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ABSTRACT
In this review, we analyze the current state of the art of compu-
tational models for in-vehicle User Interface (UI) design. Driver
distraction, often caused by drivers performing Non Driving Re-
lated Tasks (NDRTs), is a major contributor to vehicle crashes.
Accordingly, in-vehicle UIs must be evaluated for their distraction
potential. Computational models are a promising solution to au-
tomate this evaluation, but are not yet widely used, limiting their
real-world impact. We systematically review the existing literature
on computational models for NDRTs to analyze why current ap-
proaches have not yet found their way into practice. We found
that while many models are intended for UI evaluation, they focus
on small and isolated phenomena that are disconnected from the
needs of automotive UI designers. In addition, very few approaches
make predictions detailed enough to inform current design pro-
cesses. Our analysis of the state of the art, the identi!ed research
gaps, and the formulated research potentials can guide researchers
and practitioners toward computational models that improve the
automotive UI design process.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; User models; User studies; • General and reference
→ Surveys and overviews.
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computational modeling, user interfaces, literature review, cogni-
tive modeling, automated driving
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1 INTRODUCTION
Driver distraction is a leading cause of vehicle crashes [12, 28, 96].
Nevertheless, modern vehicles are equipped with a variety of in-
vehicle UIs that allow the driver to access and control driving and
infotainment functions while driving. While interacting with such
in-vehicle UIs, drivers divide their attention between the primary
driving task and a secondary Non Driving Related Tasks (NDRTs).
This diversion of attention away from the road can impair driving
performance and increase crash risk. While driver distraction, its
consequences, and mitigation strategies have been discussed for
many years [96], the discussion has recently gained momentum due
to large center stack touchscreens becoming the de facto standard
interface [21, 22, 63, 87, 89]. Growing concern about the impact of
touchscreens and infotainment displays on driver distraction has
prompted regulatory bodies like the European New Car Assessment
Programme (Euro NCAP) to mandate a return to haptic controls
for critical functionalities in order for vehicles to achieve a !ve-
star safety rating [4]. Currently, the automotive industry primarily
relies on empirical user studies to evaluate in-vehicle interfaces
for usability and distraction potential. However, the complexity
of modern infotainment systems makes these studies resource-
intensive and limits their ability to provide holistic distraction
evaluations [16]. A promising solution are computational models
that can automate (parts of) the interface evaluation and thus help
designers to evaluate designs not only more e"ciently, but also
earlier in the design process and on a larger scale. Outside the
automotive domain, there are already many approaches that make
detailed predictions about the impact of design features on user
behavior, for example in web design [5], mobile app design [11],
or desktop GUI design [66]. However, while computational models
for in-vehicle interface evaluation exist [73, 74], they have not
yet found their way into the industrial UX design process [19].
Understanding what models currently exist, what their capabilities
are, and what is missing could help in the challenge of making
computational models a standard tool within the design process of
in-vehicle UIs.

In this systematic literature review, therefore, we analyze the
current state of computational models that can be used to support
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the automotive UIs design process. In particular, we focus on the
relationship between the task being modeled, the model being used,
and the level of detail in the modeling approach.

Contribution Statement: The contribution of this paper is
two-fold: we (1) present an overview of the state of the art of
computational models for evaluating NDRTs with in-vehicle UIs
and (2) identify current research gaps and future research potentials.
In doing so, we provide the !rst systematic review of computational
models for in-vehicle UI design.

The identi!ed research gaps and potentials can help researchers
and practitioners alike to develop models and tools that improve the
evaluation and design of in-vehicle UIs in the automotive industry,
with a direct impact on the systems that are on our roads.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the idea of using computational mod-
els to improve automotive user interfaces. First, we discuss why
distraction, workload, and glance behavior are common metrics
for evaluating driver interactions with automotive UIs and how
these interactions can a#ect road safety. We then review the role of
computational models in Human Computer Interaction (HCI), and
draw the connection to the automotive domain. Finally, we explain
how our review relates to previous literature.

2.1 Automotive User Interfaces, Driver
Distraction, and Road Safety

Automotive user interfaces include all interfaces that allow the
driver to interact with the vehicle. The purpose of these interfaces
may be to provide information to support the driving task or to
provide entertainment to the driver [26]. Interfaces that provide
both, such as large center stack touchscreens, are called infotain-
ment-systems [59]. Drivers can interact with such interfaces in a
variety of modalities, including but not limited to speech, touch, or
hard keys [59]. Recently, touchscreens not only became the de-facto
interface to acess most of the functionalities but also a frequently
discussed topic when it comes to driver distraction [15, 17, 20, 70].
Driver distraction is de!ned as “a diversion of attention from the
activities critical for safe driving toward a competing activity" [50].
The relevance of touchscreen interactions for driver distraction
becomes clear considering that drivers are forced to divide their vi-
sual attention between the primary driving task and the secondary
touchscreen task. In contrast to hard key interactions, drivers do
not receive any haptic feedback and must visually verify that their
interaction has resulted in the intended action, which increases
the amount of time they spend looking away from the road. If
drivers are too engaged in NDRTs their awareness of the driving
environment and situation around them decreases, which can be
a contributing factor to road accidents[78]. For this reason, dri-
ver distraction has to be reduced as, for example, stated in the
National Highway Tra"c Association (NHTSA) driver distraction
guidelines [1]. To do so, vehicle manufactures traditionally conduct
extensive user studies to evaluate and reduce the distraction po-
tential of the in-vehicle user interfaces. However, modern systems
are too complex and user studies are too time-consuming and ex-
pensive, that it is not possible to perform holistic system tests in

a su"cient manner. Computational models can provide a remedy
here, because they can already be used in the design cycle and not
only after developing the UI. They are way less expensive than
traditional user studies and they can be used for testing complex
scenarios.

