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ABSTRACT This paper introduces an innovative cyber-attack scheme, "invisible manipulation," utilizing 
timed-stealthy false data injection attacks (Timed-SFDIAs). By subtly altering critical measurements ahead 
of a target period, the attacker covertly steers system operations toward a specific failure state, evading 
detection while enabling repeated attacks over time. Using Battery Energy Management System (BEMS) as 
a case study, we demonstrate the scheme's effectiveness in manipulating Battery Energy Storage Systems 
(BESS), critical for grids with high renewable penetration. Our method employs deep reinforcement learning 
(DRL) to generate synthetic measurements (e.g., battery voltage, current) that mimic real data, bypassing 
residual-based bad data detection (BDD) and misleading Extended Kalman-filter (EKF) based State-of-
Charge (SoC) estimations. This allows the BEMS to operate the BESS per the attacker’s objectives. To 
minimize real-time computational demands, we transform this online optimization problem into an offline 
DRL training problem, utilizing high-fidelity simulation data from a digital twin-based microgrid testbed. 
The testbed incorporates real load and solar generation profiles with BESS models in the electromagnetic 
transient (EMT) domain at a 100-μs resolution, capturing rapid system dynamics and ensuring robust 
performance in real-time scenarios. Testing on the same testbed allows real-time evaluation of microgrid 
responses, where the BEMS, EKF-based SoC estimation algorithms interact dynamically with the injected 
false measurements. This unique DRL training and testing setup not only showcases the effectiveness of the 
Timed-SFDIA algorithm in evading detection and achieving diverse attack objectives but also underscores 
the critical role of high-fidelity, digital-twin based real-time simulation testbeds. Such testbeds are invaluable 
for training and validating data-driven machine learning algorithms, especially when field tests and real-
world validation are challenging to conduct, as they ensure robustness and adaptability under realistic 
operational conditions. 

INDEX TERMS Cyber-physical attacks, deep reinforcement learning, timed stealthy false data injection (SFDIA), 
invisible manipulation attacks, state-of-charge (SoC) estimation.  

I. INTRODUCTION 
The secure and reliable operation of the electric grid 
heavily relies on accurate data for decision-making and 
control, making false data injection attacks (FDIAs) a 
significant threat. Over the past decade, research has 
focused on FDIAs targeting transmission systems by 
falsifying inputs to state estimation (SE) algorithms and 
evading detection by bad data detection (BDD) algorithms 
(e.g., residual-based BDD) [1]. With the rapid integration 

of distributed energy resources (DERs) [2] and other 
information and communication technology devices 
(ICTs), previously passive distribution networks are 
evolving into smart grids, equipped with numerous 
remotely accessible automated devices [3]. Consequently, 
the risk posed by FDIAs to modern active distribution 
networks (ADNs) has been growing exponentially. This 
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has led to an increased emphasis on studying FDIAs in the 
context of DERs [4]. 

Battery energy storage system (BESS) plays a critical 
role in many ADNs by providing grid-following and grid-
forming functions. These functions include PV output 
smoothing, load shifting, and voltage and frequency 
regulation [5], [6]. However, the versatility and 
significance of BESS also make it prime target for 
adversaries seeking to launch FDIAs and exploit them for 
unlawful purposes.  

As shown in Table 1, FDIA objectives targeting BESS 
fall into two categories: manipulation of inverter control 
parameters (e.g., real/reactive power, voltage, and 
frequency) and tampering with battery measurements and 
status data (e.g., state of charge, or SoC). This paper 
focuses on the latter, as SoC relies on estimation techniques 
like Coulomb counting or Kalman filtering, which depend 
on battery voltage and current measurements from the 
battery management system (BMS) [14]. This reliance 
makes SoC estimation vulnerable to cyber-attacks, a risk 
heightened by the growing use of remote communication 
between BESS and control centers. Additionally, 
integrating IoT and cloud-based technologies in BMS [15] 
further exposes BESS to falsified measurements. 

Accurate SoC estimation is crucial for BESS energy 
scheduling and battery lifespan. Corrupted SoC 
measurements can mislead the BEMS, causing incorrect 
decisions, insufficient operational support, or future energy 

shortages. Moreover, inaccurate SoC values risk 
overcharging, over-discharging, reduced battery life, and 
potential hazards like fire or explosion [14]. Therefore, we 
propose a novel Timed-FDIA scheme that subtly 
manipulates SoC estimation, deceiving the BEMS into 
faulty dispatch planning and undermining the BESS's 
capability to support the grid effectively when the target 
period approaches. 

FDIAs are classified by attack duration into 
instantaneous and prolonged types. Prolonged attacks 
include persistent attacks, which apply a constant bias to 
data, and repetitive attacks, which periodically introduce 
varying biases [10]. Research on FDIAs targeting BESS 
has primarily examined their impact on grid stability 
through persistent and repetitive attacks (see Table 1), often 
using rule-based approaches. However, the technical 
implementation of these attacks is rarely detailed. Rule-
based FDIAs inject false data randomly within an 
operational range, creating persistent or repetitive biases in 
measurements and commands. While these attacks are 
relatively simple, they are easily detectable through 
personnel observation and conventional BDD mechanisms 
within SE. SE is widely used for monitoring system states, 
particularly in transmission system operations, with 
residual-based BDD algorithms commonly detecting 
measurement errors and cyberattacks [16]. As observability 
in distribution networks has improved, SE algorithms with 
residual-based BDD are now increasingly applied to ADNs. 

       TABLE 1. Literature review of existing FDIAs targeting BESS 

Attack 
Type 

Attack 
Objectives 

BDD 
(Y/N) Description Stealthniess Key Advantages Key Limitations 

Rule-based  

Power control 
[7] 

No 

Inject bias within the operation 
range to the active power 
setpoints of BESS to cause 
power imbalance in an 
islanded microgrid. 

Easily detectable 
Simple, low-cost 
implementation, feasible in 
real-time. 

Easily detected by BDD or 
manual inspection. 

Mode control 
[8] 

Falsify the mode command to 
disrupt the mode conversion 
from PQ to Vf to fail the 
microgrid. 

ON/OFF 
control [9] 

Falsify the ON/OFF command 
to deteriorate power quality or 
destabilize the power system. 

SoC estimation 
[10] 

Different voltage bias is 
selected within the operation 
range to disrupt the SoC 
estimation. 

Optimization-
based  

SoC estimation 
[11] Yes 

Maximize the SoC estimation 
error to cause overcharging or 
over-discharging of batteries 
with residual-based BDD 
considered. 

Fully stealthy  
Highly stealthy, maximizes 
SoC estimation error while 
avoiding detection. 

High computational cost, requires 
full system knowledge, limited 
real-time feasibility. 

Machine 
learning-
based  

BESS 
operation 
status [12],[13] 

No 

ANN based. Replicate the 
behavior of BESS for 
enhanced stealth and control 
the authentic BESS by 
employing MitM techniques. 

Partially stealthy 

Moderate computational cost, 
evades basic detection 
methods, feasible in real-
time. 

Requires extensive system data, 
still vulnerable to residual-based 
BDD. 

SoC 
estimation  
(Proposed) 

Yes 

Timed-SFDIA. DRL-based. 
Gradually injecting battery 
voltage and current 
measurement bias to cause a 
maximum or target SoC error 
at the desired time. 

Fully stealthy 

Offline training minimizes 
real-time computational load, 
adaptable to various 
scenarios, feasible in real-
time. 

Requires some measurement data 
for model tuning. 
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In contrast, stealthy FDIAs (SFDIAs) pose a greater 
threat, as they are designed to bypass BDD systems. 
Previous studies have introduced SFDIA architectures for 
BESS that use man-in-the-middle (MitM) attacks to 
manipulate commands and measurements exchanged 
between the BESS controller and BMS [14], [15]. These 
architectures achieve stealthiness at the local controller 
level by employing artificial neural networks (ANN) to 
replicate normal BESS behavior. However, these studies do 
not address evading network-level detection methods like 
residual-based BDD, making them vulnerable to detection 
at the broader system level. 

Recent research has revealed vulnerabilities in BDD 
algorithms that enable certain FDIAs, including SFDIAs, 
to evade detection. For example, studies [17] and [18] show 
that FDIAs can bypass detection if attackers have access to 
system parameters. Further, studies [19], [20], and [21] 
demonstrate that SFDIAs can succeed with only partial or 
local system parameter information. Additionally, 
parameter-free SFDIAs have been developed [22]-[24], 
where attackers estimate system parameters using 
measurements or apply tensor-shaped SE modeling 
techniques, effectively bypassing residual-based BDD 
mechanisms. 

