functions)
that chain operations across lower-level objects. Unlike tradi-
tional FaaS workflows [5], macro functions determine execu-
tion flow based on dataflow rather than task (i.e., function call)
dependency. Developers only define the data flow, while OaaS
manages parallelism, data navigation, and state consistency
transparently.

4

exec foo() {...}

exec bar() {...}

FaaS Engine

func new()

func update()

func delete()

func project()

func foo(): C2

func bar(): C3

func df()

Builtin functions
provided by

platform

func baz()
...

... ...

...

...

foo

bar

V1

self

V2

input1

baz updateV3

Custom functions
to run the custom

logic in FaaS

Class C1 extends P

Dataflow functions

...

...

...

Class P

Extending class inherits
the functions and state

of the parent class

C2 C3
DAG

Fig. 3: Different types of functions supported by OaaS.

B. Developing Classes in OaaS

In OaaS, developers define one or more classes within a
package using configuration languages like YAML or JSON.
The package definition contains the class section and the func-
tion section. The functions section defines the configuration
and deployment details of each function. The class section
defines the object’s structure, which includes the state and
function it links to.

As shown in Figure 3, OaaS supports three function types.
First, built-in functions that are provided by the platform.
These functions could be the standard functions such as CRUD
(create, read, update, and delete), which are the common data
manipulation operations. The platform manages the execution
of these functions without intervention from the developer.
Second, custom (a.k.a. task) functions that are developed
by developers (OaaS users) to provide their business logic.
To handle the invocation of these functions, OaaS employs
existing FaaS engines in its underlying layers to exploit their
auto-scaling and scale-to-zero capabilities. Third, dataflow
(macro) functions are defined as a DAG representing the chain
of invocations to objects.

As an example of package definition, Listing 1 represents
a declaration example for a package that includes one class
called video that has a state named mp4 (Line 6), built-in
function named new (Line 9), and custom function named
transcode (Line 1). The state mp4 refers to video data that
is unstructured data. The class has a public custom function
called transcode. The definitions of the custom function are
declared in Lines 15—17. The type of a function (Line 16)
can be a task (or a macro, as noted earlier). This function
creates another object instance of type video as an output.
Line 17 declares the container image URI for executing
function code.

Class Module

Package Manager

Class Runtime
Manager

Container
Orchetrator/Runtime

Developer Sync. request
Async. request

Oparaca implementation
Existing software solution

Developer-provided container

Class deployment

FaaS Engine

Object
Module

Data Management
Module

InvokerInvoker

Structured
(Database)

Unstructured
(Object Storage)

Invoker

Function 1

Reverse Proxy NReverse Proxy 1

Function N

Ingress

Msg Broker

Reverse Proxy N

Storage Adapter

presigned
URL

End-User

Fig. 4: A bird-eye view of the Oparaca architecture. Dashed lines
show actions of the developer defining classes and objects, and solid
lines show actions using objects and invoking functions.

Listing 1: An example simplified script that declares multimedia
package with a video class, and a transcode function for it in
the YAML format.

1 name: multimedia
2 classes:
3 - name: video
4 stateSpec:
5 keySpecs:
6 - name: mp4
7 access: PUBLIC
8 functions:
9 - function: new

10 access: PUBLIC
11 - function: transcode
12 access: PUBLIC
13 outputCls: .video
14 functions:
15 - name: transcode
16 type: TASK
17 image: transcode -py:latest
18 ...

IV. OPARACA: A PLATFORM FOR THE OAAS PARADIGM

A. Design Goals

The Oparaca platform is designed with its foundational goal
of providing object abstraction with two additional design
goals: backward compatibility and extensibility. first, while
OaaS simplifies cloud-native application development, it is
not always a replacement for FaaS; thus, Oparaca supports
stateless FaaS and direct data access to storage systems.
Second, for extensibility, Oparaca decouples the control plane
from the execution plane, allowing the execution plane to
operate independently via standardized APIs. This platform-
agnostic design accommodates various execution planes op-
timized for specific use cases, such as latency-constrained
function calls [33] or access to hardware accelerators [36].

B. Overview of the Oparaca Architecture

The Oparaca platform is designed based on multiple self-
contained microservices that communicate within a serverless
system. Figure 4 provides a birds-eye view of the Oparaca
architecture that is composed of five modules:
• Class Module serves as the interface for developers to create

and manage classes and their functions.

5

• Object Module serves as the cornerstone of Oparaca that
has two main objectives: (a) providing the “object access
interface” for the user application to access an object(s);
and (b) offering the object abstraction while transparently
handling function invocation and state manipulation.

• FaaS Engine is the underlying execution engine of Oparaca,
which can be any existing FaaS system (e.g., Knative).

• Data Management Module is to manage object data persis-
tence via employing database (e.g., document database) and
object storage (e.g., S3-compatible storage). To bind these
storages to the functions, the Invoker abstracts data access
for structured data, while the Storage Adapter is employed
to handle access to unstructured data in the object storage

• Ingress Module whose purpose is to provide a single end-
point for the user application.
Details of these modules, their interactions, and how they

fulfill the consistency and fault-tolerance objectives (described
in Section I) are elaborated in the following subsections.

C. Class Module

To define a new class and its functions in Oparaca, the
developer defines them as a package definition and registers it
to the Package Manager, shown in Figure 4. Upon successful
package validation by the Package Manager, the Class Run-
time Manager (termed CRM for brevity) performs the class
registration process that includes two operations:
(a) Informing the Object Module about the new/updated
class. Upon receiving a class registration, the Object Module
creates a handler instance to be prepared for handling object
invocation. We elaborate on this process in Section IV-D.
(b) Registering the custom functions of the new class in
the FaaS engine for future invocation. Recall that we aim
to make Oparaca agnostic from the underlying FaaS engine.
We design Oparaca to host a dedicated CRM for each FaaS
engine. Accordingly, a new FaaS engine can be integrated
into Oparaca by simply plugging its dedicated CRM into
the system. When a function registration event occurs, the
corresponding CRM processes this event by translating the
function configuration into the specific format for that engine
(e.g., Knative) and forwards it. Consequently, the underlying
FaaS Engine creates the actual function runtime to be invoked
by the Object Module.