2.2 Computational Models
Computational models in the area of HCI can help researchers
and practitioners alike to understand, explain, and predict human
behavior. In line with Shmueli [84], models can be divided into
statistical models, which are concerned with the generation of new
insights on human behavior and computational models that predict
or simulate human behavior. Although both types of models can
theoretically be used for either purpose, in HCI statistical models
are used primarily for explanation and computational models for
prediction.

Computational models have been used to evaluate driver behav-
ior since the 1970s [71]. Aligned with Park and Zahabi [71], follow-
ing categories of computational models to model driver behavior
exist. For completeness we also introduce Machine Learning (ML)
models:

Adaptive Control of Thought–Rational (ACT-R). ACT-R is
a cognitive architecture and was developed by Anderson et al. [3].
The model is composed of several modules, representing di#erent
cognitive functions, such as vision or memory. ACT-R is used in the
automotive domain in multiple ways for driver behavior prediction,
such as braking, lane changing, multitasking or steering [71].

Goals, Operations, Methods, and Selection Rules (GOMS).
These models describe the relationship between a task and a user
knowing how to achieve the task. Goals are the goals the user wants
to achieve.Operators are the basic actions of an application,methods
describe a sequence of operators and sub-goals the user learned
before to accomplish a goal, and selection rules are heuristics that
di#er between users to select a method when multiple methods
could be applied to accomplish the goal [39]. The most widely used
GOMS variation formodeling drivers secondary task interaction are
Keystroke-Level-Models (KLMs) [7]. Such approaches decompose
an entire task into a sequence of speci!c primitive operators and
empirically determine the interaction time for each operator. The
total task time is then equal to the sum of the individual operator
times.

Queueing Networks (QNs). QN-models are models based on
the mathematical !eld of Queueing Theory. A QN consists of sev-
eral connected nodes (called servers), that provide some service to
a so called customer. After processing, the customer follows the
network to the next server. A general example for a QN is a routing
network for internet tra"c. As computational models in the !eld
of HCI those models help to employ some kind of real multitasking
behavior, such as in QN-MHP by Liu et al. [57] and Liu [56].

Machine Learning (ML). ML techniques, such as supervised or
unsupervised ML, can learn from data to predict human behavior.
Therefore, these algorithms optimize the parameters of a given
model. Supervised methods transform input data to labeled output
data during training, minimizing a loss-function. Unsupervised
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methods learn without labeling the output. An assumption for
these models is that user behavior can be modeled via distinct
clusters [68].

Others. This category contains models such as Saliency, E#ort,
Expectancy, and task Value model (SEEV) or Improved Perfor-
mance Research Integration Tool (IMPRINT). SEEV was developed
byWickens et al. [90] and is a cognitive architecture. It connects the
elements of attention allocation in dynamic environments, namely
the salience of an event in an area of interest and the e!ort to look at
this event, with the expected value such an action may have for the
user. [90] IMPRINT is a discrete human-performance modeling soft-
ware tool developed by the US Army Research Laboratory. Based
on four classes of human resources that may contribute to driver
workload, namely visual, cognitive, auditory, and psychomotor, it
computes demand scores for di#erent tasks. The linking between
the task or interfaces and the score has to be done manually [42, 71].

Recent work shows that there is a strong need for computational
models that are valuable in practice and make predictions that are
explicitly linked to the design of user interfaces [19, 35, 64]. There-
fore, in this paper we focus on predictive computational models
that can be used to evaluate and inform user interface designs and
assist designers in their design process. Outside of the automotive
domain, various approaches of such computational models already
exist. Li et al. [54] apply Deep Learning methods to predict hu-
man performance in various vertical menu selection tasks. Leiva
et al. [52] predict how di#erent cohorts perceive web page aes-
thetics using computational models, and Rawles et al. [75] utilize
machine learning methods to generate models of mobile device
control for Android based systems. Recent works also employ the
concept of computational rationality [67]. Therefore, these models
use Reinforcement Learning (RL) methods where a control policy
is learned automatically overcoming the need for large amounts
of labeled training data [61]. Such approaches have been used to
model various tasks [61], such as pointing [33], menu search [9] or
touchscreen typing [40].

2.3 Related Work
Previous approaches have focused on computational models within
the domain of driver behavior modeling. Janssen et al. [36] not only
provide a framework that de!nes the terms agents, environments,
and scenarios along speci!ed dimensions, they also identify research
opportunities in the human-vehicle interaction domain. Janssen
et al. [36] conclude that there is a need for models and studies,
that simulate either the environment or the scenario, but not both.
This would increase the realism compared to simulator studies but
would not be as costly or resource intensive as naturalistic driving
studies [36].

