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Abstract— Radio frequency fingerprint identification (RFFI)
is a promising physical layer authentication technique that
utilizes the unique impairments within the analog front-end of
transmitters as distinct identifiers. State-of-the-art RFFI systems
are frequently powered by deep learning, which requires exten-
sive training data to ensure satisfactory performance. However,
current RFFI studies suffer from a severe lack of training data,
which poses challenges in achieving high identification accuracy.
In this paper, we propose a federated RFFI system that is
particularly suitable for Internet of Things (IoT) networks, which
holds a high potential to address the data scarcity challenge
in RFFI development. Specifically, all the receivers in an IoT
network can pre-train a deep learning-driven feature extractor
in a federated and unsupervised manner. Subsequently, a new
client can perform fine-tuning on the basis of the pre-trained
feature extractor to activate its RFFI functionality. Extensive
experimental evaluation was carried out, involving 60 commercial
off-the-shelf (COTS) LoRa transmitters and six software-defined
radio (SDR) receivers. The experimental results demonstrate
that the federated RFFI protocol can effectively improve the
identification accuracy from 63% to 95%, and is robust to
receiver hardware and location variations.

Index Terms— Device authentication, radio frequency fin-
gerprint, Internet of Things, LoRa, deep learning, federated
learning.

I. INTRODUCTION

T
HE number of Internet of Things (IoT) devices has

increased significantly over the past decade. Numerous

techniques are emerging and contributing to the establishment
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of IoT networks, such as LoRa, Narrowband IoT (NB-IoT),

ZigBee, Bluetooth low energy (BLE), etc. Authentication is

a critical factor in ensuring the security of IoT networks.

Unreliable authentication mechanisms cause the risk of expos-

ing sensitive data to unauthorized users and can even lead

to disruption of the entire IoT network. Most authentication

solutions rely on software identifiers, e.g., MAC addresses,

which are vulnerable to malicious modification and can result

in spoofing attacks. Existing authentication mechanisms rely

on cryptographic algorithms, but securely storing and manag-

ing keys remains a significant challenge [1].

Radio frequency fingerprint identification (RFFI) stands as a

promising non-cryptographic device authentication technique,

which utilizes the hardware impairments of a wireless trans-

mitter as the unique identifier. More specifically, the emitted

wireless signals are distorted by the RF front-end impairments

such as oscillator frequency offset, power amplifier non-

linearity, in-phase/quadrature (I/Q) imbalance [2], [3]. The

receiver can analyze the captured signals and extract their

physical layer features as a unique identifier. The RFFI is

particularly suitable for securing IoT networks because the

low-cost analog components in the IoT transmitter chain may

have discriminative impairments, which guarantee high identi-

fication performance. Furthermore, the RFFI system operates

completely on the receiver side, freeing up the transmitter’s

computing resources and reducing power consumption. Hence,

the RFFI technique has been studied to secure various wireless

systems such as LoRa [4], [5], ZigBee [6], LTE [7], [8],

WiFi [9], and satellite [10], [11].

State-of-the-art (SOTA) RFFI systems typically employ

deep learning techniques to extract the subtle transmitter

distortion because of their powerful feature extraction capa-

bility. In a deep learning-based RFFI system, a well-trained

neural network (NN) is deployed at the receiver, taking in

physical layer signals and predicting device identity. Specif-

ically, NN models such as CNN [3], [4], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31], long short-term memory

(LSTM) network [14], [17], [24], [32], multiple layer percep-

tion (MLP) [4], [14], [17], and the transformer [33] have been

studied, which can effectively extract discriminative features

after sufficient training. However, the NN is usually data-

hungry; it should undergo extensive training on large datasets

to achieve an excellent feature extraction performance.
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The shortage of training data sources greatly constrains the

performance of deep learning-powered RFFI systems. The

RFFI community suffers from a severe lack of high-quality,

large-scale datasets when compared to other fields such as

face recognition. The number of categories in RFFI datasets

typically ranges from tens to hundreds, whereas face recog-

nition datasets often consist of thousands of categories. For

example, the public LoRa-RFFI dataset contains 60 LoRa

transmitters [34], while the labeled faces in the wild (LFW),

a face recognition dataset, contains images of 5,749 peo-

ple [35]. In fact, the data sources should not be a bottleneck

in RFFI because an IoT network typically contains numer-

ous distributed edges and end nodes. However, it would be

impractical to request edge nodes, i.e., receivers, to upload

their raw signals to a central server because of the unaffordable

communication cost. It is, therefore, necessary to explore a

scheme that can efficiently utilize these distributed training

data sources.

Federated learning is a promising technique that can uti-

lize these distributed data sources for RFFI. It allows every

individual receiver, i.e., gateway or access point, in an IoT

network to contribute to the NN training process without the

need to upload the raw signals to a central server. In other

words, federated learning leverages decentralized data sources,

facilitating collaborative model training among multiple clients

while keeping data stored locally [36]. In this study, the term

‘client’ refers to an individual receiver, gateway, or access

point in an IoT network. Each client connects to a number

of IoT end nodes, i.e., transmitters to be identified. The

concept of federated learning has been applied in recent RFFI

research [9], [25], [37]. For instance, Piva et al. employed

a USRP software-defined radio (SDR) to collect signals from

200 radio frequency identification (RFID) tags. They collected

three datasets at different distances: 20 cm, 50 cm, and 100 cm,

each representing an individual client [25]. Shi et al. aimed

to identify up to 100 WiFi 802.11b devices. They conducted

several sets of experiments using a spectrum analyzer, and the

number of clients was up to ten. The authors in [37] attempted

to identify four USRP X310 transmitters. The training dataset

was equally divided into 100 subsets to simulate 100 clients.

