


number generators (RNGs) are used for bit-stream generation,

while ReRAM arrays handled in-place logic operations [10,

11, 12]. This increases parallelism and reduces data movement

overhead, though the high cost of random bit-stream and SBSs

generation remains a bottleneck. Techniques like leveraging

ReRAM’s inherent write noise [13] and employing DRAM-

based lookup tables [20] have been explored to improve the

performance of random bit-stream generation. However, SBSs

generation continues to face challenges, including the high

energy cost of ReRAM write operations and scalability issues

with DRAM-based methods.

To address these challenges, we propose a CIM accelerator

that implements all steps of SC using ReRAM. We decouple

RNG from SBS generation, allowing compatibility with any

RNG type, including general-purpose true RNGs (TRNGs)

based on ReRAM [21]. This approach ensures (1) accurate

SBS generation with target probabilities and (2) correlation

control, despite ReRAM cell noise. We perform in-memory

logic and comparison operations to convert true random num-

bers into SBS (❶), conduct SC operations (❷), and convert

the resulting values back into a binary representation (❸).

Concretely, this work makes the following novel contributions:

‚ We propose a ReRAM-based accelerator for SC that

implements all steps in place, including those often

overlooked by current SC designs.

‚ We develop a novel in-memory method for converting

true random binary sequences (50% ones) into SBSs with

desired probabilities. To the best of our knowledge, this

is the first such method reported in the literature.

‚ Our SBS generation approach is RNG-agnostic, leverag-

ing in-memory comparison to produce SBS even under

substantial CIM failures caused by ReRAM variability.

‚ For SC operations typically implemented with MUXs,

we propose novel alternatives that are CIM-friendly and

achieve comparable accuracy.

Compared to the state-of-the-art CMOS-based solutions,

the proposed design, while requiring minimal changes to the

memory periphery, on average, reduces energy consumption

by 1.15ˆ and improves throughput by 1.39ˆ across multiple

image processing applications. Our design is also more robust

than traditional arithmetic for CIM, with only a 5% average

quality drop in the presence of faults compared to a 47% drop.

It eliminates the need for protection schemes on unreliable

ReRAM devices and provides better correlation control than

previous in-memory SC designs.

II. BACKGROUND AND RELATED WORK

A. ReRAM-based Computing

Resistive RAM (ReRAM) is a type of nonvolatile memory

where each cell, typically a metal oxide, and being referred to

as a memristor, is programmed to different resistance states

using an electric voltage [22]. Data is represented through

resistance levels, such as a high resistance state (HRS) for

‘0’ and a low resistance state (LRS) for ‘1’. Organized in

a conventional memories like 2D grid of rows (wordlines,

WL) and columns (bitlines, BL), ReRAM promises DRAM-

comparable read performance but has costly write opera-

tions that impact both energy consumption and the write

endurance [19]. For CIM using ReRAM, the 1T1R (one tran-

sistor, one resistor) crossbars are extensively used in machine

learning and other domains to perform analog matrix-vector

multiplication in constant time [3]. Similarly, stateful and non-

stateful logic techniques, such as MAGIC [23] and scouting

logic (SL) [24], respectively, have been demonstrated for

implementing logic operations using ReRAM. ReRAM cells

have inherent stochasticity and noise; which have also been

investigated to generate true random numbers [21, 25].

B. Stochastic Computing (SC)

SC is an alternate computing approach offering simple

execution of complex arithmetic operations and high tolerance

to soft errors. Unlike traditional binary radix, SC operates on

random bit-streams of ‘0’s and ‘1’s, with no bit-significance.

SC systems include three primary components: ❶ Bit-stream

generator that converts data from traditional binary to stochas-

tic bit-stream, ❷ computation logic that performs bit-wise

operations on the bit-streams, and ❸ bit-stream to binary

converter to convert data back to binary format.
Bit-stream Generation: The accuracy of SC operations highly