D. Object Module and FaaS Engine

Recall that OaaS needs to support three types of functions:
built-in, custom, and dataflow. Unlike built-in functions and
dataflow functions that can be executed without the direct
need of the FaaS engine, custom functions need to execute the
developer-provided code on the FaaS engine. Thus, Oparaca
requires a mechanism to utilize the FaaS engine to execute
the custom function code while allowing it to access the
object state transparently and with the minimum data transfer
overhead. Needless to say, this mechanism also maintains the
separation between the Object Module and the FaaS engine.

To fulfill the above expectations, we design the object
invocation mechanism in the Object Module by distinguishing
between structured and unstructured states and managing it

Func 1 Func 2 Func NFunc 4Func 2Func 2Func 1

Embeded IMDG

REST / Kafka Handler

State Manager
Offloader

Embeded IMDG

REST / Kafka Handler

State Manager
Offloader

Embeded IMDG

REST / Kafka Handler

State Manager
Offloader

API Caller Msg. Broker

Reverse Proxy 1...N

Func 2Func 1 Func 3 Func 4 Func N

Invoker object data copied object data

Structured
(Database)

Data Loader/Writer

Data Loader/Writer

Data Loader/Writer

sync. req
async. req

Obj1 Obj3
Obj1 Obj2

Obj2 Obj3

req → obj1

req → obj2

req → obj3

Fig. 5: The cluster of Invokers replicates and distributes object data
across the cluster via IMDG with consistent hashing. The invoker
offloads the invocation to a corresponding FaaS function.

so that the data access overhead is minimized. We develop a
hybrid approach that leverages the “pure function” technique
for structured data access and the “datastore abstraction”
technique for unstructured data access. The rationale of this
design choice is that the unstructured state (i.e., BLOB) is
usually large and expensive to transfer; hence, to maintain
efficiency, the FaaS engine should retrieve the state directly
from the object storage (e.g., S3) in a lazy, on-demand manner.
This differs from the structured state, for which we include
the state as an input argument to maintain a clear separation
between the Object Module and the FaaS engine and let the
FaaS engine maintain its statelessness.

In the Oparaca architecture (Figure 4), he mechanism for
handling invocation and state management is managed by
the Invoker component. In particular, to offload the object
invocation to the FaaS engine, Invoker bundles the request
and the related structured object data as a “task”, as described
in the next part, and passes it to the associated FaaS engine
for execution.

1) Task Generation in the Invoker: Upon receiving a func-
tion call, the Invoker bundles the invocation request and
associated object data into the task and offloads it to be
executed on the FaaS engine. To further reduce the data
transfer overhead of providing the object abstraction in the
task generation process, we design Invokers to maintain the
object data (i.e., state and metadata) in a distributed hash
table [19], thereby reducing the cost of data transfer in a
scalable manner. As shown in Figure 5, we equip each Invoker
instance with an embedded in-memory data grid (IMDG) [38].
IMDG partitions the entire data space into multiple segments
and distributes them across Invoker instances. The Invoker
with IMDG determines the segment for a given object by
consistent hashing of the object ID and assigns the object data
to the selected segment. Similarly, to retrieve the object data,
IMDG determines the owner of the data and then fetches it
from the owner of the segment in one hop.

2) Unstructured Data Accessing: To minimize the overhead
of accessing unstructured data, Oparaca allows function code
to access the unstructured data on-demand and directly through
a presigned URL and redirection mechanism. The presigned
URL is the specific HTTP URL that includes the digital
signature in query parameters to grant permission for anyone
with this URL to access the specific data without the secret
token. When a function needs to access the unstructured

6

main object

Task

Completion
Function

Object Storage
f1 v1
f2 v1
f3 v1

f1 v1

f2 v1

f3 v1

main object
f1 v2
f2 v2
f3 v1

f1 v1

f2 v2

Generate by function

JSON
{}

JSON
{}

...

...

1

5

2

4

3

Invoker

Embedded
IMDG

Database

output object response

request

Fig. 6: The process of offloading invocation task into the function
runtime. Invoker bundles the request input and object state into a
task and offloads it to the function to be executed. With fail-safe
state transition, when the function needs to update the file in object
storage, it creates a new file and updates the corresponding version
ID via the returning completion message.

data, it sends an HTTP request to the storage adapter to
receive the redirection response that points to the presigned
URL of specific state data. Then, the function code can
fetch the content directly from object storage via the given
presigned URL. In addition to minimizing the overhead, using
the presigned URL is important in protecting the function
container from unauthorized access to other objects’ data by
analyzing their URL patterns.

3) Task Completion: After the FaaS engine completes the
task, it sends the task completion data to the Invoker to update
the state. If the function reports a failed task, the state remains
unchanged. Otherwise, the Invoker updates the object data in
IMDG and then writes it to the persistent database immediately
or asynchronously. If an invocation involves both structured
and unstructured states, we use pure and datastore techniques
together, which can potentially lead to “state inconsistency
challenges”. We address this challenge in section IV-F.

4) Synchronous and Asynchronous Invocation: As men-
tioned in Section IV-A and shown in Figure 5, we designed
Oparaca to offer synchronous and asynchronous function
invocations. In synchronous mode, the function is executed
immediately upon invocation and returns the result to the
caller. Meanwhile, in asynchronous mode, the invocation ID
is provided to the caller as a reference so they can check
the invocation result later. The request is placed into the
message broker to be reliably processed at a later time. To
accommodate both modes, the Invoker utilizes the handler
instance to accept the invocation request for either the REST
API (synchronous) or the message broker (asynchronous).
Subsequently, the handler instance forwards the request to be
processed in the same way by the other part of the Invoker.

