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Abstract—State estimation from noisy observations is crucial
across various fields. Traditional methods such as Kalman,
Extended Kalman, and Unscented Kalman Filter often struggle
with nonlinearities, model inaccuracies, and high observation
noise. This paper introduces Cholesky-KalmanNet (CKN), a
model-based deep learning approach that considerably enhances
state estimation by providing and enforcing transiently precise
error covariance estimation. Specifically, the CKN embeds math-
ematical constraints associated with the positive definiteness of
error covariance in a recurrent DNN architecture through the
Cholesky decomposition. This architecture enhances statistical
reliability and mitigates numerical instabilities. Furthermore,
introducing a novel loss function that minimizes discrepancies
between the estimated and empirical error covariance ensures a
comprehensive minimization of estimation errors, accounting for
interdependencies among state variables. Extensive evaluations
on both synthetic and real-world datasets affirm CKN’s supe-
rior performance vis-a-vis state estimation accuracy, robustness
against system inaccuracies and observation noise, as well as
stability across varying training data partitions, an essential
feature for practical scenarios with suboptimal data conditions.

Index Terms—Deep Learning, Kalman Filter, Recurrent Neu-
ral Network, State Estimation, Uncertainty Quantification

I. INTRODUCTION

CCURATE state estimation from noisy observations is
essential in many applications [1], [2], [3], [4], [5].
Sensor noise and unmeasurable states often obscure the true
state, requiring estimation techniques to reconstruct internal
states. The Kalman Filter (KF) [6] provides optimal estimation
for linear systems with Gaussian noise. However, the Extended
Kalman Filter (EKF) [7] struggles with high nonlinearity and
Jacobian computations [8], while the Unscented Kalman Filter
(UKF) [9] may suffer from numerical instability [10]. These
filters also rely on accurate system models, which are often
unavailable in complex, real-world scenarios [11], [12].
KalmanNet (KN) [13], combining KF’s structure with the
adaptability of Deep Neural Networks (DNNs), addresses
nonlinear dynamics and model inaccuracies by learning the
Kalman gain directly from data, removing the need to tune
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noise covariances. Split-KalmanNet (SKN) [14] further im-
proves KN by using two separate DNNs for state and inno-
vation covariance estimation, effectively handling mismatches
in process and measurement models. The KN framework
has been extended in various ways to tackle different state
estimation challenges [15], [16], [17], [18], [19], [20].

Robust Uncertainty Quantification (UQ) is crucial in many
applications [21], [22], [23], [24], [25]. In the KN framework,
UQ can be derived analytically for linear state-space models
with full-column ranked observation matrices [26], while SKN
estimates error covariance through DNNs [27]. However, both
approaches face limitations, including the requirement for full-
rank observation matrices and risks of producing non-positive
definite covariances, which may limit their applicability across
a wide range of real-world scenarios.

In this paper, we introduce Cholesky-KalmanNet (CKN),
which significantly advances the KN framework to enhance
the accuracy, robustness, and stability of state estimation. Our
key contributions are summarized as follows: (i) Enabling Pre-
cise Error Covariance Estimation: By enforcing mathematical
constraints through Cholesky decomposition within a recurrent
DNN architecture, we ensure positive definite error covariance
matrices, enabling UQ for estimated states in any problem.
Additionally, the proposed enforcement of the mathematical
constraints reduces the parameter space estimated by DNNs to
nearly half compared to SKN, reducing training time, lowering
training data requirements, and mitigating overparameteriza-
tion; (ii) Enhanced State Estimation: The CKN architecture
integrates estimated error covariance through a proposed hy-
brid loss function, improving the accuracy of state estimates.
Furthermore, Confidence Intervals (CIs) generated by CKN
can capture the transient fluctuation in the error estimates; and
(iii) Rigorous Benchmark Validation: We demonstrate superior
accuracy, robustness, and stability of CKN across diverse
scenarios including varying noise levels, different degrees of
system model inaccuracies, and model training variance with
respect to training sets.

II. PROBLEM FORMULATION AND PRELIMINARIES

Dynamic systems are analyzed using discrete-time state-

space models, defined at each time step ¢, given as:
Xy € R™
y: € R”

(1a)
(1b)

xp = f(x¢-1) + Wy,
ye = h(x) + vy,
where X; is the state vector, evolving through a nonlinear state

function f(-), and y; is the observation vector obtained via a
nonlinear observation function h(-). The random processes w;
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and v; are white Gaussian with zero mean and covariances
T T
E [wtwt ] =Q;and E [vtvt ] = R;.