Although previous studies have demonstrated the feasibility

of applying federated learning to RFFI, none of them have

considered the practical deployment challenges in a distributed

IoT network. In particular, previous federated RFFI systems

lack trainability, scalability, and NN security. Regarding train-

ability, federated training cannot be performed when the

clients are connected to different numbers and groups of trans-

mitters. This is because these clients will have different NN

architectures when connected to different numbers of transmit-

ters, making the model aggregation algorithm infeasible, e.g.,

FedAvg [36]. Concerning scalability, a trained NN cannot be

used by new clients that are absent during training. When

new clients are registered in the IoT network, the federated

training has to be performed again, which is inefficient and

time-consuming. In terms of NN security, previous federated

training methods require labeled training data for supervised

learning. However, it is impossible to monitor all the clients

to ensure that the labels are correct. Attackers can easily

modify the MAC addresses as those of legitimate devices to

launch label manipulation-based attacks, e.g., label poisoning

backdoor attack [38]. Therefore, it is necessary to develop a

federated RFFI protocol that overcomes the above limitations.

This paper designed a practical federated RFFI for improved

performance by expanding the available training data sources.

The proposed approach addresses the constraints in previous

federated RFFI studies, which ensures trainability, scalability,

and NN security. These features benefit from the unsuper-

vised contrastive training scheme, as well as a three-stage

protocol design. A federated LoRa-RFFI testbed is created

which comprises 60 commercial-off-the-shelf (COTS) LoRa

transmitters and six SDR receivers. It should be noted that the

proposed federated RFFI protocol is applicable to any wireless

technology, and LoRa serves as a case study in this paper. The

contributions are summarized below:

• A federated RFFI protocol is proposed, which involves

three stages: federated pre-training, client fine-tuning,

and identification. This protocol is well-suited for IoT

networks. Each IoT receiver can act as an individual

client and contribute to federated pre-training, potentially

resolving the data scarcity issue in RFFI. First, the

clients perform federated pre-training in an unsupervised

fashion and produce an NN-based feature extractor. After

that, fine-tuning is carried out on clients to activate

their RFFI functionality. More specifically, the feature

extractor is connected to a client-specific classifier, and a

few labelled signals are used for adjusting the NN param-

eters. Finally, the received signals can be fed into the

fine-tuned classification NN and the device identity can be

predicted.

• The proposed protocol guarantees trainability, scalability,

and NN security, which are lacking in previous works.

Regarding trainability, federated training remains feasible

even if the clients are connected to various numbers

and groups of transmitters. This is accomplished by

training a feature extractor rather than a classification NN.

In terms of scalability, the trained NN is applicable not

only to existing clients but also to new clients that are

absent during training. This benefits from the three-stage

protocol design. More specifically, the fine-tuning stage

guarantees excellent performance on individual clients.

For NN security, the proposed federated RFFI protocol

uses unlabeled training data, which makes the NN less

vulnerable to label manipulation-based attacks and poten-

tial data leakage during the training process.

• Extensive experimental evaluation is carried out using a

testbed consisting of 60 COTS LoRa transmitters and six

SDR receivers. The 60 transmitters are divided into six

groups and separately connected to the SDR receivers,

emulating six individual clients. We intentionally ensure

that each client connects to a varied number and groups

of transmitters, and is equipped with a different SDR

receiver. This setup is aligned with a practical, distributed

IoT network and is suitable for evaluating federated RFFI

protocols. The experimental results demonstrate that the

identification accuracy can be improved from 63% to 95%

by using federated learning.
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Fig. 1. Overview of a vanilla federated RFFI system. (a) Federated training
using the FedAvg algorithm, which involves I clients, i.e., receivers in an IoT
network. (b) Identification process at a specific client.

The dataset1 and code2 are available online.

The rest of this paper is structured as follows. Section II

introduces the motivation for this paper. Section III outlines

the details of the proposed federated RFFI protocol. Section IV

takes LoRa as a case study to demonstrate how to design a

practical federated RFFI system. The case implementation is

experimentally evaluated in Section V, and Section VI finally

concludes this paper.

II. MOTIVATION

This section summarizes the limitations of previous feder-

ated RFFI protocols, followed by a detailed explanation of the

motivation for this work.

A. Vanilla Federated RFFI Protocol

This subsection summarizes the federated RFFI systems

proposed in previous studies [9], [25], [37]. In contrast

to conventional distributed learning methodologies, federated

learning does not require the client to upload the training

data, i.e., IQ samples, to a central server. This avoids the

resource-intensive data uploading process, making it a more

optimal approach for RFFI systems.

An overview of a vanilla3 federated RFFI system is illus-

trated in Fig. 1, which consists of two stages: federated training

and identification. The federated training stage involves I

training clients, each connected to M transmitters. Note that

each client represents an individual receiver, e.g., gateway,

or access point, in an IoT network. The I clients independently

capture labeled signals from the transmitters and store them in

a local dataset. After that, the well-known FedAvg algorithm

is leveraged to train a classification NN in a federated and

supervised manner, details of which can be found in [36].

In simple terms, the receivers individually train their local NNs

and regularly send them to a cloud server for aggregation.

