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ABSTRACT This paper introduces an innovative cyber-attack scheme, "invisible manipulation,” utilizing
timed-stealthy false data injection attacks (Timed-SFDIAs). By subtly altering critical measurements ahead
of a target period, the attacker covertly steers system operations toward a specific failure state, evading
detection while enabling repeated attacks over time. Using Battery Energy Management System (BEMS) as
a case study, we demonstrate the scheme's effectiveness in manipulating Battery Energy Storage Systems
(BESS), critical for grids with high renewable penetration. Our method employs deep reinforcement learning
(DRL) to generate synthetic measurements (e.g., battery voltage, current) that mimic real data, bypassing
residual-based bad data detection (BDD) and misleading Extended Kalman-filter (EKF) based State-of-
Charge (SoC) estimations. This allows the BEMS to operate the BESS per the attacker’s objectives. To
minimize real-time computational demands, we transform this online optimization problem into an offline
DRL training problem, utilizing high-fidelity simulation data from a digital twin-based microgrid testbed.
The testbed incorporates real load and solar generation profiles with BESS models in the electromagnetic
transient (EMT) domain at a 100-ps resolution, capturing rapid system dynamics and ensuring robust
performance in real-time scenarios. Testing on the same testbed allows real-time evaluation of microgrid
responses, where the BEMS, EKF-based SoC estimation algorithms interact dynamically with the injected
false measurements. This unique DRL training and testing setup not only showcases the effectiveness of the
Timed-SFDIA algorithm in evading detection and achieving diverse attack objectives but also underscores
the critical role of high-fidelity, digital-twin based real-time simulation testbeds. Such testbeds are invaluable
for training and validating data-driven machine learning algorithms, especially when field tests and real-
world validation are challenging to conduct, as they ensure robustness and adaptability under realistic
operational conditions.

INDEX TERMS Cyber-physical attacks, deep reinforcement learning, timed stealthy false data injection (SFDIA),
invisible manipulation attacks, state-of-charge (SoC) estimation.

I. INTRODUCTION

The secure and reliable operation of the electric grid
heavily relies on accurate data for decision-making and
control, making false data injection attacks (FDIAs) a
significant threat. Over the past decade, research has
focused on FDIAs targeting transmission systems by
falsifying inputs to state estimation (SE) algorithms and
evading detection by bad data detection (BDD) algorithms
(e.g., residual-based BDD) [1]. With the rapid integration
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of distributed energy resources (DERs) [2] and other
information and communication technology devices
(ICTs), previously passive distribution networks are
evolving into smart grids, equipped with numerous
remotely accessible automated devices [3]. Consequently,
the risk posed by FDIAs to modern active distribution
networks (ADNs) has been growing exponentially. This
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TABLE 1. Literature review of existing FDIAs targeting BESS

A,lf;z)cek Ol;Ajtet:tcil\jes 3{]71\11)) Description Stealthniess Key Advantages Key Limitations
Inject bias within the operation
Power control range to the active power
7] setpoints of BESS to cause
power imbalance in an
islanded microgrid.
Falsify the mode command to
Mode control disrupt the mode conversion Simple, low-cost
Rule-based (8] No erm PQ o Vfto fail the Easily detectable implementation, feasible in Easily dletectedAby BDD or
microgrid. real-time. manual inspection.
ON/OFF Falsify ic ON/OFF command
control [9] to deteriorate power quality or
destabilize the power system.
Different voltage bias is
SoC estimation selected within the operation
[10] range to disrupt the SoC
estimation.
Maximize the SoC estimation
PN L error to cause overcharging or Highly stealthy, maximizes High computational cost, requires
bO;)stel(limzatlon- [SIO l(]: estimation Yes over-discharging of batteries Fully stealthy SoC estimation error while full system knowledge, limited
with residual-based BDD avoiding detection. real-time feasibility.
considered.
ANN bascd. Replicate the Moderate computational cost, . .
BESS behavior of BESS for evades basic detection Requires extensive system data,
operation No enhanced stealth and control Partially stealthy methods. feasible in real- still vulnerable to residual-based
status [12],[13] the authentic BESS by time ’ BDD.
Machine employing MitM techniques. )
learning- Timed-SFDIA. DRL-based. Offline trainine minimizes
based SoC Gradually injecting battery real-time com: & mi
putational load, .
estimation Yes vellizge g cuqcnt Fully stealthy adaptable to various IRergpities some IRl
(Proposed) mea;urement bias to cause a e, il fn ek for model tuning.
maximum or target SoC error e
at the desired time. i
has led to an increased emphasis on studying FDIAs in the shortages. Moreover, inaccurate SoC values risk

context of DERs [4].

Battery energy storage system (BESS) plays a critical
role in many ADNs by providing grid-following and grid-
forming functions. These functions include PV output
smoothing, load shifting, and voltage and frequency
regulation [5], [6]. However, the versatility and
significance of BESS also make it prime target for
adversaries seeking to launch FDIAs and exploit them for
unlawful purposes.

As shown in Table 1, FDIA objectives targeting BESS
fall into two categories: manipulation of inverter control
parameters (e.g., real/reactive power, voltage, and
frequency) and tampering with battery measurements and
status data (e.g., state of charge, or SoC). This paper
focuses on the latter, as SoC relies on estimation techniques
like Coulomb counting or Kalman filtering, which depend
on battery voltage and current measurements from the
battery management system (BMS) [14]. This reliance
makes SoC estimation vulnerable to cyber-attacks, a risk
heightened by the growing use of remote communication
between BESS and control centers. Additionally,
integrating IoT and cloud-based technologies in BMS [15]
further exposes BESS to falsified measurements.

Accurate SoC estimation is crucial for BESS energy
scheduling and Dbattery lifespan. Corrupted SoC
measurements can mislead the BEMS, causing incorrect
decisions, insufficient operational support, or future energy

overcharging, over-discharging, reduced battery life, and
potential hazards like fire or explosion [14]. Therefore, we
propose a novel Timed-FDIA scheme that subtly
manipulates SoC estimation, deceiving the BEMS into
faulty dispatch planning and undermining the BESS's
capability to support the grid effectively when the target
period approaches.

FDIAs are classified by attack duration into
instantaneous and prolonged types. Prolonged attacks
include persistent attacks, which apply a constant bias to
data, and repetitive attacks, which periodically introduce
varying biases [10]. Research on FDIAs targeting BESS
has primarily examined their impact on grid stability
through persistent and repetitive attacks (see Table 1), often
using rule-based approaches. However, the technical
implementation of these attacks is rarely detailed. Rule-
based FDIAs inject false data randomly within an
operational range, creating persistent or repetitive biases in
measurements and commands. While these attacks are
relatively simple, they are easily detectable through
personnel observation and conventional BDD mechanisms
within SE. SE is widely used for monitoring system states,
particularly in transmission system operations, with
residual-based BDD algorithms commonly detecting
measurement errors and cyberattacks [16]. As observability
in distribution networks has improved, SE algorithms with
residual-based BDD are now increasingly applied to ADNs.
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In contrast, stealthy FDIAs (SFDIAs) pose a greater
threat, as they are designed to bypass BDD systems.
Previous studies have introduced SFDIA architectures for
BESS that use man-in-the-middle (MitM) attacks to
manipulate commands and measurements exchanged
between the BESS controller and BMS [14], [15]. These
architectures achieve stealthiness at the local controller
level by employing artificial neural networks (ANN) to
replicate normal BESS behavior. However, these studies do
not address evading network-level detection methods like
residual-based BDD, making them vulnerable to detection
at the broader system level.