E. Ingress Module

To provide the end user with a single access point, we
position the Ingress Module in front of the cluster of Invokers.
Additionally, to minimize data movement, the Ingress Module
is designed to be aware of the object data distribution through
consistent hashing of DHT. This allows the Ingress Module to
correctly forward the object invocation request to the Invoker

that owns the primary object data. As a result, the designated
Invoker is able to access the data in its memory.

F. Resilience Measures of Oparaca

Oparaca is prone to the data inconsistency problem that
stems from both failure and race conditions. In this section,
we describe the internal mechanisms of Oparaca designed to
make it resilient against these conditions.

1) Resilience against failure: Data inconsistency from fail-
ure can happen if the system stops while performing multiple
update operations, causing some of the update operations to
be incompletely executed. The pure function model, used
for structured data in Oparaca, is inherently immune to this
problem because a function returns the modified state to the
platform only when its execution is complete. Nonetheless, the
datastore abstraction used for the unstructured data in Oparaca
is still prone to the data inconsistency problem between the
structured database and object storage.

Maintaining data consistency across two data storages
implies guaranteeing both storages are either successfully
updated or fail for the same invocation. Otherwise (i.e., if
only one of them succeeds), it leads to data inconsistency.
To overcome this problem, we develop the fail-safe state
transition mechanism that disregards the data update in the
object storage if Invoker fails to update the structured part of
the object data in the structured database. For that purpose,
the mechanism uses a two-phase versioning scheme to keep
track of the unstructured data. As shown in Figure 6, in
the first phase, the mechanism creates a version ID for each
file (unstructured data) and keeps them as structured data
(metadata of object data) to track the current version of the file.
In the second phase, which occurs upon function completion,
Invoker changes all version IDs associated with the updated
files (unstructured data) and then writes them to IMDG and
the structured database.

For example, consider object o1 that has file f1 with the
version ID v1. Upon function invocation, f1 is updated and
written to the object storage with version ID v2. After the
execution, the Invoker must change the version ID from v1 to
v2 and commit the new structured object data. If any operation
fails within this process, the next invocation still loads o1 with
version ID v1, as if the previous invocation never happened.
In the last step, when the invocation is complete, the Invoker
purges the old and unused versions of data.

2) Resilience against race condition: Race conditions in
Oparaca can occur when multiple invocations modify the same
object data simultaneously, resulting in potential data incon-
sistency. One way to prevent this issue is by using database
transactions; however, this method lacks abstraction as it
allows direct function code access to the database and is tightly
dependent on the type of database. An alternative approach to
avoiding race conditions is the cluster-wide pessimistic locking
mechanism to synchronize the locking state for all invokers.
Nevertheless, this approach necessitates additional network
communication to coordinate the locking state, which can lead
to scalability issues. Alternatively, we develop an improved
version of this mechanism, called “localized locking,” which

7

relies on consistent hashing to direct the invocation request
to the invoker that owns the primary copy of the targeted
object data. Each invoker will only need to lock the object
locally without additional network communication, making
it more scalable than the cluster-wide version. Additionally,
our localized locking approach guarantees that requests to
the same object are executed in the arrival order, which is
necessary in certain use cases where order matters, such as
seat reservations. This is difficult to achieve with cluster-wide
locking.

3) Failure recovery in Oparaca: To further establish re-
silience against failures, Oparaca is equipped with a mech-
anism to self-recover from the failure. Broadly speaking,
a function invocation failure can be recovered by simply
retrying the invocation. However, this approach can cause data
incorrectness owing to the execution of the function more
than once. The retrying approach could be undesirable for
synchronous invocations because the failure can be handled
on the client side. For asynchronous invocations, however, we
need to guarantee that any invocation is only executed exactly
once.

To achieve the exactly-once guarantee, we have to prevent
three sources of the problem that are: (a) losing messages, (b)
duplicating messages, and (c) processing messages more than
once. Message brokers with stable storage (e.g., Kafka [24])
have features that can be leveraged to address these problems.
To solve the first problem, upon failure occurrence, the Invoker
can detect and reprocess the incomplete request using an
offset number that is automatically generated by the message
broker. The offset number is the auto-incremental number
based on the message’s arrival order and can be used to track
the message’s position in the queue. The second problem of
producing duplicated request messages can be resolved using
the message broker’s “idempotent producer” feature.

However, the message broker cannot completely address
the third problem. That is, the Invoker can process the same
invocation request more than once when the message broker
has not acknowledged the completed one before the system
failure occurs. We prevent this problem by tracking the offset
number of the last processed request and adding it to each ob-
ject metadata. In this manner, before processing an invocation
request, Invoker checks the offset number of the target object
to see if it is lower than the offset number of an incoming
request. When the condition is met, the Invoker can detect that
it has not been processed and perform the normal operation.
Otherwise, it must be skipped to avoid reprocessing.

G. Dataflow Abstraction in Oparaca

To offer a high-level abstraction to declare a workflow,
Oparaca provides the dataflow abstraction as a built-in feature
that enables developers to declaratively define the invocation
steps as a directed acyclic graph (DAG) in a domain-specific
language (DSL) with YAML format. In every step, the devel-
oper can declare the output of each invocation as a temporary
variable within the workflow. Then, the next invocation can
use the temporary variables from previous steps as the input or
target to call the function. Upon registering a dataflow function

by the developer, Invoker constructs the DAG by having the
invocation step as the edge and the objects as nodes.

Upon calling the dataflow function, one of the Invokers
takes on the role of orchestrator, similar to the orchestrator
pattern [30] in microservices. It breaks down the dataflow into
multiple lower-level invocations and forwards them based on
the topological order of DAG. Using consistent hashing, the
invoker can determine the address of the target object and
send the request directly to another Invoker that holds the
target object. When each step is completed, the orchestrator
keeps track of the intermediate dataflow state to transparently
operate the data exchange between invocation steps. With the
orchestrator pattern, the dataflow control logic is centralized
into a single invoker, simplifying the management, monitoring,
and error-handling implementation.