The aggregated classification NN is then dispatched to the

training clients for updating the local models. This procedure

1https://ieee-dataport.org/documents/lorafederatedrffidataset
2https://github.com/gxhen/federatedRFFI
3In the field of deep learning, the term ‘vanilla’ is often used to describe

an unaltered or standard version of a technique.

is repeated over multiple communication rounds to create a

well-performing classification NN. In the subsequent identifi-

cation stage, the received signal is input into the classification

NN, which then provides a prediction regarding the identity

of the device.

B. Limitations of the Vanilla Federated RFFI Protocol

The vanilla federated RFFI protocol has several major lim-

itations that prevent its application in practical IoT networks:

• Trainability: The vanilla federated training cannot be

executed when the receivers/clients connect to different

numbers of transmitters, while this is actually the most

common scenario in practical IoT networks. More specifi-

cally, vanilla federated learning relies on model averaging

across multiple classification NNs. When clients are

connected to different numbers of clients, the local NN

architectures are inconsistent due to the varying number

of neurons in the final softmax layer. This model hetero-

geneity restricts effective parameter fusion, making the

FedAvg algorithm infeasible.

• Scalability: A classification NN trained with the vanilla

federated RFFI protocol cannot be utilized by new clients,

which compromises its scalability. The vanilla RFFI

protocol assumes a closed-set setting, and the trained NN

can only identify transmitters included in the training set.

However, a new client often connects to a new group of

transmitters absent in the training process, making classi-

fication NN produced by federated training inapplicable.

Moreover, the new client is typically equipped with a

different type of receiver. The different receiver hardware

characteristics potentially compromise the identification

performance as well.

• NN Security: The vanilla federated RFFI protocol is

based on supervised learning. However, it is imprac-

tical to monitor all the clients in an IoT network to

ensure the training labels are correct and reliable. In fact,

an attacker can easily manipulate the software identifier,

e.g., MAC address, of wireless transmitters, and then

launch label-flipping or backdoor attacks by poisoning

the training labels. Given that attackers can easily change

MAC addresses as those of legitimate devices, label

manipulation-based attacks pose a significant threat to the

security of RFFI systems.

The limitations discussed above motivate the design of a

federated RFFI protocol that ensures trainability, scalability,

and NN security. Specifically, the protocol should be able to

efficiently involve all IoT nodes/edges to perform federated

training, and the unsupervised method should be used to

prevent label-poisoning attacks from potentially malicious

clients. In addition, the trained NN should be able to operate

on any new client to improve the practicality.

III. FEDERATED RFFI PROTOCOL

A. System Overview

The proposed federated learning-enhanced RFFI protocol

is illustrated in Fig. 2. It consists of three stages, namely

federated pre-training, client fine-tuning, and identification.
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Fig. 2. Overview of the proposed federated RFFI system. (a) Federated pre-training. (b) Client fine-tuning. (c) Identification.

• Federated Pre-Training produces an NN-based feature

extractor in a federated and unsupervised fashion. More

specifically, each client j acquires signals from M j

transmitters it serves and stores them in a training dataset.

Note that the number of connected transmitters can be

different for each receiver, i.e., M1 ̸= . . . ̸= M j ̸=

. . . ̸= MJ . This is a more practical setup as each receiver

may serve a different number of transmitters in an IoT

network. After the signal acquisition is completed, all

J clients conduct federated pre-training to produce a

feature extractor. In short, each client iteratively trains

a local feature extractor with an unsupervised approach,

and uploads it to the cloud server after several epochs.

The server aggregates all uploaded models into a single

one and subsequently dispatches it to the clients. These

steps are repeated multiple times until a feature extractor

is produced. The input to the feature extractor is the

signal representation converted from IQ samples, and

the output is the extracted RF fingerprint. By training

feature extractors instead of classification NNs, the model

architecture can be made independent of the number of

connected transmitters, thus solving the issue of model

heterogeneity in federated RFFI studies.

• Client Fine-Tuning concatenates a pre-trained feature

extractor to a classifier and precisely adjusts model

weights to enhance the RFFI performance on a specific

client. First, we connect a classifier, e.g., several linear

layers, to the pre-trained feature extractor to construct a

classification NN. Then few labeled signals are collected

from Mi transmitters connected to client i to fine-tune

its weights. After fine-tuning, the classification NN is

capable of predicting the identity of a device with high

accuracy.

• Identification describes the process of predicting the

identity of a device. The receiver i first acquires a signal

from the device to be identified. Next, the signal is

converted into the appointed signal representation, which

is then fed into the fine-tuned classification NN to obtain

the predicted device identity.

B. Client Operations in Federated Pre-Training

Any client in an IoT network can contribute to the

pre-training process and can therefore implicitly increase the

amount of available training data.

1) Signal Acquisition: The client executes signal acquisition

algorithms to capture the wireless transmission, i.e., IQ sam-

ples, and processes them to meet the RFFI requirements.

This includes synchronization, preamble extraction, frequency

offset compensation, and power normalization.

• Synchronization locates the precise beginning of the

received packet.

• Preamble extraction refers to that only the preamble part

is reserved for the RFFI task. This prevents the NN from

learning protocol-specific or payload information.

• Frequency offset compensation is employed to calibrate

the frequency offset feature of the received signal. Previ-

ous studies have demonstrated that oscillator frequency is

sensitive to temperature variations [14], [15], [39], thus

Authorized licensed use limited to: Auburn University. Downloaded on January 01,2026 at 00:23:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Local unsupervised contrastive training.

calibrating it can significantly improve system stability.

In addition, the frequency offset feature is mimicable, and

compensating it can enhance the resilience of the system

against spoofing attacks [19], [26], [40].

