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Preface

Itis our great pleasure to introduce this collection of selected papers presented at the 30th
International Conference on Parallel & Distributed Processing Techniques & Applica-
tions (PDPTA 2024). The conference was held as part of the federated 2024 Congress
on Computer Science, Computer Engineering, and Applied Computing (CSCE 2024),
which took place from July 22 to July 25, 2024, in Las Vegas, Nevada, USA.

The CSCE 2024 Congress brought together papers from a diverse array of com-
munities, including researchers from universities, corporations, and government agen-
cies. Accepted papers are published by Springer Nature, and the proceedings showcase
solutions to key challenges in various critical areas of Computer Science, Computer
Engineering, and Applied Computing.

Computer Science (CS) is the study of computational systems, data processing,
information management, and automation. Many applications in CS focus on solving
problems that would be impossible or extremely difficult to address without the use
of computers. It serves as a bridge between computational science and other scientific
fields. The interdisciplinary nature of CS involves leveraging computers to understand
and solve complex challenges, making it the science of using computers to advance
scientific discovery. Computer Engineering (CE), on the other hand, integrates aspects
of computer science, electronic engineering, and electrical engineering. It encompasses
the design and production of computer hardware, such as chips, servers, supercomputers,
embedded systems, and communication systems, among others.

Considering the above broad outline, the CSCE 2024 Congress was composed of
the following focused conferences:

Applied Cognitive Computing (ACC); Bioinformatics & Computational Biology
(BIOCOMP); Biomedical Engineering (BIOENG); Scientific Computing (CSC); e-
Learning, e-Business, Enterprise Information Systems, & e-Government (EEE); Embed-
ded Systems, Cyber-physical Systems, & Applications (ESCS); Foundations of Com-
puter Science (FCS); Frontiers in Education (FECS); Grid, Cloud, & Cluster Com-
puting (GCC); Health Informatics (HIMS); Artificial Intelligence (ICAI); Data Sci-
ence (ICDATA); Emergent Quantum Technologies ICEQT); Internet Computing & IoT
(ICOMP); Wireless Networks (ICWN); Information & Knowledge Engineering (IKE);
Image Processing, Computer Vision, & Pattern Recognition (IPCV); Modeling, Simula-
tion & Visualization Methods (MSV); Parallel & Distributed Processing Techniques &
Applications (PDPTA); Security & Management (SAM); and Software Engineering
Research & Practice (SERP). The scope of each track can be found at: https://www.ame
rican-cse.org/csce2024/conferences

The primary objective of the CSCE Congress and its associated conferences is to
foster opportunities for cross-fertilization between the fields of Computer Science (CS)
and Computer Engineering (CE). The CSCE Congress is deeply committed to promoting
diversity and eliminating discrimination, both in its role as a conference organizer and
as a service provider. Our goal is to create an inclusive culture that respects and values
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differences, promotes dignity, equality, and diversity, and encourages individuals to reach
their full potential. We are also dedicated, wherever possible, to organizing a conference
that represents the global community. We sincerely hope that we have succeeded in
achieving these important objectives.

The Steering Committee and the Program Committees would like to extend their
gratitude to all the authors who submitted papers for consideration. This year’s confer-
ences received submissions from 52 countries, with approximately 50% of them coming
from outside the USA. Each submitted paper underwent a rigorous peer-review process,
with at least two experts (an average of 2.3 referees per paper) evaluating the submissions
based on originality, significance, clarity, impact, and soundness. In cases where review-
ers’ recommendations were contradictory, a program committee member was tasked
with making the final decision, often consulting additional referees for further guidance.
The Congress followed the guidelines of COPE (Committee on Publication Ethics):

e Typical submissions underwent a single-blind peer review process, in which the
authors remained unaware of the identities of the reviewers, while the reviewers
were informed of the authors’ identities.

e Papers authored by one or more members of the program committee, including co-
chairs, were subjected to a double-blind peer review process, ensuring that neither
the authors nor the reviewers were aware of each other’s identities or affiliations.

The PDPTA 2024 Conference received 143 submissions, of which 24 full and 4 short
papers were accepted, resulting in a paper acceptance rate of 19.6%.

We are deeply grateful to the many colleagues who contributed their time and effort
to organizing the Congress. In particular, we extend our thanks to the members of the Pro-
gram Committees, the Steering Committee, the referees, and the Chairs and organizers
of individual sessions and conferences. We would also like to express our appreciation to
the primary sponsor of the conference, the American Council on Science & Education.
The list of members of the Program Committee for each track can be found at: https://
www.american-cse.org/csce2024/committees

We extend our heartfelt gratitude to all the speakers and authors for their valuable
contributions. We would also like to thank the following individuals and organizations
for their support: the staff at the Luxor Hotel, the staff of Springer Nature Soheyla
Amirian (Pace University), Farzan Shenavarmasouleh (Medialab Inc., USA), and Farid
Ghareh Mohammadi (Mayo Clinic, USA) for their assistance in various aspects of the
event.

We are pleased to present a curated selection of papers from PDPTA 2024. This book
represents a collection of outstanding research contributions that reflect the diversity and
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depth of work in core areas of HPC, Parallel and Distributed Processing, Algorithms,
Computational Science, and Applications.
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A Methodical Approach to Parallel 10
Analysis in Distributed Deep Learning
Applications

Edixon Parraga'®)@®, Betzabeth Leon'®, Sandra Mendez?®,
Dolores Rexachs!'@®, Remo Suppi'®, and Emilio Luque’

L Computer Architecture and Operating Systems Department, Universitat

Autonoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
{edixon. parraga,betzabeth.leon,dolores.rexachs,
remo.suppi,emilio.luque}@uab.es

2 Computer Sciences Department, Barcelona Supercomputing Center (BSC),

Barcelona, Spain
sandra.mendez@bsc.es

Abstract. Deep learning applications have become crucially important
for the analysis and prediction of massive volumes of data. However, these
applications impose substantial input/output (I/O) loads on computing
systems. Specifically, when running on distributed memory systems, they
manage large amounts of data that must be accessed from parallel file
systems during the training stage using the available I/O software stack.
These accesses are inherently intensive and highly concurrent, which can
saturate systems and adversely impact application performance. Conse-
quently, the challenge lies in efficiently utilizing the 1/O system to allow
these applications to scale. When the volume of data increases, access can
generate high training latency and add overhead significantly when data
exceeds the main memory capacity. Therefore, it is essential to analyze
the behavior of the I/O patterns generated during the training stage
by reading the data set to analyze the behavior when the application
scales and what amount of resources it will need. The paper presents a
methodology to analyze parallel I/O patterns in Deep Learning appli-
cations in this context. Our methodological approach mainly aims at
providing users with complete and accurate information. This involves
a thorough understanding of how the application, the dataset, and the
system parameters can significantly influence the parallel I/O of their
deep learning application. We seek to empower users to make informed
decisions through a structured methodology that allows them to identify
and modify configurable elements effectively.
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Keywords: Distributed Deep Learning + Parallel I/O - I/O Analysis -
HPC cluster - I/O behavior patterns

1 Introduction

Deploying DL applications on High-Performance Computing (HPC) systems
introduces substantial Input/Output (I/O) loads during the training phase, char-
acterized by prolonged file access, high concurrency, and persistence. The sig-
nificant data required to train DL models necessitates HPC systems grappling
with sizable data loads and novel I/O patterns. The effective utilization of the
I/0 system by data-intensive DL applications becomes a formidable challenge,
potentially resulting in heightened training latency and added overhead, par-
ticularly when datasets exceed the capacity of main memory. Although more
processes can be created or more nodes can be used to have more memory, they
would be processes limited by memory and not by computation. There is a pos-
sibility that the execution is not viable due to restrictions imposed by the HPC
system.

The training phase, particularly for distributed DL applications, demands
intensive use of the I/O system, which does not only consist of a sequential
loading of the data at the beginning of training, but also a final writing of
results. The data is accessed using different access patterns, depending on the
data, application checkpoints can be made, in different epoch numbers. File
data management in DL applications necessitates a distinct approach tailored
to the inherent characteristics of DL I/O patterns, encompassing variability,
randomness, frequency, and repetitive use. Efficient configuration of I/O system
parameters relies on various factors, including the application’s I/O pattern,
storage hardware, problem size, and degree of parallelism. Unlike the traditional
HPC 1/0 subsystem, the I/O software stack and patterns diverge from classical
software and tools for scientific applications.

To facilitate this analysis, we propose a methodology to identify significant
patterns that may influence application performance and I/O efficiency. This
information serves as a valuable guide to users about the parameters involved
in the I/O behavior of a DL application. Our methodological approach provides
users with a complete and detailed understanding of how parameters at the
application, the size and type of data, the format of the dataset can all impact
the parallel I/O of deep learning applications. We strive to provide useful, com-
plete and accurate information, allowing users to understand how specific system
configurations and application settings can significantly influence overall system
efficiency. By delving into these details, we aim to empower users, providing
them with the necessary knowledge to make informed and strategic decisions.

The paper unfolds as follows: Sect. 2 refers to a collection of articles relevant
to our research, positioning our work in the context of I/O and deep learn-
ing research. Section 3 describes the methodology applied to identify different
patterns generated by the application during the training stage, extracting fun-
damental values for the behavior description and selecting significant parameters
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validated with the DLIO benchmark. Section 4 presents the experimental results
of the methodology in the Deep Galaxy application, and the final section presents
the conclusions.

2 Related Work

In the related literature, some studies describe the different techniques that
deep learning distributed systems use. Our work is based on the training phase;
the characterization in [7] of different systems offers a compact overview of the
resources used. In [1], dealing with the behavior of the I/O, the authors pro-
pose techniques and methods used in various classes of generated I/0. In [5],
the authors analyze the bottleneck generated by the I/O in the training phase
of machine learning. This analysis includes access patterns and a performance
model for an overview of storage strategies and their influence on I/0. In addi-
tion, in [10], the authors experimented with machine learning techniques and
hyperparameters. Other authors have focused on the analysis of access patterns
[6,9,11], where it is stated that storage subsystems are complex and the I/O
operations of DL applications have more irregular patterns than scientific appli-
cations.

Our research distinguishes itself from previous work by focusing on a detailed
analysis of parallel data input and output in DL applications within HPC envi-
ronments. The main objective of this methodological approach that we have
adopted is to provide the user with exhaustive, useful and accurate informa-
tion about how a series of parameters of the application, dataset, and system
can significantly affect the performance of their Deep Learning application. By
understanding how system configuration and application-specific settings influ-
ence system efficiency, we aim to empower users to make informed decisions and
achieve optimal performance in their DL applications in HPC environments.

DL Application Dataset System
Describes the key aspects of the Describes the Computer system  Architecture, Network
(Ccharacterization ] et o) G s muslcd i characteristics of
the t and training of the the dataset
deep neural network. Softwars stack.

DL Application Dataset

Storage system File system, servers

L Application hyperparameters Conflgures the parts of
e
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Fig. 1. Methodology for the Analysis of I/O Patterns of DL Applications
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3 Methodology for the Analysis of I/O Patterns of Deep
Learning Applications

Our methodology allows us to analyze the parallel I/O pattern based on the
spatial and temporal I/O behavior of dataset access patterns in the training
stage of DL applications executed in HPC systems to detect significant patterns
or phases (behavior description) and analyze which aspects impact performance
(Performance Behavior). Figure 1 presents the methodology, which is composed
of six steps: 1) Characterization, 2) Design of instrumentation and monitoring,
3) I/0 tracing and instrumentation, 4) Trace analysis, 5) Behavior Description,
and 6) Performance Behavior.

To show our methodology for specific data sets and exemplify each of the
steps, we use Input/Output for Deep Learning (DLIO). DLIO [4] is a represen-
tative benchmark which is built based on the I/O profiling of selected workloads.
It can accurately emulate the I/O behavior of modern deep-learning scientific
applications. This benchmark allows the execution of various input/output oper-
ations, such as read, write, random, and sequential access. Its purpose is to
evaluate storage performance. It also uses a set of parameters that allow the
configuration of scenarios for Deep Learning (DL) applications, simulating var-
ious storage workloads. DLIO plays HDF5, NPZ, and TFRecord file formats,
among others. We describe each phase of the methodology below:

3.1 Characterization

The characterization phase consists of identifying the significant elements for the
description of the behavior (functional and performance) of the application, the
data set, the computer system and the storage system.

Application: Characterizing a deep learning application encompasses delin-
eating its pivotal facets. Initially, this involves elucidating the tasks undertaken
by the deep neural network, such as image recognition, natural language pro-
cessing, and object detection. Following this, the determination of the software
stack becomes imperative. This process entails identifying and describing the
constituent software components integral to the application’s foundational tech-
nological infrastructure. These components encompass the framework, program-
ming language, libraries, and software modules.

Furthermore, in the characterization process, vital elements like the frame-
work type (TensorFlow, Keras, or Horovod), the number of epochs, checkpoint
execution, as well as frequency come under scrutiny. This stage aims to pinpoint
the software requisites and parameters essential for configuring the application’s
execution, influencing its input/output dynamics.

Applying the application characterization using the DLIO. In order to per-
form this process, a specific software stack is required, including Horovod [ten-
sorflow] > 0.19.5, tensorflow > 2.2.0, numpy > 1.19.1, h5py > 2.10.0, pandas
> 1.1.3 and mpidpy > 3.1.3.
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Dataset: In the case of image datasets, characterization involves understand-
ing and describing specific aspects related to the images and how they relate
to the machine learning or computer vision tasks intended to be performed.
These aspects are previously defined by the DL application’s user or designer.
Therefore, much of the information related to the characterization of the dataset
can be found directly with the source that designed the DL application, such
as image dimensions, color depth, format of the images, and distribution of the
images among different categories or classes, among others. In the case of DLIO,
as it is a benchmark that can emulate datasets of various file formats, three
datasets will be generated in formats such as HDF5 (Hierarchical Data Format
version 5), NPZ (NumPy Zip File), and TFRecord (TensorFlow Record).

System: Describing the system involves providing detailed and accurate infor-
mation about the environment in which the DL application will run. The com-
puter system (number of nodes, amount of memory, type of processor, type of
network), the storage system (storage capacity, file system, number of data/
metadata servers).

The experiments were run on an HPC computing system with 256 compute
nodes (16,384 cores), based on 2x Intel Xeon Ice Lake 8352Y processors with 32
cores each (64 cores per node), 256 GB of RAM (247GB for real use), 960GB SSD
NVMe of local storage, and interconnected via Infiniband HDR 100 connection,
LUSTRE File System (formed by a set of 12 I/O servers (OSSs) and Object
Storage Target (OST) disks).

3.2 Design of Instrumentation and Monitoring

In this stage, the elements that will be monitored during the execution of the
application are identified.

Application: Refers to the application’s input hyperparameters for execution.
The hyperparameter settings of the deep learning application are the values
chosen before model training and affect the model training process. Some hyper-
parameters are the number of epochs, the neural network architecture, and
the number of processes. The number of epochs refers to how many times the
machine learning model will see the entire training data set during the training
process. The choice of neural network architecture can significantly impact the
complexity of the model, the computational resources required, the preprocess-
ing strategies, and the way data flows through the network during training, all of
which can affect the I/O of the deep learning model’s training process. This can
affect the data needed for training and, therefore, influence the I1/0, as larger
networks may require more extensive datasets for effective training. In the case
of DLIO, a single epoch was used to apply the methodology.

Dataset: This refers to the dataset used to train the deep neural network,
including the data’s size, quality, and diversity. Describing the characteristics
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of a dataset involves identifying and providing detailed information about the
different aspects of the dataset. Among these are:

— Dataset size: The size of a dataset refers to the amount (GiB) of data or
samples it contains.

— Data Type: This refers to the type of data found in the dataset, for example,
numeric, categorical, text, image, video, audio, etc.

— Format type: This refers to the structure and organization of the information
stored in a file or data storage system; for example: HDF5, NPZ, TFRecord,
JPG, PNG, etc.

— Data Layout: This refers to how the data is laid out, for example, whether it
is separated into subdirectories or all together.

— Record Length: The size of a record/image within the dataset expressed in
Bytes.

—  Number of Samples: The number of samples per file refers to the total number
of records/images within the dataset.

— Batch Size: This refers to the number of data samples used in an iteration
during a model’s training.

—  Access Mode: This refers to the methods by which processes can interact with
a file on a storage system. Among the access modes are the following:

o  Multi-access: In this mode, each process has its copy of the input data
and operates independently.

e Shared Access: In this mode, processes work together to read or write
to a shared file in parallel. Each process accesses the same file, and each
input/output operation is coordinated between processes to avoid con-
flicts.

In applying the characterization of the dataset using the DLIO benchmark
to create a synthetic dataset for our experiments, we have identified the config-
urable elements for generating the dataset in a LUSTRE file system, such as the
number of samples and the sample size. In addition, we have considered aspects
of the application and system, such as the number of processes and nodes, which
influence the number of files by the access mode to the dataset according to its
format. Several parameters have been selected to generate the datasets (Table 1).
Additionally, to generate the dataset with the TFRecord format, the transfer size
was configured at 256 KiB in all cases.

For the generation of files and adjusting the DLIO configuration parameters,
the workload that each process would handle according to the type of access to
the file was considered. For example, in the case of HDF5, whose access mode
is shared, each process accesses a part of the same file; therefore, a single file
is generated regardless of the number of processes. With NPZ and TFRecord
having a multi-access mode (independent), in which each process accesses its
file, the DLIO parameters were set to the number of images each process would
handle to equalize the size of each file per process with file size handled in HDF5.
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To maintain the same workload per process in the NPZ and TFRecord exper-
iments concerning the HDF5 experiments, for NPZ and TFRecord, the number
of Samples was divided by the number of processes (Eq. 1).

Numb I
Workload per process = umber of Samples

(1)

Processes

System. Configuring the system consists of selecting the type of file system to
be used, the amount of memory needed to run the application, the number of
processes, and the number of nodes. If a parallel file system is being used, the
size of the data blocks written on each disk (striping unit (stripe size) refers to
the size of the data blocks written to each disk [8].) and the number of data
servers (stripe count) are configured.

Applying this phase in DLIO, the system configuration involves selecting the
type of file system, which in this case is LUSTRE, and specifying the amount of
memory necessary to run the application; in this case, 16GiB and 32GiB were
used. Additionally, the configuration includes the number of processes, ranging
from 4 to 48, and the number of nodes, ranging from 1 to 12. When using the
LUSTRE parallel file system, the stripe size is set to 1 MiB, and the stripe count
can be set to 1, 2, 4, 8, or 12. The striping unit = 1048576 bytes, number of
data servers (OST) = 1 per node.

Table 1. HDF5, NPZ, TFRecord Formats. Dataset Design Parameters DLIO

File Configurable parametersDataset |Sizes per |Record length |Number of Batch
format |Proc.Nodes/Processes |[size ’ﬁle (GiB) |(bytes) samples size
per node
HDF5 |4 1 4 48 48 131072 786432 64
8 2
16 (4
32 8
48 |12
NPZ, 4 1 4 96 24 131072 196608 64
TFRecord
8 2 12 98304
16 A4 6 49152
32 88 3 24576
48 |12 2 16384

3.3 I/0 Tracing and Instrumentation

Once the application, dataset, and system have been configured, it must be
decided at which layer of the I/O software stack we will trace and monitor,
after which we must find the appropriate tools for this purpose. In this paper,
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we have selected the Darshan tool version 3.4.3 [3] to track I/O operations
at the application level and the seff tool to monitor system resource usage.
Therefore, this phase of the methodology consists of executing and monitoring
the application to obtain the trace of process events.

3.4 Trace Analysis

To understand and describe I/O behavior, we selected as main factors the
file access type (sequential, strided, random), the open file mode (read, write,
write/read), the file access mode file (shared or multi-access), file format (HDF5,
TFRecord, NPZ, etc.), request size(fixed/variable, small/medium/large), repe-
titions, as well as time intervals (fixed, variable). In this way, the trace analysis
is carried out in this phase, identifying the I/O patterns to obtain the necessary
elements to describe the I/O behavior based on the main selected I/O factors.
We track the type of operation, order of operation, file offset, request size, and
I/0 processes for each file opened during training. The spatial pattern is repre-
sented using the number of I/O processes, the file offset, and the request size.
The temporal pattern is also represented, considering the file, the request size,
the I/O processes, the order of operation, and the repetitions.

3.5 Behavior Description

Based on the pattern of I/O operations accessing the dataset, the spatial and
temporal behavior is described to search for significant phases due to the follow-
ing two factors: - Spatial behavior: volume of data accessed. - Temporal behavior:
the number of repetitions of a pattern or consecutive patterns. In this stage, the
global 1/0O behavior is represented, where significant patterns will be identified
and grouped into I/O phases. An I/O phase is defined as a set of similar I/0
operations where similarity is defined by operation type, request size, and offset.
The offset can be sequential, strided, or random. We use the Eq.2 to identify
the sequential case.

file_Of fset; = file.Of fset;_1 + Request_Size; 1 (2)

where file_Of fset; is equal to the previous file offset plus the request size, there-
fore, spatial and temporal behavior is modeled at this stage based on the I/O pat-
terns. The spatial pattern indicates the size of the operation (Request_Size), and
how the file is accessed at each file offset for each I/O process. The temporal pat-
tern shows the order of I/O operations performed for each process and the number
of repetitions of similar patterns or similar operations. In both patterns, the repe-
titions, the size and the number of I/O processes are essential to assess the weight
of each I/O phase. To validate the methodology, we have applied it to the DLIO
benchmark, which can generate various patterns simulating real applications. In
this way, we can validate how we detect the generated pattern. Furthermore, the
impact of changing configuration parameters on performance is analyzed, specif-
ically the impact of the file access type, the file format, the number of processes
and nodes, the number of data servers, and the transfer size.
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lllustrative Case: HDF5, NPZ, and TFRecord File Formats. This section
explores the temporal and spatial I/O behaviors during the training stage, uti-
lizing the dataset generated in the previous section. Figures2 and 3 depict the
temporal patterns associated with three different file formats. The x-axis rep-
resents the range of processes, the y-axis indicates the order of operations, the
z-axis shows file offsets, and the color highlights the size of the operations. We
illustrate the spatial and temporal I/O patterns for these formats to demonstrate
their specific behaviors:

DLIO - HDF5 (Shared Access Type). In the case of the HDF5 file format,
a single shared file was read where all processes accessed the same file. Figure 2
shows the temporal and spatial pattern of the I/O accesses, which are repeated
periodically. Figure2(a) shows the behavior with 8 processes, each reading 6
GiB, resulting in a total file size of 48 GiB. In this case, 1552 read operations
were performed for each process, totaling 12416 operations. On the other hand,
Fig.2(b) shows the behavior with 48 processes, each one reading 1Gib, also for
a total file size of 48Gib. In this case, 272 read operations were performed for
each process, totaling 13056 operations.

The spatial pattern was sequential and the size of the operations, represented
in blue, remained constant in all cases, being 4 MiB. In addition, small oper-
ations were observed at the beginning, represented in green, which constitute
the access or reading of the file’s metadata. Therefore we see two differentiated
phases: access to metadata and access to data, the data access phase is consid-
ered significant due to the number of repetitions.
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Fig. 2. DLIO temporal and spatial pattern (HDF5 format). All processes access a
single shared file at a different file offset. 4 processes per compute node.

DLIO - NPZ and TFRecord (Multi-access Type): Figure 3(a) shows the
spatial and temporal I/O pattern of NPZ format, where each process reads
the entire file independently. With 48 processes, 519 reads of 4 MiB each were
performed, resulting in a cumulative total of 24,912 read operations. Each file
has a size of 2 GiB, making the total 96 GiB. The spatial pattern for NPZ was
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sequential, and in all cases, five short reads were consistently performed at the
beginning of the file, corresponding to the metadata.
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Fig. 3. DLIO temporal and spatial pattern (NPZ and TFRecord format). Each process
accesses its own file. 48 processes - 12 nodes. 4 processes per compute node.

For TFRecord format, Fig.3(b) illustrates the temporal and spatial I/O
pattern when using 48 processes. The behavior is repetitive, with each pro-
cess accessing its respective file. The transfer size was set to 256 KiB. With 48
processes, 8,197 operations were conducted, each with a size of 256 KiB. Conse-
quently, each process performed a total read of 2 GiB, resulting in a combined
read of 96 GiB for all processes. The total number of operations for the 48 pro-
cesses amounted to 393,456 operations. Experiments were also conducted for
TFRecord with a transfer size of 1 MiB, resulting in 100,374 read operations.
Therefore, it is evident that both the number of processes and the transfer size
impact the number of reads.

Concerning the spatial pattern, access was sequential, and the read size
matched the configured transfer size (256 KiB and 1 MiB). All processes inde-
pendently read their respective files, and the offset increased with the size of
each read operation.

3.6 Performance Behavior

Following the earlier phases, the final phase of our methodology focuses on the
evaluation and analysis of performance. The performance metrics for the dataset
in HDF5 format-such as data transfer rate, execution time, and I/O time-are
illustrated in Fig. 4.

As the number of processes, nodes, and data servers increases, the data
transfer rate also increases. This expected behavior results from allocating more
resources to manage the growing I/O workload. Conversely, both I/O time and
execution time decrease as additional processes are incorporated into training
the dataset. This improvement is attributed to the availability of more process-
ing units and consequently, more resources, facilitating faster data handling and
processing.
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Fig. 4. Performance Behavior, I/O Pattern Impact, HDF5 (Shared access mode)

The worst-case scenario was observed when using four processes on a single
node with only one OST, which resulted in longer execution times and lower
data transfer rate. On the other hand, the best-case scenario was observed with
48 processes distributed across 12 nodes and with 12 OSTs, resulting in higher
data transfer rate and lower execution times. The I/O time remained relatively
constant between 32 and 48 processes but became more significant in runtime
as the number of resources increased.

Figure 5(a) and 5(b) shows how NPZ and TFRecord scale with increased pro-
cesses, nodes, and data servers (OST). data transfer rate increases and runtime
decreases as resources increase. In Fig. 5(a), for NPZ format, it can be seen that
for 4 processes run in 1 compute node and reading from 1 data server, the gap
between runtime and I/O time is more significant than for 48 processes that
were run using 12 nodes and reading from 12 data servers, the gap decreases,
making I/O time important.

Figure 5(b) for TFRecord format shows that the data transfer rate increased
as the number of processes increased; Processes 4, 8, 16, and 32 had a similar
behavior for 256 KiB and 1 MiB. In contrast, for 48 processes with a transfer size
of 1 MiB, the data transfer rate was much larger than 256 KiB. Overall, these
findings suggest that transfer size optimization can significantly impact system
performance, particularly in the context of the TFRecord format.

4 Case Study: Deep Galaxy Application

In this section, we will apply the methodology in a real application, such as Deep
Galaxy. To achieve this, the methodological procedure will be presented in detail
and step by step.

4.1 Characterization

DeepGalaxy [2] is a general-purpose galaxy image processing framework. This
dataset consists of 35,784 images from 36 N-body simulations with different
initial conditions. It is divided into 80% training data and 20% validation data.
The simulations’ snapshots use cameras from 14 different positions, generating
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14 2D images stored in a compressed HDF5 dataset with a resolution of (512,
512) pixels.

The configurable parameters are: number of epochs, CNN architecture (Effi-
cientNetB4, EfficientNetB7, ResNet50), batch-size, number of cameras, and
datasets used (all or part of the datasets). The organization of the dataset every
-m epoch is as follows: m = —1: each process loads the entire dataset; m =0: data
is divided between processes and loaded only once, so a process will never see
the data of other processes; m > 0: data is divided between processes, and data
loading triggers every -m epoch, allowing a process to access data from other
nodes/workers.

4.2 Design of Instrumentation and Monitoring

In the case of the Deep Galaxy application, we have selected the parameters to
use different data loading modes and evaluate their impact on latency and data
transfer rate.

DL Application: The CNN Architecture = EfficientNetB4 was used by default
in the application. A single epoch was used since the specific objective was to
observe the I/O pattern. This allowed us to capture the initial behavior of the
I/0 pattern at the beginning of model training. This was useful in identifying
trends and initial characteristics in the data flow.

Dataset: The images are stored in a compressed HDF5 dataset. The image
resolutions used were 512x512 pixels, with a size of 2 GiB. The file structure of
HDFS5 has 36 datasets (groups), each one composed of 2 * 14 datasets that cor-
respond to cameras from 14, with 71 images in each of the camera positions, and
the batch size is 4. The dataset access type is m = 0 and m > 0 (Data Loading
Model). If “m” is set to 0, the training/test data is split between nodes/workers
and loaded only once during the code initialization phase, and a compute node
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will never be able to see data from other nodes. If “m” is set to an integer greater
than 0, the training/test data is also split between nodes/workers, but the data
loading pipeline will be triggered every -m epoch, allowing one node to access
previous data in other nodes.

System: The number of processes are 4, 8, 16, 32, 48, and 64. The number of
nodes are 1, 2, 4, 8, 12, and 16. Two file systems NFS and LUSTRE were used,
for which experiments were carried out with 1 and 4 OSTs.

4.3 1I/0 Tracing and Instrumentation

The Darshan tool has been used as the instrumentation tool. It is a tool that
captures information about each file the application opens. However, instead of
tracking all operating parameters, Darshan captures key features that can be
processed and stored in a compact format. The Darshan instruments POSIX,
MPI-10, Parallel netCDF, and HDF5 all function to collect a variety of infor-
mation. In this way, Darshan reports were selected for analyzing I/O patterns.

4.4 Trace Analysis

In the trace analysis phase, we extract key metrics to evaluate the performance
of I/O operations within the Deep Galaxy application. These metrics include:

— Operation Type: Categorizes operations into reads and writes to identify
access patterns.

— Operation Order: Examines the sequence of I/O operations to understand
data access over time.

— Offset: Analyzes how I/O operations are distributed across the file or dataset.

— Request Size: Indicates the granularity of I/O operations, crucial for opti-
mizing block size.

— Execution Time and I/O Time: Measures efficiency and overall perfor-
mance.

We represent the I/O patterns both temporally and spatially, providing
insights into the application’s interaction with the file system and the impact
of configuration parameters on efficiency. This graphical analysis (Fig.6) helps
identify bottlenecks, such as non-sequential data accesses that can degrade per-
formance. The goal is to establish a basis for optimizing the application’s 1/0
operations.

4.5 Behavior Description

After performing the instrumentation and trace analysis, the description of the
I/O behavior of the application is carried out. Figure6 exhibits spatial and
temporal patterns corresponding to a Deep Galaxy run using 48 processes. The
process number is represented on the “X” axis, the order of operations is shown
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on the “Y” axis, and the offset is indicated on the “Z” axis. The colored vertical
bar on the graph represents the size of the request in bytes, reflecting the size
of each read operation.

The access mode was defined as m =0, which implies that each process
accesses a different section of the file, excluding other processes, except in spe-
cific cases such as reading metadata, where all processes access the same offset.
Each process accessed a different file offset in the rest of the operations. The
total number of readings was 627726 operations. Figure 6(a) exhibits variability
in sizes represented by different colors, showing readings of very small, medium
and large dimensions. A closer look at some sequences with a single process was
performed in Fig. 6(b) to offer a more detailed visualization of this behavior.
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Fig. 6. Deep Galaxy Spatial and Temporal 1/O Pattern

This analysis revealed a pattern in the sizes of the reads and the order in
which the file has been read. The pattern begins with very small read operations
(green), followed by medium (red) and large (blue) reads, alternating between
them. Additionally, separations between operations can be identified, indicating
times with low frequency in input/output (I/O) activities. This suggests that
processes request reads at a slower rate, possibly due to concurrent execution of
calculations that could affect the observed I/O time.

4.6 Performance Behavior

Figure 7 present the performance observed in the Deep Galaxy application on
two file systems: LUSTRE and NFS. A key aspect of the comparison focuses on
the access mode or data loading model for a data set in HDF5 format with a
size of 2 GiB, distinguishing between scenarios when m =0 (data loading model
shared) and m >0 (data loading model shared with reload+shuffle). Addition-
ally, configurations with 1 OST and 4 OST were used in the case of the LUSTRE
file system. All runs were carried out using 4, 8, 16, 32, 48 and 64 processes, dis-
tributed over 1, 2, 4, 8, 12 and 16 nodes, with 4 processes per node. Within the
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access mode, we will analyze the data loading model that significantly influences
I/0 time. When m =0 indicates that each process reads a different part of the
file without accessing what is read by other processes, the time remains consis-
tently lower compared to the situation when m > 0. In the latter case, processes
can read their assigned section of the file and reread areas already processed
by others, which causes a notable increase in I/O time in all cases, due to the
possibility of repeated reads between processes.

Therefore, with m > 0, the I/O time becomes more significant within the total
execution time. The data transfer rate was higher in the scenarios with m > 0 due
to increased data transfer compared to m=0. Consequently, the system scales
and does not saturate because the data transfer rate scales as we increase the
number of processors, not taking advantage of the LUSTRE file system when
configured with 4 OSTs.

Employing this methodological approach, we glean insights into I/O behavior
and overall performance trends, enabling an evaluation of how the application
responds to modifying particular parameters. From such analysis, it becomes
apparent that for this specific case, the LUSTRE file system with a single OST
suffices, negating the need for enhanced parallelism offered by a 4 OST setup.
It is also discerned that the inflection point for optimal resource allocation to
execute the application lies between 16 and 32 processes.
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Fig. 7. Deep Galaxy Performance Behavior

5 Conclusions

This study has implemented a methodology to analyze input/output behav-
ior in deep learning applications. It uses the DLIO Benchmark to illustrate the
methodology and the Deep Galaxy application as a concrete case study. Through
this approach, we manipulated various configuration parameters in the applica-
tion, dataset, and system, allowing us to observe how these changes impact 1/O
patterns and performance directly.
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During the research, it was observed that the performance of both Deep
Galaxy and DLIO applications scaled efficiently as the number of processes
increased from 4 to 48, keeping other critical parameters such as the number
of epochs and neural network architecture constant. Additionally, changes in
the access mode and dataset format type significantly impacted performance.
For example, shared access optimized space usage and reduced reading time,
whereas independent access increased the required storage space and reading
time.

Regarding the data loading model in Deep Galaxy, access type m =0, where
data is divided among processes and loaded only once without cross-access
between processes, was the most efficient. System configurations, such as the
LUSTRE and NFS file systems, stripe size, and OST settings, also significantly
improved performance. As the number of processes and OSTs increased, execu-
tion time and I/O time decreased while data transfer rate increased.

These findings provide valuable insights for future configurations of deep
learning applications and offer practical implications. They highlight how spe-
cific adjustments to configuration parameters can significantly optimize perfor-
mance, making this research directly applicable in real-world deep learning envi-
ronments.

Future work will focus on analyzing how variations in system and application
parameters, such as stripe size and stripe count in the LUSTRE file system,
influence I/0 performance. Additionally, new optimization techniques for 1/0
operations in deep learning applications will be developed and tested, with a
particular emphasis on improvements at the I/O library level within the deep
learning software stack, including strategies similar to those used in HDF5 for
managing complex access patterns. Finally, the methodology will be applied to
a broader range of deep learning applications to validate the results and refine
the approach for effectiveness across diverse contexts.
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Abstract. This paper explores parallelism performance for C, C++,
Go, Java, Julia, and Rust on N-body simulations. We begin with a basic
O(N?) simulation for each language based on the n-body benchmark in
the Benchmark Game. The original benchmark is adjusted to include a
larger number of particles and run in parallel. We also add parallelism to
the force calculations using a kD-tree. This work builds on previous work
by including parallelism and adding the Julia programming language
to our survey. We find that for straight number-crunching, all of these
languages provide similar performance, and all have sufficient support
for parallelism that runtimes scale well with thread counts. On the other
hand, when a spatial data structure, such as the kD-tree, is introduced,
the runtimes vary dramatically between languages. In that situation,
Julia’s performance looks more like Python, taking over 100 times as
long as Rust/C/C++ to finish. Rust comes out on top with an impressive
50% lead over C and C++.

Keywords: N-body -+ simulation - performance - Rust - Julia

1 Introduction

This work builds on our previous work [15] comparing language performance for
N-body simulations using a variety of programming languages. Part of the goal
of that paper was to see if Rust was a suitable alternative to C/C++ for larger
N-body simulations that use a spatial tree to provide O(N log N) performance.
In this paper, we are interested to see how well various languages work with
the inclusion of shared-memory parallelism. We also add Julia to the mix of
languages we consider.

We look at two separate benchmarks. The first is a basic O(N?) approach
used in the n-body benchmark in the Computer Language Benchmark Game
[2]. We submitted the original versions of that benchmark to the site roughly
20 years ago. They maintain a suite of benchmarks across multiple languages.
They are all based on small programs, but they stress the computer in various
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ways and highlight the strengths and weaknesses of different languages. In recent
years, the Benchmark Game has been used as the foundation for energy efliciency
studies as well [6,10,11].

This paper includes a second set of benchmarks using the kD-tree imple-
mentations from [15] and parallelizing the force calculations. The O(N?) code
is effectively a test of raw number crunching. Particles are stored in flat arrays,
and no interesting data structures are used. These simulations are also limited
in how many particles can be considered because of the scaling. This leads to a
smaller memory footprint in all languages. The kD-tree tests the languages in
different ways. There is still a large amount of number crunching, but the build-
ing and navigation of the tree is a different type of workload. In addition, better
scaling means that the simulations can be extended to over a million particles,
significantly increasing the memory footprint.

For both of these styles of simulation, once the code has been adjusted prop-
erly, the actual calculation of the forces is an embarrassingly parallel problem.
This makes it easy to add parallelism to the force calculations in many languages.
Note that the construction of the kD-tree in parallel is non-trivial. We do not
undertake that task here.

1.1 Language Selection

We began with the same set of languages used in [15]: Rust, C, C++,
Java, Golang, TypeScript, and Python. For this study, we decided to replace
JavaScript/TypeScript and Python with Julia. The decision to drop the
JavaScript environment and Python was mainly because of the focus on paral-
lelism. While Node.js does have support for worker threads, it is not a strength
of the platform. The GIL in Python means multithreading generally provides no
performance boost for CPU-bound workloads. We replaced them with Julia [3],
a scripting language that is aimed in many ways at replacing Python, R, and
Matlab for numerical computations. Unlike Python, R, and Matlab, Julia was
designed with performance in mind, especially numerical performance. In the
n-body benchmark testing [4], Julia is only topped by Chapel and Rust. That
implies that Julia can beat the fastest safe implementations in C and C++ for
that particular benchmark. Julia also has built-in support for parallel processing,
making it an ideal candidate for this work.

As many readers might be unfamiliar with Julia, we’ll provide a bit more
information on it here. As was mentioned, Julia is a scripting language that
aims to provide a programming interface similar to Python or R, but with a
focus on performance. Julia has a fully functional REPL, and scripts can be
written with low syntactic overhead. The language itself isn’t object-oriented.
It uses structs that hold data, but they don’t have methods attached. The
language can be written as a dynamically typed language, but its real power
is achieved when the user specifies types, which enables Julia’s most unique
language feature: multiple dispatch. Multiple dispatch can be reasonably well
described as function overloading with dynamic binding on all the arguments.
Function overloading only makes sense when the types of arguments are specified
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to differentiate the overloaded versions. In our own testing, we also found that
specifying types also allows Julia’s JIT to produce faster code. For example, if
Julia knows that it has an array of doubles, it will generate faster code to sort
that array than if given an array of an unspecified type.

The motivation for having a fast scripting language is given in [7] and [12],
where they describe the two language problem in scientific computing. This is
when algorithms are implemented first in a language like Python where people
feel they can construct them more quickly!, but then they have to be translated
into other languages when they are used on full-scale problems that require
more speed. Several papers, such as [17], look at Julia’s performance in different
scenarios. This work aims to add to that list.

2 O(N?) Approach

The benchmark that is part of [2] is a test of raw number crunching. It uses a
first-order, symplectic integrator to integrate the orbits of the four giant plan-
ets around the Sun. This is a standard test of the accuracy of an integrator
for planetary science, as the orbits should evolve in predictable ways over long
timescales [13]. Unfortunately, that form of the benchmark does not work well
for testing parallelism as there are only five bodies, and each time step must
be calculated sequentially. To get around this, we use a setup that resembles a
variable number of asteroids in order around a star.

The approach for performing the integrations also had to be updated slightly.
The algorithm runs through all pairs of particles, calculates the force of gravity
between the pair, and then adds that force to either an aggregate acceleration or
the velocities of the particles. When done sequentially, this is done with an outer
loop that runs through all the particles and an inner loop that goes through all
the particles after the first one. The distance is calculated once for each pair,
and that distance is used to calculate the force on each particle.

This approach minimizes the number of distance calculations, but if run in
parallel, it will introduce race conditions as different iterations of the outer loop
will mutate the same aggregators in the inner loop. To make the code work
better in parallel, the inner loop also runs through all the particles, skipping the
one the outer loop is on, and it only updates the aggregator for the outer loop
particle. This results in twice as many distance calculations, but each iteration
through the outer loop mutates separate memory, so there are no race conditions
if the outer loop is turned into a parallel loop.

For these tests, we started with versions of the code copied directly from
the Benchmark Game site. We picked the fastest version from each language
that was amenable to parallelization. We then changed the loop structure, as
described above, and changed the outer loop to execute in parallel. The details

! The authors of this paper don’t necessarily agree with this analysis. In our expe-
rience, creating correct/working software in dynamically typed scripting languages
often takes longer than in statically typed languages because of the lack of static
syntax/type checking.
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of how the outer loop was parallelized varied by language, as each language
supports different parallelization mechanisms.

The code in the Benchmark Game also includes energy calculations. In that
context, they are primarily used to verify that the algorithm works. These cal-
culations are also O(N?), but with only five particles, the computational cost is
minimal. As we are boosting the number of particles and taking fewer time steps,
the relative cost of the energy calculation grows. This calculation can also be
done in parallel with a map-reduce operation. Unfortunately, Julia and Golang
do not have good support for parallel map-reduce, so the energy calculations
were removed for the timing results to keep the comparisons even.

2.1 Implementations

The full version of all the O(N?) implementations can be found at https://
github.com/MarkCLewis/ParalleINBodyPerformance. This also includes the
scripts used to run and collect data from the benchmarks. Table 1 summarizes
the languages, what version of the code from the Benchmark Game was used to
build our solution, and what approach/library was used to add the parallelism.

Table 1. Implementation Details

Language Benchmark Game | Parallelism

C (GCC 9.4.0/clang 10.0.0) #6 OpenMP

C++ (GCC 9.4.0/clang 10.0.0) | #9 OpenMP

Go (1.22.3) #3 go-parallel

Java (GraalVM-javal7-22.2.0) |#5 Parallel Streams
Julia (1.10.3) #4 and #8 Thread macro
Rust (1.77.0-nightly) #3 Rayon

OpenMP is the standard for multithreaded HPC work in C, C++, and For-
tran. Java’s parallel streams were added in Java 8 and provide a simple mech-
anism for both parallel loops and doing functional transformations in parallel.
Julia has built-in support for multithreading in the form of the @Threads macro.
This macro provides parallel loops but doesn’t include strong support for much
else. While Rust doesn’t currently have support for parallel loops or other sim-
ilar operations in the standard library, the Rayon library has gained significant
traction, and it seems to be the de facto standard for this type of work in Rust.
Lastly, while multithreading and parallelism are part of the selling points of the
Go programming language, this support comes in the form of goroutines and
channels. The language does not have built-in support for parallel loops. Unlike
Rust, there doesn’t seem to be a clear leader in this space for Go. We chose to
use [8].
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The fastest version of n-body in both Julia and Rust wasn’t an acceptable
starting point as it uses an approach that stores all the distance pairs. There are
only 10 of these when there are only five bodies, but we want to consider simula-
tions with 10,000 and 100,000 bodies, which makes this approach unacceptably
memory intensive. It also doesn’t lend itself well to parallelization.

We did draw some inspiration from the fastest version of the Julia code. That
code uses immutable structs. We wanted to see if the immutability allowed the
Julia JIT to do extra optimizations, so we implemented two versions of this code
in Julia, one with mutable structs and one with immutable structs. While
these two versions had a very different structure to the code, their benchmark
results were equal within the error bars. Therefore, we only present the tim-
ing results of the mutable version. Both versions can be found in the GitHub
repository.

One other element worth noting is that while the safety features of Rust
can make it a little more challenging to create working code, they do truly help
with preventing errors. There was a period of time when we had created race
conditions in the implementations in a few languages by merging the loop that
updates positions into the loop that aggregates accelerations. This can cause
some forces to be calculated with new positions instead of old ones. This creates
a subtle bug as the differences between positions before and after a time step are
generally small. But it breaks the symplectic nature of the integrator and would
cause the system’s overall energy to drift for long integrations. Attempting to
create this bug in Rust leads to an error message from the borrow checker, as it
requires having an immutable borrow simultaneously as a mutable one [9].

2.2 Results

The benchmarks were run on a Linux workstation with two Intel(R) Xeon(R)
CPU E5-2680 v3 @ 2.50GHz processors and 64 GB of RAM. To get consistent
timing values across all the languages involved, we used the Linux time command
instead of timing commands built into any of the languages. This potentially
provides a small penalty to Java and Julia as they use a JIT instead of compiling
to a native machine executable. This penalty would be most obvious in the
shortest-running benchmarks.

We ran simulations with 10,000 and 100,000 particles for ten time steps. This
was done seven times for each language using 2, 4, 6, 8, 12, 24, and 48 threads.
We present the mean and the standard deviation of those seven runs. The timing
results are shown in Fig. 1.

For both the smaller and larger simulations, the performance scales very
close to linearly up to 12 threads for all the languages. This makes sense, given
that the machine used has two 12-core processors. Going from 12 to 24 threads,
performance gains were still shown. These gains were close to linear for the larger
simulations but distinctly sub-linear for the smaller ones. That jump moves
the simulation off of a single processor, making the cache locality worse. That
impact is more negative when there isn’t as much data. One interesting result
is that all the languages see performance gains going from 24 to 48 threads.
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Fig. 1. Run times for ten time steps using the O(N 2) approach. One standard deviation
error bars are shown.
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This is surprising as “hyperthreading” often doesn’t provide speed benefits for
numerically intensive applications.

When comparing languages, a few patterns jump out. One is that Rust is
the performance winner across the board, especially at the higher thread counts,
where it matters most for actual research work. In the smaller simulations, it
is somewhat surprising that Julia is the slowest by a fair margin. From there,
the trends are more what one might expect. Julia is followed by Java, with Go,
C, and C++ having similar performance and Rust being the fastest. The slow
performance for Java and Julia at high thread counts could be largely the result
of the short total times and the fact that they have JITs that give them longer
startup times. However, the patterns are far less clear for the larger simulations,
where startup time will matter less. Two main things stand out in the timing
results of the larger simulations. First, the difference between the performance
of the languages is remarkably small at every thread count except 24 threads.
Second, the JVM/Java performance is erratic. It is the slowest language at 6
and 12 threads but the second fastest at 24.

The key takeaway from the results is that for raw number crunching across
multiple threads, all these languages have remarkably similar performance as
long as there is enough work to be done, enough memory being used, and the
JIT startup time isn’t a significant fraction of the workload. While Rust is the
fastest, it is generally by less than 10%, even compared to Java and Julia with
10° particles.

3 kD-Tree Approach

Most research simulations need significantly more than 100,000 particles. The
first approach’s O(IN?) scaling makes that infeasible, even with the introduction
of parallelism. This motivated using a kD-tree in [15]. Tree-based structures have
a long history in numerical simulations going back to Barnes and Hut [5]. The
original work used an octree. The idea is that gravitational interactions with dis-
tant groups of particles can be modeled as a force from the collection of particles
instead of having to calculate the forces from each of the individual particles.
This gives O(N log N) scaling behavior. This approach has been applied gen-
erally to astrophysical simulations ranging from cosmology [18,19] to planetary
rings [14,16] and allows for simulations involving many millions to even billions
of particles.

The kD-tree approach is also more interesting with the inclusion of Julia.
The Benchmark Game doesn’t include a kD-tree or any other spatial data struc-
tures used for number-crunching benchmarks. However, the kD-tree is, in many
ways, a fancy binary tree, and the Benchmark Game does include a binary tree
benchmark [1]. It is worth noting that Julia does quite poorly in this bench-
mark. While Julia is one of the fastest languages in the n-body benchmark, it is
more than 14 times slower than the top languages in the binary-tree benchmark.
Note that Python is more than 34 times slower than the fastest languages in
the binary-tree benchmarks, so Julia still does much better than Python, but
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the best Java implementation is only 2.5 times slower than C++ and Rust, so
Julia looks more like a slow, scripting language here. This begs the question of
whether a kD-tree integrator will perform more like the pure number crunching
code or the data structure code.

3.1 Implementations

The C, C++4, Go, Java, and Rust implementations began with the versions used
in [15]. The Rust version was slightly updated to use an enum for the tree nodes.
Then, all the loops over the particles in the main function were updated to work
in parallel. The parallelization techniques were the same as described in Sect. 2.1.

The Julia version of the code was built as a conversion from the Java ver-
sion with a few modifications. The tree nodes in Julia were implemented as an
abstract type with two subtypes for the leaves and the internal nodes. The func-
tions to traverse the tree use Julia’s multiple dispatch. As described above, we
have seen that Julia is able to provide more optimization when it knows more
about the types. Hence, we annotated all functions with types for both inputs
and outputs.

Section 1 mentioned that thanks to the borrow checker, the Rust implemen-
tation of multithreading could catch bugs accidentally added in other languages.
Unfortunately, something of the opposite is true in Julia. The creators of Julia
decided to follow in the footsteps of Fortran instead of C and use l-indexed
arrays. While there are certain arguments that this makes sense for a language
aimed at scientists and others who aren’t professional programmers, it also leads
to subtle bugs when converting code from languages that are 0-indexed, which
is the case for all the other languages we looked at.

As was mentioned earlier, the code to construct the kD-tree was not paral-
lelized. This is another O(N log N) operation that happens once each time step
and is completely sequential in the current implementations. The full implemen-
tations for all the languages can be found at https://github.com/MarkCLewis/
MultiLanguageKDTree in the Parallel subdirectory.

3.2 Results

These benchmarks used the same machine as described above. The same thread
counts were used, but the particle counts were bumped up by a factor of 10 to
100,000 and 1,000,000 particles for the two simulation sizes. The timing results
are shown in Fig. 2. Note that the results for Julia are not complete for 1 million
particles.

Unsurprisingly, these results roughly mirror what we found with the sequen-
tial kD-trees in [15] for the languages that had been part of the original study.
As before, we see roughly linear scaling up to 12 threads. Performance continues
to improve all the way up to 48 threads, though it is distinctly sub-linear. We
see that Rust is the fastest, with C and C++ tied and taking nearly 50% longer
than Rust. Go is slightly faster than Java, with both taking nearly twice as long
as Rust to complete the simulations.
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Fig. 2. Run times for ten time steps using the kD-tree versions. One standard deviation
error bars are shown.
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The surprising result here is Julia’s remarkably poor performance. In these
tests, Julia is as far behind the Rust implementation as Python was in the
sequential testing. Indeed, Julia is so slow we did additional testing to ensure
there wasn’t a bug. We added code to the Julia and Java versions to count how
many times various operations were performed. The counts between the two
matched. So, the Julia code does the same number of gravity calculations as the
other versions. It is simply much slower at doing them.

Another factor that could be playing a role is that the multithreading in
Julia appears to have issues with load balancing in this code. Watching the load
bar on the machine as the benchmarks are running, we see it go up and down
many times during a time step. Depending on the implementation details, each
time step has two or three parallel loops. With the other languages, the load
bar is observed to jump to roughly the number of threads used in that run and
stay close to that level until the end of the time step when it hits a period of
sequential processing for the tree construction.

This also shows up in the output of time, which includes lines for real
and user. The @Threads macro in Julia is not doing as good a job of evenly
distributing the work across threads as other implementations.

A second surprising result is how well Rust with Rayon performs compared
to C and C++ with OpenMP. OpenMP is a well-established standard used
across industry and in most HPC workloads. Despite this, Rust opens its biggest
performance lead over C and C++ when the thread count is high. This trend
holds for both simulation sizes we considered.

The main message from these results is somewhat different from that of the
first round of benchmarks. When we include a data structure and the number
of particles scales up, the choice of language becomes much more significant.
Instead of having results within 10% of each other, here we see a solid factor
of two difference in the performance between languages. Even the difference
between Rust and C/C++ is large enough it should make people consider using
Rust for large, expensive workloads.

4 Conclusions and Future Work

If all you are doing is large amounts of double arithmetic, with little to no data
structures required, all of the languages looked at in this paper provide similar
performance, and they all scale well with the addition of more threads. However,
if your work involves more complicated data structures, there are clear benefits
to using systems languages.

In particular, Rust stands out as the best overall choice for performance in
these benchmarks, even compared to C and C++. This isn’t too unexpected,
but what is truly impressive is that Rust, with Rayon, can beat out C and C++
using OpenMP. Indeed, Rayon seems to scale slightly better when the thread
count on our machine is maxed out.

The most disappointing result is how poorly Julia performs when we are
using a kD-tree. While Julia is highly competitive with the other languages
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for pure number crunching on larger systems, its performance with the kD-tree
was so slow that it would be on par with Python. At least with Julia, some
performance can be gained by multithreading, which would provide no benefit
in current versions of Python. However, even running with 48 threads, the Julia
version with the kD-tree was still slower than Java would be with a single thread.

The main element missing from this work, which remains a task for future
work, is to parallelize the building of the kD-tree. The force calculations were
low-hanging fruit as they are embarrassingly parallel. However, parallelizing the
kD-tree construction is much more challenging. It is a recursive process. In the
lower parts of the tree, the parallelization can be done by distributing each
subtree to a different thread. However, each tree level requires O(N) work to
partition the particles, so multithreading the upper levels is just as important as
multithreading the lower levels. We are still working on finding efficient ways to
do this, especially with mechanisms that don’t have significant memory overhead
and that work well across multiple languages.

Acknowledgment. This work has been supported by NSF Award ID 2206306,
“Unraveling the mysteries of small-body ring systems through numerical modeling”.
We’d like to thank Zachary Taylor for suggesting including Julia in this work.
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Abstract. Federated Learning (FL) is vital in distributed systems, espe-
cially for ensuring data privacy, particularly in IoT and edge-based
setups. However, existing research mainly focuses on data heterogeneity,
leaving gaps in addressing varying device capabilities and communication
efficiency. To bridge this, we propose the “Resource-Efficient Federated
Training Framework for Heterogeneous and Resource-Constrained Envi-
ronments (REFT)”. REFT leverages Variable Pruning to adapt pruning
strategies to client computational capabilities, enhancing resource uti-
lization. Additionally, our approach employs knowledge distillation to
reduce bidirectional client-server communication, reducing bandwidth
usage. Experimentation in image classification tasks demonstrates the
effectiveness of REFT in resource-limited environments. Our method
preserves data privacy and performance standards while accommodat-
ing diverse client devices, offering a minimal bandwidth solution for FL-
based systems.

Keywords: Federated Learning - Variable pruning - Distributed
systems - Efficient communication - Bandwidth - Data privacy - loT

1 Introduction

Recent advancements in deep learning have yielded significant progress across
diverse domains, including, but not limited to, image classification and natural
language processing. Nevertheless, the training of complex Deep Neural Network
(DNN) models necessitates the availability of massive amounts of data. Training
models with substantial data volumes work well in centralized scenarios where
the model has access to all of the data. However, in most cases, particularly
within distributed systems involving Internet-of-Things (IoT) and edge devices,
data resources are inherently decentralized. This decentralized data distribution
presents challenges for collaborative training, primarily stemming from technical
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intricacies, privacy concerns, and the intricacies of data ownership. In response to
these challenges, Federated Learning (FL) has emerged as a promising solution,
enabling distributed model training through decentralized data while maintain-
ing data privacy.

FL techniques facilitate collaborative training by iteratively sharing model
parameters, or gradients, during the training process. This communication takes
place between client devices connected to the Internet, encompassing IoT and
edge devices, and a central server located remotely in the cloud, thus forming
an FL-based system. Typically, this exchange is carried out via widely adopted
protocols such as TCP or UDP [35], or alternative application layer protocols
[1]. After each round of training on local data, a client transmits its model
parameters to the central server, which then aggregates these parameters from
all clients using traditional data aggregation methods. However, this iterative
process necessitates a significant number of back-and-forth client-server commu-
nications, leading to increased bandwidth consumption and reduced communi-
cation efficiency. This challenge poses significant hurdles in the establishment of
efficient FL-based systems, particularly in resource-constrained environments,
such as smart home setups involving IoT and edge devices with limited hard-
ware resources and simplified web infrastructure. Effectively harnessing FL in
such applications while giving equal importance to data privacy is challenging.
To alleviate communication bottlenecks in such FL scenarios, certain research
initiatives [1,35] have been dedicated to streamlining communication time and
minimizing packet loss by optimizing application layer protocols. Specifically,
they explore Message Queue Telemetry Transport (MQTT), Advanced Message
Queuing Protocol (AMQP), and ZeroMQ Message Transport Protocol (ZMTP)
to enhance the efficiency of data exchange.