When using the orchestrator pattern, the exact-once guar-
antee may be compromised because the object data is stored
separately from the dataflow state. If the guarantee is needed,
Oparaca allows flagging all invocation steps as immutable.
Upon handling the dataflow request, Oparaca can generate
the output ID in advance for each step, making each step of
dataflow execution idempotent and safely re-executable.

V. DISCUSSION

1) Security: Certain security measures can be implemented
in Oparaca to strengthen it against potential attacks. The
first measure is to reduce the attacking surface by limiting
the necessary inbound traffic to the function container. As
the function container is only accessed by the Invoker, the
traffic policy can be configured to block inbound traffic except
from the Invoker. The second measure is to avoid reusing
secret tokens. To prevent the function container from accessing
out-of-context data via analyzing the URL path, we use the
presigned URL mechanism for object storage. Thus, object
storage in Oparaca is more secure than in FaaS, where the
same secret key is used for every request. To secure the storage
adapter, we can make the Invoker generate a unique secret
token for each task, and every request for the storage adapter
must be authenticated via the secret token.

2) Multi-tenancy: The primary concern of multi-tenancy is
ensuring data and resource isolation. The fundamental idea is
to prevent sharing classes and functions among tenants. Since
custom functions are offloaded and executed in a FaaS engine
that provides strong isolation—with no shared functions—the
execution environment is effectively contained within the FaaS
engine. Regarding the Invoker and data management module,
it is possible to share these components, as the data is stored
separately in each class. However, depending on the billing
model and isolation requirements, we can enhance security
and resource isolation by separating these components for each
tenant.

3) Cold Start: The developer functions and the Oparaca
components can benefit from scale-to-zero to reduce the cost
when there is no usage. However, this has the side effect
of causing more cold starts. Since Oparaca components are
shared across functions, we can effectively keep it warm to
eliminate the additional cold start impact. In such a case,

8

the cold start performance entirely depends on the underlying
serverless execution engine.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We deploy the Oparaca platform on 4 machines of
Chameleon Cloud [23], each with 2 sockets of 24-Core In-
tel(R) Xeon(R) Gold 6240R CPU processors that collectively
have 192 cores, 768 GB memory, and SSD SATA storage. We
set up the Kubernetes cluster, which includes 15 VMs with 16
vCPUs and 32 GB of memory. We made another 2 VMs for the
S3-compatible storage (Minio [20]) for unstructured data and
ArangoDB ([2]) for structured data. Oparaca is implemented
using Java with Infinispan [21] for IMDG.
Baselines. We configure Apache Flink Stateful Function
(StateFun) [15], OpenWhisk [1], and Knative [3] to serve as
the baselines. Unlike Oparaca and OpenWhisk, which focus on
API calls and event handling, StateFun is an open-source state-
ful serverless system focusing on stream processing. Because
StateFun does not manage the function worker instances out of
the box, we configure Knative to complement it. OpenWhisk
and Knative are popular open-source stateless FaaS platforms
that we use to represent the state management done by the
developer.

We used Gatling [12] for load generation and implemented
three applications to serve as the workload. First is the video
transcoding function, which utilizes FFmpeg [37], a CPU-
intensive application. The second is a text concatenation
function that concatenates the content of a text file (state)
with an input string. This function represents a highly IO-
intensive workload. Third is the JSON update function, which
uses only structured data in JSON and is used to insert key-
value pairs into the JSON state data randomly. The remaining
workload characteristics are specific to each experiment and
are explained in the respective sections. All three functions
are implemented in the Python language.

B. Analyzing the Imposed Overhead of Oparaca

The abstractions provided by Oparaca are not free of charge
and introduce some time overhead to the applications using
these abstractions. In this experiment, our aim is to measure
this overhead and see how the efficient design of Oparaca
can mitigate this overhead. The latency of a function call is
the metric that represents the overhead. We mainly study two
sources of the overhead: (a) The state data size that highlights
the overhead of OaaS in dealing with the data, and (b) The
concurrency of function calls that highlights the overhead of
the Oparaca system itself.
The impact of changing the state size is shown in Figure 7.
To generate objects with various state sizes, we increased the
input video length from 1—30 seconds. To remove the impact
of video content on the result, the longer videos were gen-
erated by concatenating the same 1-second video. Similarly,
the text files are from 0.01—16 MB. For the JSON object,
the key and value sizes are 10 and 40 bytes, respectively, and
the number of key-value pairs varies from 10—320 pairs. To
concentrate only on the overhead of data access and avoid

other sources of overheads, we configure Gatling to assign
only one task at a time and set it to repeat this operation 100
times. To analyze the improvements offered by the URL redi-
rection, we examine two versions of Oparaca: the full version
(expressed as oprc) and without URL redirection (expressed as
oprc-relay). The horizontal axes represent different state sizes
for video, text, and JSON, respectively, and the vertical axes
represent the average response/completion time (latency).

In Figure 7, the average task execution time increases
for larger state sizes. For the video transcoding function,
all of the platforms perform with similar latency, which is
expected because of the compute-intensive nature of the video
transcoding that dominates the completion time. In a text
concatenation function, however, Knative performs slightly
better than Oparaca because of the overhead of unstructured
state access by the redirection of the presigned URL. However,
if we compare Oparaca with another version that uses a
relay mechanism to provide the state abstraction, it performs
much lower than its alternative with an average of 30% lower
response time. Lastly, we can see all the described trends
happen similarly for synchronous and asynchronous request
types.

