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Abstract—In order to further analyze the flexible coupling
and complementary characteristics of various energy resources
in the integrated energy system (IES) and increase the absorption
capacity of renewables, concentrating solar power (CSP) plants
and generalized energy storage (GES), such as electric energy
storage systems, heat storage systems, and natural gas storage
systems, are introduced into the IES. First, the framework of the
electricity-heat-gas integrated energy system (EHGIES) structure
is built, and the main equipment models are constructed. Second,
the deterministic dispatch model for the EHGIES is established
by minimizing the operating cost of the system. Third, info-gap
decision theory is leveraged to effectively handle the uncertainties
of photovoltaic, wind generation, electric, thermal, and gas loads.
Based on two different risk preferences of risk aversion and risk
seeking (opportunity seeking), multi-objective dispatch models
under opportuneness and robustness strategies are established,
and these multi-objective models are further transformed into
single-objective models through the analytic hierarchy process.
Finally, the feasibility, effectiveness, and superiority of the pro-
posed models are verified by case studies.

Index Terms—Info-gap decision theory, integrated energy sys-
tem, multi-objective, optimal dispatch, renewables, uncertainty.

I. INTRODUCTION
A. Research Motivation

N order to further reduce carbon emissions, the scale of

grid-connected renewables, such as photovoltaic (PV) and
wind generation, has been constantly expanding. However,
the uncertainty, volatility, and intermittency of renewables
have brought great challenges to the stable operation of the
power grid. To solve the aforementioned problems, concen-
trating solar power (CSP) plant technologies [1], [2] have
received extensive attention. The CSP plant with the thermal
energy storage (TES) system can use the heat generated by
concentrating solar radiation to produce steam to drive a
turbine to generate electricity and store heat in the TES unit
during the periods of low loads. During the periods of peak
loads, the collected solar heat and the heat stored in TES
are used to generate electricity so as to achieve continuous,
stable, and reliable power output. The CSP plant resolve the
problem that the traditional PV generation cannot generate
electricity at night. The CSP plant has flexible output, strong
controllability, and less carbon emissions, and can be used as
the dispatchable source to coordinate PV and wind generation
and improve the consumption level of renewables and the

ability of power systems to cope with load changes. The CSP
plant can consume renewables with renewables when it can
be connected to the grid with PV and wind generation.

Due to the limited level of renewable consumption in the
power grid, a large quantity of wind and light is abandoned.
The integrated energy system (IES) breaks the structure and
configuration of single network operation, and connects a
variety of energy networks through coupling devices. The
overall planning and dispatch of the IES network can cascade
energy utilization, greatly improve the system’s absorption
capacity of renewables and energy conversion efficiency and
the stability of power grid operation, and reduce energy waste
and environmental pollution caused by a single energy supply
system. Carbon capture, utilization, and storage (CCUS) [3]
has the characteristics of achieving near-zero carbon emis-
sions, and the CO, captured and stored in the CCUS device
can be used as the carbon source required in the power-to-
gas (P2G) reaction process. The integrated development of the
vanilla IES and the CCUS device provides an opportunity for
the low-carbon economic operation of the IES. Energy storage
equipment has the advantages of promoting the consumption
of renewables, rapid responses, and reducing operating costs,
but with the diversification of energy supply demand, the
scope of energy storage is becoming more and more extensive.
The operational flexibility of the thermal storage system can
improve the adjustment ability of the IES, and the introduction
of gas storage equipment broadens the energy adjustment
means of the IES. Therefore, electricity storage systems, heat
storage systems, and gas storage systems can be regarded
as generalized energy storage (GES) and participate in IES
operation.

To sum up, it is of great theoretical and practical significance
to study the electricity-heat-gas integrated energy system (EH-
GIES) with the CSP plants and GES systems while considering
the uncertainties of renewables and loads.