Despite these advancements, challenges persist in FL-based systems, includ-
ing the substantial number of bidirectional communication rounds, the size of
each model update, and concerns related to data privacy. This leads us to the
following questions: How can we execute FL with the fewest communication
rounds, minimizing bandwidth consumption in each exchange and optimizing
overall network traffic, all while preserving FL’s fundamental principle of data
privacy? Furthermore, client devices in FL, such as IoT and edge devices, are
often significantly more constrained resources compared to data center servers,
with limitations in processing power, memory, and storage. This prompts the
subsequent question: How can we efficiently execute FL as IoT and edge devices
become increasingly prevalent while optimizing resource usage on each client and
accommodating a wide array of diverse client devices, particularly when working
with complex DNN models?

To address these challenges, we propose “Resource-Efficient Federated Train-
ing (REFT)”, a framework that combines variable pruning and knowledge dis-
tillation techniques. Variable pruning reduces model parameters based on the
client’s computational capacity, while knowledge distillation enhances communi-
cation efficiency and data privacy. Our method is inspired by FedKD [4], which
employs a public dataset to mitigate privacy concerns. Unlike existing methods,
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we perform asynchronous updates and leverage public data, reducing commu-
nication and privacy risks. Our experiments demonstrate significant reductions
in parameters, FLOPs, and bandwidth consumption while maintaining accuracy
levels comparable to existing FL techniques. We summarize our key contribu-
tions as follows:

e We introduce wariable pruning, a framework for applying model pruning
techniques that adjust the pruning level for individual clients based on their
available computational resources. By performing one-shot structured prun-
ing on the initial model weights at the server, we customize the pruning
level for each client. This approach utilizes client resources efficiently and
reduces both computational and communication overhead (or keeps them at
an acceptable level), making the model more suitable for training on resource-
constrained devices.

e We employ a one-way, one-shot client-to-server knowledge distillation app-
roach using unlabeled, non-sensitive public data. This technique further
enhances communication efficiency in federated learning by optimizing the
transfer of knowledge from clients to the server. We also accommodate clients
with heterogeneous model architectures, which are obtained after structured
pruning, enabling their active participation in the training process.

Overall, our proposed approach combines variable model pruning and one-shot
knowledge distillation to improve the efficiency and effectiveness of federated
learning, making it more feasible for resource-constrained devices, resulting in
better resource utilization on the client side, and accommodating diverse client
architectures.

2 Related Works
2.1 Efficient Federated Learning

The foundational concept of Federated Learning by McMahan et al. [23]
addresses decentralized training while safeguarding data privacy. Their approach,
Federated Averaging (FedAvg), calculates local gradients on client data in each
round, followed by parameter averaging via a server until convergence. Various
FedAvg derivatives have emerged to address aspects like non-I1ID data [20,26]
and to introduce novel aggregation techniques [13,36]. However, high training
costs persist as a challenge.

Recent efforts focus on curbing communication costs [14,28,30,38,39]. While
some [15] target client-to-server communication expenses, they overlook down-
link (server-to-client) communication costs. Approaches like [38] emphasize bit
reduction during training through quantization and pruning, while also minimiz-
ing server communication for model updates. However, communication frequency
with the server remains unchanged, limiting efficiency gains. Our REFT excels
in communication and computation efficiency via pruning alone, surpassing [38],
which combines quantization, pruning, and selective updates. The incorporation
of knowledge distillation further enhances the efficiency of our approach.
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Fig. 1. Overview of REFT

2.2 Model Compression

Neural network pruning optimizes large networks by removing redundant or irrel-
evant connections. Early attempts used second-order Taylor expansion [10,17],
but the impractical computation of the Hessian matrix led to alternative strate-
gies. Han et al.’s work [8,9] popularized magnitude-based pruning, where small-
magnitude parameters are pruned. [14,38] have leveraged pruning in federated
learning to reduce communication and computation overhead. [14] adopts a two-
stage approach, initially unstructured pruning on a selected client and then
“adaptively” pruning the model during learning, i.e., reconfiguring the model
by removing and adding back parameters. However, unstructured pruning leads
to irregularly sparse weight matrices and relies on weights to be stored in a
compressed format. Consequently, such matrices are less compatible with data-
parallel architectures in GPUs and multicore CPUs, necessitating specialized
hardware and software support [37].

In contrast, [38] employs structured pruning based on the L1 norm, com-
bined with quantization and selective updates. Unlike unstructured pruning,
structured pruning produces hardware-friendly weight matrices. However, for
effective pruning benefits, it’s crucial to reshape the weight matrices, reducing
inference latency and model size. While [14,38] rely on simulations to assess
pruned model performance, creating weight masks to estimate potential reduc-
tions in model or parameter size, these approaches may not guarantee actual
reductions. Our approach compresses models by reshaping input and output
tensors using generated masks, aiming to reduce model complexity and enhance
inference latency. Notably, [14,38] concentrate solely on uniformly distributed
data scenarios (for CIFAR10) which might not represent real-world FL settings
characterized by non-IID data distribution. Such situations pose optimization
challenges [19]. In contrast, our method is tailored to remain robust against
data and model heterogeneity, ensuring convergence with superior or compara-
ble performance.
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2.3 Knowledge Distillation

Knowledge distillation, initially introduced by Hinton et al. [11], has witnessed
significant progress in the realm of model ensemble, with a particular empha-
sis on the student-teacher learning paradigm, where the student model seeks to
approximate the output logits of the teacher model [29,34,41]. Existing works
either aim to average the logits from an ensemble of teacher models or extract
knowledge at the feature level. The majority of these approaches utilize existing
training data for the distillation process. Some works [24,27] have explored dis-
tillation through pseudo-data generation from the weights of the teacher model
or through a generator adversarially trained with the student model, particu-
larly when real data are unavailable for training. FedDF [22], on the other hand,
utilizes an unlabeled dataset for ensemble distillation, which is generated from
a pre-trained GAN [6].

Guha et al. [7] proposed a one-shot federated learning approach, wherein
the server learns a global model of devices in the federated network in a sin-
gle communication round. However, unlike their approach, which employs unla-
beled public data collected from the same domain, we adopt the approach used
by Gong et al. [3-5], which aggregates local predictions on unlabeled public
data from different domains for enhanced privacy guarantee. Unlike Gong et al.,
whose primary focus is on preserving privacy, our approach is oriented towards
increasing communication efficiency and resource utilization while maintaining
privacy.

3 Preliminaries

A typical Federated Learning system consists of a central server S and a group
of participating clients C. Each client in the network possesses its own labeled
private dataset D¢, which it uses to train a local model M¢. The server S then
combines these local updates using an aggregation method to obtain an updated
global model, M. This iterative process continues until a stopping condition is
met. The widely used FL algorithm, FedAvg [23], initially defines a training task,
including setting hyperparameters, and selects a fraction of clients for training.
The initial global model, Mg is then broadcast. In each round R, clients C
perform a local computation on their respective data and update their model
parameters Wg. The primary objective is to minimize the global loss, which is
a weighted average of the individual client’s loss function.

“k
L(w) = 3 TEbelw), (1)

where £.(w) = kl Z fi(w)

¢ 4ieD,
Here, k. represents the number of data samples in the client’s dataset D., k
denotes the total number of samples, and /. is the loss function of client c.
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Ensuring constant communication with the server is essential to achieving
the objective in Eq. 1. However, in the context of IoT and edge devices, these
devices are often resource-constrained, which significantly limits communica-
tion and computation resources. Training DNNs on such devices becomes time-
consuming, and multiple rounds of communication with the server result in sub-
stantial bandwidth consumption, making this approach inefficient for FL-based
systems.

4 Proposed Framework: REFT

Our aim is to lower communication and computation overheads within the FL
process, with a specific focus on resource-constrained devices. These devices,
which often fall within the IoT or edge-device paradigm, play a pivotal role in
generating valuable data for the FL process. However, existing pruning meth-
ods such as [14,38] adopt a one-size-fits-all approach to pruning models with-
out considering individual clients’ hardware capabilities. This results in ineffi-
cient resource utilization among participating clients. To tackle these issues, we
introduce the REFT framework. It features a three-stage pipeline designed to
decrease the training cost of complex DNNs, enhance client training’s resource
utilization, and optimize communication efficiency. This is achieved by minimiz-
ing redundant communications between clients and the server while maintaining
data privacy.

In the first stage, we estimate the computational capacity of each client device
by obtaining their FLOPS (Floating Point Operations Per Second) values and
subsequently prune the model to a level suitable for training on that client. This
approach presents two advantages: it reduces the model’s complexity, thereby
decreasing its computational demands, and it minimizes bandwidth usage during
the initial model transfer.

The second stage encompasses the distribution of the global model, followed
by individual client model training on their respective private datasets. To main-
tain privacy, the server is restricted to accessing only public data. Notably, the
server maintains its own public dataset, which we presume is universally avail-
able to all clients as an independent dataset. Consequently, for the purpose of
bandwidth calculation, we omit the inclusion of this server-side public dataset,
focusing solely bandwidth cost of server-client communication during FL train-
ing. This exclusion aligns with the established practices in existing works, as
exemplified in [4,22], wherein public datasets have been utilized. However, these
studies have typically disregarded the associated communication costs of public
datasets in their analyses.

In the final stage, we employ knowledge distillation. This method curbs the
need for frequent and large model updates between clients and the server, signif-
icantly cutting communication costs. Additionally, this distillation-based app-
roach enhances the framework’s versatility, allowing clients to possess distinct
architectures aligned with their local data distribution and computational capa-
bilities.
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The details of the 3-stage REFT training process are depicted in Fig.1 and
are further described below:

e Variable model pruning: In the initial round (round 0), the server S initial-
izes the global model parameters Wg and prunes them according to client
specifications. The pruned global model, MgP, is then sent to clients. Prun-
ing is done just once using a one-shot approach, with pruning percentage P
(100% > P > 0%) varying based on client computational power. This method
supports heterogeneous model architectures, allowing different clients to have
distinct versions of Mg .

o  Model distribution and local training: After pruning, the pruned model Mgp
is broadcast along with the public dataset Dp. Each client C' then trains the
model on its private labeled dataset D. = {(z%,y¢)} where i = 1,2,3,...,|D.|,
and initializes the received global model Mgp with parameters W.. It is
important to note that the model architecture for each client may differ due
to variable pruning or each client having its own custom model architecture.

e Knowledge distillation: To ensure privacy, the private datasets of clients are
isolated. The public dataset Dp on the server is employed for client-to-server
knowledge distillation. An ensemble of local models M¢ and the global model
Mg, forms a teacher-student arrangement. This maintains privacy while
transferring knowledge from clients to the server.

4.1 Variable Pruning

Training complex DNNs on resource-limited devices is often impractical due to
their intricacy. Pruning, as explained in Sect. 2.2, provides a means to acceler-
ate training and reduce computational demands. However, the inherent diver-
sity of devices in federated learning adds complexity. Clients possess varying
computational power, introducing challenges for traditional static pruning tech-
niques. These methods, aimed at minimizing communication costs, employ uni-
form pruning strategies, irrespective of the diverse capacities of individual clients.
Consequently, this approach underutilizes the potential of more capable clients
by tailoring pruning to the least powerful client, failing to harness their potential
for an efficient model training.

Our approach addresses these limitations via variable-structured model prun-
ing, tailored to individual client computational abilities. Unlike static pruning,
which underestimates more potent clients, our strategy optimizes both compu-
tation and communication overheads. By assessing a client’s computing capac-
ity and estimating the necessary FLOPs for effective model training, we cus-
tomize the pruning process. This results in models that are finely tuned for
each client, enhancing the overall efficiency of the FL process. Given the signifi-
cance of FLOPs in hardware assessment for DNN training [32,33], we prioritize
FLOPS as the primary metric for computation assessment and pruning degree
determination. FLOPS provides a reasonable and hardware-independent mea-
sure for assessing the feasibility of neural network training. As memory capacity
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and other client hardware parameters can also offer valuable insights, we com-
plement this assessment with an analysis of memory requirements (RAM) and
GPU utilization for the DNNs discussed in the following sections. We adopt L1
norm-based pruning, a straightforward method to gauge weight importance in
DNNs [18], and apply it to both convolutional and fully connected layers. This
approach is justified as convolutional layers typically contribute significantly to
computational overhead, while fully connected layers primarily impact the model
size [18,31].

To effectively reduce the model’s size and improve both training and infer-
ence speed, we employ the NNI toolkit. This toolkit allows us to perform pruning
not only based on performance metrics like the L1 norm associated with each
output channel but also to take into account the broader network architecture
and its topology. Specifically, we harness the toolkit’s dependency-aware prun-
ing technique [25] to identify and prune output channels shared by layers that
exhibit channel dependencies. This ensures that the pruning process is carried
out in a manner that preserves these critical inter-layer dependencies. The pruner
(L1 norm algorithm) initiates the model pruning process, generating a weight
mask. This mask is then subsequently utilized by the ModelSpeedup module to
reconfigure the weight tensors, ensuring a meaningful reduction in both model
size and inference speed. The overall variable pruning procedure is described in
Algorithm 1.

4.2 Knowledge Distillation

In the knowledge distillation phase, we initiate local model training M, with
the private labeled dataset D. at each client. Post-local training, the server
dispatches an unlabeled public dataset D, = (x;,), with ¢ = 1,2,3,...,|D,l,
to every client for knowledge distillation. Referring to [4], the private dataset
D. = (z8,9!), i = 1,2,3,...,|D.| (with ¢ € C), entails existing classes T, C
1,2,....,T (T as total classes across clients). The local model’s output on the
public data sample z}, for class t € T, is z{, = f(z},, wc,t), with w representing
model parameters. In high-data heterogeneity settings, traditional aggregation
methods averaging all teachers’ logits lack suitability, as the client’s dataset may
not share identical target classes. To address this, we introduce the importance
weight I for each client, reflecting local private data distribution. The weight is
computed as the ratio of samples in local client ¢ belonging to class ¢ to total
samples across clients:

Nt
I' = ——— 2
S 3 (2)

where N! is the sample count in local client ¢ for class ¢. It is important to note
that this distillation holds true as long as the target class ¢ of public data sample

xfo matches the target class T, of the client’s private dataset.
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Kullback-Leibler divergence is utilized for teachers’ soft label aggregation.
Loss function L is the cross-entropy sum between teacher and student model
predicted probabilities. Here, p; and ¢g; are probabilities of a sample belonging
to class ¢t by teacher and student models:

L=) plogi! (3)
t

The central model’s output logits 2, = f(z,, ws,t) form student knowledge,
and aggregated logits 2; are teacher knowledge. Probabilities p; and ¢; are com-
puted using softmax on logits with a temperature parameter 7. As indicated in
[11], minimizing the loss with high-temperature parameter 7 equates to mini-
mizing the L2 norm between teacher and student network logits, simplifying loss
to L=z 2|

REFT employs a one-shot offline distillation, predicting with each public
data sample once, iteratively training the central model. This boosts privacy,
reduces queries to local models, and limits local knowledge exposure. Moreover,
synchronous updates and repetitive communication are eliminated, enhancing
communication efficiency and flexibility.

5 Variable Pruning vs. Static Pruning for Resource
Utilization

In the context of federated learning with n clients (¢q, ca, ..., ¢5,), each client (¢;)
possesses unique hardware capability h., and computation capacity Fe, in FLOP.
Our analysis centers on variable pruning versus static pruning’s efficiency in
harnessing resources. The pruning level P, for a client depends on its hardware,
with NP,, = N x (1 — P,,) total pruned model parameters, where N is the
total number of parameters in the unpruned model. We assume uniform pruning
across layers and connections and a uniform distribution of FLOPs across pruned
and unpruned parameters.

By reducing the number of parameters, we can reduce the training overhead
and communication load. We define the FLOP reduction factor for client ¢; as
FP. = F x (1 - P.,). The accuracy for training the pruned model is denoted
as AP,,. It is worth noting that typically A., > AP.,, where A., is unpruned
model accuracy.

Static pruning (Pstatic) uses Pmin based on least capable hardware (hyi, =
min(hq, ha, ..., hy)). All clients, including those with higher hardware capabil-
ities, are then pruned at the level Piatic = Pmin, resulting in N Pgatie =
N % (1= Pyatic) total number of parameters. Thus, higher-capability clients with
F., > Fyatic might be underutilized, leading to reduced training performance.
This underutilization results in the following inequality: A., > AP., > APstatic,
where 1 > Pitatic > P, > 0 We can define the utilization factor for client
¢ as Ug, = ﬂ;,‘““C, indicating the ratio of the least performing client’s hard-

ware capacity to the client ¢;'s hardware capacity. Our variable pruning strategy
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overcomes this underutilization by identifying a link between pruning level and
FLOP reduction, which can be expressed as:

P, =1-
&3 F)\

(4)
Here, F., signifies client ¢;’s computational capability (FLOPS), and F) is a
trade-off coefficient between communication efficiency and accuracy. The choice
of F allows the administrator (or orchestrator of FL) to prioritize either more
efficient communication or better accuracy/performance. Note that if F., > F),
no pruning will be performed for client c;.

For instance, consider 5 clients with FLOP capacities of 10, 20, 40, 60, and 100
GFLOPS (GigaFLOPS). By setting F) to 100 GFLOPS, pruning percentages
are: P, = 90%, P., = 80%, P., = 60%, P., = 40%, and P., = 0% (no pruning).
This choice reflects the administrator’s preference for communication efficiency
over performance. Alternatively, opting for F\ = 50 GFLOPS, clients c;, co,
and c3 are pruned to 80%, 60%, and 20% respectively, while clients ¢4 and cs
remain unpruned. This choice reflects the administrator’s emphasis on accuracy
or performance over communication costs.

Algorithm 1. Variable Pruning
Require: n clients, each client ¢; € C has computation capacity of F., FLOPS where
t=1,..,n , trade-off coefficient F), client model M.,
for each client ¢; in C' do
F., — Request client’s estimated FLOPS
Calculate pruning ratio:

P —1— > Eq. 4
Apply L1 Norm pruning and create weight mask:

me, < L1NormPruner(M.,, P.,)

ModelSpeedup(M.,, me;) > Model reconfiguration

end for

6 Experiments

Our experiments aimed to assess our proposed approach’s performance in image
classification using the CIFAR10 and CIFAR100 datasets [16]. Private datasets
for local training were created using a Dirichlet distribution, generating hetero-
geneous data splits [12,40]. The a parameter controlled dataset non-IID-ness,
with higher values promoting similar data distributions across clients.

We employed simulations to emulate the training of diverse clients on HPC
clusters. To accomplish this, we gathered estimated FLOPS values for various
potential client devices and integrated these values into our simulation frame-
work. For instance, devices in the category of Raspberry Pi models 3 and 4, and
similar counterparts, were categorized as weak clients due to their FLOPS capa-
bilities falling within the range of 8 to 40 GFLOPS. In a similar context, wearable
devices, including high-end smartwatches and mobile phones, were classified as
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® Unpruned REFT PruneFL ™ FL-PQSU
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Act
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Fig. 2. Comparing client accuracies: static pruning (FL-PQSU and PruneFL) vs.
REFT on the VGG-16 model.

moderate to good clients, exhibiting FLOPS capacities below 150 GFLOPS. Con-
versely, devices equipped with high-performance computing units, such as lap-
tops and desktops featuring dedicated GPUs, were designated as strong clients. It
is noteworthy that our hardware configuration encompassed two 12 GB NVIDIA
GRID P40-12Q GPUs and an Intel (R) Xeon (R) CPU E5-2640 v4 clocked at
2.40GHz.

6.1 Datasets and Models

For consistency and meaningful comparison, our experimental setup adhered
to FedKD [4]. CIFAR10 was the private dataset, and CIFAR100 served as the
public distillation dataset. While our experiments were exclusively conducted on
these datasets, it is worth noting that our approach exhibits versatility and can
potentially be adapted to accommodate different datasets, including but not
limited to large-scale datasets like ImageNet, provided that the prerequisites
outlined in Sect.4.2 regarding the private and public dataset conditions are
met. We evaluated the test accuracy of our framework and compared it with
the baselines. For our experiments, we employed ResNet-8 and VGG-16 model
architectures, as described in the respective prior works [4,38]. To demonstrate
the robustness of our approach, we performed experiments on non-IID data and
created disjoint training sets for each client with the value of a set to 1.0.

6.2 Baselines

Our focus lies in enhancing resource utilization while maintaining performance
and minimal communication. Thus, we compared against FedAvg [23], PruneFL
[14], FedKD [4], and FL-PQSU [38]. Personalized FL methods (Per-FedAvg [2],
q-FedAvg [21]) were excluded, as they prioritize adapting to individual client’s
data distribution.
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Fig. 3. Effect of pruning on GPU utilization and training time of VGG-16.

6.3 Metrics

Our experiments focus on evaluating model performance in terms of test accu-
racy and comparing it with baseline approaches. Our main goal is to showcase
resource-efficient training, achieving significant reductions in model size, param-
eter count, and FLOPs while maintaining minimal accuracy loss. We also delve
into communication bandwidth analysis, a critical factor in federated learning
that affects time and cost. For non-distillation training, communication band-
width is computed based on parameters such as parameter size (W), the number
of participating clients (C'), communication rounds (R), and the number of bits
(B) used for representing parameters and logits. This calculation is expressed

as:
Bandwidth = C x R x W x B (5)

We analyze both downstream (server-to-client) and upstream (client-to-
server) communication per client per round. For response-based knowledge dis-
tillation, where W isn’t transferred, we adapt the equation as Bandwidth =
L x S x B, with L as logits and S as distillation steps.

6.4 Implementation Details

For ResNet-8, we used SGD optimizer with momentum of 0.9, weight decay
of 3 x 107%, and Cosine Annealing scheduler (learning rate, Ir, decreased from
0.0025 to 0.001) over 500 epochs with a batch size of 16. VGG-16 employed a
Ir of 0.1 without weight decay and a batch size of 128. Optimizer, momentum,
and epochs matched ResNet-8. Distillation employed a constant Ir of 10~2 and
batch size of 512 with Adam optimizer.

For a fair comparison, we aligned with FedKD’s hyperparameters for client
model training. It utilized the SGD optimizer (momentum 0.9, weight decay
3 x 107%) with the Cosine Annealing scheduler over 500 epochs and batch size
16. Distillation used a constant Ir of 1073 and batch size of 512 with Adam
Optimizer.
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Fig. 4. Effect of pruning on test accuracy of VGG-16.

7 Results
7.1 Resource Utilization

To demonstrate the effectiveness of our variable pruning strategy in optimizing
hardware resource utilization, we compared accuracies per client across differ-
ent pruning strategies (Fig.2). This experiment involved five clients with vary-
ing hardware capabilities. Clients ¢; and c; had limited computational capacity,
necessitating a high pruning level (90%) to accommodate the model. Pruning lev-
els were determined using Eq. (4), with F) set to 200 GFLOPS (10°x FLOPS).
Clients c3 and c4 possessed better hardware capabilities and required 60% and
30% pruning, respectively, for model training. Client c5 had ample hardware
resources and required no pruning.

For comparison, our proposed REFT employs three pruning levels: 30%, 60%,
and 90%, based on client device FLOPs. As seen in Fig. 3, increasing pruning
lowers GPU utilization from around 84% to about 65%. Figure4 shows accu-
racy variations with increased pruning. Pruning VGG-16 to 90% accelerates
training by approximately 48%, reducing training time. In Fig.6, pruning to
90% decreases inference time by roughly 30%. This accelerates both training
and inference, enhancing FL efficiency. Since REFT utilizes structured pruning,
specifically based on the L1 norm (discussed in Sect. 4.1), to reduce model com-
plexity, it’s noteworthy that the structured pruning approach may result in a
minor decline in accuracy, as illustrated in Fig.4. To retain performance, our
approach avoids pruning clients capable of training unpruned models. In con-
trast, approaches like FL-PQSU prune all clients to the least capable hardware
level, not considering individual capacities and incurring performance loss.

In Fig. 2, the FL-PQSU method prunes the model for all clients using a level
best suited for clients ¢; and co. While clients ¢ and ¢, achieve satisfactory model
training, the hardware resources of cs, ¢y, andcs are underutilized, resulting in
a decline in accuracy. This reduction in accuracy stems from the model being
pruned to a higher level than what is ideally suited for their hardware, thereby
leading to suboptimal overall performance. As a result, we observe that clients
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Fig. 5. Reduction in model size and FLOPs of VGG-16 by REFT.

c3,cq, and cs exhibit higher accuracy when our variable pruning strategy is
employed compared to the static pruning methods. This observation underscores
the effectiveness of our approach in tailoring the pruning level to match the
specific hardware capabilities of each client. By leveraging the benefits of variable
pruning, we achieve higher accuracy rates and overall improved performance.

In addition to the observed improvements in resource utilization and per-
formance, we observed RAM utilization during our experiments. We found that
RAM usage ranged from 3 to 3.3 GB across different client models. This indi-
cates that the optimal execution of our approach aligns with industry standards,
as even a relatively weak client device like the Raspberry Pi 4, which features
up to 8 GB of RAM, comfortably meets the minimum memory requirement,
highlighting the practicality and accessibility of our proposed approach across a
range of hardware configurations.

7.2 Model Size, Computation, and Inference Time

In this set of experiments (Figs.5 and 6), we show that REFT achieves a sub-
stantial reduction in model size, FLOPs, and inference time as a result of the
pruning performed while incurring negligible loss in final accuracy. We don’t
include FL-PQSU and PruneFL in the computation and inference time com-
parison because their pruning results in sparse matrices, which require special
hardware and software for computing actual computation and inference time, as
discussed in Sect. 2.2. Furthermore, PruneFL prunes the model iteratively while
training until the training converges, making it unsuitable for direct compari-
son with specific pruning levels. To assess the impact of REFT on model size
and computation, we measured the number of model parameters and FLOPs of
VGG-16 across different pruning levels. Figure 5 illustrates the significant reduc-
tion achieved by REFT, compressing the size of the model from 128.4 MB to
1.8 MB, resulting in a 98.5% reduction. Similarly, the FLOPs are reduced from
0.33 GFLOPs to 0.07 GFLOPs.
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Fig. 6. Parameter size and inference time reduction with an increase in pruning of
VGG-16 by REFT.

Table 1. Comparison of accuracy (central) and communication efficiency on RestNet-
8 and VGG-16 models with 20 clients (C' = 20). The table presents the downstream
and upstream communication costs per client for each round, excluding FedKD and
REFT. The total column represents the total bandwidth cost for a client to complete
the federated learning training.

Model | Method Pruning Ratio (%)/Accuracy (%) Bandwidth
Downstream |Upstream Total
ResNet-8) FedAvg - 74.7 37.6 MB 37.6 MB 73.5 GB
FL-PQSU 30% 73.7 37.6 MB 4.7 MB 41.3 GB
60% 71.9 37.6 MB 4.7 MB 41.3 GB
90% 70.3 37.6 MB 4.7 MB 41.3 GB
PruneFL | Adaptive (~60%) 76.2 ~20.8 MB ~20.8 MB ~36.6 GB
FedKD - 81.5 37.6 MB 4.9 MB 42.5 MB
REFT Variable (30-90%) 80.8-81.7 |3.65-25.74 MB| 7.8 MB 11.46-33.5 MB
VGG-16| FedAvg - 73.6 256.6 MB 256.6 MB 200 GB
FL-PQSU 30% 74.5 256.6 MB 32 MB 140.1 GB
60% 73.1 256.6 MB 32 MB 140.1 GB
90% 71.3 256.6 MB 32 MB 140.1 GB
PruneFL | Adaptive (~60%) 78.9 ~102 MB ~102 MB ~93.6 GB
FedKD - 79.3 256.6 MB 4.9 MB 261.5 MB
REFT | Variable (30-90%) 77.6-80.8 3.6-126.8 MB | 7.81 MB 11.4-134.6 MB

As pruning also improves the model speedups by reducing the inference time,
we visualize the improvements in inference time in Fig. 6 along with the parame-
ter size reduction. Our pruning reduces the parameter size of VGG-16 from 33.6
M to 0.47 M parameters, achieving about 98.3% reduction. Similarly, the infer-
ence time is reduced from 4.17 ms/sample to 2.94 ms/sample for 1000 samples.
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7.3 Communication Efficiency

We evaluated REFT’s communication efficiency against baselines using ResNet-8
and VGG-16 models. Table 1 summarizes the outcomes in terms of total commu-
nication bandwidth and test accuracy. Notably, REFT achieves the lowest total
communication bandwidth with comparable or superior accuracy compared to
baselines. Due to variable pruning in REFT, accuracy and bandwidth are pre-
sented as a range to reflect pruned clients and ratios. The range accommodates
various scenarios, from highly constrained clients (90% pruning) to less con-
strained ones (30% pruning). This captures REFT’s trade-off between accuracy
and bandwidth efficiency.

For FedKD and REFT, the knowledge distillation process required minimal
communication cost, as only 200 distillation steps were performed. In contrast,
FedAvg, FL-PQSU, and PruneFL required significantly more communication
rounds (900 to 1000 for ResNet-8 and about 500 for VGG-16) to complete the
federated learning training. Moreover, given the dataset that we are using, the
cost associated with transferring logits is considerably less than that associated
with transferring model weights. Therefore, the total bandwidth of REFT and
FedKD is far less than the other baselines. Given that PruneFL performs iter-
ative pruning and reconfiguration at fixed intervals, we simplify the analysis by
considering its final pruning ratio. Consequently, we provide approximate values
for the bandwidth to maintain clarity and simplicity in the comparison.

FL-PQSU stands out in terms of upstream cost reduction among weight-
sharing methods like FedAvg and PruneFL. This advantage can be attributed to
its utilization of INT8 quantization during client-server communication. As elab-
orated in Sect. 2.2, FL-PQSU maintains consistent total bandwidth usage across
various pruning levels, primarily because it avoids the need for post-pruning
model weight reconfiguration. Consequently, this approach leads to the emer-
gence of sparse weight tensors and a model architecture that remains unaltered.
As a result, the actual model size and computational requirements experienced
no meaningful change.

Table 1 highlights our method’s superior downstream communication effi-
ciency for both ResNet-8 and VGG-16 models, outperforming other pruning-
based techniques like FL-PQSU and PruneFL. These methods anticipate
sparse matrix support in future hardware and software developments, but such
resources are not yet available. As a result, they encounter practical constraints,
particularly PruneFL, which relies heavily on sparse matrices. In contrast,
REFT adopts structured pruning, yielding hardware-friendly weight matrices
that undergo size reduction through shape reconfiguration. This strategy signif-
icantly reduces parameter size and enhances latency. Furthermore, REFT and
FedKD exhibit lower bandwidth needs than other baselines, leveraging one-shot
distillation. Remarkably, FedKD employs quantization before transmitting logits
to the server, further curbing upstream communication costs.
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8 Conclusion and Future Work

In this study, we introduced REFT, a framework that improves resource utiliza-
tion in federated learning. Through variable pruning and knowledge distillation,
we enhanced resource utilization, training time, and bandwidth consumption.
Our experiments showcased REFT’s efficiency compared to baselines while sus-
taining performance. The adaptation of variable pruning enabled diverse clients
to contribute effectively in resource-constrained scenarios, thereby enhancing
resource utilization. Furthermore, employing one-shot knowledge distillation on
public data minimizes repetitive communication, ensures privacy, and boosts
efficiency. Our future work entails exploring the synergistic effect of quantiza-
tion with REFT to further reduce upstream bandwidth communication, thereby
enhancing overall communication efficiency.
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Abstract. Scientific data is essential for research and development in
many fields, and its provenance and lineage are crucial for ensuring the
validity of these findings. However, traditional data management meth-
ods fall short of transparency and accountability, leading to data manipu-
lation and falsification of research findings. By offering a transparent and
impermeable mechanism for logging and verifying data integrity, track-
ing the provenance, and viewing the lineage of scientific data, blockchain
technology provides a promising solution to address these issues. Meta-
data, verifiable research data, and configuration changes can be stored
transparently and reliably using private blockchain technology. This
paper proposes a framework to support secure scientific data provenance
with minimum overhead on application performance while requiring min-
imal user intervention.

Keywords: Data provenance * I/O tracing + Blockchain - smart
contract

1 Introduction

Provenance [9] is typically defined as the origin or source of an object, and it
is also applied to electronic data, providing insight into how documents were
created, simulations were performed, or analyses were conducted. For scientists,
data provenance can reveal how results were obtained, which parameters influ-
enced the outcome, and which datasets were used. Ultimately, data provenance
is essential for reproducibility, a critical component of the scientific method.

Provenance is essential to establish scientific research quality, relevance, and
trust. However, tracking provenance information attributes through complex
transformations is very arduous. Moreover, provenance is necessary to describe
one’s experiment to others for better understanding or future reuse. It also helps
to provide evidence supporting scientific claims as actual findings. Moreover,
distributed data provenance is necessary for petascale and exascale computing
to ensure large-volume data I/O operation tracking [23].

Moreover, data provenance addresses the challenge of insufficiently tracked
experiments [17]. Provenance collects metadata detailing the lineage of data
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entities [5], typically containing scripts and datasets. These entities’ character-
istics may include version details, while their interconnections delineate depen-
dencies or causality. While data provenance addresses the technical hurdles in
reproducibility by documenting the absent components necessary for experiment
replication, it lacks in aiding users’ comprehension of the reproduced pipeline [3].

For scientific reproducibility, users may need to know what datasets and types
of analyses with what parameters were used. The hardware architecture, envi-
ronment variables, and library version details information may be necessary to
reproduce results. By examining task execution, runtime distribution and other
factors must be collected as provenance data for scientific reproducibility [10].
The collection of provenance data can help us to build reproducible experiments.

Besides, “open science” is useful for overcoming scientific research credibility
and reproducibility through data sharing. Collaboration, transparency, accessi-
bility, and inclusiveness are the key features of open science research [14,21].
Beyond aiding reproduction and audits, sharing fosters reuse in different con-
texts, enhancing efficiency by preventing redundant research spending and
enabling previously unattainable research avenues [22]. The trustworthiness
of findings becomes questionable, hindering replication and verification when
research data isn’t shared. Enabling secure, independently verifiable data reuse
is vital for advancing research.

Maintaining the provenance of scientific application is a crucial challenge. To
ensure the provenance of scientific research, we need to consider the following
research questions:

— Can we ensure data integrity and provenance among research groups sharing
and working on the same datasets?

— Can we detect if the shared dataset is corrupted due to hardware failure or
unintentional errors?

— Is it possible to enable quick verification of the exact datasets used for a
particular published research?

This paper explores the above research questions and makes the following
contributions:

— We propose a new framework for secure and reliable data provenance on
High-Performance Computing (HPC) systems to collect the metadata trans-
parently and securely without user intervention.

— We evaluate our proposed framework, which shows a minimal overhead to
overall application performance based on different file sizes, operations, and
processes.

This paper focuses on data provenance in HPC systems. First, we introduce
data provenance in the HPC system. Second, we discuss scientific data prove-
nance, how it can be collected for analysis in blockchain, and its use in data
provenance for datasets. After that, we propose a framework for provenance
collection. Finally, we discuss, compare, and contrast the results and draw con-
clusions.
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2 Background

There are several ways to collect the provenance data for scientific experiments.
One might choose Merkel tree-based [18], Git-based [11], and blockchain-based
provenance collection methods. We picked the blockchain-based provenance sys-
tem for our experiment. Moreover, in the HPC system, user activity is restricted.
One cannot have kernel-level access to the HPC system. We want to use eBPF
to check the viability of our experiment.

The relationship between data provenance and reproducibility in scientific
computing is self-evident. Data provenance is crucial for reproducibility, as it
provides a history of data creation and which actions create which data. Secure
provenance is essential for data forensics, accountability, and building trust in
HPC systems. Similarly, reproducibility is critical for scientific research, yet con-
cerns have been raised about the ability to reproduce computational work. To
ensure the reproducibility of the scientific data, we propose a framework based
on blockchain, which contains metadata from the granularity level. Here, we will
discuss the background of provenance, eBPF, and blockchain for better under-
standing.

2.1 Provenance

The provenance data provides a history of the origins of all changes to a data
object, a list of components that have forwarded or processed the object, a list
of users who have viewed (read) and/or modified (write) the object, specifically
files, and enhanced assurance requirements [12]. Data provenance is metadata
of an object that records the history of the creation and operations on the
object. Metadata of the process, user, and entity are helpful to determine data
accountability, privacy, provenance, forensic investigation, and malicious activity
identification [12,16].

Moreover, lineage and provenance are metadata terms describing a piece of
data’s past. It shows the connections between every component-data sources,
processing steps, background knowledge, and dependencies-that goes into creat-
ing a piece of data [8]. The provenance of the output files should be traced by
who, when, and what. The files provenance is traced by tracing the job submis-
sion in the HPC system [7].

Besides, data provenance pertains to the historical lineage of data originat-
ing from its initial sources. For fine-grained data provenance, the value-level
details should be focused on, which involves uncovering how a specific data
point was generated and manipulated. Fine-grained data provenance is similar
to the NoWorkflow technique, a data tracing technique used to check data prove-
nance [15]. This fine-grained approach assists scientists in retracing the roots of
individual values within the input data sources. In contrast, coarse-grained or
workflow provenance operates at a higher level of granularity.
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2.2 Extended Berkeley Packet Filter (eBPF)

Extended Berkeley Packet Filter (eBPF) is a powerful, universal networking
and systems programming technology. eBPF allows small programs that can
run within the kernel, providing a secure and efficient way to the observability
of the system. Moreover, eBPF is a revolutionary technology in the Linux Kernel
that can run sandboxed programs. The kernel’s capabilities can be extended by
eBPF safely and efficiently without changing the kernel source code. Using eBPF,
anyone can trace any 1/0 operation from the kernel level. Simple eBPF programs
can provide kernel-level data to detect anomalies with minimal overhead [6].

Moreover, any I/O operation should go through the kernel. So, tracking user
activities from the kernel level can provide us with the provenance of the scien-
tific data. Insights from the system level can help to introspect user activities
and trace data changes. eBPF programs can be written in the C programming
language and attached to the system to track user activities.

2.3 Blockchain

Blockchain, a distributed ledger technology, provides a secure and cryptograph-
ically protected record of transactions known as blocks [24]. In addition to
transaction details, each entry in the ledger typically includes a unique cryp-
tographic signature, a transaction timestamp, and the previous block’s hash.
The blockchain’s “append only” structure ensures that previously entered data
cannot be altered or deleted. This immutability and verifiability of data within
the blockchain ledger are vital for auditing and providing reproducibility.

Al-Mamun et al. [1] proposed a provenance service based on blockchain. Their
proposed SciChain utilizes blockchains to provide immutable and autonomous
data provenance services, establishing trust in scientific discoveries. It is the first
practical blockchain system designed explicitly for provenance services on HPC.
However, SciChain could not handle parallel processes in the HPC infrastructure.
It is incompatible with MPI and fault tolerance mechanism [13].

To enable scientific data sharing and ensure data provenance for further
research, Sivagnanam et al. [19] introduced the Open Science Chain (OSC), uti-
lizing blockchain technologies to securely store metadata and verification infor-
mation about research data while tracking any changes made to the data trans-
parently and securely. The OSC’s primary aim is to efficiently share, verify, and
validate the scientific data while preserving the provenance data. However, OSC
has no details of the provenance data collection process. If provenance data is
altered before being stored in the blockchain, it cannot be verifiable to be used
for reuse and reproducibility.

Different frameworks work for scientific data provenance; none is a silver
bullet solution. As discussed, SciChain cannot work on the HPC system and MPI
compatible [13]. Similarly, Open Science Chain (OSC) is not concerned about
the provenance of data collection. So, a framework to produce the provenance of
scientific data is an urgent need. Our primary focus in this research is to collect
provenance data to ensure data integrity.
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Fig. 1. Overview of our framework

3 Proposed Framework

Our framework can work on the data provenance, store it, and verify it with-
out user intervention. We can collect provenance data from the experimental
test bed. The system administrators can set up our framework and enable data
storage in the blockchain. They need to manage the user’s credentials to allow
them blockchain access. Users with credentials can store the provenance data
and validate and verify provenance data from the blockchain for future needs.
Moreover, blockchains can be distributed on the system, and existing networks
can be used for the security and isolation of the blockchains.

Our framework mainly collects I/O-based provenance data, collected through
an eBPF and stored in the private blockchain called Hyperledger Fabric. eBPF
is a helpful tool for kernel-level observability and can trace user-level I/O opera-
tions without user concern. Users do not need to do any extra work in their appli-
cation. The system administrator can set up eBPF and Hyperledger Fabric and
provide appropriate privileges to the users. Hyperledger Fabric can use other
nodes except the computation node for the blockchain consensus and ordering.
Since blockchain peers are stored in different nodes rather than computation
nodes, it does not hamper the performance of HPC systems. Moreover, we use
the HDF5 for the experiment because HDF5 is the most widely used high-level
I/0 library for scientific applications [20].

Figure 1 provides the overview of our framework. It shows that in the HPC
system, different researchers run experiments and create datasets. Kernel-level
eBPF traces I/O operations for provenance and sends the collected provenance
data to the blockchain to be stored. Hyperledger Fabric validates the transac-
tions using smart contracts and, after validations, adds the transaction to the
blockchain. In the end, independent researchers can verify and validate scientific
results based on their individual needs.
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4 Implementation

In this section, we will discuss the implementation and experimental setup. We
need to implement eBPF, blockchain, and set up the experiment. To evaluate the
result we perform read, write, and append operations on different file sizes with
provenance and without provenance. After collecting the data, we determine the
overhead of provenance collection.

4.1 eBPF Implementation

We use the eBPF program to trace the provenance data in this experiment.
For that, a Python program needs to be written with eBPF programs to trace
the I/O operations for our experiment. This program collects the I/O events on
specific files or folders. The eBPF program is written in the user space to trace
I/0 events and trigger kernel spaces. Figure 2 shows that userl and user2 write
filel.txt file whereas user2 reads file2.txt. These events are traced by the user
probe (uprobe), and those trigger the kernel probe (kprobe) program for the 1/0O
trace. The eBPF program is written to maintain the communication between
the user and kernel spaces [2].

We have developed an eBPF script and efficient algorithm that detects
Read and Write operations from individual users using eBPF tracing, which
can track any I/O operation as shown in Algorithm 1 below. The algorithm
works on the eBPF traces. At the beginning of the trace operation, eBPF scans
through the system call to trace any read-and-write (I/O) operation. We need
to provide the list of files or folder names as input to collect the I/O opera-
tions. The algorithm will result in trace records of the I/O operations. At the
very beginning of the algorithm, the pre_mode and Mod_diction are defined
as empty [Line 1-2]. If the system call detects any read/write operation, it
checks if the same operation is in the same file [Line 3]; if not, it creates an
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Algorithm 1: File tracing using eBPF

Data: List of files, collection mode of system call
Result: Trace Read/Write operation on file

1 pre_mode=None

2 Mod_dictionary={}

3 if syscall_mode!=pre_mode then

4 operation_list={filename:{'username’:username, 'pid :process_id,
'program_name’:program_name, 'CPU":CPU _id }}
5 if syscall_mode==read then
6 read_transaction=operation_list+timestamp
7 pre_mode=read
8 if operation_list is NOT in Mod_dictionary then
9 Update M od_dictionary with operation_list
10 Send the read_transaction to the Blockchain.
11 end
12 end
13 if syscall_.mode==write then
14 write_transaction=operation_list+timestamp
15 pre_mode=write
16 if operation_listis NOT in Mod_dictionary then
17 Update M od_dictionary with operation_list
18 Send the write_transaction to the Blockchain.
19 end
20 end
21 end

operation list [Line 4]. The operation_list will contain a dictionary where the
filename is the key, and all other attributes such as username, process_id,
program_name, and C'PU_d are marked as values. If the system call mode
is read, the read_transaction is created with the operation_list and the times-
tamp [Line 6], and pre_mode is assigned as read [Line 7]. If the operation_list is
not in the same mode dictionary, the mode dictionary will be updated with the
operation list, and read_transaction will be sent to the blockchain [Line 9-10].
Similarly, if the system call is in the write mode, the write_transaction is created
with the operation_list and the timestamp [Line 14], and pre_mode is assigned
as write [Line 15]. If operation_list is not in the Mod_dictionary, it updates the
Mod_dictionary with the operation_list and sends the write_transaction to the
blockchain [Line 17-18].

Since eBPF traces every I/O operation, the program will provide read/write
events for every chunk of data, which will cause a huge number of read/write
events. Since we only want to trace the specified users’ reading and writing to
specified datasets, we trace every read/write by every process and every user.
Suppose the program has a file write operation of four processes in a single file,
eBPF will trigger four write operations and send the data to the blockchain.
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4.2 Blockchain Implementation

A private blockchain, like Hyperledger Fabric [4], works on different peers,
ordered services, and operates based on a smart contract called Chaincode.
Chaincode is a self-executing contract based on the terms written into the
code. Different peer nodes build the blockchain and host the ledgers and smart
contracts, Chaincode. Transactions are stored in the ledger after invoking
Chaincode, and ordered nodes form an ordering service. Since fabric relies on
deterministic consensus algorithms, after any block, validation by the peer is
guaranteed to be correct and final. In HPC systems, gRPC client is installed to
send the collected provenance data to another server where the gRPC server is
installed to collect data. In the gRPC server, Hyperledger Fabric is installed to
store the provenance data. While the computing node is busy with I/O opera-
tions, eBPF scripts collect the provenance data and send them to another server
for storage in the blockchain. Figure 3 shows how user activities are collected as
provenance data and sent to the peers (Step 1). Peers send the transaction to
chaincode for invocation (Step 1.1). If correct, it sends a response as a proposal
(Step 2). An ordering request has been sent to the ordered services (Step 3). The
ordered service sends ordered transactions as a new block to the peers (Step 4),
a new block in the ledger with valid transactions (Step 4.1), and peers then
update the ledger (Step 5).

5 Evaluation
5.1 Experimental Setup

The performance of our proposed framework is evaluated based on synthetic data
for different I/O operations by imitating scientific applications. The experiments
are conducted on the OpenStack-based cloud computing service Exosphere, pro-
vided by ACCESS allocation (advanced cyberinfrastructure and associated sup-
port systems) through Indiana University. Exosphere uses an AMD EPYC-Milan
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Processor, and the system is OpenStack Nova. It has 64 CPUs and 6 GiB of sys-
tem memory. It uses mountable block storage called Volumes that are attached
to the Exosphere. The data storage for the experiment is the NFS file system.
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Fig. 5. Comparing write time on different data sizes with different numbers of ranks.
“w/o provenance” means vanilla write operations, and “w/ provenance” means using
provenance data tracing in write operations.

To show the effectiveness of our proposed framework, we collected the prove-
nance data using the eBPF data, which was sent to the blockchain through the
gRPC protocol. We performed extensive benchmark evaluation in three modes:
read, write, and append to different file sizes. We compared the performance of
the blockchain-enabled provenance I1/O operations and vanilla I/O operations on
HDFS5 file systems. Since our goal is to measure the overhead of I/O performance
with provenance, we did not include any compute time between any operations,
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“w/o provenance” means without vanilla read operations, and “w/ provenance” means
using provenance data tracing in read operations.

and thus, the measured time for the two methods that use provenance I/O and
vanilla I/O operations.

We summarize the time elapsed for I/O operations for different buffer sizes
from 1 MB to 1 GB to 64 GB. For example, if we conduct the operation for
64 ranks and 1024 MB data, the file’s total size will be 64 GB. For append
operation, the size will be 128 GB for 64 ranks and 1024 MB.

We compare the results using read, write, and append data modes with dif-
ferent numbers of processes and different file sizes. Each process handles different
data sizes ranging from 1 MB to 1GB, and the file size varies from 1 GB to 132
GB. We performed these operations using 1 to 64 ranks on the HPC system.
The data from all processes are written to one HDF5 dataset and tested for
read, write, and append operations. Figures 4, 5, 6 and 7 show the comparison
between provenance (w/ provenance) and vanilla operations (w/o provenance)
in write, read, and append operations, respectively. The comparison shows that
I/O operation with provenance incurs low overhead.

5.2 Results

The experiment results are evaluated using the write, read, and append opera-
tions times (in milliseconds or seconds) with provenance collection and vanilla
operations.

Figure4 compares the results for all operations (write, read, and append)
with a single rank from 1 MB to 1 GB data. In most cases, the provenance data
showed negligible overhead (a few milliseconds) compared to vanilla operations.
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For read operations in 16 MB, provenance data shows 58 ms overhead, whereas
for write operations in 256 MB, provenance data shows approximately 20 ms
overhead. The append operation shows a maximum 19 ms delay with 1024 MB
data size for provenance data tracing than vanilla append.

Figure5 compares the results for all write operations with different sizes
between 2 MB and 1024 MB data for each rank. For write operations, 4 ranks
for 1024 MB, and 16 ranks for 512 MB data provenance data added 0.041 s
and 0.35 s overhead, respectively. Similarly, in 32 ranks for 512 MB data, and
64 ranks for 1024 MB data, the provenance data added approximately 1.13 s
and 1.32 s overhead, respectively. A maximum of 1.32 s is added for the write
operation with provenance data.

The data read operations shown in Fig.6, in most cases, the provenance
added little (few milliseconds) overhead. With 16 ranks and 64 MB data, the
read operation added approximately 0.67 s over the vanilla read operation. For
32 ranks with 512 MB data, 0.59 s are added over the vanilla read operation. In
16 ranks, 64 MB shows overhead for provenance data added 0.67 s, which is the
maximum overhead.

Figure7 shows the results for all append operations with different sizes
between 2 MB and 2 GB data for each rank. The highest time for append
operation is for 2 GB data in 64 ranks. Vanilla append operation takes around
99.7 s, whereas provenance data takes 98.2 s. Multiple append operations with 2
ranks and 4 ranks show little overhead, a maximum of 0.028 s, on the provenance
data. However, for an append operation with 8 ranks and 16 ranks with data
size 2048 MB, data provenance added 0.338 s and 0.693 s overhead. Similarly,
in 64 ranks, for 256 MB data, a maximum of around 1.44 s overhead.

Our experiments show that blockchain-based provenance data collection does
not add significant overhead compared to vanilla operations. A higher overhead
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of 1.44 s is observed when the appended size is 256 with 64 ranks. Blockchain-
based provenance adds little overhead when there is a small amount of data
(with 1 and 2 MPI ranks). In contrast, with data size 64 MB with the 16 MPI
ranks, the provenance write operation added around 0.67 s. With data size 64
MB and 16 ranks, data provenance read operations added 0.67 s. Since data
outcomes in read, write, and append operations are varied, the standard error
of the samples is checked. From the figures, we can understand that the error
bars overlap; this does not make us confident that the actual mean is different.
In summary, our framework can provide provenance data in scientific research
with minimal overhead for most of the common I/O patterns.

6 Conclusion

Our findings indicate that blockchain-enabled provenance with small write oper-
ations can add a small overhead of scientific data. We have developed a trans-
parent strategy to trace the kernel level provenance in the HDF5 dataset. We
show the significance of our solution by comparing the read, write, and append
operations among the blockchain-enabled provenance with vanilla operations for
different file sizes and different numbers of processes. Our results can provide
provenance (within 1.44 s) overhead compared to vanilla operations.

Our future work includes evaluating blockchain-enabled provenance data
for reproducibility in real scientific applications and extending it to other
provenance-based I/O libraries. We will also explore ways to perform provenance-
aware scientific research under different consistency models and optimize the
algorithm to reduce overhead in the worst case.
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Abstract. We present an implementation of asynchronous causally
ordered unicast that requires linear space for message size, which is a
significant improvement compared to the best existing algorithms which
require quadratic space in the worst case. This algorithm is a modi-
fication of the Raynal-Shiper-Toueg algorithm and broadcasts a small
control message, defined here as a minicast, to augment the unicast mes-
sage to preserve causal ordering. The smaller message size is at the cost
of additional traffic on the network. With the addition of cryptography
in the form of digital signatures, this algorithm can be made tolerant
to byzantine failures. For existing versions of causal unicast, byzantine
tolerance has previously only been possible with the addition of bounded
latency.

Keywords: reliable unicast + causal ordering + byzantine fault
tolerance - asynchronous - minicast

1 Introduction
1.1 Motivation

The demand for data center capacity and distributed computing has increased
dramatically in recent years, driven in part by the rise of Al and cloud comput-
ing. The development of robust distributed applications, however, is challenged
by fundamental limitations such as the CAP Theorem, which proves that it is
impossible to simultaneously achieve strong consistency, consistent availability,
and partition tolerance [15]. While some systems choose to forgo strong consis-
tency in favor of availability and partition tolerance, many modern services—such
as distributed data stores, systems that require fair resource allocation, and inter-
active services—require stronger consistency guarantees. Stronger consistency is
also desirable because it makes distributed systems easier to reason about and
debug.

One approach to achieving stronger consistency guarantees is causal message
ordering. With causal ordering, the order of message delivery respects causal
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dependencies between the sends. Prior work has demonstrated that causal order-
ing can be used to achieve database consistency and that consistent snapshots
in which all messages are delivered in causal order can be obtained without any
additional costs [2,7,28]. For distributed data stores, causal ordering enables
automatic conflict resolution in the presence of concurrent writes [11]. For col-
laborative applications such as social networking, multiplayer online gaming,
group editing of documents, event notification systems, and distributed virtual
environments, causal ordering enables scaling to many users by minimizing con-
flicts and locks.

Causal ordering of broadcast messages is relatively easy to achieve compared
to that of unicast messages. While message-size efficient (linear) algorithms exist
for the former, the best-known algorithms for asynchronous causally ordered uni-
cast are O(n?) in the worst case. Furthermore, byzantine-tolerant solutions exist
for broadcast messages but have previously been impossible for asynchronous
unicast messages. However, the combination of byzantine failures and fully asyn-
chronous communication is a realistic system model and applicable to a variety of
real-world scenarios. Therefore, efficiently supporting causal ordering of unicast
messages in such a model is of considerable interest and practical applicability.

1.2 Contribution

This paper presents a novel algorithm for causal message ordering of unicast
application messages. Our solution is a modification of the Raynal-Shiper-Toueg
(RST) algorithm [26], whereby application messages are augmented with O(1)
broadcast control messages, defined here as minicasts. As with the RST algo-
rithm, extra information is added to the unicast application messages related to
message history in order to preserve causal ordering. The addition of minicasts
allows for a reduction in the size of this history information sent with the appli-
cation messages from O(n?) to O(n), bringing the total volume of messages sent
from O(n?) to O(n+n), even in the worst case. Algorithms that are more recent
than the RST algorithm, such as the KS algorithm [18], perform better in prac-
tice than RST but are also still O(n?) in the worst case. Recently, a O(n) space
algorithm for causally ordered unicast has been presented [23], but it uses locks
and bounded latency to preserve message order. The message size complexity of
this algorithm is similar to ours, but it is based on an underlying assumption of
a synchronous system. The algorithm presented in this work not only requires
only O(n) space, but it does not rely on bounded latency.

The second contribution of this paper is a solution to the unicast causal
ordering problem that is both asynchronous and byzantine tolerant. This solu-
tion is based on a slight modification of the Minicast Algorithm presented in the
first part of the paper: a BCCH FIFO consistent broadcast [9] is used to send the
minicast control messages. This additional layer of consistency, along with the
addition of a message passing layer with cryptographic digital signatures, allows
for asynchronous byzantine tolerance. Existing solutions for byzantine tolerant
causally ordered unicast require bounded latency due to an impossibility result
for byzantine tolerant causally ordered broadcast on asynchronous systems [22].
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For example, a recent algorithm for byzantine tolerant unicast uses control mes-
sages together with bounded latency to achieve consistency [23]. The algorithm
presented here allows for byzantine tolerance for causally ordered unicast with-
out bounded latency. Circumventing the impossibility result for asynchronous
systems is only possible with some strengthening of the model, such as the addi-
tion of secure cryptography as is done here.

2 Background
2.1 Causally Ordered Events

Causality between events is defined by the happens before [19] relation (denoted
—) on a set of events in a distributed computation. The happens-before relation
is formally defined as the least strict partial order on events such that:

— For events a and b that occur on the same process, a — b if the occurrence
of event a preceded the occurrence of event b.

— For events a and b corresponding to the send and delivery, respectively, of a
single message, a — b.

2.2 Causal Message Ordering: Safety and Liveness

Informally, the causal ordering of messages requires that the delivery of messages
at any given process occurs in an order that is consistent with the causal ordering
of their sends. That is, for any two messages sent to the same process, if one
send happened before the other, that message must be delivered first.

More formally, causally ordered messages satisfy the following strong safety

property:

Definition 2.1. Strong Safety. Let i and j be two messages, and denote their
corresponding sends (deliveries) as s; and s; (d; and d;). For messages i and j
with the same destination, if s; — s;, then d; — d;.

This safety property of causal ordering is a stronger requirement than FIFO
channels. For example, consider the computation illustrated in Fig.1. In this
example, which respects FIFO delivery on each channel, the messages ¢ and j
have the same destination, s. Furthermore, the send of 7 (on process p) happens
before the send of j (on process t), by virtue of the chain of messages highlighted
in cyan. Causal ordering requires that ¢ be delivered before j, but in this example,
j is delivered first.