In the JSON update function (Figures 7c and 7f), Oparaca
can perform with lower latency than Knative because the
function does not need to fetch the object data from the
database because of the pure function semantic. Nevertheless,
Knative can catch Oparaca by increasing the key-value entries
to 320. The reason is that the gain from eliminating the
database connection is surpassed by the overhead of moving
the data to the function code for larger records. OpenWhisk
and Knative have the same pattern because both of them
are FaaS, but OpenWhisk performs significantly worse. In
Figure 7f, the Statefun shares the same pattern with Oparaca
with the consistent gap because it also relies on local storage
to keep the function state without the need to fetch the data
from the database. We also observe that Statefun performance
degraded compared to our initial results [27]. This is because
the storage hardware being used for the experiment has a lower
through, which impacts the performance of Statefun.
The impact of concurrent function invocations on the
Oparaca overhead is shown in Figures 8. In synchronous
invocation, we increase the number of concurrent invoca-
tions of the same function (horizontal axes), whereas, for
asynchronous invocation, concurrency depends on the system
implementation which cannot be forced directly; thereby, we
use the request arrival rate to increase the concurrency of
invocations. To remove the impact of any randomness, We
disabled the auto-scaling and limited the number of worker
instances to 6. We also exclude OpenWhisk from this section
because the Python runtime in OpenWhisk does not support
container-level concurrency.

For the transcoding function (Figures 8a and 8d), at the
low concurrency levels (< 80 invocations), Oparaca has av-
erage response times higher than Knative, but for the higher
concurrency levels, the response time of Knative grows faster
than Oparaca due to computing resource limitations. Oparaca
doesn’t need to fetch video file metadata, giving it an edge
at high concurrency. In the concatenation function (Figures

9

1 3 5 10 20 30
video length (s)

0
1
2
3
4
5
6
7

av
g.

 re
sp

on
se

 ti
m

e
(s

) knative
oprc
oprc-exec
oprc-relay
oprc-relay-exec
wsk

(a) Video transcoding (sync)

0.01 0.1 1.0 2.0 4.0 8.0 16.0
text size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

av
g.

 re
sp

on
se

 ti
m

e
(s

) knative
oprc
oprc-exec
oprc-relay
oprc-relay-exec
wsk

(b) Text concatenation (sync)

10 20 40 80 160 320
key-value entries

0
10
20
30
40
50
60

av
g.

 re
sp

on
se

 ti
m

e
(m

s) knative
oprc
oprc-exec
wsk

(c) JSON update (sync)

1 3 5 10 20 30
video length (s)

0
1
2
3
4
5
6
7

av
g.

 c
om

pl
et

io
n

tim
e

(s
)

knative
oprc
oprc-exec
oprc-relay
oprc-relay-exec

(d) Video transcoding (async)

0.01 0.1 1.0 2.0 4.0 8.0 16.0
text size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

av
g.

 c
om

pl
et

io
n

tim
e

(s
)

knative
oprc
oprc-exec
oprc-relay
oprc-relay-exec

(e) Text concatenation (async)

10 20 40 80 160 320
key-value entries

0

20

40

60

80

100

av
g.

 c
om

pl
et

io
n

tim
e

(m
s)

statefun

(f) JSON update (async)

Fig. 7: The average execution time of functions for objects with various state sizes in synchronous and asynchronous invocations. Two
versions of Oparaca are examined: the full version and the version without URL-redirection (oprc-relay). We also capture the time used by
the internal Knative in both Oparaca versions and show them with the suffix -exec and plot them in the same bar as their Oparaca version.

20 40 60 80 100 120
no. of concurrent requests

750
1000
1250
1500
1750
2000
2250

av
g.

 re
sp

on
se

 ti
m

e
(m

s) knative
oprc
oprc-exec

(a) Video transcoding function (sync)

20 40 60 80 100
no. of concurrent requests

200

400

600

800

av
g.

 re
sp

on
se

 ti
m

e
(m

s) knative
oprc
oprc-exec

(b) Text concatenation function (sync)

200 400 600 800 1000
no. of concurrent requests

0
50

100
150
200
250
300

av
g.

 re
sp

on
se

 ti
m

e
(m

s) knative
oprc
oprc-exec

(c) JSON update function (sync)

20 40 60 80 100 120
requests per second

100

101

102

103

104

105

av
g.

 c
om

pl
et

io
n

tim
e

(m
s)

knative
oprc
oprc-exec
oprc-queue

(d) Video transcoding function (async)

20 40 60 80 100
requests per second

101

102

av
g.

 c
om

pl
et

io
n

tim
e

(m
s)

knative
oprc
oprc-exec
oprc-queue

(e) Text concatenation function (async)

0 1000 2000 3000 4000 5000
requests per second

101

102

103

104

105

av
g.

 c
om

pl
et

io
n

tim
e

(m
s)

knative
oprc
oprc-exec
oprc-queue
statefun

(f) JSON update function (async)

Fig. 8: The average completion time of functions upon varying the rate of incoming requests in synchronous and asynchronous invocations.
oprc-queue is the queuing time that requests stay within the message queue

8b and 8e), however, this phenomenon does not happen. The
difference is that text concatenation is IO-intensive and desires
high network bandwidth. The overhead of unstructured data
access overwhelms the performance gain from eliminating
structured data fetching.

For the JSON update function (Figures 8c and 8f), Oparaca
can effectively reduce the latency by eliminating the need
to fetch from the database. In Figure 8f, because Statefun
also shares this invocation scheme and, therefore, offers less
completion time than Knative. However, since it relies on local
storage to keep the state, while Oparaca uses the memory,
Statefun’s completion time is higher than Oparaca’s.

In sum, Oparaca improves performance by eliminating
database fetching but adds overhead by accessing unstructured
data for secure state abstraction. Depending on the workload,
this can either improve or impair object function invoca-
tion performance. The overhead may outweigh I/O-intensive
workloads, but Oparaca can improve latency by up to 2.27x
compared to Knative for workloads without unstructured data.

Takeaway: Object abstraction can be provided with an
insignificant latency overhead for objects with only a struc-
tured state. The main object overhead occurs as a result of
securing unstructured data access.