• Power normalization prevents the NN from being inter-

fered with by the variations in received signal strength

when making predictions.

As shown in Fig. 2(a), the federated training involves J

clients, each of which is connected to M j wireless transmitters.

The receivers execute signal acquisition programs, storing the

processed IQ samples into training datasets, given by

T
j =

{

r
j
k

}K j

k=1
, (1)

where T j denotes the training dataset collected at receiver j

and r j denotes the received IQ samples.4 K j refers to the

number of signals in dataset T j . Unlike previous supervised

RFFI protocols, the training dataset does not contain label

information in this study. It is highlighted that the T j should

include as many channel conditions as possible, as this can

enhance the transferability and generalization ability of the

trained neural network.

2) Local Contrastive Training: After collecting sufficient

signals, each receiver j independently trains its local feature

extractor F j in an unsupervised fashion. More specifically,

we developed an unsupervised contrastive learning algorithm

in the RFFI context, which has shown outstanding perfor-

mance in recent studies and is even comparable to supervised

approaches [41], [42], [43], [44].

In a nutshell, contrastive training learns feature represen-

tation by maximizing the similarity between two augmentation

results of the same wireless signal. Specifically, as shown

in Fig. 3, we use a channel simulator to augment the input

wireless signal r twice, generating two independent augmented

signals, denoted as ra and rb, respectively.5 The signals are

then converted into appropriate signal representations, Ra and

Rb, to assist the RF fingerprint extraction process. Subse-

quently, the converted signal representations are fed into two

shared-weight feature extractors to obtain the RF fingerprints

fa and fb. Finally, a contrastive loss Lcntr is defined to guide

the parameter-updating process of the feature extractor. The

4It is assumed that no collisions occur during the data collection process,

i.e., r j does not interfere with each other.
5Note that ra and rb are augmented by two independent instances, i.e.,

channel impulse response, generated from the same channel simulator.

overarching objective function for local unsupervised training

is mathematically given by

θ
j

F
= arg min

θ
j

F

∑

Lcntr . (2)

Various optimizers can be employed to achieve the objective

in (2), such as stochastic gradient descent (SGD), RMSprop,

Adam, etc. Designers need to select an appropriate optimizer

based on the experimental performance.

Contrastive learning is a self-supervised scheme, which

is a sub-category of unsupervised learning. Self-supervised

learning has been successfully applied in classification and

anomaly detection tasks. As RFFI systems target anomaly

detection or classification functions as well [5], self-supervised

learning is a suitable approach for training RFFI models.

Recent research has applied self-supervised disentangled rep-

resentation to construct RFFI systems [45], which leverages

its implicit data augmentation module to mitigate the data

shortage problem.

a) Data augmentation: The data augmentation module,

i.e., channel simulator, enables the NN to apply various chan-

nel effects to the input signal and learn robust and invariant

feature representation. There are many channel simulators

available, such as the tapped delay line (TDL) model, the

clustered delay line (CDL) model, and the ray tracing model.

The designer should model the channel according to the wire-

less protocol and operating environment, taking into account

factors such as signal bandwidth, frequency band, and level of

Doppler and multipath effects. Note that the two branches in

Fig. 3 share the same channel simulator, but are augmented

with different channel impulse responses.

It is worth noting that a well-designed data augmentation

module can improve the quality of the learned feature rep-

resentation [44], i.e., enhanced model performance. Previous

studies have demonstrated that data augmentation represents

an effective strategy for combating channel effects, as the

model transferability is significantly enhanced by augmenting

the quantity and diversity of training data [16], [18], [21].

b) Signal representation: The time-domain IQ samples

are often converted to other signal representations to be

used as NN inputs. This process can enhance identification

performance by increasing the efficiency of feature extraction.

Various signal representations have been utilized in previous

works, such as spectrogram [14], [15], differential constel-

lation trace figure [46], frequency spectrum [47], [48], [49],

etc. The design of the signal representation should take into

account the physical layer characteristics of the target wireless

protocol.

c) Local feature extractor: The converted signal

representation is input into a local feature extractor F j , which

is mathematically written as

f = F
j (R, θ

j

F
), (3)

where θ
j

F
denotes the parameters of the feature extractor.

The output f is a high-dimensional feature representation, i.e.,

vector, that can be considered as the extracted RF fingerprint.

The architecture of the designed feature extractor depends

on the characteristics of input signal representation R.
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For example, complex-valued NN is suitable for complex

time-domain IQ samples [50], whereas CNN is efficient at

processing time-frequency domain spectrograms because of

their image-like structure [14].

d) Contrastive loss function: The contrastive loss Lcntr

encourages the NN to pull positive pairs (fa and fb) in

a mini-batch as close as possible while pushing negative

pairs (fa and feature vectors other than fb) in a mini-batch

farther apart. In short words, the contrastive loss aims to

minimize the feature difference between fa and fb, since

they are extracted from representations of the same signal.

Available contrastive loss functions include the normalized

temperature-scaled cross-entropy (NT-Xent) loss, normalized

temperature-scaled logistic (NT-Logistic) loss, margin triplet

loss, and other recent advances [42], [44].

C. Server Operations in Federated Pre-Training

After all clients have finished the local training process, the

feature extractors F j will be uploaded to the cloud server

and then aggregated into a single global model F global . The

aggregation process is mathematically represented as

θ
global

F
=

J
∑

j=1

ηθ
j

F
, (4)

where θ
global

F
denotes the parameters of the aggregated feature

extractor F global , and η = K j/
∑J

j=1 K j is a weighting factor

calculated based on the size of the local training dataset T j .