Since byzantine processes can lie about the order in which they receive mes-
sages, this strong safety property cannot be implemented in the presence of
byzantine faults. Instead, a weaker property is used, in which the ordering on
delivery is only guaranteed if a causal chain exists between corresponding sends
which passes through only correct processes. This weaker version is defined as
follows:
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Fig. 1. An example of non-causally ordered messages i and j

Definition 2.2. Weak Safety. Let i and j be two messages, and denote their
corresponding sends (deliveries) as s; and s; (d; and dj). For messages i and j
with the same destination, if s; — s; and there is a causal path from s; to s;
passing through only correct processes, then d; — d;.

The liveness property of causal ordering is that messages eventually arrive at
their destination. Notice that the message passing layer guarantees the liveness of
the underlying channels. That is, all messages are eventually received. However,
causal ordering typically involves buffering these messages and delaying their
delivery in order to respect the ordering imposed by any happens-before rela-
tionships between sends. Thus, the liveness property for causal ordering requires
that all messages are eventually delivered.

In the presence of byzantine faults, a weakening is again required: all messages
between correct processes are eventually delivered.

2.3 Byzantine Tolerance

Asynchronous systems have no bounds on message delays or relative speeds
of processes. Because of this, there is no way to distinguish between a “slow”
message and a message that was not sent. For networks with the possibility of
crash faults or byzantine nodes, faulty processes may deviate arbitrarily from
the protocol, including by crashing at any point during execution, whereas cor-
rect processes behave exactly as specified by the algorithm. For networks with
byzantine nodes, processes can fail to send messages when they should and can
send spurious and contradictory messages [8].

To circumvent fundamental impossibility results, such as FLP [13], the com-
putational model is often strengthened (or, equivalently, bounds are placed on
the behavior of byzantine processes). For example, one might stipulate the exis-
tence of failure detectors [10], bounds on latency [12], or some cryptographically
secure mechanism to guarantee identity [17]. Here, we assume that a byzantine
process cannot impersonate another process or spawn new processes.

With such an assumption in place, many consensus problems become solvable
even in the presence of byzantine faults. In particular, in this paper, we leverage
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the existence of a byzantine reliable broadcast primitive, such as the one in [8].
This broadcast primitive can be viewed as a message passing layer with the
following properties:

Definition 2.3. Byzantine Reliable Broadcast. A reliable broadcast protocol sat-
isfies the following properties for all messages sent from any process p:

1. If p is correct, then all correct processes accept and agree on the value of the
message

2. If p is faulty, either all correct processes accept and agree on the same value
of the message or none of them accept the message

3 Related Work
3.1 Causally Ordered Unicast and Byzantine Tolerance

The RST causal message ordering algorithm by Raynal, Schiper, and Toueg
[26] was the first algorithm to solve the causal message ordering problem. It
requires a space overhead of n? storage on each process, where n is the num-
ber of processes. In the RST algorithm, every process maintains a local n x n
matrix, SENT. SENT [p, q] is the process’s best knowledge of the number of mes-
sages sent by process p to process gq. A process also maintains an array of the
number of messages that have been delivered locally from every other process,
DELIV. The algorithm also incurs a message size cost of O(n?) as each message
is augmented with the local SENT matrix of the sender process. A process g that
receives a message augmented with the matrix S delivers that message only if
Vp : DELIV[p] > SENT]p,q]. If a message cannot be delivered immediately,
it is buffered until the condition above is met. When the message is delivered,
the local SENT matrix is updated to be the element-wise maximum of SENT and
the message’s S matrix, for each element in SENT. In this way, information about
messages that have been sent is propagated across the network.

Other variants [3,6,16,25,27] and improvements upon the RST algorithm [18]
perform significantly better in practice, but still require O(n?) in the worst case.
Additional algorithms for causal ordering of point-to-point messages in real-time
applications have been proposed in [1,5] with similar message size complexity
requirements. Another algorithm for causal ordering uses no control information
at all and orders messages by flooding on an overlay topology [14].

One highly relevant variant of causally ordered unicast by Misra et al. is the
Sender-Inhibition algorithm, which reduces the message size overhead to O(n)
by assuming a synchronous model [23]. The Sender-Inhibition algorithm uses
one constant-size control message per application message. This algorithm also
uses locks to prevent a process from having multiple outstanding sends, which
reduces the concurrency of the protocol. A reliable and FIFO-ordered channel
is used. When blocks are also used to execute blocks of code asynchronously
with respect to each other in a fair manner and also allow for context switching
between blocks. As this algorithm requires a synchronous underlying system, a
bounded latency is assumed for messages.
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Byzantine-tolerant causal ordering for unicasts is a topic of ongoing interest
[20-22], but it has been shown that it is impossible to causally order messages
under point-to-point communication in an asynchronous system with one or
more Byzantine processes [22]. The addition of a requirement on the underlying
network to have a known upper bound on the message latency can circumvent
this impossibility result [22]. One example of a recent work that implements
byzantine tolerant unicast on a synchronous system is the Channel Sync algo-
rithm [23]. This algorithm uses timeouts and control messages after each send
and after the delivery of each message. Application messages are delivered imme-
diately after getting popped from the queue of messages, but control messages
are only processed when it is safe to deliver the next message in the queue. All
control messages have timers associated with them to time them out in case of
Byzantine behavior of the sender or receiver.

The Channel Sync algorithm and other byzantine tolerant causal unicast
algorithms use bounded latency to circumvent the known impossibility result.
However, another option for circumventing this impossibility result is to use
cryptography. A recent work by Misra et al. proved that it is possible to solve
causal ordering of unicast messages in an asynchronous system with one or more
Byzantine processes with the use of cryptography, as weak safety and liveness
can be guaranteed [23]. The algorithm presented in this work uses this option
for byzantine tolerance, unlike other algorithms that have been developed.

3.2 Causally Ordered Broadcast and Byzantine Tolerance

Bracha first developed a protocol for byzantine reliable broadcast [8]. In this
protocol, three types of messages are used: initial, echo, and ready. An initial
message means that p wishes to send a broadcast. An echo message means that
its sender knows that p sent a message because it received either an initial
message from p or enough echo or ready messages confirming it. A process sends
a ready message only when it is ready to accept the message because it received
enough echo or ready messages. Finally, when a process receives enough ready
messages it accepts the message. All other correct processes are bound to accept
the message at this point, regardless of whether they received an initial message
from p.

A causally ordered version of this byzantine tolerant reliable broadcast was
introduced by Auvolat et al. [4]. In this algorithm, an array of integers is used
to track the number of messages that have been broadcast from every other
process. That array is sent with each message to enforce causal ordering. Infor-
mation about how many messages have been sent is transmitted directly to each
process in this algorithm, rather than propagated. The algorithm presented in
[24] implements crash fault-tolerant causal broadcast in asynchronous systems
with a focus on reducing the control information required for each message.
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4 Minicast Algorithm
4.1 System Model

A set of FIFO (logical) communication links is assumed where processes commu-
nicate by message passing. The communication links are assumed to be reliable,
meaning messages cannot get lost or be duplicated and the identity of the sending
processes is authenticated. The system is asynchronous, so there is no guaran-
tee on how long messages may take to arrive. For this section, we assume the
system is fault-free. In the next section, this assumption is weakened to permit
byzantine failures.

4.2 Overview

The algorithm presented here describes a version of unicast that preserves causal
ordering using a minicast message. A minicast is a small broadcast message and
functions like a control message. Each unicast message is supplemented with
this minicast message to share information with other processes directly. In this
way, information about which messages have been sent is shared directly rather
than propagated, and this algorithm can be viewed as a hybrid of unicast and
broadcast.

To preserve causal ordering, processes track the number of minicast messages
that have been received from every other process in a vector. This vector is also
used to keep track of whether a received (i.e. buffered) message meets the delivery
condition and thus can be delivered.

For notational convenience, we define a single-point exclusive ordering rela-
tion on vectors, <;, below.

Definition 4.1. Let v and u be vectors of equal length and let q be the index of
an entry.

4.3 Local Data Structures

— deliveredMCs: Vector of the number of minicasts delivered from every other
process, used to establish causal ordering.
e [Initialized to 0 for all entries except p (the process’s own entry), which is
initialized to 1.
— receivedUnicasts[i]: Queue of unicast messages that have been received
from process ¢ but have not yet been ordered with minicasts from 3.
e Initialized as empty.
— receivedMessages[i]: Queue of messages (unicast and minicast) that have
been received from process 7 but have not yet been delivered.
e Initialized as empty.
e Minicasts that correspond to a unicast are replaced in this queue by the
unicast from receivedUnicasts.
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4.4 Algorithm

Algorithm 1 Causally Ordered Unicast (Process p)

Initially
1: detiveredMCs «— [0, 0, ..., 0]

Order Unicast in receivedMessages

13: receivedMessages[q].front = (p, msgNum)

2: deliveredMCs[p] — 1 A receivedUnicasts[q] # € —
3: receivedUnicasts — [e, € ...y €] 14:  next — receivedUnicasts|q].dequeue()
4: receivedMessages — [e; € .0y €] 15:  if next.MCs[g] = msgNum then
16: receivedMessages[q].replace Front(next)
Message Send 17: end if

5: send message m to process ¢ —>
6:  Send((m, deliveredMCs)) to q

Broadcast((g, delivered M Cs[p]))
8:  deliveredMCs[p] += 1

Unicast is Delivered

18: receivedMessages[q]. front = (m, MC's)
AN MCs <4 deliveredMCs —

19:  neat — receivedMessages|q].dequeue()
Unicast Arrives 20: Deliver(nezt)
9: (m, MCs) arrives from process ¢ — 21:  deliveredMCs[q] — newxt.MCs|q]

10: receivedUnicasts[q].enqueue({m, MC's))
Minicast is Delivered
22: receivedMessages[q].front = (r, msgNum)
ANr#p—
receivedMessages[q].dequeue()
deliveredM Cs[q] «— msgNum

Minicast Arrives

11: (r,msgNum) arrives from process ¢ —

12: 23:

24

receivedMessages[q].enqueue({(r, msgNum))

4.5 Description

The causally ordered unicast algorithm uses a series of guards to control opera-
tions. With the use of these guards, the algorithm switches between the blocks
in a fair manner and only executes a block if the guard is true. The blocks are
executed atomically.

FEach channel is assumed to be FIFO, but unicast and minicast messages
use different message passing layers. That is, the point-to-point channels used
for unicasts are FIFO and the broadcast channels used for minicasts are also
FIFO, but these two kinds of messages are not ordered with respect to each
other. This separation has the advantage of making the algorithm (and its proof
of correctness) more general. For example, it allows for network architectures
that use different transmission media for these two kinds of communication.
Most importantly, it means that the broadcast layer can be replaced by an
independent broadcast protocol, such as byzantine tolerant broadcast as is done
in the second part of the paper.

Unicast messages are augmented with a vector of how many minicasts have
been (directly) received by other processes. Unicast messages are also supple-
mented with a broadcast message (i.e. a minicast) including the process of id of
the destination and total message count.

Two queues are used to track when messages are received, one for unicasts
(receivedUnicasts) and one for minicasts (receivedMessages). The queue of
received unicasts is merged into the queue for minicasts based on the message
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number included with both minicast and unicast messages. This operation results
in FIFO ordering between the two channels. Minicasts can safely be delivered
if they are at the front of the queue as long as a unicast was not sent with
it. Unicast messages can only be delivered when the delivery condition has been
met. The delivery condition requires that the vector sent along with the message
is smaller than the number of minicasts received directly from other processes at
every value (except ¢, the sending process, which is always at least one more than
the current value). This delivery condition ensures causal ordering of messages.

5 Proof of Causal Ordering
5.1 Safety

We show that the Minicast Algorithm in Sect. 4 satisfies strong safety as given in
Definition 2.1. That is, we prove Theorem 5.5, which states that delivery events
are causally ordered.

Lemma 5.1. Consider any pair of processes p, q. For all messages (application
and minicast) from q to p, the order of delivery events at p is the same as the
order of send events at q.

Proof. Given the FIFO channel for minicasts, the order of minicast receive
events at p must be the same as the order of minicast send events
at ¢. Additionally, the operations used to order unicast messages in the
receivedMessages[q| queue replace any minicast with its corresponding unicast
from receivedUnicasts based on the message number, if one exists. Figure2
illustrates how the receivedUnicasts and receivedMessages are combined to
update receivedMessages|g|. A unicast message must be received if a minicast
has been sent. This operation happens when a minicast with a destination of p is
at the front of the queue, and the message cannot be delivered before this time.
Since messages must be dequeued in order and are always delivered immediately
after they are dequeued, the order of delivery events at p must be the same as
the order of receive events at p and thus are the same as the send events at ¢. O

Definition 5.1. For equal length vectors vi and v, v1 < vo means that every
element of vy is less than or equal to the corresponding element in vo, and there
exists at least one element of vi that is strictly less than the corresponding ele-
ment in vy.

Lemma 5.2. Let e; and ey be events (send or delivery). If ey — ea, then
deliveredMCs(e1) < deliveredMCs(es)

Proof. First, assume that e; and e; occur on the same process p. If e
is a delivery from process ¢, p.deliveredMCs is updated at the gth entry
to be the new message number, which is guaranteed to be larger than
the previous message number by Lemma 5.1. Since there is no way for
deliveredMCs to decrease, p.deliveredMCs(e;) < p.deliveredMCs(es). If e;
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Fig. 2. The ordering of received unicast messages in the queue of receivedMessages

is a send, p.deliveredMCs is incremented at the pth entry. By the same
argument, p.deliveredMCs(e;) < p.deliveredMCs(ez). Now in either case,
p.deliveredMCs(e;) < p.deliveredMCs(eq).

Now assume events e; and e; happen on different processes and let ey
be a send of message m at ¢ and es be the delivery of that message
at process p. Because message m was sent from process g(e;), we know
that m.MCs = g.deliveredMCs(e;). We also know that since m was deliv-
ered at p(ez), m.MCs <, p.deliveredMCs(ez) based on the delivery condi-
tion. Additionally, p.deliveredMCs[g|(e2) is immediately updated to be the
message number, which is m.MCs[g]. Lastly, p.deliveredMCs[p](e2) must be
larger than m.MCs[p] because no message could have been sent out with the
current value of p.deliveredMCs[p|. Hence, m.MCs < p.deliveredMCs(ez) and
g.deliveredMCs(e;) < p.deliveredMCs(ez).

Now for any e; and es from any processes ¢ and p, by definition, there must
exist some chain of events that follow — between e; and es such that they both
occur on the same process or eg is the delivery of e;. Therefore, for every two
events e; and ey where e; — eg, g.deliveredMCs(e;) < p.deliveredMCs(eq). O

Lemma 5.3. If s; — sg, then s1.MCs < s5.MC's

Proof. Since any sends s; and s, are also events, from Lemma 5.2 we have: if
$1 — Sa, then p.deliveredMCs(s1) < ¢.deliveredMCs(sq).

For brevity, we will refer to m.MC's for message m sent by p at s; as s1.MCs.
Now, s1.MC's = p.deliveredM Cs(s1) based on the information supplied in the
Send. Therefore, we have that s; — s, then s1.MCs < s5.MCs.

Lemma 5.4. For sends s1 and so with the same destination p, if s1.MCs <
S9.MCs, then dy — ds.
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Proof. Let s1 be sent from process ¢, and consider the gth component of s;.MCs
and s2.MCs. Let s5.MCs[g] be . Since s3 has been delivered, p.deliveredMCs|q]
must have been updated to be equal to x.

Since $1.MCs < $2.MCs by construction, s1.MCs[g] < s2.MCs[q]. Now we have
that s1.MCs[g] < x, meaning it must be the zth message sent or some message
sent before it. Now it must have been delivered by Lemma 5.1. O

Theorem 5.5. For sends s1 and sy with the same destination, if s — sa, then
d1 — dg. That is, delivery events are causally ordered.

Proof. Lemmas 5.3 and 5.4.

5.2 Liveness

We prove that every message is eventually delivered. The proof is by contradic-
tion. Assume there is some message that can never be delivered. The existence
of such a message means there is some process p and some first, or globally min-
imal, message m (minicast or application) sent to p that can never be delivered.
That is, m is such that all messages whose sends to p happened before the send
of m are deliverable (otherwise m would not be globally minimal). We will show
that message m can be delivered once it is received, hence the contradiction.

Case 1: m is a minicast

If m is a minicast (with no corresponding unicast) and there are no unde-
livered messages that happened before it, then it must be at the front of the
receivedMessages[q| queue if it has been received. The delivery condition for a
minicast is that it is at the front of the queue, so it can be delivered.

Case 2: m is an application message For a process p, consider the
most recently delivered message from each process. Figure3 illustrates the
receivedMessages queue and deliveredMCs for process p. The most recently
delivered messages are shown in blue, which correspond to the values in
deliveredMCs. Any message sent after the most recently delivered message from
a process has not been delivered and is colored gray. All messages before it are
white and have been delivered.

p | 1] 2]3]4 6 | 7]8] 9
a |1 ]2]3]4 5
r| 1| 2[3 ][4 6 | 7]8]9]10] 4
s |1 [ 2]3 |4 s| 2
t |1 ] 2[3]4 t| 6
u |1 [2]3]4 6 | 7]8]09] ul 5
p.receivedMessages p.deliveredMCs

Fig. 3. Conceptual representation of the local data structures for process p
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These most recent messages correspond to the value of deliveredMCs at
each corresponding process. The messages immediately after the blue values are
the first in the receivedMessages queue. These messages must eventually be
application messages because minicasts are delivered when they are at the front
of the queue.

These application messages could not have happened before m because oth-
erwise they would have been delivered by construction. If one of these messages
happened after m, then by Lemma 5.2 the value of deliveredMCs at that ele-
ment would already be large enough for m.MC in that location. This only leaves
messages that are concurrent with m.

Consider an arbitrary message from this group that is concurrent with m. The
value of n.MC[n] must be larger than the value of deliveredMCs[n| by Lemma
5.1. Since m and n are concurrent, m.MC[n] < n.MC[n]. Now m.MC[n] < n.MC[n]
< deliveredMCs[n|. Now m.MC[n| must meet the delivery condition.

For each element in m.MC, this value must now be smaller than deliveredMCs
and thus meet the delivery condition. Now it is clear that the guard for the
delivery condition must become true eventually and is stable. Therefore, m must
be delivered eventually. Since we have arbitrarily picked a minimal message, all
minimal messages can be delivered. Every message will eventually become this
minimal message by induction. Therefore, every message is eventually delivered.

6 Byzantine Tolerant Minicast Algorithm
6.1 System Model

As with the algorithm in Sect.4, a set of FIFO (logical) communication links
is assumed where processes communicate by message passing. Two separate
channels are assumed per pair of processes, one for unicast messages and one for
minicasts. The communication links are again assumed to be reliable, meaning
messages cannot get lost or be duplicated and communication is authenticated.
The system is asynchronous so there is no guarantee of how long messages may
take to arrive. Since there may be byzantine nodes in this model, some processes
may crash or behave arbitrarily. The number of byzantine nodes must be capped
based on the BCCH algorithm [9] used for minicasts.

6.2 Overview

An additional assumption about the existence of a message passing layer that
uses cryptography allows for byzantine tolerance in the previously presented
Minicast Algorithm. The algorithm presented in this section uses the byzan-
tine FIFO consistent broadcast channel (BCCH) [9] for the minicast so they are
delivered in FIFO order and are tolerant to byzantine failures. The BCCH pro-
tocol satisfies the byzantine reliable broadcast properties of Definition 2.3 and
furthermore ensures FIFO ordering by including a sequence number.

Only two sections of the Minicast Algorithm require modifications for byzan-
tine tolerance. The rest are omitted.
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6.3 Algorithm

Algorithm Byzantine Tolerant Causally Ordered Unicast (Process p)

Message Send
1: send message m to process ¢ —

2:  signature «— Send_MPLayer(q, (m, deliveredMC's))
3: BCCH_Broadcast((q, signature, delivered M C's[p]))
4:  deliveredMCs[p] +=1

Minicast Arrives

5: (r, signature, msgNum) arrives from process ¢
A Verify(q,r, signature) —

6: receivedMessages|q].enqueue({r, msgNum))

6.4 Description

The byzantine tolerant version of this algorithm requires very few modifica-
tions. Most notably, minicast messages are sent using a byzantine tolerant FIFO
channel for broadcast and are verified using a signature generated by a neutral
message passing layer. This means that if a minicast is accepted, it was accepted
by every process and a unicast message must have been sent. Any unicast mes-
sages that are sent without a corresponding minicast are discarded as part of the
merging process of minicasts and unicasts. Minicast messages and unicast mes-
sages must be sent on separate channels due to the nature of byzantine tolerant
broadcast. Not every process is required to receive the initial broadcast mes-
sage from byzantine nodes, so FIFO ordering cannot be guaranteed for unicast
messages sent on the same channel. As a result, an explicit merge of minicast
and unicast messages is necessary.

7 Proof of Byzantine Tolerant Causal Ordering
7.1 Proof Of Causal Ordering

The proofs for both safety and liveness in Sect. 5 apply directly to the Byzantine
Tolerant Unicast algorithm. Only weak safety can be shown for an algorithm with
byzantine processes.

7.2 Proof Of Byzantine Tolerance

We define Byzantine Reliable Unicast (BRU) based on the validity and termi-
nation properties of Byzantine Tolerant Broadcast [4].
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1. BRU-Validity. If a correct process BRU-delivers message m from p (possibly
faulty), then p BRU-sent m

2. BRU-Termination. If a correct process BRU-sends message m to another
correct process p, p BRU-delivers m

Proof. We will show that the algorithm meets the validity and termination cri-
teria for byzantine tolerant unicast.

1. BRU-Validity. Given a correct process has BRU-delivered a message, because
the delivery condition has been met, it has to have received both the unicast
message m from p and a BCCH-broadcast (i.e. minicast) of the message from
.

2. BRU-Termination. If a correct process BRU-sends a unicast message and
a minicast message to another correct process p, p will eventually have to
receive this message based on the liveness and safety of BCCH-broadcast. If
a minicast message is sent (and verified) with the application message desti-
nation as p, a unicast message must arrive eventually because of the Message
Passing Layer. The unicast message will eventually be delivered based on the
safety argument in the proof of causal ordering. If a unicast message is sent
without a minicast, the sending process must be byzantine, and that message
will eventually be ignored. Delivery of messages from other processes will not
be delayed because no minicast was accepted.

8 Performance and Limitations

A major result of this work is a reduced overall complexity of causally ordered
unicast in terms of total overhead summed over all messages. Previous solutions
to the problem of causal ordering for asynchronous unicast messages required
O(n?) of overhead space per message in the worst case. The algorithm presented
here requires only O(n) per unicast plus O(log(n)) per minicast, resulting in
an overall complexity of O(n + nlog(n)) per application message. However, the
encoding of process identifiers and message numbers sent with minicasts are
not required for the Minicast algorithm if minicasts and unicasts occur on the
same channel, so the overall complexity of the Minicast Algorithm can easily
be reduced to O(n) by sending minicasts of size O(1). The complexity of the
byzantine tolerant algorithm is O(nlog(n)).

A limitation of this algorithm is that the use of minicasts results in additional
network traffic. Where traditional unicast requires only M messages sent, the
algorithm presented here requires M unicast messages and M minicasts (each
of which entails n messages).

The Minicast algorithm does not inhibit the degree of synchronization beyond
what is necessary to enforce causal order because sends are never delayed. How-
ever, the overall latency of the algorithm is longer due to latency introduced
by minicast control messages. The additional latency is only increased by these
control messages. To show this, consider the proof of Liveness in Sect.5. For
the current minimal global message, the only messages preventing delivery are



Using Minicasts for Efficient Async. Causal Unicast and Byz. Tolerance 79

minicasts, which are delivered as soon as they are at the front of the queue.
The Byzantine Tolerant Minicast algorithm has additional latency due to the
underlying Bracha’s BRB protocol [8] in the BCCH algorithm.

9 Conclusion

This paper demonstrates an improvement upon a previous implementation of
asynchronous causal unicast from O(n?) in the worst case to O(n). The addition
of a minicast message, defined in this work as a small broadcast message, is used
to preserve ordering and reduce message size. With this small broadcast message,
the Minicast Algorithm is a blend between unicast and broadcast. The addition
of the minicast results in a tradeoff of increased traffic on the network. A byzan-
tine tolerant version of the Minicast Algorithm is also introduced. A message
passing layer that uses cryptography is required, and allows the algorithm to cir-
cumvent the impossibility result for byzantine tolerant causally ordered unicast
[23]. Byzantine tolerance in this algorithm is achieved using the BCCH [9] FIFO
consistent broadcast channel for the minicast messages. The Byzantine Tolerant
Minicast Algorithm is the first to achieve asynchronous byzantine tolerant causal
unicast. The required message size is O(nlogn) and there is added latency due
to the BCCH protocol.
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Abstract. A widely used computationally intensive scientific kernel,
the matrix multiplication algorithm is at the heart of many scientific
routines. Resurging fields, such as artificial intelligence (AI), strongly
benefit from fast and accurate processing of large matrices. Through
the years, multiple efforts have been made to derive new algorithms
capable of achieving better performance than the naive matrix multi-
plication approach ©(n®). One of those is Strassen’s variant ©(n?*').
This research compares the benefits and differences of using an optimal
version of Strassen’s algorithm versus the naive algorithm. The perfor-
mance analysis makes use of the two most dominant high-performance
computing (HPC) architectures available within the Lonestar6 cluster at
Texas Advance Computing Center (TACC), the multi-core (CPU) and
many-core (GPU) architectures.

Keywords: Matrix Multiplication - Strassen’s - TACC + GPU -
CUDA - C programming

1 Introduction

Matrix multiplication is at the core of many computational tasks within fields
such as image processing, machine learning, artificial intelligence, data science,
computer graphics, robotics, and physics. Due to its relevance in science, many
scientists have made considerable efforts to study and create algorithms that
perform better than the naive approach. One such algorithm is Strassen’s algo-
rithm.

Resurgent fields like artificial intelligence (AI), strongly rely on the fast and
accurate multiplication of large matrices. Several of the current Al algorithms
need to process massive amount of data not only once, but multiple times. In such
contexts, any enhancements in performance without compromising accuracy are
highly advantageous. One of the authors of this research has a strong interest
in Mathematics and Computer Science, and the scenario described presents an
ideal landscape for research and learning.
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This research seeks to achieve two major goals. Firstly, it aims to imple-
ment and compare the potential performance benefits of an optimal version
of single-level Strassen’s algorithm ©(n?8!) against the traditional dot prod-
uct matrix multiplication algorithm ©(n?). To facilitate a thorough compar-
ison, performance analyses were conducted using cutting-edge computational
resources, including the Lonestar6 facility at the Texas Advanced Computing
Center (TACC). These analyses encompassed metrics from two prominent high-
performance computing (HPC) architectures: multi-core (CPU) and many-core
(GPU).

Secondly, the research examines how effectively the GPU, which has domi-
nated the floating-point race since 2003 [8], accelerates each algorithm relative
to the other. Does the GPU accelerate one more efficiently than the other? How
does the speedup trend across different data sizes? All code implementations
were carried out in C and CUDA-C for their respective architectures. The math-
ematical correctness of these methods was rigorously verified across a diverse
range of problem sizes. Using execution time as the primary metric for perfor-
mance evaluation, initial findings indicate that for small problem sizes, the naive
approach exhibits superior performance compared to Strassen’s approach. How-
ever, Strassen’s algorithm surpasses the naive implementation as matrix sizes
increase. A substantial performance boost is also observed when both algorithms
are executed on the GPU.

2 Manual Analysis

The conventional matrix multiplication method, also known as the dot product
approach, is widely known in the scientific community and well documented in
multiple textbooks. For these reasons, if interested in this approach, the reader is
referred to [11,12]. This section of the paper focuses on Strassen’s algorithm. The
divide-and-conquer approach serves as an alternative to the naive matrix multi-
plication algorithm. This method involves partitioning all matrices participating
in the operation into equally sized block matrices, as outlined below:

-] >

Then we find the product by multiplying the corresponding rows by columns
of the matrices:

_ _|alb elf| _|ae+bglaf+bh

C=A-B= [c d} ' {gh] o {ceergchrdh
If A and B are large enough, the divide-and-conquer approach can be applied
recursively to the product of the sub-matrices. For simplicity and illustrative

purposes, we assume that matrices A and B are 2 x 2. Note that in the com-
putation described earlier, two multiplications and one addition are performed
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in each partition or quadrant of Matrix C, this results in a total of eight dis-
tinct multiplications and 4 distinct additions. Strassen’s algorithm optimizes this
by reducing the number of distinct multiplications to seven through the use of
equivalent expressions for each partition:

ae+bg=(a+d)(e+h)+dlg—e)
—(a+b)h+ (b—d)(g+h)

af +bh=a(f —h)+ (a+b)h

ce+dg=(c+d)e+d(g—e)

cf +dh=a(f —h)+ (a+d)(e+h)
—(c+dle—(a—c)(e+f)

The seven distinct products performed are:

p1 = (a+d)(e+h)

p2=d(g —e)
p3 = (a+b)h
pa=(0b—-d)(g+h)
ps =a(f —h)
pe = (c+d)e

pr = (a—c)(e+ f).

We rewrite the partitions as sums/differences of these products below:

ae +bg =p1 +p2 —p3 +ps
af +bh =ps +ps3
ce + dg = pe + p2
cf +dh = ps +p1 — pe — pr-

Therefore C = A-B =

ae + bglaf + bh
ce +dglcf + dh
{P1+P2P3+p4| Ps +ps3
DPe + D2 |p5+p1—p6—p7
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Although Strassen’s algorithm reduces the number of distinct multiplications,

it significantly increases the number of additions and subtractions. However,
as the matrix size grows, the impact of these additional operations becomes
negligible. This is because multiplication is computationally more expensive than
addition. Consequently, the relative cost of the increased number of additions
and subtractions diminishes when working with larger matrices.

The previous analysis was conducted for 2x 2 matrices, but the same principle
applies to larger matrices. They are partitioned into four equally sized blocks
each, and the seven products are computed using these blocks during the divide
phase. The products are then combined in the prescribed way to produce the
resultant matrix during the conquer phase.

Strassen’s algorithm ultimately resorts to the naive method. The point at
which this transition takes place depends on the implementation. One possible
choice is to recursively divide and conquer until the partition size is 2 x 2 and
then perform the naive method, the alternative choice is to recursively divide
and conquer to an earlier point (not a 2 x 2) and then apply the naive algo-
rithm. Independent of the chosen Strassen’s variant, each divide-and-conquer
step is referred to as a level. Thus, a single-level Strassen’s algorithm involves
one divide-and-conquer step, two times is a double-level, and so forth. The term
“multilevel Strassen’s” is commonly used to describe performing multiple divide-
and-conquer steps.

The focus of this paper is a single-level Strassen’s algorithm. As mentioned
in Sect. 8.3, future plans will include implementing and analyzing multilevel
Strassen’s algorithm.

3 Speedup

Speedup is a crucial performance evaluation metric in parallel computing, used
to compare the performance improvement of a parallel approach with its serial
counterpart [4].

According to [7], speedup is defined as the worst-case run time of the best
sequential algorithm divided by the worst-case runtime of the parallel algorithm.
Because the number of processes used by parallel systems can vary, references
normally refer to the speedup achieved on a certain data size in terms of the
number of processes/threads, S(p). It is given by

S(p) _ tserial (1)

b
tparallel

where,

p: Number of threads
tserial: Runtime of serial approach
tparallel: Runtime of parallel approach using p threads.
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4 Naive-Strassen Speedup Ratio

Inspired by speedup, a new metric was introduced to compare the two matrix
multiplication approaches: the Naive-Strassen Speedup Ratio (NSSR). This met-
ric evaluates how much faster Strassen’s algorithm performs compared to the
naive method for each data size, using the same number of threads. It is com-
puted as follows:

NSSR(n) = —tnaive (2)

strassen

where,

n : Order of matrices
thaive : Runtime of naive method
tstrassen : Runtime of strassen’s method.

5 Implementation

The code for this research is organized into four files: two for the serial and par-
allel implementations of the naive algorithm, and two for the serial and parallel
implementations of Strassen’s algorithm.

In all implementations, matrices were stored as dynamically allocated 2D
arrays to accommodate large sizes and manage memory efficiently. This app-
roach allows for flexible memory allocation at runtime, ensuring that memory is
allocated only as needed.

To simulate floating-point operations while avoiding accuracy issues, we used
single-precision data types and initialized test data with whole numbers. Further
details are provided in the first paragraph of Sect. 6.2.

The serial code was written in C using traditional sequential programming
techniques, while the parallel code was implemented in CUDA-C using methods
learned from [1]. All parallel implementations utilize square, power-of-two, two-
dimensional computational grids with two-dimensional blocks.

Additionally, load-balancing techniques were employed to ensure even data
distribution among participant CUDA threads, and memory management tech-
niques were used to prevent memory leaks.

5.1 Naive Algorithm

The implementation of the naive algorithm is straightforward in both its serial
and parallel versions. In both cases, the matrices (arrays) are initialized, and
the function “multMatriz(A, B, P)” is called to execute the respective version
(serial or parallel) of the naive method.

In the serial implementation of multMatriz, three nested loops are utilized.
The outer loops iterate over the rows and columns of matrix P, while the inner-
most loop performs the dot product operation for each element, resulting in the
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multiplication of corresponding elements from matrices A and B, and accumu-
lation of the result in matrix P.

On the other hand, the parallel multMatriz function determines the number
of threads needed in the x and y dimensions based on the block and grid sizes.
It then uses nested loops to distribute the matrix multiplication task among
these threads. Each thread computes its assigned part of the resulting matrix by
iterating over rows and columns, performing the necessary multiplications and
additions, and contributing to the final result in parallel.

5.2 Strassen’s Algorithm

The implementation of Strassen’s algorithm, on the other hand, is not as straight-
forward as the naive method, as it involves multiple helper functions that are
called repeatedly. The exact approach to achieving their tasks in serial and par-
allel implementations differs, but below are the helper functions used in our
implementation of Strassen’s algorithm:

—  matricMultiplication: Multiply two matrices using the naive method as
described in [11,12] and return the result to the calling function.

— getSlice: Extract a sub-matrix (partition) from a larger matrix based on speci-
fied row and column offsets and return it. It is used to partition a larger square
(n x n) matrix into four smaller, equally sized square matrices (§ x &) by
allocating a new matrix and copying the relevant elements from the specified

offsets. For example, given a 4 x 4 matrix

d
h
C= l

7

3 || o
Ol |o

a
e
i
m p

calling the function with parameters C, 4 (the total number of columus or

rows in C), 0 (the row offset), and 2 (the column offset) would extract the
second quarter of C, denoted as Ca:

cld
Gy = [g h} |
— addMatrices: Add or subtract two matrices. The function takes in two input
matrices and an integer that causes the function to add the matrices if its
value is 1 and subtract the matrices if the value is 0. The resulting matrix is
returned to the calling function.

— combineMatrices: Combine four sub-matrices into a larger matrix. For input,
this function takes in four equally sized square matrices,

alb cld
o=[if] o= [5f]
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ofap] e[t

and combines them into one big output matrix

_[afe]
c=[Ger] =

3 ||
Q||
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S el

The final function in this implementation is called ‘strassens.” This function
uses the helper functions to achieve the process highlighted in Sect. 2.

5.3 Timing

To measure the execution time of both serial and parallel code, different tech-
niques tailored to each scenario are utilized.

For the serial code, we utilize a macro leveraging the timeval struct specified
in [10] to capture the EPOCH time in microseconds. Initially, the code records
the current time before executing the matrix multiplication operation. Subse-
quently, after the completion of the multiplication, it captures the current time
once again. By subtracting the time before and after the multiplication, the code
effectively estimates the execution time of the matrix multiplication operation.

On the other hand, for the parallel code, we harness the CUDA runtime API
outlined in [3] to precisely time the execution. This process involves the utiliza-
tion of CUDA events to mark the start and end of the computation accurately.
Initially, two CUDA events, named start and stop, are created to denote the
beginning and end of the computation, respectively. The time is recorded just
before invoking the matrix multiplication computation on the GPU. Upon the
completion of the computation, the current time is recorded again. Synchroniza-
tion ensures that all GPU tasks are finalized before calculating the elapsed time
between the start and stop events. Finally, the elapsed time in milliseconds is
obtained, and multiplied by 1000 to obtain the duration in microseconds.

6 Methodology
6.1 Testing Environment (Cluster)

All but two of the tests were conducted on the Lonestar6 cluster at the Texas
Advanced Computing Center (TACC). The reason for this will be discussed later
in this section.

The following specifications are taken from [5]. Lonestar6 boasts a powerful
compute infrastructure with 560 compute nodes, each offering 5 TFlops of peak
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performance. Each node is equipped with two AMD EPYC 7763 64-core pro-
cessors (“Milan”), providing a total of 128 cores per node across two sockets.
The processors operate at a base clock rate of 2.45 GHz, which can boost up to
3.5 GHz for enhanced performance. Additionally, each node is outfitted with 256
GB of DDR4 memory, ensuring ample capacity for demanding computational
tasks. The cache hierarchy includes a 32KB L1 data cache per core, 512KB L2
cache per core, and 32 MB L3 cache per core complex, with a total of 256 MB
L3 cache per node [5].

The GPU nodes on Lonestar6 are particularly noteworthy, featuring 84 A100
GPU nodes and 4 H100 nodes. Each A100 GPU node hosts three NVIDIA A100
PCIE GPUs with 40 GB HBM2 memory each, while each H100 GPU node
supports two NVIDIA H100 PCIE GPUs with 80 GB HBM2e memory per GPU.
These GPUs offer impressive peak performance capabilities, with the A100 GPUs
delivering 9.7 TFlops in double precision and 312 TFlops in FP16 precision using
Tensor Cores, and the H1I00 GPUs boasting a peak performance of 26 TFlops
in double precision and 1513 TFlops in FP16 precision using Tensor Cores [6].

6.2 Methods

The goal of this research was to evaluate performance rather than numerical sta-
bility. We initialized test matrices with the whole number 4.0f, as whole numbers
can be precisely represented in the floating-point format. The tests were divided
into two major phases: validation and scale-up.

In the validation phase, we took the following steps to ensure mathematical
correctness: 1. Ran all versions (serial and parallel) of both algorithms (naive
and Strassen’s) with matrices of order 4 and recorded the output. 2. Computed
the product of the same matrices by hand. 3. Compared the answers from step 2
with the outputs from step 1. If the answers matched, we proceeded to the scale-
up phase; if not, we made necessary adjustments to the code until the answers
were correct.

In the scale-up phase, we ran and timed all versions of both algorithms with
square matrices of orders 512, 2048, 8192, and 32768. These tests were further
divided into serial and parallel. For the serial tests, we executed the code for
both algorithms with each data size.

The tests were submitted as jobs to the ‘normal’ queue on Lonestar6 to
run on one of the CPU nodes with a maximum job duration of 48 h. However,
the serial versions of both the naive and Strassen’s algorithms required more
time to process matrices of order 32768. Consequently, we had to transfer these
specific computations to a local computer. As a result, two of our tests were not
conducted on the cluster, exceeding its computational constraints, which led to
an anomaly in our results.

All parallel tests were successfully executed on the “gpu-al00” queue of Lon-
estar6. Each problem size was analyzed using multiple square computational grid
sizes, starting with a 32 x 32 grid and increasing by a factor of 4 in each dimen-
sion until the grid size matched the problem size. At this point, each thread
was assigned to a single data element of the output matrix, and we did not
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increase the number of threads further to avoid performance degradation from
idle threads.

To provide additional validation, we summed the product matrix after each
run of both algorithms and compared the sums for matching data sizes to ensure
their equality. This approach was feasible because numerical stability was assured
through careful initialization.

For all data sizes and thread sizes, we recorded the runtimes in a spreadsheet
and analyzed the performance.

6.3 Test Environment (Local Computer)

The local computer is equipped with a 64-bit Ubuntu 16.04 LTS operating sys-
tem, running on an IntelXeon® Xeon® CPU E5-1607V4. This processor, belong-
ing to the Intel® Xeon® Processor E5 v4 Family, boasts a 14 nm lithography and
is specifically tailored for server applications. Featuring 4 cores and 4 threads,
it operates at a base frequency of 3.10 GHz and incorporates a 10 MB cache.
Sporting a Thermal Design Power (TDP) of 140 W, it was initially released in
Q2’16, although it has since been discontinued. It supports a maximum memory
size of 1.5 TB and is compatible with DDR4 memory types, including 1600,
1866, and 2133. With 4 memory channels and a peak memory bandwidth of
68 GB/s, it facilitates Error-Correcting Code (ECC) memory and boasts 46-bit
Physical Address Extensions. Employing FCLGA2011 sockets, it is tailored for
single-socket (1S) configurations and offers a maximum of 40 PCI Express lanes.
Additionally, it incorporates Intel® Transactional Synchronization Extensions,
supports a 64-bit instruction set, and extends its capabilities with Intel® AVX2
instruction set extensions. Furthermore, it includes an array of advanced tech-
nologies such as Intel® AES New Instructions, Secure Key, Intel® OS Guard,
and Execute Disable Bit, bolstering its security and reliability features [9].

7 Results and Discussion

Table1 and Table 2 present the serial and parallel execution times for both
matrix multiplication approaches, naive and Strassen. For both tables the results
are in seconds.

The second column of Table 2 shows the square size of the CUDA compu-
tational grid, e.g., 512 means that the computational grid is constituted by a
512 x 512 two dimensional logical distribution of the CUDA threads, this means
a total of 262144 threads for this case.

A CUDA computational grid is composed of threads that are organized into
blocks. Each block can contain a maximum of 1024 threads. It’s important to
note that the maximum number of threads per block does not correspond to the
dimensions of the grid. Instead, the grid dimensions are determined by the total
number of threads distributed across blocks, taking into account the organization
along the logical x-axis and y-axis.
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Table 1. Serial Runtimes in Seconds

Square Matrices Dimensions/Naive Strassen
512 0.506 0.482

2048 36.601 34.610
8192 6149.945 |3351.459
32768 528946.638|727212.050

Table 2. Parallel Runtimes in Seconds

Square Matrices Dimensions|Square GPU Grid Dimensions|Naive Strassen
512 32 0.315 0.184
128 0.029 0.025
512 0.008 0.017
2048 32 17.707  |5.807
128 1.104 0.531
512 0.368 0.178
2048 0.332 0.173
8192 32 1135.050 [359.166
128 73.373 23.311
512 17.215 4.974
2048 14.472 3.962
8192 14.859  [3.953
32768 32 76259.287|22971.441
128 4792.818 |1436.204
512 1994.226 (285.446
2048 1026.350 |275.510
8192 979.290 [219.480
32768 995.637 |222.450

Figures1, 2 and 3 are generated from the acquired data, which is shown in

Table 1 and 2.

For the analysis, square matrices of orders 512, 2048, 8192, and 32768 were

91

considered. The matrices were categorized into four different groups: small (512),
medium (2048, 8192), and large (32768). These problem sizes and their corre-
sponding categories represent the x-axis of Figs. 1, 2 and 3.

The top-right section of Figs. 1, 2 and 3 shows a legend with values of 1, 32,
128, 512, 2048, 8192, and 32768. These numbers make reference to the dimensions
of the square CUDA computational grid used to process a given problem size,

e.g., 128 in the legend indicates that the CUDA computational grid in charge

of processing a given problem size will use a logical square layout of 128 x 128
threads, this means a total of 16384 participant CUDA threads.
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7.1 Speedup

Figure 1 shows the speedup achieved by employing the naive algorithm across
various data sizes and computational grid configurations. Remember, speedup
compares CPU to GPU performance. As illustrated in Fig. 1, for smaller data
sizes (512 and 2048), the speedup increases as the thread count (size of the
computational grid) increases, reaching a maximum of 62.5 (indicating that the
GPU performed the algorithm 62.5 times faster than the CPU) for 512 and
110.3 for 2048. This demonstrates a directly proportional relationship between
the number of threads and the speedup achieved for these smaller data sizes.

For larger data sizes (8192 and 32768), the speedup significantly increases
with thread size, achieving a maximum of 424.9 for 8192 and 540.1 for 32768.
However, there is a noticeable reduction in speedup on the last (rightmost)
bar for these data sizes. At this point, the thread count equals the large data
size, which likely causes congestion in the GPU, thereby negatively impacting
performance.

Naive Algorithm

600.0 m:
n 32
B 128
512
400.0 W 2048
B 8192
= 32768
2 O
v
v
o
w
200.0
0.0 a N I H ’H
Small(512) Medium(2048) Medium(8192) Large(32768)

Fig. 1. Speedup of Naive Algorithm

Figure 2 illustrates the remarkable speedup achieved through the implemen-
tation of Strassen’s algorithm across various data sizes and computational grid
configurations. A trend similar to that of the naive algorithm’s speedup is
observed. As the thread count increases, the speedup rises for smaller matri-
ces and continues to do so for larger matrices until the thread count matches the
data size. A significantly higher speedup was observed across all data sizes start-
ing from 2048, with the most notable performance at 32768, achieving a speedup
of 3313.3 using a 8192 order computational grid. This indicates that the GPU
significantly accelerates Strassen’s algorithm relative to the naive algorithm-a
surprising result given the additional operations (copy, add, multiply, slice, com-
bine) involved in the implementation of Strassen’s method.
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Strassen Algorithm
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Fig. 2. Speedup of Strassen’s Algorithm

7.2 Naive-Strassen Speedup Ratio (NSSR)

The Naive-Strassen Speedup Ratio (NSSR) depicted in Fig. 3 provides a direct
comparison of the performance between Strassen’s algorithm and the naive app-
roach across various data sizes and thread counts. In the serial execution (single
thread), there is a noticeable performance increase up to matrices of order 8192,
followed by a decline at order 32768. This reduction in performance is likely
due to the change in computing machines, necessitated by the computational
constraints of Lonestar6, as discussed in Sect. 6.2.

For the parallel analysis of smaller data sizes (512 and 2048), Strassen’s
algorithm initially outperforms the naive method when using a computational
grid of order 32, but its performance steadily decreases as the grid size increases.
Conversely, for the larger data sizes, there is a generally steady increase in NSSR
as the thread size increases. An interesting observation in data sizes 2048 and
32768 is the presence of standout high bars, indicating a potentially optimal
configuration. Further investigation revealed that at these points, the difference
between the data size and the computational grid size is a factor of 64 in both
dimensions, suggesting an optimal grid configuration for Strassen’s algorithm
to outperform the naive method. Additional tests with other data sizes were
conducted to verify this observation, but no consistent trend was found across
the other data sizes.
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Naive/Strassen Speed-Up
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Fig. 3. Naive-Strassen Speedup Ratio (NSSR)

8 Conclusions
8.1 Algorithmic Insights

The Naive-Strassen Speedup Ratio (NSSR) offers a clear comparison between
Strassen’s algorithm and the naive approach across various data and thread
sizes. Strassen’s algorithm, despite an initial performance dip, consistently out-
performs the naive method, particularly with larger data sizes. For instance,
Strassen’s method multiplies matrices of order 32,768 approximately 6.99 times
faster than the naive method. This underscores the potential benefits of adopting
Strassen’s method more widely. However, Strassen’s method involves trade-offs
that may impact its practicality. For instance, it is less suitable in systems with
limited memory or for matrix multiplication by hand.

8.2 Architectural

Both Strassen’s algorithm and the naive approach achieve significant speedups
across various data sizes, with the GPU accelerating Strassen’s algorithm more
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effectively than the naive method. The maximum speedup of 540.1 for the naive
method and 3313.3 for Strassen’s method highlights the value of parallelizing
algorithms, particularly matrix multiplication. This underscores the importance
of leveraging GPU resources to optimize performance in algorithmic implementa-
tions like neural networks, where improving small but computationally intensive
operations, such as matrix multiplication, guarantees substantial reductions in
processing time.

Additionally, our analysis reveals a sublinear speedup for both algorithms,
where performance initially increases sharply but levels off as the thread count
matches the data size. This suggests bottlenecks not only within the paralleliza-
tion strategy but also in the hardware. These results call for a closer examination
of the underlying factors from an algorithmic standpoint and provide valuable
insights for future optimizations and enhancements, some of which are outlined
in the next subsection.

8.3 Future Work

In extending this project, the primary focus will be on evaluating the perfor-
mance and possibly identifying the optimal implementation of the Multi-level
Strassen’s Algorithm. The aim is to determine whether a universal approach
exists for the number of recursive steps or if this varies with data size. Addition-
ally, the project will seek to optimize space complexity and investigate numerical
stability. As mentioned in Sect. 5, multiple kernels are launched multiple times,
resulting in significant overhead from kernel launches. This overhead becomes
more pronounced with an increasing number of recursive steps. Techniques such
as kernel fusion will be explored to mitigate this overhead.
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Abstract. We examine the impact of manual elimination of thread
divergence in GPU code through removal of all branches using a flatten-
ing technique. The goal is to investigate the necessity of manual mitiga-
tion of thread divergence on GPU, compared with automated, modern
compiler optimization and architectural improvements. We apply our
previously presented flattening technique called Algorithm Flattening
(AF), which eliminates all branches, producing divergence-free code with
increased ILP at the expense of minor to moderate increased instruction
overhead. We observe the effect of said optimization on kernel perfor-
mance across historical architectures and compilers, up to recent offer-
ings. We theorize that modern GPU improvements will eventually elim-
inate the need for programmer intervention of thread divergence coding
issues for GPU, although further study is necessary.

Keywords: Thread Divergence - General Purpose GPU - High
Performance Computing - Algorithm Flattening - Branch Elimination

1 Introduction

GPU performance suffers in the presence of thread divergence due to branches.
Optimizations need to be applied to GPU code in order to mitigate said diver-
gence and improve performance. But how much of this optimization needs to
be applied manually by the programmer. GPUs have come a long way in recent
years in terms of hardware and compiler design. Given that GPU design still
contains some variation of SIMD constraints, it would follow that hardware and
compiler optimization for mitigating thread divergence due to branches would
be a priority for those working with the design and workflow optimization of
GPUs.

In this work, we intend to do a preliminary study of how far GPUs have
come in terms of hardware and compiler optimizations to mitigate the effect
that branched code has on thread divergence, without special coding techniques
or optimizations that the programmer must implement. Branch Divergence can
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severely degrade GPGPU performance [1]. Although many methods have been
proposed to mitigate this problem, highly divergent branch-based code still limits
how much these methods can help. Our first task in this work is to demonstrate
how to modify divergent source code in order to create divergent free code.

Historically, branches cause performance issues in many systems, which is
why a great deal of work has been done to try and mitigate their effects. Unlike
CPU multiprocessors, GPUs are massively parallel with thousands of processing
elements. This huge number of processors still has to fit on chip, which is why
comprises must be made in the independence of individual processors on a GPU.
Some processors share instructions, and with divergence in instruction paths,
some processors in a group of instruction tied processors will be idle at times.

We previously presented an extreme de-optimization for CPU [2] which com-
pletely eliminates branches, and historically resulted in a significant optimization
for general purpose GPU applications, especially applications which had previ-
ously not been suitable for GPU implementation due to thread divergence. Our
optimization removes all branches from code blocks and replaces each block with
a reduced equation. The equation evaluates all branches simultaneously using
arithmetic operations. We call our method Algorithm Flattening (AF). Use of
AF eliminates thread divergence.

Our second task in this work is to compare performance of un-optimized
CUDA code on NVIDIA GPUs, with that of CUDA code with all branches
eliminated. Our intention is to see if modern hardware and compiler techniques
have overtaken such manual optimization, and if performance issues with thread
divergence do to branched code are mostly handled by such integrated optimiza-
tion.

The remainder of this work is organized as follows. Section 2 presents back-
ground information on GPU architecture and considerations, and related work
in the area of branch elimination. This section details some work in thread diver-
gence which has been potentially been considered during GPU development and
optimization. Our algorithm for branch elimination is detailed in Sect. 3. Much
of this description comes from our previous paper [2]. Results are presented in
Sect. 4 and the paper is concluded in Sect. 5.

2 Discussion of Thread Divergence Issues
and Optimization

Modern GPUs are essentially massively parallel multiprocessors. Although these
multiprocessors are becoming less and less limited in the way they can process
data, they still tend to use some variant of an SIMD arrangement [3,4]. The
limitations of these arrangements have been mitigated in many ways in recent
years. However, there is typically still some sort of constraints on the way groups
of processors can access instructions, such that not all processors can execute
different instructions. This is simply a necessity of packing so many processors
on chip. This works well with many applications, especially when there is little
divergence. It follows that if processors share instructions in some way, but can
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access different data, then branches will affect performance of these processors,
as some processors may not be able to execute code on their given data, based on
the flow of instructions according to decisions made by certain branched code.

The following is a study of techniques which can reduce the impact of
branches. Some of these techniques are more general and suitable for any plat-
form, while others are specifically designed for SIMD. The reason for this study
is two-fold. First, we wish to present some background on branches and how
they affect code execution on various platforms. Second, we want to show the
myriad of work which, much of which has been integrated into GPU design and
work-flow. In other words, GPU hardware and compilers have been changed to
include many of these optimizations at various levels.

Hijma et al. [5] present an excellent summary of branch optimization tech-
niques on GPU, which includes our previously presented method called Algo-
rithm Flattening. Since this method completely eliminates thread divergence on
GPU, we plan to use this method to compare performance against raw GPU
code. Hijma et al. present a section on branching issues, and much of this pre-
sentation has been considered by the GPU industry at this point.

Some techniques involve analyzing [1,6] and merging conditions [7-9],
reordering conditions [10], replicating code or code addition [11], factoring code
[12], distributing branch code [13-15], hardware based predicated execution
[16,17], and warp scheduling [18,19].

Anido et al. [20] reduce the number of branches executed using Guarded
Instructions and Pseudo Branches, which selectively execute instructions based
on register values. Pseudo Branch instructions require an additional tag that
allows control to be skipped to a destination point, so the SIMD device must
have the appropriate hardware. Carrillo et al. [13] describe two optimizations
for general purpose GPU using code splitting. Loop Splitting takes a loop and
breaks it into two or more smaller loops. Branch Splitting involves breaking seg-
ments of a branch off into separate kernels. The purpose of splitting code is to
reduce the hardware load. For data-dependent loops, Sarkar and Mitra [15] split
code by discovering if a significant pattern exists in the control flow over a period
of iterations. Branch behavior determines where code is split and how many ker-
nels result. Han and Abdelrahman [12] present an optimization method known
as Iteration Delaying. Similar to Guarded Instructions and Branch Splitting,
segments of branches are gated. Unlike the other methods, Iteration Delaying
delays segments from executing, so that similar segments are executed together.

Code Replication, an optimization technique described by Mueller and Whal-
ley [11], simplifies control flow by replicating segments of code. Han and Abdel-
rahman [12] also present an optimization method known as Branch Distribution
in which common code between branches is replicated outside of the branches. In
Branch Distribution and Code Replication, new code is added which creates an
optimization for SIMD but a de-optimization for CPU. However, these methods
simply reduce the time penalty due to thread divergence, but do not actually
eliminate branches.
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Chakroun et al. [21] reduce thread divergence in a branch and bound algo-
rithm accelerated on a GPU. As part of their method, they remove several single
level if-else statements through a method equivalent to « (Eq. (1)) for case n=0
only.

Other methods of SIMD optimization such as hardware Predicated Execu-
tion [16] can be used to reduce the number of branch operations executed in
a program, but require run time intervention. Reissmann et al. [17] implement
a predicated branch restructuring algorithm for unstructured code. Yu et al.
[19] redesigns PDOM stack hardware and implements a multi-level scheduling
protocol to run more warps at once and re-converge threads earlier. Rogers et
al. [18] offer a hardware solution that profiles memory accesses and dynamically
reschedules warps to reduce the frequency of re-referencing data. Rogers et al.
[18] note that their method is not intended to solve divergence but is a viable
option in the ongoing effort to optimize GPU code.

Fung et al. [14] attempt to improve the efficiency of how branches are exe-
cuted by regrouping threads. Liang et al. [22] demonstrate that performance
gains from thread regrouping is more accurately measured with thread model-
ing and basic block vector metrics. This in-depth analysis of thread-level control
flow divergence can guide optimization strategies. In support of general purpose
GPU optimization techniques, Yu et al. [23] compare threads by calculating
the degree of similarity in their execution paths and represent these values on
a grayscale. Yu et al. [23] visualize this evaluation as a graphed matrix where
thread divergence is easily identified from the variability in tones.

Lin et al. [24] assess divergence at run time and implement a thread-data
remapping algorithm to reduce global memory accesses. Thread-data remap-
ping avoids source code optimization and does not eliminate branches. For spe-
cific programs where random selection determines control flow, like the Fractal
Flames algorithm, Schied et al. [25] propose randomizing the data instead to
achieve intra-warp synchronicity, thus eliminating branches. Huang and Yang
[26] redesign parallel loops so that idle threads can execute ensuing iterations
tasked to non-idle threads.