C. Scalability of the Oparaca Platform

To study the scalability, we scale out the Kubernetes workers
from 3—12 VMs, each with 16 vCPU cores (in total 48—
192 vCPUs). We measured throughput and speedup metrics,
focusing on the JSON update function, which does not rely
on slow object storage, which becomes the bottleneck of
this experiment. We measure the throughput by continually
increasing the concurrency until the throughput stops growing
(Figure 9b). We assume three VMs as the base speedup=1, and
the speedup of other cluster size is calculated with respect
to the base value. Moreover, we add two other versions of
Oparaca: first is oprc-bypass that uses a standard Kubernetes
deployment as its underlying function execution instead of
Knative; Second is oprc-bypass-nonpersist that does not per-
sist the object data to the database to measure if Oparaca is

10

3 6 9 12
no. workers (#VMs)

1.0

1.5

2.0

2.5

3.0
Sp

ee
du

p
knative
oprc
oprc-bypass
oprc-bypass-nonpersist

(a) Speedup results by horizontal scaling

3 6 9 12
no. workers (#VMs)

0

2

4

6

8

x1
04 o

ps
 p

er
 se

c knative
oprc
oprc-bypass
oprc-bypass-nonpersist

(b) Throughput results from horizontal scaling

Fig. 9: Evaluating the scalability of the OaaS platform against other baselines.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x103 requests per second

101

102

103

104

105

qu
eu

e&
lo

ck
in

g
tim

e
(m

s)

oprc-cl-queue
oprc-queue

Fig. 10: Evaluating the performance of local-
ized locking compared to cluster-wide locking

not bottleneck by the database write operation.
According to Figure 9a, the speedup of Knative plateaus

after reaching 6 VMs. We realized that this plateau is at-
tributed to the database write operation throughput bottleneck.
Conversely, Oparaca exhibits the potential for higher speedup
enhancement due to its reliance on the distributed in-memory
hash table to consolidate data for batch write operations. This
approach can boost maximum throughput by up to 3.27x when
comparing oprc-bypass with knative.

Figure 9b shows that oprc-bypass yields a higher throughput
over the baseline Oparaca. This is because Oparaca sends
task data through the Knative internal proxy to offload the
task to Knative. While this setup allows for scale-to-zero
functionality, bypassing these components leads to even higher
throughput. Furthermore, by disabling the database writing
operation, which is the bottleneck, oprc-bypass-nonpersist can
achieve even higher throughput. Although there isn’t linear
scalability due to the limitations of the database write perfor-
mance, Oparaca significantly improves maximum throughput
compared to traditional FaaS systems.

Takeaway: In addition to offering a higher-level abstrac-
tion, Oparaca can improve the throughput and response
time of its underlying Knative engine via reducing database
operations, thereby, mitigating its bottleneck.

D. Performance of Localized Locking

To analyze effectiveness of localized locking, we created
a variation of Oparaca, called oprc-cl, that has cluster-wide
locking and evaluated it using a cluster of 12 Invokers while
increasing the request arrival rate to measure the locking over-
head. To generate requests involving the locking mechanism,
we created multiple requests targeting the same object. From
Figure 10, the overhead of localized locking remains mostly
constant, while the overhead of cluster-wide locking rises for
higher request rates. The cluster-wide version does not exhibit
this behavior, as the network communication overhead limits
the throughput and hinders high invocation rates.

E. Case Study: Development Efficiency Using OaaS

In this part, we provide a real-world use case of object
development using OaaS and its FaaS counterpart and then
demonstrate how OaaS makes the development process of
cloud-native serverless applications easier and faster.

Case Study # 1. expression detection system. This case
study is a video processing workflow that performs face
detection and facial expression recognition. Figure 11 shows
the automatic system uploads the video file to the object

Func. 1
frame

extraction

notify

Dashboard
Service

Func. 3
facial

expression
recognition

async. invoke workflow

User

Object
Storage

Func. 2
face

detection

sync. upload

Automatic
System

Fig. 11: The use case of developing a face expression recognition
workflow for an input video.

storage to be processed by the workflow of functions. The
workflow includes: Func_1 to split the video into multiple
image segments; Func_2 to detect the face on each sample
image frame; and Func_3 to perform facial expression
recognition on the detected face image and generate a JSON
format label. These functions must persist their output object
so that the next function in the workflow can consume it.
FaaS implementation. The developer must implement the
following steps: (a) Configuring cloud-based object storage
and managing access tokens. (b) Implementing business logic
to respond to trigger events. (c) Manage data within the func-
tions that involve three steps: allocating the storage addresses,
authenticating access to the object storage, and performing
fetch and upload operations to the allocated addresses. Upon
implementing these functions, the developer has to connect
them as a workflow via a function orchestrator service. Finally,
the dashboard service invokes the workflow upon receiving a
user request and collects the results.
OaaS implementation. The developer defines three
classes, namely Video, Image, and Expression, in the
form of the three following classes: (a) Video class
with frame_extract() functions; and a macro function,
df_exp_recog(detect_interval), that includes the whole
dataflow of function calls, with the requested sampling
period as its input, and an expression_data object as
the output. (b) Image class with the face_detect() and
exp_recognize() functions. (c) Expression class that does
not require any function. The dashboard service calls the
wf_exp_recognize(detect_interval) dataflow function
directly using the object access interface and receives the
Expression object as the output. We note that the developer
does not need to be involved in the data locating and
authentication steps when developing the class functions
because of the abstraction that OaaS provides.
Case Study # 2. content moderation system. Moderating
the content at scale in various formats, including image,
document, and video. We first present how the application is
deployed in FaaS, the limitations of this approach, and how

11

Video

Datasource
Func. 1

text extraction

Image

Doc

Func. 4
evaluation

Content
Moderation

System

Report
Func. 2

transcribing

Func. 3
frame extraction Image workflow

Metadata
Text Text workflow

Image workflow

Staging

Staging

Image

(a) FaaS-based

Video
Text

Datasource Media:
analyze()

Image

Content
Moderation

System

Evaluator:
evaluate()

Adult Policy
Child Policy

Metadata

(b) OaaS-based

Fig. 12: The automatic content moderation system.