B. Literature Review

Researchers have conducted a lot of studies on the IES.
However, in most studies, traditional gas units or coal-fired
units are used as core units, the demand periods of electricity
and heat loads in the scheduling cycle do not match, and
combined heat and power (CHP) are constrained by ‘“heat
to power (determining electricity by heat)”, which limits



the energy utilization and flexible operation capacity of the
system, resulting in the abandonment of light and wind.
As a new type of green, flexible, and controllable genera-
tor unit, the CSP plant is an important way to solve the
limited operation mode and the carbon emission problem of
traditional units. The optimal scheduling of the regional IES
considering economy and environment was described in [4].
Reference [5] proposed a planning model of the IES with
electricity, heat and gas using particle swarm optimization.
The cost-benefit of IES planning considering demand response
was analyzed in [6]. Reference [2] studied the modeling of
the CSP plant. A distributionally robust coordinated expansion
planning model for generation, transmission, and demand side
resources considering the benefits of CSP plants was discussed
in [7]. A look-ahead stochastic unit commitment model for
a high renewable penetrated power system with CSP plants
was proposed in [8]. Reference [9] presented the profit-sharing
mechanism for aggregation of wind farms and CSP. In [1], a
risk-constrained stochastic optimization method of a CSP plant
was proposed. Reference [10] discussed the thermal energy
storage systems for CSP plants. These studies are limited
to collaborative power generation, ignoring the potential of
the CSP as the core unit to participate in IES planning and
operation. Furthermore, most of these studies only consider
the storage of electric energy, and seldom consider the storage
of heat and gas. Moreover, there are few researches on the
integration of GES and CSP plants into the IES system.
There are four main methods to handle uncertainty in energy
systems, namely stochastic programming [11], [12], robust
optimization [13], [14], fuzzy optimization [15], [16], and
interval methods [17], [18]. Stochastic programming is an
analysis method based on probability theory, and relies on the
probability models of uncertain variables, which are difficult
to obtain accurately. In addition, scenario-based stochastic
programming methods need to set plenty of scenarios, which
lead to large calculation scale and low solving efficiency.
Robust optimization makes decisions under worst conditions
on the basis of given fluctuation ranges of uncertain vari-
ables, which often leads to conservative results and poor
economy. Fuzzy optimization selects the membership func-
tion to describe uncertainty and its possible consequences,
which is strongly subjective. Interval methods assume that
the prediction errors of uncertain variables are within specific
interval ranges; however, such ranges are demanding to obtain
accurately. Compared with the above four methods, info-
gap decision theory [19] is a relatively new approach to
cope with uncertainty, and info-gap theory can still quan-
tify uncertainty when the exact probability distributions or
uncertainty intervals of uncertain variables are unknown. It
has the advantages of strong applicability and high calculation
efficiency. To a certain degree, researchers have applied info-
gap decision theory to reactive power planning [20], voltage
management [21], optimal power flow [22], market bidding
strategies [23], unit commitment [24], and energy schedul-
ing [25], [26]. Nonetheless, info-gap theory has few appli-
cations in the IES, especially in the EHGIES, which means

the application of info-gap theory in the IES remains to be
studied. Furthermore, in the existing info-gap theory models,
only one uncertainty is usually considered in modeling, such
as only load or wind or PV generation uncertainty. Only
the uncertainty of wind generation was taken into account
in the corresponding problems of References [22]-[24]. Only
the uncertainty of loads was considered based on info-gap
decision theory in [27]. Moreover, info-gap theory has two
performance requirements for uncertainty, namely robustness
and opportuneness; however, the current research generally
only considers robustness and ignores opportuneness. Refer-
ences [27]-[30] only take into consideration robustness.

C. Contributions

To bridge the gaps mentioned in Sections I-A and I-B,
this paper is aimed at exploring the optimal operation of the
IES including the CSP plant and GES. Specifically, the main
contributions of this paper are summarized as follows.

1) An EHGIES including the CSP plant and GES is estab-
lished, and a deterministic optimal operation model of the
EHGIES minimizing the operating costs is formulated.

2) Based on info-gap theory, the uncertainties of PV, wind
generation, electric loads (ELs), thermal loads (TLs),
and gas loads (GLs) are comprehensively considered in
optimal EHGIES dispatch. According to decision makers’
preference for risk, both a robust operation strategy
for risk aversion (RA) and an opportunistic operation
strategy for opportunity seeking (OS), or risk seeking,
are established, and two different dispatch schemes from
different decision-making perspectives are obtained.