Branch fusion [1] optimizes code by “weaving” together divergent branches
with similarities. Multiple branches can also be merged together through Condi-
tional Merging [7-9], reducing the total number of paths. This technique trades
precision for performance and is recommended for error-tolerant applications [9].
Reordering of branches may also result in increased performance in the average
case [10]. Branch reordering is a general optimization suitable for CPU or GPU
implementation.

Grigorian and Reinman [27] offer a neural network solution that automati-
cally identifies divergent kernels, trains Artificial Neural Networks, and approx-
imates target kernels with branch-less code. Although branches are eliminated,
this method can be intensive and produce only approximate results, so it is not
suitable for compiler implementation.

We have previously proposed a method of optimization call Algorithm Flat-
tening, which completely eliminates divergent code [2], and therefore all over-
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head associated with handling branches and divergent threads. The goal from
here on out in this paper is to implement this optimization, which completely
eliminates thread divergence, and compare performance against compiler only
optimized code o various architectures. This will give us insight into the extent
to which modern GPU architectures and compilers are capable of addressing
thread divergence without developer interference.

3 Manual Intervention for Complete Thread Divergence
Elimination

By using a method called Algorithm Flattening (AF), we are able to replace
branch statements with equivalent mathematical expressions that GPUs can
process more efficiently. As a preview of how AF works, observe Eq. 2, which is
the flattened version of the code at the beginning of Sect. 3.4.

3.1 Applying Preliminary AF to Simple Branches

The basic idea behind Algorithm Flattening is to represent an entire branch with
a mathematical expression, beginning with a simple non-optimized flattening
process. A basic flattened equation results from the summation of the product
of each assignment and its corresponding evaluated expression. The result is that
one expression can be executed that represents the whole branch. For example,
the following if statement:

if(e) {x=p;}
can be represented by the expression:
x=(e)p+ (le)x

where e represents the expression being evaluated, p is the assignment value
if e is true, and x is the assignment value when e is false. When the expression
is evaluated two outputs are possible; x = p or x is unchanged (x = x).

if e is true,
z=(p+(0)z — o =p
and if e is false,
r=0p+ )z —z==x

More complex branches such as if-else, nested if-else statements and chains,
switches, etc., can also be generalized. This if-else:

if(e) {x=p;} else {x=¢q;}

becomes:

z=(e)p+ (le)g
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The flattening of a nested if-else statement into a mathematical expression
requires substitution. For example, the nested if-else condition described below:

if(e1) {
if(e2) {x=p;} else {x=gq;}
} else {
T =r;
¥
can be flattened by first splitting the code into two distinct parts. The first
part is the inner or nested if-else condition. Once we convert the entire nested
part of the code, we can treat it as an outcome for the parent conditional. Then
flattening the remaining parent conditional is the same process as before, with
the added step of substituting in the nested conditional as one of the parent
conditional’s specific outcomes. This can of course be automated recursively.
The AF result is as follows:

x =el((e2)p+ (le2)q) + (lel)r

3.2 Generalized Preliminary AF for All Branches (A Starting
Point)

n

azzxz"%:(IO'yoJrIl'ler---In'yn)
i=0

e (1)
= | |mi-yi=(wo-yo-xl-yl--.-xn-yn)
1=0

wherey; = a V [ V assigned_value

Equation 1 shows the non-optimized and unreduced, generalized format for
performing AF on any code block. The finalized AF equation is either a sum or
product with other sums and products embedded. A pseudo-algebraic reduction,
as well as other optimizations make AF much more efficient as shown shortly.

3.3 Optimized and Reduced AF

The most common instruction in an AF reduced equation is multiply-add. AF
also reduces instructions because of the multiply-add operation within GPUs
which allows multiple parts of the expression to be evaluated in one cycle. Also,
flattened expressions can reduce instructions by omitting redundant variable
assignments, namely assignment to zero. Algebraic reduction is another method
to further reduce an AF expression. Other possibilities for reduction exist in
many cases. For example, it is known that:

(e)a+ (le)b = e(a—b)+b

Which is often reduced further if constants, multiples or other factors reduce
algebraically. Also, branch reordering can be used to reduce AF equations. This is
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in contrast to standard forms of branch reordering which concentrate on reducing
the average path through branched code. This intuitive kind of optimization
makes no difference for the performance of an AF equation. Reordering to reduce
AF involves choosing an order which allows an AF equation to fully reduce.
Branch reordering, which in an if-else statement actually involves inverting the
conditional expression, can be represented as follows:

efla—=b)+b =le(b—a)+a

It should be noted that reordering and inversion can often be achieved alge-
braically without knowing the above reordering equality by recognizing any vari-
ation of the following equivalence:

—e+1 =le

This is demonstrated in the first form of reduction in Sect. 3.4.

3.4 Further Complexities

The following is a more complex conditional code block derived from [28]:
if(n==0) {z =qa;}
else if(n==1) {x=a+1;}
else if(n==2) {

if(m==1) {z=0b}
else {r=>b+1;}

else {xr =0;}

The first step of conversion is to identify the nested conditionals as follows:
iftm==1){z="0b}else{r=0+1;}
Initial flattening uses Eq. 1:
r=(m==1)-b+(m#1)-(b+1)
Which is reduced as follows using [e(a-b)+b]:
r=m==1)-b—(b+1)+b+1=

=(m==1)-(-1)+b+1=
=[-(m==1)+1]+b= Note: -e + 1= le
r=[I((m==1)]+b=
r=(m#1)+b

This is simplified quicker with branch reordering using [/e(b-a)+a] rather than
[e(a-b)+D]:

r=m#1)-(b+1-b)+b=

r=(m#1)-(1)+b=
r=(m#1)+b
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After nested control flow is flattened, parent conditionals are flattened while
substituting the converted nested conditional for the parent conditional’s out-

come. This leads to the basic AF equation: =z = (n==0)-a+ (n ==
D-(a+1)+(n==2).
((m#1) +1)

Which is simplified to Eq. 2.

z =!n>>1)-(n+a)+(n==2)-((m#1)+Db) (2)

OBranchless @ Original

45
iE
i ] ]

INTELi5 CPU Northern Island Southern Island NVIDIA Turing

Fig. 1. Relative execution time for experiment code. Branched version is compared
to the flattened, branch-less version on four different processors. The processors and
compiler scenarios are described in Sect. 4.

4 Results

The following four scenarios are used to test the effect of programmatic elimina-
tion of branches on thread divergence and performance of modern GPU archi-
tectures and compilers. The test code for all scenarios is the branched code
outlined in Sect.3.4 and the flattened code shown in Eq.2. We use this code
because we have legacy results for this on older GPU/compiler combinations.
It would be difficult to set up these experiments again due to the difficulty of
installing the proper support systems. It is also a good example of an efficient
complete flattening of branches that does not introduce too much additional
instruction overhead.

Figure 1 shows the relative performance for each scenario. Each uses a spe-
cific processor and set of compile tools as detailed below. In each scenario, the
branched code and flattened, branch-less code are both executed on the proces-
sor. Relative performance of the kernel is used so that each scenario shows a
percentage improvement for simplicity, and so that scenarios can be easily com-
pared to each other. In this work we will simply observe kernel execution time.
In future work, we will thoroughly examine compiler and architectural issues
affecting performance.
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4.1 Core I5 Architecture CPU Scenario

This scenario utilizes an Intel I5 CPU and code written in C. This scenario is
designed to clarify that complete elimination of all branches through a flattening
algorithm such as ours is a de-optimization for CPU. Through branch removal
and code flattening, ILP is increased and branches are eliminated. However, the
trade-off is typically that the overall instruction count increases from the average
case. If these instructions are executed linearly, then overall execution time will
increase.

According to Fig. 1, the overall execution time for the test code running on
CPU is doubled when branches are removed with the flattening method. This is
in line with the instruction count vs. ILP trade-off aforementioned. The increased
instruction count has a limited effect on GPU compared to CPU, as the increased
ILP and branch removal have a greater effect on performance.

4.2 Northern Island Architecture GPU Scenario

This scenario utilizes an AMD GPU. This is a slightly older GPU running on
the Northern Island architecture from AMD. The code for this is written in
OpenCL.

According to Fig.1, the overall execution time of the flattened, branch-less
code is approximately 33% of the un-optimized code. The Northern Island archi-
tecture, along with the older OpenCL compiler used for this scenario are not
implementing any similar optimization at the compiler or hardware level.

The Northern Island Architecture uses one set of sixteen, four-way or five
way VLIW arranged processing elements. The VLIW processors of the Northern
Island architecture benefit more from the instruction level parallelism (ILP)
introduced by the Algorithm Flattening optimization.

4.3 Southern Island Architecture GPU Scenario

This scenario utilizes an AMD GPU. This is a GPU running on the Southern
Island architecture from AMD. This is a newer architecture than the previous
scenario. The code for this is written in OpenCL.

According to Fig. 1, the overall execution time of the flattened, branch-less
code is approximately 50% of the un-optimized code. The Southern Island archi-
tecture, along with the OpenCL compiler used for this scenario, clearly benefit
from manual removal of branches.

Even without the VLIW layout of the vector processors in this architecture,
we still see an improvement in the performance using the manually optimized
code, which eliminates thread divergence pre-compile. Although admittedly, this
architecture cannot take advantage as much of the increased ILP. This is because
The Southern Island Architecture uses four sets of sixteen SIMD arranged pro-
cessing elements per multiprocessor, whereas the Northern Island Architecture
uses one set of sixteen, four-way or five way VLIW arranged processing elements.
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4.4 Turing Architecture GPU Scenario

This scenario utilizes an NVIDIA GPU using the Turing architecture. The code
is written using CUDA C.

According to Fig. 1, the overall execution time of the flattened, branch-less
code is nearly identical to the original branched code. An initial look at this result
seems to indicate that the newer architecture, coupled with the more advanced
compiler version makes manual mitigation of thread divergence less necessary.

There could be various reasons that we do not see a performance improvement
from manually eliminating branches, and therefore eliminating thread divergence
before code compilation. This could be a smarter compiler, or it could be due to
the optimizations put in place in the hardware, as NVIDIA has been addressing
thread divergence in their architectures for years.

This more or less answers our question as to whether or not manual removal of
branches is always a performance boost for GPUs. We have identified a scenario
where it does not improve performance. But there are many questions that
remain about this happens that we hope to answer in our future work.

5 Conclusion

In this preliminary study, we have applied our flattening technique to GPU
code to address thread divergence through program pre-processing. We have
observed that modern GPU improvements have changed the impact of such
manual intervention on GPU performance.

Clearly, modern built-in optimizations are helpful for mitigating thread diver-
gence due to branches. The last results scenario using the Turing architecture
demonstrates this. In our future work, we will investigate the compiled code
and determine which factors of modern optimization are contributing to this
improvement.
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Abstract. High-performance architectures have complex features so
that reliable production of parallel software is beyond the reach of many
Computer Science graduates. Compilers alone cannot guarantee the high-
est performance and multiple APIs with complex performance features
are difficult to master. As a first step towards more comprehensive solu-
tions we are building key elements of a pre-compiler system that will
automatically produce predictable, scalable and high-performance code
from declarative tensor expressions. In this paper we summarize and ana-
lyze a large set of timing experiments of matrix multiplication variants
that are mapped to vectorized and multithread code. The analysis cov-
ers two high-end target architectures and exhaust a whole space of code,
compiler, pragma and parallelism parameters. Our analysis shows how
the best choice of parameters is produced from a small set of tests that
can converge in a matter of seconds and then predict performance of
larger instances to within 25% or much less. Inefficient choices of param-
eters is also shown to be reliably predicted from small tests, so that our
design for a precompiler is guaranteed to be a realistic and portable tool.
The generality of our Mathematics of Arrays tensor algebra, and very
broad applicability of tensor operations (signal processing, scientific com-
puting, Al etc.) supports our claim that these experiments and design
can be generalized to a general purpose parallel programming tool.

Keywords: Software Tools - Environments - Parallel - Distributed
Platforms - Performance Analysis + Evaluation + Prediction

1 Introduction

The MoA (Mathematics of Arrays) algebra [3,4,6,7] is a unifying formalism
for expressing arrays/tensors of any dimension and field operations on them. It
replaces the figures and pointwise expressions of linear algebra textbooks with
combinators. Its transformations allow the formal and correct exploration of all
symetries of a given field operation on arrays, thus defining all potential trans-
formations and compilations of linear-algebra algorithms. Our key motivation is
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to allow future users to concentrate on a single declarative formalism and use
automatic or semi-automatic tools to leverage without special training and waste
of time the complex combinations of algorithm variant, compiler flags, directives,
pragmas and other features of HPC practice.

DNF (denotational normal form)
side

ONF (operational normal form)
side

rank, delta (dimensionality) ‘

tau, size, pi

Rho, iota

rav (flatten)

’ Shape, vector, array, scalar, empty array ‘

Fig. 1. MoA operators

The core hypothesis is that (a) exploring this space need only be based on
MoA operators (Fig. 1), array shapes and a subset of compilation + architecture
features and (b) parallel architectures are themselves arrays of vector-, memory-
and computational units so that the best possible performance can be found by
reshaping the dataflow dag with (some of) those dimensions.

In the work presented here we have chosen to concentrate on algorithmic-
and architectural foundations: dense matrix multiplication, vectorization and
(single-node) SMP multi-threaded parallelism. We hope to convince the reader
of the interest of such a balanced approach that is a form of “portable and
scalable parallel no-coding” yet can use a very general source language and can
predictably yield relatively high performance.

2 From Arrays/tensors to C Code

The restriction to matrix multiplication (MM) is acceptable because the oper-
ation can be generalized to include the Kronecker Product (KP), Hadamard
Product (HP), and scalar operations [2] all core for many important algorithms.

For our given initial “algorithm” (array expression) we produce algorithm
“variants” by algebraic transforms in MoA and each of them corresponds to a set
of C for-loops. The variants are produced from the naive algorithm by so-called
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dimension lifting which is a generalized form of row- and column-blocking for
matrix algorithms as used for example in the Bisseling-McColl BSP algorithms
[1]. Our transformation is currently not mechanized but will be in the future.

Define A as an m x n matrix, B as n x p, and C as m x p. Let the following
notation denote the 2-d Matrix Multiplication. C = A e B. In MoA notation,
the shapes are:

pA = (m, n) pB = (n, p) pC = (m, p) (1)

Next, define the valid indices of the matrices:
Vi,j,k9{0§i<m 0<j<p 0<k<n 2)
C = A ¢ B is defined by the MoA psi expression, given the shapes above.

<i>PC = +req( <i, k> A x (< k>9YB)) (3)

When reduced to its so-called denotational normal form (DNF), 7,..,, is applied
thus producing the MoA Operational Normal Form (ONF) yielding the following
generic “program” where arrays are mapped to 1D row-major order:

n—1

Cl(i x p)+ 4] :== > Al(i x n) + k] x B[(k x p) +j] (4)
k=0

The concept of dimension-lifting is defined by partitioning one or more
dimensions into two levels. That is, given any shape s, s.t. 7s = §¢. The number
of components in dimension i, i.e. s; is partitioned into np parts, thus defining
new shapes s; =< np, s;/np > or < s;/np, np >. This means that every loop
in the ONF can be partitioned into one or more loops to match components
of the architecture chosen. Begin by partitioning the rows loop of A into a
two parts: one loop that indexes the processors and the other loop defines how
many rows are done sequentially within that processor. The next step is to map
these loops to OpenMP menmonics that support the theoretical partitioning in a
general way. Also it is essential that the mnemonics chosen provide performance
scalability across architectures. Once that is done, the columns loop of B and C
are partitioned into two loops, one that defines the vector register length, and
the other, how many components of the columns must be loaded into the vector
register. Figure 2 shows the sequential program and Fig. 3 the same dimension-
lifted over rows.

Exploring a whole set of dimension-lifted forms, so-called binary transposes
and loop interchanges, we have used OpenMP directives and SSE instructions to
turn them into different parallel algorithm variants. The rest of the paper sum-
marizes how we systematically explored the performance of all variants and their
implementations, then how this can lead to a tractable static search problem.

Identifying pragmas and C flags that consistently worked across compilers
and machines was a challenge. Although there were numerous flags, and OpenMP
directives, most turned out to be merely “suggestions”, hence mostly useless.



112 L. Mullin and G. Hains

#include <stdio.h>
#include <sys/time.h>
void mm(double *C, double *A, double *B,
int m, int p, int n)
int i,7j,sigma;
;i<m;i++)
{for (sigma=0; sigma<n;
{for (J=0;j<p;j++)
{
Clij+i*pl=C[j+i*p]
+A[ (i*n)+sigmal *B[ (sigma * p)+j];

for (i=
sigma++)

Fig.2. mm.c

3 Timing Experiments

Experiments were run using a single node of two machines provided by
Stony Brook University’s Ookami computer center: Fujitsu’s A64FX (in short
“Fujitsu”) and Intel’s Skylake (in short “Intel”). The A64FX was developed
by Riken and Fujitsu for the Japanese path to exascale computing. Skylake,
is Intel’s codename for its 6th generation Core microprocessors. Skylake is a
microarchitecture redesign of 14 nm manufacturing technology. More details:

Characteristics | Fujitsu A64FX | Intel Skylake
Architecture | Arm.2—A+SVE x86_64
CPUs (cores) 48 36
Threads/CPU 1 1

CPU MHz 2000MHz 1764.320MHz
L1 cache 64KB 32KB

We used three compilers: gee on both machines, and fee (Fujitsu C compiler)
and icc (Intel C compiler) on the A64FX and Skylake respectively. It is beyond
the scope of this paper to discuss all compilation-execution choices we made. We
rather show how automated optimization can make such issues invisible to the
impatient or untrained programmer.

Our timing experiments measured combinations of multi-threaded execution
and vectorization. One aspect of experiments was to use flags that were basically
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#include <stdio.h>
#include <sys/time.h>

void ip_rows (double *C, double *A, double *B,
int sizel, int sizer, int sizeres, int np, int shr0)
{
int i,3j,k,ip,sigma;
// for (i=0;i<sizel;i++)
for (k=0;k<np;k++)
{for (ip=0;ip<(sizel/np);ip++)
{for (sigma=0; sigma<shr0; sigma++)
{for (j=0;j<sizer;j++)
{
//Clj+i*sizer]=C[j+i*sizer]+A[ (i*shr0)+sigma] *B[ (sigma * sizer)+j];
C[j+(ip+(sizel/np) *k) *sizer]=C[j+ (ip+ (sizel/np) *k) *sizer]
+A[ ((ip+((sizel/np) *k)) *shr0)+sigmal *B[ (sigma * sizer)+j];
}

1}

Fig. 3. ip_rows.c

the same across platforms. Another set of experiments could identify what flags
to extend given the plethora of flags available on each compiler. We use, typically,
fast or O3 to vectorize, a flag to identify which architecture, a flag to identify
OpenMP. The only ones we used were prefetch and unroll. There would be a set
of experiments to identify what the best prefetch size should be and the amount
of loops to unroll, obviously related to the data and instruction cache sizes.

Building upon ideas of shapes and optimizing memory processor layouts [5],
blocks in Fujitsu experiments fit the L1 Cache (64KiB/core), or 48 by 48 dou-
bles. With two levels of memory we were able to predict speedups using vector
registers and multiple processors.

Matrices of sizes up to 5000 x 5000 were used and nearly all combinations of
pragmas, threads-cores and algorithm variants were tried. A typical timing plot
is Fig. 4 that maps OpenMP acceleration vs number of cores. Some spikes were
observed but most curves were smooth as confirmed by the data analysis below.

4 Performance Tuning, Analysis

Despite some unexpected effects (such as gee being systematically faster than fec
on its own Fujitsu architecture), all static program and compilation parameters
had a monotonic effect on speed. If a discrete variable like the choice of algo-
rithm variant, then one of them systematically outperformed the others, and if a
numerical variable like the number of threads, then behaviour was almost com-
pletely monotonic. Observe however that the largest 5000 x 5000 matrix sizes is
an observed limit on our hardware nodes for scalability.
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Fig. 4. Scalable OpenMP for 2-48 cores

One global result is that gcc, surprisingly outperformed fcc on Fujitsu but
icc, as expected outperformed gece on Intel (Fig. 5). Our Fujitsu experiments were
often slower, which indicates that our C-code approach may not be sufficient to
leverage the A64FX’s peak rate. But this does not affect our conclusion: the
choice of compiler can be made from a small set of runs.

GFlops/s/core vs

compiler: Intel
Avg GFlops/s/core vs

compiler: Fujitsu
3,5

3 4
25

P 3
15 2

1
°'5 . 1

0 0 I

Fujitsu gce

gce icc

Fig. 5. Average speed vs compiler, Fujitsu/Intel

Then came the choice of fastest algorithm variant, which depends on the
architecture as seen in Fig.6. A row-wise approach performed systematically
better on Fujitsu, whereas for Intel the choice was more difficult, favoring a
large 48 x 48 square blocks dimension-lifting. In any case, choosing the algorithm
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GFlops/s/core vs
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Fig. 6. Speed of algorithm variants, Fujitsu/Intel

variant with best overall performance never led to a slower run, only possibly no
better than another algorithm variant.

We also analysed the “local” (per core) speed’s evolution with the growing
number of threads in a multicore execution. For each architecture that leads
to two curves or sets of points, “slow” ones from the slower algorithm vari-
ants and “fast” ones from the other. If we concentrate on the fast (upper)
curve, we observe as always an overhead for increased parallelism (synchro-
communication). For the Fujitsu runs the decrease in efficiency is lesser, about
25% at 48 cores while the faster Intel runs have larger relative overhead of about
47% at only 24 cores (Fig. 7).

GFlops/s/core vs GFlops/s/core
threads-cores: Fujitsu vs threads-cores: Intel
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Fig. 7. Parallel efficiency, Fujitsu/Intel.

That fits traditional quantitative understanding of parallel execution: faster
processor speeds make the cost of synchro-communication relatively higher. Most
important: it is relatively smooth and predictable.

5 Design for a Static Codegen Tool

Having tested all combinations of program and compilation parameters, and
observed that they all had a (almost always) monotonic effect on performance,
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it was possible to apply a naive steepest descent approach to select the best
parameter values. That is illustrated in Fig.8 for the Intel architecture, but
worked equally well for Fujitsu. Our final goal is the design of a code gener-
ation tool that would quickly and reliably select those parameters from a set
of (MoA-generated) algorithm variants, and expert-selected sets of compilation
directives, pragmas and the like. It is surely not realistic to expect the user of
such a tool to wait for hundreds of test runs to complete, even if their analysis
is straightforward. So it is necessary to drastically cut down on the search space
for that optimization.

Choosing static parameters (Intel) : [ piler ; subexpression elim./not ; algorithm variant, ; prefetching/not ]
Comparison Compiler Avg
vectorized Source code com-subex remv by hand | Prefetching | Threads | Avg Gflops/s | GFlops/s/core | statistics
icc Avg
Compiler? Y 4B/48B/ro 4 +/-
gce sdev
Comparison Compiler Avg
vectorized Source code com-subex remv by hand | Prefetching | Threads | Avg Gflops/s | GFlops/s/core
Y Avg
com-subex rem ? Y 4B/48B/ro icc 4 = +/-
N sdev
Comparison Compiler avs ]
vectorized [  Source code com-subex remv by hand | Prefetching | Threads | Avg Gflops/s | GFlops/s/core
24x24 blocks 5750 S
+/-31,08 +/-0,64
Avg
Source code ? \ 48x48 blocks | icc Y 1 +/-
= sdev
42,39 3,48
mm_rows
- +/- 20,05 +/-0,32
Avg
Comparison vectorized Source code Compller com-subex remv by hand | Prefetching | Threads | Avg Gflops/s | GFlops/s/core
6,
Y +/-0, AV
Prefetching? Y 48xa8 blocks | icc Y 4 +/-
N 75,38 ¥
+/- 34,69
Best static parameters : Intel [#

Acceleration| vectorized |  Source code Compiler | com-subex remv by hand | Prefetching

Best configuration Y 48x48 blocks icc Y Y

Fig. 8. Selection of best static parameters

This can be done as follows: 1. assume that compiler flags, pragmas come
in a small number and have few if not only two possible values 2. assume 2%
such parameter values exist, 3. observe that algorithm variants are also in small
numbers because the size of blocks and number of dimensions in the algorithm
are small, generating another small-dimensional space of combinations, assume
there are k' algorithm variants, 4. reduce the search space for the optimal number
of threads and scalability with data size, by observing that (until a hardware-
dependent limit like our 5000 x 5000 matrices) timing curves are not only smooth
but very predictable. As a result only a few test runs are necessary to extrapolate
along the dimension of threads-core and data size. If the above observations 1-4
are confirmed, then only about &’ * 2* test runs on small matrices can predict
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timing prediction MAPE (% error) vs timing prediction MAPE (% error) vs
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Fig. 9. Speed prediction error vs net Flop rate, Fujitsu/Intel.
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Fig. 10. Proposed system architecture

performance on all possible tests and thus allow the choice of optimal parameters
with that many speed tests. Given that our runs take in the order of dozens of
ms, that would mean no more than &’ x 2¥ x 100 ms (possibly much less than an
hour) plus some extremely fast sequential data analysis to produce the static
choice of optimal parameters and predict their effect on speed for larger runs.
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Since the proposed system will not systematically test all combinations of
algorithm variants and statics parameters, it will do so on a limited set of tests
and depend on their extrapolated performance prediction. To gain confidence in
the quality of this prediction, we tried curve fitting on all speed tests: for n x n
matrices and 3 (sometimes only 2 or 1) points we have extrapolated to a whole set
of 9-100 points on their runtime vs problem size curve. The quality of prediction
is then rather good with mean average percent errors less than 30% and often
less than 15% (Fig.9). This means that even the fastest runtime measurements
can be approximated to within less than 1/3, giving the user and static analysis
tool a very good estimate on which to base their choices of algorithm variant,
architecture and compilation parameters.

A preliminary design for our code generation tool is shown in Fig. 10.

6 Conclusions and Future Work

The vision behind this research is that of a system with which the application
scientist or engineer can use a functional subset of his/her favorite language and,
in so doing, have the ability to generate optimized code with very high produc-
tivity. The shapes of arrays, and sub-arrays (blocks) are assumed sufficient to
define the parallel operations, communications and their mapping to the parallel
architecture because, despite heterogeneous hardware, its structures are mostly
made of arrays of computation units. A summary of this approach could be
“mapping array operation parts to hardware array parts automatically, based
on size-shape information.”

We explore the central notion of predictable high performance for MoA-
generated code by an exploration of matrix-multiplication variants producing
vectorized and multi-threaded from “stereotyped” C code that is equivalent to
MoA declarative expressions: nested for-loops whose bounds are defined by the
arrays/blocks shapes and MoA operators.

Some dimensions of the problem are mostly predictable and easily extrap-
olated: scalability and amount of parallelism. Others appear unpredictable but
their small exploration space makes them tractable: choice of algorithm variant,
compiler flags, OpenMP pragmas etc. One key decision that we make in this
respect is not to treat the program as an enumerated dataflow dag. If that were
the case, our search problem would become intractable. Instead we observe that
parallel array programs are highly symmetric, and only explore their shape- and
dimension-induced variations.

The next steps in this research should determine whether our designs scale
to multiple nodes using MPI, to explore their behaviour on very large multicore
nodes (such as the 8 CPU Intel Cooper lake, 224 cores, 6To RAM SMP node
available at CRIANN, Normandy) and design an MPI, GPU adaptation of our
approach which is currently restricted to vectorization + multicore paralleliza-
tion. Then we will explore more matrix algorithm variants via Strassen schemes,
generalize to all MoA-expressible expressions and automate the process.
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Abstract. Attack graphs (AGs) are graphical tools to analyze the secu-
rity of computer networks. By connecting the exploitation of individual
vulnerabilities, AGs expose possible multi-step attacks against target
networks, allowing system administrators to take preventive measures to
enhance their network’s security. As powerful analytical tools, however,
AGs are both time- and memory-consuming to be generated. As the num-
bers of network assets, interconnections between devices, as well as vul-
nerabilities increase, the size and volume of the resulting AGs grow at a
much higher rate, leading to the well-known state-space explosion. In this
paper, we propose the use of high performance computing (HPC) clus-
ters to implement AG generators. We evaluate the performance through
experiments and provide insights into how cluster environments can help
resolve the issues of slow speed and high memory demands in AG gen-
eration in a balanced way.

Keywords: Attack Graph - High Performance Computing -
Cybersecurity

1 Introduction

Attack graphs (AGs) visualize possible paths attackers can take to compromise
computer networks [1], cyber-physical systems (CPSs) [2], IoT [3], and even
networks of Docker containers [4]. AGs allow users to logically connect individ-
ual vulnerabilities to reveal multi-step attacks, which might be unseen if each
vulnerability is handled separately. AGs are generated with input information
modeling network assets, their interconnections and vulnerabilities. AG gener-
ators typically output node and edge sets, and other relevant information. AG
structure can be analyzed, which identifies nodes, edges and vulnerabilities that
are pivotal to achieve attackers’ goals. By applying probability based approaches
[5], the likelihood of different attack paths can be compared. Accordingly, sys-
tem administrators are informed of more valuable intelligence of the weakness
in their system. They can concentrate the limited time, money and man-power
on addressing the most pressing security needs.

The generation of AGs is the most challenging aspect in their application.
Starting from some initial states, the input set of vulnerabilities are repeat-
edly applied to derive new states. Most AGs have a tree-like structure. The
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farther away from the tree root, the more nodes are branched out. The earliest
AG models, such as [6] and [7], permute all the vulnerabilities to enumerate
every possible attack path. Each AG node in these models represents a network
state, describing the security status of all the network entities. Each edge is the
exploitation of one or more vulnerabilities, and causes a transition between two
states. While these models provide the most detailed security evaluation, they
suffer from the exponential growth of the state space as the input size increases
[7]. To address the issue of state-space explosion, later research proposed more
scalable AG models, such as logical AGs [1,8]. In these models, each AG node
just represents a specific pre- or post-condition, a vulnerability, or a privilege of
an attacker on a certain host. The edges are causal connections between nodes
and are not associated with any exploitation operations. Logical AGs and their
variations [9,10] often assume that attackers will never relinquish a privilege
already acquired from previous attack steps, therefore, further reduce the state
space to be explored in the generation process. The generators for logical AGs
and its variations are demonstrated to be polynomial over their input size, which
are more efficient than those for state-enumeration AGs. While the generation
complexity of novel AG models are reduced because of simplified model definition
and the monotonicity assumptions, they are not completely free of the scalability
issue. When such models are applied to analyze the security posture of large-
scale networks, the total computation task and the required memory capacity
still easily overwhelm single PCs and small-scale servers. [11-13] introduced par-
allelism into the AG generation process, however, their efforts are limited in the
environment of single computers. Although distributed AG generation is not a
novel idea, to the best of our knowledge, there is no AG generator aiming to run
on high performance computing (HPC) clusters, let alone acquiring any useful
performance data. We observe that AG generation should be treated as other
computation intensive tasks and seek the help of HPC.

In this research, we design a parallel algorithm for AG generation that utilizes
OpenMPI processes and OpenMP threads to break down the generation task and
explore partial state space in parallel. We conduct the performance evaluation
on OSCER, an HPC cluster from University of Oklahoma [14]. Our research
fills the aformentioned gap and provides design and engineering knowledge to
industry and academia that need effective solutions to AG generation.

2 Related Research

Research efforts to address the scalability issue of AG models can be partitioned
into two tracks. One track simplifies AG definition to reduce the complexity
of the generation process, which is represented logical AGs. The other track
applies multi-threaded programming to accelerate the exploration of AG state
space. Typical platforms are either single PCs or small servers.
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2.1 Logical AGs

Two consecutive papers [1] and [8] established the foundation of logical AG mod-
els. The nodes in these AGs are categorized as SINK, AND and OR nodes, rep-
resenting input facts, vulnerability exploitations and derived facts. As exploita-
tions are defined as a special type of nodes, edges in logical AGs only represent
dependence between nodes. Backtracking is one of the culprits that cause state-
space explosion in state-enumeration AG models. To address this, logical AGs
assume that attackers will never relinquish any privileges they have already
acquired. This monotonicity assumption helps eliminate unnecessary permuta-
tions of exploitations during state-space exploration, giving logical AGs and its
variations [9,10] an advantageous polynomial time complexity for generation.

2.2 Multi-threaded AG Generation

Multi-threaded programs are implemented in [13,15,16] to accelerate AG gen-
eration. The data structure to store the resulting AG is shared among the par-
ticipating threads, which are either OpenMP threads [13] or CUDA warps [16].
Each thread starts with a few nodes fetched from the initial frontier prepared by
a master thread and explores its partial state space. In [16], to take advantage of
GPU’s computational power, the SIMD threads in each warp further accelerates
loops inner to the outer-loop that expand AG nodes. In [15], work-stealing is
proposed to balance the workload among the threads, which further reduces the
execution time. While these designs are able to accelerate AG generation, they
are implemented on either a single PC or a small server, and the performance
worsens sharply as the memory demands exceed the available capacity.

Our research extends the multi-threaded scheme by proposing an AG gen-
eration algorithm targeting HPC clusters. Modern HPC clusters have ample
memory on each node, satisfying the needs of many memory-intensive programs.
To the best of our knowledge, however, no existing research ever deployed AG
generators on HPC clusters.

In [11], a distributed AG generator is proposed. The authors apply reacha-
bility hyper-graph partitioning to divide the target network into groups of net-
worked software applications. Each group is assigned as a task to a search agent
to derive a part of the AG. The multiple agents communicate with one another
through TCP sockets and access a virtually shared memory to avoid redun-
dant expansion of nodes that are already processed. While this AG generator is
designed to execute with distributed computing agents, the experiments yielding
a speedup of X2.65 were actually conducted on a single computer with a quad-
core Intel processor. More experiments are needed to evaluate if this distributed
AG generator can perform equally well on a real distributed platform, especially
after adding the overhead from TCP/IP communication between search agents
and from accessing the virtually shared memory.

In [12], the authors proposes parallel AG generation in Spark. Utilizing mul-
tiple Spark executors enables each to generate a distinct sub-AG. Following par-
allel execution, these subgraphs are merged into a comprehensive resulting AG.
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To optimize the parallelization efficiency, a multilevel k-way partition algorithm
divides the input network into smaller segments according to topology, which sig-
nificantly reduces the workload added to each executor. While the experiments
in [12] on a single computer indicate that the Spark-based scheme outperforms
a distributed AG generation algorithm, crucial experiment details, such as the
implementation specifics of the baseline AG generator being compared, and the
dimensions of each target AG, are omitted.

Different from these existing efforts to parallelize AG generation, we not only
deploy our parallel AG generator crossing multiple nodes on an HPC cluster,
but also tune the platform parameters to examine the impacts of the hardware
configuration on the performance and cost. Furthermore, we profile the execution
times of different components in our AG generator to identify the most critical
one and propose further optimizations to speed it up.

3 AG Model and Parallel Generation

This section introduces the AG model used by this paper and applies it to
an example network. It then presents a parallel algorithm for the model’s AG
generator to be deployed on HPC clusters.

3.1 AG Model
Our AG model follows the design in [15]. The model defines an AG as a tuple:

AG = {V, E}, (1)

where V is the set of nodes and E is the set of directed edges. Each node rep-
resents the set of properties of network assets relevant to attacks. Each edge
represents the exploitation of one or more vulnerabilities, causing a state transi-
tion from one node to the other. To build an AG for a target network, the input
must include:

— A list of assets, which encompasses network devices and software entities.

— A list of vulnerabilities. Each vulnerability is formatted as a set of pre-
conditions and a set of post-conditions.

— A set of initial properties of network assets, which essentially defines the root
node of the AG. According to [15], the AG tree structure originates from the
root node, and all derived nodes are either intermediate states or target states
after attacks are carried out successfully.

As an example, Fig. 1(A) shows a small network with three servers. The secu-
rity policy regulates that any user from the Internet can only use the web or
file service. The database server only provides backend service to the other two
servers. The web server and the file server both have vulnerable services that
might be used by an attacker to gain root privileges. In addition, the database
server has a bug in its OS, which might be exploited by an attacker that has a
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. attacker

assetl: web server ¢ asset2: file server
vulnerable service 0 vulnerable service 1
(exploit 0) (exploit 1)

32—

asset 3: database server
vulnerable OS (exploit 2)

(A)

Fig. 1. A target network (A) and its AG (B)

foothold on either the web server or the file server. With the given input infor-
mation, the AG is generated as in Fig. 1(B). Considering that the attacker may
choose the database server as the final goal, the AG shows that the exploitation
2 on the database server always conditions on either exploitation 0 on the web
server or exploitation 1 on the file server. Thus, this AG helps security admin-
istrator to identify all the possible multi-step attacks that can compromise the
database server.

3.2 Parallel AG Generator on HPC Clusters

To generate AGs on HPC clusters, we design a parallel algorithm in Fig. 2, which
comprises three distinct phases.

In phase 1 (lines 1-9), the initial AG state (Note: AG state is used hereafter
instead of AG node to avoid confusing with cluster node) and its derived states
are expanded by each cluster node locally to fill a per-node queue (Q) with
more unexpanded states. The queue is identical on each cluster node as they
take identical input. When the size of the per-node queue grows greater than a
threshold T, the multi-threaded phase 2 (lines 10-12) begins. Suppose comm _sz
is the number of cluster nodes and n_threads is the number of threads from
each node, then the total number of threads in the multi-threaded phase is
comm_sz*n_threads. Each thread maintains its own queue (threadQ), with an
initial size equal to the per-node queue size (Q.size()) divided by the total number
of threads. The partition of the unexpanded states in the per-node queue is cyclic,
aiming to divide the AG state space evenly among all the threads.

As inter-node communication is more expensive than local computations, in
phase 1 and 2, each cluster node explores its partial state space independently. In
phase 3 (lines 13-16), a master node merges all the partial graphs into a complete
AG. The merging needs to remove duplicate nodes and edges through hashing
methods. With comm _sz nodes, the merging requires a total of comm_sz-1 inter-
node communications, which might add a long latency to the total execution
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Input:

root: initial state of the target network

exploits: set of vulnerabilities

comm_sz: number of compute nodes from the cluster

n_threads: number of threads from each compute node
Output:

V: the set of AG states

E: the set of AG edges

01 unexpanded state set Q « {root},V « {root},E « @
02 while Q.size() < T:

03 state g < Q.pop()
04 for-each e in exploits:

05 if e not applicable to g: continue

06 Qaerivea < apply postcondition of e on q
07 if Qaeriveq 1 never discovered:

08 Q < QU {queriveal, V < V U {daerivea}

09 E « E U {q to qaerivea}

10 multi-threaded: threadQ < fetch Q.size()/(comm_sz * n_threads) states from Q
11 multi-threaded: while threadQ.size() > 0:

12 multi-threaded:  pop and expand a state, then update V and E in critical sections

13 if this node is master node:

14  for-each coworker node i:

15 V &V U V,qei With duplicate states removed

16 E « E U Epy4¢; With duplicate edges removed

Fig. 2. Parallel algorithm to generate AG on HPC clusters

time. If no merging is required, however, each node can keep its partial AG in
the local memory or store it into an AG database.

4 Performance Evaluation

The parallel AG generation on HPC clusters is implemented with a hybrid of
Message Passing Interface (MPI) and Open Multi-Processing (OpenMP), both
of which are available in most HPC environments. Specifically, each cluster node
in the algorithm is embodied by an OpenMPI process. Each OpenMPI process
forks multiple OpenMP threads for the multi-threaded phase in the algorithm.

4.1 Performance Evaluation

The AG to be generated targets a network with a tree structure in Fig. 3. The
attacker from the Internet has the option to compromise any of the servers.
With a compromised server as a foothold, the attacker can attack any of the
workstations connected to the server via a LAN. The target network has 150
computers, 20% of which have a vulnerability to be exploited. The generated AG
has 5,859,375 states and 56,640,625 edges. The storage cost is 13.5 GB, which is
not small compared with the limited memory capacity of single computers.

As the baseline configuration, two compute nodes are employed to test, each
with the number of threads tuned from 2 to 40, which matches the maximum



126 M. Li and J. Hale

R Ay A ]

e [ T T

attacker % i i ﬂ E .D]:
R
Internet } - ! : }
RN Ay A '
e

—8— execution_time
(2, 828.92 —A— phase2_time

time (seconds)

(40, 65.65)

0 10 20 30 40
number of OpenMP threads

Fig. 4. Baseline performance with two compute nodes. Each node has 40 CPUs (Intel
Xeon E5-2650 @2.3Ghz) and one 32 GB memory.

number of CPUs per-node. Figure4 shows that as the number of threads in the
multi-threaded phase increases, the total execution time decreases. Consider-
ing only phase 2, its execution time reduces about 50% each time the number
of threads doubles, demonstrating the effectiveness of intra-node parallelism in
accelerating the AG generation process. Based on the algorithm in Fig. 2, there
is only one MPI send/recv communication between node 0 (master) and node
1 during phase 3 to merge partial AGs. For the case of 40 OpenMP threads
per-node, phase 1 takes 0.48s, phase 2 takes 65.65s, phase 3 takes 69.47s and
the total is 136.62s. Phase 1 takes a very short duration to prepare the workload
for the multi-threaded phase 2. Phase 3 contributes the largest amount to the
total execution time. Further profiling the sub-steps in phase 3 shows that MPI
communication preparation takes 0.48 s, MPI send/recv takes 23.95s, AG state
merging takes 2.58 s and AG edge merging takes 42.29s. While the time for MPI
send/recv is a necessary cost due to communication, AG edge merging occurs
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only on the master node but adds the largest overhead, implying that further
optimization is required.

400
BN phasel time

350 { W= phase2 time
B phase3 time
300 A

250 A

200 ~

Time (seconds)

2 3 4
Number of Nodes

Fig. 5. Tune the number of compute nodes. Node configuration: 8 OpenMP threads;
32 GB memory per-node; CPU-Intel Xeon E5-2650 @2.3Ghz.

The next experiment tunes the number of invoked compute nodes. Specially,
the execution times of the three phases are compared under 2-node, 3-node and
4-node settings. As Fig. 5 suggests, invoking more compute nodes increases the
overall execution time. From 2 nodes to 4 nodes, the three settings spend approx-
imately equal time on phase 1 and 2. However, phase 3 becomes more expensive.
This trend is attributed to a larger overhead on MPI send/recv communication
between compute nodes. For example, under 4-node settings, node 1, 2 and 3
must send their AG states and edges (essentially the partial AG itself) to node 0
for merging. In an application setting where merging partial AGs is not required,
the time of phase 3 will not be a factor. As a result, the total execution time is
expected to be non-increasing even if more compute nodes are enlisted.

On the other hand, although the total running time is unsatisfactory due
to the implementation of phase 3, the benefits of running with multiple HPC
nodes to mitigate the pressure of memory usage should not be overlooked. Our
experimental AG needs 13.5 GB of storage. A typical OSCER compute node
provides about 30 GB memory, which can be shared by at most 2 of our MPI
processes. Mapping more processes to each node results in unsuccessful launching
of the MPI program. With these processes more sparsely distributed, such as one
process per-node in the conducted experiments, a master node has enough space
for the storage of two partial AGs: one for itself and the other for buffering the
AG received from other nodes. Execution time is not the only goal of an efficient
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solution to AG generation. Designing an AG generator to run on HPC clusters
will need to strike a balance between minimizing execution time and distributing
storage cost on participating nodes.

4.2 Optimization

To reduce the overhead of merging AGs, we propose the following options to
accelerate phase 3 of our AG generator.

— Option 1: create multiple threads on the master node, and let each thread
receive and merge one partial AG. This option means each thread on the
master node must have its own buffer to store a partial AG, which results in
a higher memory demand on the master node.

— Option 2: create a multi-threaded software pipeline on the master node. Some
master threads serve as producers only receiving new partial AGs, while oth-
ers as consumers simultaneously merge received ones into the complete AG.

— Option 3: create a hierarchical merging process, which aims to accelerate when
more than four nodes are invoked. For instance, the even ID-ed processes
merge into the adjacent odd ID-ed first, then the odd ID-ed ones merge
together to build the complete AG.

As of the writing of this paper, experiments are underway to evaluate these
optimization options. Option 3 is tested with the same cluster setting as the
experiments already conducted. Both option 1 and 2 require more memory than
the current implementation, and they are being tested on OSCER’s large mem-
ory queues.

5 Conclusions and Future Work

To address the scalability issue of AG generation, this paper presents a paral-
lel algorithm and its implementation on HPC clusters. The proposed algorithm
partitions the generation process into three phases. Phase 1 runs a single thread
per-node to prepare enough workload for multiple threads. Phase 2 runs a hybrid
of MPI processes and OpenMP threads to accelerate the exploration of partial
AGs. Phase 3 merges partial AGs into a complete one through MPI communica-
tions. The experimental results reveal that AG generation on HPC clusters can
achieve an equilibrium between accelerating the generation process and reducing
the memory demands on the computing device. For subsequent research, we will
complete the design and experiments that optimize the merging of partial AGs.
In addition, we will explore possible solutions to eliminate the need to merge
partial AGs on a master node, for instance, via building a distributed database
to store AG nodes and edges.
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Abstract. Deep Learning applications have become an important solu-
tion for analyzing and making predictions with massive amounts of data
in recent years. However, this type of application introduces significant
input/output (I/O) loads on computer systems. Moreover, when exe-
cuted on distributed systems or parallel distributed memory systems,
they handle much information that must be read during training. This
persistent and continuous access to files can overwhelm file systems and
negatively impact application performance. A file format defines how
information is stored, and the choice of a format depends on the use
case. Therefore, it is important to analyze how the file format influences
the training stage when loading and reading the dataset, as opening and
reading many small files could affect application performance. Thus, this
paper will analyze the I/O pattern of different file formats used in deep
learning applications to characterize their behavior.

Keywords: Parallel I/O - I/O Analysis - Distributed Deep Learning

1 Introduction

The large volumes of data required for training models in deep learning (DL)
applications running in High-Performance Computing (HPC) systems generate
significant I/0 loads. This can impact the I/O system’s performance, especially
during training with intensive, simultaneous, and persistent file access. Efficient
I/O utilization becomes challenging, potentially causing high training latency
and overhead, particularly when datasets exceed main memory capacity.
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Understanding DL I/O patterns is important for evaluating and improving
1/0 performance in HPC systems. To manage I1/O operations, a multi-layered
software stack is configured, incorporating components such as I/O libraries,
middleware, and file systems, which work together along the I/O path from
compute nodes to storage devices. The efficiency of I/O patterns depends on how
these layers are configured, as they can significantly influence the system’s ability
to utilize its performance capacity fully. The complexity of achieving optimal I/O
performance is further compounded by the numerous tunable parameters within
parallel I/O stacks, which can vary significantly across different systems and
application use cases, as noted by the authors of [1]. With emerging workloads
like artificial intelligence and big data analytics introducing more diverse and
unpredictable 1/O behaviors, understanding and modeling extreme-scale 1/0
performance becomes indispensable, as the authors of [4] emphasize.

One concept related to I/O libraries that can determine how a file is accessed
and, therefore, impacts the I/O pattern is the file format, which usually depends
on the application context. File formats like HDF5 are common in HPC and DL;
this format also has the advantage of having a library that provides optimization
techniques that can be applied depending on the I/O pattern. However, there
are file formats specific to DL, such as TFRecord, NPZ, and CSV, among others,
that are not designed to run on HPC parallel file systems.

Therefore, their optimization relies on how the HPC users or administrators
configure the I/O software stack. Consequently, based on the above, this work
will characterize specific file formats and their impact on the I/O patterns of
DL applications. The file formats selected are NPZ, TFRecord, and HDF5. This
study aims to characterize these formats and monitor their behavior according to
the format type, describing the file access patterns to analyze their impact. This
information can help decide which format to use and whether any preprocessing
is necessary.

2 Motivation

I/0O operations are a known performance bottleneck of HPC applications, as
described by the authors of [5], who highlight the complexity and time-consuming
nature of tuning the I/O stack for optimal performance. Figurel illustrates a
software stack for DL applications composed of several software layers needed
to manipulate I/O operations. The file format is an important element, often
managed by I/0 libraries. In DL applications, I/O operations such as data load-
ing and reading are typically performed at the framework level, utilizing file
formats like HDF5, TFRecord, and NPZ. These formats are then processed at
lower levels of the software stack, where the impact of the file format becomes
more apparent.

To compare this impact, we will use the DLIO benchmark, which emulates
the loading and reading of data in different file formats. We will focus on three
popular formats in DL applications: NPZ, TFRecord, and HDF5. Despite hav-
ing similar configurations and workloads, these formats may exhibit different
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behaviors in their access patterns. These differences can significantly affect per-
formance and resource usage.

1/O SOFTWARE STACK
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Fig. 1. Influence of File Formats on I/O Performance and Access Patterns

In the present study, we consider that even if we have files in these three for-
mats with similar workloads, their access patterns will differ due to their intrinsic
nature. These differences will significantly affect I/O performance and system
resource utilization. By analyzing these effects, we can identify the advantages
and disadvantages of each format concerning I/0O efficiency and resource usage,
guiding the selection of the most appropriate file format based on the specific
context of the DL application.

3 1/0 Pattern Analysis

Understanding the file access pattern can help make predictions to optimize the
application’s I/O or implement strategies to minimize the I/O impact on the
application performance. In this work, to understand the I/O patterns’ behavior,
we represent them from two points of view: spatial and temporal:

— Spatial Pattern: This represents the logical view of how the file is accessed
by processes at each position (file offset).

— Temporal Pattern: Shows the order in which processes access the file during
the execution of the application.

3.1 File Formats

The HDF5, NPZ, and TFRecord file formats were selected for this work because
they are commonly used in deep learning.

— NPZ is a Numpy file format that provides matrix data storage using gzip
compression.

— TFRecord is a simple format for storing a sequence of binary records native
to TensorFlow. It facilitates the combination of multiple datasets.
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— HDF5 is a file format for storing scientific data. It allows data to be stored
in a file and organized in a structured manner. It supports the insertion of
metadata for self-description, which means that each file and dataset can have
associated metadata that describes the data.

To mimic specific DL I/O patterns, we utilized DLIO, a Data-Centric Bench-
mark for scientific DL applications [3]. DLIO is a representative benchmark con-
structed based on the I/O profiling of selected workloads, accurately emulating
the I/O behavior typical in modern scientific deep learning applications. We
have designed experiments using a specific workload and a determined degree of
parallelism. The data is stored in three formats: HDF5, NPZ, and TFRecord.
This will allow us to analyze how each of these formats affects the I/O patterns
and assess their impact on the performance of input/output operations.

3.2 Access Mode

Regarding the access mode, the multi and shared types were chosen in this
work. Figure 2(a) shows the multi-access type corresponding to the I/O strategy
of one file per process, where each process accesses a file independently, requiring
no synchronization between I/O operations. Figure 2(b) shows the shared access
type, where all processes access a single shared file.

PO P1 P2 P3 P1 P3
MIMININ \i\fi/
(a) Multi ) Shared

Fig. 2. File Access Mode

4 Experimental Results

The following section presents the experimental results. This experimentation
aims to identify and compare the I/O pattern behavior of dataset reading using
the NPZ, TFRecord, and HDF5 file formats. The access mode for NPZ and
TFRecord was multi, where each process independently accesses its file. For
HDF5, the access mode was shared, where all processes access different segments
within the same file. The file system used was LUSTRE with a single data server,
and the experiment configuration is shown in Table 1. We use Darshan 3.4.3; a
scalable HPC I/O characterization tool, as a monitoring tool [2].

Figure 3 shows the spatial and temporal pattern for the three file formats,
where the x-axis represents the number of I/O processes, the y-axis represents the
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Table 1. Configuration Experimentation

File Format/NodesProcesses IO|]IO Total (GiB)/GiB per proc/No. of Files
NPZ 1 4 8.75 2.18 4
TFRecord |1 4 8.74 2.18 4
HDF5 1 4 8.73 2.18 1

temporal order, the z-axis represents the file offset, and the color-bar represents
the request size of the read operations.

Regarding the results, the spatial and temporal data read pattern of the NPZ
file with the multi-access mode is shown in Fig. 3(a). A total of 565 operations per
process were performed, of which 561 had a size of 4 MiB, and the rest were very
small metadata-related operations. In the case of the reads from the TFRecord
file with multi-access mode, shown in Fig. 3(b), each process performed a total of
8947 reads of size 256 KiB, with no metadata reads observed. In both NPZ and
TFRecord cases, it was observed that the read sizes were regular, and the Offset
increased from the beginning to the end of the file, except for the metadata reads
in NPZ.

In the case of reads from the HDF5 file, each process performed a total of
4489 reads, of which 16 operations were small metadata reads. The rest of the
reads were 512 KiB in size. Figure 3(c) shows shared access to the same file, with
each process accessing a different file offset to perform the read operations.
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Fig. 3. Spatial and Temporal Pattern of I/O Operations DLIO app. File System: LUS-
TRE

It was observed that NPZ and HDF5 include a set of small operations gener-
ally used as metadata, which is then used in the reading stage to obtain informa-
tion about the file’s data layout. Formats like HDF5 include a larger number of
operations related to metadata. Additionally, the file size and the operation size
at the POSIX-IO level depend on the parameters set for the HDF5 library. The
NPZ format has a very low number of metadata operations; it takes information
from the file system, where the data will be written to perform operations the
same size as the file system’s block size. In the case of TFRecord, this format
does not perform metadata-related operations (at least not explicitly), and the
operation size corresponds to the transfer size of TensorFlow’s buffer.
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Fig. 4. Comparative Performance Analysis: I/O Time, Runtime, and Data Transfer
Rate Across Different File Formats

4.1 Impact of File Format on Loading and Reading the Dataset:
Bandwidth and Time

Figure 4 compares the file formats for bandwidth, I/O time, and execution time.
HDF5 and NPZ exhibit similar performance regarding I/O time, execution time,
and bandwidth. TFRecord, on the other hand, have significantly higher I/O and
execution times, suggesting that this format might not be the most efficient for
applications that require fast read/write and execution speeds. This evaluation
can help select the most suitable file format according to specific performance
and efficiency requirements in data handling.

5 Conclusions

This study analyzed the I/O patterns of HDF5, NPZ, and TFRecord formats in
deep learning applications. The results show that, although file sizes may be simi-
lar, the I/O patterns at the POSIX-IO level differ, impacting performance due to
variations in operations and metadata of each format. Despite having compara-
ble file sizes, HDF5, NPZ, and TFRecord’s internal structure and access methods
lead to distinct I/O behaviors. These differences manifest in how each format
handles read and write operations and in the overhead introduced by metadata
management. The study underscores the importance of selecting the appropriate
file format to optimize dataset loading and reading in deep learning (DL) appli-
cations. Different formats can lead to substantial differences in I/O efficiency,
directly affecting the overall times. Addressing these bottlenecks can improve
the configuration of the I/O system, such as optimizing buffer sizes, adjusting
prefetching strategies, and fine-tuning the underlying file system parameters.
Future research will analyze the impact of file formats’ temporal and spatial
patterns on IOPS and bandwidth metrics to design I/O optimization techniques.
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Abstract. Understanding cell—cell interactions is crucial for unraveling
the complexities of multicellular organisms and holds promising implica-
tions for advancements in medical science. These interactions, mediated
through specific ligand-receptor pairs, remain partially identified. The
rapid evolution of gene expression analysis technologies, especially spa-
tial transcriptomics, now allows for the precise capture of gene expres-
sion while maintaining cellular localization. While studies using spatial
transcriptomics data to visualize known cell—cell interactions are achiev-
ing great success, their application to infer unknown cell—cell interaction
pairs has not yet been fully investigated.

In this study, we introduce a novel approach utilizing Graph Con-
volutional Neural Networks (GCNN) to infer cell-cell interactions from
spatial transcriptomics data. Previous efforts have demonstrated the util-
ity of GCNNs for data obtained through the continuous FISH (fluores-
cence in situ hybridization) method. We propose an alternative strategy
to adapt GCNN-based cell—cell interaction prediction methods to data
acquired by in situ capture methods. Additionally, we address the chal-
lenge of properly generating training data for the model, implementing
a solution that significantly enhances the estimation process. Our find-
ings reveal that the method used to transform Spatial Transcriptomics
data into a graph significantly impacts the accuracy of interaction predic-
tions, with prediction accuracies ranging from 80% to 90% under certain
conditions.

Keywords: GCNN (Graph Convolutional Neural Network) - cell-cell
interaction - Spatial Transcriptomics analysis
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cancer and autoimmune diseases. Understanding the complex network of cell-
cell interactions is a matter of fundamental biological interest and profound
clinical relevance. cell-cell interactions are usually mediated by specific pair-
ings between ligands (signal molecules secreted by a kind of cell) and receptors
(molecules on the surface of the other cell that specifically recognize and bind the
ligand). Historically, cell-cell interaction studies have been dominated by bio-
logical experiments and protein conformational approaches. These methods still
provide valuable insights into cell-cell interactions but have yet to be limited by
throughput and resolution. The advent of gene expression profiling technologies,
such as microarray and RNA-seq technologies, has made it possible to analyze
the expression of thousands of genes simultaneously, a first step toward high-
throughput analysis. The principle of estimating cell-cell interactions from gene
expression profiles is based on analyzing the expression patterns of the molecular
messages (ligands and receptors) that cells use to communicate with each other.
Estimating interactions from gene expression is an indirect approach and has
been used by Kirouac et al. [11], Rieckmann et al. [13], and Joost et al. [9].