OaaS can resolve those limitations.
FaaS implementation. To simplify complex multimedia pro-
cessing workflows [7], we abstract the workflow to extract
the metadata from the image files as Image workflow, and
the workflow to extract metadata from the text files as Text
workflow as shown in Figure 12a. Before using both work-
flows, the content must be pre-processed to extract raw data
via using the pertinent FaaS functions: (a) text extraction
to extract text from the document. (b) transcribing to
extract text from the video. (c) frame extraction to sample
image frame from the video. After feeding the data into both
workflows to extract the metadata, we use the evaluation
function to generate a report to the content moderation system.

The FaaS implementation has three main drawbacks: (A)
developers must explicitly manage application state and data
using separate storage services that increase the complexity.
(B) even though the common workflow can be reused, the
intermediate data management is not abstracted. That is, if
the developer needs to separate/change the staging storage, it
must be done manually. (C) functionalities may require nu-
merous and heterogeneous FaaS deployments—e.g., requiring
a separate workflow for each content type, where the Video
format requires a more complicated workflow than the other
types. These drawbacks complicate development, deployment,
and management as the application evolves to handle various
document types and integrates more functionalities and options
(e.g., using multiple evaluation services instead of one).
OaaS implementation. To demonstrate the efficacy of OaaS,
we transform the given FaaS-based solution into OaaS with
minimal effort to resolve the aforementioned drawbacks.
• Workflow Construct. We encapsulate related FaaS func-

tions and states into classes representing two key function-
alities: Media to extract the metadata and Evaluator to
evaluate metadata and report to the content moderation sys-
tem. The two classes form the critical path of the application
processing pipeline, as shown in Figure 12b.

• Object Encapsulation. We use inheritance and polymor-
phism to enhance software reuse by encapsulating FaaS
functions and states in classes derived from two base classes.
This approach hides the need for storage services behind
object abstraction and allows their implementation to be
managed in the cloud. It simplifies development, as devel-
opers only build the processing pipeline once in the base

classes. They can then focus on specific functionalities in the
derived classes, avoiding redundant implementation when
adding new content types or evaluator services.
Takeaway: The OaaS paradigm aggregates the state storage
and the function workflow in the object abstraction and en-
ables cloud-native dataflow programming. Thus, developers
are relieved from the burden of state management, learning
the internal mechanics of the functions and pipelining them.

VII. CONCLUSIONS

In this research, we present OaaS paradigm that simplifies
cloud-native development by unifying state and workflow
management into object abstractions. Our prototype, Oparaca,
supports both structured and unstructured data with consis-
tency guarantees through fail-safe state transitions, presigned
URLs for secure low-overhead data access, and DHT-based
caching for improved locality. Fault tolerance is ensured via
exactly-once execution and localized locking schemes. The
declarative dataflow abstraction transparently handles con-
currency and synchronization. Evaluation results demonstrate
that Oparaca streamlines development with scalability and
negligible overhead, particularly for compute-intensive tasks.
Future work includes supporting multi-datacenter deployments
for large-scale applications.

ACKNOWLEDGEMENT
This project is supported by National Science Foundation

(NSF) through CNS CAREER Award# 2419588.

REFERENCES

[1] Apache OpenWhisk. https://openwhisk.apache.org/.
[2] Arangodb. https://www.arangodb.com. Accessed 11 June ’24.
[3] Knative. https://knative.dev/. Online; Accessed on 11 June 2024.
[4] Amazon. AWS IAM | Identity and Access Management | Amazon Web

Services. https://aws.amazon.com/iam/. Accessed on 11 June. 2024.
[5] Amazon. AWS Step Functions | Serverless Microservice Orchestration.

https://aws.amazon.com/step-functions. Accessed on 23 Jul. 2022.
[6] Amazon. Cloud Object Storage | Amazon S3 – Amazon Web Services.

https://aws.amazon.com/s3/. Online; Accessed on 11 June. 2024.
[7] Amazon. Dynamic Video Content Moderation and Policy Evaluation

Using AWS Generative AI Services. Accessed 22 December 2024.
[8] S. Bangera. DevOps for Serverless Applications: Design, deploy, and

monitor your serverless applications using DevOps practices. Packt
Publishing, 2018.

[9] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen
Thelin. Orleans: Distributed virtual actors for programmability and
scalability. MSRTR2014, 41, 2014.

[10] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S Meikle-
john, and Xiangfeng Zhu. Netherite: Efficient execution of serverless
workflows. Proc. of the VLDB Endowment, 15(8):1591–1604, 2022.

[11] Marcin Copik, Alexandru Calotoiu, Gyorgy Rethy, Roman Böhringer,
Rodrigo Bruno, and Torsten Hoefler. Process-as-a-service: Unifying
elastic and stateful clouds with serverless processes. In Proceedings of
the 15th ACM Symposium on Cloud Computing, pages 223–242, 2024.

[12] Gatling Corp. Gatling - Professional Load Testing Tool. https://gatling.
io/. Online; Accessed on 11 June. 2024.

[13] Chavit Denninnart and Mohsen Amini Salehi. Smse: A serverless
platform for multimedia cloud systems. Concurrency and Computation:
Practice and Experience, 36(4), 2024.

[14] Chavit Denninnart and Mohsen Amini Salehi. Harnessing the potential
of function-reuse in multimedia cloud systems. IEEE Transactions on
Parallel and Distributed Systems, 33(3):617–629, 2021.

[15] Apache Flink. https://nightlies.apache.org/flink/
flink-statefun-docs-stable. Accessed 11 June 2024.