Recent research has revealed vulnerabilities in BDD
algorithms that enable certain FDIAs, including SFDIAs,
to evade detection. For example, studies [17] and [18] show
that FDIAs can bypass detection if attackers have access to
system parameters. Further, studies [19], [20], and [21]
demonstrate that SFDIAs can succeed with only partial or
local system parameter information. Additionally,
parameter-free SFDIAs have been developed [22]-[24],
where attackers estimate system parameters using
measurements or apply tensor-shaped SE modeling
techniques, effectively bypassing residual-based BDD
mechanisms.

Assuming attackers have access to system parameters,
[11] proposed an SFDIA scheme for BESS to maximize the
absolute SoC estimation error by integrating residual-based
BDD with linear optimization methods. However, this
approach faced challenges due to the extensive
linearization and assumptions needed to simplify the
problem and reduce computational costs. These
assumptions—such as treating the OCV-SoC curve slope
as constant in the Extended Kalman Filter (EKF), using a
linearized DC power flow instead of an AC model, and
assuming future time-slot data availability—made real-
time implementation challenging and increased
vulnerability to detection in practical settings [22], [25].

In contrast, deep reinforcement learning (DRL) shows
promise for executing real-time attacks by creating an
accurate system model through offline training. Widely
applied in power systems for decision-making and control
[26], [27], DRL has recently gained attention for enhancing
cybersecurity [28], [29]. While typically used for attack
detection, DRL also serves as a powerful tool for launching
cyber-attacks. This study leverages DRL to conduct
stealthy attacks on SoC estimation within the BESS,
bridging gaps in attack design methodology for integration
with BEMS. Unlike persistent and repetitive attacks that
apply a constant bias, we propose a timed-attack strategy,
which gradually injects a small, varying bias at each time
step. This incremental approach allows the bias to
accumulate and reach a targeted error at specific times,
disrupting BESS operations and potentially affecting
supported systems.

The primary contribution of this paper is the
development of a DRL-based approach for launching
Timed-SFDIAs against SoC  estimation.  Unlike
optimization-based methods that require extensive system
data, real-time optimization, and high computing
resources—often impractical for real-time applications—
our DRL approach enables offline training of an attacker
agent. Using results from a high-fidelity real-time
simulation testbed, we generate high-quality training
datasets that accurately capture microgrid dynamics. This
approach allows measurements sent to the SE, BDD, and
SoC estimation algorithms to reflect true system behavior
without simplifications, thereby improving response
accuracy.

A secondary contribution is the introduction of a timed-
attack scheme targeting a specific SoC error level. By
gradually falsifying SoC values well before the target
period, we incrementally build an SoC error between false
and actual values. This approach minimizes detection risk,
enabling the BEMS to operate the BESS at attacker-defined
SoC levels at the specified time. A key advantage of this
method is that it remains undetected even post-attack,
allowing for repeated attempts without revealing the
vulnerability, as demonstrated by the “one-shot kill”
scenario that compromises the reliability of BESS-
dependent systems.

A third contribution is the training and testing of our
algorithm using data from a high-fidelity microgrid digital-
twin based testbed, which incorporates real load and solar
generation profiles and models the BESS in the
electromagnetic transient (EMT) domain at a 100-ps
resolution. This DRL training and testing setup highlights
the essential role of high-fidelity, real-time digital-twin
based testbeds for training and validating data-driven
machine learning algorithms, particularly when field tests
and real-world validation are difficult to perform. This
approach ensures robustness and adaptability under
realistic operational conditions.

The remainder of this paper is organized as follows:
Section II describes the ADN configuration with BESS and
the BDD mechanism. Section III formulates the DRL-based
Timed-SFDIA  problem and details the design
methodology. Section IV presents case study results from
implementing the proposed attack scheme on a high-
fidelity microgrid real-time simulation testbed. Section V
concludes the paper.

ll. Modeling Considerations

This section provides an overview of the ADN system
configuration, the BDD mechanism at ADN control center,
and the proposed Timed-SFDIA scheme.

A. Configuration of the ADN System

As shown in the grey box in Figure 1, the customer-owned
BESS comprises a bidirectional three-phase voltage source
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FIGURE 1. A single-line diagram of an ADN with BESS.

inverter (VSI), a battery pack, a battery management system
(BMS), and a local BESS controller. The BMS uses local
battery pack measurements, including DC terminal voltage
(V4c) and current (1), to estimate the BESS SoC (@) and
other operational variables. The BESS controller processes
data from the VSI and BMS to determine the VSI modulation
index (m). It then transmits V., I;., m, and @ to the ADN
control center. This data transmission occurs over the internet
or non-proprietary wireless networks, exposing it to the risk of
fake data injection. For simplicity, we define the set of BESS
measurements sent to the ADN control center as

(M

Using the average model introduced in [30] to represent the
VSI operation of the BESS unit, we have

Zggss = [Vacs lac, m, @]

V. = mVqc/V2 )
Pri + Pyc + Pross = 0 3)
Pac = Vaclac “)
Pioss = IfiRac + Vic/Rac (5)

where P, represents the DC power, P,; and I,; denote AC
side power and current, P, signifies inverter loss, and R,
R, are AC and DC bus series resistances, respectively.

As illustrated in the green box in Figure 1, in addition to
retrieving BESS operation status from the BESS controller,
the ADN control center collects measurements from the
distribution network through proprietary Supervisory
Control and Data Acquisition (SCADA) systems. These
measurements are crucial for SE, a process that processes a
set of noisy and redundant measurement data to provide an
accurate real-time database for control and monitoring
purposes [16]. The SCADA measurement set include vital
operation parameters, such as voltage (V;), phase angle (6;),
active and reactive power injections at the i bus (P;, Q;), as
well as active and reactive power flows between buses i and
J (P;j, Qij). This measurement set from SCADA is defined as

Zscapa = [Vi, 0i, Py, Qi Py, Qi P (6)

< — — — Communication links SFDIAs

B. BAD DATA DETECTION

To ensure the reliability of measurements and mitigate the
impact of potential cyber-attacks, the ADN control center
employs a multi-layered BDD strategy. Upon receiving
measurements from the BESS and SCADA systems, three
distinct BDD mechanisms are sequentially applied:
bounded-range BDD, residual-based BDD, and SoC cross-
validation.

Figure 2 presents a flowchart that illustrates the sequential
operation of these BDD mechanisms. The process operates
as follows: 1) Bounded-Range Check: incoming
measurements are first validated against predefined upper
and lower bounds; 2) State Estimation and Residual-Based
Check: if measurements pass the bounded-range check, a
state estimation (SE) process is conducted. Measurement
consistency is then verified using residual analysis; 3) SoC
Cross-Validation: if the battery measurements pass residual-
based BDD, the received SoC information is independently
validated using EKF-based SoC estimation.

If any validation step fails, an alarm is triggered, and the
corresponding measurements are discarded or flagged for
further investigation. Only measurements passing all layers
of BDD are incorporated into the ADN control center’s
operation.

Detailed descriptions of each BDD layer are provided
below.