3) Multi-objective models for the optimal operation of the
EHGIES based on info-gap theory under opportuneness
and robustness strategies are proposed. Then, these multi-
objective models are further transformed into single-
objective models through the analytic hierarchy process
(AHP). These models can provide decision makers with
operation schemes for uncertainties of different ranges
under different risk attitudes.

4) The correctness, feasibility, superiority, and effectiveness
of the proposed models are verified by a series of
numerical examples.

II. THE ARCHITECTURE OF THE EHGIES AND THE
MATHEMATICAL MODELS OF MAIN EQUIPMENT

A. The Architecture of the EHGIES

By optimizing and adjusting the traditional IES structure,
we construct the EHGIES containing CSP plants and GES
systems. The basic architecture and energy flow of the EH-
GIES are shown in Fig. 1. The EHGIES includes gas boil-
ers (GBs), gas storage systems (GSSs), power-to-gas (P2G)
equipment, CCUS systems, gas turbines (GTs), heat recovery
units (HRUs), solar fields (SFs), heat transfer fluids (HTFs),
generators, thermal energy storage (TES) systems, electric
boilers (EBs), PV panels, wind turbines (WTs), battery energy
storage systems (BESSs). The loads encompass ELs, TLs,
and GLs. In addition, the system can exchange energy with



the external power grid (EPG) and the external gas network
(EGN).
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Fig. 1. Basic architecture and schematic energy flow of the EHGIES.
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B. The Mathematical Models of Main Equipment

1) CSP Plants: As shown in Fig. 1, a CSP plant is an
indirect solar thermal power generation station. The CSP
consists of three modules, namely an SF, a generator, and a
TES system. The SF gathers solar irradiation to the receiver
through the reflector, and the collector uses the received solar
energy to heat HTFs to convert solar energy to thermal energy.
HTFs pass through these modules to transfer heat. Part of
HTFs flow into the TES system, and some HTFs flow into
the generation system to generate electricity. The encapsulated
TES system can also transport heat to the heat network through
the heat exchange platform to supply TLs. When the solar
irradiation intensity is high, the TES will store the excess
heat; during the periods of peak loads, the CSP plant increases
power generation by invoking the heat stored by the TES
system, which shifts the heat collected by the SF. Therefore,
the CSP is dispatchable at a certain extent. The combination
of the CSP and EBs expands the output range of the CSP. The
EB converts electric energy from the grid into thermal energy
and stores it in TES for the CSP to use when needed.

By thinking of the HTF as a node, we can obtain the thermal
power balance relationship inside the CSP is as follows:

PtSF n PtTES,dis _ PtHCSP n PtTES,ch’ Vi, (1)

where, PSY is the thermal power transmitted by the SF to the
HTF at time period ¢. PtTES’Ch is the thermal power flowing
from the HTF to the TES system at time ¢, P;r ESdis is the
thermal power flowing from the TES to the HTF, and Pf¢SP
is the thermal power flowing into the generator.

The electric power PSP generated by the CSP at time
period ¢ is

PtCSP _ 77H2PPtHCSP, vt’ (2)

where 2P is the the conversion efficiency of heat to elec-
tricity.

2) CCUS Systems: The CCUS system is comprised of the
carbon capture and utilization (CCU) system and the carbon
storage system (CSS). The amount of the CO, emission of the
gas turbine (GT) is given by

BT =T PE 4 g POt 3)

where ¢5T and €§'T are the emission coefficients of the GT.
The carbon dioxide flow process in the GT-CCUS system
can be represented by

EfT =B+ BT @)
EJOS = BSOS 4 BEP2G )

where ECCS, pair . pOSSh and E2P2G are the amount of
CO, captured by CCS, the amount of CO, directly emitted to
the atmosphere, the amount of CO, charged to CSS, and the
amount of CO; transported by CCS to P2G, respectively.

The relationship between the CO, captured by CCS and the
electric power consumed by CCS is as follows:

PSS = BEFSS, i, (©)

where [ represents the corresponding coefficient between
PLCS and ECCS.

