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Abstract—With the increasing penetration of distributed en-
ergy resources (DERs) in the power system, the microgrid
(MG) as a relatively independent system has been widely used
and developed. The MG can smooth the output fluctuation of
renewables through the interaction of the main grid, renewables,
loads, and energy storage systems, which is conducive to friendly
access and local consumption of renewables. The interconnection
of adjacent MGs to form a MG cluster system can effectively
improve the reliability, economy, and low carbon of the system.
In order to optimize the operation of the whole MG alliance
and distribute the benefits reasonably among MGs, based on
stochastic programming and generalized Nash bargaining (GNB)
theory, an optimal cooperative operation model of the multi-agent
multi-energy MG system considering uncertainty and carbon
trading is proposed in this paper. First, carbon capture systems
(CCSs) and power-to-gas (P2G) devices are integrated into
traditional combined heat and power (CHP) units. Second, using
statistical programming to deal with uncertainty, the optimal
operation model of the MG alliance is established. The model
is decomposed into two subproblems: the social welfare maxi-
mization subproblem and the energy trading payment bargaining
subproblem. Finally, to protect the privacy of each agent, two
algorithms for solving the subproblems are proposed based on
the alternating direction method of multipliers (ADMM). The
asymmetric bargaining quantifying contributions is employed to
achieve fair distribution of benefits. The effectiveness, superiority,
and scalability of the proposed model is verified through case
studies.

Index Terms—Alternating direction method of multipliers, car-
bon capture systems, microgrids, Nash bargaining, renewables,
statistical programming.

I. INTRODUCTION

A. Research Motivation

W ITH the high attention of the world to energy conserva-
tion, emission reduction, and climate issues, renewable

energy generation has been attached great importance. It is
imperative to build energy systems with renewables as the
main body. The grid-connection and absorption of the high
penetration of renewables has become an important issue of
scientific research. As an important supplement to traditional
forms of power generation, renewable generation such as
photovoltaic (PV) and wind generation has problems such as
low energy density and resource constraints. As a relatively
independent system, the multi-energy microgrid (MG) has dis-
tributed energy resources (DERs) and other devices. The multi-
energy MG has the characteristics of flexible operation and

high reliability, which are conducive to the friendly access and
effective local consumption of renewables. Furthermore, the
multi-energy MG can improve the efficiency and cleanliness
of terminal energy consumption, and is an important means to
achieve the low-carbon and sustainable development of energy.

However, due to limitations in the current measurement
and control technology, the energy storage level and power
supply capacity of the multi-energy MG are limited, resulting
in the operation of the MG still showing low inertia and weak
anti-disturbance ability. Therefore, it is necessary to form a
multi-energy MG system [1]–[3] by interconnecting several
geographically adjacent MGs in a local distribution area. The
autonomous management of each MG and the mutual aid
between MGs realize the coordination and complementarity of
power generation resources, and improve the consumption rate
of renewables. MGs also make the power system obtain better
stability and reliability, and improve the energy utilization
efficiency. Peer-to-peer (P2P) energy trading between multi-
energy MGs can effectively enhance the economy of MG,
and reduce carbon emissions [4]. However, because each
MG belongs to different stakeholders, the interest interaction
among multiple MGs and the complex coupling of multi-
energy flow make the traditional scheduling method of a single
MG difficult to apply to the scheduling of MGs.

Uncertainty is ubiquitous in the power system, and we
should deal with it seriously. Because the uncertainties of loads
and the output of renewables such as PV and wind generation
can greatly affect the control and decision-making of power
systems, we must consider these uncertainties in the operation
and planning of multi-energy MGs in order to make our results
more reasonable and close to the actual situation.

Therefore, it is necessary to study the optimal operation and
reasonable benefit distribution of the multi-energy MG alliance
considering uncertainty, which has important theoretical and
practical significance.