1) Bounded-range BDD

Bounded-range BDD applies threshold-based checks to all
received measurements upon arrival at the ADN control
center. Each measurement is compared against predefined
upper and lower bounds, as defined in equations (7) and (8):

min max
Zscapa < Zscapa = Zscipa (7

min max
ZpEss = Zpgss < ZpEss ®
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FIGURE 2. Flow chart of bad data detection at the ADN control center.

Flagged as abnormal
and an alarm issued

If any measurement falls outside its respective bounds, an
alarm is immediately raised, indicating potential anomalies
or cyber-attacks.

2) State Estimation and Residual-based BDD
Residual-based BDD is employed subsequent to bounded-
range check. It verifies the validity of measurements by
comparing the SE residual (i) with a predefined threshold
value ( tgg). If both BESS and SCADA measurements pass
the bounded-range BDD, the SE estimates system states (x)
that best match the measurements (z) via:

z=h(x)+e ©)

where h(*) denotes a nonlinear vector function derived from
network topology and e is the measurement error vector.

Using the Weighted Least Squares (WLS) method, we
minimize weighted measurement residuals and iteratively
solve the optimization problem detailed in [31]. Thus, the
residual-based BDD mechanism validates measurements
based on residual, 7, calculated as

T =llz-h®II; (10)

where X represents the estimated value of x.

If ¥ < 155, z is considered as normal; otherwise, z is
flagged as containing bad data. Thus, a SFDIA that can pass
the residual-based BDD, needs to generate a set of
measurement attack biases € that can satisfy

lz+e—hE&+)|5 <15 (11)

where ¢ represents the malicious error introduced to the
original estimation X.

Many existing methods assume that a large number of
measurements in z can be modified. For example, in [11], it
is required to alter not only the battery voltage and current
but also other SCADA measurements to maintain the
residual consistency between attacked and non-attacked
cases. This assumption is restrictive, as it demands extensive

access to communication links. Consequently, in this paper,
we investigated SFDIA under a more realistic scenario
where the attacker can only alter the battery measurements
by adding an attack vector £z5551. Under this assumption,
(11) becomes

lZscapa + Zpess1 + €pess1 — hRE + O3 <15 (12)

where Zgpgor = [Vye, Lge, m]and €gggq1is the attack vector
containing the biases of battery voltage and current. Please
note SoC cannot be directly included for SE. Thus, SoC is
excluded in zgpgg; compared to Zgggs.

3) SoC ESTIMATION AND CROSS-VALIDATION

In the ADN control center, the BEMS manages load
consumption and power generation, optimizing performance
based on the BESS SoC. However, corrupted or inaccurate
SoC measurements can mislead the BEMS, leading to
incorrect decisions. This may result in insufficient system
support, energy shortages, overcharging, over-discharging,
reduced battery lifespan, or safety risks such as fires or
explosions.

Given the critical role of SoC in system operations, a
cross-validation mechanism is assumed for SoC verification.
The system estimates SoC (®) using battery voltage (V)
and current (I;.) measurements that pass residual-based
BDD. It cross-validates @ against the SoC value (@)
received from the local BMS, as shown in Figure 1. The
Extended Kalman filter (EKF), widely used for SoC
estimation due to its ability to handle measurement errors,
noise, and uncertainties, is employed in this study. The EKF-
based SoC estimation process, adopted from [14], is
expressed as:

® = EKF(Vdcr idc) (13)

Assuming the ADN control center and the local BMS use
the same battery model for SoC estimation, if the
discrepancy between @ and @ is compared against a
predefined threshold 7g,. If the condition:

|® — B|< Tsoc (14)

is satisfied, the received SoC @ is deemed valid and
incorporated into the BEMS for scheduling battery
operation. If not, an alarm is triggered.

C. STEALTHY REQUIREMENTS FOR SFDIAS
TARGETING SoC ESTIMATION

To successfully execute a SFDIA targeting SoC estimation,
while bypassing existing BDD mechanisms, an attacker must
falsify three critical measurements: battery voltage, current
and SoC. The manipulated battery voltage, current and SoC
at time t are denoted as V},, I, and ®¢, respectively. The
falsified voltage and current are defined as

[7;0 = Vagc +Z§s Athc (15)
ictlc = Iéc +Z§s Aléc (16)
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where V. and 1], represent the actual battery voltage and
current measurements, t, is the start time of the attack, and
AV/, and AIS, represent the injected voltage and current bias
at each time step.

To bypass detection, the falsified values 7}, and [f, must
satisfy the bounded-range BDD (17) and the residual-based
BDD (18) at each time step. Here, £hqs; represents the
cumulative bias vector as (19).

[Vae™, 138 < (Ve [5c] < [V, 15 (17
|Z5capa + Zhess: + €besss — RE + DI < t5p  (18)
£ppss1 = [Xt, AVie, Xt Alg.] (19)

If V. and ¢, bypass both BDDs, they will be accepted as
Vt. and If, for the SoC (@°) estimation by the ADN control
center. To prevent detection through SoC cross-validation in
(20), the attacker must also alter the SoC value ®¢ reported
by the BESS based on the falsified V£, and I¢,, ensuring
consistency with the estimated ®¢ from (21).

|5t - Eﬁqg Tsoc (20)
& = EKF(Vf,, It @1

Failure to meet any of these conditions will result in an
alarm being raised at the ADN control center.

lll. METHODOLOGY

A. PROPOSED TIMED-SFDIA SCHEME TARGETING SoC
ESTIMATION

This study presents a novel Timed-SFDIA scheme, termed
the "one-shot kill," designed to gradually introduce errors in
SoC estimation, ultimately leading to the failure of a BESS-
supplied microgrid. The scheme's objective is to cause a
midnight blackout by deceiving the BEMS into
overestimating SoC levels, thus mismanaging energy
reserves.

The attack incrementally falsifies SoC data during the
operational period, misleading the BEMS into believing the
battery has sufficient capacity to support the microgrid
overnight. As actual SoC levels diminish below critical
thresholds, the microgrid is forced to shut down. For
instance, in the scenario depicted in Figure 3, the BEMS aims
to maintain SoC levels of 90% at hour 18 and 45% at hour
24 for stable operation. However, falsified SoC readings may
reflect compliance with these targets, while actual SoC levels
drop to 70% by hour 18 and 20% by hour 24, leading to
system shutdown due to insufficient energy reserves.

Timed attacks offer the strategic advantage of initiating
false data injection at an earlier time t;, well before the
intended target time t,. This approach enables the attacker to
subtly alter the data stream over an extended period, reducing
the likelihood of detection by the BDD process.
Consequently, when the attack reaches its critical phase, the
injected changes are more likely to evade detection
mechanisms.

False SoC

SoC(%)
B O
Yy © O

30 1
~./ ~
e )
Actual SoC
10 t]
0 . . . A R R
0 5 10 15 20 25 30

Time(hour)
FIGURE 3. lllustration of one-shot kill attack.

To achieve the one-shot kill, we propose two attack
methods: unconstrained and constrained SoC error attack.
The unconstrained attack aims to maximize SoC error by t,,
where the exact error is unknown. Conversely, the
constrained SoC error attack aims to inject a specific, desired
SoC error by the end of attack. The attack process of both
attacks is at each timestep from t to t,, a bias €541, as
shown in (19), is injected into z4gss;. Based on these
injected biases, a false SoC @, shown in (21), is estimated
to replace the actual SoC. At each timestep, the altered data
must satisfy the three BDD constraints, as outlined in (17),
(18), and (20).