3) P2G Systems: P2G can convert the electricity from PV
and wind generation, which are sometimes difficult to con-
sume, into natural gas, and GTs can use natural gas generated
by P2G to generate electricity when the electricity loads are
high. P2G mainly includes two processes, i.e., electrolysis of
water and methanation. Oxygen and hydrogen are produced
by electrolysis of water. Hydrogen is explosive, difficult to
store and to transport over long distances, and natural gas has
a higher energy density than hydrogen. Natural gas is easier
to store and transport and more environmentally friendly, and
the generated natural gas can be easily injected directly into
natural gas pipelines. Therefore, the hydrogen generated by
electrolysis is further synthesized into natural gas with carbon
dioxide. The two processes of P2G are as follows:

electrolysis

2H,0 2H, + 0o, (7
COq +4Hy —— CHy4 + 2H50. (8)
P2G pP2G P2G P2G
V;PQG — n Pt ’ Et _ V;t , th (9)
HCH4 MCOQ Vm

where 1nF2¢ is the conversion efficiency of P2G, V,F2¢ is
the volume of synthesized natural gas. PF2¢ is the electricity
consumed by P2G during time period t. Ef2C is the amount
of CO, required by P2G, HCM4 represents the calorific value
of CHy, M©©2 denotes the molar mass of CO,. V,,, denotes
the molar volume of CHy.

The carbon dioxide balance equation of P2G is

EP?C = BP9 4 gPP2C vy, (10)
where EtC S8.dis {5 the amount of CO, discharged to P2G.

III. DETERMINISTIC DISPATCH MODEL OF THE EHGIES
A. Optimization Objective

By minimizing the system operating cost, the objective
function can be constructed as follows:

min C = OOM + C(imp + 0002 - Cexpa

T
Com = Zt:l ZkeQ o

Y

12)



1mp i pimp,i
Cimp = Zt 1 ZzeN e B (13)
Ceo, = ¢ (B0 - E§©) (14)
co T _ccs
B Zt 1 Zleﬂcm, t N Ztﬂ By, 5)
FCOs _ Zt DIRT (16)
Q ={CSP, PV, WT, GT, GB, EB, GES, -

P2G,CCS,CSS}, N = {electricity, CHy},

where C, Com, Cimp, Cco,, Cexp are the total cost, the
operation and maintenance (OM) cost of devices, the cost
of importing electricity and gas, the CO, trading cost, and
the revenue from exporting electricity and natural gas, respec-
tively. PF is the generated electric power or thermal power
of device k. pF is the OM factor of device k. TP g
the electricity or gas price. Pt P s the imported electric
power or gas power. ( is the cost coefficient of CO, trading.
ECO2 and EJ? are the CO, emissions of the EHGIES and
the CO, emission quota of the EHGIES, respectively. [ is
the index of the devices producing CO,. &' is the emission
coefficient of device [. P! is the electric power or thermal
power generated by device [. v is the carbon emission quota
factor. Qemi = {GT, GB, electricity}

B. Constraints
1) Electric Power Balance Constraint:
PV WT imp,el GT
L e
+ PCSP + Pdis,BESS _ PEL + Pexp,elec+
t t -t t
Ptch,BESS+PtEB_|_PtP2G+PtCCS7 Vi,
where PPV, pVT pGT pdisBESS pEL pch.BESS g pEB
are the electric power generated by PV, the electric power
generated by WTs, the electric power generated by the GT,
the discharging power of the BESS, the power of the EL, the
charging power of the BESS, and the power consumed by the

EB, respectively.
2) Thermal Power Balance Constraint:

(18)

PtHGT —‘,—PtHGB +PtHEB,load +PtHCSP,load (19)
=P, v,

HGT HGB
Pt Pt

and are the thermal power generated by the
GT at time ¢ and the thermal power generated by the GB,
respectively. P/IEB is the part of the thermal power generated
by the EB that supplies the TL. PHCST is the part of the
thermal power generated by the CSP that supplies the EL.
PIL is the power of the EL.