B. Literature Review

Generally speaking, there are two kinds of energy manage-
ment methods for MGs: centralized and distributed methods.
In the centralized energy management method, the dispatch
center collects the global information and completes the pro-
cessing of massive data to issue instructions. The fault of the



dispatch center will cause the whole system to break down.
With the expansion of the system scale, higher requirements
are put forward for communication and computing power, and
there are information barriers between stakeholders. The cen-
tralized mode (point-to-multipoint) may lead to problems such
as excessive communication burden and privacy exposure. In
contrast, distributed optimization iteratively solves the whole
problem by splitting the whole problem into several coupled
subproblems, and each agent solves its own subproblem in-
dependently and exchanges limited information through local
communication. This can well protect the privacy of partici-
pants, reduce computing and communication costs, avoid the
huge impact of the failure of the dispatch center on the whole,
and have better flexibility, scalability and reliability. Refer-
ence [5] proposed a approach based on consensus to solve the
distributed optimization of the operating cost of MGs. In [6],
a distributed algorithm without initialization was presented,
and an event triggering mechanism is introduced to realize
day-ahead and real-time collaborative energy management of
multi-agent integrated energy systems. Reference [7] adopted
a distributed hierarchical scheme for the energy management
of MGs.

Compared with the above methods, the alternating direction
method of multipliers (ADMM) has been widely used because
of its flexibility, good convergence, and simple framework. The
ADMM is very suitable for large-scale distributed computing.
Instead of the centralized calculation of MG information, each
MG solves its own objective function, and then updates and
iterates the multiplier. The ADMM-based method satisfies the
minimum operating cost of each MG and achieves the energy
balance of the entire system. At the same time, the ADMM
also protects the privacy of the agent. The ADMM based on
consensus variables was used to realize the optimal dispatch
solution to the integrated community energy system in [8].
Reference [9] proposed an ADMM-based decentralized energy
management approach with the past information from dis-
tributed energy resources (DERs). Reference [10] established
robust scheduling of MGs, but it fails to ensure the reasonable
distribution of benefits among MGs. The main methods of
benefit distribution include the Shapley method and Nash
bargaining [11], but the computational efficiency is low when
Shapley is used to solve the problems with many participants.
Many models such as [10] resolved the benefit distribution
among MGs by centralized methods, which violate the privacy
of the agent; many references such as [11] did not consider the
uncertainties of renewables and loads, the emission reduction
potential, and the improvement of renewable consumption
rates.

From the above statement, it can be seen that despite certain
research achievements on the optimal operation of MGs, the
following problems still exist: 1) the benefit of the MG alliance
has not been reasonably distributed, 2) the privacy of each
agent has not been well protected, 3) the uncertainty has not
been well considered, and 4) the potential of the emission
reduction and the improvement of renewable consumption
rates have not been well paid attention to.

C. Contributions

In order to fill the gaps mentioned in Section I-B, this
paper addresses the optimal operation problem of multi-energy
MGs based on stochastic programming and generalized Nash
bargaining (GNB). Specifically, the main contributions of this
paper are as follows.

1) Carbon capture systems (CCSs) and power-to-gas (P2G)
devices are integrated into combined heat and power
(CHP) units to reduce CO2 emissions and enhance energy
efficiency.

2) An optimal operation model of multi-energy MGs is
proposed based on stochastic programming and GNB.

3) Two ADMM-based algorithms are proposed to protect the
privacy of each MG, and benefits are distributed fairly
based on asymmetric bargaining.

4) The superiority and effectiveness of the proposed model
and algorithms are verified by case studies.

D. Organization of this Paper

The rest of the paper is organized as follows. Section II
elaborates the energy sharing framework and model of multi-
energy MGs. In Section III, we propose the optimal operation
and benefit distribution methodologies. Section IV validates
the proposed model and methods. Section V concludes the
paper, and gives the future work.

II. THE ENERGY SHARING FRAMEWORK AND MODEL OF
MULTI-ENERGY MGS

A. The Energy Sharing Framework of Multi-energy MGs

The energy sharing framework of networked multi-energy
MGs is shown in Fig. 1 (taking the interconnection of three
MGs as an example), where the structure of each multi-energy
MG is shown in Fig. 2. The main equipment of the multi-
energy MG includes CHP with CCSs and P2G [12], PV panels,
wind turbines (WTs), gas boilers (GBs), and battery energy
storage systems (BESSs). In a system of interconnected MGs,
each MG can not only trade electricity with the main grid, but
also interact with its interconnected MGs, that is, each MG
can be considered a user who can sell power to or buy power
from other MGs.

MG 1

Main grid

MG 2 MG 3

Fig. 1. Energy sharing framework of MGs.
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Fig. 2. Schematic diagram of the MG.