After the aggregation process is finished at the cloud server,

F global is dispatched to each of the J receivers. Subsequently,

each receiver restarts the local contrastive training on the basis

of the dispatched feature extractor F global .

The above uploading, aggregation, and dispatching steps

are iterated until the prescribed number of communication

rounds is reached. The federated pre-training finally produces

an aggregated feature extractor, Fglobal , which is used for

the subsequent client fine-tuning and identification procedures.

More specifically, pre-training offers a set of initial parameters

for the fine-tuning process, which can considerably enhance

system performance since fine-tuning a pre-trained model is

typically more efficient than training a model from scratch,

i.e., training starts with randomly initialized parameters.

D. Client Fine-Tuning and Identification

The client can activate the RFFI functionality by fine-tuning

using the pre-trained feature extractor Fglobal as a foundation

model. In other words, RFFI is a downstream task of federated

pre-training. First, client i concatenates a softmax-enabled

classification head Ci to the feature extractor Fglobal to create

a classification NN. Note that the number of neurons in

the last layer of the classification head equals Mi , i.e., the

number of transmitters connected to client i . The concatenated

classification NN is given by

N
i (·, θ i

N ) = F
global(·, θ

global

F
) ◦ C

i (·, θ i
C), (5)

where the symbol ◦ represents function composition and is

used to describe multiple models applied in sequence. Note

that θ i
N

is a union of θ
global

F
and θ i

C
, i.e., θ i

N
= θ

global

F
∪ θ i

C
.

In the forward propagation process, the signal representation

R is fed into the classification NN N i and a prediction p̂ is

returned

p̂ = N
i (R, θ i

N ), (6)

where p̂ = {p1, · · · , pm, · · · , pMi
} is a vector containing Mi

elements, and pm represents the probability that the signal is

sent from transmitter m.

After creating the classification NN at client i , we will

collect a small dataset for fine-tuning, given by

D
i =

{

(r, p)i
k

}K i

k=1
, (7)

where Di denotes the fine-tuning dataset at client i and K i is

the number of fine-tuning samples. (r, p)i
k is the k-th signal-

label pair collected by receiver i , where p is the ground-truth

label for signal r.

With the classification NN N i and dataset Di , fine-tuning

can be subsequently performed in a supervised manner. The

objective function for fine-tuning is expressed as

θ i
N = arg min

θ i
N

∑

Lce(p̂, p), (8)

where Lce is the cross-entropy loss that is often used in

classification tasks. Optimization algorithms such as Adam

and SGD can be employed to achieve this objective. The

fine-tuning process also utilizes the data augmentation tech-

nique introduced in Section III-B2. More specifically, the

signals in a mini-batch are separately fed into a channel

simulator to increase the NN’s robustness to channel variations

and noise.

Note that unlike pre-training where all clients can par-

ticipate, fine-tuning must be carried out in a controlled

environment to ensure that labels in Di are correct.

After client i finished fine-tuning, the classification NN can

be used to identify a wireless transmitter. As demonstrated in

Fig. 2(c), the device to be identified sends a wireless signal

to the receiver. The signal is captured, converted to the signal

representation, and then input into the classification NN N i

to acquire the prediction p̂. The device corresponding to the

highest probability in p̂ is the final identity predicted by the

RFFI system.

IV. CASE STUDY: FEDERATED LORA-RFFI PROTOCOL

This section takes the LoRa technology as a case study to

demonstrate how to design a federated RFFI system. Note

that the protocol proposed in Section III can be applied to any

wireless technology with appropriate adjustment.

A. LoRa PHY Primer

LoRa is Semtech’s proprietary wireless modulation tech-

nology. It is derived from the chirp spread spectrum (CSS)

technique and encodes information on frequency-varying lin-

ear chirps, as shown in Fig. 4(a). As typical non-stationary

signals with changing frequency components, LoRa signals

are often visualized in the time-frequency domain in the

form of spectrograms. Fig. 4(b) presents the spectrogram
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Fig. 4. LoRa’s preamble part consists of eight repeated up-chirps.
(a) Time-domain waveform (the in-phase branch). (b) Time-frequency domain
spectrogram.

of the preamble part in a LoRa packet, which consists of

eight repeating unmodulated LoRa symbols. Previous RFFI

studies reveal that converting time domain LoRa signals into

time-frequency domain representations can improve system

performance [14], [15], [16].

B. Client Operations in Federated Pre-Training

for LoRa-RFFI

1) LoRa Signal Acquisition: As LoRa is a proprietary

protocol owned by Semtech Corporation and there exists no

official document outlining the details of its physical layer,

most researchers use open-source or self-designed algorithms

to capture LoRa transmissions. The LoRa signal acquisi-

tion algorithms introduced in [14] are utilized in this work,

which includes steps of synchronization, preamble extrac-

tion, frequency offset compensation, and power normalization.

According to the experimental configurations, each LoRa

signal is a vector consisting of 4,096 complex numbers, and

its in-phase part is shown in Fig. 4(a).

2) Local Contrastive Training for LoRa-RFFI: As illus-

trated in Section III-B2 and Fig. 2, each client j trains a local

feature extractor in an unsupervised and contrastive manner.