3) Natural Gas Balance Constraint:

this,c;ss + VP26 Vtimp,CH4 _

+ ‘/tGB 4 ‘/'tGT + ‘/tGLv \V/t,

where VS GSS e GSS Ty GB - GT ang VO are the
discharging power of the GSS at time ¢, the charging power
of the GSS, the gas consumed by the GB, the gas consumed
by the GT, and the power of the GL, respectively.

Vexp,CH4 + Vch,GSS
! (20)

4) CSP Constraints: The CSP generator set and the TES
must meet the following operating constraints:

PCSP < pCSP < pCSP 1)
—Riown < PP = PO < RT, W, (22)

EP™S =(1 — orrs) BN + s P 0"
_ PtTES,dis /n%lés + IHEB.TES PtHEB,TES (23)

— PIES fppsar, VA,

0 < PTES dis < BTES dlb,r]dlb PEEXS dls7 Vt, (24)
0 < PPN < (1= BPS ) PIES < /i, Ve, (25)
ETES < pTES < ETES (26)
0< PtTES2L < BtTESQLnTES2LP$§3XS2L Vi, Q27)
0 S PtHEB’TES § BFBUHEB,TEspgaEXB TES, Vt, (28)
0< PtHEB,TES PTES ch < PIE:XS ch/17 ha VA (29)
0 < PTESQL +PTES ,dis < d1§ R'II:EXS dls’ Vt, (30)
BIESZL L BEB <1 vy, (31)

where PSSP and PSST are the minimum and maximum output
power of the CSP, respectively. RJ, and RGST are the ramp
down and ramp up rates of the CSP, respectively OTES 18
the self-discharging rate of the TES. 7%k and ndsg are the
charging and discharging efficiency of the TES, respectively.
PtTES’Ch and PtTES’dis are the the charging and discharging
power of the TES at time ¢, respectively. nugp TEs iS the
charging efficiency of the EB to the TES. PtHEB’TES the
charging thermal power of the EB to the TES. nrgsor, the dis-
charging efficiency of the TES to TLs. PT¥52L the discharging
power of the TES to ELs. BTES 4is is the discharging binary
decision variable for the TES. PIESdis apd pTES.ch gre
the maximum allowable discharging and maximum allowable
charging power of the TES. ETES and ETES are the lower
and upper limits of the TES, respectively. BI¥S2L is the
discharging binary decision variable for the TES supplying
TLs. PTES2L g the maximum allowable discharging power
of the TES supplying TLs at time t. BFP is the discharging
binary decision variable for the EB supplying the TES. PEE
is the maximum allowable discharging power of the EB
supplying the TES.

5) GES and CSS Constraints: GES and CSS must meet the

following constraints during operation:

E} = (1—04)Ef_ +nS Py 32)
— PP mdis v, vg,
0 < ppi® < ppdepdispedis -y v, (33)
0< PP < (1= BE)PER /0", VhYg,  (34)
EE, < EF < EE., VitVg, (35)



ES = E&, Vt,Vg, (36)
where g € {BESS, GSS, CSS}.
6) Other Constraints:
0< PF<PF, WVt Vke{PV,WT}, (37)
PF. < PF< PF_VtVEe{GT,EB,GB,P2G}, (38)

k k k k
Rdown < Pt - Ptfl < Rupa

Vt,,Vk € {GT,P2G}, (39)

Pl =nk, PP, vt Wk € {GT,EB,GB},  (40)
PHET — pur PET v, 41)
0< P™" < B™ " Plocma: VLYIiEN  (42)

0 < PO < (1 _ Bimp,z) Pbcomaxs VELYiEN  (43)

where ]5{“ is the forecasted values of PV and wind generation.
PF denotes the electric power or thermal power generated
by device k. Ptkj’CH4 represents the gas power consumed by
device k. ngen is the energy conversion efficiency of device k.
PHGT is the thermal power generated by the GT. ngg is the
corresponding coefficient between the electric power and ther-
mal power generated by the GT. Pho ax 1S the maximum
power allowed to be traded at the point of common coupling
(PCC). B,™P"" is the binary purchase decision variable.