The work of Park and Zahabi [71] reviews Human Performance
Models in the surface transportation domain regarding the predic-
tion of driver behavior and the interaction with NDRTs. Therefore
Park and Zahabi [71] analyze a combinations of dependent and in-
dependent variables and the used model type, where they identify
the following categories: ACT-R, QNs, GOMS, and an others cate-
gory with models such as SEEV or IMPRINT. The main purpose

of the paper is to help modeling experts to select models appropri-
ate to their modeling needs regarding dependent and independent
variables.

In their review from 2011, Hurts et al. [32] investigate the mental
demand placed on the driver by primary driving tasks, such as lane
keeping, speed control or following behavior, and NDRTs, such as
the use of nomadic devices or the control of Heating, Ventilation
and Air Conditioning (HVAC). They also review how the distracting
e#ects of various tasks, , such as occlusion tasks, lane changing
tasks or car following tasks, can be assessed by measuring driving
performance or vision-related measures, such as gaze behavior and
what o"cial guidelines exist for such tasks.

The review by Doshi and Trivedi [14] (2011) looks into 19 studies
and how these model tactical driving maneuver prediction. The aim
of these models is to model short term goals, such as turns, lane
changes, and stops. Doshi and Trivedi [14] categorize the respective
models by inputs, the environment and scenario of data acquisition,
the used modeling algorithm such as CAN data, physiological data,
motoric behavior or the driving environment (naturalistic or simu-
lator), in which the data were collected. Furthermore, the authors
evaluate the prediction accuracy of the models in scope. They !nd
that “models incorporating measures of driver behavior perform
better, and earlier at predicting [driving maneuvers]” [14, p. 1896].

All the existing reviews investigate di#erent kind of models for
cognitive load, driver maneuver prediction or which models are
the most state of the art modelling a NDRT given an environment.
However, none of these models predicts the distraction potential of
an In-Vehicle-Information-System (IVIS) while driving.

3 METHOD
The goal of this literature review is to present, map, and compare
computational models in the automotive domain that can improve
the interaction between the driver and the in-vehicle UI . We report
our methods and results according to the PRISMA 2020 check-
list [69]. Our identi!cation process consists of a database search
and a subsequent round of forward and backward snowballing to
further extent the set of papers as suggested by Wohlin [92]. The
complete process is visualized in Figure 1.

3.1 Database Search
We searched three di#erent databases, namely Scopus, IEEE Ex-
plore, and the ACM Digital Library, to ensure the broadest coverage
possible. To extract relevant papers we developed our search string
according to the guidelines presented by Kitchenham et al. [43].
Based on the research questions and intended contribution of this
work we developed a list of synonyms that represent the fact that
we are searching for approaches that predict speci!c phenomena rel-
evant to the interaction between driver and vehicle. We performed
trial searches using di#erent combinations of search strings and
evaluated the results according to two criteria, namely the number
of papers returned (rationale: Is it manageable to review this number
of papers?) and the coverage of papers we considered relevant in an
initial collection of papers (rationale: Are we retrieving the papers
we are interested in?). The !nal search strategy considers only full
research articles and applies the keywords to a combination of
article title and article abstract. The database search was conducted
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1679 records 
identified through 
database searching 

1291 records 
after duplicate 

removal

143 full-text 
articles assessed 

for eligibility

21 full-text 
articles included

1148 records 
excluded

122 full-text articles 
excluded, with reasons

50 records 
excluded

25 full-text articles 
excluded, with reasons

109 records identified 
through snowballing

88 records after 
duplicate 
removal

38 full-text 
articles assessed 

for eligibility

13 full-text 
articles included

34 full-text 
articles included

Snowballing

Database Search

Figure 1: The search process.

in two stages, with the !rst search on May 4, 2022 and the !nal
search on February 29, 2024. We used the following search string:1

(Title: “driver behavior” ↑ “glance behavior” ↑ “driver be-
haviour” ↑ “glance behaviour” ↑ “distract*” ↑ “secondary
task” ↑ “workload” ↑ “visual demand” ↑ “cognitive demand”
↑ “mental demand” ↑ “task demand” ↑ “visual load” ↑ “cog-
nitive load”↑ “mental load”↑ “task load”↑ “visual attention”
↑ “driver attention”)
↓ (Title: “predict*” ↑ “model*” ↑ “assess*” ↑ “detect*” ↑
“simulat*” ↑ “classif*” ↑ “identif*”)
↓ (Abstract: “car” ↑ “automotive” ↑ “vehicle” ↑ “ivis” ↑
“transportation”)

3.2 Database Selection Process
The database search described in 3.1 resulted in 1679 papers. For the
paper selection process, we used CADIMA [44], a free web-based
tool for conducting collaborative systematic reviews. After remov-
ing all duplicates using the semi-automated duplicate removal tool
provided by CADIMA, we selected relevant papers in a two-stage
process. In the !rst stage, after an initial consistency check in which
100 papers were independently reviewed by three authors, each pa-
per was coded for eligibility based on whether its title and abstract
met inclusion criteria IC1 and IC2 (described below). To ensure con-
sistency, each paper was coded by two independent reviewers, and
di#erences were discussed in con$ict resolution meetings. At the
title and abstract stage, 1148 articles were excluded. The full-texts
of the remaining 143 articles were then coded for all inclusion and
exclusion criteria as described in detail the codebook and listed
below:

1The asterisk (*) indicates a wildcard character and the he search queries speci!c to
each of the databases are given in the supplemental material: https://osf.io/6dytr

Inclusion Criteria:
• IC1: The approach develops/evaluates/validates/utilizes a
computational model of any kind.