Assuming attackers have access to system parameters, 
[11] proposed an SFDIA scheme for BESS to maximize the 
absolute SoC estimation error by integrating residual-based 
BDD with linear optimization methods. However, this 
approach faced challenges due to the extensive 
linearization and assumptions needed to simplify the 
problem and reduce computational costs. These 
assumptions—such as treating the OCV-SoC curve slope 
as constant in the Extended Kalman Filter (EKF), using a 
linearized DC power flow instead of an AC model, and 
assuming future time-slot data availability—made real-
time implementation challenging and increased 
vulnerability to detection in practical settings [22], [25]. 

In contrast, deep reinforcement learning (DRL) shows 
promise for executing real-time attacks by creating an 
accurate system model through offline training. Widely 
applied in power systems for decision-making and control 
[26], [27], DRL has recently gained attention for enhancing 
cybersecurity [28], [29]. While typically used for attack 
detection, DRL also serves as a powerful tool for launching 
cyber-attacks. This study leverages DRL to conduct 
stealthy attacks on SoC estimation within the BESS, 
bridging gaps in attack design methodology for integration 
with BEMS. Unlike persistent and repetitive attacks that 
apply a constant bias, we propose a timed-attack strategy, 
which gradually injects a small, varying bias at each time 
step. This incremental approach allows the bias to 
accumulate and reach a targeted error at specific times, 
disrupting BESS operations and potentially affecting 
supported systems.  

The primary contribution of this paper is the 
development of a DRL-based approach for launching 
Timed-SFDIAs against SoC estimation. Unlike 
optimization-based methods that require extensive system 
data, real-time optimization, and high computing 
resources—often impractical for real-time applications—
our DRL approach enables offline training of an attacker 
agent. Using results from a high-fidelity real-time 
simulation testbed, we generate high-quality training 
datasets that accurately capture microgrid dynamics. This 
approach allows measurements sent to the SE, BDD, and 
SoC estimation algorithms to reflect true system behavior 
without simplifications, thereby improving response 
accuracy. 

A secondary contribution is the introduction of a timed-
attack scheme targeting a specific SoC error level. By 
gradually falsifying SoC values well before the target 
period, we incrementally build an SoC error between false 
and actual values. This approach minimizes detection risk, 
enabling the BEMS to operate the BESS at attacker-defined 
SoC levels at the specified time. A key advantage of this 
method is that it remains undetected even post-attack, 
allowing for repeated attempts without revealing the 
vulnerability, as demonstrated by the “one-shot kill” 
scenario that compromises the reliability of BESS-
dependent systems. 

A third contribution is the training and testing of our 
algorithm using data from a high-fidelity microgrid digital-
twin based testbed, which incorporates real load and solar 
generation profiles and models the BESS in the 
electromagnetic transient (EMT) domain at a 100-μs 
resolution. This DRL training and testing setup highlights 
the essential role of high-fidelity, real-time digital-twin 
based testbeds for training and validating data-driven 
machine learning algorithms, particularly when field tests 
and real-world validation are difficult to perform. This 
approach ensures robustness and adaptability under 
realistic operational conditions. 

The remainder of this paper is organized as follows: 
Section II describes the ADN configuration with BESS and 
the BDD mechanism. Section III formulates the DRL-based 
Timed-SFDIA problem and details the design 
methodology. Section IV presents case study results from 
implementing the proposed attack scheme on a high-
fidelity microgrid real-time simulation testbed. Section V 
concludes the paper. 

II. Modeling Considerations 
This section provides an overview of the ADN system 
configuration, the BDD mechanism at ADN control center, 
and the proposed Timed-SFDIA scheme. 

A. Configuration of the ADN System 
As shown in the grey box in Figure 1, the customer-owned 
BESS comprises a bidirectional three-phase voltage source 
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inverter (VSI), a battery pack, a battery management system 
(BMS), and a local BESS controller. The BMS uses local 
battery pack measurements, including DC terminal voltage 
( ௗܸ௖)  and current (ܫௗ௖), to estimate the BESS SoC (ߔ) and 
other operational variables. The BESS controller processes 
data from the VSI and BMS to determine the VSI modulation 
index (݉). It then transmits ௗܸ௖ ௗ௖ܫ , , ݉, and ߔ to the ADN 
control center. This data transmission occurs over the internet 
or non-proprietary wireless networks, exposing it to the risk of 
fake data injection. For simplicity, we define the set of BESS 
measurements sent to the ADN control center as 

஻ாௌௌࢠ = [ ௗܸ௖, ܫௗ௖ , ݉,  (1)                           [ߔ

Using the average model introduced in [30] to represent the 
VSI operation of the BESS unit, we have  

௥ܸ = ݉ ௗܸ௖ √2⁄                                   (2) 

௥ܲ௜ + ௗܲ௖ + ௟ܲ௢௦௦ = 0                           (3) 

ௗܲ௖ = ௗܸ௖ܫௗ௖                                    (4) 

௟ܲ௢௦௦ = ௥௜ܫ
ଶ ܴ௔௖ + ௗܸ௖

ଶ ܴௗ௖⁄                          (5) 

where ௗܲ௖  represents the DC power, ௥ܲ௜  and ܫ௥௜  denote AC 
side power and current, ௟ܲ௢௦௦ signifies inverter loss, and ܴ௔௖, 
ܴௗ௖ are AC and DC bus series resistances, respectively. 

As illustrated in the green box in Figure 1, in addition to 
retrieving BESS operation status from the BESS controller, 
the ADN control center collects measurements from the 
distribution network through proprietary Supervisory 
Control and Data Acquisition (SCADA) systems. These 
measurements are crucial for SE, a process that processes a 
set of noisy and redundant measurement data to provide an 
accurate real-time database for control and monitoring 
purposes [16]. The SCADA measurement set include vital 
operation parameters, such as voltage ( ௜ܸ), phase angle (ߠ௜), 
active and reactive power injections at the ith bus ( ௜ܲ , ௜ܳ), as 
well as active and reactive power flows between buses i and 
j ( ௜ܲ௝ , ௜ܳ௝). This measurement set from SCADA is defined as 

ௌ஼஺஽஺ݖ = [ ௜ܸ, ,௜ߠ ௜ܲ , ௜ܳ , ௜ܲ௃ , ௜ܳ௝ , ௜ܲ ]               (6) 

B. BAD DATA DETECTION  
To ensure the reliability of measurements and mitigate the 
impact of potential cyber-attacks, the ADN control center 
employs a multi-layered BDD strategy. Upon receiving 
measurements from the BESS and SCADA systems, three 
distinct BDD mechanisms are sequentially applied: 
bounded-range BDD, residual-based BDD, and SoC cross-
validation. 

Figure 2 presents a flowchart that illustrates the sequential 
operation of these BDD mechanisms. The process operates 
as follows: 1) Bounded-Range Check: incoming 
measurements are first validated against predefined upper 
and lower bounds; 2) State Estimation and Residual-Based 
Check: if measurements pass the bounded-range check, a 
state estimation (SE) process is conducted. Measurement 
consistency is then verified using residual analysis; 3) SoC 
Cross-Validation: if the battery measurements pass residual-
based BDD, the received SoC information is independently 
validated using EKF-based SoC estimation. 

If any validation step fails, an alarm is triggered, and the 
corresponding measurements are discarded or flagged for 
further investigation. Only measurements passing all layers 
of BDD are incorporated into the ADN control center’s 
operation. 

Detailed descriptions of each BDD layer are provided 
below. 

1) Bounded-range BDD 
Bounded-range BDD applies threshold-based checks to all 
received measurements upon arrival at the ADN control 
center. Each measurement is compared against predefined 
upper and lower bounds, as defined in equations (7) and (8): 

ௌ஼஺஽஺ࢠ
௠௜௡ ≤ ௌ஼஺஽஺ࢠ ≤ ௌ஼஺஽஺ࢠ

௠௔௫                      (7) 

஻ாௌௌࢠ
௠௜௡ ≤ ஻ாௌௌࢠ ≤ ஻ாௌௌࢠ

௠௔௫                         (8) 

 
FIGURE 1. A single-line diagram of an ADN with BESS.  
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If any measurement falls outside its respective bounds, an 
alarm is immediately raised, indicating potential anomalies 
or cyber-attacks. 

2) State Estimation and Residual-based BDD 
Residual-based BDD is employed subsequent to bounded-
range check. It verifies the validity of measurements by 
comparing the SE residual (̅ݎ) with a predefined threshold 
value ( ߬ௌா). If both BESS and SCADA measurements pass 
the bounded-range BDD, the SE estimates system states (࢞) 
that best match the measurements (ࢠ) via: 

ࢠ = (࢞)ࢎ +  (9)                                ࢋ

where ࢎ(∙) denotes a nonlinear vector function derived from 
network topology and ࢋ is the measurement error vector.  