The inherent complexity and nonlinearity of timed-
stealthy attacks, compounded by the EKF-based SoC
estimator, pose challenges that require computationally
intensive optimization. This optimization may necessitate
accurate future system information for optimal performance.
Therefore, in the following section, we propose a DRL-based
method to address these complexities while maintaining
system accuracy.

B. PROPOSED DRL FRAMEWORK FOR TIMED-SFDIAS
Reinforcement learning involves an agent interacting with an
environment to learn optimal actions by maximizing
cumulative rewards. This process is often modeled as a
Markov Decision Process (MDP), where the future depends
solely on the present state [32]. The MDP can be represented
as a tuple {S, 4, P, R, y}, where § is the environment state
space, A is the action space, P denotes the transition
probability, R is the reward function and y € [0, 1] denotes
the discount rate for the long-term return.

In this paper, Timed-SFDIAs against SoC estimation are
formulated as a MDP, with the attacker modeled as a DRL
agent. Figure 4 illustrates the proposed actor-critic-based
DRL framework used to train this agent. The framework
consists of two neural networks: the actor, which outputs an
attack vector a; based on the current observation o,; and the
critic, which evaluates the quality of the selected action by
estimating the state-action value function Q(s;, a;). Here,
the global observation o,, state s;, action set a, and attack
vector €554 are defined as follows:

0. = [Z¢capar Zpgsst ) (21
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FIGURE 4. Proposed actor-critic-based DRL framework for Timed-
SFDIAs against SoC estimation.

5y = [ZE'CADA' Z5Ess1) EBESS) % ] (22)
a; = [AV§., Alg] (23)

€ppss = [€bess1 EpEssz] (24)
Eppss1 = [ng Athc 'ng Néc] (25)
Ehpssz = [ADF] (26)

where 0, includes the measurements from SCADA and
BESS at time t; s; includes these measurements, the BESS
attack vector taken at time t — 1, and the ratio of the current
timestep t to the total attack duration T; a; includes the
battery voltage and current bias at time t; £5555 comprises
the accumulated battery voltage and current bias vector
€brgs1 by time t, and the SoC error Ad¢ at the current time
step ¢ between the false SoC and actual SoC in &4g,. Note
that a;,_; =0 when t = 1.

The attacker's actions involve injecting the attack vector
€4rgs into the measurement from the BESS. These biases
manipulate the battery voltage, current, and SoC data
streams sent to the ADN controller (as shown in Figure 1).

As illustrated in Figure 4, at each timestep t, the attacker
agent observes the system state s;, and the actor network
generates an action a, based on this state. The attacker can
estimate the fake SoC @ by leveraging different methods
based on the false voltage V}, and current %, such as using
a deep neural network trained on historical data of actual
SoC, voltage, and current [33]. In this scenario, it is assumed
that the attackers have access to the parameters of the EKF-
based SoC estimator so they can use the EKF to estimate ®°
to match the SE estimated @, as shown in (27). The SoC
bias At in €44, is calculated as shown in (28), with the
actual SoC represented by (29), where V£, and I}, are the
actual voltage and current data at time t.

&t = EKF(V},, I.) 27)
APt = Pt — @t (28)
@' = EKF (Vj, 14.) (29

During training, the DRL agent interacts with an
environment that includes the closed-loop system model and
the SoC estimator. At each timestep, the agent observes the

current state s;, selects an action a,, receives a reward 73,
and transitions to the next state s,,,. Each transition tuple
(st a;, 11, S¢4) 1s stored in a replay buffer. Once sufficient
data is collected, mini-batches are randomly sampled to
update the actor and critic networks. The reward function is
designed to promote stealthy yet effective manipulation of
the SoC estimates. Once trained, the actor network can
generate real-time attack vectors without requiring future
information or detailed system knowledge.

C. REWARD FUNCTION DESIGN

The key challenge of Timed-SFDIAs is to generate a
sequence of attack vectors a, that consistently evades BDD
at each time step, ensuring that the desired SoC error is
achieved by the end of attack period. This paper presents two
reward mechanisms: unconstrained and constrained.

The objective of unconstrained attack is to maximize the
SoC error at the end of attack t,. To achieve this, if there is
no BDD violation, the agent receives a reward 1, , at each
time step starting from ¢, based on the current injected SoC
error. If, during the attack, any attack vector violates the
desired system operation range (as specified in equations
(17), (18), and (20)), resulting in a failure to pass any of the
bounded-range, residual-based and SoC cross-validation
BDDs, a penalty p,, with a large negative value is applied to
the reward. At the end of attack t,, an additional bonus 7,,,
is given.

The reward function (r;) for the unconstrained SoC error
attack are:

Ty =Tyt Tuzt Py (30)
t
Tuit = k—z X kyq, tE [t te] (€29)
u
_ 0, tE€tt.)
Tuz = {rul,t X kys, t=t, (32)
Pu = kp X Fpqq, t € [ts te] (33)

In equation (31), k.1 denotes the sign of the desired SoC
error: +1 indicates the false SoC is intended to be higher than
the actual SoC, and -1 indicates lower. The coefficient &, is
used as a normalization factor for r;; .. Equation (32) offers
a bonus based on final SoC error to incentivize larger errors.
In (33), k,, specifies the magnitude of the penalty, with Fj,44
flagging BDD violation (1 for violations, 0 otherwise).

The objective of the constrained SoC error attack is to
achieve and maintain a targeted SoC error (A®*) by the end
of attack. This means, once the A@* is reached, there is no
need to inject higher SoC errors, risking being detected.
Then, the reward function is adjusted as follows:

Tt = Ttar,t T Ttar2t Pu (34)
, At Apt
Trarne =min{2 =222 x kyy t € [t t,]  (35)
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0, tE€|[tsty) or (tyt.)
T = 36
tarz {rtarl,t X ktZ + Ttar3, t= td or te ( )
0, |APt —AP*| > 1%
= 37
Ttars {ktg, At — AD*| < 1% 37

As shown in equation (35), the reward received at each
time step 7y, ¢ 1S associated with how close the current SoC
error A®@¢ is towards the target A®*. We use min{} to limit
its maximum value to 1. Thus, the maximum value is only
achieved when the injected SoC error A®* equals the target
A®*. ky, is a coefficient to adjust the value of 7y4,1 ¢.

The sign of the target A@* determines whether the false
SoC @& is higher or lower than the actual SoC &t .
Specifically, if A@* > 0, @¢ is higher than ¢ by A®* at t,;
Conversely, if A@* < 0, ®¢ is lower than @¢ by A®™ at t,.

To motivate the agent to achieve the targeted SoC error,
an additional bonus 1;,,, in (36) is given at two specific
points: the designated time t; and the end time t,. The
highest reward is given if the absolute difference between the
injected SoC error and the targeted value is within 1% of SoC
at these points. k;, and k.5 are the coefficients to adjust the
bonus value. The dual bonus system ensures that the agent
keeps the SoC error until the end of the attack, if the target is
reached at t.

Balancing penalties and rewards is crucial for optimal
agent performance. Excessive penalties may lead to inaction,
while high rewards could encourage frequent BDD
violations. Additionally, balancing the attack-end bonus with
cumulative rewards is necessary to achieve the desired SoC
error at specific attack times.