• IC2: The approach is concerned with the interaction between
the driver and the IVIS or another (digital) mobile device.

• IC3: The presented model quanti!es the e#ect of secondary
task engagements on driver behavior or vice versa. This
excludes approaches that only predict a certain driver state
(e.g., distracted driving).

Exclusion Criteria:
• EC1: The paper was not subject of a peer review process.
• EC2: The model is purely theoretical/conceptual.
• EC3: No evaluation is presented.
• EC4: No details regarding the modeling (method/algorithm,
inputs, outputs) are presented.

• EC5: No details regarding the data used to either evaluate or
!t/train the model is given.

Again, each article was coded by two coders and di#erences
were discussed in con$ict resolution meetings. We also excluded
5 papers because the full-text was either not accessible or not as-
sessable (mostly because the paper was written in a language other
than English) or because a duplicate was not detected in previous
stages. After the full-text stage, 26 articles were included for further
analysis. The database selection process resulted in 21 papers.

3.3 Forward and Backward Snowballing
Based on the !nal set of 21 papers from the database search, we
performed a round of forward and backward snowballing to further
extend our results. We performed the snowballing according to the
guidelines suggested by [92]. In the backward snowballing process,
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we examined the reference lists of the 21 papers resulting from the
database search. In the forward snowballing process, we examined
all papers that cited the 21 papers according to Google Scholar. If
the title of a paper appeared of interested we included the paper for
further examination. This process was performed by two coders
and the resulting papers were merged. After removing duplicates,
88 candidate papers were included for further review. Forward and
backward snowballing was performed on April 13, 2024.

3.4 Snowballing Selection Process
Methodologically, the snowballing selection process was the same
as the database selection process described in subsection 3.2. After
reviewing the titles and abstracts, the list of papers was reduced
from 88 to 38, resulting in 13 papers after full-text review. These
13 papers were then added to the 21 papers, resulting in a !nal list
of 34 papers for data extraction. During both selection processes,
the co-authors performed between 349 and 1031 title and abstract
reviews and between 67 and 135 full-text reviews.

3.5 Data Extraction Process
The data extraction process aims to identify features within the
papers that are relevant to answering our research questions. To
achieve this, we use a mixture of a priori and inductive coding [76].

We categorized the models across 8 dimensions and several codes
per dimension. The set of 8 distinct dimensions (!"#$%! &"#’"()%,
*+,")’!-, .-.!%* ’/!%#"0!’+/, %/&’#+/*%/!, .0%/"#’+, *+,%)
’/12!., ’/!%/,%, "11)’0"!’+/, *+,%) !-1%) was developed a pri-
ori based on the expertise of the co-authors and an initial screening
of papers published in a related Dagstuhl Report [36]. The dimen-
sions are reported in Table 1, and served as the starting point for
the codes, which we generated using an inductive process.

The inductive coding process for each dimension was carried
out in two cycles, as suggested by Saldaña [76]. The !rst author
(Coder 1) and last author (Coder 2) each coded half of the papers,
cross-checking each other’s work in an open coding approach. Dur-
ing this process, loose codes were developed to describe each of the
dimensions, and new codes were introduced when they provided
a more informative or distinctive categorization than the existing
code set. In the second cycle, Coder 1 applied pattern coding to
reduce the number of codes from the open coding cycle and to
categorize these initial codes. Coder 2 reviewed the code set devel-
oped during the pattern coding cycle and discussed the existing
code book as well as additions to the code set. Subsequently, simu-
lator !delity was assessed based on the categorization developed
by Wynne et al. [94] and to reduce the various scenario codes into
sub-dimensions ,#’&’/$ !".3, +002##%/0% +4 !#"44’0, and #%$5
2)"!’+/. Coder 1 then re-coded all papers with the !nal set of
codes.

4 RESULTS
In the following, we present the results of our analysis of the 34
papers structured according to the dimensions described in Table 1.
Figure 2 shows the number of reviewed papers by their publication
year. A visualization of the results is shown in Figure 3. The models
we reviewed can generally be divided into two types: (1) models

that predict latent states (e.g., distraction, workload) based on phys-
iological measures or on features that describe driver behavior, or
(2) models that predict behavior (e.g., steering or task interleaving)
based on design artifacts (e.g., UI layout, display size) or information
derived from the driving environment (e.g., lane position).

Figure 2: The number of reviewed papers with their publica-
tion year.