depends on the quality of bit-streams. To convert a binary

number X to an SBS of size N , an RNG is used to generate

N random numbers. The SBS is generated by comparing each

of these N random numbers with X . A ‘1’ is produced if

the random number is less than X , and a ‘0’ is produced

otherwise. Conventionally, SC systems employ CMOS-based

pseudo-RNGs (PRNGs) such as linear-feedback shift registers

(LFSRs) to generate the needed random numbers [26]. How-

ever, this can lead to suboptimal performance as very long

SBSs are needed to achieve acceptable accuracy. Recent works

leverage quasi-RNGs (QRNGs) for better accuracy [27] but at

the cost of a higher area and power [8, 9]. The high cost

of CMOS-based SBS generation offsets the gains made with

simple computation circuits.
SC Operations: Basic arithmetic operations – multiplication,

addition, subtraction, and division – are implemented in

SC using minimal components: an AND gate, a multiplexer

(MUX) unit, an XOR gate, and a MUX+D-flip-flop, respectively

(Fig. 2) [4, 28]. For N -bit-long SBSs, the logic operations are

often performed serially, producing the output SBS in N clock

cycles. Parallel execution of the operations is also feasible

by trading off time with space. This approach is particularly

attractive for SC with CIM as it enables fast and independent

execution of all bit-wise operations. For correct functionality

of the aforementioned operations, the input bit-streams must

provide the desired correlation level, i.e., uncorrelated for the

multiplication and addition, and correlated for the subtraction

and division operations. The independence (i.e., uncorrelation)

requirement is typically satisfied by using different RNGs

while the desired amount of correlation is guaranteed by using

shared RNGs when generating SBSs.

C. State-of-the-art In-memory SC Solutions

Existing CIM-SC designs are mostly hybrid, i.e., either

memristive arrays are used to generate random numbers and

CMOS logic to perform computations, or vice versa. For

instance, Knag et al. [10] proposed generating SBSs us-

ing memristors and off-memory computations using CMOS





TABLE II
MSE (%) COMPARISON OF SC ARITHMETIC OPERATIONS UTILIZING DIFFERENT RNGS WITH M “ 8.

SC

Operations

IMSNG [21] Software - MATLAB PRNG (LFSR) QRNG (Sobol)

N:32 64 128 256 512 N:32 64 128 256 512 N:32 64 128 256 512 N:32 64 128 256 512

Multiplication 0.473 0.255 0.147 0.091 0.061 0.444 0.219 0.108 0.054 0.027 0.851 0.476 0.221 0.093 0.060 0.058 0.017 0.005 0.001 2.9ˆ10
-4

Scaled Addition 0.690 0.356 0.193 0.109 0.062 0.648 0.328 0.159 0.082 0.041 1.117 0.607 0.289 0.157 0.065 0.102 0.013 0.003 0.002 2.1ˆ10
-4

Approx. Addition 1.548 1.186 1.024 0.927 0.886 1.379 1.055 0.897 0.789 0.751 2.654 1.702 1.180 0.914 0.842 0.463 0.586 0.670 0.662 0.689

Abs. Subtraction 0.641 0.354 0.136 0.144 0.107 0.514 0.263 0.129 0.064 0.034 0.559 0.281 0.136 0.058 0.026 0.016 0.004 0.001 2.5ˆ10
-4

6.5ˆ10
-5

Division 1.614 0.895 0.518 0.295 0.187 1.454 0.789 0.392 0.196 0.106 2.760 2.140 1.688 1.630 1.477 0.251 0.164 0.129 0.126 0.128

Minimum 0.572 0.307 0.177 0.106 0.064 0.514 0.265 0.130 0.066 0.032 1.493 0.811 0.394 0.199 0.085 0.033 0.008 0.002 5.1ˆ10
-4

1.3ˆ10
-4

Maximum 0.572 0.302 0.186 0.117 0.077 0.543 0.259 0.132 0.064 0.033 0.481 0.263 0.123 0.073 0.027 0.032 0.008 0.002 5.0ˆ10
-4

1.3ˆ10
-4

(generated in-memory) of M bits, where M“5, 6, ..., 9 (see

Fig. 2). The data is based on 1,000,000 samples extracted

from a uniform distribution. The results highlight that IMSNG,

despite its random fluctuations and true randomness, provides

comparable accuracy to other methods. Notably, for bit-stream

lengths of 32, 64, and greater than 128, MSEs of approxi-

mately 0.5%, 0.3%, and 0.1% are measured, respectively.