Using the Weighted Least Squares (WLS) method, we 
minimize weighted measurement residuals and iteratively 
solve the optimization problem detailed in [31]. Thus, the 
residual-based BDD mechanism validates measurements 
based on residual, ̅ݎ, calculated as 

ݎ̅ = ࢠ‖ − ℎ(ෝ࢞)‖ଶ
ଶ                          (10) 

where ෝ࢞ represents the estimated value of ࢞.  
If ̅ݎ ≤ ߬ௌா ࢠ ,  is considered as normal; otherwise, ࢠ  is 

flagged as containing bad data. Thus, a SFDIA that can pass 
the residual-based BDD, needs to generate a set of 
measurement attack biases ࢿ that can satisfy  

ࢠ‖ + ࢿ − ℎ(ෝ࢞ + ଶ‖(ࢉ
ଶ ≤ ߬ௌா                    (11) 

where ࢉ  represents the malicious error introduced to the 
original estimation ෝ࢞.  

Many existing methods assume that a large number of 
measurements in ࢠ can be modified. For example, in [11], it 
is required to alter not only the battery voltage and current 
but also other SCADA measurements to maintain the 
residual consistency between attacked and non-attacked 
cases. This assumption is restrictive, as it demands extensive 

access to communication links. Consequently, in this paper, 
we investigated SFDIA under a more realistic scenario 
where the attacker can only alter the battery measurements 
by adding an attack vector ࢿ஻ாௌௌଵ. Under this assumption, 
(11) becomes  

ௌ஼஺஽஺ࢠ‖ + ஻ாௌௌଵࢠ + ஻ாௌௌଵࢿ − ෝ࢞)ࢎ + ଶ‖(ࢉ
ଶ  ≤ ߬ௌா     (12) 

where ࢠ஻ாௌௌଵ = [ ௗܸ௖, ,ௗ௖ܫ ݉]and ࢿ஻ாௌௌଵ is the attack vector 
containing the biases of battery voltage and current. Please 
note SoC cannot be directly included for SE. Thus, SoC is 
excluded in ࢠ஻ாௌௌଵ compared to ࢠ஻ாௌௌ.  

3) SoC ESTIMATION AND CROSS-VALIDATION 
In the ADN control center, the BEMS manages load 
consumption and power generation, optimizing performance 
based on the BESS SoC. However, corrupted or inaccurate 
SoC measurements can mislead the BEMS, leading to 
incorrect decisions. This may result in insufficient system 
support, energy shortages, overcharging, over-discharging, 
reduced battery lifespan, or safety risks such as fires or 
explosions. 

Given the critical role of SoC in system operations, a 
cross-validation mechanism is assumed for SoC verification. 
The system estimates SoC (ߔ෩) using battery voltage ( ෨ܸௗ௖) 
and current ( ሚௗ௖ܫ ) measurements that pass residual-based 
BDD. It cross-validates ߔ෩  against the SoC value ( ෡ߔ ) 
received from the local BMS, as shown in Figure 1. The 
Extended Kalman filter (EKF), widely used for SoC 
estimation due to its ability to handle measurement errors, 
noise, and uncertainties, is employed in this study. The EKF-
based SoC estimation process, adopted from [14], is 
expressed as: 

෩ߔ = )ܨܭܧ ෨ܸௗ௖,  ሚௗ௖)                              (13)ܫ

Assuming the ADN control center and the local BMS use 
the same battery model for SoC estimation, if the 
discrepancy between ߔ෩  and ߔ෡  is compared against a 
predefined threshold ߬ௌ௢஼ . If the condition: 

෩ߔ| − ≥|෡ߔ ߬ௌ௢஼                                 (14) 

is satisfied, the received SoC ߔ෡  is deemed valid and 
incorporated into the BEMS for scheduling battery 
operation. If not, an alarm is triggered.  

C. STEALTHY REQUIREMENTS FOR SFDIAS 
TARGETING SoC ESTIMATION 
To successfully execute a SFDIA targeting SoC estimation, 
while bypassing existing BDD mechanisms, an attacker must 
falsify three critical measurements: battery voltage, current 
and SoC. The manipulated battery voltage, current and SoC 
at time ݐ are denoted as ෠ܸௗ௖

௧ መௗ௖ܫ ,
௧  and ߔ෡௧ , respectively. The 

falsified voltage and current are defined as  

෠ܸௗ௖
௧  = ௗܸ௖

௧ +∑ ∆ ௗܸ௖
௧௧

௧ೞ                               (15) 

መௗ௖ܫ
௧ ௗ௖ܫ = 

௧ +∑ ௗ௖ܫ∆
௧௧

௧ೞ                                (16) 

 
FIGURE 2. Flow chart of bad data detection at the ADN control center. 
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where ௗܸ௖
௧  and ܫௗ௖

௧  represent the actual battery voltage and 
current measurements, ݐ௦ is the start time of the attack, and 
∆ ௗܸ௖

௧  and ∆ܫௗ௖
௧  represent the injected voltage and current bias 

at each time step. 
To bypass detection, the falsified values ෠ܸௗ௖

௧  and ܫመௗ௖
௧  must 

satisfy the bounded-range BDD (17) and the residual-based 
BDD (18) at each time step. Here, ࢿ஻ாௌௌଵ

௧  represents the 
cumulative bias vector as (19). 

[ ௗܸ௖
௠௜௡, ௗ௖ܫ 

௠௜௡] ≤ [ ෠ܸௗ௖
௧ , መௗ௖ܫ

௧ ] ≤ [ ௗܸ௖
௠௔௫, ௗ௖ܫ 

௠௔௫]                (17) 
ௌ஼஺஽஺ࢠ‖

௧ + ஻ாௌௌଵࢠ
௧ + ஻ாௌௌଵࢿ

௧ − ෝ࢚࢞)ࢎ + ଶ‖(࢚ࢉ
ଶ  ≤ ߬ௌா      (18) 

஻ாௌௌଵࢿ
௧  = [∑ ∆ ௗܸ௖

௧௧
௧ೞ , ∑ ௗ௖ܫ∆

௧௧
௧ೞ ]                         (19) 

If ෠ܸௗ௖
௧  and ܫመௗ௖

௧  bypass both BDDs, they will be accepted as 
෨ܸௗ௖

௧  and ܫሚௗ௖
௧  for the SoC (ߔ෩௧) estimation by the ADN control 

center. To prevent detection through SoC cross-validation in 
(20), the attacker must also alter the SoC value ߔ෡௧ reported 
by the BESS based on the falsified ෠ܸௗ௖

௧  and ܫመௗ௖
௧ , ensuring 

consistency with the estimated ߔ෩௧ from (21). 

෩௧ߔ| − ≥|෡௧ߔ ߬ௌ௢஼                              (20) 

෩௧ߔ = )ܨܭܧ ෨ܸௗ௖
௧ , ሚௗ௖ܫ

௧ )                              (21) 

Failure to meet any of these conditions will result in an 
alarm being raised at the ADN control center. 

III. METHODOLOGY 

A. PROPOSED TIMED-SFDIA SCHEME TARGETING SoC 
ESTIMATION  
This study presents a novel Timed-SFDIA scheme, termed 
the "one-shot kill," designed to gradually introduce errors in 
SoC estimation, ultimately leading to the failure of a BESS-
supplied microgrid. The scheme's objective is to cause a 
midnight blackout by deceiving the BEMS into 
overestimating SoC levels, thus mismanaging energy 
reserves. 

The attack incrementally falsifies SoC data during the 
operational period, misleading the BEMS into believing the 
battery has sufficient capacity to support the microgrid 
overnight. As actual SoC levels diminish below critical 
thresholds, the microgrid is forced to shut down. For 
instance, in the scenario depicted in Figure 3, the BEMS aims 
to maintain SoC levels of 90% at hour 18 and 45% at hour 
24 for stable operation. However, falsified SoC readings may 
reflect compliance with these targets, while actual SoC levels 
drop to 70% by hour 18 and 20% by hour 24, leading to 
system shutdown due to insufficient energy reserves. 

Timed attacks offer the strategic advantage of initiating 
false data injection at an earlier time ݐ௦ , well before the 
intended target time ݐ௘. This approach enables the attacker to 
subtly alter the data stream over an extended period, reducing 
the likelihood of detection by the BDD process. 
Consequently, when the attack reaches its critical phase, the 
injected changes are more likely to evade detection 
mechanisms. 

 
FIGURE 3. Illustration of one-shot kill attack. 

To achieve the one-shot kill, we propose two attack 
methods: unconstrained and constrained SoC error attack. 
The unconstrained attack aims to maximize SoC error by ݐ௘, 
where the exact error is unknown. Conversely, the 
constrained SoC error attack aims to inject a specific, desired 
SoC error by the end of attack. The attack process of both 
attacks is at each timestep from ݐ௦ to ݐ௘, a bias ࢿ஻ாௌௌଵ

௧ , as 
shown in (19), is injected into ࢠ஻ாௌௌଵ

௧ . Based on these 
injected biases, a false SoC ߔ෩௧, shown in (21),  is estimated 
to replace the actual SoC. At each timestep, the altered data 
must satisfy the three BDD constraints, as outlined in (17), 
(18), and (20). 