4.1 Target Variable – What to Predict?
The target variables predicted by the models can be categorized un-
der the umbrella terms &’.’+/, ,#’&’/$, !".3, and *%/!"). Models
that predict glance behavior (&’.’+/) mostly predict metrics such
as mean glance duration (4 papers), total glance duration (5), or
number of glances (6). Other variables that are modeled include
dwell times or occlusion-related metrics such as shutter open times.
Models that predict ,#’&’/$-related variables mostly focus on the
prediction of lateral (8) and longitudinal (5) control but also on
more abstract variables such as crash risk (1). The !".3 category
encompasses performance measurements related to NDRTs such
as task completion time (8), task reaction time (1), or task switch-
ing probability (1). *%/!") target variables include the degree of
distraction (4) or workload metrics (4). With regard to the latter,
we found that the terms workload and cognitive load are not used
consistently and are often confused. For example, it is not always
clear whether authors are referring to cognitive load, with its ori-
gins in educational psychology [85], or to workload theory from
the engineering and cognitive sciences [91]. Traditionally, however,
papers in HCI are most often concerned with workload as mea-
sured by the NASA Task Load Index (NASA-TLX) [24]. Overall, our
analysis shows that the majority of the papers target &’.’+/-related
variables (𝐿 = 16 (47%)), followed by ,#’&’/$-related variables
(𝐿 = 11 (32%)), !".3-related variables (𝐿 = 9 (26%)), and *%/!")
variables (𝐿 = 8 (23%)). Only three models (9%) predict a combina-
tion of variables from di#erent categories. They predict ,#’&’/$
together with &’.’+/ [58], *%/!") [2], or !".3 [79].
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Table 1: Eight modeling dimensions that were determined a-priori and re!ect the topics we consider for further analysis.

Dimension Description

!"#$%! &"#’"()% The speci!c aspect that the model predicts
*+,%) ’/12!. The data the model uses for prediction
*+,%) !-1% The computational approach used
.-.!%* ’/!%#"0!’+/ The type of NDRT that is being modeled
*+,")’!- Modality used to perform the NDRT
.0%/"#’+ Description of the driving scenario
%/&’#+/*%/! The environment in which the data was collected or the model evaluated
’/!%/,%, "11)’0"!’+/ "#%" The use case for which the model was developed

4.2 Model Inputs – What Kind of Data is Used
for Modeling?

The models reviewed in this paper predict the above-introduced
variables using a variety of di#erent features (i.e., model inputs). We
identi!ed the the following categories: 2’ ,%.’$/, ,#’&’/$ (%6"&5
’+#, $)"/0% (%6"&’+#, 16-.’+)+$’0") *%".2#%*%/!., .0%/"#’+
’/4+#*"!’+/ and +!6%#. 2’ ,%.’$/ contains any variables that
describe some aspect of the interface (e.g., display size (1) or button
types (2)) and variables that are derived or manually speci!ed based
on the design of the interface (e.g., KLM operator sequences (4),
SEEV values (2), or ACT-R production rules (3)). While the latter
are not inputs in the traditional sense, they describe the e#ect that
the design has on the interaction and thus on the prediction. 56%
of all models consider features of this category. ,#’&’/$ (%6"&5
’+# contains variables that are connected to the driving task itself,
e.g. lane position (6), vehicle speed (7) braking behavior (3), accel-
eration behavior (2). 32% of models use driving-related variables
as input. $)"/0% (%6"&’+# includes vision related measures such
as eye movements (1), eyes-o#-road-time (1) or blinking behav-
ior (1). These metrics are often used to predict driver states such
as distraction or workload. The same applies to 16-.’+)+$’0")
*%".2#%*%/!. that are used in 9% of the papers and describe phys-
iological measurements (e.g., heart rate or electrodermal activity).
.0%/"#’+ ’/4+#*"!’+/ describes information such as road curva-
ture (2) or target speed (2).O!6%# is a catch-all category that covers
a broad range of di#erent inputs that did not !t well into the other
categories, such as demand scores for di#erent tasks obtained from
the literature or acoustic data from the vehicle interior. Our analysis
shows that most papers (𝐿 = 25 (74%)) use input variables from only
one category. When categories are combined, the combinations of-
ten include ,#’&’/$ (%6"&’+# (𝐿 = 7 (77% of combinations)). Two
out of three papers using 16-.’+)+$’0") *%".2#%*%/!. combine
them with other variables [8, 27]. Three papers (33% of the combi-
nations) combine $)"/0% (%6"&’+# with other variables [8, 27, 53].

4.3 Model Types – ML, Cognitive Architectures,
or Something Else?

This dimension describes the di#erent categories of models used
by the reviewed papers. Some papers compare models of di#erent
categories. In this case the paper is listed in both categories. We
have identi!ed the following types of models: *), 0+$/’!’&% "#06’5
!%0!2#%., #%$#%..’+/, .!+06".!’0, $+*., +!6%#, *%06"/’.!’0,

and 7/. .!+06".!’0 models are Hidden Markov Modelss (HMMs),
Bayesian !lters, or particle !lters. Papers that use Fitts’ law for
modeling belong to *%06"/’.!’0. ACT-R, SEEV, or IMPRINT are
examples for 0+$/’!’&% "#06’!%0!2#%.. $+*. includes all model-
ing approaches that use GOMS, but especially KLMs. Models that
do not !t into any of these categories are listed under +!6%#. Our
analysis shows that most approaches rely on *) or 0+$/’!’&% "#5
06’!%0!2#%. (e.g., ACT-R, SEEV, or IMPRINT) (8, 24% each). Most
of the papers in the *) category compare their models to other ML
or #%$#%..’+/ modeling approaches. Jokinen et al. [41] presents
the only approach that uses RL. Five papers (15%) use #%$#%..’+/
models for prediction, while 4 papers (12%) [51, 73, 74, 83] use
$+*. and in particular KLMs. These models are used to predict
task or glance times for interactions with in-vehicle interfaces. We
also identi!ed one paper that uses 7/ for modeling driver’s NDRT
behavior [57]. Four works are coded as +!6%# [2, 25, 55, 98] (12%).

