2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) | 979-8-3315-1635-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/SISPAD62626.2024.10733335

Rapid Simulation Framework for Superconducting
Qubit Readout System Inverse Design and
Optimization

Albert Lu
Electrical Engineering Department
San Jose State University
San Jose, CA, USA
albert.lu@sjsu.edu

Abstract—Qubit readout is one of the most important
operations in quantum computers. In superconducting quantum
computers, the success of readout depends on many parameters
and is difficult to optimize due to the high dimensionality of the
problem. In this work, a rapid simulation framework that
comprises an analytical model, a neural network (NN), and
optimizers using the NN as a surrogate model is proposed. The
analytical model is calibrated to the experimental result and
allows rapid simulations to generate enough data to train NNs.
Single and multi-objective optimizations are performed. It is
shown that a better solution can be found using the optimizer than
human optimization. Moreover, the framework can find designs
with out-of-the-training-range parameters.

Keywords—Quantum Computing, Superconducting Qubit,
Readout, Measurement, Optimizer, Machine Learning

I. INTRODUCTION

Qubit readout is one of the most important operations in
quantum computers (among qubit initialization, qubit state
manipulation (i.e. quantum gates), and others) [1]. The success
of most quantum algorithms depends on the readout accuracy
(fidelity). In superconducting-based quantum computers, which
are one of the most promising quantum computing architectures
[2], qubit readout is realized by coupling a qubit to a resonator
for dispersive readout [3]. The resonant frequency shifts based
on the state of the qubit (|0) and |1)). The shift is called the
Cross-Kerr [4]. In this paper, we denote the fotal shifi (difference
between the |0) and |1) induced shifts) as y (instead of 2y)
Usually, the readout pulse is applied at a frequency, F, to
distinguish the state of the qubit by observing the Re/Im parts of
the transmitted pulse through the resonator. The
distinguishability of the |0) and |1) states depends on y, F, the
readout pulse power (P), duration (t,), the resonator scattering
matrix, and the noise from the circuits. It is important to co-
optimize y , F, P, t,, and the resonator design to achieve the
highest speed, least disturbance to neighboring qubits, and
highest accuracy. However, this is a very difficult high-
dimensional optimization problem. In this work, based on the
framework in [3], a rapid simulation framework that comprises
an analytical model of the resonator, a neural network (NN), and
optimizers using the NN as a surrogate model is proposed. The

*Corresponding author: hiuyung.wong@sjsu.edu

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Hiu Yung Wong"
Electrical Engineering Department
San Jose State University
San Jose, CA, USA
hiuyung.wong@sijsu.edu

White Noise

i
{1 I»MMM””
= i) f
) [+ L [m—p
ol . | y
g My g ndiobut gy

il
o

Photon #, N
\ Noise Calculation

/ Optimization Algorithms

MlL-enabled Surrogate Model
o. . @

® L]
0 °

Figure 1: The optimization framework. Top: the simulation framework in
[3] with S,; replaced by analytical calculation (red box) to rapidly
generate training data. Bottom: The trained NN is used as a surrogate
model for the optimization algorithm.

e
S
£
E
-~
®
-

analytical model is calibrated to the experiment result in [3].
This allows rapid simulations to generate enough data to train an
NN to perform inverse design using an optimizer.

II. OVERVIEW AND CALIBRATION OF THE FRAMEWORK

The quantum computer readout system being modeled is
controlled by Quantum Machine OPX with a nominal readout
pulse with P = -47 dBm and t,, = 3.5us. The nominal readout

Authorized licensed use limited to: San Jose State University. Downloaded on December 31,2025 at 21:47:00 UTC from IEEE Xplore. Restrictions apply.

o
=)

0.4
]
©
S 02
e
© 0
£
g-o.z * Real HFSS
= * Im. HFSS
T 04 —Im. Analytic
Tt: 06 —Real Analytic
7]
o

-0.8

-1
7.25 7.252 7.254 7.256
Frequency (GHz)

Figure 2: Comparison between the real and imaginary parts of the
resonator S,; using HFSS and the proposed analytical model.

frequency is taken at F = 7.2525341GHz which is the mid-point
of the total dispersive shift in the model in [3]. After the
attenuators and due to the attenuations in the cables, the power
is measured to be -123 dBm when it reaches the resonator. In the
following, P is expressed relative to -123dBm. Noises from the
amplifiers and quantum noises due to photon fluctuation and the
quantum-limited amplifier are modeled as white noise with the
corresponding noise temperatures. Particularly, the quantum
noise temperature is found to be 0.5K. The details of the
quantum computer and noise modeling can be found in [3].