The inherent complexity and nonlinearity of timed-
stealthy attacks, compounded by the EKF-based SoC 
estimator, pose challenges that require computationally 
intensive optimization. This optimization may necessitate 
accurate future system information for optimal performance. 
Therefore, in the following section, we propose a DRL-based 
method to address these complexities while maintaining 
system accuracy. 

B. PROPOSED DRL FRAMEWORK FOR TIMED-SFDIAS 
Reinforcement learning involves an agent interacting with an 
environment to learn optimal actions by maximizing 
cumulative rewards. This process is often modeled as a 
Markov Decision Process (MDP), where the future depends 
solely on the present state [32]. The MDP can be represented 
as a tuple {S, A, P, R, γ}, where S is the environment state 
space, A is the action space, P denotes the transition 
probability, R is the reward function and γ ∈ [0, 1] denotes 
the discount rate for the long-term return. 

In this paper, Timed-SFDIAs against SoC estimation are 
formulated as a MDP, with the attacker modeled as a DRL 
agent. Figure 4 illustrates the proposed actor-critic-based 
DRL framework used to train this agent. The framework 
consists of two neural networks: the actor, which outputs an 
attack vector ࢇ௧ based on the current observation ࢕௧; and the 
critic, which evaluates the quality of the selected action by 
estimating the state-action value function ܳ(࢙௜,  ,௜). Hereࢇ
the global observation ࢕௧, state ࢙௧, action set ࢇ௧ and attack 
vector ࢿ஻ாௌௌ

௧  are defined as follows: 

௧࢕ = ௌ஼஺஽஺ࢠ]
௧ , ஻ாௌௌଵࢠ

௧  ]                          (21) 
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࢙௧ = ቂࢠௌ஼஺஽஺
௧ , ஻ாௌௌଵࢠ

௧ , ஻ாௌௌࢿ
௧ିଵ , ௧

்
 ቃ                 (22) 

௧ࢇ = [∆ ௗܸ௖
௧ , ௗ௖ܫ∆

௧ ]                           (23) 

஻ாௌௌࢿ
௧ = ஻ாௌௌଵࢿ]

௧ , ஻ாௌௌଶࢿ
௧ ]                     (24) 

஻ாௌௌଵࢿ
௧ = [∑ ∆ ௗܸ௖

௧௧
௧ೞ , ∑ ௗ௖ܫ∆

௧௧
௧ೞ ]                    (25) 

஻ாௌௌଶࢿ
௧ =  (26)                               [௧ߔ∆]

where ࢕௧  includes the measurements from SCADA and 
BESS at time ݐ; ࢙௧ includes these measurements, the BESS 
attack vector taken at time ݐ − 1, and the ratio of the current 
timestep ݐ  to the total attack duration ܶ ௧ࢇ ;  includes the 
battery voltage and current bias at time ࢿ ;ݐ஻ாௌௌ

௧  comprises 
the accumulated battery voltage and current bias vector 
஻ாௌௌଵࢿ

௧  by time ݐ, and the SoC error ∆ߔ௧ at the current time 
step t between the false SoC and actual SoC in ࢿ஻ாௌௌଶ

௧ . Note 
that ܽ௧ିଵ = 0 when 1 = ݐ. 

The attacker's actions involve injecting the attack vector 
஻ாௌௌࢿ

௧  into the measurement from the BESS. These biases 
manipulate the battery voltage, current, and SoC data 
streams sent to the ADN controller (as shown in Figure 1).  

As illustrated in Figure 4, at each timestep ݐ, the attacker 
agent observes the system state ࢙௧ , and the actor network 
generates an action ࢇ௧ based on this state. The attacker can 
estimate the fake SoC ߔ෡௧  by leveraging different methods 
based on the false voltage ෠ܸௗ௖

௧  and current ܫመௗ௖
௧ , such as using 

a deep neural network trained on historical data of actual 
SoC, voltage, and current [33]. In this scenario, it is assumed 
that the attackers have access to the parameters of the EKF-
based SoC estimator so they can use the EKF to estimate ߔ෡௧ 
to match the SE estimated ߔ෩௧, as shown in (27). The SoC 
bias ∆ߔ௧ in ࢿ஻ாௌௌଶ

௧  is calculated as shown in (28), with the 
actual SoC represented by (29), where ௗܸ௖

௧  and ܫௗ௖
௧  are the 

actual voltage and current data at time ݐ. 

෡௧ߔ = )ܨܭܧ ෠ܸௗ௖
௧ , መௗ௖ܫ

௧  )                             (27) 

௧ߔ∆ = ෡௧ߔ −  ௧                                 (28)ߔ

௧ߔ = )ܨܭܧ ௗܸ௖
௧ , ௗ௖ܫ

௧ )                              (29) 

During training, the DRL agent interacts with an 
environment that includes the closed-loop system model and 
the SoC estimator. At each timestep, the agent observes the 

current state ࢙௧ , selects an action ࢇ௧ , receives a reward ݎ௧ ,  
and transitions to the next state ࢙௧ାଵ. Each transition tuple 
(࢙௧, ,௧ࢇ ,௧ݎ ࢙௧ାଵ) is stored in a replay buffer. Once sufficient 
data is collected, mini-batches are randomly sampled to 
update the actor and critic networks. The reward function is 
designed to promote stealthy yet effective manipulation of 
the SoC estimates. Once trained, the actor network can 
generate real-time attack vectors without requiring future 
information or detailed system knowledge.  

C. REWARD FUNCTION DESIGN 
The key challenge of Timed-SFDIAs is to generate a 
sequence of attack vectors ࢇ௧ that consistently evades BDD 
at each time step, ensuring that the desired SoC error is 
achieved by the end of attack period. This paper presents two 
reward mechanisms: unconstrained and constrained. 

The objective of unconstrained attack is to maximize the 
SoC error at the end of attack ݐ௘. To achieve this, if there is 
no BDD violation, the agent receives a reward ݎ௨ଵ,௧ at each 
time step starting from ݐ௦, based on the current injected SoC 
error. If, during the attack, any attack vector violates the 
desired system operation range (as specified in equations 
(17), (18), and (20)), resulting in a failure to pass any of the 
bounded-range, residual-based and SoC cross-validation 
BDDs, a penalty ݌௨ with a large negative value is applied to 
the reward. At the end of attack ݐ௘, an additional bonus ݎ௨ଶ 
is given. 

The reward function (ݎ௧) for the unconstrained SoC error 
attack are: 

௧ݎ =  ௨                                (30)݌ +௨ଶݎ +௨ଵ,௧ݎ

௨ଵ,௧ݎ    =
௧ߔ∆

݇௨ଶ
× ݇௨ଵ,   ݐ ∈ ,௦ݐ]  ௘]                  (31)ݐ

௨ଶݎ = ൜
ݐ   ,0 ∈ ,௦ݐ] (௘ݐ

௨ଵ,௧ݎ × ݇௨ଷ,   ݐ = ௘ݐ
                       (32) 

௨݌      = ݇௣ × ݐ   ,௕ௗௗܨ  ∈ ,௦ݐ]  ௘]                   (33)ݐ

In equation (31), ku1 denotes the sign of the desired SoC 
error: +1 indicates the false SoC is intended to be higher than 
the actual SoC, and -1 indicates lower. The coefficient ku2 is 
used as a normalization factor for ݎ௨ଵ,௧. Equation (32) offers 
a bonus based on final SoC error to incentivize larger errors. 
In (33), ݇௣ specifies the magnitude of the penalty, with ܨ௕ௗௗ 
flagging BDD violation (1 for violations, 0 otherwise).    