D. Soft Actor-Critic (SAC) Framework

Based on the reward mechanism, the goal of the Timed-
SFDIA is to maximize the sum of expected discounted
rewards over the attack horizon of T":

T
max | = E [Z W) re(se, at)l
T (st ap)~m pord

where E(-) represents the mathematical expectation, 7 is
the actor policy that generates action according to state s;,
(S, a;) is the reward (equation (30) or (34)) based on
current state s, and action a,. In this paper, we employ soft
actor-critics (SAC) algorithm in [34] to find the optimal
policy.

To optimize the policy, we employ the soft actor-critic
(SAC) algorithm [35], a model-free, off-policy actor-critic
method that maximizes both cumulative rewards and policy
entropy. This dual-objective approach improves stochastic
exploration and optimization efficiency. Using SAC,
Equation (38) is reformulated as:

(38)

n*=argmax E
T (St ap)~m

> 0 (rlsea)

+ aH(n( |st)))l

(39)

where " represents the optimal policy, H (rt(- |st)) =
—log ((- |s;)) is the policy entropy, and « is the
temperature parameter balancing entropy and reward.

In SAC, policy evaluation and improvement are achieved
via training deep neural networks using stochastic gradient
descent. SAC employs two networks: the QO network
Qo (s¢, a;) approximates the state-action value function, and
the policy network mg(a;|s;) approximates the policy
function. The @ network parameters 6 are trained by
minimizing the soft Bellman residual:

Jo(@) = ( E %(Q@(St' a;) - (rt(st' a,) +

Sty at)~D

2
v E_[Vg(se)] ))]
St+1~P

where V5(s;41) is the estimated soft state value using a
target network updated via moving average.

For continuous action spaces, the policy is modeled as a
Gaussian distribution. The policy network outputs the mean
and standard deviation of the action distribution. Actor
network parameters ¢ are learned by minimizing the
expected Kullback-Leibler divergence [34]:

@)= JE_|alog (my(acls)) = Qotsean] (1)

(40)

st~D,ar~m

TABLE 2. Pseudocode of the SAC Algorithm for Timed-SFDIAs

Initialize policy parameters ¢, double O-value function parameters 6,,
6, and the target network parameters 8,, 8, with 6, 6,.
Initialize experience replay memory D and BDD thresholds.

while not converged
for each episode do
Randomly select a start point in the training dataset and
obtain the initial state s,.
while not done
Select action a, based on state s, using the policy.
Input action a, to environment, acquire done signal,
reward 7, and next state S, .
Memorize (S;, a;, 1;, S;11, done) in experience replay
buffer D.
end
end
for each gradient step do
Randomly sample a minibatch of transitions from D.
Update the parameters of the O-function, the policy network,
and the target network.
end
end
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Two Q network critics are used to prevent value
function overestimation. Details on the double O network,
policy updates, and target network mechanisms are in [34]
and not discussed here due to space limitations. The SAC
algorithm pseudocode for Timed-SFDIAs is presented in
Table 2.

E. Timed-SFIDA Training Setup

To train the DRL agent for launching Timed-SFDIAs, the
agent learns an effective attack policy by interacting with a
simulated environment, as depicted in Figure 1. Since it is
unrealistic to assume that attackers possess complete system
information to build a direct digital-twin model of the target
system, we instead assume that the attacker has access to
historical system measurements from the control center of
the ADN. This assumption is reasonable, as historical data
could be obtained through various methods, such as MitM
attacks [36], eavesdropping on communication channels
[37], or hacking into the control center's data servers.

Rather than allowing the DRL agent to interact directly
with the actual distribution network, BESS, and BEMS, the
agent leverages this historical data for offline learning. By
doing so, the attacker can train without real-time interaction
with the system, mitigating the need for full system access.

To simulate real-world constraints, the BDD mechanism
at the control center is incorporated into the training
environment. This setup helps assess whether the generated
attack vectors can bypass detection mechanisms. The
parameters of bounded-range BDD are determined from the
historical data and the available battery specifications, which
are often accessible to attackers. Since SoC measurements
are altered based on falsified battery voltage and current
readings, cross-validation of SoC can easily be bypassed in
this scenario.

However, the more challenging aspect is bypassing
residual-based BDD, which requires the attacker to perform
SE and compute residuals. To ensure that the attacks evade
residual-based detection, previous studies assume that the
attacker has access to system parameters [11], [17], [18].
Extending this assumption, the attacker could either have
partial or local system information [19]-[21], or they could
use parameter-free SE techniques, such as system topology
and parameter estimation [22], [23] or tensor-based SE
methods [24], based on the available measurements.

Given that the primary focus of this paper is to
demonstrate how a DRL-based approach can be used to
launch Timed-SFDIAs, we assume that the attacker has
sufficient system information for SE as the worst-case
scenario. This assumption could be relaxed in future work,
with the DRL agent using parameter estimation techniques if
system parameters are not fully accessible. Once trained, the
DRL agent can be deployed in the actual system for online
attacks.

IV. CASE STUDY

In this paper, we implement the Timed-SFDIA scheme using
the BEMS framework from [38]. This setup features a grid-
forming BESS with a capacity of 3 MW/12 MWh and a 4.5
MW PV farm powering an islanded microgrid. The SoC of
the BESS is critical for microgrid operational planning
within the BEMS, with the SoC profile over a day depicted
in Figure 2. The BEMS confines the SoC to an operational
range of 20% to 90%.

When the SoC approaches 20%, the BEMS initiates non-
critical load shedding to maintain power only for critical
loads. Conversely, exceeding 90% prompts load engagement
or PV power curtailment. Insufficient PV power to recharge
the BESS below 20% results in shutdown of the BESS and
the microgrid.

A. Simulation Model, Dataset and HIL Testbed

We tested the proposed attack scheme on a centralized
distribution model based on the IEEE 123-bus system, as
depicted in Figure 1. The model includes a 4.5-MW PV farm
connected to Bus 4 and a 3-MW BESS connected to Bus 2.
The loads from all feeders in the IEEE-123 bus system in
[38] were aggregated and modeled as a centralized load
connected to Bus 5. Power consumption data for the load was
sourced from actual residential users in Austin, TX. The PV
farm and BESS models, developed in [39]-[43], were used,
with irradiance data from actual measurements in North
Carolina. The BESS is modeled using an RC-branch battery
model with parameters summarized in Table 3 [44].

To replicate a practical ADN with communication
capabilities, we developed a real-time simulation testbed on
the OPAL-RT platform [46]. The distribution network,
loads, PV farm, and BESS were modeled on OPAL-RT,
while the ADN control center ran on a separate PC. A
Python-based script simulated concurrent data transmission
across multiple communication channels. This script,
deployed on a relay PC, retrieved real-time measurement
data from OPAL-RT and relayed it to the control center via
TCP/IP. The simulation captured data every minute for state
estimation, with control commands issued every 15 minutes
to mirror real-world ADN operational cycles.