B. The Mathematical Models of the Main Equipment of the
MG

1) The CHP With CCSs and P2G Devices: The electric
power PEP

i,s,t generated by the i-th CHP with CCSs and P2G
devices in scenario s is given by

PEP
i,s,t = PEG

i,s,t + PCCS
i,s,t + PP2G

i,s,t , ∀s, ∀t, (1)

where PEG
i,s,t is the electric power supplying the grid at time

t in scenarios s. PCCS
i,s,t is the electric power consumed by

CCS at time t in scenarios s, and PP2G
i,s,t is the electric power

consumed by P2G at time t in scenarios s.
The relationships between the gas power P gas

i,s,t from P2G,
PP2G
i,s,t , the amount of CO2 CCCS

i,s,t required by P2G, and PCCS
i,s,t

are given by the following three formulas:

P gas
i,s,t = αPP2G

i,s,t , ∀s, ∀t, (2)

CCCS
i,s,t = βPP2G

i,s,t , ∀s, ∀t, (3)

PCCS
i,s,t = ξCCCS

i,s,t , ∀s, ∀t, (4)

where α, β, and ξ represent the conversion efficiency of PP2G
i,s,t

to P gas
i,s,t, the coefficient for calculating the amount of CO2,

and the corresponding coefficient between CCCS
i,s,t and PCCS

i,s,t ,
respectively.

The electric power supplying the grid should meet the
following constraint:

max
{
PEG
i,min − µi,1P

HP
i,s,t, µi,m

(
PHP
i,s,t − PHP0

i

)
−PP2G

i,max − PCCS
i,max

}
≤ PEG

i,s,t

≤ PEG
i,max − µi,2P

HP
i,s,t − PP2G

i,min − PCCS
i,min, ∀s, ∀t,

(5)

where µi,1 and µi,2 are the conversion coefficients correspond-
ing to the minimum and maximum power output, respectively.
µi,m is the linear supply slope of thermal power and electric
power. PHP0

i is the thermal power corresponding to the
minimum electric power.

The coupling relationship of PEG
i,s,t, the thermal power PHP

i,s,t

by the i-th CHP, and P gas
i,s,t is expressed by

max
{ α

1 + ξβ

[ (
PEP
i,min − µi,1P

HP
i,s,t − PEG

i,s,t

)
,

µi,m(PHP
i,s,t − PHP0

i )− PEG
i,s,t

]}
≤ P gas

i,s,t

≤ α

1 + ξβ

(
PEP
i,max − µi,2P

HP
i,s,t − PEG

i,t

)
, ∀s, ∀t, .

(6)

The number of CO2 emissions of the CHP is expressed as

Eco2
i,s,t =aco2

(
PEP
i,s,t + µi,1P

HP
i,s,t

)
+ bco2

(
PEP
i,s,t

+ µi,1P
HP
i,s,t

)2
+ cco2 − CCCS

i,s,t , ∀s, ∀t,
(7)

where aco2 , bco2 , and cco2 are emission coefficients.
2) GB: The thermal power PHGB

i,s,t generated by the GB is
shown as follows:

PHGB
i,s,t = ηGB

i PGGB
i,s,t = ηGB

i V GB
i,s,tq, ∀i, ∀s, ∀t, (8)

where ηGB
i is the heat efficiency of the GB. PGGB

i,s,t and V GB
i,s,t

are the volume and energy of the consumed gas, respectively.
q is the calorific value of gas.

3) BESS: The BESS model is formulated as follows:

EBESS
i,s,t =(1− δ)EBESS

i,s,t−1 + ηBESS+PBESS+
i,s,t

−
PBESS−
i,s,t

ηBESS− , ∀i, ∀s, ∀t,
(9)

0 ≤ PBESS−
i,s,t ≤ BBESS−

i,s,t ηBESS−PBESS
i,max , ∀i, ∀s, ∀t, (10)

0 ≤ PBESS+
i,s,t ≤

(
1−BBESS−

i,s,t

) PBESS
i,max

ηBESS+
, ∀i, ∀s, ∀t, (11)

SoCi,min ≤ SoCi,s,t ≤ SoCi,max, ∀i, ∀s, ∀t, (12)
SoCi,1 = SoCi,T , ∀i, ∀s, ∀t, (13)

where EBESS
j,s,t is the stored energy. δ is the self-discharging

rate. ηBESS−, ηBESS+, PBESS+
i,s,t , and PBESS−

i,s,t are the dis-
charging, charging efficiency, charging, and discharging power,
respectively. SoC represents the state of charge of the BESS.
1 and T indicate the start time period and end time period of
the scheduling cycle, respectively.