The objective of the constrained SoC error attack is to 
achieve and maintain a targeted SoC error (∆ߔ∗) by the end 
of attack. This means, once the ∆ߔ∗ is reached, there is no 
need to inject higher SoC errors, risking being detected. 
Then, the reward function is adjusted as follows: 

௧ݎ  =  ௨                             (34)݌ +௧௔௥ଶݎ +௧௔௥ଵ,௧ݎ

௧௔௥ଵ,௧ݎ = ݉݅݊ ቄ2 − ∆ః೟

∆ః∗ , ∆ః೟

∆ః∗ቅ × ݇௧ଵ, ݐ ∈ ,௦ݐ]  ௘]       (35)ݐ

 
FIGURE 4. Proposed actor-critic-based DRL framework for Timed-
SFDIAs against SoC estimation. 
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௧௔௥ଶݎ = ൜
ݐ    ,0   ∈ ,௦ݐ] ,ௗݐ) ݎ݋ (ௗݐ (௘ݐ

௧௔௥ଵ,௧ݎ × ݇௧ଶ + ݐ   ,௧௔௥ଷݎ = ௘ݐ ݎ݋ ௗݐ
        (36) 

௧௔௥ଷݎ = ൜0,    |∆ߔ௧ − |∗ߔ∆ > 1%
݇௧ଷ, ௧ߔ∆| − |∗ߔ∆ ≤ 1%                    (37) 

As shown in equation (35), the reward received at each 
time step ݎ௧௔௥ଵ,௧ is associated with how close the current SoC 
error ∆ߔ௧ is towards the target ∆ߔ∗. We use min{} to limit 
its maximum value to 1. Thus, the maximum value is only 
achieved when the injected SoC error ∆ߔ௧ equals the target 
 .௧௔௥ଵ,௧ݎ ௧ଵ is a coefficient to adjust the value of݇ .∗ߔ∆

The sign of the target ∆ߔ∗ determines whether the false 
SoC ߔ෡௧  is higher or lower than the actual SoC ߔ௧ . 
Specifically, if ∆ߔ∗ >  ;௘ݐ at ∗ߔ∆ ௧ byߔ ෡௧ is higher thanߔ ,0
Conversely, if ∆ߔ∗ <  .௘ݐ at ∗ߔ∆ ௧ byߔ ෡௧ is lower thanߔ ,0

To motivate the agent to achieve the targeted SoC error, 
an additional bonus ݎ௧௔௥ଶ  in (36) is given at two specific 
points: the designated time ݐௗ  and the end time ݐ௘ . The 
highest reward is given if the absolute difference between the 
injected SoC error and the targeted value is within 1% of SoC 
at these points. ݇௧ଶ and ݇௧ଷ are the coefficients to adjust the 
bonus value. The dual bonus system ensures that the agent 
keeps the SoC error until the end of the attack, if the target is 
reached at ݐௗ. 

Balancing penalties and rewards is crucial for optimal 
agent performance. Excessive penalties may lead to inaction, 
while high rewards could encourage frequent BDD 
violations. Additionally, balancing the attack-end bonus with 
cumulative rewards is necessary to achieve the desired SoC 
error at specific attack times. 

D. Soft Actor-Critic (SAC) Framework 
Based on the reward mechanism, the goal of the Timed-
SFDIA is to maximize the sum of expected discounted 
rewards over the attack horizon of ܶ: 

ݔܽ݉
గ

ܬ  = ࡱ
(࢙೟, ࢇ೟)~గ

൥෍(ߛ)௧ ∙ ,௧(࢙௧ݎ (௧ࢇ
்

௧ୀ଴

൩              (38) 

where E(·) represents the mathematical expectation, ߨ  is 
the actor policy that generates action according to state ࢙௧, 
,௧(࢙௧ݎ  ௧) is the reward (equation (30) or (34)) based onࢇ
current state ࢙௧ and action ࢇ௧. In this paper, we employ soft 
actor-critics (SAC) algorithm in [34] to find the optimal 
policy. 

To optimize the policy, we employ the soft actor-critic 
(SAC) algorithm [35], a model-free, off-policy actor-critic 
method that maximizes both cumulative rewards and policy 
entropy. This dual-objective approach improves stochastic 
exploration and optimization efficiency. Using SAC, 
Equation (38) is reformulated as: 

∗ߨ = ݃ݎܽ ݔܽ݉
గ

ࡱ
(࢙೟, ࢇ೟)~గ

൥෍(ߛ)௧ ቀݎ௧(࢙௧,    (௧ࢇ
்

௧ୀ଴

+ ∙)ߨ൫ܪߙ |࢙௧)൯ቁ൩                                    (39) 

where ߨ∗  represents the optimal policy, ܪ൫ߨ(∙ |࢙௧)൯ =
−log (ߨ(∙ |࢙௧))  is the policy entropy, and α is the 
temperature parameter balancing entropy and reward.  

In SAC, policy evaluation and improvement are achieved 
via training deep neural networks using stochastic gradient 
descent. SAC employs two networks: the Q network 
ܳఏ(࢙௧,  ௧) approximates the state-action value function, andࢇ
the policy network ߨథ(ࢇ௧|࢙௧)  approximates the policy 
function. The Q network parameters ߠ  are trained by 
minimizing the soft Bellman residual: 

(ߠ)ொܬ       = ࡱ
(௦೟, ௔೟)~஽

൥ଵ
ଶ

ቆܳఏ(࢙௧, (௧ࢇ  − ൬ݎ௧(࢙࢚, (௧ࢇ  +

ߛ                                      ࡱ
௦೟శభ~௣

[ ఏܸഥ(࢙௧ାଵ)]   ൰ቇ
ଶ

൩                  (40) 

where ఏܸഥ (࢙௧ାଵ)  is the estimated soft state value using a 
target network updated via moving average. 

For continuous action spaces, the policy is modeled as a 
Gaussian distribution. The policy network outputs the mean 
and standard deviation of the action distribution. Actor 
network parameters ߶  are learned by minimizing the 
expected Kullback-Leibler divergence [34]:  

(߶)గܬ = ࡱ
࢙೟~஽,௔೟~గഝ

ቂ݃݋݈ߙ ቀߨథ(ࢇ௧|࢙௧)ቁ − ܳఏ(࢙௧,          ௧)ቃ   (41)ࢇ

TABLE 2. Pseudocode of the SAC Algorithm for Timed-SFDIAs 

Initialize policy parameters ߶, double Q-value function parameters θ1, 
θ2 and the target network parameters ̅ߠଵ, ̅ߠଶ with θ1, θ2. 
Initialize experience replay memory ܦ and BDD thresholds. 

while not converged 
for each episode do 

Randomly select a start point in the training dataset and 
obtain the initial state ࢙଴. 
while not done 

Select action ࢇ௧ based on state ࢙௧ using the policy. 
Input action ࢇ௧  to environment, acquire ݀݁݊݋  signal, 
reward ݎ௧  and next state ࢙௧ାଵ. 
Memorize (࢙௧ ௧ࢇ , ௧ݎ , , ࢙௧ାଵ  in experience replay (݁݊݋݀ ,
buffer D. 

end 
end 

    for each gradient step do 
Randomly sample a minibatch of transitions from D. 
Update the parameters of the Q-function, the policy network, 
and the target network. 

end 
end 
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Two Q network critics are used to prevent value 
function overestimation. Details on the double Q network, 
policy updates, and target network mechanisms are in [34] 
and not discussed here due to space limitations. The SAC 
algorithm pseudocode for Timed-SFDIAs is presented in 
Table 2. 

E. Timed-SFIDA Training Setup 
To train the DRL agent for launching Timed-SFDIAs, the 
agent learns an effective attack policy by interacting with a 
simulated environment, as depicted in Figure 1. Since it is 
unrealistic to assume that attackers possess complete system 
information to build a direct digital-twin model of the target 
system, we instead assume that the attacker has access to 
historical system measurements from the control center of 
the ADN. This assumption is reasonable, as historical data 
could be obtained through various methods, such as MitM 
attacks [36], eavesdropping on communication channels 
[37], or hacking into the control center's data servers. 

Rather than allowing the DRL agent to interact directly 
with the actual distribution network, BESS, and BEMS, the 
agent leverages this historical data for offline learning. By 
doing so, the attacker can train without real-time interaction 
with the system, mitigating the need for full system access. 

To simulate real-world constraints, the BDD mechanism 
at the control center is incorporated into the training 
environment. This setup helps assess whether the generated 
attack vectors can bypass detection mechanisms. The 
parameters of bounded-range BDD are determined from the 
historical data and the available battery specifications, which 
are often accessible to attackers. Since SoC measurements 
are altered based on falsified battery voltage and current 
readings, cross-validation of SoC can easily be bypassed in 
this scenario. 

However, the more challenging aspect is bypassing 
residual-based BDD, which requires the attacker to perform 
SE and compute residuals. To ensure that the attacks evade 
residual-based detection, previous studies assume that the 
attacker has access to system parameters [11], [17], [18]. 
Extending this assumption, the attacker could either have 
partial or local system information [19]-[21], or they could 
use parameter-free SE techniques, such as system topology 
and parameter estimation [22], [23] or tensor-based SE 
methods [24], based on the available measurements. 

Given that the primary focus of this paper is to 
demonstrate how a DRL-based approach can be used to 
launch Timed-SFDIAs, we assume that the attacker has 
sufficient system information for SE as the worst-case 
scenario. This assumption could be relaxed in future work, 
with the DRL agent using parameter estimation techniques if 
system parameters are not fully accessible. Once trained, the 
DRL agent can be deployed in the actual system for online 
attacks. 

IV. CASE STUDY 

In this paper, we implement the Timed-SFDIA scheme using 
the BEMS framework from [38]. This setup features a grid-
forming BESS with a capacity of 3 MW/12 MWh and a 4.5 
MW PV farm powering an islanded microgrid. The SoC of 
the BESS is critical for microgrid operational planning 
within the BEMS, with the SoC profile over a day depicted 
in Figure 2. The BEMS confines the SoC to an operational 
range of 20% to 90%. 