B. Stochastic Circuits using Scouting Logic (SL)

SL implements boolean logic using ReRAM read operations

with a modified sense amplifier (SA) [24, 32]. During a logic

operation, two or more rows are simultaneously activated

and the resulting current through the cells in each bitline is

compared with a reference current Iref by the SA, whose

output is the desired result of the Boolean operation (see

Fig. 1 c ). All basic logic operations such as (N)AND, (N)OR,

X(N)OR, and NOT, are realized in a single cycle [33].

Bulk bitwise in-memory operations are performed on large

vectors. When operating on traditional binary-radix numbers,

we can only exploit the single instruction, multiple data

(SIMD) parallelism, since these algorithms are sequential

by nature due to carry propagation. In contrast, SC handles

basic arithmetic operations (addition, subtraction, multiplica-

tion, and division) using simple, low-cost logic units such as

AND, NOT, XOR, MUXs, and flip-flops. Each bit is computed

independently, allowing for in-memory SC to exploit bulk-

bitwise logic and massive word-level parallelism, significantly

reducing latency for basic arithmetic operations. In the follow-

ing, we explain how these primary arithmetic operations are

implemented using bulk bitwise logic schemes.

Multiplication is implemented by performing bitwise AND

on two independent bit-streams, representing probabilities p

and q. The probability of observing a ‘1’ in the output stream

equals p^ q, which aligns well with the principles of SL with

the time complexity of Op1q. This contrasts with conventional

bulk-bitwise implementations of binary radix multiplication,

which exhibit a time complexity of Opn2q, where n represents

the number of bits. This complexity arises from the iterative

nature of traditional methods, which rely on bit shifts and

additions to compute the product.

Scaled addition is implemented in SC using a 2-to-1 MUX.

In SL, a 2-to-1 MUX can be approximated by a CIM-friendly 3-

input majority gate (MAJ) [34] that can be computed in a single

cycle. For in-place MAJ, a reference current corresponding to

the majority of the inputs is required. For instance, to conduct

a 3-input MAJ gate operation, we use the same reference

current used for the 2-input AND gate, as this detects when at

least two out of three inputs are high. The time complexity

of our MAJ-based addition is Op1q, which is a significant

improvement over both traditional ripple-carry additions in the

binary domain and MUX-based addition in existing SC that has

a time complexity of OpNq.

Division in prior SC works is implemented using CMOS-

based flip-flops and MUXs, and correlated bit-streams to

approximate y “ x1

x2

. In SL, the JK flip-flop’s truth table

can be implemented using the existing latch-based circuitry

(Fig. 1 c ). The intermediate values from the flip-flop

are stored in the existing latch (write driver) and forwarded

to the bitline as voltage inputs, eliminating the intermediate

write operations and improving energy efficiency and write

endurance. This method has a time complexity of OpNq, while

existing CIM division methods on integer data [35] require

Opn2q write cycles.

For other operations, such as approximate addition, abso-

lute subtraction, minimum, and maximum, we employ bulk-

bitwise operations like OR, XOR, AND, and OR, respectively.

In stochastic logic, the reference current for the OR operation

is set to detect when at least one of the operands is high.

Table II compares the accuracy of these stochastic oper-

ations across different SNG sources. Compared to PRNG,

QRNG, and SW-based SNG methods, our IMSNG approach

achieves comparable accuracy, and even in some cases (e.g.,

compared to PRNG-based division) a lower MSE. Still, the

important advantage of our method is that it is executed com-

pletely in memory, eliminating the overheads of transferring

SBSs between memory and processing circuits.

C. Stochastic to Binary Conversion

As a last step in the SC flow, the output of the SC operation

needs to be converted back to binary. Existing methods use

CMOS counters for stochastic-to-binary (S-to-B) conversion,

sequentially counting the ‘1’s in the output bit-stream. In

contrast, our approach achieves the count in a single step

by using bitline current accumulation. The output bit-stream

is applied as input voltages (Vr) to a designated reference

column in which all cells have been pre-programmed to low

resistance states (see Fig. 1 c ). The total current through the

bitline, representing the population count of the bit-stream, is

then measured and digitized using analog-to-digital converters

(ADCs).

IV. EVALUATION RESULTS AND ANALYSIS

The custom SA and the proposed hardware modifications,

including the feedback mechanism and latch-based optimiza-

tions, were validated with SPICE simulations. Energy con-

sumption and latency metrics of the in-memory design were
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