[16] Durable Azure Functions. https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-entities. Accessed on 11 June
2024.

https://openwhisk.apache.org/
https://www.arangodb.com
https://knative.dev/
https://aws.amazon.com/iam/
https://aws.amazon.com/step-functions
https://aws.amazon.com/s3/
https://gatling.io/
https://gatling.io/
https://nightlies.apache.org/flink/flink-statefun-docs-stable
https://nightlies.apache.org/flink/flink-statefun-docs-stable
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities

12

[17] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the web up to speed with webassembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 185–200, 2017.

[18] Hassan B Hassan, Saman A Barakat, and Qusay I Sarhan. Survey on
serverless computing. Journal of Cloud Computing, 10(1):1–29, 2021.

[19] Yahya Hassanzadeh-Nazarabadi, Sanaz Taheri-Boshrooyeh, Safa Otoum,
Seyhan Ucar, and Öznur Özkasap. Dht-based communications survey:
architectures and use cases. arXiv preprint arXiv:2109.10787, 2021.

[20] MinIO Inc. https://min.io/. Accessed 11 June 2024.
[21] Red Hat Inc. Infinispan. https://infinispan.org/. Accessed 11 June 2024.
[22] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing

with shared logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 691–707, 2021.

[23] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody
Hammock, et al. Lessons learned from the chameleon testbed. In 2020
USENIX annual technical conference (USENIX ATC 20), pages 219–
233, 2020.

[24] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB,
volume 11, pages 1–7. Athens, Greece, 2011.

[25] Viktor Leis, Michael Haubenschild, and Thomas Neumann. Optimistic
lock coupling: A scalable and efficient general-purpose synchronization
method. IEEE Data Eng. Bull., 42(1):73–84, 2019.

[26] Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini
Salehi. Streamlining cloud-native application development and deploy-
ment with robust encapsulation. In Proceedings of the 2024 ACM
Symposium on Cloud Computing, pages 847–865, 2024.

[27] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. Object as a
service (oaas): Enabling object abstraction in serverless clouds. In 16th
International Conference on Cloud Computing, pages 238–248, 2023.

[28] Xiangbo Li, Mohsen Amini Salehi, Yamini Joshi, Mahmoud K Darwich,
Brad Landreneau, and Magdy Bayoumi. Performance analysis and
modeling of video transcoding using heterogeneous cloud services. IEEE
Transactions on Parallel and Distributed Systems, 30(4):910–922, 2018.

[29] Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi
Guo. Dataflower: Exploiting the data-flow paradigm for serverless
workflow orchestration. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, pages 57–72, 2023.

[30] Chris Richardson. Microservices patterns: with examples in Java. Simon
and Schuster, 2018.

[31] Zhenyuan Ruan, Seo Jin Park, Marcos K Aguilera, Adam Belay, and
Malte Schwarzkopf. Nu: Achieving {Microsecond-Scale} resource
fungibility with logical processes. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 1409–
1427, 2023.

[32] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for

efficient stateful serverless computing. In USENIX Annual Technical
Conference, USENIX ATC ’20, pages 419–433, 2020.

[33] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Dan-
ish Shaikh, Shivaram Venkataraman, and Aditya Akella. Atoll: A
scalable low-latency serverless platform. In Proceedings of the ACM
Symposium on Cloud Computing, pages 138–152, 2021.

[34] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and
Alexey Tumanov. Cloudburst: Stateful functions-as-a-service. Proceed-
ings of the VLDB Endowment, 2020.

[35] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis
of hundreds of in-memory key-value cache clusters at twitter. ACM
Transactions on Storage (TOS), 17(3):1–35, 2021.

[36] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. Infless: a native serverless
system for low-latency, high-throughput inference. In Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 768–781, 2022.

[37] Hao Zeng, Zhiyong Zhang, and Lulin Shi. Research and implementation
of video codec based on ffmpeg. In 2nd Intl. conference on network
and information systems for computers, pages 184–188, 2016.

[38] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui
Zhang. In-memory big data management and processing: A survey.
IEEE Trans. on Knowledge and Data Eng., 27(7):1920–1948, 2015.

[39] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’20, pages 1187–1204, Nov. 2020.

Pawissanutt Lertpongrujikorn received B.Eng. in
computer engineering from Kasetsart University,
Thailand in 2019. Currently, He is working toward
his Ph.D. at HPCC Lab, University of North Texas.
His research focuses on developing a cloud-native
programming paradigm and serverless computing.

Dr. Mohsen Amini Salehi is an Associate Professor
and the director of the HPCC Lab, at the Computer
Science and Engineering dpt., University of North
Texas. His team focuses on democratizing cloud-
native application development and building smart
and trustworthy systems across edge-cloud. He is
an NSF CAREER Awardee and, so far, he has had
11 research projects local and federal agencies.

https://min.io/
https://infinispan.org/
https://hpcclab.org

	Introduction
	FaaS and Its Shortcomings
	Proposed Paradigm
	Research and Contributions

	Background and Prior Studies
	Object as a Service (OaaS) Paradigm
	Conceptual Modeling of OaaS
	Developing Classes in OaaS

	Oparaca: A Platform for the OaaS Paradigm
	Design Goals
	Overview of the Oparaca Architecture
	Class Module
	Object Module and FaaS Engine
	Task Generation in the Invoker
	Unstructured Data Accessing
	Task Completion
	Synchronous and Asynchronous Invocation

	Ingress Module
	Resilience Measures of Oparaca
	Resilience against failure
	Resilience against race condition
	Failure recovery in Oparaca

	Dataflow Abstraction in Oparaca

	Discussion
	Security
	Multi-tenancy
	Cold Start

	Performance Evaluation
	Experimental Setup
	Analyzing the Imposed Overhead of Oparaca
	Scalability of the Oparaca Platform
	Performance of Localized Locking
	Case Study: Development Efficiency Using OaaS

	Conclusions
	References
	Biographies
	Pawissanutt Lertpongrujikorn
	Dr. Mohsen Amini Salehi