When the SoC approaches 20%, the BEMS initiates non-
critical load shedding to maintain power only for critical 
loads. Conversely, exceeding 90% prompts load engagement 
or PV power curtailment. Insufficient PV power to recharge 
the BESS below 20% results in shutdown of the BESS and 
the microgrid. 

A. Simulation Model, Dataset and HIL Testbed 
We tested the proposed attack scheme on a centralized 
distribution model based on the IEEE 123-bus system, as 
depicted in Figure 1. The model includes a 4.5-MW PV farm 
connected to Bus 4 and a 3-MW BESS connected to Bus 2. 
The loads from all feeders in the IEEE-123 bus system in 
[38] were aggregated and modeled as a centralized load 
connected to Bus 5. Power consumption data for the load was 
sourced from actual residential users in Austin, TX. The PV 
farm and BESS models, developed in [39]-[43], were used, 
with irradiance data from actual measurements in North 
Carolina. The BESS is modeled using an RC-branch battery 
model with parameters summarized in Table 3 [44]. 

To replicate a practical ADN with communication 
capabilities, we developed a real-time simulation testbed on 
the OPAL-RT platform [46]. The distribution network, 
loads, PV farm, and BESS were modeled on OPAL-RT, 
while the ADN control center ran on a separate PC. A 
Python-based script simulated concurrent data transmission 
across multiple communication channels. This script, 
deployed on a relay PC, retrieved real-time measurement 
data from OPAL-RT and relayed it to the control center via 
TCP/IP. The simulation captured data every minute for state 
estimation, with control commands issued every 15 minutes 
to mirror real-world ADN operational cycles. 

We conducted a 20-day simulation, generating 
measurement noises randomly using normal distributions 
with zero means and predefined standard deviations: 1% for 
real-time magnitude, 0.5% for phasor measurements, and 2% 
for power measurements [11]. The SCADA measurements 

TABLE 3. Battery model parameters 

Parameters Values 
Nominal capacity and power 12 MWh/6667 Ah, 3 MW 

Nominal DC voltage and current 1800V, 1667A 
DC voltage range 1607 ~ 2100V 
DC current range -1867A ~ 1867 A 

R0 (per cell)  1.3 mΩ 
Rl, Cl (per cell)  4.2 mΩ, 17111 F 

Cells (series*parallel) 492*98 
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 ௌ஼஺஽஺ included voltage and current phasor at Bus 2, powerࢠ
injection of all nodes, and power flow of the 4 lines in the 
distribution network. Additionally, the BESS measurement 
 ஻ாௌௌincluded the battery SoC, DC voltage and current, andࢠ
the modulation index of the BESS inverter. There were 
collected and sent to the ADN control center along with the 
network measurements. 

B. OFFLINE TRAINING 
Assuming the attacker lacks access to the BEMS, we use the 
first 18 days of historical operation data (1-minute 
resolution, 25920 data points) for offline training, and the 
last 2 days for online testing. Both the actor and critic 
functions in the DRL are modeled using fully connected 
neural networks. The deep learning framework is 
implemented in PyTorch, and the algorithm is trained on an 
NVDIA RTX 3080 GPU. Table 4 summarizes the training 
hyperparameters. These parameters were selected based on 
a combination of prior literature [34], default configurations 
from widely adopted SAC implementations, and empirical 
tuning tailored to our specific BEMS environment. In 
particular, the temperature coefficient was tuned by 
sweeping its value over a range and evaluating the resulting 
trade-off between exploration and exploitation. The final 
setting was chosen to ensure stable policy convergence while 
promoting sufficiently stealthy attack strategies that avoid 
triggering the BDD constraints. Other parameters were also 
fine-tuned to enhance convergence speed and robustness 
across different training runs. 

Table 5 details the reward parameters. During training, 
attacks are initiated at random hours, with the BDD trigger 
threshold set at 99% of the maximum residual error during 
normal operations. Each episode lasts 10 hours (600 steps) 
for both unconstrained and constrained SoC error attacks, 
with ݐௗ set at the 7.7th hour for the latter. The target error in 
the constrained attack is randomly selected from 5% to 30% 
in 5% intervals. The agent is trained to maximize the SoC 
error or achieve the target SoC error within the attack 
duration. If falsified data violates any BDD constraints, a 
penalty is applied, and the episode ends immediately. SoC 
operation range constraints are removed during training 
since offline training uses fixed historical data with actual 
SoC ranging from 20% to 90%, and the BEMS cannot 
respond to false SoC data. 

Figure 5 illustrates the mean episode return curves for the 
unconstrained and constrained SoC error attacks under four 
different random initializations, using a 200-episode sliding 
window. As shown in Figure 5(a), for the unconstrained case, 
all initializations start with low returns (around -500), 
primarily due to the exploration phase and frequent violation 
of safety constraints. The model gradually learns to achieve 
the attack objective while avoiding early termination, with 
convergence typically observed after approximately 3000 
episodes. In the constrained scenario shown in Figure 5(b), 
convergence occurs more slowly—around 7000 episodes—

due to stricter reward design and BDD constraints, which 
penalize aggressive attack behaviors. Despite different 
starting conditions, the DRL agent consistently converges 
across all runs, demonstrating the robustness of the training 
process. These results confirm that the agent can reliably 
learn effective attack strategies under both scenarios, with 
variations in convergence rate influenced by initialization 
and constraint tightness. 

 
(a) Unconstrained SoC error attack            

 
(b) Constrained SoC error attack 

FIGURE 4. Training process of the DRL agent. 

 

C. OFFLINE TEST 
Using historical data from the last two days, we conducted 
an offline test within the BEMS framework [38] using a 
trained agent. Two attack scenarios were established: one 
concluding at 1 am with an expected SoC of approximately 
40%, and another ending at 8 am with an anticipated SoC 
near 20%.  These attacks were designed to introduce stealthy 

TABLE 4. Hyper parameter for DRL offline training 

Hyper parameter Values 
Optimizer Adam 

Learning rate 3e-4 
Discount (ߛ) 0.99 

Replay buffer size 106 
Number of hidden layers (all networks) 3 

Number of hidden units per layer 256 
Batch size 256 

Target smoothing coefficient (τ) 0.005 
Temperature coefficient (α) 0.5 

TABLE 5. Reward Parameters 

Parameters Values Parameters Values 
݇௨ଵ + 1 ݇௧ଵ 0.2 
݇௨ଶ 50 ݇௧ଶ 2000 
݇௨ଷ 2500 ݇௧ଷ 100 
݇௣ -500   
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SoC estimation errors that could mislead the BEMS and 
potentially cause unexpected shutdown of the BESS-
supplied system around midnight or between 8 am and 12 
pm, with the latter being a critical power-supply period.   

Table 6 summarizes 16 offline attack test cases with 
varying start times, durations, and targeted SoC errors under 
constrained attack mode. Figure 6 depicts the SoC and SoC 
error profiles, while Figure 7 shows the residual distribution. 
In Figure 6, Case 0 (in all subplots) serves as the baseline 
scenario with no attack applied, where the SoC remains 
within the safe operational bounds of 20% to 90%. In attack 
cases, however, the agent successfully manipulates the SoC 
estimation to induce false higher SoC values, without 
violating BDD thresholds. Among the constrained cases, 
Case 4 achieved the largest SoC deviation, reaching an error 
of 18.1%. In the unconstrained cases, Cases 12, 13, and 15 
effectively achieved and sustained the targeted SoC error 
within a ±1% tolerance at the specified attack intervals. Key 
observations from the offline tests in Figure 6 include:  

 Attack durations: Longer attack durations or earlier 
attack start times usually result in larger SoC errors in 
unconstrained attacks, and higher chances of reaching and 
maintaining the targeted SoC error at the designated time ݐௗ 
and the end time ݐ௘ for constrained attacks.  
 SoC error injection: SoC error generally increases 

over time but exhibits fluctuations due to varying system 
statuses and BDD limits. When the actual SoC near certain 
plateaus, the SoC error or its injection rate tends to decrease, 

particularly when the actual SoC approaches the 20% 
plateaus over four hours.  Attacks initiated at 2 am exhibit 
similar final SoC errors to those started at 8 am, as the 
accumulated SoC error before 8 am drops near zero during 
the 20% plateaus. Additionally, attacks concluding at the 
32nd hour (8 am of the second day) show little variation in 
SoC error when the actual SoC is approaching 20%.  