4.4 System Interaction – Which NDRTs are
Modeled?

This dimension describes the interaction that is modeled. We iden-
tify the following categories: ’&’., *+(’)% 16+/%, 0+/&%#."!’+/,
and +!6%#. Two-thirds (𝐿 = 23 (67%)) of approaches model ’&’.
interactions. These interactions can be divided into real-world tasks
(13), arti"cial tasks (10), and semi-arti"cial tasks (1)2. Real-world
tasks use consumer-grade in-vehicle interfaces or an interface that
is similar in design and tasks that can be performed (e.g., read-
ing a map, making a phone call). In contrast, arti!cial tasks serve
as surrogate tasks, often manipulating only one speci!c feature
(e.g., the number of elements on the screen) to increase controlla-
bility. Semi-arti"cial tasks are real-world tasks, such as making a
phone call, but performed on a task-speci!c interface designed for
the speci!c modeling task (c.f., [55]) *+(’)% 16+/% interactions
are modeled in 10 papers (29%) and include interactions such as
calling, texting or dialing. Approaches that model conversational
interactions (0+/&%#."!’+/) make up 15% of all approaches. These
conversational interactions include talking to a passenger or per-
forming an auditory n-back task. +!6%# describes the approach
of Pekkanen et al. [72] who model NDRTs indirectly via an occlu-
sion experiment. Our evaluation also shows that 20 papers (59%)
present computational models that deal only with ’&’. interaction
and six papers (17%) deal only with *+(’)% 16+/%. Only 6 papers

2One study Large et al. [48] modeled both an arti!cial and a real task.
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Figure 3: Orbit diagrams showing the coding dimension with the identi"ed categories from the analysis.

(17%) combine system interactions from di#erent categories. Li and
Busso [53] investigate interactions from three categories, namely
’&’., *+(’)% 16+/% and 0+/&%#."!’+/.

4.5 Modality – Touch or No Touch?
Our analysis shows the majority of works investigates !+206 tasks
(𝐿 = 19 (56%)), followed by 6"#, 3%-. (𝐿 = 14 (41%)), &+’0%
(𝐿 = 13 (38%)) and &’.2") tasks. The latter category describes

tasks where the interaction was either conversational (e.g., read-
ing aloud visual information on the screen) or indirect (e.g., oc-
clusion). For works that model interactions with smartphones or
mobile phones but do not list the speci!c phone, we assume !+206
for all papers that were published after 20133. In total, 14 papers
(41%) investigate tasks with modalities from more than one cat-
egory. The most frequent combinations include &+’0%, namely

3See the steep increase in smartphone sales during this time: https://www.statista.
com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
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&+’0% + !+206 (𝐿 = 6 (43% of all combinations)) and &+’0% + 6"#,
3%-. (𝐿 = 5 (35% of all combinations)). The papers by Li and Busso
[53], Muñoz et al. [62] investigates di#erent tasks from three modal-
ity categories, namely !+206, 6"#, 3%-., and &+’0%.

4.6 Environment – Simulator Studies vs.
Naturalistic Driving Studies

According to the framework of Janssen et al. [36], the environment
can be described as “the world being modeled". Accordingly, environ-
ments can range from simulated as in a driving simulator to real as
in naturalistic driving study. Our analysis reveals that the majority
(𝐿 = 26 (76%)) of the works use driving simulators to evaluate their
models or to gather data for their models. Since the !delity of a
driving simulator can in$uence driver behavior [29], we further
categorize each driving simulator according to the classi!cation
theme proposed by Wynne et al. [94]. Most of the simulators are
)+854’,%)’!- (𝐿 = 14 (53% of all simulators)), followed by *%,’2*5
4’,%)’!- (23%) and 6’$654’,%)’!- (19%). For real-world driving
studies, we distinguish between !%.!5!#"03 and /"!2#")’.!’0
,#’&’/$ .!2,’%.. While /"!2#")’.!’0 ,#’&’/$ .!2,’%. were used
in !ve of the papers (14%), !%.!5!#"03 was used two times in total.
AW’9"#,5+45O9 simulator was used in only one paper [82]. The
paper by Pekkanen et al. [72] is the only one that compares driver
performance in two di#erent environments, a *%,’2*54’,%)’!-
simulator and on a !%.!5!#"03.