The framework is shown in Fig. 1. Unlike [3], HFSS
simulation of the resonator S;; is replaced by an analytical

model, S,; = #%_%0), where wy is the resonant frequency.
This saves hours, if not days, of simulation and design time for
each resonator. To verify that this approach is valid, Fig. 2 shows
that the real and imaginary parts of the 3D resonator Sy; in [3]
can be matched well with Q = 70,000 (nominal value) and R =
0.77. It is then used in the simulator to predict the readout error

as a function of readout pulse energy (relative to -123dBm) for

20.0
e Experiment
11:95 « HFSS
15.0 1 e Analytical
—~12.5
X
T 10.0{ e°
o
C 75{ e°
Lu : L]
50{ ..
¢%%
25 S
°*8o ° o ° ° e © ©
0.0 1 ® % o o o o
-12 -10 -8 -6 -4 -2 0

Relative Power (dB)

Figure 3: Comparison between experimental readout error in [3] and
simulation readout errors using HFSS S, and analytical S, as a function
of readout pulse power relative to -123dBm. Note that the non-zero error
at high power (e.g. -2dB) in experiment is due to other sources such as
state preparation errors which are not captured in this framework. 2000
simulations are performed for each data point.

(%) Joui3

Figure 4: Readout error as a function of pulse power (P) and pulse width
(t,) when nominal Q, y, and F are used.

x=150,000Hz (nominal value). Fig. 3 shows that it matches the
experiment and the simulator with HFSS well.

III. DATA GENERATION

Using the new simulator with the analytical S»; model, 4266
simulations with different sets of parameters (x , F, P, t,, @)
are completed within 3 days on 100 cores. y (+£20%),
F(+72kHz which is +40% of the maximum y), P (-4dB to -
8dB), t,, (£40%), and Q (+20%) are varied in the simulations
about the aforementioned nominal values. In each simulation,
200 runs with random noise are performed to get the readout
error for the corresponding set of parameters. Plotting the errors
against different variables helps enhance the understanding of
the trade-offs. For example, Fig. 4 shows the error as a function
of P and t,, when the nominal values of other variables are used.
It shows that P = -5dB and t,,= 3.85s is the most optimal point
that can achieve a 0% error. As another example, Fig. 5 shows
that the error is not monotonically dependent on the readout
frequency. There is a peak around which the error is maximum
for a constant power (< -5dB). Therefore, to explore non-trivial
trends and perform optimization, NN and optimization are
required.

1.0
0.8
0.6
0.4
0.2
0.0

(%) 40413

Figure 5: Readout error as a function of pulse power (P) and readout
frequency (offset to the nominal value) when nominal Q and y are used
with t, = 3.85us.

Authorized licensed use limited to: San Jose State University. Downloaded on December 31,2025 at 21:47:00 UTC from IEEE Xplore. Restrictions apply.

14 Training -
o 12 Validation
.4 10
b 8
o 6
g 4
a 2 ‘
§ of L
0

4 6 8 10
Simulated Error (%)

12 14

Figure 6: Comparison of the error predicted by the NN and the simulated
error for both the training and validation sets.

IV. OPTIMIZATION AND INVERSE DESIGN

An NN is created using PyTorch [5] to correlate the 5
parameters to the error using the 4266 data points. It contains 1
input layer, 2 hidden layers (both have 128 hidden nodes with
ReLU activation), and 1 output layer (ReLU activation) (Fig. 1).
ReLU is used as the output activation function, instead of linear
activation, to enforce the constraint of positive readout error.
The Adam optimizer is used with an initial learning rate of 1072
and mean squared error is used as the loss function.
ReduceLROnPlateau is also used to train the model faster by
decreasing the learning rate when it plateaus. The minimum
learning rate is set to 10-°. A batch size of 128 is used and the
training is set to run for 150 epochs. To train the model and
perform hyperparameter tuning, the dataset of 4266 data points
is split into a train (80%), validation (10%), and test set (10%).
These datasets are all normalized before input into the NN. The
NN achieves an R? of 0.97 on the validation set and an R? of
0.96 on the test set (Fig. 6).