C. Cost Models

The operation cost CMG
i of the i-th MG in the system of

interconnected MGs is represented as follows:

CMG
i =

|S|∑
s=1

ps

(
CCHP

i,s + C imp
i,s − Cexp

i,s + CBESS
i,s

+Cemi
i,s + CDR

i,s + Ctran
i,s − CP2P

i,s

)
, ∀i,

(14)

Ctran
i,s =

|M|∑
j=1,j ̸=i

T∑
t=1

ρeP
P2P
i−j,s,t, ∀i, ∀s, (15)

CP2P
i,s =

|M|∑
j=1,j ̸=i

T∑
t=1

πP2P
i−j,tP

P2P
i−j,s,t, ∀i, ∀s, (16)

CCHP
i,s , C imp

i,s , CBESS
i,s , Cemi

i,s , CDR
i,s , Ctran

i,s , Cexp
i,s , and CP2P

i,s

are the CHP operation, purchasing electricity and gas, BESS



aging, carbon trading, demand response (DR), electricity trans-
mission cost, revenue from selling electricity, and electricity
sharing revenue, respectively. ps is the probability of scenario
s, and |S| is the number of scenarios. ρe is the network
crossing cost per unit. |M| is the number of MGs. PP2P

i−j,s,t

denotes the amount of electrical energy traded between MG
i and MG j during time period t in scenario s. πi−j,t stands
for the unit price of electrical energy traded between between
MG i and MG j during time period t.

D. Constraints

The electric power balance constraints are written as

PEG
i,s,t + PCCS

i,s,t + PP2G
i,s,t + PPV

i,s,t + PWTs
i,s,t

+ PBESS−
i,s,t + P imp

i,s,t = PEL
i,s,t + PP2P

i−j,s,t

+ PBESS+
i,s,t + P exp

i,s,t, ∀s, ∀t,
(17)

where PEL
i,s,t is the actual electric load after DR.

Thermal and gas balance constraints are formalized as

PHP
i,s,t + PHGB

i,s,t = PHL
i,s,t, ∀i, ∀s, ∀t, (18)

V GB
i,s,t + V CHP

i,s,t − V P2G
i,s,t = V imp

i,s,t , ∀s, ∀t, (19)

where PHL
i,s,t is the actual thermal load after DR.

The power transmission between MGs should meet the
capacity limit:

PP2P
i−j,min ≤ PP2P

i−j,s,t ≤ PP2P
i−j,max, ∀i, ∀j, i ̸= j, (20)

where PP2P
i−j,min and PP2P

i−j,max are the upper and lower limits
of the exchanged electric power between MG i and MG j,
respectively.

The sum of the interactive electric power between all MGs
and the sum of the transaction cost between all MGs should
both be zero:

|M|∑
j=1,j ̸=i

|M|∑
i=1

PP2P
i−j,s,t = 0, (21)

|M|∑
j=1,j ̸=i

|M|∑
i=1

πP2P
i−j,tP

P2P
i−j,s,t = 0. (22)

E. Optimal Operation of an MG Without Joining the Alliance

When there is no alliance between MGs, that is, there is no
energy exchange between MGs, the operation cost Cmg0

i of
the i-th MG can be represented as follows:

Cmg0
i =

|S|∑
s=1

ps

(
CCHP

i,s + C imp
i,s − Cexp

i,s

+CBESS
i,s + Cemi

i,s + CDR
i,s

)
, ∀i.

(23)

The electric power balance constraints in this mode are
rewritten as

PEG
i,s,t + PCCS

i,s,t + PP2G
i,s,t + PPV

i,s,t + PWTs
i,s,t + PBESS−

i,s,t

+ P imp
i,s,t = PEL

i,s,t + PBESS+
i,s,t + P exp

i,s,t, ∀s, ∀t.
(24)

Therefore, the optimization problem of a single MG i
without joining the alliance can be formulated as follows:

min Cmg0
i

s.t. (1)–(13), (18)–(19), (23)–(24).
(25)

F. Optimal Operation of the Alliance of MGs

As described in Section II-A to Section II-D, the MG system
studied in this paper is composed of several interconnected
MGs, and there is power exchange and information interaction
between MGs. The optimization objective is to minimize the
overall operating cost of MGs. Therefore, the optimization
problem of the whole alliance can be formalized as follows:

min

|M|∑
i=1

CMG
i

s.t. (1)–(22).