Recently, single-cell RNA sequencing (scRNA-seq) and Spatial Transcrip-
tomics technologies have demonstrated synergy with cell-cell interaction analy-
sis. Gene expression profiling at the level of individual cells has made it possible
to visualize the possibility that ligand-receptor pairs are actually used for cell-to-
cell communication in specific cell-type pairs. Various methods such as CellChat
[7], CellPhoneDB [5], and NicheNet [3] have been proposed as tools for extracting
and visualizing cell-cell interactions and are beginning to become standard anal-
ysis methods in papers dealing with single cells. These methods essentially use
information on ligand-receptor pairs that are known to interact (information on
known ligand-receptor pairs is stored in various databases). The gene expression
profiles at the individual cell level provide a detailed snapshot of which genes
are “on” or “off” in each cell and search for ligand-receptor pairs that are com-
monly “on” among a given cell population. This principle is equally applicable to
Spatial Transcriptomics data. Spatial Transcriptomics data can provide spatial
information on gene expression (such as whether cells are in physical proximity)
and thus also provide insight into the mode of cell—cell interaction (CellChat v2
[8], Giotto [4], stLearn [12]).

Thus, analyses using known cell-cell interaction information are much used
in single-cell gene expression data and Spatial Transcriptomics, whereas studies
attempting to determine unknown cell—cell interactions are still in their infancy.
There are many types of receptors and ligands, and only specific pairs can signal,
but only a few are known to signal. There are still many unknown LR-pairs, so
developing methods to estimate unknown cell-cell interactions is also an impor-
tant issue. In particular, if cell-cell interactions can be estimated from Spatial
Transcriptomics data, a new technique that can even provide information on
cell location, different types of interactions can likely be identified. There are
few such efforts yet, but one is GCNG (Graph Convolutional Neural networks
for Genes) [16]. This is a supervised learning method that takes into account
the spatial information of the cell and analyses it using GCN (Graph Convolu-
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tional Network) [10,14]. The main advantage of GCN is that even when spatial
relationships are not perfect, the convolution capabilities of neural networks and
GCNG actually improve the accuracy over unsupervised methods.

In this study, we attempted to extend the GCNN-based supervised learn-
ing method for estimating cell-cell interactions to a broader range of Spatial
Transcriptomics data; the GCNG method has been validated on Spatial Tran-
scriptomics data using the continuous FISH method in that paper. Continuous
FISH has the advantage of high spatial resolution and the ability to measure
sub-cellular levels, but the number of genes that can be observed is generally
smaller. In contrast, the in situ capture method has low spatial resolution and
measures expression profiles at each ‘spot’ at the oligo-cellular levels but has
the advantage of being able to measure a wide variety of genes. This is a widely
used technique, as exemplified by Visium. The proposed method uses the GCNG
method as a reference and devises a method for creating a graph structure that
enables supervised learning of cell—cell interactions even with Spatial Transcrip-
tomics data from the in situ capture method. The large number of genes that
can be observed means that there is a high possibility of picking up unknown
LR-pairs.

Another issue in this study is how the training data are given to train the
model. The following information is given for training in the supervised learning
of cell—cell interactions from Spatial Transcriptomics.

(1) Expression profiles of gene A and gene B in each spot

(2) Location of the spots

(3) Label for whether there is a known interaction between genes A and B
(positive or negative example).

The GCNG method uniformly treats all known LR-pairs as positive exam-
ples. However, depending on the specific conditions and organizational context
in which data are collected, some LR-pairs generally recognized as interactive
may not actually engage in interactions. Including these as positive examples
could compromise the quality of the training data and diminish model accuracy.
To address this issue, our approach leverages the method for extracting and
visualizing known cell—cell interactions. This enables the pre-identification of
LR-pairs specific to our dataset. Consequently, we classify only those pairs that
demonstrate interaction with a high degree of confidence as positive examples.

We velified our approach using Visium data measuring brain and kidney
tissue. The results showed that LR-pairs could be identified accurately even
in Spatial Transcriptomics data obtained by in situ capture methods such as
Visium. GCN showed better generalization performance than general supervised
learning, which does not consider spatial information. It was also found that how
spatial information is represented in the graph structure is an important issue
affecting the type of LR-pairs detected. These involve signaling between more
distant locations by secretion, such as autocrine and paracrine.



142 T. Hiura et al.

spot

LK J
geneA|
geneB
/o0 i |
spot Gene Expression matrix - - -

= B

spot

Whether geneA and
geneB interact.

% - spot Graph Graph Flatten Dense Class

convolutional convolutional layer layer
layer layer

Graph convolutional neural network

Adjacency matrix

Fig. 1. Overview of the proposed method

2 Methods
2.1 Overview of Proposed Method

We propose a method to predict unknown ligand-receptor interaction pairs (LR~
pairs) using Spatial Transcriptomics data of in situ capture methods, specifically
Visium [15] data. Visium data are measured as expression data per spot con-
taining multiple cells rather than expression data per cell. To solve the problem
of Visium data not providing gene expression data for each cell, we propose a
method to convert Visium data into a graph by treating each spot as a node and
connecting adjacent spots with edges. Since there are several possible ways of
connecting the edges, we will examine the effect of the edge connection policy on
the results (details will be described later). The model of the proposed method is
illustrated in Fig. 1. This structure of the model was created concerning GCNG
[16]. In the same way, our model consists of two graph convolutional layers, one
flatten layer, one dense layer, and one sigmoid function output layer for clas-
sification. Our model takes the adjacency matrix of spots and the expression
information of gene pairs as input and learns and infers whether there is an
interaction between these pairs.
The graph convolution layer is defined by the following equation.

Z=D A+ D *XW+b (1)

A is an adjacency matrix calculated from coordinates from spots, and D is
degree matrix. The adjacency matrix represents the connectivity of spots for the
graph convolution. When an edge exists between node ¢ and j, A; ; = A;; = 1,
and 0 if no edge exists. X is the expression matrix of dimension “number of spots
x 2”7 and W is the weights of the convolution kernel of dimension “2 x 32”. b is
a bias vector term of dimension “1 x 32”. The output Z of the convolution layer
consists of the dimension “number of spots x 32” and represents the embedding
vector of all spots. The flatten layer receives the output of the graph convolution
layer and transforms the matrix into a vector form.

The next layer is the dense layer, whose activation function uses the ReLU
function. And the final layer is also a dense layer, but the number of units in
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the output is one, and its output is put into a sigmoid function, the activation
function, which can predict the label of the input graph. The sigmoid function

is defined as follows. )

(2)
(0 represents a parameter.

The objective function of the whole model is as follows. We consider binary
cross-entropy as a loss function.

N
F == yilog(Co(x) + (1 - yi)log(l ~ Colx)) (3)
k=1

The training labels used for learning are represented by the vector y of length
N, where N indicates the total number of candidate LR-pairs. y; is the k-th
element of y and the label for the k-th gene pair, where it is 1 if the interaction
is known, and 0 otherwise. © denotes all parameters that need to be optimized.

2.2 Workflow of the Proposed Method

Here, we describe the procedure for preparing training labels, transforming
Visium spatial information into a graph (adjacency matrix), and the steps for
training a graph convolutional network. The input data from Visium consists of
expression information X for each spot (Matrix of size “number of gene types x
number of spots”), and spatial information C (Matrix of size “number of spots
x 2 (x,y coordinates in the 2D image)”).

Preparing Training Labels of Interaction. If an interaction is known for
a gene pair, it is listed in the database. If not listed in the database, the inter-
action is absent or unknown. This problem is called positive-unlabeled learning
in the field of supervised learning [6]. In this study, however, we simply assume
a positive example when the gene pair is listed in the database and a negative
example when it is not. On the other hand, the focus of this study is on the
treatment of positive examples. Gene interactions do not always observed, but
depend on data such as organisation and conditions. If both of gene pair with
known interactions are treated as positive examples, patterns in which almost
none of the genes are expressed will also be learnt as positive examples. There-
fore, in this study, only pairs for which interactions can be observed in the data
used for learning are treated as positive examples in the data.

CellPhoneDB [5] has a statistical framework to predict cell-cell interactions
between cell types from gene expression profiles of single cell. Although Visium
data provide not cell-by-cell expression data but only spot-by-spot expression
levels, CellPhoneDB is capable of estimating interactions between cells, as well
as interactions between spots, similar to its functionality for cell-cell interaction
prediction. In this way, we applied CellPhoneDB to Spatial Transcriptomics
data X, and the matrix S is obtained. This matrix S is a matrix with dimensions
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“number of known gene pairs” by “number of combinations of spot types,” where
each element represents the likelihood of interaction between that gene pair.
Here, by introducing a significance level «, we decide to treat as positive examples
those pairs that meet the criteria, i.e., pairs that are judged to be interacting
with high confidence in this data. In this way, the vector of training labels y is
prepared.

Transforming Spatial Information of Visium Spots to Graphs. For
the purpose of graph convolutional neural networks, the spatial information of
Visium spots is represented in a graph, connecting spots that are related (close in
distance or similar in properties). The adjacency matrix A is a matrix “number
of spots x number of spots”, constructed from C representing the position data
of each spot in Visium. The spatial distance between spots is calculated using
the simple Euclidean distance. The following four types of adjacency matrices
are considered.

1. A case in which each spot is considered as adjacent only to itself (Pattern
1).

2. A case in which two adjacent spots are considered adjacent to each other
(Pattern 2).

3. A case in which a spot is considered adjacent up to two adjacent spots ahead
(Pattern 3).

4. A case of connecting adjacent spots in each cluster (Pattern 4).

In Pattern 1, the adjacency matrix is a unit matrix. This would increase the
likelihood that the model can detect interactions within the microenvironment of
the spot and Autocrine-type interactions. Pattern 2 is the simplest connection,
and other patterns are evaluated on this basis. Pattern 3 would lead to a model
that is more likely to detect LR-pairs interacting at greater distances, since each
spot is connected to a more distant spot. Pattern 4 is the case where adjacency
is considered for each cluster. This approach is somewhat unique, involving the
preliminary classification of spots with similar expression profiles in X through
clustering. An adjacency matrix is created by connecting only adjacent spots in
the same cluster. We consider that models using this adjacency matrix are well
suited to detect interactions that occur within the same cell. One advantage of
our proposed method is that, by creating various adjacency graphs and training
model in this way, it is possible to consider which LR-pairs are easy to detect
for each model.

Model Learning and Inference. From a given set of Visium data (gene
expression profiles of spots X and spatial coordinates C), we construct the adja-
cency matrix A and teacher labels y) using the methods described above. During
training and testing, we perform cross-validation. That is, the split data X¢rain
and A are used as inputs to train the GCNN to learn yirain. Once the model
training is complete, inputting the expression profiles of any gene pair from
the reserved test set Xiest allows the model to output a value between 1 to 0,
indicating whether an interaction exists between those pairs or not.
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Fig. 3. Data splitting for training and testing. Random split for 3-fold cross validation
(left, gene pair 2a). All ligand and receptors are separated exclusively as training and
test gene sets for 2-fold cross validation (right, gene pair 2b)

3 Experiments
3.1 Overview

Since there are currently few methods for estimating unknown LR-pairs that
interact using in situ capture data, we treat SVM (Support Vector Machine)
and Random Forest as conventional methods. Although these methods are used
in a situation where spot adjacencies cannot be taken into account, we consid-
ered that they could serve as a benchmark for measuring the benefits of using
GCNNs. Because SVM and RandomForest require a one-dimensional vector as
input, the expression matrix is transformed into a one-dimensional vector as
input. Performance of these models is evaluated using Accuracy, Specificity, and
Sensitivity.



146 T. Hiura et al.

In Experiment 1 and 2, we examine how the results of the conventional and
proposed methods change depending on the policy to create the training labels.
In this experiment, the method for creating the adjacency matrix used in the
GCNN is fixed to Pattern 2 (two adjacent spots are connected to each other).
Here, we prepared the training labels using three levels of confidence as shown
in Fig. 2 (Gene pair 1, 2, 3). Gene pair 1 consists of all known interacting pairs
treated as positive examples even if the confidence levels of interaction obtained
from CellPhoneDB are all low. Gene pair 2 consists of positive examples at a
moderate level. Based on the results from CellPhoneDB, pairs for which the
confidence of interaction exceeds the threshold (judged to be significant at the
significance level @ = 0.05) at least one set of spots are treated as positive
examples. Gene pair 3 consists of positive examples at a high level. According
to the results from CellPhoneDB, pairs for which the significant interactions are
observed in the majority of spots are treated as positive examples.

Furthermore, to more thoroughly evaluate the generalization capability of the
GOCN considering spatial information, we considered two methods for splitting
the data into training and testing sets. Figure3 illustrates the split of gene
pairs into training and test data. Splitting is done for positive examples, and a
negative example is added to each after splitting. Each node represents ligands,
receptors and positive LR-pairs are connected by edges. In other words, each
edge represents an interaction relationship and this edge is divided into two
parts, one for training and the other for testing. As the model is trained by
cross-validation, we split the data as many times as the number of splits and
specify the training data and the test data from them. The split of the data in
“gene pair 2a” is shown in the left panel of Fig. 3. It is a 3-fold cross-validation.
As indicated by the three colors, the gene pairs are divided into three datasets,
each dataset containing the same number of nodes. The split of the data in
“gene pair 2b” is shown in the right panel of Fig.3. It can be seen that each
dataset split for cross-validation consists of different nodes. This is achieved by
assigning each connected graph to each dataset in the order of the number of
nodes contained. In this study, we decided to perform a 2-fold cross-validation
in order to balance the number of nodes.

In experiment 3, we compared the results of the proposed method with the
use of four patterns of the adjacency matrix and discussed the LR-pairs that
resulted in different predictions. “Gene pair 2b” is used for the training and test
data. This experiment allows to examine the effect of the policy to create the
adjacency matrix on the results. We also paid attention to how the gene pairs
that can be correctly predicted using each adjacency matrix are expressed.

To implement GCNN, we use python and “spektral” package. SVM and
Random forests are used implemented in Sckit-learn library.
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Fig. 4. Results of experiment 1 (adult mouse cortex and kidney). Comparison of accu-
racy between models and methods selecting positive examples using the confidence of
interaction.

3.2 Dataset Used

In this study, we utilize the Visum dataset obtained from adult mouse cortex
published by 10x Genomics [2]. This Visum dataset contains expression data for
17,145 genes in 2,264 spots. The number of positive examples extracted from
this dataset vir CellPhoneDB have 845 (gene pair 1), 362 (gene pair 2), and
203 (gene pair 3), respectively. The same number of negative examples, split in
the ratio 2:1 between training and test data. Gene pair 2b is a dataset for 2-fold
cross-validation consisting of two datasets, with the total number of positive and
negative samples being 256 and 468, respectively.

As a reference, we also show the results of an experiment using Visium data
obtained from mouse kidneys [1].

4 Results and Discussion
4.1 Experiment 1

The results of experiments 1 are shown in Fig.4. The top three columns show
the results of Cortex data, and the bottom three columns show the results of
Kidney data. From left to right, Accuracy, Specificity, and Sensitivity are shown,
respectively.

Blue represents the results when gene pair 1 was used for positive examples,
orange represents for gene pair 2a, and green represents when gene pair 3 are
input to the model. The graphs indicate that the accuracy increases in order
of gene pair 1, 2a, and 3 for all methods. It can also be seen that Specificity
and Sensitivity increased for RandomForest and GCN. Comparing the proposed
method (GCN) with the conventional method, the results for Accuracy are better
than those of SVM and about the same as those of Random Forest.
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Fig. 5. Results of experiment 2 (adult mouse cortex and kidney). Comparison of accu-
racy between training and test data separation strategy.

It was confirmed that the selection of only LR-pairs that are actually
expressed in the data as positive examples is an important one that affects the
accuracy of the model, and that LR-pairs that are expressed over a wide range
provide better quality training data.

4.2 Experiment 2

The results of experiments 2 are shown in Fig.5. The top three columns show
the results of Cortex data, and the bottom three columns show the results of
Kidney data. From left to right, Accuracy, Specificity, and Sensitivity are shown,
respectively. This experiment assesses the impact of the method of splitting the
training and test data on estimation accuracy.

Overall, the results tend to be worse when gene pair 2b is used than when
gene pair 2a is used. Looking at the Accuracy, we see that when gene pair 2a
is used, the results of RandomForest and GCN are about the same. In contrast,
when gene pair 2b is used, Random Forest’s accuracy drops by 1.5-2.0, while
GCN maintains a similar accuracy.

It is thought that when ligand or receptor A is included in the training
data, RandomForest learns by capturing the tendency of receptor or ligand that
interact with A in the training data, so it may be strong for a dataset such
as gene pair 2a, but weak for a dataset such as gene pair 2b. This could also
be considered a sort of information leakage in supervised learning, as warned
in the GCNG article. In contrast, GCN learns to understand the relationship
between interacting LR-pair, so it should be able to make predictions with similar
accuracy on a data set such as gene pair 2b. Thus, the GCN-based model can
make predictions with the same level of accuracy even for data containing ligand
and receptor that are not in the training set, indicating that our method has
high generalization performance.
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Fig. 6. Characteristics of LR-pairs in predicted patterns 0000 and 1111 (adult mouse
cortex)

4.3 Experiment 3

When the adjacency matrices created by Pattern 1, 2, 3, and 4 were used to
calculate Accuracy, Specificity, and Sensitivity, the results were similar for each
adjacency matrix (data not shown). However, in each adjacency matrix, the LR-
pairs that could be correctly predicted as positive examples were different, and
this was thought to be influenced by how the genes were expressed.

Therefore, we investigate the characteristics of the LR-pairs obtained with
the adjacency matrix of each pattern. Encode and demonstrate which patterns
of LR-pairs were successfully predicted and which pairs could not be predicted
using a binary sequence. The labels 0000 and 1000 are 4-bit numbers that repre-
sent the adjacency matrices (Pattern 1, 2, 3, and 4) starting from the top digit,
and are 1 if they can be predicted for each adjacency matrix and 0 if not. That
is, the label 0000 represents LR-pairs that could not be predicted correctly in
all adjacency matrices, and the label 1000 represents LR-pairs that could be
predicted correctly only in the adjacency matrix of Pattern 1.

To analyze characteristics from the expression of gene pairs, we compute the
correlation coefficient, Moran I, and the sum of the expression levels for the
LR-pairs that are correctly predicted as positive examples for each prediction
pattern. Moran I is a spatial autocorrelation measure characterized by the cor-
relation of signals between neighboring locations in space. A value of Moran I
close to 0 indicates that the expressed spots are distributed, and a value close
to 1 indicates that the expressed spots are densely packed.

Figure 6 shows the results of these plots. When considering the interaction
between “gene a”’ and “gene b”, “moran a” and “moran b” are the Moran I
of “gene a” and “gene b” for all spots, and a value close to 0 indicates that
the expressed spots are distributed, and a value close to 1 indicates that the
expressed spots are clustered. “count sum a” and “count sum b” are the sum of
the expression levels of “gene a and b” at each spot. “moran ab” is the moran
I between the expression of the two genes, and corr is the correlation coefficient
of the expression vectors of the two genes.

The label 0000 is a LR-pair that cannot be correctly predicted as a positive
example in all adjacency matrices and experimental results suggest that the
following two features may be responsible for the difficulty in prediction.

— Low expression of at least one of the genes
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Fig. 7. The actual spatial expression pattern of the LR-pair in the mouse cortex data.
Red circle indicates the expression level of gene A, while blue represents the expression
level of gene B. (Color figure online)

— No correlation between the two genes

Figure 7 shows the spatial expression patterns of the specifically identified
LR-pairs. The expression levels of 1111 shows strong expression of both genes
overall, whereas in the case of 0000, only one of the genes is expressed. From
label 1000, it seems that the model using the adjacency matrix Pattern 1 may be
better at predicting LR-pairs that have the characteristics described above that
make prediction difficult. The adjacency matrix of Pattern 1 is a unit matrix in
which each node is connected to only itself by an edge. The two characteristics
described above indicate a graph in which each node has few features and the
relationship between nodes is thin, and it is thought that convolution of such a
graph will reduce the feature values of each node, making prediction difficult.
On the other hand, since the adjacency matrix of Pattern 1 is a unit matrix, the
feature size after convolution is not so small, and it is thought that it tends to
predict better than others for graphs with the above features. Conversely, models
using the adjacency matrix of Pattern 1 tend to have difficulty predicting LR-
pairs for other expression patterns because they cannot account for adjacencies.
One advantage of the proposed method is that it can take into account LR-pair
features that are easily predicted by the adjacency matrix creation policy.

5 Conclusion

In this study, we proposed a method for estimating cell—cell interactions using
GCN, tailored to Visium data. This approach leverages more cost-effective spa-
tial transcriptomics data to predict interactions. We assessed the impact of differ-
ent configurations of the input adjacency and expression matrices on the model’s
predictions by experimenting with various patterns. Experiment 1 highlighted
that the strategy for constructing the training labels significantly influences
model accuracy. In Experiment 2, we demonstrated that our method consid-
ering spatial information effectively handles unknown ligands or receptors and
exhibits strong generalization capabilities. In Experiment 3, while changes in the
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adjacency matrix did not affect the overall accuracy, variations in the types of
detected LR pairs did arise due to different interaction styles. This suggests that
interactions occurring within the same cell or between adjacent cells, such as
autocrine or juxtacrine interactions, are better predicted using a compact adja-
cency matrix. Conversely, interactions between distant cells, such as paracrine or
endocrine interactions, tend to be more accurately estimated with graphs that
connect a broader range of areas.

Although some parameters, like the number of graph convolutions, were con-
sistent with those used in GCNG, their optimality for Visium data remains
uncertain; thus, re-evaluating these settings could enhance accuracy. Further-
more, some LR-pairs consistently predicted as negative across all adjacency
matrix configurations might actually represent undiscovered interactions, inves-
tigating which poses an important avenue for future research.
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Abstract. Natural products are substances produced by organisms in
nature and often possess biological activity and structural diversity. Drug
development based on natural products has been common for many
years. However, the intricate structures of these compounds present
challenges in terms of structure determination and synthesis, particu-
larly compared to the efficiency of high-throughput screening of syn-
thetic compounds. In recent years, deep learning-based methods have
been applied to the generation of molecules. In this study, we trained
chemical language models on a natural product dataset and generated
natural product-like compounds. The results showed that the distribu-
tion of the compounds generated was similar to that of natural products.
We also evaluated the effectiveness of the generated compounds as drug
candidates. Our method can be used to explore the vast chemical space
and reduce the time and cost of drug discovery of natural products.

Keywords: Natural product -+ Chemical language model + Deep
learning - Drug discovery

1 Introduction

Natural products derived from plants and microorganisms have garnered signifi-
cant attention for their beneficial properties and diverse biological activities [6,8].
These compounds are known for their complex structures and large molecular
weights. Because they are biosynthesized within living organisms, many of them
display potent biological activities and are often used as lead compounds in drug
development. Between 1981 and 2002, natural products accounted for over 60%
and 75% of the new chemical entities (NCEs) developed for cancer and infectious
diseases, respectively [22]. Moreover, approximately half of the drugs currently
available on the market are derived from natural products [7], underscoring their
vital role in drug discovery and development.

The unique molecular structures of natural products, which are rarely found
in synthetic compounds, contribute to their biological activity [8]. The golden
age of natural products drug discovery began in the 1940s with the discovery of
penicillin. Many drugs were discovered from microbes, especially actinomycetes
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and fungi, until the early 1970s. However, from the late 1980s to early 1990s,
new drug discoveries from natural products declined [25]. Pharmaceutical com-
panies began to withdraw from natural product research due to the emergence
of combinatorial chemistry and high-throughput screening (HTS), which allowed
for artificial creation of chemical diversity. Additionally, the complexity of natu-
ral product structures made synthesis and derivatization difficult, complicating
lead compound optimization [20,31]. Despite these challenges, natural products
have recently been reassessed and are once again gaining attention as valuable
resources in drug discovery due to their diverse structures and biological activi-
ties [25].

In recent years, advances in deep learning-based molecular generation have
been used for the discovery of novel pharmaceuticals [2]. This approach involves
the virtual generation of compounds on computers, with the aim of identifying
useful candidate molecules. However, because the training process typically uti-
lizes general chemical databases comprising relatively small molecules such as
PubChem [17], there are challenges to generate large and complex compounds
similar to natural products. Consequently, this limitation narrows the chemical
space that can be explored [15].

In this study, we propose a molecular generation model capable of producing
natural product-like compounds. By generating a group of molecules using a
model that has learned the distribution of natural products, we aim to facilitate
the search for lead molecules in drug discovery and reduce the costs of natural
product-based drug development.

A closely related previous study to this research is the work of Tay et al.,
who used a recurrent neural network (RNN) to generate natural products [33].
They trained an RNN equipped with LSTM units on natural products from the
COCONUT database [32] and developed a model capable of generating com-
pounds similar to natural products. They showed that the distribution of the
NP Score of the compounds generated was similar to that of the natural prod-
ucts in COCONUT. This study aims to create a more high-performance model
using Transformers compared to the approach of Tay et al., and further evaluates
whether the generated library is useful as a candidate for pharmaceuticals.

2 Methods
2.1 Fine-Tuning and Chemical Language Models

Fine-tuning language models is a technique that refines models, initially trained
on extensive datasets, to excel in particular tasks, tailoring them to specialized
requirements. In this study, we fine-tuned chemical language models using a nat-
ural product dataset. A chemical language model refers to a model that processes
string representations of molecules, e.g., simplified molecular-input line-entry
system (SMILES) [34] and self-referencing embedded strings (SELFIES) [18].
Examples of these string representations are shown in Fig. 1. We hypothesized
that since pre-trained models have already learned chemical structures, we can
efficiently construct a model capable of generating natural product-like com-
pounds.
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SMILES

0=C1€(0)=C(C(=0)C(0)=C1C2=CNC=3C=CC(=CC32)CC=C(C)C
)C4=CNC=5C=CC(=CC54)CC=C(C)C

SELFIES

[CILCI[Branch1][CICCI[=CILCILCI[=CI[CI[=CIINH1]LC]
[=C1[Branch2][Ring2][=N1[CI[=C1[Branch1][CIL0ILCIL
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Branch11[CI[0ILCI[Ring2][Ring1]1[#Branch11[=0][CI[R
ing2][Ring1]1[=NI[=CI[Ring2]1[Ring1][P]

Cochliodinol

Fig. 1. Examples of SMILES and SELFIES encoding (cochliodinol, a natural product
compound)

2.2 Dataset

We used the COCONUT database, which encompasses approximately 400,000
natural products [32]. As a preprocessing step, we standardized the SMILES
strings and removed large compounds (with an atom count greater than 150
or more than 10 rings). Subsequently, we employed a technique that enumer-
ates SMILES by randomizing the traversal order of the molecular graph [3],
augmenting the data by approximately nine times. The final dataset included
approximately 3.6 million entries and was used for the fine-tuning process.

2.3 Models
We selected pretrained models that satisfy the following criteria:

— It has been trained on a dataset of significant size.
— It is a decoder-only model that utilizes only the decoder of a transformer
architecture.

We selected two models, smiles-gpt [1] and ChemGPT [11]. The details of the
models are shown in Table 1. Both models used the PubChem-10M dataset [5]
for pretraining (smiles-gpt used the first 5 million molecules of PubChem-10M),
and their architecture is based on GPT. They differ in the molecular string repre-
sentation used: smiles-gpt employs SMILES, whereas ChemGPT uses SELFIES.

2.4 Training

We fine-tuned the models on the natural product dataset using the AdamW
optimizer [21]. The learning rate was set from 5.0 x 1074 to 5.0 x 1078 (using
a cosine annealing schedule) for smiles-gpt and 5.0 x 107° for ChemGPT. The
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Table 1. Pretrained models used in this study.

Model Molecular representation Pretraining dataset Architecture Number of parameters
smiles-gpt |SMILES PubChem-10M (first half)GPT-2 [28] |24.8M
ChemGPT|SELFIES PubChem-10M GPT-Neo [4]19M

batch size was set to 256 and 32 for smiles-gpt and ChemGPT, respectively.
Due to the lengthy nature of SELFIES and their substantial byte size, the use
of SELFIES in ChemGPT necessitated a reduction in batch size due to the
constraints imposed by GPU memory capacity. This training was conducted on
four GeForce RTX 3090 GPUs.

3 Results and Discussion
3.1 Evaluation of Generated Molecules

We calculated validity, uniqueness, novelty, internal diversity [26], and Fréchet
ChemNet Distance (FCD) [27] for the 100 million molecules generated and made
public in a previous study [33], as well as for the 100 million molecules generated
by fine-tuned ChemGPT and smiles-gpt.

— Validity: The ratio of valid molecules to the total number of generated
molecules. A valid molecule is one that can be parsed by RDKit [19].

— Uniqueness: The ratio of unique molecules to the total number of generated
molecules.

— Novelty: The ratio of molecules that do not exist in the COCONUT database.

— Internal diversity: The average pairwise Tanimoto similarity between the gen-
erated molecules, calculated using Morgan fingerprints with a radius of 2 and
1024 bits. This metric was calculated using MOSES [26].

— FCD: A metric of the distance between the distribution of generated molecules
and that of training dataset. A smaller FCD indicates that the set of generated
molecules are closer to the training data distribution.

The results are shown in Table 2. smiles-gpt achieved results close to those
of a previous study [33]. Compared to Tay et al., the smaller FCD suggests
that more compounds similar to natural products were generated, indicating
sampling from a smaller chemical space that is better adapted to the space of
natural products. In this respect, it has managed to generate compounds more
closely resembling natural products than the previous study.

ChemGPT exhibited high validity, which is believed to be due to the use of
SELFIES. However, the significantly large FCD indicates that the distribution
of natural products was not captured accurately. Although high uniqueness and
novelty are numerically positive outcomes, the magnitude of FCD suggests sam-
pling from a broader chemical space, resulting in the generation of compounds
that appear to be nearly random.
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Table 2. Values of metrics for the generated set of 100 million molecules.

Model Validity T/Uniqueness T|Novelty T|Internal diversity T|FCD |
Tay et al. [33] 0.904 0.753 0.998 0.885 1.794
smiles-gpt (fine-tuned) 0.903 0.663 0.996 0.873 1.290
ChemGPT (fine-tuned)/0.999 0.939 0.999 |0.882 14.28

3.2 Visualization of the Distribution in Physicochemical Space
of Generated Molecules

We visualized the distribution of molecules generated by the original and fine-
tuned models, along with COCONUT compounds, using t-distributed stochastic
neighbor embedding (t-SNE). We randomly selected 2,000 molecules from the
generated ones and embedded them in two dimensions using t-SNE based on
209 physicochemical descriptors for each molecule. For the calculation of the
descriptors, we utilized Descriptors.CalcMolDescriptors from RDKit. The
visualization results are shown in Figs.2 and 3.

From the smiles-gpt results in Fig. 2, it appears that the overall distribution
of the molecules has moved closer to COCONUT through fine-tuning. In con-
trast, as shown in Fig.3, ChemGPT still exhibits a different distribution from
COCONUT even after fine-tuning.

3.3 Distribution of Scores for Generated Molecules

We calculated the natural product-likeness score (NP score) [9] and the synthetic
accessibility score (SA score) [10] for molecules generated by the original model
and the model after fine-tuning, as well as for molecules generated in the previous
research by Tay et al., and compared their distributions with those of the natural
product data. Kernel density estimation was performed on the NP and SA score
data for each molecular library, and the results are plotted in Figs. 4 and 5.

The NP score is an index that measures the natural product-likeness of a
compound, calculated based on the frequency of occurrence of substructures in
natural products. The SA score is an index used to quantitatively assess the
synthetic accessibility of a compound, where a lower score indicates a greater
ease of synthesis.

smiles-gpt, through fine-tuning, has approached a distribution of both NP
scores and SA scores closer to those of COCONUT, whereas ChemGPT con-
tinues to generate compounds with a significantly different distribution from
COCONUT even after fine-tuning. Furthermore, in comparison to previous
research, the fine-tuned smiles-gpt is capable of generating compounds that are
closer to those in COCONUT, particularly in terms of SA score.

From the above results, it is evident that fine-tuned smiles-gpt can generate
compounds that are more reminiscent of natural products compared to fine-
tuned ChemGPT. Although it is difficult to make a definitive statement due
to differences in training conditions and model specifics, it is believed that the
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Fig. 2. t-SNE visualization of 2,000 molecules generated by the original and fine-tuned
models of smiles-gpt, along with molecules from COCONUT.
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Fig. 3. t-SNE visualization of 2,000 molecules generated by the original and fine-tuned
models of ChemGPT, along with molecules from COCONUT.
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distinction between SMILES and SELFIES plays a significant role. Although it
is advantageous that SELFIES are 100% valid, they appear to be a more verbose
and relatively less intuitive molecular representation compared to SMILES.

Comparative studies between SMILES and SELFIES have reported that
SMILES-trained models exhibit better performance [13,14]. Although the lower
validity of SMILES has been a concern, current language models have become
sufficiently adept at learning the syntax of SMILES. Gao et al. have pointed out
that the advantage of SELFIES being 100% valid is decreasing [13].

0.8
---- smiles-gpt (original)
0.7 | —— smiles-gpt (finetuned) /\
---- ChemGPT (original) i Y o\
0.6 | —— ChemGPT (finetuned) 7 /‘\\ \'
—— Previous Research v"‘ [v )
0.5 | — COCONUT 4
3 ' |
2 0.4
[
o
0.3
0.2
0.1
0.0

NPScore

Fig. 4. Kernel density estimation of NP scores for molecules generated by the original
and fine-tuned models of smiles-gpt and ChemGPT, compared with molecules gener-
ated in the previous research (Tay et al. [33]) and natural products from COCONUT.

3.4 Evaluation of Bioactivity Potential by Protein—Ligand Docking

The utility of the generated compound library as potential drug candidates was
evaluated through protein-ligand docking calculations with proteins. We evalu-
ated the viability of these compounds for pharmaceutical use from protein—ligand
interactions.

For the target protein, the epidermal growth factor receptor (EGFR) was
selected. Inhibition of EGFR has been reported to significantly suppress cancer
cell proliferation [23], and several EGFR inhibitors have been developed as phar-
maceuticals. Gefitinib and erlotinib are among the well-known inhibitor drugs.
In this experiment, the crystal structure of EGFR with PDB ID: 2ITY [36] was
used, which is the complex structure of EGFR and gefitinib.
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Fig. 5. Kernel density estimation of SA scores for molecules generated by the original
and fine-tuned models of smiles-gpt and ChemGPT, compared with molecules gener-
ated in the previous research (Tay et al. [33]) and natural products from COCONUT.

Initially, 1,000 molecules were randomly selected as ligands from those gener-
ated by the fine-tuned smiles-gpt. As indicated in the results above, because the
fine-tuned ChemGPT was unable to generate natural product-like compounds,
molecules generated by ChemGPT were not used for docking. Subsequently, the
ligands were prepared using Schrodinger LigPrep [30], and the generated 12,930
conformers were docked using Schrédinger Glide software version 2020-2 [12].

The distribution of GlideScores for each conformation obtained from the
docking is shown in Fig. 6. The GlideScore represents the predicted binding free
energy between a protein and a ligand, with lower values indicating stronger
binding. Although the GlideScore for gefitinib is —7.02 kcal/mol [24], there are
1,216 conformations with a better score than gefitinib, accounting for 9.8% of all
docked conformations. Among these, the lowest GlideScore was —11.51 kcal /mol.
This indicates that a significant number of compounds with docking scores that
are better than those of existing inhibitors have been generated.

Table 3 presents the top 10 compounds with the best GlideScores of the
1,000 compounds subjected to docking, together with the natural products of
the COCONUT database that exhibited the highest similarity to each of these
compounds. Although compounds with substructures similar to those of gefitinib
were generated, most have relatively complex structures. Furthermore, observing
similar natural products reveals that the model has successfully learned to build
scaffolds of natural products. Figure 7 shows the docking pose of the compound

with the best GlideScore.
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Fig. 6. Distribution of GlideScore for 12,930 docked conformations of 1,000 molecules
generated by fine-tuned smiles-gpt.

Furthermore, to verify whether natural product-likeness influences drug-
likeness, we calculated the similarity between the natural products and the com-
pounds subjected to docking and investigated the correlation. The Tanimoto
index of the ECFP4 fingerprint with a radius of 2 and 2,048 bits was used for
similarity measures. For the 1,000 compounds selected for docking, we calcu-
lated their mean similarity to all compounds in the COCONUT database and
depicted the relationship with the GlideScore in Fig.8. For compounds with
multiple stereoisomers, the one with the minimum GlideScore was chosen. The
Pearson correlation coefficient between mean similarity to natural products and
GlideScore was 7 = —0.313, indicating a modest correlation. From these results,
it can be inferred that compounds with a certain degree of natural product-
likeness tend to have better docking scores (although it should be noted that
there is a tendency for docking scores to improve as molecular weight increases
[29,37]).
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Fig. 7. Docking pose of the compound with the best GlideScore with EGFR.

r=-0.313

Min Glide Score (kcal/mol)

-10

-12

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Mean Similarity to COCONUT

Fig. 8. Relationship between the mean similarity with all compounds in COCONUT
and GlideScore for 1,000 molecules generated by fine-tuned smiles-gpt.
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Table 3. Structures of the top 10 compounds out of 1,000 compounds, based on
GlideScore in the docking experiment, and the natural products with the highest sim-
ilarity to those compounds

Structure Most similar natural product GlideScore (kcal/mol)

OH OH

1 —11.51
2 —10.63
3 —10.28
4 -9.99
5 —9.96
6 —9.96
7 —9.96
8 —9.96
9 —9.96
10 —9.96
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4 Conclusion

In this research, we fine-tuned a language model pretrained on a natural prod-
uct dataset to generate natural product-like compounds. We measured various
metrics for the molecules generated by the fine-tuned model and demonstrated
that they are closer to the distribution of natural products.

In the docking experiments with EGFR, we found that the molecules gener-
ated by the fine-tuned smiles-gpt model included viable drug candidates. This
illustrates the effectiveness of the language model developed in this research in
creating a collection of potential pharmaceutical candidate compounds.

Compared to the previous research by Tay et al. [33], we have been able to
create a model that generates compounds that are closer to natural products.
Furthermore, this study demonstrates the relationship between the similarity of
natural products and the potential utility as drug candidates, which distinguishes
it from the previous study. Moreover, there is a need to develop methodologies to
extract knowledge from functional structures, such as the potential bioactivity
of natural products. Visualization studies focusing on substructures [16,35] may
prove to be a valuable tool in this area.
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Abstract. The National Diet Library’s digital collection contains about
400, 000 valuable books from the Meiji period to the early Showa period.
The books are stored as image data and have not been converted into
text. Therefore, the use of information is limited. There are manual and
automatic methods of texting Early-modern Japanese printed book, but
manual methods cost a fortune. OCR is used for automation, but Early—
modern Japanese printed book’s characteristics reduce recognition rates.
Therefore, it is necessary to develop a character recognition method spe-
cific to Early-modern Japanese printed book. Collecting Early—modern
Japanese printed character is also manual, and it is difficult to collect
many characters evenly. In this paper, we propose a method to improve
Early-modern Japanese printed character recognition accuracy using
images generated from modern characters. CycleGAN is used to gener-
ate images of modern characters from modern characters. The generated
image is incorporated into train data to create a character recognition
model. The experiment showed that the recognition rate was improved
by using the generated image in train data.

Keywords: Deep Metric Learning + Early-modern Japanese printed
character recognition

1 Introduction

The National Diet Library [4] has published various books on the web as the
National Diet Library Digital Collection [9]. About 3.5 million of these books
exist as double page image data. There are 400,000 books published from the
Meiji period to the early Showa period. In Early-modern Japanese printed book,
there are not only books such as novels, but also books in various fields, such
as academic materials, in which you can learn about the culture of the time.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Many of these Early-modern Japanese printed book books are out of print and
are valuable books that are not available today. By storing such Early-modern
Japanese printed book as image data in digital collections, the possibility of
information loss due to theft or damage has been reduced. However, since the
storage format is image data and cannot be converted into text, information such
as content retrieval and reading out is not utilized. Against this background, a
textualization of Early—modern Japanese printed book is required.

There are two ways to text Early-modern Japanese printed book: manually
and automatically. When texting is performed manually, there is an advantage
that texting can be performed accurately. However, there are disadvantages such
as the huge cost of time and labor. Therefore, it is impractical to convert all
400, 000 books into text manually. On the other hand, when automatic texting is
performed, the disadvantage of manual texting can be eliminated. But automatic
texting also presents challenges. Modern books can be automatically texted using
optical character recognition (Optical Character Recognition, OCR). However,
it has been reported that the use of OCR for Early-modern Japanese printed
book reduces the recognition rate compared to the use for modern books [8]. It
is considered that this is due to the fact that Early-modern Japanese printed
character, which is included in Early-modern Japanese printed book, does not
have a uniform standard and that ink is blurred or snatched due to printing on
letterpress. For these reasons, a character recognition method specific to Early—
modern Japanese printed book is necessary for automatically texting Early—
modern Japanese printed book. Therefore, character recognition methods and
models specific to Early-modern Japanese printed book are being developed
[6,13].

It is necessary to prepare a large number and many character types of char-
acter images in order to realize Early-modern Japanese printed character recog-
nition with high accuracy and corresponding to many character types. However,
the current method for collecting character images is manual segmentation, and
it is impossible to collect character images in large quantities. There is also a dif-
ference in the frequency of characters. In Early-modern Japanese printed book,
it has been reported that characters with high frequency tend to cluster, while
characters with low frequency tend to cluster very poorly [3]. For these reasons,
it is impossible to prepare a large number and evenly distributed text image of
Early-modern Japanese printed book. This situation has become a challenge for
Early-modern Japanese printed character recognition to improve accuracy and
generalize.

In this paper, we aim to improve the accuracy of Early-modern Japanese
printed character recognition by compensating for the lack of Early-modern
Japanese printed character by character images generated from printed charac-
ters. In the proposed method, a character image generated from printed charac-
ters and an Early—modern Japanese printed character are combined to form a
train data. A character recognition experiment is performed using train data.
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2 Related Work

2.1 Early—Modern Japanese Printed Character Image Generation
Using CycleGAN

CycleGAN is an image transformation method using GAN(Generative Adversar-
ial Network) [14]. Generally, GANs have two neural networks called Generator
and Discriminator. By performing optimization while these two neural networks
compete with each other, it is possible to generate highly accurate images. In
CycleGAN, the two GANs are combined to capture the relationship between
domains, which is the set of unique features of an image for two data sets.
Therefore, in CycleGAN, it is possible to learn the features of two kinds of image
data sets which are different domains, respectively, and convert an image of one
domain into an image having the features of the other domain. Moreover, since
GAN is an unsupervised training method, correct answer data that is paired for
each image is not required when training CycleGAN. Therefore, in the research
on character recognition, generation of handwritten Japanese character image
[2] and style conversion [10] have been proposed. It also does not require paired
data for learning, making it very suitable for deep learning in areas where data
collection is difficult, and many studies have shown its effectiveness [1,12]. Using
such a CycleGAN, data expansion of Early-modern Japanese printed character
image is performed.

The flow of image generation is shown in Fig. 1. First, CycleGAN is used
to train the relationship between Early—modern Japanese printed character and
printed characters, and a trained model is created. The data used for training is
a 64 x 64 pixel grayscale text image of 1,200 characters each Thus, the charac-
teristics of each image and the relationship between domains can be grasped. In
addition, it is possible to find how the features of one domain can be converted
into the image of the other domain from the features of the captured image and
the relationship between the domains. Next, by inputting the printed character
into the trained model, an image in which the feature of the printed charac-
ter is converted into the feature of Early-modern Japanese printed character is
generated. Hereafter, Early-modern Japanese printed character is referred to as
“character O” and the generated image is referred to as “character M”. It can
be confirmed that the character M has features such as blurring and raspiness
peculiar to the character O while keeping the shape of the inputted printed char-
acter. A comparison with the character O also shows that the character M does
not completely reproduce a particular character O.

2.2 Early—Modern Japanese Printed Character Recognition Using
Deep Metric Learning

Deep metric learning is a method for evaluating the degree of similarity between
input data by comparing feature vectors for each input data after learning a
neural network for predicting multi—class classification. In deep metric learning,
a feature vector extracted by a neural network for predicting multi—class classifi-
cation is processed after extraction. This allows the neural network that predicts
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multiclass classification to identify things that could not be linearly separated. In
Early-modern Japanese printed character recognition using deep metric learning
[13], CNN (Convolutional Neural Network, CNN [7]) is used as a neural network
to predict multi—class classification. This is because the accuracy of character O
was as high as 95% or more in the previous study [13]. Based on this network,
deep metric learning layer is added to the final layer to achieve a more accurate
Early—modern Japanese printed character recognition. L2—constrained Softmax
[11] is used as deep metric learning layer. L2—constrained Softmax is a constraint
added to SoftMax Loss so that the L2 norm of feature extraction is a constant
a. As a result, the learning proceeds so that the cosine similarity of the feature
vectors becomes large in the case of the same class and small in the case of
different classes.

1 M WE f(xi)+by,
R _ = Z log c "
minimize M C erTf(Xi)+bj (1)

i=1 Zj:l
subject to  ||f (xi)|l, =, Vi=1,2,...M,

This is formulated as follows: (1). x; is the i~th input data, f(z;) is the
feature vector obtained through the neural network for multi—class classification,
M is the mini-batch size, and W; and b are the weights and biases set in the
last layer.

3 Method

In this section, we describe a method to generate a character M with character
O characteristics using CycleGAN and utilize it as a character recognition train
data. The flow of the proposed method is shown in Fig.1 and 2. The proposed
method is explained in two steps.
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3.1 Generation of Character Images that Imitate Early-Modern
Japanese Printed Characters

The first procedure, the generation of character M images, is described. Figure 1
shows the flow. First, CycleGAN training is described. The data sets used to
train CycleGAN are grayscale text images of 64 x 64 pixels each. Regarding
the font used for the image of printed characters, a previous study [5] found
that some fonts of printed characters cannot generate character M well, and the
shape of the characters is lost. A failure example is shown in Fig. 3. Therefore, the
fonts to be used for learning are limited to 41 fonts whose character shapes were
preserved in the previous study [5]. Table 1 lists fonts for printed characters. An
example of a printed character image and a character O image used for training
is shown in Fig.4. In addition, the type of characters for collecting printing
characters in each font shall be 2647 types which character O Image can collect.
In the printed character image used for training CycleGAN, 1,200 images are
randomly selected from them. Similarly, 1, 200 character O images are selected at
random. Because CycleGAN uses unsupervised training, there is no one-to—one
connection between characters across datasets. However, in the image generation
as in the existing research, the character types of both character image data sets
are common in order to simplify the data set creation. Next, character M image
is generated using the trained model of the created CycleGAN. The character
types to be generated are 2,647 types for which character O images exist. An
example of a generated character M image is shown in Fig. 5. The font of printed
characters to be input to the learned model shall be the same as the font used
for training.

3.2 Character Recognition

The second step, character recognition, is described. Figure2 shows the flow.
The model is trained by including character M image generated in the flow of
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Fig.1 in train data. Using the trained model, character O character recognition
is performed. The model for character recognition is the same as deep metric
learning used in the previous study [6] described in Sect. 2. Figure 6 shows the
configuration. There are three convolutional layers, each with a filter count of
(160, 320, 640). The filter size shall be (7 x 7,5 x 5,3 x 3) per layer. Deep metric
learning’s training combines character M and character O images into a training
dataset. The input image size is a grayscale text image of 64 x 64 pixels. This data
set is input, and a model is trained to recognize characters from each character
image. After completion of training, test data is inputted to the learned model
to recognize character O image.

4 Experiment

In this section, character recognition experiments are conducted using the gen-
erated character M to demonstrate the effectiveness of the proposed method.
First, we describe the dataset used for character O recognition using deep met-
ric learning. Next, we compare the results of training by changing the percentage
of character M to be included in the train data. The metric for comparison is
the recognition rate output from inputting character O into the trained model.

4.1 Dataset

Two types of character O and character M are used in the training dataset.
The character O image dataset consists of 6 types of character O. The character



Improved Early-Modern Japanese Printed Character 173

R

Fig. 5. Generated image example

Table 1. List of fonts for printed characters

A1l Gothic B New Go U

Arial Unicode MS Midashigo MB1

BIZ UD Gothic Kokutai

HGS Gothic E Shuei Nijimi Kaku Gothic Gold B
HGS Soei presence EB Shuei Nijimi Kaku Gothic Silver B
HGS Soei Kaku pop Shuei Nijimi Mincho L

HGS Mincho E Shuei Karafuto Mincho M

HG Round Gothic M-PRO  [Shuei Kaku Gothic Silver B
MigMix Shuei Round Gothic B

MS Gothic Shuei Mincho M

UD Digital Kyokasyotai NP-B|New Round Go H

Gothic MB101U Futo Go B101

Koburina Gothic W6 Chu Gothic BBB

Jun 34 Toppan Bunkyu Gothic DB

Soft Gothic U Toppan Bunkyu Midashi Mincho EB
Hiragino Kaku Go W9 Migu

Hiragino Kaku Go Orudo W6 |Meiryo

Hiragino Kaku Go Orudo W9 Ryumin U

Hiragino Kaku Gothic Std Ryumin Y20U

Hiragino Round Go W8 Ryumin Y30U

Hiragino Mincho W8

M image dataset consists of 41 types of character M. In each experiment, the
required number of types of character images are randomly extracted from these
datasets.

Four types of character recognition experiments will be conducted. In all
experiments, the test data shall be one type of character O not used in the train
data or validation data. In Experiment 1, 10 different experiments will be con-
ducted. In these experiments, we will check the change in recognition rate due
to the change in the ratio of character O to character M in the train data. The
data to be used is shown in Table 2. In Experiment 2, eight different experiments
will be conducted. In these experiments, we will check the relationship between
the number of train data and the recognition rate when there is enough char-
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Fig. 6. Deep Metric Learning Structure

acter O. The data used in Experiment 2 are shown in Table 3. In Experiment
3, eight different experiments will be conducted. In these experiments, we will
check the relationship between the number of train data and the accuracy of the
recognition rate when the number of character O is inadequate. The data used in
Experiment 3 are shown in Table 4. In Experiment 4, eight different experiments
will be conducted. Among these experiments, we will check the relationship
between the number of train data and the accuracy of the recognition rate when
character O is not present. The data used in Experiment 4 is shown in Table 5.

4.2 Experiment Result and Discussion

We discuss the results of the experiments. First, the results of Experiment 1 are
shown in Fig. 7. In Experiment 1, we checked the change in the accuracy of the
recognition rate due to the change in the ratio of character O to character M in
the train data. The highest recognition rate is 93.43%, and the highest recogni-
tion rate is when the ratio of character M in the train data is 0%. The recognition
the accuracy of the recognition rate decreased as the ratio of character M in the
train data increased. Therefore, when the train data is 4 pieces per character
type, character M is considered to be an obstacle to training. Similarly, even
when the validation data is for character M instead of character O, the ratio of
character M in the train data decreases as the ratio of character M in the train
data rises. However, when comparing the case where the validation data is char-
acter O and the case where the validation data is character M within the same
ratio, the accuracy of the recognition rate in the case of character M exceeds
that in the case of character O in 25%, 50%, and 75% of the cases. Therefore,
when the ratio of character M is high, it is more effective to use character M for
validation data.

Next, the results of Experiment 2 are shown in Figure8. In Experiment 2,
we checked the relationship between the number of train data and the accuracy
of the recognition rate when the character O is sufficiently present in the train
data. The highest accuracy of the recognition rate was 97.81%, and the highest
recognition rate was achieved when the number of train data was 34 pieces per
character type. The highest accuracy of the recognition rate in Experiment 1 was
93.43%, and the accuracy of the recognition rate increased as the number of train
data increased. The results of Experiment 2 also show an increase in training
data and the accuracy of the recognition rate. Experiment 1 shows that an
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Table 2. Dataset used in Experiment 1

Experiment No. |dataset train datalvalidation dataftest data
Experiment 1-1 |character O 4 1 1
character M|- - -
Experiment 1-2 |character O |3 1 1
character M|1 - -
Experiment 1-3 |character O|2 1 1
character M|2 - -
Experiment 1-4 |character O |1 1 1
character M|3 - -
Experiment 1-5 |character O |- 1 1
character M4 - -
Experiment 1-6 |character O |4 - 1
character M- 1 -
Experiment 1-7 |character O3 - 1
character M|1 1 -
Experiment 1-8 |character O |2 - 1
character M|2 1 -
Experiment 1-9 |character O |1 - 1
character M|3 1 -
Experiment 1-10|character O |- - 1
character M4 1 -

increase in the ratio of character M in the train data hinders training. However,
from Experiment 2, it can be said that a large increase in the overall number of
train data by utilizing not only character O but also character M is effective in
improving the accuracy of the recognition rate. However, when the number of
character M in the train data becomes 40, the recognition rate decreases both
when the validation data is character O and when the validation data is character
M. This is believed to be due to the fact that the ratio of character O in the
train data is too low. Therefore, we can see that the number of train data should
be watered down below a certain level. Furthermore, a comparison is made for
each validation data. In the experiments with 20 or more pieces of character M,
the accuracy of the recognition rate when the validation data is character M
is higher than the accuracy of the recognition rate when the validation data is
character O. Therefore, similar to the results of Experiment 1, the results show
that it is more effective to use character M as the validation data when training
data that contains a large number of character M.

Next, the results of Experiment 3 are shown in Fig.9. In Experiment 3, we
checked the relationship between the number of train data and the accuracy of
the recognition rate when the number of character O in the train data is insuffi-
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Table 3. Dataset used in Experiment 2

Experiment No. dataset train datalvalidation dataftest data
Experiment 2—1|character O |4 1 1
character M|10 - -
Experiment 2-2|character O |4 1 1
character M|20 - -
Experiment 2-3|character O |4 1 1
character M|30 - -
Experiment 2—4|character O |4 1 1
character M40 - -
Experiment 2-5|character O |4 - 1
character M|10 1 -
Experiment 2—-6/character O |4 - 1
character M|20 1 -
Experiment 2—-7/character O |4 - 1
character M|30 1 -
Experiment 2-8|character O |4 - 1
character M|40 1 -
Table 4. Dataset used in Experiment 3
Experiment No. dataset train datalvalidation dataltest data
Experiment 3—-1|character O |1 1 1
character M|10 - -
Experiment 3-2|character O |1 1 1
character M|20 - -
Experiment 3-3|character O |1 1 1
character M|30 - -
Experiment 3-4|character O|1 1 1
character M|40 - -
Experiment 3-5|character O |1 - 1
character M|10 1 -
Experiment 3—6|character O |1 - 1
character M|20 1 -
Experiment 3—7|character O |1 - 1
character M|30 1 -
Experiment 3-8|character O |1 - 1
character M|40 1 -
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Table 5. Dataset used in Experiment 4

Experiment No. dataset train datalvalidation dataftest data
Experiment 4—1|character O |1 1 1
character M|10 - -
Experiment 4—2|character O |1 1 1
character M|20 - -
Experiment 4-3|character O|1 1 1
character M|30 - -
Experiment 4—4|character O|1 1 1
character M|40 - -
Experiment 4-5|character O|0 - 1
character M|10 1 -
Experiment 4-6|character O|0 - 1
character M|20 1 -
Experiment 4-7/character O |0 - 1
character M|30 1 -
Experiment 4-8/character O |0 - 1
character M|40 1 -

cient. The highest accuracy of the recognition rate was 94.90%, which is better
than that of Experiment 1. Therefore, even when the number of character O in
the train data is insufficient, the accuracy of the recognition rate can be main-
tained by using character M. As in the previous experiments for the validation
data, the recognition rate when the validation data is character M is higher than
the recognition rate when the validation data is character O. And the difference
between the recognition rate when the validation data is the character M and
the recognition rate when the validation data is the character O is larger than in
Experiment 1 and Experiment 2. Experiment 3 is a dataset with a particularly
low ratio of character O in the train data compared to Experiments 1 and 2.
Therefore, using character M as the validation data when the ratio of character
O in the train data is low contributes to the improvement of the accuracy of the
recognition rate.