We conducted a 20-day simulation, generating
measurement noises randomly using normal distributions
with zero means and predefined standard deviations: 1% for
real-time magnitude, 0.5% for phasor measurements, and 2%
for power measurements [11]. The SCADA measurements

TABLE 3. Battery model parameters

Values
12 MWh/6667 Ah, 3 MW
1800V, 1667A

Parameters
Nominal capacity and power
Nominal DC voltage and current

DC voltage range 1607 ~ 2100V
DC current range -1867A ~ 1867 A
Ry (per cell) 1.3 mQ
Ry, Ci (per cell) 4.2mQ, 17111 F
Cells (series*parallel) 492*98
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Zscapa included voltage and current phasor at Bus 2, power
injection of all nodes, and power flow of the 4 lines in the
distribution network. Additionally, the BESS measurement
Zggssincluded the battery SoC, DC voltage and current, and
the modulation index of the BESS inverter. There were
collected and sent to the ADN control center along with the
network measurements.

B. OFFLINE TRAINING

Assuming the attacker lacks access to the BEMS, we use the
first 18 days of historical operation data (l-minute
resolution, 25920 data points) for offline training, and the
last 2 days for online testing. Both the actor and critic
functions in the DRL are modeled using fully connected
neural networks. The deep learning framework is
implemented in PyTorch, and the algorithm is trained on an
NVDIA RTX 3080 GPU. Table 4 summarizes the training
hyperparameters. These parameters were selected based on
a combination of prior literature [34], default configurations
from widely adopted SAC implementations, and empirical
tuning tailored to our specific BEMS environment. In
particular, the temperature coefficient was tuned by
sweeping its value over a range and evaluating the resulting
trade-off between exploration and exploitation. The final
setting was chosen to ensure stable policy convergence while
promoting sufficiently stealthy attack strategies that avoid
triggering the BDD constraints. Other parameters were also
fine-tuned to enhance convergence speed and robustness
across different training runs.

Table 5 details the reward parameters. During training,
attacks are initiated at random hours, with the BDD trigger
threshold set at 99% of the maximum residual error during
normal operations. Each episode lasts 10 hours (600 steps)
for both unconstrained and constrained SoC error attacks,
with t4 set at the 7.7™ hour for the latter. The target error in
the constrained attack is randomly selected from 5% to 30%
in 5% intervals. The agent is trained to maximize the SoC
error or achieve the target SoC error within the attack
duration. If falsified data violates any BDD constraints, a
penalty is applied, and the episode ends immediately. SoC
operation range constraints are removed during training
since offline training uses fixed historical data with actual
SoC ranging from 20% to 90%, and the BEMS cannot
respond to false SoC data.

Figure 5 illustrates the mean episode return curves for the
unconstrained and constrained SoC error attacks under four
different random initializations, using a 200-episode sliding
window. As shown in Figure 5(a), for the unconstrained case,
all initializations start with low returns (around -500),
primarily due to the exploration phase and frequent violation
of safety constraints. The model gradually learns to achieve
the attack objective while avoiding early termination, with
convergence typically observed after approximately 3000
episodes. In the constrained scenario shown in Figure 5(b),
convergence occurs more slowly—around 7000 episodes—

TABLE 4. Hyper parameter for DRL offline training

Hyper parameter Values
Optimizer Adam
Learning rate 3e-4
Discount (y) 0.99
Replay buffer size 10°
Number of hidden layers (all networks) 3
Number of hidden units per layer 256
Batch size 256
Target smoothing coefficient (1) 0.005
Temperature coefficient (o) 0.5

TABLE 5. Reward Parameters

Parameters Values Parameters Values
k1 +1 kiq 0.2
Ky 50 key 2000
Kys 2500 Kis 100
k, -500

due to stricter reward design and BDD constraints, which
penalize aggressive attack behaviors. Despite different
starting conditions, the DRL agent consistently converges
across all runs, demonstrating the robustness of the training
process. These results confirm that the agent can reliably
learn effective attack strategies under both scenarios, with
variations in convergence rate influenced by initialization

and constraint tightness.
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FIGURE 4. Training process of the DRL agent.

C. OFFLINE TEST

Using historical data from the last two days, we conducted
an offline test within the BEMS framework [38] using a
trained agent. Two attack scenarios were established: one
concluding at 1 am with an expected SoC of approximately
40%, and another ending at 8 am with an anticipated SoC
near 20%. These attacks were designed to introduce stealthy
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TABLE 6. Offline attack test results of unconstrained and constrained SoC error attack

No Unconstrained Constrained
attacks
Cases 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ts (hOlll') - 2nd 8th 16th 2nd 8th 16th 2nd 8th 16!11 8th 8th 2nd 8th 16!h 8th S!h
ty (hour) - - - - - - - 21 (21 pm, 1* day) 25" (1 am, 2™ day)
t, (hour) - 25" (1 am, 2™ day) 32M (8 am, 2" day) 25" (1 am, 2™ day) 32™ (8 am, 2™ day)
AD* (%) - - - - - - - 20 10 30 20 10 30
Ad, (%) - - - - - - - 18.3 | 16.5 4.6 16.6 | 19.9 | 19.6 8.4 109 | 19.7
AD, (%) - 12.8 | 11.8 6.1 17.1 11.1 20.4 19 7.2 11.0 | 18.7 | 204 | 20.4 16.5 104 | 274
T ned 0.062 0.073 | 0.073 0.081 0.074 | 0.073 0.073 0.075 | 0.078 0.078 0.074 | 0.077 | 0.075 | 0.078 0.080 0.074 | 0.080
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FIGURE 5. SoC and SoC error profiles of offline test results with different start, end times, or targeted SoC errors: unconstrained — (a), (b); constrained —

(c), (d).

SoC estimation errors that could mislead the BEMS and particularly when the actual SoC approaches the 20%

potentially cause unexpected shutdown of the BESS- plateaus over four hours. Attacks initiated at 2 am exhibit
supplied system around midnight or between 8§ am and 12 similar final SoC errors to those started at 8 am, as the
pm, with the latter being a critical power-supply period. accumulated SoC error before 8 am drops near zero during
Table 6 summarizes 16 offline attack test cases with the 20% plateaus. Additionally, attacks concluding at the
varying start times, durations, and targeted SoC errors under 32" hour (8 am of the second day) show little variation in
constrained attack mode. Figure 6 depicts the SoC and SoC SoC error when the actual SoC is approaching 20%.
error profiles, while Figure 7 shows the residual distribution. It is also observed that some false SoC values exceed
In Figure 6, Case 0 (in all subplots) serves as the baseline 90%. This occurs because the SoC range constraint is
scenario with no attack applied, where the SoC remains removed for more efficient offline training. Moreover, the
within the safe operational bounds of 20% to 90%. In attack SoC error injection patterns under different attack scenarios
cases, however, the agent successfully manipulates the SoC are quite similar for the same system operation points. Part
estimation to induce false higher SoC values, without of the SoC error curves overlap or display similar variation
violating BDD thresholds. Among the constrained cases, trend across various attacks.
Case 4 achieved the largest SoC deviation, reaching an error ° Targeted SoC errors: For constrained attacks, if the
of 18.1%. In the unconstrained cases, Cases 12, 13, and 15 targeted SoC error can be reached and maintained at
effectively achieved and sustained the targeted SoC error designated times correlates with the target value and attack
within a £1% tolerance at the specified attack intervals. Key duration. The goal can only be reached when the targeted
observations from the offline tests in Figure 6 include: SoC error is achievable within the specified attack duration,
. Attack durations: Longer attack durations or earlier as shown in cases 10, 12, 13, and 15. Smaller targets are
attack start times usually result in larger SoC errors in reached sooner and then fluctuate around the target value
unconstrained attacks, and higher chances of reaching and (cases 10, 15). If the target is not feasible within t;, it may
maintaining the targeted SoC error at the designated time t,4 still be achieved at t, due to the dual bonus mechanism
and the end time t, for constrained attacks. (cases 7 and 8). The final SoC error will try to get close to
. SoC error injection: SoC error generally increases

over time but exhibits fluctuations due to varying system
statuses and BDD limits. When the actual SoC near certain
plateaus, the SoC error or its injection rate tends to decrease,
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FIGURE 6. Residual distribution of unconstrained and constrained
SoC error attack offline test results.

target if the target is too large, comparing to the specified
attack duration (cases 9, 11, 14, and 16).