(26)

III. PROPOSED OPTIMAL OPERATION AND BENEFIT
DISTRIBUTION METHODOLOGIES

This paper assumes that each MG belongs to different
stakeholders and is an independent and rational individual.
If each MG reaches a direct transaction agreement through
bargaining and the income of each MG is improved, then
MGs will cooperate to conduct direct electrical energy trans-
actions. Compared with the independent operation of each
MG, the part of the total operating cost reduction during
the interconnected operation of MGs is the emerging benefits
of the system. Although the cooperative operation of MGs
can optimize the overall economy of the alliance, how to
allocate these benefits reasonably to each MG is a very
worthwhile problem. Game theory handles the problem of how
to make reasonable decisions for agents according to their own
ability and information when there is interest correlation or
conflict among multiple decision-making agents. Each MG is a
participant with reciprocal cooperative relationships with other
MGs. A cost lower than the cost of operating independently is
realized through the distribution of emerging benefits, and thus
a binding agreement is reached between MGs, which meets
the requirements of the cooperative game. In order to ensure
the stability of the cooperative relationship between MGs
and the reasonable distribution of benefits, this paper adopts
the GNB model to determine the optimal operation strategy
of each MG and balance the interests of all parties. The
GNB, a kind of asymmetric cooperative game, is an effective
means to study multi-agent optimization. Therefore, it is often
used to solve multi-agent complex optimization problems to
obtain negotiated solutions, and its transformation models
have typical distributed characteristics, which is conducive to
solving them with distributed algorithms. Different from the
common Nash bargaining (CNB) model, the GNB model pays
more attention to the reasonable distribution of benefits among
participants.

A. GNB Model

In this paper, the multi-energy MG operation model built
in Section II is incorporated into the framework of GNB. The



framework optimizes the overall performance of the alliance
while pursuing the minimization of the operating cost of each
MG itself. The GNB model can be expressed as follows:

max

|M|∏
i=1

[
−Cmg

i + CP2P
i −

(
−Cmg0

i

∗)]λi

s.t. − Cmg
i

∗
+ CP2P

i ≥ −Cmg0
i

∗
,

(1)–(22).

(27)

where Cmg
i = CCHP

i +C imp
i −Cexp

i +CBESS
i +Cemi

i +CDR
i +

Ctran
i , and Cmg0

i

∗
is the optimal operation point when MG i

does not participate in the alliance, i.e. the optimal solution
to Problem (25). Cmg0

i

∗
is also called the breaking point. λi

is the contribution coefficient, which can be calculated by the
following equations:

λi = eE
+
i /E+

max − e−E−
i /E−

max , (28)

E+
i =

|M|∑
j=1,j ̸=i

T∑
t=1

max
{
0, PP2P

i−j,t

}
, (29)

E−
i = −

|M|∑
j=1,j ̸=i

T∑
t=1

min
{
0, PP2P

i−j,t

}
, (30)

E+
max = max

{
E+

i

}
, (31)

E−
max = max

{
E−

i

}
. (32)

The solution to Problem (27) is called the Nash bargaining
solution (NBS) [13], which enables all participants to obtain
Pareto optimal benefits. The NBS has many excellent proper-
ties. Specifically, the NBS satisfies the following axioms.

1) Individual rationality: the NBS should enhance the util-
ities, i.e. benefits, of all MGs participating in the MG
alliance compared with the benefits when they do not
participate in the alliance; otherwise, they would not
cooperate.

2) Pareto optimality: an MG (player) cannot find other
solutions that can increase the utility of the MG without
worsening the utilities of other MGs.

3) Invariance to affine transformations: the NBS is invariant
if the utility function are scaled by an affine transforma-
tion.

4) Independence of irrelevant alternatives: if the bargaining
solution is found on a subset of the feasible set, then the
solution does not vary by expanding the subset within the
feasible set.

Since the GNB model takes into account the different market
powers of different agents, it no longer has the axiom of
symmetry that the CNB model has.

Problem (27) is essentially an intractable non-convex non-
linear problem, which is difficult to resolve directly. By proof
by contradiction and the properties of the logarithmic function,
we can prove that Problem (27) can be equivalently converted
into two easy subproblems: the social welfare maximization
(MG alliance benefit maximization) subproblem and the energy
trading payment bargaining subproblem.