A. Model-based Extended Kalman Filter

The EKF is widely used for state estimation in dynamic
systems with nonlinear state and observation models. The main
filter equations are as follows:

o Prediction Step:

)A(t|t—1 =f (fit—l\t—l) (2a)
2t|t71 = Ft—12t71|t71FtT71 +Qq (2b)
« Update Step:
Xep = Xej—1 + Ko (ye — Yee—1) (3a)
Sy = (1—KHy) 2y (3b)
K, =3, H{S,} | (3¢)

\ivhere Ft=%|x:5¢m, HFg*},:\x:ﬁm,l, yt\t—1=h (f(t|t—1), and
Sejr—1=Hi 3y HY + Ry,

EKF’s dependence on the physical model, which may be
inaccurate, has led to integrating Deep Learning (DL) tech-
niques within the KF framework for improved performance.

B. Deep Learning-aided Kalman Filters

In KN, the Kalman gain K;(®), where © represents
the set of trainable parameters, is estimated using Recurrent
Neural Networks (RNNs), particularly the Gated Recurrent
Unit (GRU). The update equation for the KN is defined as
Xyt = Xyfp—1 T Ki(©)(y: —¥ij¢—1), where K;(©) is adjusted
continuously through training. For a comprehensive overview
of KN, we refer to [13].

Unlike the conventional KN where a single network es-
timates the Kalman gain, SKN employs two separate net-
works. The first network, G} (©), is designed to learn the
prior covariance matrix of the state 3;,_; implicitly. The
second network, GZ(®,), focuses on learning the inverse
of the innovation covariance matrix S;tl_l implicitly. The
Kalman gain matrix is then constructed as K;(®1, 02, H;) =
G}(©1)H] GZ(©3). This architectural split enables SKN to
effectively handle discrepancies in process and measurement
noises. For further details of SKN, we refer to [14].

III. CHOLESKY-KALMANNET
A. Uncertainty Quantification in DNN-aided KF's

Klein et al. [26] introduced a method for KN to estimate
the error covariance, ﬁ]t‘t, through analytical matrix opera-
tions, involving an inverse of matrix product, H,=(H,H? )",
which requires H; to be full-column rank, thus limiting its
applicability. Additionally, this approach may result in non-
positive definite covariance matrices. SKN, in contrast, uses
RNNs to estimate 3;;_; and S;;_1, and subsequently derives
the posterior covariance ﬁ)tlt [27]. However, the covariances
estimated from RNNs may not consistently be positive defi-
nite, leading to inaccurate or even invalid UQ.

To address these issues, we propose integrating a new neural
layer within the RNN architecture, which enforces positive
definiteness in covariance matrices, significantly enhancing
stability and applicability across diverse contexts.

B. Positive Definite Enforcing Layer for Error Covariance

The proposed CKN integrates a Positive Definite Enforcing
Layer (PDEL) within the RNN architecture to ensure that
prior and error residual covariance matrices remain positive
definite, as shown in Fig. 1. The PDEL leverages Cholesky
decomposition to produce positive definite matrices from any
real input [28]. For a symmetric matrix C, the decomposition
is C=LL”, where L is a lower triangular matrix with positive
diagonal values, ensuring C is positive definite.

In CKN, the PDEL transforms a vector A, from RNN
outputs into a positive definite matrix C,x,, with the relation
p = q(g+1)/2. This process involves reshaping A into a
lower triangular matrix L’ as:

ai p(a1)
as , a2 p(a3) 0

A=| |oU=] | R 4)
ap PR PR ... p(ap)

where the function p(-) represents any strictly positive func-
tion, such as exponential, square, or ReLU. In this work,
we empirically selected the absolute function, defined as
p(a) = |a|+¢e where >0 is a small positive constant ensuring
positive diagonal terms. This function was chosen empirically,
as it provided smoother and more effective training compared
to other functions such as exponential or ReLU, leading to
more accurate results. The positive definite matrix is then
obtained as C=L’L'T. In addition, PDEL reduces the number
of entries in the covariance matrix by nearly 50%, allowing
efficient training on smaller datasets, which is beneficial in
real-world scenarios with limited data.

The matrix (I — K;H;), in (3b), is essential for estimating
flm by adjusting the prior covariance flﬂt,l with new mea-
surement information. This matrix is typically non-symmetric
and not inherently positive definite. Nevertheless, when H,
and R, are such that K; remains well-bounded, it generally
serves as a stable transformation matrix.