Specifically, we augment a time-domain LoRa signal with two

independent TDL channel simulators, and then convert the

augmentation results into channel-independent spectrograms,

respectively. Subsequently, we use the feature extractor to

obtain the RF fingerprints of the two augmented results and

then compute loss.

a) Data augmentation for LoRa-RFFI: The TDL channel

model is utilized in this work. The exponential power delay

profile (PDP) is used to model the multipath effect, and the

Doppler effect is depicted by the Jakes model. Synthetic

Gaussian noise is also added to the signal. The simulation

parameter is randomized for each specific LoRa signal. The

ranges for RMS delay spread, Doppler frequency, and signal-

to-noise ratio (SNR) are [5, 300] ns, [0, 5] Hz, and [0, 80] dB,

respectively [16]. The TDL channel simulator is implemented

in Python with PyPhysim library.6

b) Signal representation for LoRa: The channel-

independent spectrogram proposed in [16] serves as the

signal representation in this work. It is a time-frequency

domain signal representation and is suitable for analyzing the

frequency-varying characteristics of the LoRa physical layer

signal. The channel-independent spectrogram is generated by

6https://pyphysim.readthedocs.io/en/latest/

Fig. 5. Architecture of the classification NN, consisting of a feature extractor
and a classification head.

dividing neighboring frames in a spectrogram, leveraging the

fact that the wireless channel does not change drastically over

a short time. Details of how to derive a channel-independent

spectrogram can be found in [16]. The window length and

overlap are set to 64 and 32 respectively when performing the

short-time Fourier transform (STFT). The upper and lower

sections of the generated channel-independent spectrogram

are cropped by 30%, as these regions are out-of-band noise

and lack valuable information. The size of the generated

channel-independent spectrogram is 26 × 126. Note that

utilizing channel-independent spectrograms as the signal rep-

resentation has the potential to address the issue of device

heterogeneity in the context of federated training. Specifically,

the channel effects are significantly mitigated, thereby reduc-

ing the differences in data distribution between clients and

facilitating the federated training process.

c) Local feature extractor for LoRa-RFFI: A CNN is

utilized to extract the RF fingerprints, which is depicted in

Fig. 5. It consists of three convolutional layers of 8, 16, and

32 3×3 kernels, respectively, two 2×2 maxpooling layers, and

three linear layers of 128, 64, and 128 neurons respectively.

The outputs of convolutional and linear layers are activated

by the ReLU function. The output is a vector containing

128 elements, i.e., the RF fingerprint.

The main reason for using the CNN architecture is that the

NN input is a channel-independent spectrogram, which is an

image-like signal representation. Previous work has shown that

CNNs can efficiently process such type of data [14].

d) Contrastive loss function: The NT-Xent loss is

employed in the LoRa-RFFI case study, which has been

experimentally shown to achieve superior performance in other

machine learning tasks [42]. The loss for a positive pair is

mathematically expressed as

ℓcntr (fa, fb) = − log
esim(fa ,fb)/λ

∑2B
k=1 I[k ̸=a]esim(fa ,fk )/λ

, (9)

where I[k ̸=a] ∈ {0, 1} is an indicator function that equals to one

when k ̸= a. sim(·, ·) denotes the similarity function between

two representations. λ and B are the temperature parameter

and batch size, respectively. The final loss Lcntr is computed

across all the 2B positive pairs in a mini-batch.

In our implementation, the temperature parameter λ and B

are set to 0.05 and 128, respectively, and the function sim(·, ·)

is defined as the cosine similarity, expressed as

sim(fa, fb) =
fa · fb

∥fa∥ ∥fb∥
, (10)

where the operator · denotes the dot product and ∥·∥ returns

the norm of a vector.
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The NN is implemented with the PyTorch framework. Each

client j randomly splits 10% signals in T j for validation

and the rest for pre-training. The Adam optimizer is utilized.

Validation loss is monitored during local unsupervised training

to adjust the learning rate and determine when to stop training.

More specifically, the initial learning rate is set to 0.0003, and

it decreases by a factor of 0.1 whenever the validation loss

remains constant or increases for ten consecutive epochs. The

local unsupervised training process stops when the validation

loss remains unchanged for 20 consecutive epochs.

C. Server Operations in Federated Pre-Training

for LoRa-RFFI

After local contrastive training is finished, all clients upload

their local feature extractors to a cloud server, which per-

forms the aggregation process according to (4). This step

produces a global feature extractor. Subsequently, the cloud

server dispatches the aggregated global feature extractor to all

clients so that they can restart the local contrastive training

process described in Section IV-B2. The above uploading,

aggregation, and dispatching steps are repeated a few rounds

before stopping. The effect of the number of communication

rounds will be evaluated in Section V-C.

D. Client Fine-Tuning and Identification

After federated pre-training, the global feature extractor can

be connected to a classification head to create a classification

NN. In our setup, the classification head for client i comprises

two linear layers: one with 64 and another with M i neurons,

which is shown in Fig. 5. The outputs of the first and

second layers are activated by ReLU and Softmax functions,

respectively.

Subsequently, a small amount of labelled data is collected

to fine-tune the classification NN. The cross-entropy loss is

employed and the TDL channel simulator is also used for

augmentation. The fine-tuning process shares almost identical

configurations with pre-training, such as the optimizer and

learning rate schedule, except for the initial learning rate,

which is set to 0.001 during fine-tuning.

In the identification stage, the device to be identified sends

a wireless signal to the receiver. The captured signal is fed

into the fine-tuned classification NN and a prediction on the

device identity is returned.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Hardware: The testbed comprises six SDR receivers

serving as clients, namely PLUTO-SDR, B200-mini, B200,

B210, N210 and RTL-SDR. They separately connect to 60

COTS LoRa transmitters, including 25 LoPy4 boards,

15 mbed 1272 LoRa shields, ten mbed LoRa 1261 shields,

five FiPy boards, and five Dragino LoRa shields. The LoRa

transmitters emit wireless signals at 868.1 MHz. The band-

width is set to 125 kHz and the spreading factor is seven. The

receiver sampling rate is configured as 500 kHz.