B. Social Welfare Maximization Subproblem

The social welfare maximization subproblem can be ex-
pressed as:

max

|M|∑
i=1

(−Cmg
i )

s.t. (1)–(22).

(33)

Based on Problem (26) and (22), we can easily prove that
Problem (26) and Problem (33) are equivalent.

C. Energy Trading Payment Bargaining Subproblem

The energy trading payment bargaining subproblem is
shown as follows:

max

|M|∑
i=1

λi ln
[
−Cmg

i
∗
+ CP2P

i −
(
−Cmg0

i

∗)]
s.t. − Cmg

i
∗
+ CP2P

i ≥ −Cmg0
i

∗
, ∀i

(16),

(34)

where Cmg
i

∗ is the optimal value of Problem (33).

D. Solution Methods Based on the ADMM

Problems (33) and (34) have the characteristics of dis-
tributed optimization problems, so they can be solved by
distributed optimization algorithms. In this paper, in order
to protect the privacy of each entity participating in the
bargaining, the ADMM is used to solve the two subprob-
lems. Moreover, the ADMM has the advantages of good
convergence, simplicity, and strong robustness. The optimal
solution to Problem (27) can be obtained by solving the two
subproblems.

E. Solution Algorithm for the Social Welfare Maximization
Subproblem

For the convenience of expression, let

PP2P
i−j,t =

|S|∑
s=1

psP
P2P
i−j,s,t, (35)

PP2P
j−i,t =

|S|∑
s=1

psP
P2P
j−i,s,t, (36)

where PP2P
i−j,t and PP2P

j−i,t represent the expected amount of
electricity that MG i expects to trade with MG j and the
expected amount of electricity that MG j expects to trade
with MG i, respectively. When PP2P

i−j,t = PP2P
j−i,t, it indicates

that there is an electricity transaction consensus between MG
i and MG j. The solution method of Problem (33) based on
the ADMM is shown in Algorithm 1*.

*To save space, Algorithms 1 and 2 omit the steps of the 0-th iteration.



Algorithm 1 Solution method of Problem (33) based on the
ADMM

1: Set the maximum number of iterations kP1
max, convergence

accuracy ϵP1, penalty factor ρP1
i , number of initial iter-

ations kP1 = 0, initial values of PP2P
i−j,t = PP2P

j−i,t = 0,
Lagrange multiplier λP1

i−j,t.
2: Construct the augmented Lagrange function of Prob-

lem (33) for MG i, i.e.

LP1
i = Cmg

i +

|M|∑
j=1,j ̸=i

T∑
t=1

λP1
i−j,t

(
PP2P
i−j,t − PP2P

j−i,t

)
+

ρP1
i

2

|M|∑
j=1,j ̸=i

T∑
t=1

∥∥PP2P
i−j,t − PP2P

j−i,t

∥∥2
2

(37)

3: while
∑|M|

j=1,j ̸=i

∑T
t=1

∥∥∥PP2P,k
i−j,t − PP2P,k

j−i,t

∥∥∥2
2

≤ ϵP1 or

k > kP1
max has not been satisfied do

4: Solve the following problems:

min LP1
i

s.t. (1)–(22).
(38)

min LP1
j

s.t. (1)–(22).
(39)

to obtain PP2P,k+1
i−j,t and PP2P,k+1

j−i,t .
5: Update Lagrange multipliers λP1,k+1

i−j,t = λP1,k
i−j,t +

ρP1
i

(
PP2P,k+1
i−j,t − PP2P,k+1

j−i,t

)
.

6: Update the number of iterations kP1 = kP1 + 1.
7: end while

F. Solution Algorithm for the Energy Trading Payment Bar-
gaining Subproblem

Through Algorithm 1, we can obtain the optimal expected
transaction electricity between MGs, namely PP2P

i−j,t
∗. Hence,

Problem (34) can be further rewritten as

max

|M|∑
i=1

λi ln
[
−Cmg

i
∗
+ CP2P

i −
(
−Cmg0

i

∗)]
s.t. − Cmg

i
∗
+ CP2P

i ≥ −Cmg0
i

∗
, ∀i

CP2P
i =

|M|∑
j=1,j ̸=i

T∑
t=1

πP2P
i−j,tP

P2P
i−j,t

∗
, ∀i,

(40)

Let πP2P
i−j,t represent the transaction electricity price expected

by MG i, and πP2P
j−i,t represent the transaction electricity price

expected by MG j. πP2P
i−j,t = πP2P

j−i,t indicates that there is
an electricity price transaction consensus between MG i and
MG j. Following the idea of Algorithm 1, one can obtain the
solution method of Problem (34), i.e. Algorithm 2.