Finally, the results of Experiment 4 are shown in Fig. 10. In Experiment 4,
we checked the relationship between the number of train data and the accuracy
of the recognition rate when character O is not present in the train data. The
highest accuracy of the recognition rate was 87.99%. Compared to Experiment
1, in which the ratio of character M in the train data was 100%, the accuracy of
the recognition rate was improved. Therefore, it can be said that increasing the
number of character M is effective in improving the accuracy of the recognition
rate. However, compared to the accuracy of the recognition rate in Experiments
2 and 3, the accuracy of the recognition rate in Experiment 4 is lower and



178 N. Koiso et al.

Experiment 1
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Fig. 8. Experiment2 result

cannot be said to be sufficiently accurate. When the number of characters M
in the train data is less than 30, the recognition rate when the validation data
is character O is higher than the accuracy of the recognition rate when the
validation data is character M. This is due to the fact that character M is not
a perfect reproduction of character O. Therefore, it is thought that the learning
process is progressing so that the use of character O in the validation data does
not depend too much on the characteristics of character M. However, when there
are 40 pieces of character M in the train data, the accuracy of the recognition rate
is higher when the validation data is character M. This is because the number of
pieces of training data has increased. This is thought to be due to the fact that
more features can be trained by increasing the number of pieces of train data.
Through Experiments 1 through 4, it was found that by using the character
M, the accuracy of the recognition rate is equivalent to the case where there
are six copies of the character O per character type, even when there is only
one copy of the character O per character type. Currently, there are only 2,647
character types for which six copies per character type can be collected. Thus,
the range in which character recognition can be performed while maintaining the
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Experiment 3
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accuracy of the recognition rate is very small. Therefore, it is expected that the
range in which only one piece of character O can be collected will be expanded
and recognition can be performed for more character types. Even if character
O is not present at all in the train data, the accuracy of the recognition rate
of the recognition rate is not significantly reduced. Therefore, it is believed that
character recognition can be performed using character M even for character
types for which character O has not been collected.

5 Conclusion

The proposed method combines images of characters generated from printed
characters and character O to create a model for character recognition using
train data. The method uses CycleGAN to generate an image of the character
M, which is converted from a printed character to the character O. Then, the
image of the character M is combined with the image of the character O, which
is converted from a printed character to the character M. Next, the character M
and character O are combined and trained.
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To confirm the effectiveness of the proposed method, four experiments are
conducted. Experiment 1 shows that the accuracy decreases as the percentage
of character M in the train data increases. In addition, when the proportion of
character M in the train data is high, the accuracy of the recognition rate tends
to increase when the validation data is character M. Experiment 2 showed that
when the character O is sufficiently present in the train data, the number of
train data increases and the accuracy of the recognition rate improves. However,
if the ratio of character M in the train data is too high, the accuracy of the
recognition rate decreases. As in Experiment 1, when the ratio of character M
in the train data is high, the recognition rate tends to increase when the valida-
tion data is character M. Experiment 3 showed that even when the number of
characters O in the train data is insufficient, the accuracy of the recognition rate
can be maintained by utilizing the character M. Experiment 4 showed that even
when there is no character O in the train data, the accuracy of the recognition
rate can be improved by increasing the number of character M. The accuracy
of the recognition rate is lower than in Experiment 1, but not significantly so.
The validation data also showed that the use of character O in the validation
data improves the accuracy of the recognition rate. The four experiments con-
firmed that the use of character M is effective in improving the accuracy of the
recognition rate. It was also shown that the use of character M can improve the
accuracy of the recognition rate even when the number of character O in the
train data is insufficient.

Disclosure of Interests. The data used in the paper will be available upon request.
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Abstract. In this study, we improved a similar music-recommendation
method. A similar music recommendation method using the Spotify API
was proposed as a music retrieval method. The baseline method com-
putes the Euclidean distance between the audio features obtained from
the Spotify API. In this method, the normalization of the obtained audio
features and validation of the features used were insufficient. Therefore,
in this study, we improved this method by adopting normalization, audio
feature selection, and similarity computations based on cosine similar-
ity. It was verified through experiments that the method of normalizing
appropriate features by adopting the min—max method and computing
similarity using the Euclidean distance was effective.

Keywords: Euclidean distance - cosine similarity - audio feature -
Spotify API - normalization

1 Introduction

In recent years, the number of music streaming service users has increased.
According to statistics from the Recording Industry Association of Japan, in
2013 the audio record market had sales of $1238 million [1] and the music dis-
tribution market had sales of $257 million [2]. In 2022, the audio record market
had sales of $838 million [1] and the music distribution market had sales of $700
million [2]. Comparing sales in the music distribution market in 2022 to those
in 2013, sales increased by approximately 2.5 times, indicating that the main-
stream music market is shifting to the Internet. To further expand the music
market, a similar music recommendation method was proposed [3]. A similar
music recommendation method that uses Euclidean distance to compute sim-
ilarity based on multiple audio features obtained from the Spotify API was
proposed!-2. However, in [3] neither a validation of the combination of audio

! Spotify, https://open.spotify.com/?.

2 “Web APT”, Spotify for Developers, https://developer.spotify.com/documentation/
web-api.
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features nor user experiments was conducted. In this study, we improved a simi-
lar music-recommendation method. In the improved method, normalization was
adopted for the audio features obtained from the Spotify API, an appropriate
combination of audio features was determined, and similarity computation was
based on cosine similarity. Additionally, a comparison based on a questionnaire
survey was conducted.

2 Similar Music Presentation Method

In (3], a similar music presentation method was proposed to support a music
search as a search that does not require metadata in the search query.

In [3], 3738 tracks from the Spotify API, a music distribution service, were
used. Only music that satisfied the following conditions was used:

— 7 genres.
— Japan marketplace.
— Tracks formatted MP3.

The genres can be obtained using the Spotify API?. The target genres were
acoustic, anime, j—dance, j—idol, j—pop, j—rock, and techno.

Based on audio features obtained using the Spotify API, 9 evaluation indices
were defined.

F'1 danceability

F'2 acousticness

F3 energy

F4 instrumentalness
F'5 liveness

F6 loudness norm
F'7 speechiness

F'8 tempo_norm
F9 valence

F'1 describes the suitability of a track for dancing based on a combination of
musical elements. The confidence in F2 is measured to determine whether the
track is acoustic. F'3 represents a perceptual measure of intensity and activity.
F4 predicts whether a track contains no vocals. F'5 detects the presence of an
audience member during the recording. F'6 is the normalized values of loudness,
in which the overall loudness of the track is in decibels (dB). F'7 detects the
presence of spoken words on a track. F'8 is the normalized values of tempo, in
which the overall estimated tempo of a track is in beats per minute (BPM). F'9
describes the musical positivity conveyed by the track.

3 “Web APT", Spotify for Developers, https://developer.spotify.com/documentation/
web-api.
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Fig. 1. Distribution for each Fj.

For similarity, F'1-F'9 are defined as the vector values of the music, and the
distance between the vectors is computed using the Euclidean distance.

d( X, X;) = \/(%(m) - xi(m))Q + -+ (To(ro) — xi(FQ))2a

where d( X,, X;) denote the similarity, X, and X, are vectors representing
the given music and other music, respectively. Vector X, is represented by
X; = ( Ti(F1), > Ti(F9) ) where x;r;) contains the value of the evaluation
index F'j.

3 Preliminary Investigation
3.1 Distribution of Music in the Spotify

In this study, 3738 tracks of music from the music distribution service Spotify
were targeted, as in [3]. The evaluation indices F'j for these tracks of music were
used to confirm the distribution.

Figure 1 presents a histogram of the distribution for each F'j. In the his-
togram, the vertical and horizontal axes represent the number of music pieces
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and the numerical value of F'j, respectively. The horizontal axis has a step
width of 0.05. From Fig.1, it can be confirmed that F6(loudness norm) and
F8(tempo_norm) are normalized. F'1(danceability) and F9(valence) were close
to a normal distribution. We confirmed that F2(acousticness), F3(energy),
F4(instrumentalness), F5(liveness), and F7(speechiness) were biased. In par-
ticular, F2(acousticness), F4(instrumentalness), and F7(speechiness) contained
large amounts of music in their histograms. These evaluation indices were unsuit-
able for numerical comparisons.

3.2 Questionnaire Survey
Concept. A questionnaire survey was conducted to confirm the effectiveness of
similar music-recommendation methods. The survey was conducted online, and
questionnaires was performed.

The questionnaire used 10 music obtained using a similar music recommen-
dation method. The user then ranked the 10 pieces of music. The number of
respondents was 40.

Results. As a major key, SLOVER” [4] was used.

Table 1. Result of the questionnaire surveys for the major key.

1 2 3 4 5
T opzE B*¥=54F [REAEY v | |Fantasista &1

6 T 8 g 10
dives T 21N EBED 37| &£ B

Table 1 presents the result of the questionnaire surveys for the major key.
The music titles were written in Japanese. The numbers in lines 1 and 3 of
Table 1 shows the rankings. The rankings were colored based on the color circle
to provide an intuitive impression of the ranking. 1st, 4th, and 7th—ranked music
were assigned red, yellow, and blue, respectively.

Table 2. Color coding of the keys in Table 1

1 2 3 4 5
Tz BEfa54F [REZEY v +|Fantasista &

6 71 8 g 10
dives o i N MEBED I 7=| L Birdh

Table 2 presents the result of the color coding of the major key in Tables 1.
Orange and blue represent major and minor keys, respectively. From Tables 2,
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the music in the major key is often the same as the given music. However, it
can be confirmed that music in the opposite key is also selected. Therefore, it is
believed that users do not judge music similarities based on their keys.

Friedman’s Test. Friedman’s test [5—7] was performed on the questionnaire
results to test the significance of the rankings of several persons. The procedure
for computing Friedman’s test includes the following steps:

1. The rejection limit xo? is computed based on Eq. (1):
Xo® = 72Ri2—3m(n+1) (1)

2. Because yo? follows x2 distribution with n — 1 degrees of freedom, compute
the upper probability p value from the chi-square distribution table.

Here, R? indicates the rank sum of music i, where m is the number of respondents
to the questionnaire, and n is the number of tracks.

For the major keys, p < 0.01 because the number of responses is 40 and
x? = 84.5. Hence, this result is significant at the 1% level. Therefore, Friedman’s
test allows us to treat the rank order of the survey results in ascending order of
the rank sum of all responses.

4 Proposed Method

In this study, three improvements were made to increase the accuracy of similar
music. The first step was the normalization of each similarity index. Only F'6 and
F'8 have already been normalized values [3]. The second step was the selection
of appropriate indexes to be used in the similarity computation. The third step
was the introduction of different similarity formulas.

4.1 Normalization

In the computation of similar music, Euclidean distance was used for each F'j. In
the Euclidean distance, when a certain F'j was biased, the difference decreased.
Therefore, its influence was small. To avoid this problem, normalization was
adopted for each F'j.

Normalization methods have different advantages. In this study, the following
3 normalization methods were used for improvement:

— min—-max Method
— Normalization using the log method
— Normalization to round numbers outside the standard deviation 3o
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Min—Max Method. The min-max method was used to scale-transform the
minimum value of the data to 0 and the maximum value to 1. The min—max
method is susceptible to outliers, which means that the presence of outliers can
prevent the data from achieving a normal distribution even after normalization.

Normalization Using the Log Method. In normalization using the log
method, value z;(p;) was first log-transformed. The min-max method was then
adopted for the log—transformed values. The log method is effective for approx-
imating a normal distribution for data that follow a lognormal distribution. A
log—normal distribution has a characteristic that rises sharply from the left side
to the mode and becomes smoother as it moves to the right.

Normalization Using Standard Deviation. In the method with standard
deviation o, the standard deviation of the data was computed and the values
outside £+ 30 of the mean p of the data were rounded. After rounding off the
values outside p £+ 30, the data were normalized using the min-max method. The
amount of data within the range of p+ 30 was approximately 99.7%. Therefore,
it is possible to mitigate the effects of outliers by rounding the data outside this
range.

4.2 Method of Selecting Evaluation Indicators

The greater the number of evaluation indices adopted for the similarity com-
putation, the more computationally expensive it becomes. Additionally, if the
normalization does not follow a normal distribution and the bias is large, it is
not appropriate as an evaluation index for use in similar music recommendation
methods. In [3], 9 evaluation indices were employed. This section describes the
evaluation indices that should be removed. We also discuss whether the audio
features obtained from the Spotify API, which are numerical values, should be
added.

Evaluation Indicators to be Deleted. From Fig. 1, some evaluation indi-
cators exhibited biased distributions regarding their numerical values. Specif-
ically, F2(acousticness), F3(energy), F4(instrumentalness), F5(liveness), and
F7(speechiness) exhibited a greater bias. Highly biased indices have less impact
on similarity computation. Therefore, if possible, they should be removed from
the evaluation indices adopted for the similarity computation to reduce the com-
putational cost.

Evaluation Indicators to be Added. The similarity—computation method
uses audio features that can be numerically expressed among the audio fea-
tures obtained by the Spotify API. Therefore, all the features that can be
expressed numerically should be added to the similarity computation. However,
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as described in Sect. 4.2, when the number of songs is highly skewed, or if the
songs can be set as a selection category, they should not be added.

In the Spotify API, the only other music feature expressed numerically is the
mode. The mode indicates the modality (major or minor) of a track and the type
of scale from which its melodic content is derived. The major is represented by
1 and the minor by 0. Hence, all tracks were 0 or 1.

Table 2 implies that the overall ranking was independent of the key but not
completely unaffected by the tune. When mode was used for similarity computa-
tion, the similarity of music in the same key was higher. Basically, the influence
of the key is significant. However, this depends on the sensitivity of the user.
Therefore, mode should not be added to the similarity computation.

4.3 Similarity Computation Using Cosine Similarity Method

A similar music recommendation method uses the Euclidean distance because it
considers each F'j as an independent relation. However, it is impossible to prove
that there is no relationship between F'j. Therefore, in this section, the similarity
computation was performed using cosine similarity. Cosine similarity computes
the similarity of the vector orientations. Therefore, the similarity between X,
and X; is examined using Eq. (2).

2 Fj To(Fj)Ti(Fj)

)= :
2 2
\/ZFj xo(Fj)\/ZFj Li(rj)

cos (X ,, X; (2)

Table 3. Music recommendation with and without the normalization method.

denormalization normalization
Max-Min log 3o

1[EEe== BT DZE Lo ZE T D ZE
2| & L L) BT
3BAFaFAF (BAF2FAHBEAFFAH|E
Al =4 Hisa Bl e [ O = R i
5|KICK BACK gives IEBIED S 7| E BTED S 7
6| gives & S HHE gives gives
7|Fantasista MWEHBTEDS =& B HE F S¥HhHE
8| &k B H Who I Am Who | Am Who | Am

2¥| Clock Strikes |Grab the air forbidden lover
10|/h &= FED 5 7= [RERAEY ¥ F |Clock Strikes  |Grab the air
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Table 4. Comparison between using 9 F'j and using 6 F'j.

denormalization normalization
Max-Min log 30
number of 9 5 9 6 9 6 9 6
indicators
1 [=2= Ho= To= O] Tz Toz To= To=
2] ] ] ] @ & EaZ 3
3%%;7%4% KICK BACK B+ = > = 1 F|KICK BACK B*¥ar>4F (BA%¥ar>4F (@& Bt
4“}‘/7—4 | "EIEDZ R G b 2 B¥a2rSqak|Hr5Fqa Yy BM¥ar54F+ |B*254F
5 KICK BACK Fantasista gives Fantasista hELTD S 7 Fantasista INEBTD ST Fantasista
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7 Fantasista & B 27| & B € W& BTED S 7
8 L BehE gives Who | Am gives . ——— 27
9 2 R Clock Strikes 2T Grab the air forbidden lover |%Y®S
T s s e
10|nesmosn |[F377E R |+ 37T Clock Strikes  |BV€® Grab the air RIS

Table 5. Euclidean distance and cosine similarity for major key.

Euclidean distance Cosine Similarity
denorma- normalization denorma- normalization
lization |Max-Min|log 30 lization |Max-Min |log 3o
1[F2= o= Tz o= e oz o= Sz
2@ L3 L3 L3 B*¥a 54 [B¥arSaF P B*¥arS4F
inoccio
3 KICK BACK KICK BACK R A b e KICK BACK KICK BACK Fetish i
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T gives L=y =y EL2UDTS
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5 Experiments

To verify the effectiveness of improvements described in Sect. 4, we perform
three experiments. In the experiments, 3738 pieces of music were obtained from
Spotify. As a major key song, “LOVER” [4] was given.

The first experiment examined the effects of normalization. Therefore, simi-
larity computations were performed for each F'j before and after normalization
using the min-max method, log method, and 3¢ of the standard deviation. The
second experiment examined the evaluation indices that should be used in sim-
ilarity computations. Specifically, we compared the results obtained using nine
evaluation indices with those obtained using six indices. The third experiment
compared Euclidean distance and cosine similarity. Similarity computations were
performed using six evaluation indices.

Table 3 lists the top 10 music recommendations with and without the normal-
ization method. Here, the coloring is the same as the colored circles in Table 1.
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From Table 3, music recommendation with normalization differs from that with-
out normalization in the 8th and higher positions. Moreover, different types of
music were considered similar, even when using different normalizations. This
may be because the normalization improves the bias of each F'j.

Table 4 lists the top 10 music recommendations when F'1 to F'9 were used and
when six F'j excluding F2, F'4, and F'7 were used. From Table4, it can be con-
firmed that there was less change in the ranking of the music recommendations
in both cases. Further, the music included in the questionnaire was more likely
to be recommended when six F'j were used for the music in the case of normal-
ization. Hence, F'1(danceability), F3(energy), F5(liveness), F6(loudness norm),
F8(tempo_norm), and F9(valence) should be used for the similarity computa-
tion. In this case, by normalizing each F'j, the ranking became similar to the
questionnaire ranking presented in Table 1.

Table 5 lists the results for the major key. The major keys are listed in Table 5
and the music ranked second in the questionnaire was ranked lower only when
the log method of cosine similarity was adopted. The music ranked 3rd was not
recommended by the log method of cosine similarity. The music ranked 4th was
not recommended for the log method of cosine similarity and 3o. The music
ranked 5th was ranked 2nd for Euclidean distance, whereas it was ranked lower
for the cosine similarity. The 7th and 8th ranked music were highly recommended
by the log method and 3c0. Based on Table5, for a given music with a major
key, the cosine similarity recommends the top—ranked music in the questionnaire,
which is not recommended by Euclidean distance. Furthermore, cosine similarity
was valid because the music ranked 5th in the questionnaire was reduced to the
appropriate rank. However, when focusing on the relationship with the overall
ranking, the Euclidean distance was more similar to the questionnaire results
and was considered superior to the cosine similarity.

Thus, it is appropriate to compute the similarity based on the
Fuclidean distance by adopting normalization using the min-max method.
In this case, F'1(danceability), F3(energy), F5(liveness), F6(loudness mnorm),
F8(tempo_norm), and F9(valence) were adopted for similarity computation.

6 Conclusion

In this study, we improved a similar music recommendation method using the
Spotify API by employing normalization, appropriate F'j selection, and cosine
similarity. A questionnaire-based survey was conducted to confirm the effec-
tiveness of these improvements. We compared the rankings obtained from the
questionnaire survey with the results obtained through the improvements. The
experimental results show that normalization makes the recommended results
closer to the perception of the user. For the similarity computation, six types
of F'j were sufficient. It is also more appropriate to use the Euclidean distance
instead of the cosine similarity.
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Abstract. In recent years, hardware acceleration in large-scale com-
puting fields such as Artificial Intelligence and High Performance Com-
puting, faces hardware resource shortages. To overcome this problem,
we propose Reconfigurable Virtual Accelerator (ReVA), which allows a
large-scale acceleration circuit built using multiple FPGAs, processors
and memory subsystems, to accelerate application programs.

We have designed and implemented a prototype of Virtual Acceler-
ator (VA) Generator for ReVA to investigate its performance. The VA
Generator prototype employs an open-source HLS automated split com-
pilation tool, RapidStream, to automatically generate placed-and-routed
virtual accelerators that can be implemented on multiple FPGAs based
on HLS dataflow designs. The VA Generator, which places VAs on the
appropriate regions of FPGAs, allows large circuits to be performed like
a single accelerator using several FPGAs. In addition, RapidStream’s
parallel compilation technology allows the VA Generator to suppress the
increasing compilation time according to the circuit size. Moreover, with
our VA Generator prototype we have built and evaluated a VA of a
large-scale circuit which cannot be fit in a single FPGA with multiple
FPGAs.
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1 Introduction

Hardware acceleration using field-programmable gate arrays (FPGAs) is com-
monly utilized in fields that require significant volumes of computations, such
as artificial intelligence (AI) and high performance computing (HPC). However,
this is affected by the growing scarcity of FPGA resources.

One of the main reasons behind this problem is the rapid development in the
AT and HPC fields that, besides leading to remarkable achievements, has increased
the demand for fast computation and data-processing in these fields [11].

This trend has been exacerbated by the widespread adoption of high-level
synthesis (HLS). Traditionally, digital circuits used in FPGAs are designed at
the register transfer level (RTL) using a hardware description language (HDL).
However, designing a circuit in HDL is expensive and requires users to have
prior knowledge on hardware. This problem is commonly solved by converting
programs written in high-level languages (HLLSs), such as C, into ones written in
HDL using HLS. This enables users to design circuits in HLL, which is easier to
debug and design in than HDL, thereby reducing development costs. This allows
software programmers with no knowledge of hardware details to design circuits
using HLS tools, address the increase in the number of software programmers
attempting to use hardware acceleration in personal AI use and development.
However, circuits implemented using HLS tend to require more resources than
those implemented using HDL directly. This restricts the use of HLS in the
implementation of large circuits.

To overcome this problem, we propose Reconfigurable Virtual Accelerator
(ReVA) [8], which integrates multiple FPGAs, processors, and memories, and
operates them like a single high-speed computer. ReVA constructs and operates
hardware accelerators on FPGA clusters to enable large-scale hardware acceler-
ation.

In this study, we propose a VA Generator prototype that supports HLS
and circuit distribution for ReVA. It employs an open-source HLS automated
split-compilation tool called RapidStream [5]. The circuit-partitioning method
and flow of RapidStream are extended by adding new functions to realize the
functions of the VA Generator. In particular, the following steps are followed.

1. The input HLS sources are synthesized.

2. The regions on the FPGA cluster are optimized and the circuit is distributed
to these regions using integer linear programming (ILP).

3. The distributed circuits for each FPGA are compiled.

4. The placed-and-routed design checkpoint (DCP) files are obtained as output.

In addition, multi-FPGA accelerators are constructed and evaluated for
large-scale application programs that do not fit into a single FPGA using the
proposed VA Generator prototype.

The reminder of this paper is organized as follows, ReVA is introduced in
Sect. 2. ReVA is discussed in comparison with other researches on circuit parti-
tioning and RapidStream is introduced in Sect. 3. The VA Generator prototype
is discussed in Sect.4 and experiments on it are reported in Sect. 5. Finally, the
paper is concluded Sect. 6.
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2 Reconfigurable Virtual Accelerator (ReVA)

ReVA integrates multiple FPGAs, processors, and memories to accelerate large
software applications. It automatically implements accelerators on multiple
FPGAs, and includes HLS compilation, circuit placement, routing, and exe-
cution using accelerators. This enables users to execute their software programs
rapidly by simply inputting them into a ReVA system without knowledge of
hardware acceleration. It is particularly relevant for users who are concerned
about the resource limitations of FPGAs.

2.1 ReVA Structure

ReVA uses a network of interconnected FPGAs, processors and memories. ReVA
operates these devices appropriately using the following functions to achieve
hardware acceleration (Fig. 1).

Sharing Distributed Circuits. In ReVA, acceleration circuits are implemented
on a single FPGA or across multiple FPGAs in a network to utilize additional
hardware resources. Processors in the ReVA system can use the circuits virtually
as a single accelerator, even if they consist of multiple modules across multiple
FPGAs to hide inter-FPGA boundaries. These circuits are called Virtual Accel-
erators (VAs). The VAs are distributed and shared, thus, this mechanism is
called Distributed Shared Logic (DSL).

Sharing Data with Distributed Shared Memory (DSM). ReVA uses a single vir-
tually shared address space called DSM. The data used in ReVA are stored in
DSM, which is accessible by each processor and VA.

Dynamic Placement of VAs and Data on the DSM. VAs and data on the DSM
can be moved on the DSL and the DSM. ReVA places them at the shortest
physical distance from the processor to achieve the best performance.

Concealment of Connection Forms. ReVA utilizes two APIs (ReVA_APIs) to
conceal the connection type between each pair of devices.

— HC_API (Host Connect API): This conceals the connection between a pro-
cessor and an FPGA.

— DC_API (Device Connect API): This conceals the connection between two
FPGAs.

ReVA can use directly and remotely connected devices such as NICs in the
same manner using ReVA_APIs. This makes the accelerator available in clusters
with different configurations.

2.2 ReVA Flow

Figure 2 depicts the acceleration flow of ReVA. Technical terms related to ReVA
used in Fig. 2 are explained below.
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SW-part (software-part)
The SW-part is executed as a software program by the processors.

HW-part (hardware-part)
The HW-part is synthesized into a circuit by HLS and is composed of one or
more sources that describe hardware accelerators. The sources are written in

HLS format with optimization directives.

Distributed Shared Logic (DSL)

1.
2.

o 0
N ¥
Processor Processor
A o o o A
!
DRAM DRAM : DRAM

Distributed Shared Memory (DSM)

Fig. 1. Structure of ReVA

The main steps of the ReVA acceleration flow are as follows.
Accelerator Implementation Steps (highlighted in blue in the figure):

Receiving the input software program.

Dividing the software program into SW-part and HW-part.

In this step, the highly parallel parts of the input program are extracted as
HW-part, other parts are regarded as SW-part. In addition, ReVA inserts
optimization directives into the extracted parts.

. Compiling the HW-part by the VA Generator.

ReVA inputs the HW-part into the VA Generator, and the accelerator sources
are converted into VAs. The VA Generator compiles the sources by HLS and
partitions circuits to implement them on multiple FPGAs as VAs. Finally,
the VA Generator outputs the VAs sequentially in a placed-and-routed DCP
file format corresponding to each FPGA.
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Fig. 2. ReVA acceleration flow

Acceleration Execution Steps (highlighted in green in the figure):

4. Placing VAs on FPGA clusters using the VA Controller.
The VA Controller manages the placement of VAs by assigning each VA an
identifiable ID (VA-ID). The VA Controller monitors FPGA clusters to get
each VA’s position and free FPGA regions. Subsequently, it adds or moves
accelerators to the appropriate regions based on this information.

5. Enabling cooperative processing between processors and VAs.
In this step, ReVA performs cooperative processing between VAs on FPGAs
and the SW-part transmitted to the processor. ReVA executes the SW-part
and communicates with the VAs whenever the associated hardware accelera-
tion functions using them are called. For example, Fig. 3 depicts the SW-part
pseudo-code using VA_0, whose VA-ID is 0. In this case, ReVA first ensures
DSM space and stores the input data for communication between the proces-
sor and the VA_0. When the SW-part process has reached the VA_0 function,
VA _0 processes the application rapidly and the processor receives the result
via HC_APL.

6. Returning the execution results to the user.

3 Related Works
3.1 Research on Circuit Partitioning

ReVA constructs a DSL by partitioning circuits and distributing them on mul-
tiple FPGAs. In this section, the implementation of circuit partitioning across
multiple FPGAs is explained using two circuit-partitioning methods.

Target Feature-Based Circuit-Partitioning Methods. [6,10,12], and [9]
present studies on accelerating specific processing tasks by partitioning circuits
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based on the features of target tasks and implementing them using multiple
FPGAs.

The authors utilized deep neural network (DNN) with a layered structure
and partitioned it into multiple elements that are computable in parallel [6].
Each element of the partitioned DNN was placed in each FPGA, and the shared
data were copied to each FPGA. Processing dependencies between FPGAs were
eliminated, enabling the FPGAs to operate in parallel.

A_type *a; //input 1
B_type *b; //input 2
C_type *c; // result

// ensure the DSM space for processor-FPGA communication
data_a = dev_shared_malloc(sizeof(A_type) * A_LEN);
data_b = dev_shared_malloc(sizeof(B_type) * B_LEN);
data_c = dev_shared_malloc(sizeof(C_type) * C_LEN);

// transfer data

memcpy(a, data_a);

memcpy(b, data_b);

#pragma parallel
/I call VA whose VA-ID is 0 through HC_API
(*HC_API) VA_O(data_a, data_b, data_c);

Fig. 3. Illustrative pseudo-code for the SW-part

Circuit-partitioning methods depending on the features of the target pro-
cessing tasks improve performance with respect to the specific processing tasks,
thereby limiting the scope of their application. In contrast, ReVA supports a wide
range of processing tasks because of the versatile circuit-partitioning methods
used in it. However, circuit-partitioning methods specific to particular process-
ing tasks tend to exhibit better performance improvement compared to more
general methods. Therefore, we intend to employ both specialized and common
circuit-partitioning methods to improve the performance of the ReVA circuit
distribution mechanism in the future.

Highly Versatile Circuit-Partitioning Methods. ForeGraph is a highly
versatility circuit-partitioning method [2] that is based on gather-apply-scatter
(GAS) model, which abstracts algorithms for various graph processing tasks [3].
ForeGraph is based on the GAS model and allocates an input graph to each FPGA
by partitioning it into two levels per-FPGA and per-PE, it reads data from the
off-chip memory connected one-to-one to each FPGA and each PE, and executes
the process. Thus, ForeGraph can partition and process large graphs efficiently.
ForeGraph and ReVA are similar in that they both enable the implementation of
large circuits by distributing partitioned circuits using a method that supports
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a wide range of processing tasks and performs cooperative processing. However,
ForeGraph is less flexible in terms of circuit configurations than ReVA, because it
does not allow configuration of multiple types of circuits on a single FPGA.

3.2 RapidStream Overview

This section presents an overview of RapidStream employed for the VA Gener-
ator prototype.

island_0
.dcp

4

island_1
.dcp

| 7

island
FPGA

merged
.dcp

Parallel

Partitioning Compilation

Stitching

Fig. 4. RapidStream compilation flow

RapidStream is an open-source tool that runs FPGA logic synthesis, place-
ment and routing quickly and automatically using split compilation technology.
Figure4 illustrates the entire RapidStream process. It accepts HLS dataflow
designs, consisting of HLS functions that define processing elements (PEs) and
first-in-first-outs (FIFOs) connecting them, as input. In RapidStream, the FPGA
region is divided into islands that are equal-sized. RapidStream assigns PEs to
islands using AutoBridge floorplanning [4] to divide the dataflow design. It then
compiles the divided designs in parallel and merges them using RapidWright [7].
Consequently, RapidStream exhibits a reduction in compilation time by a factor
of approximately 57 and an increase in frequency by a factor of 1.3 compared
to the flow of Vivado.

4 VA Generator

As described in Sect. 2.2, the VA Generator executes HLS compilation and par-
titions circuits to implement VAs.

In this section, we first describe the features of the VA Generator compared
to other circuit partitioning tools. Next, we provide the overview of the VA
Generator and explain each of its main processes in detail.
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4.1 Features of VA Generator

ReVA achieves hardware acceleration using various functions, such as virtualiza-
tion. To implement these functions, the VA Generator has the following features
[13].

Versatile Partitioning Method. ReVA supports not only specific applications,
but also diverse applications with different structural circuits, as discussed in
Sect. 3.1. In the proposed VA Generator prototype, this specification is satis-
fied using employing RapidStream, which divides circuits by partitioning corre-
sponding dataflow graphs as described in Sect. 3.2. The RapidStream partition-
ing method is versatile because the process to be accelerated can be defined as
a dataflow graph. Thus, the VA Generator is allowed to partition more types of
circuits than previous works.

Use of ReVA_API. As described in Sect.2.1, ReVA utilizes a dedicated API
(ReVA_API) in the circuit on each FPGA for communication between pairs of
devices. To implement this function, we reserve the API region in each circuit
to place the ReVA_API. Thus, during circuit partitioning, the API region is left
empty to enable partitioned circuits to communicate with external devices, e.g.
FPGASs containing other partitioned components using ReVA_API.

Strategy for Managing FPGA Regions. ReVA manages VAs and FPGA resources
appropriately for the dynamic placement of VAs. To meet this requirement,
the VA Generator prototype identifies the FPGA regions for each VA and the
boundaries between VAs by explicitly assigning regions to them. The assigned
regions are defined as islands, similar to the organization of RapidStream’s
FPGA fabric, to manage the VAs and FPGA resources in terms of units com-
prising a single island, e.g. assigning island_X0Y0:X3Y3 of FPGA_0 to VA_0 and
island _X0Y0:X3Y7 of FPGA_1 to VA_1. In addition, some islands are reserved
as regions for the APIs and others are used for the main part of VAs.

4.2 VA Generator Overview

Figure 5 depicts an outline of the input and output of the VA Generator. The
software program (HW-part) serves as the input, the dataflow design consists of
PEs and FIFOs similar to that of RapidStream, and the information of FPGA
boards in ReVA. The board information describes the FPGA name, available
regions provided by the VA Controller, and the connected boards of each FPGA.
The VA Generator implements VAs of the HW-part using the optimal resources
based on this information. Finally, the VA Generator outputs VAs one at a
time, comprising one or more placed-and-routed DCP files corresponding to
each FPGA.

The workflow of the VA Generator is illustrated in Fig.6. First, the VA
Generator automatically synthesizes the input software program using the com-
mercial tool Vitis HLS. Then, based on the reports and HDL files generated
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by HLS, the VA Generator performs three floorplanning steps: region optimiza-
tion (Sect. 4.3), multi-FPGA floorplanning (Sect. 4.4), solo-FPGA floorplanning
(Sect. 4.5). During region optimization, the VA Generator determines appropri-
ate FPGA regions based on the amount of resources required to constructed
the VA. During multi-FPGA floorplanning, the VA Generator assigns PEs com-
prising the circuit to each FPGA, as determined in the previous step. Then, it
places them in appropriate positions in the solo-FPGA floorplanning step. These
floorplanning processes are repeated with an increasing number of regions until
the optimum result is achieved. Finally, the VA Generator inserts ReVA_API
into the API islands of the circuit on each FPGA determined during the region
optimization step. Then, it compiles the circuits in parallel to implement the VA
rapidly and outputs its DCP files.

In following sections, floorplanning processes are described, in which ILP
formulation is utilized. In our formulation, we define FPGA regions as Slot com-
posed of one or more islands, such as AutoBridge.

4.3 Region Optimization

The VA Generator determines implementation regions for VAs from available
options using ILP formulation.

“FPGA_0": [
“U250", // device name

“X0Y0:X7Y15", // available region
[1] // connected boards VA
“EPGA_1": [
“U250”, // device name FPSALO
“X0Y0:X7Y7", // available region -dcp
’[0, 2] // connected boards — 7
info
I
FPGA_1
VA Generator | )| [ dc
7
HW-part | HLL \
| 7 )
[ J
[ J

Fig. 5. Input and output of VA Generator

By the mentioned definition, our formulation declares binary decision vari-
ables s; ; which represents whether Slot; on FPGA; is used for the VA, and
a binary variable f; which represents whether FPGA; is used. In addition, we
impose the following constraints on ILP formulation.

— The total amount of resources of the slots used for a VA should exceed the
amount of resources required for the VA.
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si,j-area: resources (the number of BRAM, DSP, FF, LUT, URAM) of Slot;
on FPGAI
c.area: resources of a VA

Zsm X 8;j.area > c.area (1)
i,J
If Slot; on FPGA, is used, FPGA; must be used.
Vifi 2 sij (2)

Only one slot should be used within a single FPGA.
Vi Z S'i,j =1 (3)
J

FPGAs used for a VA must be adjacent to each other.
route; ;: represents the existence of a route connecting FPGA; and FPGA;.
This is derived from the input board information.

route; ; >= fi + f; — 1 (4)

Input
| Hs Con!lpilation |
[——— - | Region Olitimization |
j | MultiFPGAFlIoorplanning |

T A T TR PR —
I
I

FPGA_O : FPGA_1 FPGA_2

1 1
—4 Solo FPGA Floorplanning |:| Solo FPGA Floorplanning |: obe
I 1 "

1
EI API Insertion I '| API Insertion | :

| Parallel Compilation |

¥

Output

Fig. 6. Workflow of VA Generator

The objective of our formulation is to minimize the number of boards used

and the sizes of the slots used, defined in terms of the number of islands, as
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follows. In this formulation, we prioritize minimization of the number of boards
to restrict the overhead of using multiple FPGAs by multiplying the number of
boards used with a large factor (LARGE_NUM).

si,j.s1ze: the number of islands contained within Slot; on FPGA;.

minimizeLARGE_NUM x Z fi+ Z Si,j X 8 ;.8iz€ (5)
i ij
At the end of this step, the VA Generator reserves islands for ReVA_API

based on their suitability for using the required external communication ports
within the determined regions to achieve the best performance.

4.4 Multi-FPGA Floorplanning

In this step, the VA Generator assigns the PEs of the input dataflow design
to each FPGA with the regions determined in the previous step using ILP. For
example, if the entire area of FPGA_0 and the half area of FPGA _1 are extracted,
VA Generator targets these areas for floorplanning.

In our formulation, we define the connection between each PE as an edge.
We declare binary decision variables v; ; representing whether PE; is assigned
to FPGA; and ey, representing whether Edgey connecting PEs involves multiple
FPGAs. Moreover, we impose the following constraints of ILP formulation on
the floorplan.

— Edges between PEs on different FPGAs must cross the FPGA boundary.
If Edge,, connects PE,g and PE,,

ViVino 7 Vinl < €n (6)

— Resources of an FPGA must exceed the total resources of PEs allocated to
it.
v;.area: resources of PE;
fi.area: resources of FPGA;

2 Zvj.area X v;; < fi.area (7)

J

— Each PE must be assigned to only a single FPGA.
VY v =1 (8)

The objective is to minimize the number of edges across the FPGAs and
their total width. We give priority to minimization of the number of edges across
FPGAs by multiplying the number of edges across FPGAs with a large number
(LARGE_NUM).

ex-width: the width of Edgey

minimize LARGE_NUM x Z e + ep.width x ey, (9)
k
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4.5 Solo-FPGA Floorplanning

In this step, the VA Generator employs AutoBridge floorplanning for each FPGA
used and places the PEs assigned to that FPGA on the appropriate islands. This
balances the circuit latency within each FPGA, thereby improving its perfor-
mance.

We virtually place the PEs that lie outside the circuit and communicate with
it to employ AutoBridge floorplanning properly. Figure 7 depicts an example of
a virtual PE placement. In Fig. 7, blue rectangles represent islands and orange
rectangles represent API islands. In this example, PEOQ and PE2 are assigned
to FPGAO, and PE1 and PE2 are assigned to FPGA1 via multi-FPGA floor-
planning. As illustrated in Fig.7, PE1 and PE3, which communicate with the
PEs assigned to FPGAQO, are virtually placed on the API island of FPGAOQ. This
process is the same as that for FPGA1. In this manner, the VA Generator places
the PEs communicating with external components on islands close to the API
island using AutoBridge floorplanning. In this floorplanning formulation, con-
sidering the virtually placed PEs, the VA Generator minimizes the total edge
cost, which is defined as the product of the edge length and the edge bandwidth
to improve the circuit.

minimize Z e.length X ey.width (10)
k
FPGAO
PEO ™
| ey
- 'PE3/ )
©)
@ FPGAO
o FPGA1
FPGA1 ’F:Ez
P PE3
'PEO ) e 2
‘/
3

Fig. 7. Example of virtual PE placement in solo-FPGA floorplanning
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Table 1. Board information in the experiment

Board_ID|Device name|Available islands/Connected boards
FPGA_0 U250 X0Y0:X3Y7 1
FPGA_1 (U250 X0Y0:X3Y7 0

5 Experiments
5.1 Experimental Environment

In our experiments, a Xilinx Alveo U250 with a PCI Express (PCle) Gen3 inter-
face is targeted. A PC with an Intel core i7-13700F 5.10GHz 16 core processor,
64GB of memory, and Ubuntu 20.04 operating system is used. Vitis HLS 2021.2
is used for HLS compilation. Vivado 2021.2 and RapidWright 2021.2.0 are used
to construct the circuits. Although the VA Generator inserts ReVA_APIs into the
circuits, as described in Sect. 4.2, ReVA_API is currently still in development.
Therefore, in this experiment, PCle TP blocks [1] is inserted into the circuits
instead of ReVA_API.

We have prepared a board information file (Table 1) and Convolutional neural
network (CNN) circuits (Table 2) for the experiment, and they are inputted into
the VA Generator. Table 1 demonstrates that two interconnected U250 boards
are available, which comprise 4 x 8 islands. Table2 shows the number of PEs
and FIFOs, the utilization rates in HLS reports of CNN circuits.

Table 2. CNN benchmarks

Size  |PEsFIFOsDSP% BRAM%FF%LUT%
13 x 14440 [799 |59 33 32 |50
16 x 20740 1373 104 |51 69 87

Table 3. Implementation results

Size  |Board_ID[Used islands|DSP% BRAM%|FF%LUT%

13 x 14FPGA_0 |X0Y0:X3Y7 |59 33 38 |36
FPGA_1 |- - - - -

16 x 20FPGA_0 |X0Y0:X3Y3 |63 30 39 |50
FPGA_1 X0Y0:X3Y7|70 24 41 54

5.2 Evaluation

The results of implementing CNN benchmarks using the VA Generator are listed
in Table 3. In Table 3, the region of each FPGA board used for circuits is demon-
strated. In addition, resource utilization rates within the regions are presented.
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In the experiment of the smallest circuit (13 x 14), whose demands are met
by a single FPGA as illustrated in Table 2, it is constructed on an FPGA. On
the other hand, the larger circuit (16 x 20), that requires slightly more resources
than those of a single FPGA, is constructed on regions of one and a half FPGAs.

In these cases, the resource utilization rates in all regions are kept to a max-
imum of approximately 70%. Therefore, these circuits are expected to achieve
stable performance.

In these experiments, circuits are implemented using the VA Generator and
their features are demonstrated. However, these circuits have not yet been tested
on actual FPGAs, and their exact performances have been unconfirmed. We are
currently working on this task, and intend to evaluate them soon, including the
overhead of inter-device communication.

6 Conclusion

In this paper, we propose ReVA to overcome hardware resource shortages in
acceleration tasks in large-scale computing. To this end, a VA Generator proto-
type is designed and implemented, which synthesizes software programs via HLS
and partitions the circuits to construct them across multiple FPGAs. Circuits
are implemented on appropriate regions of several FPGAs based on input HLS
sources using the VA Generator. Their performances are expected to be stably
high, because the circuits are constructed with balanced utilization of FPGA
resources.

In the future works, we intend to build the circuits implemented using the
VA Generator on actual FPGAs to evaluate their performances more accurately.
Additionally, we intend to improve the VA Generator to support other FPGA
devices, enabling its evaluation in conjunction with various devices and connec-
tion types.

Acknowledgments. This work is partially supported by JSPS Grant-in-Aid for Sci-
entific Research (C) 24K14874.
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Abstract. In recent years, research in Al and HPC has explored
accelerating computations using FPGAs. High-Level Synthesis (HLS) is
beneficial for implementing algorithms from these fields onto FPGAs
as circuits. However, since the circuits generated by HLS are gener-
ally larger than those designed with HDL. Moreover, the operations
in these fields tend to increase in number and complexity, and the
FPGA resources required are increasing accordingly. Therefore, using
FPGAs in practice presents challenges regarding resource restrictions. To
address these issues, we are researching Reconfigurable Virtual Accelera-
tor (ReVA), which allows the sharing of resources across multiple FPGAs
and enables the implementation of large-scale circuits. ReVA creates and
shares virtual accelerators (VAs) using the resources of multiple FPGAs.
Processors and VAs in a ReVA share data using distributed shared mem-
ory (DSM). Furthermore, the data on the VA and DSM are dynamically
arranged so that access from each of the processors used is the shortest.
In this paper, we propose and implement ReVA Simulator. ReVA Simula-
tor can reproduce ReVA operation without the need to prepare an actual
device with an FPGA, processor and memory connected. Furthermore,
we estimated the execution time when utilizing ReVA and conducted
evaluations. The evaluation result shows that ReVA simulator achieves
FFT reduced by 36% against execution in C.
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1 Introduction

In recent years, scientific researches start utilize artificial intelligence (AI) and
high-performance computing (HPC). In these fields with vast computational
requirements, research aims to accelerate computations. As one approach, there
are efforts to accelerate computations by converting hardware to a portion of the
processing using FPGA (Field Programmable Gate Arrays).

1.1 Hardware Acceleration in AI and HPC

In recent years, the fields of Al and HPC have seen an increase in the size of
computation and data [6]. Therefore, challenges such as FPGA resource con-
straints and accelerator complexity arise in hardware acceleration within these
fields.

Designers describe the circuits to be implemented on FPGAs using Hard-
ware Description Languages (HDL). Designers must have a deep understanding
of hardware and mastery of HDL for HDL-designed circuits to perform efficiently.
Therefore, in recent years, there has been a trend toward utilizing High-Level
Synthesis (HLS) instead of directly describing circuits in HDL. HLS refers to
converting programs written in high-level languages (HLL), such as C, into cir-
cuit descriptions. By using HLS, it is possible to reduce costs associated with
mastering HDL and acquiring knowledge about hardware. When using HLS to
describe circuits, it is possible to generate larger circuits than directly describ-
ing them in HDL. Using HLS for hardware acceleration in the fields of Al and
HPC, where vast processing is required, makes circuit implementation even more
challenging.

Our research lab is researching Reconfigurable Virtual Accelerator (ReVA)
to address these issues. ReVA enables efficient implementation of large-scale
circuits by combining resources from multiple FPGAs.

2 ReVA
2.1 Overview of ReVA

ReVA is a system that enables multiple computers and FPGAs to function as
a single unit. ReVA receives programs written in high-level languages as input.
ReVA extracts the parts of the input program that are convertible to hardware
and performs conversion to circuit descriptions by using HLS. The hardware-
transformed parts, which were shared, are distributed across multiple FPGAs.

Image of Using ReVA. Users of ReVA submit the software program that
they want to accelerate to the ReVA system. It performs preparation for accel-
eration and program execution. Since users only need to submit the software pro-
gram, they can achieve high-speed execution of software without requirements
of hardware knowledge or concerns about resource boundaries of computers and
FPGAs.
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Fig. 1. Conceptual Diagram of ReVA

Function of ReVA. ReVA operates in a network where multiple processors,
FPGAs, and memory are connected. Figure 1 describes The overall conceptual
diagram of ReVA. Four distinctive features of ReVA are listed below.

Distributed Shared Logic: DSL. The circuits are implemented on a single FPGA
or distributed over several FPGAs on a network. Several processors share the
implemented circuitry.

Virtual Accelerator: VA. We call Each circuit constructed on the DSL as a virtual
accelerator (VA). Each processor can use each VA as a single virtual accelerator.

Distributed Shared Memory: DSM. A virtually shared single address space stores
data. Each processor and each VA have access to this address space, facilitating
easy data sharing and access.

Dynamic Placement of VAs and Data on DSM. ReVA system places the VAs and
data on DSM to maximize performance from the perspective of each accessing
processor. In other words, in ReVA, VAs are dynamically placed on the FPGA
to minimize physical distance from the core processor. Similarly, data on DSM
is dynamically placed in memory to minimize the physical distance of the core
processor accessing the data.
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Fig. 2. Diagram of ReVA’s Architecture

Architecture of ReVA. Figure2 is a schematic diagram of the ReVA archi-
tecture. The internal architecture of ReVA is composed of three distinct compo-
nents.

User’s Terminal. This mainly refers to the computers through which users access
the ReVA system. It converts the user’s software program into three binary
files: SW-part, HW-part, and Manifest, and sends them to the ReVA server.
The software application described below performs this process. The following
describes the three binary files generated.

— SW-part(Software part): The part of the software program that is executed
as it is.

— HW-part(Hardware part): The parts are to be converted to hardware for
higher speeds.

— Manifest: Summary of information required for scheduling when deploying
SW-part and HW-part (regions, number of CPU/FPGAs to be used)

ReVA Server. Tt receives the three binary files from the user terminal. Subse-
quently, in the scheduler (Resource Allocation Layer), based on the information
in the Manifest, the destination computer nodes for the placement of SW-part
and HW-part are determined and transmitted.

Computer Node. They are physical connections of multiple processors, FPGAs,
and memory, which are present in large numbers within the ReVA system. They
receive SW-part and HW-part from the ReVA server. SW-part and HW-part
placed on these nodes collaborate to perform processing and return the compu-
tation results to the user terminal.
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2.2 The Software Application of ReVA

The software application of the ReVA system consists of a UI (User Interface)
application and a binary generation application.

UI Application. It is an interactive application that serves as a window for
ReVA users. The main functions are as follows.

— Pass input program to binary generation application
— Pass binary files to the ReVA sever
— Receive calculation results

Binary Generation Application. This application converts the input pro-
gram into three binary files: SW-part, HW-part, and Manifest. The binary gen-
eration application consists of following two applications.

Hardware Part Extraction Mechanism. Hardware Part Extraction Mechanism
splits the input program into SW-part and HW-part. The main functions are
shown as follows.

— Construct SW-part and Manifest
— Convert HW-part to HLS design with optimization directives for HLS

VA Generator. VA Generator is the generic name for HLS and Circuit Parti-
tioning Mechanism. The main functions are as follows.

— HLS:Converts HLS design generated by Hardware Part Extraction Mecha-
nism into circuit description

— Circuit Partitioning Mechanism: Split circuit descriptions and create binary
files

2.3 Operation of ReVA

This section describes the process flow when using ReVA. Figure 3 shows the flow
of processing in ReVA. There are two main parts to ReVA’s processing: imple-
mentation of the accelerator and execution of the acceleration. The following
sections describe each process.

The Section on Implementing Accelerators. The accelerator implementation
section mainly conducts input program partitioning and virtual accelerator (VA)
generation.

1. Accepts input programs written in HLL
2. Splits the input program into SW-part and HW-part by HW-part Extraction
Mechanism



212 S. Kawali et al.

Part of Implement Accelerator Part of Exectute Acceleration

HLL

Hardware Part
Input E i

Mechanism

HW-part
‘ | VA Generator |

Circuit Partitioning
HLS Mechanism

Dynamic placement
of each VA

Fig. 3. Process flow of ReVA

3. VA Generator
(a) Convert each VA belonging to HW-part to circuit description by HLS,
and partition the circuit
(b) Create design checkpoint file (.dcp)
4. Pass SW-part to the processor and the dcp file, which is each VA, to the VA
Controller.

The Section Executing on the Acceleration. In the acceleration execution pro-
cess, the software and hardware work together to perform computations. ReVA
simulator proposed in this paper simulates this acceleration execution part. The
following outlines the flow of collaborative computation.

1. Start SW-part execution on processor

2. During the execution of SW-part, when the VA calculation results are needed,
the VA Controller (described later) dynamically places the VA into the
FPGA.

Execute calculation at VA and return calculation results to SW-part
Restart SW-part execution

5. Repeat step 2 to 4 until completing SW-part execution

-

VA Controller. The VA Controller is responsible for placement and manage-
ment of VAs. The VA Controller is always aware of the following.

— VA address: Location of any VA on the FPGA
— Location of unused resources on FPGA

The VA Controller also decides where to place VAs and allocates resources
to VAs by extracting only the necessary amount. In addition, VA Controller
replaces the HC_API within the ReVA_API described below.

When a SW-part uses a VA, it must first send a request to the VA Controller
to obtain the VA address of that VA. After obtaining VA addresses, SW-part
can communicate with each VA without going through the VA Controller.

One VA Controller is located at each node and serves as a window for inter-
node communication between SW-part and VA across nodes.
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3 Related Work
3.1 Research on FPGA Virtualisation

ReVA performs FPGA virtualization and resource sharing using DSL. There are
studies on FPGA virtualization as follows.

Comparison of FPGA Virtualisation Methods. [7] is a comparison
of FPGA virtualization methods. In this research, various techniques and
approaches to FPGA virtualization are analyzed from many aspects, such as
flexibility, performance, and security, to classify them into the following cate-
gories.

1. Resource level:architecture, I/O virtualisation
(a) Reconfigurable
(b) Unreconstructable
2. Node level:virtualisation in a single FPGA
3. Multi-node level:virtualisation in clusters containing two or more FPGAs

In this paper, examples of resource-level include I/O sharing in overlays and
multi-tenant systems, examples of node-level include VMM support and runtime
systems, and examples of multi-node-level include LEAP (Latency-insensitive
Environment for Application Programming) [3], MapReduce, and Catapult.

According to this categorization, FPGA virtualization in ReVA corresponds
to the multi-node level. Therefore, LEAP, MapReduce, and Catapult, which are
also at the multi-node level, could be relevant references for ReVA research.

FPGA Virtualisation Using Partial Reconfiguration. A similar example
to the VA implementation of ReVA exists in the German HZDR study [5]. This
study focuses on FPGA utilization to improve the performance of modern data
center architectures and proposes virtualization techniques for flexible FPGA
utilization in cloud environments. By using a technology called partial reconfig-
uration, which allows rewriting specific regions of the FPGA, FPGAs are able to
be virtualized, enabling the implementation of multiple accelerators on a single
FPGA.

In terms of the ability to implement multiple accelerators on a single FPGA,
this aspect is similar to a feature of the DSL in ReVA. However, this study does
not perform virtualization of multiple FPGAs and differs from the DSL in ReVA.

This proposed method partitions the resources of the FPGA into several
blocks before implementing accelerators and passes the required number of
blocks during implementation. Therefore, it becomes easy to implement mul-
tiple accelerators on a single FPGA and move them within the FPGA. However,
if it differs from the size of the implemented circuit to the size of the partitioned
block, there may be unused resources. In this regard, in ReVA, partitioning of
FPGA resources is not performed in advance. Instead, ReVA dynamically allo-
cates the required resources for each circuit size during implementation. This
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method allows more flexibility and efficiency for utilization of FPGA resources
in accelerator implementation compared to the approach proposed in the study

[5]-

Overlay. Regarding FPGA virtualization, Sect. 3.1 demonstrated the existence
of an architecture called Overlay, which performs resource-level virtualization.
Overlay is one of the attempts to enhance the portability of circuits by virtu-
alizing FPGAs. Writing circuit descriptions to an FPGA requires configuration,
which involves checking the circuit description, determines the placement of I/O,
and generates a bitstream for writing to the FPGA. In conventional methods,
bitstream generated by performing configuration to write circuits to an FPGA,
could not be used for different types of FPGAs, requiring configuration for each
FPGA individually. However, executing configurations can be time-consuming,
which is difficult to transplant circuits in the conventional approach. Overlay
enables writing to different FPGAs using the same bitstream, significantly reduc-
ing configuration time and allowing circuits to have high portability.

There is research that has designed and implemented overlays for data center
infrastructure management, allowing for easy management [2]. We believe the
high portability of circuits in this study is closely related to the dynamic place-
ment of VAs in ReVA. On the other hand, this method does not consider the
placement of multiple circuits on a single FPGA and the virtualization of plural
FPGAs as introduced in Sect. 3.1.

LEAP. Regarding the development of applications running on FPGAs, there
has been a problem of low design abstraction and long development time com-
pared to application development in software operating systems (OS). In this
regard, LEAP [3] focuses on communication in FPGA design and provides an
environment where application developers can focus solely on development while
maintaining FPGA flexibility. Specifically, LEAP provides an abstract interface
to hardware resources, automatic management of those resources, and a mighty
system library to support RTL program design. Additionally, LEAP provides an
abstraction for memory similar to software.

In this regard, both LEAP and ReVA share commonalities in abstracting
communication and memory management between applications on FPGA and
processors. However, LEAP does not consider the case where circuits span across
multiple FPGAs, which sets it apart from ReVA in this aspect.

3.2 Vivado Simulator

Vivado has a Vivado Simulator that can simulate designed circuits during imple-
mentation on an FPGA. Vivado simulator has three simulations: Behavioral
Simulation, Post-Synthesis Simulation, and Post-Implementation Simulation [8].
They can all be used to simulate circuits but at different simulation stages.
Before circuit synthesis, we can perform Behavioral simulation. After synthe-
sis, we can perform Post-synthesis simulation. In contrast, Post-Implementation
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Simulation executes simulations on designs that have completed implementa-
tion. This simulation can verify the design that has completed implementation
to meet the logical requirements and function correctly. Therefore, it can per-
form simulations closer to the state of being implemented on an FPGA than the
other two.

The above shows that Post-Implementation Simulation is valuable in ReVA
simulators. However, it does not considered the unique behavior of ReVA, which
is a calculation in cooperation with software programs. Therefore, in the ReVA
simulator, a mechanism is created to allow SW-part and Vivado simulator to
exchange input and output, reproducing the collaborative computation between
SW-part and HW-part.

4 ReVA Simulator
4.1 Positioning of ReVA Simulator in ReVA

As explained in Sect. 2.3, ReVA Simulator replicates a series of processes starting
with calculations in the SW-part and proceeding to execute computations on
VAs as needed. Furthermore, We can also utilize ReVA Simulator to aid in the
development of ReVA by facilitating tasks such as checking the status of VAs
divided by the VA Generator. When using ReVA Simulator, there is no need for
physical hardware such as FPGA. ReVA Simulator can execute all operations
within software programs and applications. Now, while it is possible to measure
the time taken for the computations by using ReVA Simulator, it is unable to
calculate the time for tasks such as writing to the FPGA or communication
during VA usage.

ReVA Simulator Specifications. This section describes the specifications
and operation of the ReVA simulator.