4.7 Scenario – Controlled or Uncontrolled?
Janssen et al. [36] describe scenarios “the way one moves through the
world", denoting “what types of situations are encountered or not". To
describe the scenarios we introduce the following sub-dimension:
,#’&’/$ !".3, +002##%/0% +4 !#"44’0 and #%$2)"!’+/. ,#’&’/$
!".3 refers to scenarios, such as )"/% 3%%1’/$ or 0"# 4+))+8’/$,
which are mostly used in driving simulators. For naturalistic studies,
this sub-dimension includes whether the participants drove a prede-
!ned route or were allowed to drive wherever they wanted. !#"44’0
describes the occurrence of other tra"c participants. R%$2)"!’+/
describes the degree to which the scenarios have been controlled.
In a fully 0+/!#+))%, scenario, each participant experiences the
exact same task, route, and tra"c conditions at the exact same time.
In an 2/0+/!#+))%, scenario, on the other hand, drivers may be
able to choose the route they take and the task they perform. An
example of the latter would be data collected from di#erent cus-
tomers across the country. Our analysis shows that the majority
of studies were conducted in a 0+/!#+))%, setting (𝐿 = 31 (91%)).
Only Ebel et al. [18] and Young [97] use data from an 2/0+/5
!#+))%, scenario. The ratio of papers with !#"44’0 (𝐿 = 16 (47%))
and 8’!6+2! !#"44’0 (𝐿 = 11 (33%)) is almost equal. However,
seven papers (20%) do not report whether their scenario included
tra"c. Regarding the ,#’&’/$ !".3, the papers using a simula-
tor are almost equally divided between 0"# 4+))+8’/$ scenarios
(𝐿 = 13 (50% of the simulator studies)) and )"/% 3%%1’/$ scenarios
(𝐿 = 10 (38%)). An exception are the works by Watkins et al. [88]
and Chen et al. [8] who allowed their participants to drive relatively
freely in a simulator. Of the /"!2#")’.!’0 ,#’&’/$ .!2,’%., most
used a prede!ned route (𝐿 = 3 (60% of naturalistic studies)).

4.8 Intended Application Area - What’s the Goal
of the Model?

This dimension describes the application the models are targeted at
and where the authors anticipate these models to be valuable. Our
analysis shows that nearly the half of the developed models aim
to be valuable in the product development of in-vehicle interfaces
(𝐿 = 16 (47%)). The second most targeted application is ,’.!#"05
!’+/ ,%!%0!’+/ (𝐿 = 8 (24%)) followed by human behavior analysis
(20%). The latter includes models that aim to understand human
behavior and improve performance [49], create plausible models for
car following [72], or predict interleaving strategies in multitask-
ing [37, 38, 41, 46]. The model proposed by Young [97] is intended
for 0#".6 #’.3 1#%,’0!’+/.

5 RESEARCH GAPS
Our literature review highlights several research gaps, which we
discuss below. They all contribute directly or indirectly to the de-
velopment of more accurate computational models for the design
and evaluation of in-vehicle UIs.

Tools for application of models to HCI problems. Of all 34
models that we reviewed, only three [25, 79, 83] are associated
with a tool that allows users to operationalize the predictions made
by the model. The tool presented by Harvey and Stanton [25] is
a spreadsheet that allows users to specify sequences of manual,
visual, and cognitive operators that serve as an input to the critical
path analysis. Schneegaß et al. [83] present a tool that, lets users
annotate UI screenshots with UI elements to then automatically
compute a KLM. The most advanced tool is presented by Salvucci
et al. [81]. Distract-R is based on an ACT-R model and allows users
to prototype basic interfaces fromwhich the model predicts driving-
related metrics. These metrics serve as proxies for evaluating the
distraction potential of early stage UI designs. In addition to the
fact that only 3 out of 34 models were integrated into tools it needs
to be emphasized that these tools are between 10 - 18 years old.
Therefore downstream research should look into operationalizing
state of the art computational models into accessible tools that
allows leveraging their bene!ts.

Scenarios are simplistic and model predictions context spe-
ci!c. Almost all models (except of the work presented by Ebel et al.
[18]) are developed and evaluated based on small data sets collected
in controlled (simulator) environments with simplistic driving sce-
narios (e.g., lane keeping or car following tasks). Furthermore 18
out of 34 scenarios do not consider other tra"c. While these mod-
els may make accurate predictions in the context in which they
were developed, it is not clear how they generalize to real-world
problems with complex and dynamic driving scenarios. Thus, fu-
ture research and future models should address what is known in
robotics as the Sim2Real gap [100] by including more diverse and
realistic scenarios, which helps to increase tra"c safety through
models that generalize to real-world conditions.

Large open datasets. While there are large publicly available
datasets for driver distraction detection (e.g., [60]), there are no
such datasets that also provide detailed information about driver
interaction with in-vehicle interfaces. Publicly available datasets
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from naturalistic driving studies [13, 86] do not contain user inter-
action or interface design information and are therefore not useful
for the modeling approaches reviewed in this work. Accordingly,
the few models that are based on large datasets from real world
driving or naturalistic driving studies [18] are developed in coop-
eration with Original Equipment Manufacturers (OEMs). In this
context, it is interesting to note that while OEMs are interested in
such models and see their potential [19, 64], they do not conduct or
publish much research in this direction. We argue that future natu-
ralistic driving studies should also collect detailed interaction and
behavioral data. Also, given that OEMs are already lagging behind
digital companies when it comes to data-driven UX evaluation [19],
they should consider being more open so that they can leverage
the progress being made in the research community.

Grand modeling challenges. In total we count 21 di#erent
target variables that the models in this review predict. Furthermore
the datasets used in this approaches are almost always speci!c to
the respective model. While this is not bad in itself, it shows that
there is no consensus toward grand challenges for designing models
of future interaction behavior with in-vehicle interfaces. While
recognizing the various di#erent facets of driver modeling, we
argue that grand challenges for modeling, such as those established
in other domains (e.g., DARPA challenge [6], ImageNet [45]), could
bene!t progress toward better and more accurate models.