The system is evaluated using a PC equipped with an Intel i5

central processing unit (CPU) and an NVIDIA GeForce RTX

Fig. 6. Experimental equipment. (a) 60 COTS LoRa transmitters. (b) Six
SDRs act as LoRa Receivers.

TABLE I

CLIENT SETTINGS

4060 graphic processing unit (GPU). Specifically, the GPU

handles the training and inference tasks for the NN, while

the CPU manages other processes like data augmentation and

signal representation conversion.

2) Client Settings: As introduced in the previous

subsection, there are six SDR receivers emulating six

individual clients, which are detailed in Table I. They belong

to different SDR models and separately connect to a subset

of the 60 LoRa transmitters. Among them clients 1-4 are

used for federated pre-training and clients 1-6 are used for

evaluation.

This experimental setup is more realistic for IoT networks

for the following reasons:

• Clients 1-4 are connected to different groups of

transmitters. In practical IoT networks, the clients often

provide services to different groups and numbers of trans-

mitters, and the transmitters in each group are typically

from different manufacturers.

• Clients 1-6 are of different SDR models. The receivers

in an IoT network are likely to be from different manufac-

turers. Therefore, we deliberately use six different SDR

platforms as clients.

• Clients 5-6 do not participate in pre-training. It is

preferred that the federated RFFI protocol can be applied

to a new client that is absent during training. Therefore,

we exclude clients 5-6 during pre-training and only use
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Fig. 7. Performance gains from federated pre-training.

them for fine-tuning and evaluation. This allows us to

investigate the identification performance on new clients.

B. Performance Gains Through Federated Pre-Training

Federated pre-training allows numerous clients to collabora-

tively train a feature extractor, which can effectively benefit the

subsequent fine-tuning process. The pre-training, fine-tuning,

and identification settings are listed below:

• Pre-Training: Clients 1-4 with PLUTO, B200 mini,

B200, B210 receivers, respectively. 1,500 signal sam-

ples are collected from each transmitter-client pair.

Three training strategies are investigated, i.e., centralized

pre-training, federated pre-training, and no pre-training.

Here, ‘centralized pre-training’ means that all clients

upload their local datasets to the cloud server to form

a large-scale dataset and then subsequently perform

unsupervised contrastive training. Whereas, the ‘no pre-

training’ strategy refers to skipping the pre-training step

and fine-tuning directly from scratch.

• Fine-Tuning: Client 5 with a USRP N210 receiver.

200 signal samples are collected from each transmitter.

• Identification: Client 5 with a USRP N210 receiver,

another 300 signal samples are collected from each

transmitter. Synthetic Gaussian noise of various levels is

added to the signals to simulate different SNR conditions.

Fig. 7 demonstrates the performance gains through federated

pre-training. It can be observed that both centralized and

federated pre-training strategies result in significantly higher

performance compared to the ‘no pre-training’ strategy, with

an improvement of up to 30%. Furthermore, the results

indicate that centralized pre-training slightly outperforms fed-

erated pre-training by less than 4%. Despite this marginal

increase in accuracy, the cost of requiring all clients to upload

their raw signals to a cloud server outweighs the benefits.

The excellent identification results also validate the trainability

and NN security of the proposed protocol, since the clients

are connected to different numbers of transmitters and the

pre-training uses unlabeled data.

C. Effect of the Number of Communication Rounds

As introduced in Section III-C, the clients regularly com-

municate with the cloud server during federated pre-training

for aggregation and dispatching. The evaluation settings are as

follows:

Fig. 8. Effect of the number of communication rounds.

• Pre-Training: Clients 1-4 with PLUTO, B200 mini,

B200, B210 receivers, respectively. 1,500 signal samples

are collected from each transmitter-client pair. The fed-

erated pre-training approach is used, and the aggregated

feature extractor is saved after the first, third, and fifth

communication rounds.

• Fine-Tuning: Client 5 with a USRP N210 receiver.

200 signal samples are collected from each transmitter.

• Identification: Client 5 with a USRP N210 receiver,

another 300 signal samples are collected from each

transmitter. Synthetic Gaussian noise of various levels is

added to the signals to simulate different SNR conditions.

The effect of the number of communication rounds is shown

in Fig. 8, which demonstrates that more communication rounds

lead to improved identification performance. Specifically, the

accuracy is enhanced by around 5% when the number of

communication rounds increased from one to five. It is also

noticed that the improvement becomes marginal after more

than three rounds of communication. The results show that

there is almost no difference between conducting three or

five communication rounds, with an improvement of less than

1%. In our experimental setting, the federated pre-training was

terminated after five communication rounds, with rounds 1, 2,

3, 4, and 5 requiring 489, 288, 277, 272, and 211 epochs,

respectively. Each epoch costs around 80 seconds. It can

be observed that the number of required epochs gradually

decreases. In the early rounds, the model is far from the

optimal parameter set and requires more epochs to make sig-

nificant improvements. As the model approaches convergence

in later rounds, fewer epochs are needed to refine it.

D. Effect of the Number of Fine-Tuning Signals

Fine-tuning requires correctly labeled signals from legit-

imate transmitters, which is carried out in controlled envi-

ronments. Increasing the amount of signal samples improves

identification performance but raises the cost of fine-tuning as

well. The settings are as follows:

• Pre-Training: Clients 1-4 with PLUTO, B200 mini,

B200, B210 receivers, respectively. 1,500 signal samples

are collected from each transmitter-client pair. The fed-

erated pre-training approach is used.