The NN is then used as a surrogate model for single-
objective and multi-objective optimizations. For single-
objective optimization, the sole objective is to find the
parameters that will minimize the readout error. Single-
objective optimization is performed using the differential
evolution algorithm from SciPy [6] to perform inverse design.

(a) ° (b) _75 o
—-4.5
[]
-5.0 -8.0
=5.5
— —~ —85
% -6.0 %
a o
-6.5 -9.0
e ®o
-7.0
[Y -9.5
-7.5
-8.0 o [} e -10.0 ° °]
2.0 2.5 3.0 3.5 1.5 2.0 25 3.0 3.5 4.0 45
ty (us) tp (us)

Figure 8: Multi-objective optimization solutions for bounds (a) “Within-
Range” and (b) “Out-of-Range”. All points represent a predicted readout
error of 0.

The differential evolution algorithm does not use gradients to
find the minimum but uses a population-based search algorithm.
One may limit the bounds/ranges of the parameters the optimizer
can search for. As a baseline, the bounds are first set to be the
same as the bounds used to generate the data (dubbed “Within-
Range” which means within the parameter range of the training
data). The optimizer is then run 10 times with a different seed
each time to obtain a variety of possible solutions. These
proposed solutions are then run in the simulation framework for
verification.

An additional study is further conducted which allows the
optimizer to search outside the parameter range of the training
data (dubbed “Out-of-Range”). The bounds used in the “Out-of-
Range” study are set as y (£30%), F(+108kHz), P (-10dB to -
2dB), t, (£50%), and Q (£30%). In the study, each of the five
parameters is allowed to have an “Out-of-Range” search while
the other four are limited to the “Within-Range” search. Then
each optimizer run consists of running the differential evolution
algorithm 10 times with a different seed each time.

The results of “Within-Range” and “Out-of-Range” are
shown in Fig. 7. It plots the difference between ML/optimizer
error prediction and simulation error. It can be seen that when
the optimizer is allowed to search outside of the training data

4.0 _a _ 401
835 & . £35
5 3.0 o3 g30
5 93 g £25
820 g2 g20
Eis | | £ &1
5 1.0 | | @ i 51 L] 5100 i
£ 0.5 -g-- N ° o . = « o0 ° =05/ ‘ e e -
ool ! s sse o __» o oo || Woll o o eeee sse o] Yool = i sme mwle e &
100000 120000 140000 160000 180000 200000 450000 500000 550000 600000 650000 -10 -9 -8 -7 -6 -5 -4 -3 =2
X (Hz) F (Hz) +7.252e9 P (dB)

40 4.0 :

£35 £35

@ 3.0 w 3.0

£25 £25

E 2.0 ::'Z” 2.0

a 15 = 1.5

= 1.0 = 1.0

o 5 H H H

E05) | . ° £05 | P e aeb:e B8 @ o

“o.0 ! 2o e e me es ‘et | Wl i

15 20 25 30 35 40 45 50 55 50000 60000 70000 80000 90000
tp (us) Q

Figure 7: Single-objective optimization results of the error difference between ML and simulation against a desired parameter. Orange: Within-Range
prediction. Blue: Out-of-Range prediction. Vertical dashed lines show the parameter ranges (Red: Within-Range; Blue: Out-of-Range).

Authorized licensed use limited to: San Jose State University. Downloaded on December 31,2025 at 21:47:00 UTC from IEEE Xplore. Restrictions apply.

=
o N

Error Difference (%)

o N b OO

Within Range Out of Range

Figure 9: Multi-objective optimization results for the readout error
difference between simulation and ML/optimizer when the optimizer
bounds are set either within the training range or out of the training
range.

parameter ranges, it can still find good designs (0% error) with
“Out-of-Range” parameters.