7) Deterministic EHGIES Dispatch Model: The determin-
istic EHGIES dispatch model can be formulated as follows:

min C = COM + Cimp + CCOg - C(exp7

(44)
s.t.  (1)=(6), (9)—(10), (12)—(43).
IV. MULTI-OBJECTIVE MODELS FOR OPTIMAL EHGIES
DISPATCH BASED ON INFO-GAP THEORY AND AHP

The info-gap method can effectively deal with uncertainty
without needing probability distributions and uncertain in-
tervals. Info-gap theory includes system models, uncertainty
modeling, and performance requirements. The total cost C' can
be regarded as the system model of the EHGIES. Performance
requirements evaluate the level of robustness or opportuneness
of the decisions against uncertainty. The model in Section III
supposes that the prediction of PV, wind generation, and load
demand is accurate, and it takes the forecasted value as the
basis for the optimal operation of the EHGIES. However, PV,
wind generation, and load demand have serious uncertainties
in practice, and the actual value may seriously deviate from
the predicted value. Therefore, the dispatch based on the
predicted value will cause economic losses. These make the
deterministic model in Section III unreasonable. Therefore,
this paper employs info-gap theory to study uncertainty.

A. Modeling Uncertainty by Info-Gap Theory

Info-gap theory is a non-probabilistic and non-fuzzy opti-
mization method to deal with uncertainty, which studies the
possible effects of uncertain variables under the premise of
satisfying the acceptable range of the preset target. Uncertainty
modeling describes the gap between the forecasted values
and other possible values. The uncertainties are modeled as
imprecise sets in info-gap theory, which is totally different
from rigorously exact sets of upper and lower bounds in robust
optimization. The uncertainty sets of wind, PV generation, and
loads can be expressed as

Pf — Pf

Ulay, PF) = {Pf

§ak]5tk}, Vt,Vk, (45)

o >0, Vk, (46)

where Ptk is the actual values of PV, wind generation, ELs,
TLs, and GLs. Ptk is the forecasted values of PV, wind
generation, ELs, TLs, and GLs. «y is the radii (horizons) of
the uncertainties of PV, wind generation, ELs, TLs, and GLs.
k e {PV,WT, EL, TL, GL}.

The fluctuation ranges of the uncertain variables are

PF e U(ay, PF), vt VE. (47)

By taking into consideration that the risk attitudes of de-
cision makers will influence the dispatch plans, this paper
proposes a multi-objective robustness model (RM) with RA
for decision makers with more conservative decision intentions
and a multi-objective opportunity model (OM) with OS for
decision makers with more speculative decision intentions.

B. A Multi-objective RM With RA

The RM model maximizes uncertainty based on the premise
that the decision cost does not exceed the expected cost, that
is, the RA model achieves the robustness while ensuring the
basic economy. For the RM model, the greater the value of
uncertainty, the greater the RM ability and the corresponding
dispatch cost. We obtain the ability to avoid risks at the cost
of more dispatch costs. The multi-objective RM model with
RA is summarized as follows:

max
s.t.

(apv, awT, OEL, OTL, AGL)
max C < (1+46)Cy
s.t.(1)—(6), (9)—(43), (45)-(47),

(48)

where ¢ is the robust level factor, and Cj is the base cost.
0 is proportional to the risk avoidance degree. In (48), apv,
awT, OEL, &TL, and a@r, are maximized simultaneously, so
Problem (48) is a multi-objective optimization problem. Cjy
is the optimal dispatch cost when the uncertain variables in
Problem (44) take the predicted value, that is, C is the optimal
solution to Problem (44). The RM is better than the traditional
robust optimization. Because the RM sets the expected cost
or profit index, system robustness and basic economy can
be guaranteed simultaneously. The RM denotes the degree to
which the EHGIES system can resist increasing uncertainties
of uncertain variables.



C. A Multi-objective OM With OS

The OM thinks that uncertainty can benefit the dispatch of
the system. In the OS strategy, the objective is to minimize
the uncertainties of uncertain variables while ensuring that
the obtained limit values of uncertain variable fluctuations
make the total dispatch cost of the EHGIES not greater than
the expected cost. The multi-objective OM model can be
formulated as follows:

min
s.t.

(apv, awr, oL, aTL, @GL)
minC < (1 — k) Cy
s.£.(1)=(6), (9)-(43), (45)-(47),
where x is the opportunistic level factor.