C. Training to Predict Error Covariance

The additional PDEL enables the estimation of the positive
definite posterior covariance ﬁm. However, training based on
(6), focused solely on state estimation, does not ensure that
itlt accurately reflects the true error covariance. To address
this, we propose an alternative loss function as:

Etotal — (1 _ ﬁ)ﬂb 4 ﬁﬁcou (5)
where
N T;
1 Lo o]
Ee"‘:ﬁsz‘xg)—xglz 2,and (6)
i=1 " " t=1
Leov — l i zTé i f: [e(l)e(l)T] _ [2(1)}
N T; LR P el

i=1 " t=1j=1k=1

(N

The superscript (i) denotes the i-th data sample; for example,
xy) represents the true state at time step ¢ for the ¢-th sample.

Additionally, egi) = xgi) 7&32 represents the estimation errors,
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Fig. 1. Block diagrams for CKN: (a) Split-GRU architecture used to estimate the innovation covariance Sﬂt,l and the state covariance lf’t|t,1. The
architecture includes GRU layers combined with the Positive Definite Enforcing Layer (PDEL). (b) Detailed CKN architecture, comprising a fully connected
(FC) input layer, followed by a GRU layer, another FC output layer, and ending with the PDEL, which reshapes the output, applies Cholesky decomposition,

and enforces positive definiteness in the output covariance matrix.

and § € [0,1] balances the emphasis between £ and L.
The first term £ minimizes the MSE between true and
estimated states, ensuring precise state tracking. The second
term L£°°V minimizes discrepancies between actual residuals
and the estimated covariance ﬁ)t“, capturing interdependencies
among state variables by incorporating both diagonal and off-
diagonal elements. Together, these terms enable the network
to provide accurate state estimates and reliable error covari-
ance estimates. Furthermore, this total loss function explicitly
guides training to produce the posterior covariances that are
not only aligned with the observed data discrepancies but
also meet the fundamental statistical requirements for valid
covariances.

IV. NUMERICAL EXAMPLES

In this section, unless stated otherwise, the noise covari-
ances, Q; and Ry, are defined as 021 and 021, respectively.
We compare EKF, KN, SKN, and CKN. To model the vari-
ability of the noise, we define a noise ratio v = 02 /02 . The
code for CKN has been made available via GitHub.'

A. Synthetic linear state and nonlinear observation models

The first benchmark example consists of linear state evolu-
tion and nonlinear observation models as [14]:

_ |cos({5) —sin({f) 9
X¢p1 = sin(%) cos(%) x;+w; x€R (8a)
T
yi = [lIxell2 atan2 (x;)]" + v, yt €R*  (8b)
where x; = |11 22]”. In this example, we want to examine

the DNN-aided KFs under varying noise ratio =0 to 50 [dB],
while fixing the process variance 02,=10"3.

For each noise ratio, data sets comprising 1,000 training
time sequences and 300 testing time sequences were gener-
ated synthetically. Each set features different realizations of
measurement and process noise, with training and testing data
having Tipin = 30 and Tiey = 50.

Fig. 2 presents the MSE comparison for a range of v. CKN
consistently achieves the lowest MSE across all v values,
making it the most robust method among those evaluated.

![Online]. Available: https://github.com/RAMSIS-Lab/ckn-spl-public
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Fig. 2. MSE comparison for different method as varying v [dB] for IV-A
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Fig. 3. Comparison for Error and 99% CI for v = 0 for IV-A: (a) EKF, (b)
KN, (c) SKN, and (d) CKN

Figs. 3 present the error plots for 22 with 99% ClIs for a case
of v=0. The gray lines represent the error time series for the
300 individual state estimates. Both EKF and KN exhibit large
deviations. Additionally, the observed negative variances for
KN is a clear sign of instability in the estimation process. SKN
also produces negative variance estimates, which is statistically
invalid. In contrast, CKN demonstrates improved accuracy and
avoids negative variances observed in KN and SKN. Moreover,
the CKN’s Cls effectively capture the transient fluctuation
around ¢=35, showcasing CKN’s ability for precise UQ.