Prepare SW-Part and Design Checkpoint Files. The inputs to the ReVA simu-
lator are SW-part and Design CheckPoint files. For the Design CheckPoint file,
first prepare a program in C that describes the process to be accelerated. Next,
converting the C program to a circuit description using HLS and perform syn-
thesis and implementation using Vivado. However, It is unable to generate SW-
part dynamically because we have not yet determined Hardware Part Extraction
Mechanism specification. Therefore, SW-part should be prepared manually.

Obtaining VA Information. ReVA Simulator needs information about the VA’s
I/0O ports and the location where the VA is located on the FPGA to have the VA
perform calculations. Therefore, ReVA Simulator needs a function to retrieve this
information from the design checkpoint file.

Creating a Test Bench. ReVA Simulator cannot perform Post-Implementation
Simulation with a design checkpoint file alone. It is necessary to create a test-
bench to perform Post-Implementation Simulation. Therefore, ReVA Simulator
needs a function to generate a testbench based on input port information and
input values.
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4.2 ReVA Simulator Operation

ReVA Simulator receives SW-part and Design Checkpoint files(.dcp) as input.
There may be more than one design checkpoint file to pass, and we assume
SW-part written in C.

Figure 4 shows the process flow of ReVA Simulator. First, it outputs the infor-
mation of VAs from the received design checkpoint file as input. At this time,
the VA-ID allocation, described below, is also carried out. Second, ReVA Sim-
ulator executes the cooperative computation between SW-part and HW-part.
Execution of SW-part begins, and if SW-part requires computation in the VA
during execution, ReVA Simulator performs the simulation of the VA. ReVA
Simulator passes the VA-ID and inputs of the VA from SW-part to the function
that performs the simulation for the VA. Within this function, ReVA Simu-
lator accesses the necessary files based on the VA-ID and creates a testbench
accordingly. Finally, ReVA Simulator executes the Post-Implementation Simula-
tion and returns the results to SW-part. SW-part uses the calculation results in
the returned VA and resumes execution. These operations repeat until SW-part
finishes executing.

Output VA's
[ ) Acces;:ltv-Hvav;tparl, Information and Ex_‘::t; ¢ d,?‘:,g;{: No—)@
P Assign VA-ID P

Continue to Execute Ygs
VA Simulation \
Call VA Make Testbench Post. tation
Slmulatlon
Accept VA-ID and Input Get VA's 110 Informallon

Make Testbench from Output Result
Access File n

I/O information and Inpu

Fig. 4. Flow of operation of ReVA Simulator

4.3 SW-Part in ReVA Simulator

The specifications of Hardware Part Extraction Mechanism in ReVA have not
yet been finalized, nor have the specifications of the binary files (SW-part, HW-
part, and Manifest) been generated. However, SW-part is essential for ReVA
Simulator to work. ReVA Simulator should perform the following two processes
for SW-part.

— Creation of files for input delivery to VA
— Running a VA simulation
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Creating Files for Input. ReVA Simulator creates a file for input to VA for
each VA-ID. VA-ID is an ID assigned to each VA to identify it and is mainly
used when SW-part calls a VA. In actual ReVA, SW-part uses the VA-ID to
check the location of each VA in the FPGA. However, in addition to identifying
each VA, the ReVA simulator also uses it to manage the VA’s information and
output. ReVA Simulator writes the value passed as VA input from the SW-part
to the input file corresponding to that VA.

Running a VA Simulation. ReVA Simulator executes a function that executes
VA simulation. The function calls the script file and executes the simulation
executable. ReVA Simulator creates a simulation run file for each call to the VA,
based on the specification that SW-part calls the VA as necessary. The simulation
execution file calls the function that creates the testbench and executes Post-
Implementation Simulation. ReVA Simulator obtains the VA output from the
output file generated during simulation execution, as described below. ReVA
Simulator generates output files for each VA output port.

4.4 Simulation of VA in ReVA Simulators

It can divide the processes performed by ReVA simulator when executing the
simulation of a VA as follows.

1. Preparation for simulation runs.
(a) Allocating VA-ID
(b) Obtaining information from the VA
2. Reproduction of SW-part and HW-part co-computations
(a) Creating test benches
(b) Running Post-Implementation Simulation

Preparation for Simulation Runs. ReVA Simulator needs to retrieve infor-
mation about the VAs before executing the simulation. ReVA Simulator retrieve
VA’s information using VA-ID. Using VA-ID allows the management of VA
information for each VA individually. Moreover, during simulation execution,
it becomes easy to extract only the necessary information.

ReVA Simulator retrieves information about VAs from the design check-
point files to create test benches. The information to be retrieved includes VA’s
I/0 port information, Pblock constraints [9], and utilization reports. These are
obtained on Vivado using Tcl (Tool Command Language). ReVA Simulator gen-
erates Utilization reports for each VA-ID and output information regarding 1/0
ports and Pblock constraints in a CSV file along with the assigned VA-ID. We
can use the information gained here not only to build test benches but also to
check the condition of the VA. For example, we can use it to check the opera-
tion of VA Generator by referring to the information of the divided VAs by VA
Generator.
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Fig. 5. Testbench creation flow

Creating Test Benches. ReVA simulator requires the creation of test benches
to simulate VAs. In addition, in ReVA, it is also conceivable to perform calcula-
tions using different inputs of each instance of the VA when using VAs multiple
times. ReVA simulator creates a test bench for each VA for each input as needed
to accommodate this. As shown in Fig.5, ReVA Simulator creates test benches
accordingly.

The test bench creation function receives I/O port information from the
VA’s data. Additionally, the test bench receives input from the input file created
by the SW-part. ReVA Simulator creates the test bench based on the received
information. At this point, this function adds to the testbench with processes to
record the accelerator’s output and execution time during the simulation of the
VA. At this point, this function adds to the testbench with processes to record the
accelerator’s output and the simulation time of the VA. The output is recorded
by exporting the output values to a text file and recording the time-varying
changes in input and output values as a VCD file. Additionally, the execution
time of the accelerator is recorded as the total number of clock cycles from the
start to the end of the simulation of the VA.

Running Post-implementation Simulation. ReVA Simulator executes the
Post-Implementation Simulation using Tcl based on the created testbench. As
described earlier, the testbench includes processes to record the output of the
accelerator and the number of clock cycles. Therefore, ReVA Simulator generates
a file containing the recorded results during each execution. After the simulation,
ReVA Simulator exports a log file that consolidates the VA-ID, inputs, obtained
outputs, and the total clock cycles as execution time. This log file enables the
later verification of the accelerator’s output concerning the inputs from the SW-
part.

5 Evaluation
5.1 Operating Environment and Evaluation Programs

Table 1 shows the operating environment for evaluating ReVA Simulator. As
mentioned earlier, the ReVA Simulator does not actually use FPGA hardware.
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Therefore, the term “FPGA board” here refers to the FPGA board specified
when performing Synthesis and Implementation in Vivado. Hence, the simula-
tion was not conducted using the actual Alveo U50 board [1].

The accelerators used for evaluation are matrix product operation, Fast
Fourier Transform (FFT) [4], and convolutional operation. These programs are
written in C language. Additionally, The implementation of HLS is using Vitis
HLS for these programs and created designs in Vivado.

Table 1. Operating Environment

CPU Intel Xeon Silver 4210R
Number of physical/logical cores|20/40
Frequency 2.40 GHz
Memory 64 GB
(ON] Ubuntu20.04
Tools Vivado2021.2
Vitis HLS2021.2
FPGA Board Xilinx Alveo U50

5.2 Evaluation Results

The results of the experiments conducted in the previous section is shown
Table 2. The time measured in C is the average of 10 runs of each.

First, from this result, it can be read that the matrix product takes about
three times longer to compute than in C as it is. This result is believed to be
due to accelerating the computation of a single element of the matrix product.
The overall computation time may have increased due to the long time required
for the input. Second, from this result, it can be read that the convolutional
operation takes about two times longer to compute than in C as it is. This result
is thought to be because the computation of one element of the convolution
is accelerated as well. However, regarding these results, considering that ReVA
allows multiple accelerators to perform the computation simultaneously, it is
faster to perform the computation on the accelerators. For example, consider
the case of multiple accelerators, one at a time, on multiple FPGAs, with each
accelerator performing one element of each operation. In this case, the calculation
can be performed with approximately one accelerator for the number of clocks
shown in Table2. Finally, from this result, FFT was confirmed to be about
3 % 10°ns faster than execution in C.
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Table 2. Comparison of execution times with accelerators and the C language.

Accelerators C
Clocks  |Times
500 x 500 matrix product|1.26 % 10%/1.26 * 10°ns/6.42 % 10%ns
8192-point FFT 6.97 % 10%/6.97 % 10°ns(1.08 % 10°ns
convolutional operation  [2.97 % 10%/2.97 % 107ns|1.40 * 10" ns

6 Conclusion

We presented the ReVA simulator for verifying the operation of ReVA in cases
where there is no physical setup combining FPGAs and so on., towards the
realization of ReVA. ReVA Simulator has the following features to reproduce
the collaborative computation between SW-part and HW-part in ReVA.

— Allocating VA-ID, Obtaining information from the VA
— Creating test benches
— Running Post-Implementation Simulation

ReVA Simulator presented in this paper enables the estimation of the reduced
computation time when using ReVA. As a future outlook, We will extend ReVA
simulator to support simulations in cases where VAs are deployed and utilized
across multiple FPGAs. In that case, ReVA needs to communicate between
FPGAs, we need to extend ReVA simulator to estimate communication delay.
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Abstract. Inrecent years, demand for data-parallel processing has been
growing, and this parallelism often appears in Al processes. One method
to accelerate these processes is using DSA, domain-specific architecture.
A common data transfer method on DSA is DMA, which is direct mem-
ory access. There are several studies on DM A-based accelerators. How-
ever, few studies focus on data transfer methods. In this paper, a vector
register-sharing mechanism has been proposed as a new data transfer
method. Our proposed mechanism is named “SHAVER”. In this mecha-
nism, a part of vector registers is directly shared with an accelerator. An
open-source RISC-V vector co-processor is used to evaluate the mecha-
nism’s potential. It has been implemented on an FPGA and a simulator
for the evaluations. The results indicate the possibility of the proposal
mechanism to achieve a maximum of 7.13% speedup over DMA transfer.
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1 Introduction

AT tasks and image processing have been used in many recent applications. A
recent Al application has spread in our work and life. Many smartphones use
AT technology for face recognition to take a good picture and unlock the device
[15,20]. For comfortable engineering, many Al assist applications are released
around the world. Many companies have released an Al copilot service that
supports us in writing and designing a program. GitHub, Inc. released GitHub
Copilot, which assists the programmer and is published as free only for students
[11]. AI tasks and processes often contain instructions with data-level parallelism.
Processes with data-level parallelism perform the same operation on multiple
data, such as matrix multiplication.

One method of speeding up these processes is the implementation of domain
specific architecture (DSA). DSA is an architecture specialized for a specific
process and is usually used with a main core. The main core offloads specific
processes to the DSA to accelerate the processes. An accelerator is often used
as the main core’s hardware to send the heavy process. For example, Google
developed the TPU (Tensor Processing Unit), which many AI developers use
today. TPU also uses a technique that offloads some processing to an internal
accelerator [13]. With the slowdown of Moore’s Law, this type of DSA-based
acceleration, other than general-purpose processor acceleration, has gained a
high degree of attention in both commercial and academic research.

In addition, recent tasks have tended to use large amounts of data for process-
ing. The recent tasks that use images and videos appear in many applications.
The resolution of images and videos, such as WQHD and 4K, is higher than
ever. Therefore, it is important to be able to transfer large amounts of data to
DSA as quickly as possible to increase the speed of recent applications. However,
little research has been involved on data transfer to accelerators.

The current data transfer rate depends on the width of the data bus. The
SHAVER, which shares vector registers between the accelerator and processor,
is proposed to avoid this dependence and achieve faster communication than
now. Figure 1l shows the brief of this mechanism.

This mechanism enables high-speed data transfer to the accelerator because
some vector registers are shared without a bus. Modern processors generally have
a data cache to reduce overheads when accessing memory. In this case, the data
cache accomplishes data transmission to the accelerator by using SHAVER.

In this paper, we implement SHAVER and a Direct Memory Access (DMA)
Controller on FPGA using DDR4 memory. We also discuss aspects of the data
transfer method through evaluation in simulation and implementation of FPGA.

2 Background and Related Work
2.1 Accelerator

IoT has been spreading worldwide, so there have been demands for digital signal
processing and Al processing in embedded systems in recent years. Accelera-
tors are used to achieve faster processing in some embedded systems. Xiaowen
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Fig. 1. Data transfer method in this research. (SHAVER: Sharing Vector Registers)

Chen et al. implemented a variable-size Fast Fourier transform (FFT) accel-
erator in 2018 [9]. FFT is a very common process in the domain of digital
signal processing. Commercial devices have been released with the implemen-
tation of an FFT accelerator. For example, Sipeed has released the M1 module
that implemented FFT accelerator [18]. Many AI domain accelerators have been
developed to perform faster Al tasks on edge devices. Kyubaik Choi et al. have
developed a low-cost convolutional neural network (CNN) accelerator focused
on edge AT using FPGA in 2022 [10]. Commercially, Katsushige Matsubara of
Renesas Electronics Corporation et al. have developed a processor that targets
applications for autonomous driving systems. CNN accelerator is implemented
on this processor [14].

A tightly-coupled accelerator and a loosely-coupled accelerator exist as a type
of accelerator. A tightly-coupled accelerator is an accelerator that is connected
to a main processor tightly. A loosely coupled accelerator is connected to a bus,
not a main processor. Our proposed mechanism and a tightly coupled accel-
erator are especially alike. Alireza Amirshahi et al. have implemented tightly
coupled small-scale systolic arrays (TiC-SATs) in the CPU. The accelerator is
connected to general-purpose registers implemented by the CPU [4]. The study
focused on recently quantized applications such as quantized neural networks
(QNN). However, we have proposed a mechanism to get more performance out
of an accelerator that can give and receive big data at once, not only for the
acceleration of quantized applications.

This paper uses a simple accelerator for convolution to evaluate our proposed
mechanism’s performance.
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2.2 Direct Memory Access

A commonly used method of transferring data to an accelerator is DMA. This
transfer method is used on many devices. For example, ARM has developed
DMA-230, a micro DMA controller for Cortex-M series cores, and achieved
lower power consumption [6]. The ESP32 series, released by Espressif, is a pop-
ular series of microprocessors for IoT because they can use 2.4 GHz Wi-Fi and
Bluetooth with no other hardware requirements. They also have a DMA con-
troller [19]. Figure 2 shows the brief flow of DMA transfer. In this data transfer
method, the processor first notifies the DMA controller with the address to
write and read and the length of data to be transferred. Then, the main proces-
sor gives the DMA controller control of the bus connected to the memory and
accelerator. The DMA controller is connected to the bus to allow direct com-
munication between the devices to read from and write to. Communication is
then performed between both devices. When the communication is completed,
the DMA controller returns the bus mastership to the main processor. While
the DMA controller has the mastership, the main processor cannot access mem-
ory or accelerators. After these flows, this system of peripherals and processors
returns to normal operation.

- addr(w/r)
1st |- length
DMAC - mastership Processor
— .
| . ‘Can t use here
3rd| - mastership 1 3¢ while using DMA

‘ 2nd Sending Data
Memory Accelerato

Fig. 2. Direct Memory Access.

Several studies have already been conducted on accelerators using DMA.
However, Li Zhao et al. show us some problems with DMA transfer. DMA trans-
fer frees the core from I/O operations. On the other hand, a significant latency
occurs on DMA transfer by setup processes [27]. Almost all accelerators require
a certain amount of data to maximize performance. In addition, it transfers
the data with DMA transfer many times because the size of the data is bigger
than the limit of the size of the DMA transfer. Therefore, the setup latency of
DMA transfer prevents building a larger accelerator even if an accelerator can
be implemented with a bigger size on a chip than now. In other words, DMA
transfer cannot achieve the ideal performance of an accelerator.
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2.3 RISC-V

RISC-V is an instruction set architecture (ISA) developed at the University of
California, Berkeley (UCB) in 2011. The ISA specification is open and public
and is provided in a format that anyone can freely access and use, unlike other
architectures such as x86 and ARM [5].

RISC-V provides RV32I and RV64I as the basic instruction set. RV32l is a 32-
bit basic instruction set, and RV64I is a 64-bit basic instruction set. RV64I is the
instruction set that several 64-bit instructions are added to RV32I. These instruc-
tion sets contain only the basic instructions for integer operations. Some other
instructions are provided as extension instruction sets, such as integer multiplica-
tion/division instructions (M extensions), floating-point arithmetic instructions
(F extensions, D extensions), compressed instructions(C extensions), and atomic
instructions (A extensions). In particular, the combination of the basic instruc-
tion set (I), M extension, F extension, D extension, and A extension is also called
G extension [5].

2.4 RISC-V Vector Extensions

RISC-V Vector Extension (RVV) is one of the extended instruction sets of RISC-
V. The first frozen version of 1.0 of RVV was released in 2021, making this
extension a relatively new instruction set [7].

In RVV, there are 32 vector registers, vO through v31. The length of the
vector register (VLEN) is implementation-dependent. The size of the elements
to be stored in them (ELEN) can be selected by the user as 8-bit, 16-bit, 32-bit,
or 64-bit. ELEN and the length of vector registers can be set by manipulating
the designated control status register (CSR).

Various RVV-compatible processors have been developed even before 2021.
Matthew Johns et al. have developed a microprocessor that supports RVV ver-
sion 0.8 in 2020 [12]. Guillem Cabo et al. also developed an ASIC implementation
of a vector architecture for RVV version 0.7.1 in 2022, called the DRAC Vector
In-Order (DVINO) processor. Several other commercial cores also exist [3]. For
example, SiFive released the X280, a core that supports RVV for Al and machine
learning at the edge [17].

To evaluate our proposed transfer method, a processor has to be able to be
customized by ourselves. So, an open-source RVV core was used in this study.

2.5 RV64GC Processor: CVA6

CVAG is an in-order processor implementing RV64GC developed by the Swiss
Federal Institute of Technology in Zurich (ETH) and the University of Bologna
[26]. This processor consists of 6-stages and a cache subsystem. The cache sub-
system manages an instruction cache and a data cache.

In addition, the source code of this processor is open source and available on
github [1]. It is written in SystemVerilog and has an interface for communicating
with Ara, a co-processor supporting RVV. Only vector extension instructions are
identified and sent to that interface.
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2.6 RVYV Co-processor: Ara

Ara is a co-processor implementing RVV, which was developed by ETH and the
University of Bologna. Ara works in tandem with CVAG [16]. An implementation
of Ara mounted on CVAG6 and a simulation evaluation environment are available
on Git Hub. The core was released in Dec. 2019 before the RVV specification
was frozen. The first implementation was based on the version 0.5 draft of RVV
[8]. After the frozen version 1.0 of RVV was released, Ara started to support its
instructions. The brief block diagram of this system is shown in Fig. 3.

Memory Interconnect

Vector Load/Store Unit
Slide Unit

Scalar Vector e
Decoder Decoder

ID Stage Lanel0]-[N-11

Disoatcher
Sequencer

Accelerator
dispatcher |

AW |,
¥

ScoreBoard

Lane Sequencer

Commit Stage

CVAB (RVB4GC) Ara (RVV)

Fig. 3. Brief block diagram of system constructed CVA6 and Ara.

Vector extension instructions are sent from CVA6 to Ara. In Ara, the dis-
patcher receives instructions and sends the instructions to each lane after the
sequencer arbitrates between these instructions, vector load/store unit, and slide
unit. When the instruction is finished to execute, the sequencer sends an Ack
signal or scalar result to CVA6. Vector processors execute instructions in parallel
by distributing processing across lanes. In Ara, the number of lanes is variable
and can be changed to 1, 2, 4, 8, or 16. In addition, VLEN can be selected from
128 bits, 256 bits, 512 bits, 1024 bits, 2048 bits, or 4096 bits. The vector register
file (VRF) is divided into eight banks per lane. All elements of the vector reg-
isters are placed on the banks. The banks are designed to avoid access conflicts
by arithmetic units and other units out of the lane. Therefore, all banks can be
implemented with a one-port SRAM on a hardware device such as an FPGA
because each bank has only one port to read and write.

However, Ara doesn’t contain data caches. In this paper, Ara and CVA6
are used for evaluation. When measuring the performance of the SHAVER, the
performance with a data cache is estimated from a result on a simulator.
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3 Implementation
3.1 CVAG6 and Ara on an FPGA

A way to execute a system of CVA6 and Ara on a simulator is published on the
GitHub repository [16]. However, there are no publications about implementing
this system using the FPGA. So, some modules of CVA6 and Ara have been
modified to be implemented on an FPGA. Displaying characters is required
to measure the performance of a system executing on an FPGA. So, a serial
communication module is implemented as a memory-mapped device. This mod-
ule allows characters to be displayed through a C function. Moreover, it allows
the main memory to be rewritten via a user serial console. Alveo U250 is used
for evaluation in this paper [21]. This board has four 16 GB DDR4 memories.
In addition, this board includes one of UltraScale+ Devices, so the UltraRAM
(URAM) is supported [22]. In our implementation, the main memory is replaced
by DDR4 memory from a BRAM to measure the latency of DMA transfer.
All banks of vector register files on Ara are implemented with URAM through
XPM_MEMORY _SPRAM macro. The macro, available only in Vivado, can gen-
erate a single-ported RAM [23].

3.2 DMA Controller

The Ara and CVAG6 implementations published on GitHub do not provide a
DMA controller. Hence, the DMA controller is implemented independently. An
example of C programming for using DMA is shown by Listing 1.1. For startup
DMA transfer, some parameters are written before starting the transfer.

Listing 1.1. Example of DMA (memory to an accelerator).

extern uint8_t dma_len,dma_start;// A register on DMAC

1

> extern uint8_t *dma_addr_read; // A register on DMAC
3 extern uint8_t *dma_addr_write; // A register on DMAC
4+ extern uint8_t =*acc; // Accelerator

int main(void){
6 uint8_t source_array [512];

8 dma_len = 8%512; // set the transfer data length

9 dma_addr_read = source_array; // set the source address
10 dma_addr_write = ACC; // set the destination address

11 // Waiting until finished to set parameters

12 _asm_ volatile("fence");

13 dma_start = 1; // Start DMA transfer
14 _asm_ volatile("fence"); // Wait until finished to transfer

16 ¥

3.3 SHAVER: Sharing Vector Registers

In our proposed mechanism, an accelerator is connected to Ara directly, not
through the memory interconnect module in the core. For the connection, some
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modules are designed to sort the values of the banks. In addition, the signals to
control an accelerator are designed to use an accelerator. The brief block diagram
of SHAVER is shown in Fig. 4.

Vector Load/Store Unit
Slide Unit
Mask Unit
Lanel01-IN-11

i
]
o=
3]
2
©
o
(7]
a

Sequencer

Lanes Sort

Memory
Interconnect

AXl Interconnect
‘ acc_op
DDR4 Memory Accelerator

Fig. 4. Implemented SHAVER.

For this mechanism, signals are defined like Table 1. An accelerator usu-
ally needs some control signals to execute the task. These three signals are
designed for communication between the shared vector registers and an acceler-
ator.

Table 1. Signals for SHAVER.

name description

acc_op |[for controlling an accelerator

vrsm_out for overwriting the vector registers to write through SHAVER

vrsm_in (for reading the vector registers to read through SHAVER

A bank is designed to be implemented with a single-ported SRAM in Ara.
In SHAVER, a bank is accessed from an accelerator, not only Ara modules.



230 T. Tanaka et al.

Therefore, all banks should be designed as dual-port SRAM for processes
on Ara and an accelerator. Dual-ported SRAMs replace all banks through
XPM_MEMORY_TDPRAM macro in Vivado [24]. The vector register file on
Ara is shuffled to avoid conflicting register accesses. To use correct order values
on an accelerator, the modules for sorting values of banks are implemented on
a lane and a top module of Ara. Length of vrsm_out and vrsm_in is variable,
but it depends on the VLEN of Ara and the number of vector registers shared
with an accelerator. For example, each signal is 16384 bits if VLEN is 4096 bits
and four-vector registers are shared.

An example of using SHAVER is shown by Listing 1.2. First, the RVV param-
eters are set by wvsetvli instruction. In Listing 1.2, RVV is set according to the
value of size_of array. After that, the values are loaded to a vector register from
memory with vle§ instruction. vle§ is one of the load instructions of RVV.
In this program, the loaded values are assigned at v8. For sending the value,
vrsm.send instruction is defined as a custom instruction. Ara sets acc_op as
0b0001 when this instruction is called. 0b0001 shows an acceleration that the
main core sends values to an acceleration.

Listing 1.2. Example of SHAVER (memory to an accelerator).
1 int main(void){
2 uint8_t source_array [512];
uint8_t size_of_array = 512;

// Setting RVV CSRs

6 _asm_ volatile("vsetvli tO,

7 // Load from memory to vector register
3 _asm_ volatile("vle8.v v8, (

9 // Sending to an accelerator

10 _asm_ volatile("vrsm.send vO, vO, vO");

4 FEvaluation
4.1 Performance

The convolution task is executed for evaluation. An accelerator is designed for
a convolution process. The element length of the accelerator is 8 bits. The size
of the window on convolution is 3 x 3. This accelerator can execute convolution
that is constrained by 4096-bit rows.

VLEN is 4096 bits, and the number of lanes on Ara is 4. The width of data on
the AXI interface is 128 bits. Ara does not contain data caches. So, when mea-
suring SHAVER'’s performance, the performance with a data cache is estimated
from the evaluation result on a simulator. Systems for measuring performance
are implemented on Alveo U250 using Vivado 2021.2 [25]. Evaluation on a sim-
ulator executes on Verilator 4.214 [2]. The results of measurement are shown in
Fig. 5.
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Fig. 5. Result of the performance evaluation.

Comparing the simulation results of SHAVER, when increasing the num-
ber of shared registers, the clock cycles for processing are reduced. Similarly,
when SHAVER is run on an FPGA, the more registers are shared, the shorter
the processing time. When comparing the outcomes of sharing two vector reg-
isters with those of sharing eight vector registers, a speedup of approximately
40% is observed. The reason for the 40% speedup is that the number of mem-
ory loads remains unchanged despite the number of shares being quadrupled.
RVYV instructions can load data to two, four, or eight vector registers simulta-
neously, reducing the memory overhead. These instructions are used differently
in the programs of this evaluation, depending on the number of registers to be
shared. These instructions allow the vector processor to execute load instruc-
tions with less overhead. As a result, up to 40% speedup can be achieved by
increasing the number of instructions shared.

For all transfer methods of the evaluation, the number of clock cycles
increased when running on the FPGA than on the simulation. The maximum
increase is about 16%. Since DDR4 memory is used as the main memory on
FPGA, operation on FPGA is slower than simulation. This is a latency-free
memory access operation similar to a cache with no misses.

To compare SHAVER utilizing cache with conventional methods such as
DMA, we compare the simulation results of the SHAVER with those of DMA
running on FPGA using DDR4 memory. This comparison shows that our pro-
posed SHAVER can perform the same process in up to 7.13% fewer clock cycles
than DMA.

4.2 Resource Usage and Maximum Operating Frequency

Resource usage and maximum operating frequency of each system are measured
by Vivado 2021.2. The results are shown in Table 2.
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These results indicate that increasing the number of shared vector registers
in SHAVER does not affect the maximum operating frequency. In addition, we
found that the resource usage and maximum operating frequency of SHAVER do
not change significantly compared to DMA transfers, except for SRAM. SRAM
usage increases when the number of shared vector registers is increased. This
increase in SRAM usage can be attributed to the increase in SRAM used for
operations in the accelerator.

Table 2. Resource Usage and Maximum Operating Frequency on Alveo U250.

Target System LUT |FF SRAM DSP|Frequency [MHz]
DMA 526,036/150,768/258 228 |80.972
SHAVER: 1 vector register 445,183/160,125238 228 |80.574
SHAVER: 2 vector registers447,440/172,425366 228 |81.182
SHAVER: 4 vector registers/457,585/197,021/622 228 180.821
SHAVER: 8 vector registers/462,695/246,039/1134 228 (80.919

5 Conclusion

In this paper, SHAVER was proposed as a new data transfer method. This
mechanism was implemented using Ara and CVAG6. This implementation was
run on FPGA and a simulator for evaluation. A DMA for comparison was also
implemented and evaluated on Ara and CVAG.

For performance evaluation, we used an accelerator for convolutional oper-
ations and measured the number of clock cycles required. The results indicate
the potential of SHAVER to achieve a maximum of 7.13% speedup over DMA
transfer.

The evaluation of resource usage and maximum operating frequency showed
that SRAM utilization increases with the number of shared vector registers,
depending on the accelerator’s structure. The maximum operating frequency of
the system using the SHAVER exhibited a minimal difference in comparison
to the system using DMA transfer. Therefore, SHAVER does not significantly
affect the maximum operating frequency.

6 Future Work

In the evaluation, we assessed SHAVER on a simulator, assuming no data cache
misses. In future work, we plan to enhance the evaluation by incorporating
caching into Ara, utilizing DDR4 memory as the main memory, and evaluat-
ing the performance of SHAVER. If a data cache is introduced in Ara, unlike
the behavior observed in this simulation, penalties due to data cache misses
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are expected in SHAVER. However, considering temporal and spatial locality,
the incurred latency is anticipated to be sufficiently low after excluding the ini-
tial miss penalty. Therefore, the performance evaluation results of SHAVER with
a data cache in Ara are likely to be inferior compared to the behavior in the
simulation, but the magnitude of the difference is expected to be minimal. On
the other hand, attaching a cache to the DMA transfer system will invariably
involve communication to maintain coherence with the data cache. Consequently,
it can be anticipated that the performance evaluation results of the DMA system
will also be inferior compared to the results of the current evaluation.

Furthermore, the accelerator used for the evaluation in this paper was exclu-
sively designed for convolutional operations. In future work, we aim to diversify
the types of accelerators and assess the performance of SHAVER across vari-
ous tasks. Specifically, we intend to conduct a comparative evaluation between
SHAVER and DMA using real-world applications. This will involve expanding
the range of accelerators and exploring the effectiveness of SHAVER in diverse
tasks.

Through the evaluation of resource utilization in this paper, it is speculated
that the SRAM influenced the increase in resource usage within the accelerator.
In other words, the resource utilization of our proposed mechanism depends on
the length of the shared vector registers. In the future, it is necessary to discuss
the structure of accelerators to remove the dependence.

In addition, we implement SHAVER for ASIC rather than FPGA. Some PDK
tools are published as open-source software. In addition, some companies have
started inexpensive chip fabrication services. According to them, chip fabrication
services have expanded rapidly worldwide, not only in companies. Therefore,
we aim to conduct measurements for not only resource utilization and maxi-
mum operating frequency on FPGA but also the impact of SHAVER on ASIC
designed by an open-source EDA tool in the future. In particular, we anticipate
significant differences between FPGA and ASIC in the dual-port SRAM used as
the vector register banks. In future investigations, we aim to measure how these
differences affect the maximum operating frequency and resource utilization.

Acknowledgments. This work is partially supported by JSPS Grant-in-Aid for Sci-
entific Research (C) 24K14874.
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Abstract. Al tasks are gaining popularity in the area of IoT and edge
devices. To run such tasks on devices, QNNs are used because of their
reduced size and ability to be computed with simple integer arithmetic.
There have been many implementations to support such a network for-
mat. However, when considering thread-level parallelism to speedup the
program, many often implement a multi-core architecture or clusters
which needs to copy all resources for each core. In this paper, we intro-
duce a new RISC-V Out-of-Order Simultaneous Multi-Threading core
“B4SMT” with RISC-V Packed-SIMD extension for evaluation. We also
show that even a single executor could increase the performance of a
1D median filter by over 100x, and a matrix multiplication by over 30
on more than 16 threads efficiently. Furthermore, we suggest that other
infrequently used executors may be placed as a shared resource efficiently
in an SMT core.

Keywords: SMT - SIMD - RISC-V - Quantization - Edge
computing - Resource efficient

1 Introduction

AT technology has become a significant factor when designing and implementing
Internet-of-Things (IoT) devices. There are applications in fields such as health
[1], industrial [2], agriculture [3], and more. Such devices operate with limited
storage and lack computing power compared to state-of-the-art computers with
GPUs or TPUs where the networks are trained. Quantization techniques are
often used to make neural networks runnable on these devices. When training
a neural network model, floating point 32-bit numbers are commonly used to
calculate variables of weights and biases. Due to the complexity of the hardware
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required to process these numbers, using full-precision floats could be problem-
atic for embedded targets. Quantized neural networks (QNN) are neural net-
works with weights and biases represented as 16-bit, 8-bit, or even less, which
makes the model small in size and easier to compute with fixed-point or integer
arithmetic. Studies have shown that such networks can retain a high accuracy
and the difference compared to the original network could be neglegible [4-6].

Many architectures and libraries have been introduced to take advantage of
QNNs. Arm-based library for QNNs “CMSIS-NN” [7] have been developped by
Arm. There are other researches for mobile platform arm devices [8]. PULP-NN
[9] is a neural network library focused on inferencing QNNs on RISC-V devices.
It supports representation from a byte down to 1-bit integers. An implemen-
tation supporting this sub-byte representation is XplupNN [10], which uses a
custom multiply and accumulate unit to process byte (8-bits), nibble (4-bits),
and crumbs (2-bits). RISC-V extensions, such as vector extensions, provide vec-
tor registers with a size of up to 2'6-bits and vector instructions to manipulate
many data in a single instruction, including instructions helpful for quantized
networks such as half-word and byte data. RISC-V Packed-SIMD extension or
P-extension extension is a draft specification and uses general-purpose registers
as an array of 32-bit, 16-bit, or 8-bit values. It is possible to construct programs
that accelerate filters and matrix multiplication using P-extension.

However, when constructing a program using RISC-V P-extension, we found
that the usage of the P-extension executor was low during the evaluation. Using
this fact, we predict that if we could share a P-extension executor among a
multi-threaded core, it could reduce the resource usage and still be performant.

Simultaneous Multi-Threading (SMT) is a technique to implement a multi-
threaded core. Its main feature is the ability to execute instructions from multiple
threads simultaneously and to share computational resources among threads
[11]. It is possible to add an arbitral executor as a computational resource and
share it among multiple threads. In contrast to a multi-core system, which needs
to duplicate any computational resources to the number of threads, SMT can
operate with fewer or more resources as needed. Resources with high demand,
such as ALUs, could be increased more than the thread count to distribute the
load of multiple threads. On the other hand, if the demand for a resource is low,
it is possible to reduce the number of duplications. This paper suggests that a
single Packed-SIMD executor can support multiple threads.

The main contributions of this paper are the following:

— We propose a new SMT RISC-V core “Base for SMT” (B4SMT), which is
written in Chisel and presents its customizability.

— We integrate the RISC-V P-extension into B4SMT and show that the resource
usage of the core is less than that of a multi-core processor when increasing
the number of threads.

— We run evaluations on B/SMT with a single RISC-V P-extension executor
to show that the performance is not significantly affected and the efficiency
of the entire core stays high.
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Both resource and performance efficiency demonstrate that an implementa-
tion of even a single RISC-V P-extension executor in an SMT core is beneficial
for operating on quantized data, especially on resource-restricted platforms such
as IoT and edge devices. Furthermore, we suggest that any executor that has a
low usage could be shared in an SMT core in the same manner to reduce resource
usage without sacrificing performance.

2 Background
2.1 RISC-V and Packed-SIMD Extension

RISC-V is an open standard Instruction Set Architecture (ISA), and the speci-
fication can be found here [12]. The ISA is made of a base instruction set called
I, and extension instructions with an address space of 32,64,128-bits each rep-
resented as RV32I, RV64I and RV128I. Some of the extensions that are common
and relevant to this paper are shown in Table 1. When displaying the imple-
mented extensions of a given core, the Extension names are concatenated. For
example, RV32IMAC is a 32-bit RISC-V core with multiply-division (M), atomics
(A), and compressed-instruction (C) support.

Table 1. Example of RISC-V Extensions and their status and description.

Extension|description Status

I Base Integer Instruction Set Ratified
M Integer Multiplication and Division Ratified
A Atomic Instructions Ratified
F Single-Precision Floating-Point Ratified
D Double-Precision Floating-Point Ratified
Zicsr Control and Status Register Instructions/Ratified
Zifencei |Instruction-Fetch Fence Ratified
C Compressed Instructions Ratified
Zmmul |multiplication subset of the M extension Ratified
P Packed SIMD Draft

RISC-V P-extension or “Packed-SIMD FExtension” is a draft specification
that defines SIMD instruction using general-purpose registers. An example of
an instruction is UCMPLT16 visualized in Fig. 1(a). It performs a comparison
in each of the 16-bit values in the operand registers and produces a bitmask.
If the target core is 64-bit, then it can perform four comparisons as a single
instruction. Another example is SMALBB visualized in Fig. 1(b). It can be used
to multiply 16-bit values from the operand and then accumulate the result with
the destination register. If the target core is 64-bit, then it can perform two
multiplications of 16-bit values.
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63 rst ) 63 . 0

[ L |

A B
00

D D D A<B?0xFFFF:0x00
63 rd l/ 0

(a) UCMPLTI6 instruction overview. It
takes 4 16-bit values on rs/ and rs2, then
checks if each value on rs/ is less than rs2,
finally stores a bit mask of the result to rd.
There is an 8-bit variant of this instruction,
namely UCMPLTS, which does the same
operation on 8-bit values. Each of these in-
structions can process up to 4 or 8 values
simultaneously.

63 rst rs2 d

0o 63 0
L T-T ] LLI-T |

b

(b) SMALBB instruction overview. It takes
16-bit values on [15:0] and [47:32] from rs/
and rs2, then multiplies them and accumu-
lates the result to rd. There are some variants
of this operation, namely SMALTT, which
uses [31:16] and [63:48] of the registers as
input, and SMALBT, which uses [15:0] and
[47:32] from rsl and [31:16] and [63:48]
from rs2 as inputs.

Fig. 1. Sample visualizations of P-Extension instructions

Listing 1.1. Pseudo code for median using UCMPLTS. Every loop computes eight
elements. input is the input array of bytes, result is the output array of bytes, len is
the length of both arrays.

1 for (int i = 0; i < len / 8 - 1; i++) {
// take two 64-bit values

3 vl = ((long *)input)[il]

4 vt = ((long *)input) [i+1]

5 // create shifted input values

6 v2 = (vl >> 8) | (vt << 56)

7

8

v3 = (vl >> 16) | (vt << 48)
// compare

9 cl = ucmplt8(vl, v2)
10 c2 = ucmplt8(v2, v3)
11 c3 = ucmplt8(v3, vl)
12 // create bitmask

13 mli = “(c1 ~ c3)

14 m2 = “(cl1 ~ c2)

15 m3 = “(c2 ~ c3)

16 // apply mask

17 ol = v1 &mi

18 02 = v2 &m2

19 03 = v3 &m3

20 result[i] = o1l | 02 | 03
21 }

An example pseudo-code of a 1D median filter is shown in Listing 1.1. Nor-
mally, when writing a median filter, it processes one value at a time in a loop.
P-extension instruction allows to write the algorithm with SIMD instructions;
specifically, UCMPLTS is used. This method can process eight values in one
loop, which speeds up the process.
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2.2 Thread-Level Parallelism and SMT

Thread-level parallelism exploits multiple tasks that can run independently, often
implemented with multi-threaded cores or processors. A simple implementation
of a multi-thread processor is a multi-core processor. It is made of multiple cores
in a single package, and by providing separate tasks to each thread, it can per-
form operations in parallel. Another method is to implement multi-threading in a
single core. There are three ways to achieve this. The first is to implement Fine-
grained multi-threading, which is implemented by changing the active thread
every cycle. The second implementation is Coarse-grained multi-threading, which
switches the active thread on major stalls such as loading and storing to memory.
The third implementation is Simultaneous multi-threading, which runs multiple
threads simultaneously by sharing computational resources such as the ALU. A
visualization of each method is shown in Fig. 2 In our paper we use simultaneous
multi-threading to share a P-extension executor.

¥ corel core2  Fine-grained Coarse-grained Simultaneous
Multi-core  Multi-threading Multi-threading Multi-threading

No instruction executing
Instructions from task1
Instructions from task2

Fig.2. Comparison of different multi-threading methods. Simultaneous multi-
threading is shown as having two executors.

3 Related Work
3.1 Packed-SIMD for AI Accelaration

PULP-NN [9] is a neural network library made for QNN inference on RISC-V
cores. It targets byte and sub-byte data types down to 1-bit integers. PULP-NN
is used on the PULP RISC-V processor and it can exploit thread-level parallelism
using its clusters [13]. XpulpNN [10] is an implementation that uses PULP-NN
and adds a custom RISC-V extension with nubble (4-bit) and crumb (2-bit)
instructions with a custom Dot-Product Unit.

These works focus on running a QNN faster on a RISC-V core or a cluster
of cores. On a cluster, many cores have to be duplicated. We suggest that the
cluster’s resource usage may be further reduced by using a shared executor.
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3.2 Simultaneous Multi-threading and RISC-V

Chichibu RISC-V SMT (CRVS) [14] is an SMT processor based on the previous
work of simply efficient multithreaded processor (SEMP) [15] both developed at
Tokyo University of Agriculture and Technology. The implementation is written
in SystemVerilog and uses custom RISC-V extensions to manage threading.

In this paper, we introduce a new RISC-V SMT core B4SMT, a successor to
the previous cores, and use it as the main processor in our paper. By reimple-
menting the SMT core in Chisel, we achieve higher flexibility using parameters
and easier extendability to add or change modules in the core. Also, we changed
the threading behavior to match that of a multi-core processor. Therefore, it is
easier to port multi-threading libraries made for multi-core processors.

4 Implementation
4.1 A New SMT Core B4SMT

Base for SMT (B4SMT) is our new implementation of RISC-V SMT core
written in Chisel [16], an HDL implemented as a DSL on scala lan-
guage, to evaluate various aspects of an SMT core. It is compatible with
RV64IAC Zicsr_Zifence Zmmul. When building this processor, one of the goals
was to make it flexible and extendable. To accomplish this, we built all modules
with parameterization in mind, which was made possible by the flexibility of the
Scala language and the Chisel framework. It implements AXI to interface with
various peripherals on FPGA boards. The source for BJSMT could be found
here!.

Because debugging on an SMT processor is quite challenging, we have utilized
CSR registers such as cycle, instret, machine performance-monitoring counter to
hold information about the state of the processor. The full list of performance
monitoring registers used and the information it collects is shown in Table 2.
By using these registers, it is easy to derive performance characteristics, such
as Cycle per Instruction, P-extension executor utilization, and Memory access
usage.

Although many features are working, this core still has issues, and it is still a
work in progress. At the time of writing, B4SMT does not implement any data-
caching. It is not a big issue for simulators since the memory can be configured to
respond quickly. On the other hand, implementing the core on an FPGA could
lead to slow memory access and overall slow performance. Another issue is the
lack of branch prediction. Branch prediction greatly impacts SMT cores since
they implement an Out-of-Order execution model. These issues should be fixed
in future releases.

! https://github.com/NakajoLab/B4SMT.
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Table 2. BASMT performance monitoring registers and description. Many registers
are implemented as counters.

register description
cycle cycles since power on
instret instructions executed since power on

hpmcounter4 [load instructions executed

hpmcounter11|P-extension executor used

Execute

Issue Exectitor Reorder

Decoders Reservation | |17 Queue Branch Buffer 1
Station Executor 1 !'

-w- Register File 1
1$/Fetch Decoders Data Memo
LsQ1 I v Data

Buffer

Atomic Memo
1 Atomic Buffer Y

I1$/Fetch

Reorder
Buffer 2

Register File 2

]

MemoryAccess
CSRRS
I CSR1,2 1]
Decode/
Fetch Rename Reservation CSR Access Write Back Commit

Fig. 3. Pipeline overview of B4SMT with P-extension. This is configured with two
threads, two executors, and 1 P-extension executor. The components added to support
P-extension are highlighted in red. (Color figure online)

4.2 B4SMT with P-Extension

P-extension is added to B4SMT for performance evaluation of quantized data
processing. The specification we implemented is RISC-V “P” Extension Proposal
Version 0.9.11-draft-20211209 [17]. Since the P-extension is still in a draft state,
the instructions or the executor’s details may need to change in the future.
An overview of the implementation is shown in Fig. 3. Adding the P-extension
executor, we modified the decoder and the issue queue logic and added a new
executor.

By implementing this executor and the additional modifications, the core is
now compatible with RV64IACP_Zicsr _Zifence Zmmul. The P-extension execu-
tor is implemented in Chisel and is available as a standalone executor.

5 Evaluation
5.1 Setup

We evaluate three different properties of this core. Firstly, we show that by
increasing the thread count, B/SMT’s resource usage’s rate of increase is less
than that of a multi-core processor. We do this by executing the B4SMT chisel
program to generate the core’s SystemVerilog file with varying parameters of
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threads and measuring the resource usage after synthesis. Next, we show that
when running programs involving the P-extension executor, the usage time of
the executor is low. We perform this check by inspecting the CSR, register hpm-
counterl . Finally, we show that when running a program using quantized data,
the performance of the core increases along with the thread count. We also cal-
culate its efficiency during evaluation.

Vivado is used to measure resource usage. B4SMT cores with the same simple
configuration other than thread counts were generated and synthesized. We chose
the core count to be 1 to 4 and kept the other configuration on minimum values.
We specifically checked the changes in Slice LUT, Slice Registers, Block RAM,
DSPs.

We use two programs for evaluation, 1D median filter and matrix multipli-
cation, and execute them on a single 16-threaded B4SMT core and calculate its
speedup. Thread counts less than 16 are measured by disabling one core at a
time until it runs out of cores. Speedup will be calculated using the performance
compared to the baseline, a program running on a single core without using
P-extension. Given the results, we then calculate the efficiency by dividing the
individual speedups by thread count and show that even a single P-extension
executor could make an efficient core.

After running a program on B4SMT, Every thread starts executing from the
same address after initialization. To run different tasks on each thread, it has to
read the mhartid CSR and check its ID. mhartid CSR is uniquely hardcoded into
the core for each thread. Then depending on the 1D, it can change what to run.
In our case, the first thread (id = 0) initializes the core and memory; then each
thread runs its task. Measurements of the performance during the task are done
by reading performance monitoring CSRs. We use the specification provided
metrics, such as cycle CSR which holds the cycles passed from initialization,
and some custom specified metrics, such as hpmcounterj CSR which in our
case is used to store how many load operations were performed. By taking the
difference of the metrics before and after the task, it is possible to calculate
the performance. Ideally, every thread should be given a task by a scheduler as
provided by an operating system, but since we can only use bare metal programs,
we run the same tasks on all threads in the evaluation.

The usage of the P-extension executor per thread could be calculated with
Eq. (1) where P_instructions is the number of P-extension instructions executed
and instructions is the number of all instructions. By transforming the equation,
we get that the usage could be computed by the ratio of P-extension instruc-
tions P_instruction_ratio times the instruction per cycle IPC shown in Eq. (2).
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Using the fact that the ratio of instruction P_instruction_ratio does not change
significantly, we can assume that Usage,,,-thread only depends on IPC.

n n n
Z P_instructions,, Z P_instructions,, Z instructions,
=1 —1 =1
Usage,,,-thread = =—— == S
> Cycle,, > instructions,, > Cycle,,
m=1 m=1 m=1

(1)

= P_instruction_ratio - IPC (2)

Usage of the executor on all threads can be derived by multiplying the thread
count as shown in Eq. (3).

Usage =n x Usageper,thread (3)

Furthermore, we can derive the maximum number of threads a given executor
can support by taking the inverse of the Usage e, thread @5 shown in Eq. (5).

1
Maxi Threads = !
AN L ATeads = B struction_ratio - IPC @
(5)

B CPI
" P_instruction_ratio

Speedup indicates how much performance has increased compared to a single-
threaded core without P-extension and is calculated using Eq. (7) where
Speedup,, is the speedup of a n threaded core, P,, is the performance of the m-th
thread, Piingle_thread_without_p-extension SHOws the performance of single-threaded
core without using P-extension. We use the fact that the performance could be
calculated by taking the inverse of the time taken to execute a task. Cycles are
used as a measure of time and are read from the CSR register cycle. When cal-
culating the performance, we take the minimum performance among threads to
show the worst-case scenario.

minm:l..n(Pm)

(6)

Speedup,, = n x

Psingle_thread _without_p-extension

« Cyclessingle_thread_Without_p—extension (7)

- max,—1..,(Cycles,,)

Efficiency indicates how efficiently the SMT core is able to share the resource,
which is calculated as Eq. (8) where Piingle_thread Shows the performance of single-
threaded core with the same configuration. The ideal case is when all the threads
use the core at separate times, and hence do not stall any threads. In that case,
Efficiency = 1 should be achieved.

Eﬂicz’ency _ minm:l..n(Pm) _ CyCleSsingle_thread (8)
" Psingle,thread maxmzl..n( C@/Clesm)
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The specification and parameters for B4SMT used for evaluation are shown
in Table 3. For the maximum number of threads, we chose a number that both
shows a trend of the metrics and finishes in a reasonable time on the evaluation
machine. It is possible to configure the core with higher thread counts if needed.
To accurately measure the efficiency using the P-extension executor, the other
instructions should not be the bottleneck. We have used eight executors and
large enough parameters for the load store queue and reorder buffer.

Table 3. B4ASMT specification and parameters for evaluation

parameter value

ISA RVE4IACP_Zmmul Zifence Zicsr
P-extension 0.9.11-draft-20211209

Threads 1 to 16

Decoders per thread 2
Executors (ALUs) 8

P-extension executor|1l

5.2 Resource Usage Results

We compare the resource usage of a single thread and when the thread count is
increased. Figure 4 shows the resource usage of Slice LUT, Slice Registers, Block
RAM, DSPs when the thread increases from 1 to 4. The multi-core baseline
represents the value expected when duplicating the single-threaded core, calcu-
lated by multiplying the single-threaded core’s resource by the thread count.
Looking at Slice Registers and Block RAM, we notice that the rate of increase is
close to the multi-core value. This is expected because some modules need to be
duplicated for each thread, such as the Fetch module, Decoder module, Reorder
Buffer module, and others, and it is an inherit property of SMT.

While we can see that Slice LUT does increase with threads, it is significantly
less than the multi-core value and the above two. This is where SMT starts to
show its strength, and we can see that it is possible to increase the thread count
without a significant resource increase.

Looking at the value of DSPs, we can see it levels out at two threads. DSPs
are used mainly for arithmetic and multiplication, which is used in ALU and
P-extension executor. Since there are the same number of executors on all con-
figurations, the leveling out suggests that the increase of threads is not affecting
the resource usage of DSPs.

These results show that this B/SMT with P-extension executor is a resource-
efficient core.
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Fig. 4. Resource usage of B/{SMT. The blue bars represent the resource usage of the
core. The red line represents the resource usage of a multi-core processor calculated by
multiplying the single-threaded core’s resource by the thread count.

5.3 P-Extension Instruction Usages

In this section, we check that the time using the P-extension executor is low. The
instruction statistics are shown in Table 4. We show the maximum value of Cycles
to represent the worst case, during execution, and show the sum of P-extension
instructions executed. By comparing the ratio of P-extension instructions exe-
cuted in a task, the maximum ratio is from the matrix multiply transposed
program with 14%. To share an executor with another thread, it has to have a
ratio of less than 50%. Thus it is safe to assume that P-extension instructions
are infrequent and P-extension executors are a good candidate for sharing.

Table 4. Instruction statistics estimation for each configuration. Cycles are the clock
cycles needed to finish the task, and P-extension cycles are the cycles in which the
P-extension executor was used. The ratio of P-extension instructions in all instructions
is shown in the parentheses. MaximumThreads are estimated values for the maximum
number of threads a core can work with one ly a single executor.

Configuration Max Cycles Sum of P-extension Max Thread Count
cycles (ratio)

1D median filter  [13,084 768 (5.9%) 17.0

(16-bit)

1D median filter  |6,163 384 (6.2%) 16.0

(8-bit)

matrix 239,287 16,384 (7.0%) 14.6

multiplication

matrix multiplica-|115726 16384 (14%) 7.1

tion

transposed
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5.4 Speedup and Efficiency Results

In this section, we analyze the results of running the evaluation programs. The
Speedup evaluation results of the median filter are shown in Fig.5(a) and the
results for the matrix multiplication are shown in Fig. 5(b). Reading the data we
calculated the MaximumThreads for each configuration which is shown in Table
4.

Looking at the speedup results of the baseline in both cases, we can see
that it levels out at around 4 threads. This is due to the frequent accesses to
memory compared to the P-extension counterparts shown in Table 5. We can
see that the P-extension variants perform better in all cases. When looking at
the memory access of matrix multiplication, we can see there is a significant
difference between non-transposed and transposed. The effects could be seen
in the speedup where the non-transposed variant levels out and the transposed
variant is increasing. These results show that by using a P-extension executor
with B4SMT, it speeds up the core on quantized computations.

Table 5. Memory access count on a single thread during evaluation

Program type load |store
1D Median filter  |baseline 3,387 |1,548
(16-bit) P-extension 830 [768
1D Median filter  |baseline 3,390 (1,553
(8-bit) P-extension 524 540
Matrix Multiplica-baseline 67,480/4,774
tion P-extension 42,714/3,839
(3232 on 16-bit) |p o tension 17,52112,609
transposed

Next, we analyze the Efficiency. The results for the median filter and matrix
multiplications are shown in Fig. 6(a) and Fig. 6(b) Note that the configura-
tion of B4SMT used for evaluation provides 8 normal executors and a single
P-extension executor. Looking at the baseline in both cases, we see a quick
decline in efficiency. In the median filter, we can see that the efficiency for byte
size operations does not drop below 90% until 14 threads, and then drops sig-
nificantly. If we see the P-extension executor usage results shown in Fig. 7, the
curve of p-median 8-bit is saturating at around 90%. This could be due to more
frequent memory access or, conflicting use time of the P-extension executor. For
the half case, although it is below the byte line most of the time, it does not drop
significantly anywhere. In matrix multiplication, we can see that the results of
P-extension without transposing the input are below the baseline in most cases.
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Fig. 6. Evaluation result of Efficiency
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Fig. 7. The total usage of P-extension executor.

By transposing the input, we can see that the efficiency is better, and even with
16 threads, the efficiency is over 40%. When looking at the usage result of the
transposed, we can see that after 14 threads it goes higher than 100%. This is
due to the tasks not running at the exact same time and being shifted in time.
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Hence creates some windows of time when a single thread can keep the executor
to itself, thus increasing the usage over 100%.

6 Conclusion

The execution of quantized neural networks is a crucial topic when discussing
IoT and edge devices with Al capabilities. However, thread-level parallelism is
often implemented as a multi-core processor or a cluster. Results from this paper
suggest that simultaneous multi-threading with a shared P-extension executor
can be implemented with fewer resources to compute quantized data. We have
implemented a new SMT-enabled RISC-V core, “B4SMT” to evaluate the per-
formances of shared resources on SMT. Furthermore, we were able to achieve a
100x improvement in performance and showed that it could be done without a
significant reduction in efficiency.

In this work, we demonstrated sharing a P-extension executor. Since the
method of evaluation is generic among different resources shared in SMT, one
may be able to consider different executors or other resources and similarly
evaluate them. These results suggest that, depending on the frequency of use,
and the performance of the core (IPC) it is possible to increase the thread count
without sacrificing performance. An example of such a module could be a matrix
multiply unit, FFT unit, or cryptography unit. We believe this opens up a new
field of modules and resources to be shared among threads.

Acknowledgment. This work is partially supported by JSPS Grant-in-Aid for Sci-
entific Research (C) 21K11804 and 24K14874.
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Abstract. This paper introduces a novel competitive mechanism into
differential evolution (DE), presenting an effective DE variant named
competitive DE (CDE). CDE features a simple yet efficient mutation
strategy: DE/winner-to-best/1. Essentially, the proposed DE/winner-
to-best/1 strategy can be recognized as an intelligent integration of
the existing mutation strategies of DE/rand-to-best/1 and DE/cur-to-
best/1. The incorporation of DE/winner-to-best/1 and the competitive
mechanism provide new avenues for advancing DE techniques. More-
over, in CDE, the scaling factor F' and mutation rate Cr are deter-
mined by a random number generator following a normal distribution,
as suggested by previous research. To investigate the performance of the
proposed CDE, comprehensive numerical experiments are conducted on
CEC2017 and engineering simulation optimization tasks, with CMA-ES,
JADE, and other state-of-the-art optimizers and DE variants employed
as competitor algorithms. The experimental results and statistical analy-
ses highlight the promising potential of CDE as an alternative optimizer
for addressing diverse optimization challenges.