Multi-objective optimization (minimizing P, t,,, and readout
error concurrently) is then performed to determine if other
conditions could be met that would lead to a more performant
design. The multi-objective optimization is performed using
NSGA-II from the Pymoo library [7]. NSGA-II (Non-dominated
Sorting Genetic Algorithm II) is a type of multi-objective
evolutionary algorithm [8]. The population size is set initially to
1000 and the algorithm is run for 200 generations. Both “Within-
Range” and “Out-of-Range” optimizations are conducted as the
single-objective optimization. However, in the “Out-of-Range”
case, all parameters are allowed to be searched out of the training
range simultaneously. The optimization algorithm is then run,
and many solutions are obtained that either prioritize
minimizing power, width, readout error, or all of them. Fig. 8
shows the predicted solutions obtained from optimization and
how certain points are more optimized to certain criteria than
others. Note that these points all represent a predicted readout
error of 0, but the optimization is able to also predict points with
higher readout error if desired.

Optimizer Manual
3
&
o 1) 1)
fe] T %g%cfo
K’ o 200
@o% g;Ooo . A]
0 Fpg .o B 10)
00800 Sqi0%° o J
o0R° %‘b Q
° o
I (a.u.) I (a.u.)

Figure 10: IQ-distribution plots of the inversely designed system by the
proposed multi-objective optimization framework (Left) and by manual
optimization (Right) for reading |0) and |1) states.

The solutions with a predicted readout error of 0 from Fig. 8
are then chosen for verification in the simulator. Fig. 9 shows
the differences between the readout error predicted by
ML/optimizer and simulation. The differences are larger than
single objective optimization, particularly for the “Out-of-
Range” case. However, it still can find a design with only 0.5%
error with minimal P and t,,, which may reduce the disturbance
to adjacent qubits and speed up the readout process. This point
has the following parameters, y = 122,932Hz, F =
7252534102Hz, P=-4.8dB, t,=2.1ps, and ¢=71603. Fig. 10
shows the IQ distribution of this optimal design simulated. It
can be seen that the optimizer is able to provide a very optimal
design as the two “blobs” just touch each other. Another
simulation using the same P=-4.8dB, t,,=2.1us but with other
parameters using nominal values (which may be achieved
manually) is also performed. Fig. 10 shows that it has an error
of 1.5%. Moreover, the separation of the “blob” centroids is
larger in the optimizer case.

V. CONCLUSION

A rapid inverse design and optimization framework has
been demonstrated for superconducting qubit readout. It
combines an analytical model, NN, and optimization
algorithms. Both single-objective (differential evolution) and
multi-objective optimization (NSGA-II) are performed. It can
optimize a 5-dimensional parameter space within 3 days
(including data generation) to find a design that is difficult to
obtain manually.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2125906. The authors
thank Yaniv Jacob Rosen and Kristin M. Beck for their support
in the calibration process.

REFERENCES

[1] D. DiVincenzo, "The Physical Implementation of Quantum
Computation". Fortschritte der Physik. 48 (9—11): 771-783.

[2] F. Arute et al, 'Quantum supremacy using a programmable
superconducting processor," Nature 574, 505-510 (2019).

[3] Hiu Yung Wong et al., "A Simulation Methodology for Superconducting
Qubit Readout Fidelity," Solid-State Electronics, Volume 201, March
2023.

[4] Z. K. Minev et al., “Energy-participation quantization of Josephson
circuits,” npj Quantum Inf 7, 131 (2021).

[51 A.Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep
Learning Library,” Proceedings of the 33rd International Conference on
Neural Information Processing Systems, Article 721, pp. 8026-8037,
2019

[6] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261-272, 2020, doi:
10.1038/s41592-019-0686-2.

[7] J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python,"
in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi:
10.1109/ACCESS.2020.2990567.

[8] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-IL" in IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002, doi:
10.1109/4235.996017.

Authorized licensed use limited to: San Jose State University. Downloaded on December 31,2025 at 21:47:00 UTC from IEEE Xplore. Restrictions apply.