• Fine-Tuning: Client 5 with a USRP N210 receiver. The

fine-tuning process employs 20, 50, 100, and 200 labeled

signal samples, respectively.
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Fig. 9. Effect of the number of fine-tuning signals.

• Identification: Client 5 with a USRP N210 receiver,

another 300 signal samples are collected from each

transmitter. Synthetic Gaussian noise of various levels is

added to the signals to simulate different SNR conditions.

The effect of the number of fine-tuning signals is depicted

in Fig. 9, which indicates that the more fine-tuning signals,

the higher the identification performance. The identification

accuracy is acceptable when the number of fine-tuning signal

samples approaches 100, i.e. 95.1% at 45 dB. Increasing the

number to 200 leads to a further improvement of around 4%.

Compared to previous methods that require huge amounts of

data to train NNs from scratch, fine-tuning the pre-trained NN

requires only 100 signals to achieve comparable performance,

significantly reducing the cost of data collection during system

deployment. In the experimental setting, the stop condition

is reached after approximately 80 epochs, with each epoch

requiring approximately three seconds.

E. Performance on Various Clients

The pre-trained feature extractor can be deployed on various

clients to enable their RFFI functionality. Given the fact that

receivers in an IoT network may come from different manu-

facturers, it is necessary to evaluate the performance on clients

with different receivers to determine if the differences in

receiver hardware affect identification accuracy. The evaluation

configurations are as follows:

• Pre-Training: Clients 1-4 with PLUTO, B200 mini,

B200, B210 receivers, respectively. 1,500 signal samples

are collected from each transmitter-client pair. The fed-

erated pre-training approach is used.

• Fine-Tuning: Client 1-6 with six different SDR receivers,

200 signal samples are collected from each transmitter.

Note that the fine-tuning signals are not a subset of

training signals.

• Identification: Client 1-6 with six different SDR

receivers, another 300 signal samples are collected from

each transmitter.

Table II demonstrates that the RFFI system performs well

on all six clients, with accuracy consistently above 90%.

We found that the identification performance is excellent

regardless of whether the receiver participated in pre-training

or not. Despite the fact that clients 5 and 6, i.e., N210 and

RTL-SDR, are absent during the pre-training process, the iden-

tification accuracy remains over 95%. The accuracy of Client

TABLE II

PERFORMANCE ON VARIOUS CLIENTS

Fig. 10. Floor plan and Tx/Rx locations.

1 is comparatively lower than that of the other clients. This is

presumed to be due to the fact that the transmitters connected

to Client 1 are all of the same model, i.e., 5 LoPy4, and

thus have bit-similar hardware characteristics. This is the most

challenging situation for RFFI applications, However, despite

this, the accuracy remains above 90%, which demonstrates

an excellent identification capability. A special note is that

USRP N210 and RTL-SDR are the most and least expensive

of the six SDR receivers. This confirms that RFFI performance

remains unaffected by the quality of the receiver hardware.

The excellent performance on various clients validates the

scalability of the federated RFFI protocol.

F. Performance at Different Locations

The RFFI system should be robust to location variations

considering the mobility of IoT end nodes. To achieve this,

we simulate channel effects, i.e., multipath and Doppler

effects, during data augmentation and convert the collected

IQ samples to a channel-independent spectrogram as the signal

representation, as detailed in Section IV-B2. The RFFI system

is evaluated in a real office environment with transmitters

placed at different locations. The floor plan is given in Fig. 10

and the settings are provided below:

• Pre-Training: Clients 1-4 with PLUTO, B200 mini,

B200, B210 receivers, respectively. 1,500 signal samples

are collected from each transmitter-client pair. The fed-

erated pre-training approach is used.

• Fine-Tuning: Client 5 with a USRP N210 receiver.

200 signal samples are collected from each transmitter.

The transmitters are placed at Location A when collecting

fine-tuning signals.

• Identification: Client 5 with a USRP N210 receiver,

another 300 signal samples are collected from each trans-

mitter. The transmitters are in turn placed at Location A

to Location D during data collection.

The identification results are given in Table III. It can be

observed that the system performance reaches 97% when the
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TABLE III

PERFORMANCE AT DIFFERENT LOCATIONS

fine-tuning and identification datasets are collected at the same

location, i.e., Location A. When the transmitters move to

Locations B, C, and D, the accuracy drops by less than 8%

and the final identification results still remain around 90%.

These results demonstrate that the designed RFFI system is

relatively robust to location variations.

VI. CONCLUSION

This paper proposed a federated RFFI protocol that is

practical in the actual wireless context. It consists of three

stages: federated pre-training, client fine-tuning, and identifi-

cation. First, the federated pre-training produces an NN-based

feature extractor in an unsupervised contrastive manner. Subse-

quently, the clients connect several linear layers to the feature

extractor to create a classification NN, and then fine-tune

its parameters to activate its RFFI functionality. After fine-

tuning, the classification NN can predict the identity of the

transmitter by analyzing the received physical layer signal.

A federated LoRa-RFFI testbed was created to evaluate the

proposed protocol, involving 60 COTS LoRa transmitters and

six SDR receivers. The experimental results demonstrated that

the federated RFFI can improve the accuracy from 63% to

95%, which benefits from the expanding of training data. It is

concluded that federated learning is a promising technique to

mitigate the data-hungry dilemma during RFFI development.
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