Algorithm 2 Solution method of Problem (34) based on the
ADMM

1: Set the maximum number of iterations kP2
max, convergence

accuracy ϵP2, penalty factor ρP2
i , number of initial iter-

ations kP2 = 0, initial values of πP2P
i−j,t = πP2P

j−i,t = 0,
Lagrange multiplier λP2

i−j,t.
2: Calculate the contribution coefficient λi of MG i as per

(28)–(32).
3: Construct the augmented Lagrange function of Prob-

lem (40) for MG i, i.e.

LP2
i =− λi ln

[
−Cmg

i
∗
+ CP2P

i −
(
−Cmg0

i

∗)]
+

|M|∑
j=1,j ̸=i

T∑
t=1

λP2
i−j,t

(
πP2P
i−j,t − πP2P

j−i,t

)
+

ρP2
i

2

|M|∑
j=1,j ̸=i

T∑
t=1

∥∥πP2P
i−j,t − πP2P

j−i,t

∥∥2
2

(41)

4: while
∑|M|

j=1,j ̸=i

∑T
t=1

∥∥∥πP2P,k
i−j,t − πP2P,k

j−i,t

∥∥∥2
2

≤ ϵP2 or

kP2 > kP2
max has not been satisfied do

5: Solve the following problems:

min LP2
i

s.t. − Cmg
i

∗
+ CP2P

i ≥ −Cmg0
i

∗
,

CP2P
i =

|M|∑
j=1,j ̸=i

T∑
t=1

πP2P
i−j,tP

P2P
i−j,t

∗
,

(42)

min LP2
j

s.t. − Cmg
j

∗
+ CP2P

j ≥ −Cmg0
j

∗
,

CP2P
j =

|M|∑
i=1,i ̸=j

T∑
t=1

πP2P
j−i,tP

P2P
j−i,t

∗
,

(43)

to obtain πP2P,k+1
i−j,t and πP2P,k+1

j−i,t .
6: Update Lagrange multipliers, i.e., λP2,k+1

i−j,t = λP2,k
i−j,t +

ρP2
i

(
πP2P,k+1
i−j,t − πP2P,k+1

j−i,t

)
.

7: Update the number of iterations, i.e., kP2 = kP2 + 1.
8: end while

IV. CASE STUDIES

A. Parameters and Settings

The optimal cooperative operation of the system of three
multi-energy MGs, as shown in Fig. 1, is utilized to validate
the effectiveness of the proposed model and solution methods.
The parameters of equipment are from [12]. The forecast
errors of PV, wind generation, electric, and thermal loads
obey the normal distributions, all the means are 0, and the
standard deviations are 8%, 10%, 2%, and 3% of the predicted
values, respectively. Monte Carlo sampling is used to generate
1000 scenarios, and then k-means is used to obtain 8 typical
scenarios and corresponding probabilities.
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Fig. 3. Convergences of Algorithms 1 and 2.

B. Discussions and Analyses of Case Study Results

1) Convergence Analyses of the Algorithms: In this paper,
ADMM-based methods are used to solve the two subproblems
mentioned above. Figs. 3a–3c shows the convergence results
of LP1

1 , LP1
2 , and LP1

3 of the social welfare maximization
subproblem. It can be seen from these figures that LP1

1 , LP1
2 ,

and LP1
3 gradually converge to the optimal value during the

alternating iterative solution process, and the proposed method
achieves convergence (reaching the convergence standard)
after 88 iterations. Figs. 3d–3f demonstrates the convergence
results of LP2

1 , LP2
2 , and LP2

3 of the energy trading payment
bargaining subproblem. It can be seen that LP2

1 , LP2
2 , and

LP2
3 gradually converge to the optimal value during the al-

ternating iterative solution process, and the proposed method
achieves convergence after 39 iterations. These convergence
results prove that the distributed solving methods based on the
ADMM have good convergence performance and can realize
distributed and efficient solution to the two subproblems.
At the same time, these methods can protect the private
information of each agent.

2) Traded Electricity and Transaction Prices: The sum
of the amount of traded electrical energy of each MG and
the electricity transaction prices between MGs are shown in

Figs. 4 and 5, respectively. The sum of the amount of traded
electrical energy of MG 1 represents the sum of the amount
of traded electrical energy between MG 1 and MG 2 and the
amount of traded electrical energy between MG 1 and MG 3;
other MGs follow the same pattern.