The OM determine how the EHGIES system can benefit

from the possible reduction of the uncertainties of uncertain
variables.

(49)

D. Model Solving Method
1) RM: we let

ap = wpa, Yk e {PV,WT,EL,TL,GL},  (50)

where « is the comprehensive equivalent radius of the un-
certainty of the system. wy is the weights of fluctuation
amplitudes of uncertain variables of PV, wind generation, ELs,
TLs, and GLs.

We use the AHP to determine the weights. See [31] for the
details of the AHP. Then, Problem (48) can be converted into

max o
st maxC < (14 96)Cy,
s.£.(1)=(6), (9)—(43), (45)—(47), (50),

2) OM: In the same logic, we can transform Problem (49)
into the following single objective optimization problem:

(51

min  «
st.  minC < (1 —k)Cy,
s.£.(1)(6), (9)-(43), (45)—(47), (50),
V. CASE STUDIES

The basic structure of the used EHGIES is shown in Fig. 1.
The operating parameters of CSP and CCUS are shown in
Table 1. The maximum electric power of P2G is 250 kW. The
OM cost of the GT is $0.0208/kWh, its maximum electric
power output is 1000 kW, its ramp down and up rates are both
100kW/h, and its carbon emission coefficient is 0.55 kg/kWh.
The GSS capacity is 800 m?, and the maximum gas charging
and discharging power are both 200 m?/h. The BESS capacity
is 800 kWh; its maximum discharging and charging power are
both 200 kW. The OM costs of PV and wind generation are
both $0.0069/kWh. The maximum electric power exchange
between the system and the external grid is 800kW. The
maximum gas power exchange between the system and the
external gas network is 1400 m®. The carbon emission quota
factor is 0.424 kg/kWh. The cost coefficient of CO, trading
is $0.0167/kWh. Other used parameters are from [32]. Sim-
ulations and computations are performed using the solver of

(52)

CPLEX on a desktop with an Intel i9 CPU, 3.60 GHz (16

CPUs), and 64 GB RAM in MATLAB/YALMIP.
TABLE I
KEY PARAMETERS OF THE CSP AND CCUS

Parameter  Value Parameter Value
NHaP 45%  PLES:ch 500 kW
TES,dis
OTES 0.03% Poie 500 kW
nﬁli‘:b 98% ETES 400 kWh
nisl  98%  ELES  1800kwh
nisqr,  98% B 0.5kWh/kg

A. Deterministic Dispatch Results

Cp and other results are shown in Table II. The supply and
consumption of electric power, the supply and consumption of
thermal power, and the supply and consumption of gas in the
whole dispatch period are shown in Figs. 2-5. From Figs. 2—
5, it can be seen that the EHGIES has a certain degree of
external dependence. In order to ensure the supply and demand
balance of the system’s electricity, heat, and gas, the system
must maintain real-time interaction with the external networks
at all times. The integration of the CSP plant improves the
economy of the system and reduces the emission of CO;.
After the introduction of GES, the energy storage makes use of
its energy transfer characteristics to store energy at low price
periods and release energy at high price periods, realizing the
cross-time and high-value time-shift utilization of electricity,
heat, and gas, and improving the economy and flexibility of
the system. That is, GES improves the operating economy and
flexibility of the system by coordinating the sources and the
load side.

TABLE II
DETERMINISTIC DISPATCH RESULTS

Total cost (§)  CO; trading cost ($)
3607.5 71.7
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Fig. 2. The supply and consumption of electric power in the EHGIES.
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Fig. 3. The supply and consumption of thermal power in the EHGIES.
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B. Dispatch Results Based on the RM With RA

The comparison matrix H of PV, wind generation, ELs,
TLs, and GLs is shown as follows:

PV WT EL TL GL

PV /1 1/3 7 6 5

Wr(s3 1 9 8 7
H=EL |1/7 1/9 1 1/2 1/3 (53)

TL |16 1/8 2 1 1/2

GL \1/5 1/7 3 2 1

Based on H, we can obtain wpv, wwT, WEL, WTL, and wary,
as 0.2876, 0.5318, 0.0375, 0.0567, and 0.0864, respectively.