B. Synthetic nonlinear state and nonlinear observation models

We explore a nonlinear system with sinusoidal state evo-
lution and second-order polynomial observation model [13]:



IEEE SIGNAL PROCESSING LETTERS, VOL. 0, NO. 0, 000 2024

TABLE I
PARAMETERS OF INACCURATE SYSTEM MODELS FOR [V-B
State-space Model a 5 ¢ 0 a b c
Accurate 09 1.1 0.1 0.01 1 1 0
Tier 1 1.0 1.0 0.0 0 1 1 0
Tier 2 .1 09 -01x -001 | 1 1 0
Tier 3 1.0 10 0.0 0 1 1 0.1
TABLE II
MSE FOR THREE TIERS OF PARAMETERS FOR [V-B
Methods EKF KN SKN CKN
Tier 1 [dB] | 3.64 -2339 -22.11 -23.91
Tier 2 [dB] 819 -20.79 -20.76  -23.73
Tier 3 [dB] | 880 -1547 -1391 -19.12
@ b) 47
—— Ground truth :
0 EKF I 40
KN (T
= 35
T 200 SKN : ] 2
B — K= B 304
NI g
—400 IR B S VAR 25 4 é
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Fig. 4. (a) Estimated trajectory comparison and (b) MSE variation for 10
different data splits for IV-C

x € R?
y € R?

fx)=a-sin(f-x+¢)+I
h(x)=a-(b-x+c)’

(9a)
(9b)

We consider three cases, i.e., Tier 1, Tier 2, and Tier 3,
with increasing levels of inaccuracy in system parameters as
tabulated in Table 1. In the following, training and testing data
were generated with 03210*3 and v=10 [dB].

Table II summarizes the MSE values, where the results
underscore CKN’s ability to maintain high accuracy and
reliable performance even under significant model mismatches,
making it the most robust method among those evaluated.

C. Real World Dynamics: Michigan NCLT Data Set

We evaluate CKN using the Michigan NCLT dataset [29].
This dataset includes various labeled trajectories, documenting
noisy sensor data such as GPS and odometer readings, along
with the ground truth positions of a Segway robot. A nearly
constant acceleration motion model is adopted as the state
evolution model [30]. Our goal is to track the underlying state
vector using only noisy velocity observations.

We selected the session dated 2012-01-22 with 5,850 time
steps. After preprocessing, we retained 5,150 time steps (103
sequences of 7'=50) and split the trajectory into two sections:
80 sequences for training and 10 sequences for validation. For
testing, we used another trajectory dated 2012-04-29.

An ideal stable model should exhibit minimal performance
variation across different data splits. To evaluate the stability of
DNN-aided KFs under varying training and testing conditions,
we trained networks using three different algorithms (KN,
SKN, and CKN) 10 times. Each training instance involved the
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Fig. 5. Performance variance for 10 runs of DNN-aided KFs for IV-C: (a)
Median of SE for position with a band of SE variation and (b) Width of SE
variation for testing data

random selection of 80 training sequences and 10 validation
sequences from the 103 shuffled sequences of 7' = 50.

Fig. 4(a) presents one of the 10 different estimated tra-
jectories for each algorithm together with the ground truth
trajectory. The CKN result exhibits the closest alignment to the
ground truth. Fig. 4(b) shows the box plot of MSE variations
of position, illustrating that CKN achieves the lowest MSE
values overall as well as the smallest MSE variation.

Fig. 5(a) illustrates the Squared Error (SE) of position with
respect to time for each algorithm together with the width of
SE variation for the 10 different runs. The solid line represents
the median SE for the 10 runs. Results indicate that CKN
consistently achieves the lowest median SE at most time steps.
The shaded area represents the width of SE variations for the
10 runs. Fig. 5(b) depicts the width of SE variations (maximum
SE - minimum SE) for the 10 runs for each DNN-aided KF due
to variance in training. The narrowest width of SE variations
for CKN indicates its superior stability in performance.

V. CONCLUSION

Our proposed approach, Cholesky-KalmanNet (CKN), en-
hances the accuracy, robustness, and stability of state and error
covariance estimation. By integrating a new layer to embed
mathematical constraints through the Cholesky decomposition,
CKN ensures that the resulting posterior error covariance in-
herently satisfies the condition of positive definiteness, which
is crucial for the statistical accuracy of state estimation.
Furthermore, we propose a novel hybrid loss function that
minimizes discrepancies between the estimated and empiri-
cal error covariance, accounting for interdependencies among
state variables. This comprehensive loss function maintains
the positive definiteness throughout the training phase and
ensures a thorough minimization of estimation errors, even
effectively capturing transient fluctuations in error estimates.
Extensive evaluations on both synthetic and real-world datasets
demonstrate CKN’s superior performance, offering more ac-
curate state estimations and greater robustness against system
inaccuracies and observation noise. CKN also shows enhanced
stability across varying training data partitions. These at-
tributes position CKN as an accurate and stable method for
state estimation in complex and noisy environments.
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