Models that generalize to arbitrary interface designs. Most
of the models in this review are very speci!c to the exact use case
they were developed for and require manual speci!cation as soon as
the task or design to be evaluated changes. This applies for example
to models that rely on ACT-R [46, 79, 80]. While they might provide
accurate and transparent predictions, the production rules must be
manually speci!ed by experts. The same applies to models based
on the KLM technique [51, 73, 74, 83] or SEEV [31]. A valuable
next step would be to develop models that generalize to arbitrary
interface designs. This can be achieved, for example, by models
trained on generic data such as pixels. In this way, any screenshot
or driving scene generated by a simulation could be used as input
to the model.

Consideration of interpersonal and demographic factors.
Of the models in this review only one approach [51] incorporates
interpersonal di#erences or demographic factors for prediction.
However, related work shows that age, cultural background, and
other individual characteristics impact driving behavior [30, 95],
distraction [65] or the willingness to engage in NDRTs [23]. Lever-
aging this approach could enhance the modeling of driver behav-
ior and improve the design of in-vehicle interfaces. Outside of
the automotive domain, approaches such as data-driven personas,
incorporating demographic information, are already successfully
used [77, 99].

6 DISCUSSION
Most of the models reviewed in this paper aim to improve the
design or evaluation of in-vehicle interfaces. Still, there is no docu-
mentation of such models being used in the industrial UX design
and evaluation process. Our results presented in section 4 and re-
search gaps identi!ed in section 5 elucidate several open research

questions. Drawing connections with related work, we formulate
research potentials for future work towards computational models
that can support the automotive UI design process.

Align computational modeling with real-world design prob-
lems. Our analysis shows that most models seem to focus on ex-
plaining isolated psychological or behavioral phenomena (e.g. work-
load [42, 47, 82], task reaction time [55] or the scenario in which
the task is performed [88]) by replicating experimental results from
controlled user studies, rather than solving concrete HCI problems.
However, to improve the way in-vehicle interfaces are designed
today, we propose a shift towards computational models that di-
rectly target the speci!c problems within the automotive UI design
process. Similar to what Janssen et al. [34] call “[f]rom description
to prescription” [34, p. 3], we argue that computational models for
in-vehicle user interfaces must be aligned with real-world HCI prob-
lems and oriented toward the needs that automotive designers and
safety engineers face. Looking at the needs of HCI professionals
in the automotive domain, Ebel et al. [16] argue that practition-
ers need models and tools that can be integrated into their design
process and that allow early design evaluation for metrics such as
distraction potential and usability. This would imply that future
models (1) must be able to make predictions based on features de-
rived directly from prototypical UI designs and mock-ups (c.f., [18]),
(2) models must be integrated into tools that allow non-experts
to use them (c.f., [81, 83]), and (3) predictions must be accurate
enough to drive design decisions in such a high-stakes (economic
and safety) environment.

Move frommodels that needmanual speci!cation to models
that adapt to new data and new problems. Our analysis shows
that (1) there is a gap for models that are not only generalizable
to di#erent interface designs, but also generalizable to di#erent
scenarios and that (2) many models rely on manual speci!cations
performed by experts [74, 79, 93]. To move from models that need
manual speci!cation to models that adapt to new data and new
problems wee see two research potentials: (1) data-drivenML-based
models that are trained on large general data (see section 5) that
is continuously updated, allowing the models to generalize over
di#erent designs and adapt to distribution shifts in the data, or
(2) computationally rational models [67] whose internal informa-
tion processing mechanisms are grounded in theory and whose
behavioral policies are approximated via RL (e.g., [41]). The latter
combination can be a promising solution to the trade-o# between
explainability and predictive accuracy often faced by supervised
ML-based approaches [10].

Increase openness and transparency. An analysis of where
the !nal set of papers was published shows that researchers from a
variety of backgrounds (psychology, human factors, engineering,
HCI) are developing computational models of driver interaction
behavior. This diversity in backgrounds makes it particular impor-
tant to be transparent and open. However, our review discloses
a lack of shared source code and data (only 3 papers shared arti-
facts [41, 51, 72]), ambiguous model descriptions, and inconsistent
terminology, all of which hinder replicability, reproducability and
eventually progress. We argue that more openness in terms of arti-
fact sharing and more transparency in reporting would bene!t the

212



AutomotiveUI ’24, September 22–25, 2024, Stanford, CA, USA Lorenz et al.

model development in general. For the latter, a modeling taxonomy
that uni!es terminology can foster collaboration and bridge gaps
between psychology, human factors, engineering, and HCI. The
dimensions developed in this paper can serve as a basis for such a
taxonomy.

Limitations
As with any literature review, we acknowledge the potential for
coding errors or subjective interpretation. However, because each
paper was independently reviewed by two authors and disagree-
mentswere resolved in discussion, these errors should beminimized.
Furthermore, the ambiguity in the model descriptions, the large
number of di#erent phenomena being modeled and the variety re-
search !eld the models come from led to many discussions among
the coders to de!ne appropriate categories. We want to state that
this categorization is one categorization that can be used, but may
not be the best. However, we do not claim to have developed a
taxonomy and see this as future work (see section 5).
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