. Residual comparison: The residuals for all
attacked cases are below the threshold and mostly fall within
the same range as non-attacked cases. However, the median
residual is higher in the attacked cases due to the injected
attack vector. Longer attack durations generally result in
smaller median residuals for injecting the same SoC error.
For unconstrained attacks, case 3 has the highest residual
median due to the shortest attack duration. For constrained
attacks, both shorter attack durations and larger targeted SoC
errors can increase the residual median.

Overall, it can be observed that the proposed method
leverages measurement redundancy and BDD threshold
margins to inject SoC errors. The residuals in the attack cases
remain within the threshold range but exhibit higher median
values because only the battery voltage and current are
modified. If a sufficient number of measurements can be
altered, the residuals could remain consistent. The proposed
methodology is adaptable to such scenarios by incorporating
these additional measurements into the action space.

D. Online Test

After the offline training and testing, the DRL-trained attack
agent is applied to online testing using the same load and PV
profile from the offline test. For the online test, the agent is
implemented for real-time stealthy attacks by injecting false
battery voltage, current, and SoC data to the ADN control
center. The attack is done to mislead the BEMS into making
inappropriate energy decisions.

The simulation results of all online test cases are
summarized in Table 7. By comparing with the offline results
in Table 6, it is evident that the online attack result is highly
similar to those of the offline attacks. In the unconstrained
attack scenario, case 4 shows the highest SoC error due to
the longest attack duration. For constrained attacks, a longer
attack duration increases the likelihood of achieving the
targeted SoC error at two specified times.

Figure 8 presents selected online attack test cases,
illustrating both the false and actual SoC profiles, along with
the corresponding SoC error trajectories. In each subplot,

solid and dashed lines of the same color represent the false
and actual SoC, respectively. The primary distinction
between offline and online attacks lies in how the actual SoC
is affected. During offline attacks, the actual SoC remains
within the range of 20% to 90% and is not influenced by the
false SoC, as shown in Figure 6. In contrast, during online
attacks, the false SoC is treated as the actual SoC by the
BEMS and is regulated within the desired range. As shown
in Figure 8, all false SoC is within the range of 20% to 90%
but with slightly different shapes, even though the bounded-
range BDD for SoC is disabled during offline training.
Consequently, the actual SoC is impacted by the false SoC
or the injected SoC error.

For unconstrained attacks, all cases introduced SoC errors
at the desired end times (1 am and 8 am). Case 1 injected the
largest SoC error at 1 am, causing the energy deficiency for
the system’s operation throughout the night. If the attack
ends at this time, the BEMS will detect the actual SoC value.
This could shut down the system when the actual SoC is
below 20% and there is no PV to charge BESS or provide
power for loads during the night.

Case 4 injected the largest SoC error of 17.9% when the
actual SoC is only 3.2% at 8 am. Since 8 am to 12 am is
designated as a critical power supply period in the BEMS,
nearly all PV power is used to supply loads while the BESS
primarily provides voltage and frequency support, keeping
the BESS SoC around 20% during this period. If the attack
ends at 8 am, the system will shut down due to the loss of
voltage and frequency support, disrupting the power supply
during critical periods.

Figure 8 illustrates the real-world danger of such stealthy
FDIAs: while the reported SoC remains within safe
operational bounds, the actual SoC may silently fall to
critical levels. This discrepancy misleads the BEMS and can
trigger unexpected shutdowns during periods of high energy
need. The DRL-based attack framework successfully
orchestrates such scenarios without breaching traditional
BDD thresholds, underscoring the need for stronger
validation layers within battery energy management systems.

Similarly, for constrained attacks, the same system
shutdown will happen due to the injected SoC estimation
error. Comparing to the unconstrained attack, the injected
SoC error in constrained attacks could be higher and more
deliberate, resulting in longer periods of system shutdown.

VOLUME XX, 2017



IEEE Access

Multidisciplinary } Rapid Review : Open Access Journal

TABLE 7. Online test results of unconstrained and constrained SoC error attack

atg(c)ks Unconstrained Constrained
Cases 0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16
t (hOlll‘) _ 2nd S!h 16th 2nd 8th 16!h 8th 16!h 8th 8th 2nd 8th 16th 8th 8th
S
t, (hour) - - - - - - - 21% (21 pm, 1* day) 25" (1 am, 2™ day)
t, (hour) - 25" (1 am, 2™ day) 32" (8 am, 2" day) 25" (1 am, 2™ day) 32" (8 am, 2" day)
AD* (%) - - - - - - - 20 10 30 20 10 30
AD, (%) - - - - - - - 19.9 15 6.1 11 15.7 19.8 19.8 11.8 10.6 | 20.3
AD, (%) - 14.7 13.4 . 9.2 11.9 10.4 . 26.2
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FIGURE 8. Residual distribution of unconstrained and constrained SoC
error attack online test results.

Clearly, the actual SoC drops to around 0 before the attack
end time in cases 12, 13 and 16.

Figure 9 presents the residual distribution for all online
teste cases. All residuals remain below the BDD threshold.
Compared to the non-attack case, the median residuals in the
attacked cases are higher, with cases 3, 9, 11, 14 and 16
showing the highest median residuals. This is because all
cases aim to reach a large SoC error target within a limited
attack duration.

E. Discussions

1) PRACTICAL FEASIBILITY AND IMPACT OF TIMED-
SFDIAS

This study assumes a stealthy and resourceful adversary with
access to representative system data—obtained through
passive eavesdropping, device compromise, or insider
threats. While such access may not always be realistic in all
deployments, it aligns with threat models involving
advanced persistent threats frequently observed in critical
infrastructure sectors. Furthermore, we assume that the
attacker possesses sufficient offline computational resources
to train a DRL-based attack policy—an increasingly
plausible scenario given the availability of scalable cloud
computing platforms. Once trained, the attack strategy can
be executed in real time with minimal computational
overhead.

Simulation results confirm that undetected Timed-
SFDIAs can significantly disrupt BEMS by manipulating
SoC estimates, leading to erroneous control decisions such
as overcharging or undercharging. These disruptions can
compromise system safety, operational continuity, and
energy availability. Over time, persistent SoC manipulation
could accelerate battery degradation, destabilize load
balancing, and reduce system resilience during peak demand
or outages.

The risks are even more pronounced in interconnected
microgrids, where coordinated control and energy-sharing
protocols rely on accurate SoC information. Tampered SoC
signals could interfere with distributed decision-making,
triggering cascading failures across multiple microgrids or
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even wider grid segments. These results highlight the
systemic vulnerabilities introduced by stealthy attacks and
emphasize the need for proactive anomaly detection, system
hardening, and cyber-resilient energy management
frameworks.

Future work will expand this framework to explore
broader system-level consequences, including the impact on
inverter coordination, stability of secondary control loops,
and grid service reliability.