It is also observed that some false SoC values exceed 
90%. This occurs because the SoC range constraint is 
removed for more efficient offline training. Moreover, the 
SoC error injection patterns under different attack scenarios 
are quite similar for the same system operation points. Part 
of the SoC error curves overlap or display similar variation 
trend across various attacks. 
 Targeted SoC errors: For constrained attacks, if the 

targeted SoC error can be reached and maintained at 
designated times correlates with the target value and attack 
duration. The goal can only be reached when the targeted 
SoC error is achievable within the specified attack duration, 
as shown in cases 10, 12, 13, and 15. Smaller targets are 
reached sooner and then fluctuate around the target value 
(cases 10, 15). If the target is not feasible within ݐௗ, it may 
still be achieved at ݐ௘  due to the dual bonus mechanism 
(cases 7 and 8). The final SoC error will try to get close to 

TABLE 6. Offline attack test results of unconstrained and constrained SoC error attack 

 No 
attacks Unconstrained Constrained 

Cases 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
࢚࢙ (hour) - 2nd   8th  16th  2nd  8th  16th  2nd   8th  16th  8th  8th  2nd   8th  16th  8th  8th  
 21st (21 pm, 1st day) 25th (1 am, 2nd day) - - - - - - - (hour) ࢊ࢚
  25th (1 am, 2nd day) 32nd (8 am, 2nd day) 25th (1 am, 2nd day) 32nd (8 am, 2nd day) - (hour) ࢋ࢚
 30 10 20 30 10 20 - - - - - - - (%)∗ࢶ∆
 19.7 10.9 8.4 19.6 19.9 16.6 13.1 4.6 16.5 18.3 - - - - - - - (%)ࢊ࢚ࢶ∆
 27.4 10.4 16.5 20.4 20.4 18.7 11.0 7.2 19 20.4 11.1 17.1 18.1 6.1 11.8 12.8 - (%)ࢋ࢚ࢶ∆

 0.080 0.074 0.080 0.078 0.075 0.077 0.074 0.078 0.078 0.075 0.073 0.073 0.074 0.081 0.073 0.073 0.062 ࢊࢋ࢓࢘

 
                (a) Case 0, 1, 2, and 3                              (b) Case 0, 4, 5, and 6                         (c) Case 0, 7, 8, 9, 10, and 11               (d) Case 0, 12, 13, 14, 15, and 16                                  

FIGURE 5. SoC and SoC error profiles of offline test results with different start, end times, or targeted SoC errors: unconstrained – (a), (b); constrained – 
(c), (d). 
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target if the target is too large, comparing to the specified 
attack duration (cases 9, 11, 14, and 16). 
 Residual comparison: The residuals for all 

attacked cases are below the threshold and mostly fall within 
the same range as non-attacked cases. However, the median 
residual is higher in the attacked cases due to the injected 
attack vector. Longer attack durations generally result in 
smaller median residuals for injecting the same SoC error. 
For unconstrained attacks, case 3 has the highest residual 
median due to the shortest attack duration. For constrained 
attacks, both shorter attack durations and larger targeted SoC 
errors can increase the residual median. 

Overall, it can be observed that the proposed method 
leverages measurement redundancy and BDD threshold 
margins to inject SoC errors. The residuals in the attack cases 
remain within the threshold range but exhibit higher median 
values because only the battery voltage and current are 
modified. If a sufficient number of measurements can be 
altered, the residuals could remain consistent. The proposed 
methodology is adaptable to such scenarios by incorporating 
these additional measurements into the action space.  

D. Online Test 
After the offline training and testing, the DRL-trained attack 
agent is applied to online testing using the same load and PV 
profile from the offline test. For the online test, the agent is 
implemented for real-time stealthy attacks by injecting false 
battery voltage, current, and SoC data to the ADN control 
center. The attack is done to mislead the BEMS into making 
inappropriate energy decisions.  

The simulation results of all online test cases are 
summarized in Table 7. By comparing with the offline results 
in Table 6, it is evident that the online attack result is highly 
similar to those of the offline attacks. In the unconstrained 
attack scenario, case 4 shows the highest SoC error due to 
the longest attack duration. For constrained attacks, a longer 
attack duration increases the likelihood of achieving the 
targeted SoC error at two specified times.  

Figure 8 presents selected online attack test cases, 
illustrating both the false and actual SoC profiles, along with 
the corresponding SoC error trajectories. In each subplot, 

solid and dashed lines of the same color represent the false 
and actual SoC, respectively. The primary distinction 
between offline and online attacks lies in how the actual SoC 
is affected. During offline attacks, the actual SoC remains 
within the range of 20% to 90% and is not influenced by the 
false SoC, as shown in Figure 6. In contrast, during online 
attacks, the false SoC is treated as the actual SoC by the 
BEMS and is regulated within the desired range. As shown 
in Figure 8, all false SoC is within the range of 20% to 90% 
but with slightly different shapes, even though the bounded-
range BDD for SoC is disabled during offline training. 
Consequently, the actual SoC is impacted by the false SoC 
or the injected SoC error.  

For unconstrained attacks, all cases introduced SoC errors 
at the desired end times (1 am and 8 am). Case 1 injected the 
largest SoC error at 1 am, causing the energy deficiency for 
the system’s operation throughout the night. If the attack 
ends at this time, the BEMS will detect the actual SoC value. 
This could shut down the system when the actual SoC is 
below 20% and there is no PV to charge BESS or provide 
power for loads during the night.  

Case 4 injected the largest SoC error of 17.9% when the 
actual SoC is only 3.2% at 8 am. Since 8 am to 12 am is 
designated as a critical power supply period in the BEMS, 
nearly all PV power is used to supply loads while the BESS 
primarily provides voltage and frequency support, keeping 
the BESS SoC around 20% during this period. If the attack 
ends at 8 am, the system will shut down due to the loss of 
voltage and frequency support, disrupting the power supply 
during critical periods.  

Figure 8 illustrates the real-world danger of such stealthy 
FDIAs: while the reported SoC remains within safe 
operational bounds, the actual SoC may silently fall to 
critical levels. This discrepancy misleads the BEMS and can 
trigger unexpected shutdowns during periods of high energy 
need. The DRL-based attack framework successfully 
orchestrates such scenarios without breaching traditional 
BDD thresholds, underscoring the need for stronger 
validation layers within battery energy management systems. 

Similarly, for constrained attacks, the same system 
shutdown will happen due to the injected SoC estimation 
error. Comparing to the unconstrained attack, the injected 
SoC error in constrained attacks could be higher and more 
deliberate, resulting in longer periods of system shutdown. 

 
FIGURE 6. Residual distribution of unconstrained and constrained 
SoC error attack offline test results.  
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Clearly, the actual SoC drops to around 0 before the attack 
end time in cases 12, 13 and 16. 

 Figure 9 presents the residual distribution for all online 
teste cases. All residuals remain below the BDD threshold. 
Compared to the non-attack case, the median residuals in the 
attacked cases are higher, with cases 3, 9, 11, 14 and 16 
showing the highest median residuals. This is because all 
cases aim to reach a large SoC error target within a limited 
attack duration. 

E. Discussions 

1) PRACTICAL FEASIBILITY AND IMPACT OF TIMED-
SFDIAS 

This study assumes a stealthy and resourceful adversary with 
access to representative system data—obtained through 
passive eavesdropping, device compromise, or insider 
threats. While such access may not always be realistic in all 
deployments, it aligns with threat models involving 
advanced persistent threats frequently observed in critical 
infrastructure sectors. Furthermore, we assume that the 
attacker possesses sufficient offline computational resources 
to train a DRL-based attack policy—an increasingly 
plausible scenario given the availability of scalable cloud 
computing platforms. Once trained, the attack strategy can 
be executed in real time with minimal computational 
overhead. 

Simulation results confirm that undetected Timed-
SFDIAs can significantly disrupt BEMS by manipulating 
SoC estimates, leading to erroneous control decisions such 
as overcharging or undercharging. These disruptions can 
compromise system safety, operational continuity, and 
energy availability. Over time, persistent SoC manipulation 
could accelerate battery degradation, destabilize load 
balancing, and reduce system resilience during peak demand 
or outages. 

The risks are even more pronounced in interconnected 
microgrids, where coordinated control and energy-sharing 
protocols rely on accurate SoC information. Tampered SoC 
signals could interfere with distributed decision-making, 
triggering cascading failures across multiple microgrids or 

TABLE 7. Online test results of unconstrained and constrained SoC error attack 

 No 
attacks Unconstrained Constrained 

Cases 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
࢚࢙ (hour) - 2nd   8th  16th  2nd  8th  16th  2nd   8th  16th  8th  8th  2nd   8th  16th  8th  8th  
 21st (21 pm, 1st day) 25th (1 am, 2nd day) - - - - - - - (hour) ࢊ࢚
  25th (1 am, 2nd day) 32nd (8 am, 2nd day) 25th (1 am, 2nd day) 32nd (8 am, 2nd day) - (hour) ࢋ࢚
 30 10 20 30 10 20 - - - - - - - (%)∗ࢶ∆
 20.3 10.6 11.8 19.8 19.8 15.7 11 6.1 15 19.9 - - - - - - - (%)ࢊ࢚ࢶ∆
 26.2 11.6 17.9 21.1 21 19.4 10.4 11.9 19.1 20.4 9.2 15.5 17.9 8.1 13.4 14.7 - (%)ࢋ࢚ࢶ∆

 0.079 0.074 0.079 0.075 0.072 0.078 0.075 0.081 0.076 0.075 0.076 0.072 0.074 0.081 0.074 0.074 0.062 ࢊࢋ࢓࢘

          
                         (a)  Case 4, 5, and 6                                 (b) Case 12, 13, and 14                     (c) Case 13, 15, and 16                                                                         
FIGURE 8. SoC and SoC error profiles of online test results with different start, end times, or targeted SoC errors: unconstrained – (a); constrained – 
(b), (c). 
 