As can be seen from Fig. 4, during 00:00–8:00 and 17:00–
24:00, the renewables of MG 1 are surplus, so the power is
transferred to MG 2 and MG 3, which are unable to generate
power at night for the renewables of MG 2 and MG 3. From
8:00–17:00, the surge of electric loads leads to the supply
shortage of MG 1 itself, and the renewable generation of
MG 2 and MG 3 is at its peak, so the power is transmitted
to MG 1. The consumption of renewables has the highest
priority. Under the premise of optimizing its own internal
power scheduling, the MG participates in the overall power
coordination optimization of the alliance. After participating
in P2P transactions, the renewable consumption rates of the
three MGs are all 100%. Therefore, P2P trading can effectively
improve the consumption rate of renewables.

The P2P transaction pricing proposed in Section III-C
can enable MGs to sell electricity at prices higher than the
electricity buying prices by the grid and purchase renewable
power at prices lower than the electricity selling prices by the
grid, thus effectively improving the benefit of each MG.

Fig. 4. Sum of the amount of traded electrical energy of each MG.

3) Benefits and Carbon Emissions of Each MG and the
Entire Alliance: The costs, Cmg

i
∗
(i = 1, 2, 3), and benefit

increases of each MG and all MGs before and after partici-
pating in P2P transactions are shown in Table I. The carbon
emission quantity of each MG and all MGs before and after
participating in P2P, the quantity of carbon emissions reduced
after participating in P2P, and the reduction rate of carbon
emissions after participating in P2P are shown in Table II. It
can be seen from Tables I–II that the benefits of participants
have been effectively improved by P2P. Each participant can
obtain a fair share of benefits according to their energy con-
tribution. The carbon emissions and the carbon trading costs
decrease after participating in P2P. Meanwhile, the integration



Fig. 5. Electricity transaction prices between MGs.

of CCSs and P2G can effectively reduce the carbon emissions
of CHP and promote the low-carbon operation of MGs.

TABLE I
COSTS AND BENEFITS BEFORE AND AFTER P2P

Cost before Cmg
i

∗ Cost after Benefit
P2P ($) i = 1, 2, 3 P2P ($) increase ($)

MG 1 2162 2563 1024 1138
MG 2 6255 4112 5876 379
MG 3 3391 3250 3025 366

All MGs 11808 9925 9925 1883

TABLE II
CO2 EMISSIONS BEFORE AND AFTER P2P

Emissions Emissions Reduction Reduction
before P2P (kg) after P2P (kg) (kg) rate (%)

MG 1 25234 22981 2253 8.9
MG 2 17175 16699 476 2.8
MG 3 14900 13422 1478 9.9

All MGs 57309 53102 4207 7.3

V. CONCLUSION

In this paper, based on statistic programming and GNB, an
optimal operation model of multi-energy MGs is established,
and it is equivalently converted into the two subproblems that
are easy to solve. Then, the ADMM-based solution methods
are proposed to solve the two subproblems in turn. The
rationality and validity of the proposed model and methods are
verified by case studies. The main conclusions are as follows.

1) The solution methods based on the ADMM have good
convergence characteristics. Compared with the central-
ized method, the distributed methods proposed in this
paper can greatly reduce the communication transmission
burden, protect the operation privacy of the MG (the
interactive information between MGs is only the expected
interactive power), and realize the efficient solution to the
joint operation problem of the system of MGs.

2) Through cooperative operation, the operation benefit of
each MG and the alliance benefit of all MGs are sig-
nificantly improved compared with the situation without
cooperation. At the same time, for the power grid, the co-
operative operation of MGs can promote the consumption
of renewables, and has a noticeable peak-shaving effect.
The efficient use of renewable resources is realized.

3) The GNB-based benefit distribution method can realize
the reasonable distribution of benefits, which is conducive
to improving the enthusiasm of all participants and at-
tracting more participants to join the alliance.

4) The integration of CCSs and P2G devices into traditional
CHP units can reduce CO2 emissions. The joint operation
of MGs can also reduce carbon emissions and contribute
to environmental protection.

In this paper, the treatment of uncertainty is rough and the
load types are not rich enough. In the next step, we will carry
out relevant research on these problems.
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