2) COMPARISON WITH EXISTING FDIA TECHNIQUES
Existing false data injection attack techniques—including
rule-based, machine learning-based, and optimization-based
approaches—each have distinct limitations. Rule-based
attacks typically manipulate sensor measurements directly
but are easily detected, as they often overlook modern BDD
mechanisms. Machine learning-based approaches, such as
ANN-driven attacks, can fool local controllers but are
frequently flagged by residual-based detection schemes at
higher control layers.

Optimization-based methods offer theoretical stealth by
formulating attacks that bypass BDD constraints. However,
they rely on restrictive assumptions, such as a known and
static  OCV-SoC relationship or access to future
measurements—conditions rarely satisfied in real-time
deployments.

In contrast, the proposed DRL-based attack offloads the
optimization process to the training phase. This enables real-
time deployment with greater stealth and adaptability.
Notably, the DRL framework supports dynamic and timed
attack modes that are difficult to realize using conventional
optimization-based techniques. As such, a direct quantitative
comparison with traditional methods is not included, as the
capabilities and operating assumptions differ fundamentally.

3) SCALABILITY OF THE PROPOSED ATTACK IN
LARGER POWER SYSTEMS

Although this study focuses on a single microgrid with one
BESS and a PV system, the proposed attack strategy is
inherently scalable to larger power systems with multiple
interconnected BESS units. The feasibility of such attacks
depends less on system size and more on factors like the
structure of the state estimation process, measurement
redundancy, and the configuration of BDD mechanisms.

As system scale increases, higher observability and
measurement  redundancy may  strengthen  BDD
performance, potentially reducing attack success rates.
However, prior research has demonstrated that attackers can
exploit sparsely observed regions, coordinate deviations
across nodes, or apply parameter-free strategies to maintain
stealth even in complex systems. Moreover, larger systems
often rely on distributed control architectures, which, while
offering fault-tolerance, may introduce additional attack
surfaces and new challenges in coordination and detection.

To rigorously assess the scalability of the proposed
framework, future research will extend testing to multi-

BESS networks and larger grid configurations. This includes
evaluating performance under different state estimation
models, investigating cross-node coordination of distributed
attacks, and testing the strategy in HIL or real-time
simulation environments. Such work will provide deeper
insight into the attack’s practical implications and inform the
development of more resilient cyber-physical defenses for
energy storage systems.

4) PREVENTION, DETECTION, AND DEFENSE FOR
TIMED-SFDIAS

Timed Timed-SFDIAs represent a serious threat to the
integrity and reliability of BESS by gradually introducing
subtle measurement errors that evade conventional BDD
mechanisms. To counteract these risks, comprehensive
strategies encompassing prevention, detection, and defense
are essential.

Prevention begins with reinforcing communication
security, data integrity, and system-level resilience within
BMS and BEMS [46]. Secure communication protocols—
such as end-to-end encryption and mutual authentication—
must be employed to protect data exchanges between BESS
components and central controllers from unauthorized
interception or tampering. Cybersecurity hardening at both
the hardware and software levels (e.g., secure boot, intrusion
detection systems, and firmware integrity checks) enhances
resistance to potential intrusions. Additionally, incorporating
system-level redundancy and fail-safes can help safeguard
critical ~measurements—particularly SoC data—from
compromise or corruption.

Early detection is crucial for minimizing operational and
safety impacts. Advanced anomaly detection algorithms,
leveraging statistical methods or machine learning
techniques, can be deployed to identify irregularities in SoC
estimation that may signal ongoing attacks. Cross-validation
of measurements using multiple sensors or independent
estimation models increases robustness and detection
sensitivity. Furthermore, time-series analysis can reveal
subtle, temporally aligned deviations in SoC behavior,
consistent with gradual manipulation strategies employed in
Timed-SFDIAs.

Defense and mitigation strategies focus on reducing the
impact of successful attacks and enabling rapid system
recovery. Real-time monitoring and response mechanisms
can trigger automated protective actions, such as
dynamically adjusting charging/discharging profiles,
isolating compromised components, or notifying operators
for manual intervention. Enhancing the robustness of SoC
estimation through hybrid or ensemble modeling—such as
combining model-based approaches with data-driven
techniques—can further improve resilience to adversarial
manipulation. A resilient BMS architecture that supports
fault tolerance and graceful degradation ensures continued
safe operation under uncertainty or partial system
compromise.
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By integrating secure communication frameworks,
advanced anomaly detection techniques, and real-time
mitigation protocols, the overall cyber-physical resilience of
BESS can be significantly strengthened. These measures are
critical to safeguarding modern energy storage
infrastructures against sophisticated threats such as Timed-
SFDIAs and ensuring the reliable and secure operation of
power systems in adversarial environments.

V. Conclusion

To address the substantial computational demands of
nonlinear Timed-SFDIAs while ensuring real-time online
deployment, we proposed a DRL-based Timed-SFDIA
algorithm specifically designed to disrupt BESS operations
during targeted time periods. This innovative algorithm
gradually degrades BESS SoC estimation by strategically
altering battery voltage and current, resulting in significant
SoC deviations over time. Our method exploits measurement
redundancy and BDD threshold margins to effectively inject
potential SoC errors.

The RL agent, through interaction with the ADN
environment incorporating three distinct BDD algorithms,
learns to generate a sequence of attack vectors for Timed-
SFDIA attacks. These vectors are capable of evading BDD
detection, successfully introducing the desired SoC error by
the end of the attack period. We introduced two distinct
attack modes: unconstrained and constrained SoC error
attacks. The constrained mode allows for precise control of
the injected SoC error, maintaining it within a targeted range,
while the unconstrained mode aims to generate the largest
possible errors.

Our proposed attack methodology and strategies were
rigorously tested using a HIL platform. The results
demonstrated the effectiveness of our approach in injecting
the desired SoC error without triggering any BDD
mechanisms. This injected error can cause severe
consequences, including power shortages and system
shutdowns during critical periods in BESS-supported
microgrids. A distinct advantage of this method is its low
detectability—even after a shutdown due to insufficient
SoC—since operators may attribute the low SoC to natural
battery degradation, as no SE alarms are triggered
throughout the event. This allows the attack to be relaunched
at any future time. This confirms the potential of our DRL-
based Timed-SFDIA algorithm to meet real-time
deployment requirements while effectively compromising
BESS operations. The success of this method underscores
the need for enhanced BDD mechanisms to counteract
sophisticated SFDIA threats and safeguard BESS integrity.

APPENDIX A

LIST OF ABBREVIATIONS

ADN: Active Distribution Network
ANN: Artificial Neural Network
BDD: Bad Data Detection

BEMS: Battery Energy Management System
BESS: Battery Energy Storage System

BMS: Battery Management System

DER: Distributed Energy Resource

DRL: Deep Reinforcement Learning

SFDIAs: Stealthy False Data Injection Attacks
EKF: Extended Kalman-filter

EMT: Electromagnetic Transient

ICT: Information and Communication Technology
IoT: Internet of Things

MDP: Markov Decision Process

MitM: Man-in-the-middle

OCYV: Open Circuit Voltage

SAC: Soft Actor-Critic

SE: State Estimation

SoC: State of Charge

SCADA: Supervisory Control and Data Acquisition
VSI: Voltage Source Inverter

WLS: Weighted Least Squares
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