 
FIGURE 8. Residual distribution of unconstrained and constrained SoC 
error attack online test results. 
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even wider grid segments. These results highlight the 
systemic vulnerabilities introduced by stealthy attacks and 
emphasize the need for proactive anomaly detection, system 
hardening, and cyber-resilient energy management 
frameworks. 

Future work will expand this framework to explore 
broader system-level consequences, including the impact on 
inverter coordination, stability of secondary control loops, 
and grid service reliability. 

2) COMPARISON WITH EXISTING FDIA TECHNIQUES 
Existing false data injection attack techniques—including 
rule-based, machine learning-based, and optimization-based 
approaches—each have distinct limitations. Rule-based 
attacks typically manipulate sensor measurements directly 
but are easily detected, as they often overlook modern BDD 
mechanisms. Machine learning-based approaches, such as 
ANN-driven attacks, can fool local controllers but are 
frequently flagged by residual-based detection schemes at 
higher control layers. 

Optimization-based methods offer theoretical stealth by 
formulating attacks that bypass BDD constraints. However, 
they rely on restrictive assumptions, such as a known and 
static OCV-SoC relationship or access to future 
measurements—conditions rarely satisfied in real-time 
deployments. 

In contrast, the proposed DRL-based attack offloads the 
optimization process to the training phase. This enables real-
time deployment with greater stealth and adaptability. 
Notably, the DRL framework supports dynamic and timed 
attack modes that are difficult to realize using conventional 
optimization-based techniques. As such, a direct quantitative 
comparison with traditional methods is not included, as the 
capabilities and operating assumptions differ fundamentally. 

3) SCALABILITY OF THE PROPOSED ATTACK IN 
LARGER POWER SYSTEMS 
Although this study focuses on a single microgrid with one 
BESS and a PV system, the proposed attack strategy is 
inherently scalable to larger power systems with multiple 
interconnected BESS units. The feasibility of such attacks 
depends less on system size and more on factors like the 
structure of the state estimation process, measurement 
redundancy, and the configuration of BDD mechanisms. 

As system scale increases, higher observability and 
measurement redundancy may strengthen BDD 
performance, potentially reducing attack success rates. 
However, prior research has demonstrated that attackers can 
exploit sparsely observed regions, coordinate deviations 
across nodes, or apply parameter-free strategies to maintain 
stealth even in complex systems. Moreover, larger systems 
often rely on distributed control architectures, which, while 
offering fault-tolerance, may introduce additional attack 
surfaces and new challenges in coordination and detection. 

To rigorously assess the scalability of the proposed 
framework, future research will extend testing to multi-

BESS networks and larger grid configurations. This includes 
evaluating performance under different state estimation 
models, investigating cross-node coordination of distributed 
attacks, and testing the strategy in HIL or real-time 
simulation environments. Such work will provide deeper 
insight into the attack’s practical implications and inform the 
development of more resilient cyber-physical defenses for 
energy storage systems. 

4) PREVENTION, DETECTION, AND DEFENSE FOR 
TIMED-SFDIAS 
Timed Timed-SFDIAs represent a serious threat to the 
integrity and reliability of BESS by gradually introducing 
subtle measurement errors that evade conventional BDD 
mechanisms. To counteract these risks, comprehensive 
strategies encompassing prevention, detection, and defense 
are essential. 

Prevention begins with reinforcing communication 
security, data integrity, and system-level resilience within 
BMS and BEMS [46]. Secure communication protocols—
such as end-to-end encryption and mutual authentication—
must be employed to protect data exchanges between BESS 
components and central controllers from unauthorized 
interception or tampering. Cybersecurity hardening at both 
the hardware and software levels (e.g., secure boot, intrusion 
detection systems, and firmware integrity checks) enhances 
resistance to potential intrusions. Additionally, incorporating 
system-level redundancy and fail-safes can help safeguard 
critical measurements—particularly SoC data—from 
compromise or corruption. 

Early detection is crucial for minimizing operational and 
safety impacts. Advanced anomaly detection algorithms, 
leveraging statistical methods or machine learning 
techniques, can be deployed to identify irregularities in SoC 
estimation that may signal ongoing attacks. Cross-validation 
of measurements using multiple sensors or independent 
estimation models increases robustness and detection 
sensitivity. Furthermore, time-series analysis can reveal 
subtle, temporally aligned deviations in SoC behavior, 
consistent with gradual manipulation strategies employed in 
Timed-SFDIAs. 

Defense and mitigation strategies focus on reducing the 
impact of successful attacks and enabling rapid system 
recovery. Real-time monitoring and response mechanisms 
can trigger automated protective actions, such as 
dynamically adjusting charging/discharging profiles, 
isolating compromised components, or notifying operators 
for manual intervention. Enhancing the robustness of SoC 
estimation through hybrid or ensemble modeling—such as 
combining model-based approaches with data-driven 
techniques—can further improve resilience to adversarial 
manipulation. A resilient BMS architecture that supports 
fault tolerance and graceful degradation ensures continued 
safe operation under uncertainty or partial system 
compromise. 
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By integrating secure communication frameworks, 
advanced anomaly detection techniques, and real-time 
mitigation protocols, the overall cyber-physical resilience of 
BESS can be significantly strengthened. These measures are 
critical to safeguarding modern energy storage 
infrastructures against sophisticated threats such as Timed-
SFDIAs and ensuring the reliable and secure operation of 
power systems in adversarial environments. 

V. Conclusion 
To address the substantial computational demands of 

nonlinear Timed-SFDIAs while ensuring real-time online 
deployment, we proposed a DRL-based Timed-SFDIA 
algorithm specifically designed to disrupt BESS operations 
during targeted time periods. This innovative algorithm 
gradually degrades BESS SoC estimation by strategically 
altering battery voltage and current, resulting in significant 
SoC deviations over time. Our method exploits measurement 
redundancy and BDD threshold margins to effectively inject 
potential SoC errors. 

The RL agent, through interaction with the ADN 
environment incorporating three distinct BDD algorithms, 
learns to generate a sequence of attack vectors for Timed-
SFDIA attacks. These vectors are capable of evading BDD 
detection, successfully introducing the desired SoC error by 
the end of the attack period. We introduced two distinct 
attack modes: unconstrained and constrained SoC error 
attacks. The constrained mode allows for precise control of 
the injected SoC error, maintaining it within a targeted range, 
while the unconstrained mode aims to generate the largest 
possible errors. 

Our proposed attack methodology and strategies were 
rigorously tested using a HIL platform. The results 
demonstrated the effectiveness of our approach in injecting 
the desired SoC error without triggering any BDD 
mechanisms. This injected error can cause severe 
consequences, including power shortages and system 
shutdowns during critical periods in BESS-supported 
microgrids. A distinct advantage of this method is its low 
detectability—even after a shutdown due to insufficient 
SoC—since operators may attribute the low SoC to natural 
battery degradation, as no SE alarms are triggered 
throughout the event. This allows the attack to be relaunched 
at any future time. This confirms the potential of our DRL-
based Timed-SFDIA algorithm to meet real-time 
deployment requirements while effectively compromising 
BESS operations. The success of this method underscores 
the need for enhanced BDD mechanisms to counteract 
sophisticated SFDIA threats and safeguard BESS integrity. 

APPENDIX A 
LIST OF ABBREVIATIONS 
ADN: Active Distribution Network 
ANN: Artificial Neural Network 
BDD: Bad Data Detection 

BEMS: Battery Energy Management System 
BESS: Battery Energy Storage System 
BMS: Battery Management System 
DER: Distributed Energy Resource 
DRL: Deep Reinforcement Learning 
SFDIAs: Stealthy False Data Injection Attacks 
EKF: Extended Kalman-filter 
EMT: Electromagnetic Transient 
ICT: Information and Communication Technology  
IoT: Internet of Things 
MDP: Markov Decision Process 
MitM: Man-in-the-middle 
OCV: Open Circuit Voltage 
SAC: Soft Actor-Critic 
SE: State Estimation 
SoC: State of Charge 
SCADA: Supervisory Control and Data Acquisition 
VSI: Voltage Source Inverter 
WLS: Weighted Least Squares  
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