According to (51), the dispatch results based on the RM
with RA can be obtained, as shown in Table III. As shown
in Fig. 6, in the RM, total costs, CO, trading costs, and
the comprehensive equivalent radius of the uncertainty of the
EHGIES are all positively correlated with robust level factors,
because the robust level factor denotes the percentage of cost
increase that decision makers can accept due to uncertainties.
The larger robust level factor, the larger the cost of the dispatch
scheme, and the stronger the ability of the dispatch model
to handle uncertainty. Conservative decision makers believe
that uncertainty will lead to the development of goals in an
unfavorable direction and hope to make the system bear the
maximum possible uncertainty by paying more dispatch costs.

TABLE III
DISPATCH RESULTS BASED ON THE RM WITH RA

) « Total cost (§) CO> trading cost ($)
0.20 0.37083 4328.98 97.30
0.25 0.45996 4509.35 105.10
0.30 0.54888 4689.73 112.90
0.35 0.63781 4870.10 120.70

C. Dispatch Results Based on the OM With OS

As shown in Table. IV, the dispatch results based on the OM
with OS can be obtained as per (52). As shown in Fig. 6, in
the OM, both total costs and CO, trading costs are negatively
correlated with opportunistic level factors. However, the com-
prehensive equivalent radius of the uncertainty of the EHGIES
is positively correlated with the opportunistic level factor. This
is because OS decision makers think that uncertainties will
lead to the favorable development of the problem, and they
are more inclined to accept lower dispatch costs.

TABLE IV
DISPATCH RESULTS BASED ON THE OM WITH OS

K o Total cost (§) CO; trading cost ($)
0.05 0.10722 3427.11 66.49
0.10 0.22504 3246.73 62.89
0.15 0.34695 3066.36 59.56
0.20 0.47077 2885.99 56.81
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Fig. 6. Variation trends of costs and uncertainties with level factors.

VI. CONCLUSION

This paper establishes an EHGIES with the CSP and
GES in order to improve the flexibility and economy of
the traditional IES and formulates a deterministic dispatch
model of the EHGIES. Based on info-gap theory and AHP,
this paper comprehensively considers the uncertainties of PV,
wind generation, ELs, TLs, and GLs, and proposes two multi-
objective dispatch models with robustness and opportunity
respectively according to different attitudes toward to risk. The
following conclusions can be drawn through case studies.

1) The introduction of CSP and GES to the optimal opera-
tion of the EHGIES can meet the various energy needs,
and realize multi-energy interconnection. However, the
EHGIES has an interactive relationship with external
networks, and the transaction with the external network
must be maintained in real time to ensure the internal
operation security of the system. The integration of CSP
and GES improves the economy and flexibility of the
EHGIES, and reduces the CO, emission of the EHGIES.

2) The CSP can act as the CHP unit and break the operation
restrictions of CHP. The cooperation of the TES and the
EB provides a low-cost source of heat for the TES, mak-
ing the operation of the EHGIES more flexible, improving
the CSP generation potential, realizing “electricity-heat-
electricity” energy conversion, and effectively reducing
operating costs through energy pricing mechanism.



3)

4)

GES uses their energy transfer characteristics to store
energy at low prices and release energy at high prices,
improving the economy and flexibility of the EHGIES.
Info-gap theory can better measure the uncertainty ex-
isting in the operation of the EHGIES, and the decision
maker can adopt appropriate strategies as per the pref-
erence for risk. The RM model can effectively handle
the negative effects of uncertainty and guarantee ex-
pected costs while realizing the robustness of the system.
Nevertheless, the OS model make full use of favorable
uncertainties and can obtain lower expected costs.

Due to the small geographical range of the EHSIES in this
paper, the constraints of power flow and gas flow are ignored.
In the follow-up research, we plan to consider power flow and

gas

flow, consider more uncertainties, such as market price

fluctuations, policy changes, and technological advancements,
and explore their impacts on IES operation. Furthermore, we
intend to consider hydrogen and other new energy resources in
the IES. Moreover, we will study the planning of the EHSIES.
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