Keywords: Evolutionary Computation (EC) - Competitive
Mechanism - Differential Evolution (DE) - Novel Mutation Strategy -
Numerical Optimization

1 Introduction

Differential Evolution (DE) [1] is a potent optimization algorithm categorized
within the evolutionary algorithm (EA) family. Unlike conventional mathemat-
ical optimization methods that hinge on gradients, DE is a stochastic optimiza-
tion approach inspired by the principles of natural selection and evolution [2,3].
By iteratively applying crossover, mutation, and selection operations, DE refines
the population of candidate solutions for a given problem, progressively steering
it towards more optimal solutions [4].
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Due to its simplicity, robustness, and efficiency in addressing complex opti-
mization problems across various domains, DE is particularly adept at handling
scenarios where the objective function is non-linear, non-convex, noisy, or lacks
derivative information [5]. These exceptional characteristics render DE a versatile
tool for addressing real-world optimization challenges encountered in engineer-
ing [6], finance [7], machine learning [8], and numerous other fields [9]. Conse-
quently, DE has garnered widespread attention from researchers and scholars.
Concurrently, numerous variants of DE have been introduced to tackle diverse
optimization tasks. While this paper does not delve into the comprehensive his-
tory and evolution of DE, readers keen on exploring this topic further can refer
to [10].

This paper introduces a novel competitive mechanism into DE and presents
a mutation operator termed DE/winner-to-best/1. By integrating this innova-
tive mutation strategy with the basic DE optimizer, we propose a simple yet
efficient variant of DE, termed Competitive DE (CDE). To thoroughly investi-
gate the performance of our proposed CDE, we conduct a comprehensive series
of fair comparison experiments on the IEEE CEC2017 benchmark functions.
Furthermore, we extend CDE to address real-world engineering simulation opti-
mization problems. Through this straightforward modification, we achieve sat-
isfactory performance across various optimization tasks, even when competing
with state-of-the-art DE variants. The experimental results and statistical anal-
yses highlight the efficacy and versatility of CDE in tackling diverse optimization
challenges.

The remainder of this paper is organized as follows: Sect.2 introduces the
framework of basic DE and engineering simulation problems. Section3 intro-
duces our proposed CDE in detail. Section4 presents numerical experiments
and statistical analyses, and the performance analyses are discussed in Sect. 5.
Finally, Sect. 6 concludes this paper.

2 Basic DE

We begin the introduction of the basic DE by the definition of optimization
problems. Without loss of generality, the minimization problem is mathemati-
cally defined by Eq. (1).

f(x*) = min f(x), s.t.x € RP (1)

where © = {1, 22, ...,xp} is a solution vector with D dimensions. Optimization
algorithms aim to find optimum «* with a limited computational budget.

Subsequently, we outline the four primary components of DE: initialization,
mutation, crossover, and selection. It’s important to note that all explanations
are presented within the context of the minimization.
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Initialization: The first step of DE implementation is population initialization,
which is described in Eq. (2).

T1 T11 T12 - T1D

T2 T21 T22 '+ T2D

X =|[®3]| = | ¥31 L32 ~** T3D
(2)

TN TN1IN2 " TND

Tij5 =T - (ub] — lbj) + le

where ; denotes the i*" individual and ;; represents the value in the j* dimen-
sion of the ;. Ib; and ub; are the lower and the upper bound of the 4" dimen-
sion, respectively, and r is a random number in (0, 1).

Mutation: When DE enters the main loop, the mutation operation is first acti-
vated to construct the mutant vector, and the representative mutation schemes
are listed in Eq. (3).

DE/rand/1: v} = 2% + F - (zf, — x!;)
DE/cur/1 : vf = e’Bf + F- (wfq - wf~2) 3)
DE/best/1: vl =z}, + F - (xf; — xL,)

where !, zl,, and x!, are randomly selected individuals from the population
and mutually distinct in the t*" iteration, x! ., denotes the best solution found
so far, and F' is the scaling factor to control the amplification of differential
vector.

Crossover: Although many novel crossover strategies such as exponential
crossover and blending crossover have been proposed, the most commonly uti-
lized binomial crossover is expressed in Eq. (4).

(4)

ij = ‘
7 x} ;, otherwise
:

. {uz,j, if 1 <Cror j = jrana
Cr represents the crossover rate to control the probability of inherited genes
between the mutant vector uf - and the parent individual :Bﬁ j+ Jrand 18 a random

J
integer in {1,2,...,D}.

Selection: The selection mechanism in basic DE ensures the survival of elite
individuals to the next iteration, as formulated in Eq. (5).
S {u if fluf) < f(a)) -

1 .
x!, otherwise

The one-to-one greedy selection mechanism in DE can survive the elites while
maintaining population diversity.
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3 Competitive Differential Evolution (CDE)

This section introduced the proposed CDE in detail. Based on the simple yet
effective architecture of DE, the main flowchart of CDE is presented in Fig. 1.
The novel component in CDE is highlighted in red.

Start

|

Population and
parameters initialization

|

— Competitive mutation operation

!

Crossover operation

.

One-to-one greedy Selection

‘

Termination

l Yes

End

Fig. 1. The flowchart of CDE. (Color figure online)

We introduce the competitive mechanism to CDE and propose a novel
DE/winner-to-best/1 mutation operation, as formulated in Eq. (6).

g _ JEl P (@) —aly) + Fa (=], — 2)3), ()
v = g g g g g (6)
x] + I (g — @) + F2 - (27, — x73), (b)

where F; and Fy are two random values following a normal distribution
N(0.5,0.3) as recommended in [11]. Simply, the proposed DE/winner-to-best/1
strategy randomly selects a competitor individual @, first, and if it has a bet-
ter fitness value, &7, will replace the current individual ¢ and act as the base
vector in the mutation operator to construct the mutant vector vf using the
DE/rand-to-best/1 scheme, as expressed in Eq. (6) (a); otherwise, the current
individual ¢ will survive and the DE/cur-to-best/1 mutation scheme in Eq. (6)
(b) is activated to construct the mutated vector vy.

The structure of the proposed DE/winner-to-best/1 strategy resembles a
fusion of the DE/cur-to-best/1 and DE/rand-to-best/1 strategies. However,
incorporating a competitive mechanism enables the automatic selection of the
most suitable mutation strategy, ensuring the utilization of superior knowledge to
construct the mutated vector. Furthermore, CDE can benefit from the proposed
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DE/winner-to-best/1 mutation strategy from (i). Strengthened convergence: By
leveraging a superior base vector, the optimization process experiences rapid
convergence and contributes to accelerating the approach to optimal solutions.
(ii). The prevention of premature optimization: The inclusion of the random dif-
ferential vector Fy - (@, — x,) serves to mitigate premature optimization and
promote the exploration of diverse search spaces. (iii). Versatile scaling factor:
The utilization of a simple yet effective random generator-based scaling factor
F; facilitates the generation of differential vectors with varying scales, thereby
enhancing the adaptability and robustness of the mutation strategy.

Furthermore, the conventional constant crossover rate in basic DE is replaced
by a random value sampled from a normal distribution N(0.5,0.3), as recom-
mended in [12]. This simple modification in CDE yields two significant benefits.
First, it enhances the balance between exploration and exploitation. By introduc-
ing a randomly chosen crossover rate, CDE can explore a broader search space
by occasionally performing crossover operations, potentially leading to the dis-
covery of new promising solutions. Simultaneously, it retains the capability to
exploit current best solutions by occasionally abstaining from crossover opera-
tions. Second, this modification strengthens the robustness of CDE. Introducing
randomness into the crossover rate helps prevent the algorithm from becoming
trapped in specific regions of the search space, thereby improving its robustness
when tackling complex optimization problems.

4 Numerical Experiments

This section introduces the details of the designed numerical experiments to
evaluate the performance of CDE. Section4.1 details the experimental setting,
and Sect. 4.2 presents the experimental results and statistical analyses for further
discussion.

4.1 Experiment Settings

Benchmark Functions. We conduct comprehensive numerical experiments
on CEC2017 benchmark functions and six engineering simulation optimization
tasks [13]. The details of engineering problems are presented in the following
contexts. These benchmarks are accessed via the OpFuNu library [14] and the
ENOPPY library [15] using Python 3.11.

Six engineering simulation models adopted in our numerical experiments
include cantilever beam design (CBD), corrugated bulkhead design (CBHD),
gear train design (GTD), three-bar truss design (TBTD), tubular column design
(TCD), and welded beam design (WBD). In the following mathematical mod-
els, f(x) denotes the objective function, and g;(x) represents the i*" constraint
function.

Cantilever Beam Design Problem (CBD): CBD aims to minimize the
overall mass of the cantilever beam while ensuring it meets the specified
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bearing capacity requirements. Equation (7) describes the mathematical model
and Fig.2(a) presents a demonstration.

min f(X) = 0.0624(x1 + x2 + 23 + 24 + 5)

61 37 19 7 1
S.t.g(X)=—3+—3+—3+—3+—3—1§0 (7)
7 S = S S

where 0.01 < z; < 100, i € {1,2,3,4,5}

Corrugated Bulkhead Design (CBHD): CBHD aims to design a bulkhead
that can efficiently resist certain forces or loads, in which the design variables
are the width z1, depth x5, length 3, and plate thickness x4. The mathematical
model of the CBHD is presented in Eq. (8).

_5.885%4(1’1 +5L‘3)
21 + /|23 — 3|

s.t. g1(X) = — x4w2(0.421 + %)

+ 8.94(z1 + /|23 —23|) <0

T
go(X) = — 2423(0.221 + 1—;)

+ 2.2(8.94(xy + /]2 — 22))*3 <0 (8)

min f(X)

g5(X)=—24+1.05<0
g6(X) =—23+22 <0
1, 72,73 < 100

Gear Train Design Problem (GTD): GTD aims to minimize the gear ratio,
defined as the ratio of the output shaft’s angular velocity to the input shaft’s
angular velocity. The design variables include the number of teeth of gears n4 =
Z1, ng = Ta, nc = 3, and np = x4, as expressed in Eq. (9) and demonstrated

in Fig. 2(b). 2
. 1 T3T2
X)=(— -
min f(X) (6.931 x1x4>

where 1,29, 23,24 € {12,13,14,...,60}

(9)

Three-Bar Truss Design Problem (TBTD): The objective of TBTD is to
find the optimal configuration of a truss made up of three bars subject to the
optimal cross-sectional areas A; = x1 and Ay = x5. The mathematical model
and demonstration are presented in Eq. (10) and Fig. 2(c).
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min f(X) =(2v2z; + x2) - I

st () = YE T
V223 + 27129
To
X)=——P—-0<0
92(X) V223 + 22119 - (10)
1
X)=—P—-0<0
93(X) V2zo + 1 o

[ =100 cm, P = 2kN/em®, o = 2kN/cm?®

where 0 <zi,z5 <1

Tubular Column Design Problem (TCD): TCD through optimizing two
decision variables: the mean diameter of the column d = x; and the thickness
of tube ¢ = x5 to determine the optimum of a tubular column. Equation (11)
formulates the model and Fig. 2(d) presents a demonstration.

min f(X) =9.8z122 + 2z,
P
st. g1 (X)) =—
TX1T20y
8PL? (11)
X) = —-1<0
92(X) w3 B xo(2? + 23) -
where 2 <z, <14
02<2y<8

-1<0

Welded Beam Design (WBD): The objective of WBD is to design a welded
beam subjected to the weld thickness h = x1, height | = z9, length ¢t = x3, and
bar thickness b = x4, as formulated in Eq. (12) and visualized in Fig. 2(e).

min f(X) =1.1047127 + 0.04811x324(14 + x5)
s.t gl(X) :T(X) — Trmaz <0
QQ(X) :O'(X) — Omax S 0
93(X) =0(X) — Opar <0
X)=x1—24<0
9a(X) =21 — 24 < (12)
g5(X) =P — PC<X) <0
g6(X) =0.125 — 2, <0
g6(X) =1.104712% + 0.04811z324(14 + 25) =5 <0

where 0.1 <xq,14 <2
0.1 §x27x3 S 10
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(b). Gear train design (GTD)

i L = 14in

(c). Three-bar truss design (TBTD) (d). Tubular column design (TCD) (e). Welded beam design (WBD)

Fig. 2. The demonstration of engineering simulation tasks.

Competitor Algorithms. We compare CDE with state-of-the-art optimizers
and DE variants. The specific algorithms and corresponding parameter settings
are listed in Table 1.

Except for L-SHADE and L-SHADE-PWI, the population size for the rest
of the algorithms is fixed at 100. The maximum fitness evaluation (FE) for
CEC2017 benchmark functions and engineering simulation optimization tasks
are set to 500 x D and 10,000, respectively. Each single algorithm is imple-
mented with 30 trial runs to alleviate the effect of randomness. Additionally, the
Holm multiple comparison test [20] is employed to determine the significance
between every pair of compared algorithms. The symbols +, ~, and — denote
that the proposed CDE is significantly better, has no significant difference, and
is significantly worse than the compared algorithm.

4.2 Experimental Results and Statistical Analyses

We summarize the experimental results and statistical analyses on the CEC2017
benchmark functions and engineering simulation optimization tasks in Tables 2
and 3, respectively. The convergence curves on engineering tasks are demon-
strated in Fig. 3.
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Table 1. The compared optimizers and parameter settings

Method Parameters Value
CDE ur and oF 0.5 and 0.3

uer and oo 0.5 and 0.3
DE [1] scale factor F 0.5

crossover rate Cr (0.8
mutation strategy DE/rand/1/bin

CMA-ES [16] o 1.3
SaDE [11] wr and oF 0.5 and 0.3
uer and ooy 0.5 and 0.1
JADE [17] wr and por 0.5 and 0.5
L-SHADE [18] population size N|18 x D
pr and por 0.5 and 0.5
L-SHADE-PWI [19]population size N|18 x D
Niin 4
pr and por 0.5 and 0.5
GTDE [12] ur and oF 0.7 and 0.5

wer and ooy 0.5 and 0.3

cBD CBHD

o 2000 2000 6000 B000 10000 [ 2000
FEs

6000 8000 10000 o 2000 000 6000 B0 10000
FEs

TBTD T wap.

3

100 chines
SaDE

JaDE

LSHADE

LSHADE-PWI

100 — coe

o 2000 4000 6000 s000 10000 ] 2000 4000 5000 8000 10000 [ 2000 4000 6000 8000 10000
Fs FEs FEs

Fig. 3. Convergence curves of eight algorithms on six engineering simulation optimiza-
tion tasks.

5 Discussion
5.1 Performance Analysis on CEC2017

Since the CEC2017 benchmark suite contains test functions with various char-
acteristics such as unimodal, multimodal, hybrid, and composite, thus the opti-
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Table 2. Experimental results and statistical analyses on 30-D CEC2017. f;: Unimodal
function; fs — fo9: Simple multimodal functions; fio — fi9: Hybrid functions; f20 — f3o:
Composite functions.

Func. DE CMA-ES  [SaDE JADE L-SHADE |L-SHADE-PWI/GTDE CDE
f1 |mean [5.103¢410 +|3.727e+10 +/6.658¢+06 +(2.557¢+05 + |2.247e+05 +|2.005¢4+05 +  |4.846e+05 + |3.935e+03
std  |4.548¢409 |4.131e+09 (3.586e+06 |1.062e4+05  |8.170e+04 |9.129e+04 7.482e+05  |2.858¢403
f3 |mean [2.570e+05 4 8.737e+04 +|1.256¢405 +|1.097e+05 4+ |7.925¢404 ~|9.514e+04 + |5.365e+04 —|6.566e+04
std  [3.839¢404 [1.087e+04 [1.324e+04 |1.553¢4+04  |2.57le+04 |2.334e+04 1.578¢4+04  |1.017e+04
f4 |mean [5.598¢4-03 +|1.040e+04 +|5.155¢+02 +(4.971e4+02 &~ |5.119e+02 +|5.069¢4+02 ~ |5.229¢+02 + |4.947e+02
std  |1.001e+03 |1.669¢403 |1.121e+01 |9.735e+00  [1.317e+01 |1.516e+01 5.260e+01  |2.754e+01
f5 |mean [9.157e402 +|8.647e+02 +|7.067e+02 +(6.830e+02 ~ |6.812e+02 ~|6.961e4+02 + |6.188e+02 —6.793c-+02
std  |1.467e+01 |2.180e401 [8.716e+00 |1.230e+01  [8.704e+00 |1.070e+01 2.373e+01  [2.163e401
f6 |mean [6.854¢402 +|6.841e+02 +/6.039e+02 +(6.030e4+02 + 6.017e+02 +|6.016e4+02 +  |6.094e+02 + |6.000e+02
std  |4.509¢4+00 |6.360e+00 [6.699¢—01 [6.214e—01  |2.573e—01 |1.715e—01 6.514e+00  |6.747e—02
f7 |mean [2.885¢4-03 +|1.316e+03 +/9.519e+02 +(9.257¢4+02 + |9.164e+02 ~[9.245¢4+02 ~ |9.008e+02 ~|9.177c+02
std  [1.479¢402 |5.799e+01 [1.039e+01 [1.219¢4+01  |1.091e+01 |1.012e401 4.178¢+01  |1.398e+01
fs |mean [1.225¢403 +|1.108¢+03 +/1.010e+03 +(9.816e+02 &~ |9.784e+02 —|9.940e+02 ~ |9.204e+02 —|9.891c+02
std  [2.398¢401 |2.175e+01 |1.576e+01 |1.171e4+01  |9.673e+00 |1.037e+01 3.005e+01  |1.463e401
fo |mean [2.034¢404 +(9.916e+03 +|1.080e+03 +(9.334¢402 + 9.227e+02 +|9.204e4+02 +  |2.833¢+03 + [9.121e+02
std  [3.367e403 [1.739e+03 [3.154e+01 |1.779¢401  6.416e+00 |7.894e+00 1.252¢403  (2.395e+01
f10/mean [8.535¢403 +|8.965¢+03 +|8.526e+03 +|7.857¢+03 — |7.788e+03 —|8.264¢+03 ~ |6.230e+03 — 8.288¢+03
std  [1.251e4+02 [3.064e+02 [2.501e+02 |5.205¢4+02  |4.083¢+02 |4.103e+02 1.218¢403  (3.137e+02
f11/mean [5.459¢4-03 +|7.084e+03 +|1.580e+03 +|1.418¢403 + |1.330e+03 +|1.331e403 +  |1.336e+03 + [1.211e+03
std  [9.216e4+02 [1.281e+03 |7.087e+01 |1.369¢402  |2.47le+01 |1.982e401 7.101e+01  [3.607e401
f12/mean [2.890e409 +(9.017e+09 +|8.847e+06 +|2.351e+06 + |2.646e-+06 +|2.455¢+06 + |1.394e+06 + |3.315e+05
std  |7.294e408 [1.469e+09 [3.007e+06 |1.061e4+06  |9.611e+05 |1.091e+06 1.272¢406  |2.678c+05
f13/mean [3.517¢408 +|8.504e+09 +|1.856¢+06 +|7.919¢+05 + 8.107e+05 +|6.539¢+05 + |1.891e+05 + [1.791e+04
std  [1.550e408 [2.622e+09 [1.525¢+06 |4.738¢405  |3.963¢+05 |3.435¢+05 8.023e+05  |1.141e404
f14/mean |1.545¢4-05 +|3.709e+06 +|4.919e+04 +|5.594e+04 + |9.363e+03 +|1.253¢4+04 + |3.568e+03 — 5.788c+03
std  |8.448e+04 |3.375¢406 [2.024e+04 |1.000e+05  [3.375e+03 |6.404e+03 3.773e+03  |4.171e403
f15/mean [1.099¢4-07 +|1.057¢+08 +|2.662¢+05 +|1.879¢+05 + |7.902e+04 +|8.338¢404 +  |1.527¢+04 + |7.296e+03
std  |5.523e4+06 |7.358e+07 |2.447e+05 |1.815e4+05  |3.691e+04 |2.115e+04 1.292e4+04  |4.826e+03
f16/mean [4.100e4-03 +|6.112e+03 +|3.283e+03 ~[3.146e+03 ~ (3.137e+03 ~[3.202¢403 ~ |2.717e+03 — 3.121c+03
std  [2.520e402 [7.003e+02 [2.261e+02 |1.656e402  |2.096e+02 |1.460e+02 2.888¢+02  |1.890e402
f17/mean [2.902¢403 +|3.591e+03 +/2.302e+03 +(2.278¢403 + 2.201e+03 +|2.202¢4+03 + |2.241e+03 + [2.071e+03
std  [1.397e402 |4.381e+02 |1.375¢+02 |1.029¢402  9.999e+01 |8.212e401 1.897¢402  |1.211e+02
f1g/mean [8.635¢406 +|2.787¢+07 +|2.636e+06 +|3.552¢+05 — 8.008¢+05 ~[9.985¢+05 + |2.694e+05 — 6.445¢+05
std  |2.858¢+06 |1.867e407 |1.543e+06 |7.014e+05  [3.289e+05 |3.210e+05 3.029e+05  [2.997e405
f1o/mean [5.534e407 +|1.479e+08 +|3.885e+05 +(2.783¢+05 + |1.231e+05 +|1.098¢+05 +  |2.082e+04 ~ [1.071e+04
std  [1.531e4+07 |6.526e+07 |1.993e+05 [3.473¢4+05  |5.324e+04 |4.258¢+04 2.342e+04  [8.252e403
fa0/mean [2.895¢403 +|2.980e+03 +|2.753e+03 +|2.645¢+03 + |2.685e+03 +|2.679¢+03 + |2.422e+03 — 2.574e-+03
std  |1.522e+02 |1.782e402 |1.530e+02 |1.059e+02  [9.051e+01 |1.390e+02 1.717¢402  |1.038e+02
f21|mean [2.703e403 +|2.702e+03 +|2.497e+03 +|2.482e403 + |2.477e+03 ~|2.480e4+03 ~ |2.421e+03 — 2.473c+03
std  [1.745e4+01 [3.178e+01 |1.54le+01 |1.360e4+01  |7.071e+00 |2.119e401 2.781e+01  |1.477e401
f22/mean [1.007¢404 +(9.432e+03 +/4.272¢+03 +(3.152¢403 + 2.380e+03 +|2.332¢4+03 +  |6.922¢+03 + (2.302e+03
std  [2.811e402 |6.399e+02 2.839¢+03 [2.109¢4+03  |1.794e+02 |4.572e+01 2.150e+03  |4.604e+00
fa3/mean [3.048¢4-03 +|3.864e+03 +|2.850e+03 +|2.845¢+03 + |2.835¢+03 +|2.836e403 + |2.791e+03 ~/2.800e+03
std  |2.042e+01 |1.486e4+02 |1.184e+01 |1.235e+01  |1.104e+01 |1.078e+01 2.802e+01  [3.928e401
foa|mean [3.168e+03 4|4.123e+03 +|3.021e403 +|3.014e+03 + |3.003¢403 +|3.002e+03 + |2.965e+03 —|2.981e+03
std  [1.452e401 [1.231e+02 |1.162e+01 |1.262e4+01  9.793e+00 |1.587e+01 3.329e+01  [3.151e401
fa5/mean |7.916e403 +|4.393e+03 +|2.896e+03 ~|2.888e+03 ~|2.889e+03 ~|2.890e+03 ~ [2.908¢403 + |2.896e-+03
std  |7.414e+02 |2.358¢402 [5.233¢+00 |1.622e+00  [1.329¢+00 |3.488¢+00 2.653e+01  |1.487e401
fa6/mean [8.009¢403 +|1.022e+04 +|5.733¢+03 +|5.441e+03 + |5.381e+03 +|5.432e4+03 +  |5.082¢+03 + |4.319e+03
std  |1.622e+02 |4.395¢402 [1.563e+02 |1.552e+02  [1.210e+02 |1.653e+02 6.734e+02  |9.410e402
fa7/mean [3.319¢4-03 +|5.137e+03 +|3.237c+03 ~(3.227e+03 —3.220¢+03 ~|3.231e4+03 ~ |3.245¢+03 ~ (3.234e+03
std  |1.968¢4+01 [3.727e+02 [6.785¢+00 |4.321e4+00  |3.571e+00 |7.636e+00 2.469e+01  |1.278e401
fag/mean [5.625¢4-03 +|6.320e+03 +|3.273e+03 +(3.243¢403 &~ 3.253c+03 ~|3.244e4+03 ~ |3.374e+03 + (3.235e+03
std  [7.238¢402 |4.928e+02 [1.409e+01 [2.169¢4+01  |1.408e+01 |1.688e+01 2.394e+02  |2.565e401
f20/mean [4.892¢403 +|7.512e+03 +/4.229¢+03 +(4.071e+03 + |4.070e+03 +|4.122¢4+03 +  |4.009¢+03 + |3.846e+03
std  [2.164e402 [6.220e+02 [2.283e+02 |1.605¢402  |1.524e+02 |1.161e+02 2.031e+02  |1.855e402
f30/mean [3.759¢407 -+|1.003e+09 +|1.192¢+06 +(3.945¢405 + |4.913e+05 +|5.271e4+05 4+  |1.283¢+05 ~ |5.083e+04
std  |1.225e+07 |4.249¢408 |7.053e+05 |2.741e+05  |1.892e+05 |1.731e+05 2.266e+05  |3.913e404
+/~/— [29/0/0 29/0/0 26/3/0 20/6/3 18/9/2 20/9/0 14/5/10 -
Avg. rank|7.3 7.5 5.7 3.8 3.2 3.7 2.9 1.9
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Table 3. Experimental results and statistical analyses on engineering optimization
problems.

Func. DE CMA-ES [SaDE JADE L-SHADE |L-SHADE-PWI/GTDE CDE
CBD |mean|2.015e+00 +/6.910e+00 +1.341e-+00 +/1.341e+00 +/1.340e+00 +|1.340e+00 + |1.344¢+00 + [1.340e-+00
std  [2.139e—01 |1.248¢+00 (3.30le—04 [3.767e—04 |1.935e—04 |1.705e—04 2.207e—03  |3.705e—05
CBHD/mean|6.949¢+00 +/1.064e+01 +/6.845¢-+00 +/6.847e+00 +/6.844e+00 +/6.844e+00 +  6.850e+00 + |6.843e-+00
std [3.671e—02 |1.251e+00 |1.237e—03 [1.529e—03 |3.915e—04 |5.784e—04 3.810e—03  |3.375e—04
GTD mean|1.838e—10 +3.924e—04 +|1.087e—11 +/1.805e—11 +1.373e—11 +1.200e—11 + |5.568e—15 —|2.560e—12
std  [2.820e—10 |7.737e—04 |1.283e—11 [3.519e—11 2.412e—11 2.425e—11 1.670e—14  |5.84de—12
TBTD/mean|2.639e+02 +2.646¢+02 +2.639¢-+02 +2.639e+02 +2.639e+02 +2.639¢+02 +  2.639¢+02 + [2.639e-+02
std 7.558c—06 [6.350e—01 |7.622¢—07 |1.574e—06 3.310e—07 |4.045¢—07 1.063e—04  |5.984e—08
TCD |mean|3.015e+01 +3.281e+01 +3.015e-+01 +3.015e+01 +3.015e+01 +3.015¢+01 +  3.015¢+01 + (3.015e-+01
std  [8.503e—05 |1.439¢-+00 (2.198e—06 [1.019e—05 2.300e—06 [2.962e—06 1.013e—04  [5.172e—07
WBP [mean|1.761e+00 + 1.932e-+05 -+ 1.696e+00 +/1.692e+00 + 1.690e+00 + 1.689e+00 + |1.712e+00 + |1.687e+00
std 2.811e—02 [1.040e+06 (9.128¢—03 [3.993¢—03 2.950e—03 (2.224e—03 4.087e—02  5.447e—03
+/~/—  16/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 5/0/1 -
Avg. rank 6.7 3.0 4.0 5.0 2.8 2.8 5.5 1.2

mization in these test functions can fully reflect the performance of optimizers
and support us in investigating the features of involved algorithms thoroughly.

Initially, f; is unimodal functions, and the optimization in these functions
allows the performance evaluation in the aspect of the exploitative capacity.
The superiority of CDE is apparent in CEC2017 f; compared with state-of-the-
art optimizers. Therefore, we conclude that CDE has a remarkable exploitation
ability and robust performance across various problem domains.

Subsequently, f3 to fo are multimodal functions. These functions contain
more than one local optima and evaluate the performance of optimizers in escap-
ing from local optima and global convergence. Through the experimental results
and statistical analyses summarized in Table 2, the competitiveness of our pro-
posed CDE is observable. As the state-of-the-art DE variant, GTDE outperforms
CDE in some instances such as f3, f5, and fs. However, the excellent perfor-
mance of CDE cannot be neglected. Overall, CDE best performs in f4, fs, and
fo, and the capacities in escaping from local optima and global convergence are
experimentally verified through the results.

Finally, the rest of the functions are hybrid and composite. These functions
have complex fitness landscapes and multiple optima, which challenges opti-
mizers’ ability to balance exploitation and exploration, avoid premature con-
vergence, and achieve global optimization. Upon review of the result summary,
it becomes evident that CDE consistently demonstrates superior performance
across many test functions within this category, thereby highlighting its efficacy
in complex optimization environments.

5.2 Performance Analysis on Engineering Tasks

Engineering simulation optimization tasks serve as real-world challenges in
evaluating the performance of optimizers in complex optimization scenarios.
This study introduces CDE as a novel approach to engineering optimization
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tasks. Remarkably, our proposed CDE outperforms all other methods across all
instances except for GTD when compared with GTDE, showcasing its superior
performance in this domain.

In summary, our proposed CDE is a satisfactory variant of DE in both bench-
mark and engineering optimization. We owe this success to the integration of the
competitive mechanism and the intelligent hyper-parameter adaptation inherited
from the previous research [11,12]. These elements collectively empower CDE
with outstanding efficiency and effectiveness.

6 Conclusion

This paper proposes a novel competitive DE (CDE) to solve numerical optimiza-
tion problems. We introduce a competitive mechanism to DE and propose a novel
DE/winner-to-best/1 mutation strategy. Moreover, CDE inherits the hyper-
parameter adaptation schemes recommended in [11,12]. To assess the perfor-
mance of CDE, we conduct comprehensive numerical experiments on CEC2017
benchmark functions and engineering simulation optimization problems. The
experimental results and statistical analyses confirm the competitiveness of our
proposed CDE compared to state-of-the-art EAs and advanced variants of DE,
including CMA-ES, JADE, L-SHADE, L-SHADE-PWI, and GTDE.

In conclusion, our proposed CDE exhibits significant potential as a powerful
optimizer in real-world scenarios. In future research, we plan to further develop
CDE and leverage its capabilities to address complex tasks across various appli-
cation domains.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
21A402 and 24K15098 and JST SPRING Grant Number JPMJSP2119.
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Abstract. Inspired by the architecture of the hyper-heuristic (HH)
algorithm, we design a mutation operator archive, a crossover opera-
tor archive, and a boundary repair operator archive to propose a novel
hyper-heuristic differential evolution (HHDE). The mutation operator
archive and the crossover operator archive contain multiple represen-
tative search operators derived from different versions. A learning-free
selection function, which utilizes an unbiased probability approach, is
employed to autonomously determine the optimization sequence from
these archives. This function serves as the high-level component of the
HH framework. Additionally, we focus on the boundary repair operator,
an element often overlooked in the design of the evolutionary algorithm
(EA). Based on the previous research, our designed boundary repair
operator archive introduces two novel boundary repair techniques: opti-
mum inheritance and iterative opposite-based mapping. Comprehensive
numerical experiments on 10-D and 20-D CEC2022 benchmark functions
and six engineering optimization problems are conducted to assess the
efficacy of our proposed HHDE. The performance of HHDE was com-
pared against a range of other state-of-the-art competitor optimizers.
The experimental results and statistical analysis confirm the compet-
itiveness and efficiency of HHDE. The source code of HHDE can be
found in https://github.com/RuiZhong961230/HHDE.

Keywords: hyper-heuristic (HH) - differential evolution (DE) -
boundary repair + numerical optimization

1 Introduction

Since the conventional differential evolution (DE) algorithm was proposed by
Storn and Price in 1996 [1], it has emerged as one of the most popular and effi-
cient stochastic optimization techniques in the evolutionary computation (EC)
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community. Thanks to its superior characteristics such as scalability, applica-
bility, robustness, and easy implementation, DE-based optimization techniques
have been widely applied in various domains, such as multi-objective optimiza-
tion [2], large-scale global optimization [3], and other applications [4]. In the
meantime, many remarkable variants of DE have been proposed, including JADE
[5], success-history based parameter adaptation DE (SHADE) [6], and its vari-
ants. The rich history of DE will not be fully reviewed here, as it can be referred
to [7].

The conventional DE employs a series of operations including mutation,
crossover, and selection strategies to iteratively search for improved solutions.
These time-varying search operators collectively form the optimization sequence.
This raises an intriguing question: Is it possible to optimize the optimization
sequence itself? The response to this query is in the affirmative, aligning with
the concept of the hyper-heuristic (HH) framework. In contrast to tailored
meta-heuristic algorithms (MAs), which are specifically designed for particular
problems, the HH algorithm represents a more generic, “off-the-peg” technique
as opposed to “made-to-measure” [8]. As a high-level automatic methodology,
the HH algorithm consists of two crucial components: the low-level component
and the high-level component. The low-level component represents the inher-
ent attributes of the algorithm, whereas the high-level component functions as
the intelligent decision-maker for determining the optimization sequence. While
many HH algorithms have been effectively applied to combinatorial optimization
problems, only a few have been focused on continuous problems [9].

Additionally, a critical yet frequently overlooked aspect in the design of the
evolutionary algorithm (EA) is the boundary repair technique. In the process of
constructing the offspring through search operators, there is a probability that
the resultant offspring individual may fall outside the feasible search domain.
The traditional method to address this issue involves manually setting the value
to the search boundary or randomly generating a value within the search domain.
However, this simplistic method often fails to make adequate use of the domain
knowledge.

In this paper, we address the aforementioned challenges by integrating the
HH framework with DE, leading to the development of a novel hyper-heuristic
differential evolution (HHDE) algorithm. The design of HHDE encompasses a
mutation operator archive, a crossover operator archive, and a boundary repair
strategy archive. As a primary approach, the learning-free stochastic function is
employed as the high-level component of HHDE. Moreover, the comprehensive
numerical experiments conducted using 10-D and 20-D CEC2022 benchmark
functions and six popular engineering optimization tasks, have been compared
against nine state-of-the-art competitor EAs. These rigorous comparisons further
underscore the effectiveness and superior performance of our proposed HHDE.

The remaining paper is organized as follows. Section 2 introduces the related
works, Sect. 3 introduces our proposed HHDE in detail, Sect. 4 describes exper-
imental settings and results, we analyze the performance of HHDE in Sect. 5,
and finally, Sect. 6 concludes our work.
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2 Related Works
2.1 Differential Evolution (DE)

In this section, we briefly introduce the structure of the basic DE algorithm.
Without the loss of generality, the minimization problem is considered in this
paper, and the objective is to find an optimum, denoted as x*, that satisfies the
following Eq. (1).

*\ : —

f(a") = min(f(z)) (1)
where f() is the objective function, & = {1, 22, ..., p } is an n-dimensional trial
solution, and {2 denotes the search domain.

As one of the population-based EAs, the first step of DE is to initialize the
population through Eq. (2)

CL’iﬁj :LB] +7r- (UBJ — LB])

11 12+ T1D
21 22 - T2D (2)
N - — — _ €T €T DI
X ={%,%,....,Znp} = 31 432 3D

TN1 N2 " TND

where UB; and LB; are the upper and lower bound of the j th dimension, respec-
tively, NP is the population size, and X represents the population. Considering
the simplest DE/rand/1 mutation strategy, the mutated individual v can be
constructed using Eq. (3).

U =T, + F - (T, — Tpy) (3)

where F' is a scaling factor, &,,, Z,, and &, are mutually different individu-
als which are randomly selected from the population X. Then, the binomial
crossover between the trial vector v; and parent individual x; is formulated in

Eq. (4)
(4)

S Ui, if m<Crorj=jrand
U A .
Z; 4, otherwise

where 7 is a random number within the range (0, 1), Cr denotes the crossover
rate, and jrand is a randomly selected dimension. Finally, the greedy selection
strategy, which ensures the survival of better solutions, is expressed in Eq. (5).

(5)

. i, if f(d) < f(T)
Ti=19 .
Z;, otherwise
The DE algorithm iteratively repeats processes involving the mutation oper-
ator, the crossover operator, and the selection, until the optimum is found or
the computational budget is exhausted.
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2.2 Hyper-Heuristic (HH) Framework

The concept of the HH algorithm can be traced to 1960. Represented as an
advanced methodology, the HH algorithm focuses on optimizing the sequence
of search operators based on existing knowledge—an approach often described
as “heuristics to choose heuristics”. A representative architecture of the HH
algorithm is illustrated in Fig. 1.

High Level

. Execute the selected LLH
LLHs Selection |[————— Move
Module — Acceptancg
I Feedback

| Domain-independent information collection |

Domain Barrier

Low Level

LLHs 1 *  Problem representation
LLHs 2 LLHs 3 *  Objective function
» Initial solutions

Fig. 1. The representative architecture of the HH algorithm.

A general HH algorithm is composed of two key components: the low-level
component and the high-level component. The low-level component contains the
problem representation, the objective function(s), initial solutions, and a set of
low-level heuristics (LLHs). These elements collectively consist of the intrinsic
attributions of the HH algorithm. The high-level component is responsible for
managing the LLHs and constructing the sequence of heuristics. It also employs
a move acceptance principle to determine whether the generated offspring indi-
vidual should be accepted or rejected. Additionally, feedback is harnessed as
a form of reward to dynamically fine-tune the selection module of the LLHs,
enhancing the overall efficiency and adaptability of the algorithm.

3 Owur Proposal: HHDE

This section introduces our proposed HHDE in detail. We begin by presenting
an overview of HHDE, as illustrated in Fig. 2.

HHDE integrates the basic mutation-crossover-boundary repair-selection
skeleton of the conventional DE, while the specific operator for each step is
selected from the designated archive. Moreover, we adopt the asynchronous
update strategy in HHDE, which denotes that the search process for the next
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Fig. 2. The flowchart of HHDE.

single individual only commences once the mutation-crossover-boundary repair-
selection procedure for the preceding individual is completed. The benefit of this
strategy is that, if a better solution is found, this enhanced information can be
immediately used in the construction of the offspring for the subsequent individ-
ual, which can accelerate the optimization convergence. Next, we will introduce
the mutation operator archive, the crossover operator archive, and the novel
boundary repair operator archive.

Mutation Operator Archive: The designed mutation operator archive con-
tains five featured operators from different DE versions, which are presented in

Eq. (6).
rand/1:0; =&, + F - (Zpy, — Zry)
best/1: U = Tpest + F - (Zry — Zry)
cur/l: 0, =Z; + F - (T, — Try) (6)
cur2best/1 : U; = Z; + F - (Bpest — @) + F - (Zry — Try)
cur2pbest/1 : U; = T + F - (Zppest — Ti) + F - (Try — Tpy)
Here, Zpes¢ denotes the optimum found so far, and Zppes: indicates the mean
of the top-5% solutions as suggested in [5]. To minimize the number of the hyper-

parameter, we set the scaling factor F' as a random number within the range (0,
1) in this study.

Crossover Operator Archive: The crossover operator archive is composed
of five crossover operators: binomial crossover with the parent individual and
Tpest, exponential crossover with the parent individual and Fpest, and blending
Crossover.
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The binomial crossover with the parent individual can be found in Eq. (4),
and we simply replace the &; ; to Tpest,; to realize the binomial crossover with
Tpest- A visual demonstration of the exponential crossover with the parent indi-
vidual is provided in Fig. 3.

Vi Vi1 Viz Vi3 Via Vis Vie Vi7 Vig Vig

start l rmxdii cr mmiis cr n‘mfiig cr

U; Xia Viz Vi3 Via Vis Xie Xi7 Xig X9

| L7177

Xi Xia X2 X3 Xjao X5 Xie X7 Xig X9

Fig. 3. A 9-dimensional demonstration of the exponential crossover with the parent
individual.

First, a random integer generated from [1, n| determines the starting point
of the crossover. Then, if a dimension-varying random number rand() is smaller
than the crossover rate C'r, the offspring individual replicates the corresponding
value from the mutated individual ¥;; otherwise, it copies the corresponding
value from the parent individual #; and the exponential crossover terminated.
Similarly, the parent individual Z; can be replaced by the current best solution
Tpest 10 realize the exponential crossover with Tpes:.

Finally, our designed crossover archive absorbs the blending crossover pro-
posed in [10], which is formulated in Eq. (7)

o b-Z;;+(1—=0b)-9; , if r<Crorj=jrand )
" &g, otherwise

b is a blending parameter that controls the proportion of each item derived
from the parent individuals, which is randomly selected from {0.1,0.5,0.9}.

Boundary Repair Operator Archive: The phenomenon where a generated
offspring individual surpasses the defined search space is prevalent. However,
the description of the boundary repair operator is neglected in many pieces of
literature. To address this gap, we reviewed many source codes provided by
corresponding authors and concluded the two most frequently used principles to
implement the boundary repair process in Eq. (8) and Eq. (9)

’Lf f@j > UBj or fz}j < LBj (8)
then fi,j = LBJ —+7r- (UBJ — LB]>
Zf fi,j > UB] then fi.,j = UBJ
Zf fz"j < LBj then fi,j = LBj
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When the value in a specific dimension falls outside the search space, Eq. (8)
adopts the random strategy to guarantee that the newly generated value remains
within the domain, while Eq. (9) manually modifies any value exceeding the
search space, aligning it with the boundary limits. These two simple principles
are involved in our designed boundary repair operator archive. Moreover, another
simple strategy described in Eq. (10) is also included, which inherits the value
in the corresponding dimension from the current best solution xpes-

’Lf fi,j > UBJ or fi,j < LBJ
. I (10)
then &; ; = Tpest,j
Finally, inspired by the opposite-based learning [11], we recognize the poten-
tial contribution of this approach to the boundary repair process. The simplest
formulation of the opposite-based number is defined in Eq. (11)

f;J :a+b—fi7j (11)

where a and b are the mapping boundary. We apply this opposite-based mapping
operator iteratively until the generated offspring individual is within the search
space. Algorithm 1 describes this operator.

Algorithm 1: Iterative opposite-based mapping

Input: Solution individual: &;; Search space: LB, U B; Dimension size: n
Output: Corrected solution individual: Z;
1 Function I0BM(Z;, LB, UB, n):

2 for j =0 ton do
3 while Ci"i,j > UB]' or fi,j < LBj do
4 if J,_“iﬂj > UB; then
5 ’ :Ei,j:Z-Uij:Ei,j
6 end
7 else
8 ’ :i"i,j =2 LB]' — :fi’j
9 end
10 end
11 end

In summary, the pseudocode of our proposed HHDE is shown in Algorithm 2.

Additionally, HHDE samples the mutation operator, crossover operator, and
boundary repair operator from their respective archive, employing an unbiased
probability approach. The benefit of this simple idea is computationally cheap, as
it allows for a diverse range of strategies to be used in the evolutionary process,
potentially enhancing the adaptability and robustness of the solution.
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Algorithm 2: HHDE

Input: Population size N P; Search space: LB, U B; Dimension size: n;
Maximum iteration: T
Output: Optimum: Zpest
1 Function IOBM(NP, LB, UB, n, T):

2 Generating initial population X by Eq. (2)

3 while t =0 andt < T do

4 for i=0 to NP do

5 Sampling a mutation operator

6 Implementing mutation to z;

7 Sampling a crossover operator

8 Implementing crossover to x;

9 Sampling a boundary repair operator
10 Implementing boundary repair to x;
11 Evaluating and updating the Zpest
12 end
13 end
14 return Tpes:

4 Numerical Experiments

This section introduces our numerical experiments including the settings and
results in detail.

4.1 Experiment Settings

Experimental Environments: Our experiments were carried out using
Python 3.11 on a Lenovo Legion R9000P device. This device is equipped with an
AMD Ryzen 7 5800H processor and 16GB RAM. This well-established environ-
ment ensures the integrity and fairness of our numerical experiments conducted
in this study.

Benchmark Functions: CEC2022 benchmark functions and six engineering
optimization problems are employed to evaluate the performance of our pro-
posed HHDE, which are provided by Opfunu [12] and Enoppy [13] libraries,
respectively. Table 1 summarizes the basic information of engineering problems.

Table 1. Summary of eight engineering optimization problems.

Name Abbr. |Dim.# of constraints
Cantilever Beam Problem CBD |5 1

Corrugated Bulkhead Problem CBHDJ4 6

Gear Train Problem GTD |4 0

Reinforced Concrete Beam Problem RCB (3 2

Speed Reducer Problem SRD |7 11

Three Bar Truss Problem TBTD|2 3
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Compared Methods and Parameters: We compare our proposed HHDE
with three categories of EAs: (1) Famous DE variants including DE [1], JADE
[5], SHADE [6], and LSHADE [14], (2) Latest metaheuristics including Aquila
optimization (AO) [15], golden jackal optimization (GJO) [16], Chernobyl dis-
aster optimizer (CDO) [15], and growth optimizer (GO) [17], and (3) State-
of-the-art optimizer including CMAES [18]. All competitor algorithms can be
sourced from the MEALPY library [19]. The population size of all competitor
algorithms except for LSHADE is 100, and the maximum fitness evaluations
(FEs) for CEC2022 benchmark functions and engineering problems are 1000 x
Dimension and 20,000, respectively. Each algorithm was executed independently
30 times on every single function to ensure statistical robustness. The detailed
parameter settings are listed in Table 2.

Table 2. Parameters of competitor algorithms.

EAs Parameters Value
DE Mutation scheme DE/cur-to-rand/1
F and Cr 1 and 0.7
CMAES |o 1.3
JADE pr and por 0.5 and 0.5
SHADE |ur and pcr 0.5 and 0.5
LSHADE|ur and pcr 0.5 and 0.5
Population size |18 x D
AO a, 6, and w 0.1, 0.1, and 0.005
GJO c1 1.5
CDO Sa 16,000
Sg 270,000
Sy 300,000
GO P, P>, and P; |5, 0.001, and 0.3
HHDE |Crossover rate Cr|0.7

4.2 Experimental Results

This section provides a comprehensive summary of both the experimental and
statistical outcomes derived from the analysis of ten EAs. Initially, we obtain the
optimal fitness values from 30 trial runs for each EA. Subsequently, we employ
the Friedman test to identify the significance of the results. In cases of observed
statistical significance, we proceed to employ the Mann-Whitney U test to eval-
uate the p-value for each pair of algorithms. This is followed by correction using
the Holm multiple comparison test to determine statistical significance. Symbols
such as +, =, and — denote whether our proposed HHDE exhibits statistically
better, no significance, or statistically worse performance in comparison to spe-
cific competitor algorithms. The best-performed algorithm is denoted in bold.
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Results on CEC2022 Benchmark Functions: Table 3 and 4 summarize the
experimental and statistical results on 10-D and 20-D CEC2022 benchmark func-
tions. Due to the limitation of space, the convergence curves on the representative
functions (i.e. f1: Unimodal function; f4: Basic function; fs: Hybrid function; f11:
Composition function) are visualized in Fig. 4.

Table 3. Experimental and statistical results on 10-D CEC2022 benchmark functions.
f1: Unimodal function; fo — f5: Basic functions; fs — fs: Hybrid functions; fo — fi2:
Composition functions; mean and std: the mean and the standard deviation of 30 trial

runs.
Func. DE CMAES JADE SHADE LSHADE |AO GJO CDO GO HHDE
f1 mean |7.14e+03 +/4.22e4+02 + |3.09¢+02 +3.02¢+02 + 3.03e+02 +|3.46e+03 +/6.47e+02 +|1.35¢+04 +1.19¢+03 +|3.00e+02
std 1.73e403  |4.01e+01 5.45e+00 [1.37e4-00 2.42e+00 [1.57e403 |6.25e+02 1.26e4+03 |2.33e+02 7.67e—11
f2 mean |4.60e+02 +4.17e4+-02 + |4.09e+02 4 4.08e4+-02 + 4.09e+02 +(6.31e+02 +4.47e+02 +8.86e+02 +4.21e4+02 +/4.06e+02
std 1.43e401  |3.04e+00 5.87e—01 1.67e+00 5.91e—01 [1.08e4+02 |1.88e+01 3.58e+01 |5.69e+00 |1.14e+01
f3 mean 6.00e+02 +/6.00e+02 + |6.00e+02 +6.00e4+02 + |6.00e+02 +/6.00e+02 +/6.00e+02 +/6.00e+02 +/6.00e+02 +6.00e+02
std 1.40e—02 |6.56e—04 2.79e—07 [1.32e—08 1.64e—08 |1.19e—01 |1.17e—02 [3.74e—03 [2.62e—03 |7.48e—14
f1 mean [8.01e+02 +8.01e+02 + [8.01e+02 +8.01e+02 + 8.01e+02 +8.01e+02 +8.00e+02 +8.01e+02 +8.01e+02 +|8.00e+02
std 1.96e—01 [1.57e—01 1.78e—01 |1.78e—01 1.56e—01 [2.55e—01 |1.53e—01 |2.61e—01 |1.94e—01 |1.42¢e—01
f5 mean 9.03e402 +/9.00e+02 + {9.00e+02 —9.00e+02 —9.00e+02 —9.02e+02 +/9.00e+02 +9.04e+02 +/9.01e+02 +/9.00e+02
std 7.56e—01 |6.38¢—02 8.08¢—04 8.59¢—05 1.28¢—04 [1.21e+00 [2.77e—01 |7.53e—01 [2.0le—01 2.59¢—01
fe mean 1.00e4+05 +|4.10e+03 ~|2.78e¢+04 +1.93e+04 + |1.81e+04 +/6.14e+06 +/6.16e+04 + 5.63e+08 +[2.57e+05 +/5.91e+03
std 2.88e+04  6.09e+02 1.25e4+04 5.98e+03 5.91e+03 |4.83e+06 [3.85e+04 |4.18e+08 |1.45e+05 [6.44e+03
fr mean 2.07e4+03 +2.08e+03 + [2.04e+03 +2.04e4+03 + 2.04e+03 +2.29e+03 +2.12e+03 +3.84e+03 +[2.06e+03 +2.02e+03
std 1.02e+01  |1.48e+01 5.27e4+00 3.87e+00 3.78¢+00 [1.31e+02 [9.19e+01 [1.17e+03 [9.62e+00 [3.00e+00
fs mean 2.26e+03 +2.23e+03 4 [2.23e4+03 +2.23e4+03 + 2.23e+03 +|1.17e+04 +3.70e+03 +2.89e+03 +2.46e+03 +2.22e403
std 1.03e+01  |1.94e+00 2.42e4+00 4.08e+4-00 1.58e+00 |4.07e+04 6.21e+02 [3.72e+02 |1.99e+02 |6.06e+00
fo mean 2.67e4+03 +[2.60e+03 + |2.36e+03 ~ 2.33e+403 ~|2.34e+03 ~(2.78e+03 + 2.56e+03 + 3.37e+03 +[2.56e+03 +(2.47e+03
std 2.67e+01  |1.11e+02 1.20e+02  8.99e+01 1.09e+02  |7.14e+01 [1.93e+02 9.52e+01 |1.17e+02 1.80e+02
fromean 2.62e4+03 ~[2.61e+03 ~ |2.60e+03 — 2.60e+03 —2.60e+03 —2.73e+03 +2.66e+03 + 2.80e+03 +[2.61e+03 ~(2.65e+03
std 5.49e+00 |1.07e+00 9.65e—01 |6.56e—01 9.85e—01 [1.05e+02 |7.10e+01 |3.14e+01 |2.47e+00 6.84e+01
fiimean 2.66e+03 +2.74e4+03 4+ 2.60e+03 —2.60e4-03 —2.60e+03 —2.73e4+03 +{2.61e+03 —2.85e+03 +(2.62e4+03 —[2.63e+03
std 1.52e4+02 |3.01e+02 6.68e—02 |1.30e—02 2.82e—02 [2.05e+02 [1.38e+01 |2.70e+01 |3.52e+00 [1.57e+02
fizmean 2.87e4+03 ~[2.87e+03 ~ [2.87e+03 — 2.87e+03 —2.87e+03 —2.90e+03 +2.87e+03 ~3.22e+03 +[2.87e+03 ~(2.87e+03
std 6.64e—01 |5.35e—01 4.22e—01  4.71le—01 5.52e—01 |3.46e+01 7.43e+00 1.08e+02 |5.96e—01 |3.98e+00
+/x/— 10/2/0  9/3/0 7/1/4 7/1/4 7/1/4 12/0/0 10/1/1 12/0/0 9/2/1
Ave. rank: 7.5 5.4 3.6 2.1 2.6 8.6 6.3 9.5 6.2 3.0

Results on Engineering Problems: Table 5 summarizes the experimental and
statistical findings derived from six engineering problems, and Fig. 5 provides the
convergence curves.

5 Discussion

Computational Complexity Analysis: Supposing the population size is N,
the dimension size is D, and the maximum iteration is 7', the computational
complexity of HHDE is methodically analyzed in accordance with its procedural
flowchart.
The first process is population initialization, and the computational com-
plexity is O(N - D). Then, HHDE enters the iteration. For a single individ-
ual, the computational complexity of the mutation operator sampling can be
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Table 4. Experimental and statistical results on 20-D CEC2022 benchmark functions.

Func. DE CMAES |JADE SHADE LSHADE |AO GJO CDO GO HHDE

fi mean |3.38e+04 +2.55¢+03 +[3.00e+02 + [3.00e+02 + [3.00e+02 + 2.99e+04 +/6.64e+03 +/2.00e+04 +1.05¢+04 +3.00e+02
std 5.79e+03  |4.33e+02  |2.34e—01 1.57e—01 2.41e—01 8.78¢+03 [2.06e+03 [1.86e+02 |1.69e+03 |1.58e—01
f2 mean |1.05e+03 +5.10e4+02 +4.49e+02 —|4.50e+02 — 4.49e+02 — 2.14e4+03 +5.82e+02 + 2.14e403 +(6.34e+02 +4.56e+02
std 1.49e+02 |1.54e4+01 7.02e—01 4.36e+00 3.73e—03 5.07e+02  |4.95e+01 |4.48e+01 |4.84e+01 |1.78e+01
f3 mean |6.00e+02 +6.00e4+02 +6.00e+02 ~ |6.00e+02 — 6.00e+402 —|6.02e+02 +/6.00e+02 + 6.01e4+02 +|6.00e+02 +/6.00e+02
std 5.53e—02 |7.24e—03 1.04e—09 8.8le—11 8.05e—11 4.21e—01 |7.14e—02 |1.06e—02 3.58¢—02 |1.04e—08
fa mean |8.04e+02 +8.04e4+02 +8.02e+02 + (8.02e+02 + 8.02e+02 + |8.04e4+02 +8.02e+02 +8.03e+02 +8.04e+02 +8.01e+02
std 4.06e—01 [3.57e—01 |4.69e—01 3.46e—01 3.19e—01 5.72e—01 |6.45¢—01 |5.44e—01 |4.49e—01 |3.34e—01
mean 9.16e+02 +9.03e+02 +9.00e+02 — 19.00e+-02 —9.00e+02 — 9.12e+02 +9.02e+02 ~9.12e+02 +9.05e+02 +9.02e+02
std 2.30e+00 |4.79e—01 3.76e—06 1.65e—06 7.46e—06 2.99e+00 [9.23e—01 2.36e+00 9.33e—01 9.68e—01
f6 mean |2.22e+08 +5.28e4+06 +2.36e+04 —|1.33e+06 + |1.31e4+06 + [1.65e4+09 +2.76e+07 + 2.43e4+09 +9.09e+07 +4.77e+04
std 8.54e+07 [2.08¢+06 1.34e+04 5.68e+05 6.64e+05 1.31e+09 |4.13e+07 4.03e+07 2.27e+07 |1.98e+04
fr mean |2.82e+03 +2.29e403 +2.08¢+03 + [2.07e+03 + 2.08e+03 + 3.34e4+03 +2.26e+03 +2.63e+03 +2.53e+03 +/2.06e+03
std 2.06e+02 |7.37e+01  |2.25e+01 1.13e+01 1.41e+01 6.72e+02  2.31e+02 1.14e+02 |1.26e+02 |3.62e+01
mean |1.77e4+05 +2.41e4+03 +2.36e+03 + 2.43e4+03 + 2.48¢+03 + |1.26e+10 +7.70e+03 + 1.44e+04 +7.03e+06 +2.30e+03
std 3.47e+05 [5.48e+01 3.61e+02 2.22e+02 2.80e+02 2.45e+10  |3.29¢+03  2.02e+04 |1.26e+07 |7.38e+01
fo mean |2.81e+03 +2.65e+03 +2.64e+03 —[2.64e+03 — 2.64e4+03 — [3.66e+03 +2.84e+03 +5.21e403 +{2.70e+03 +2.64e+03
std 4.12e+01  [3.92e+00 6.72e—02 3.28e—01 5.50e—01 4.50e+02  [9.51e+01 |1.48e+02 |2.22e+01 |3.08e+00
fiomean |4.02e+03 +(3.14e+03 ~2.78¢+03 — [2.77e+03 — |2.77e+03 —[3.75e+03 ~3.64e+03 ~6.58e+03 +2.99e+03 ~(3.11e+03
std 1.65e+03  9.33e+02 5.01e+01 3.73e+01 8.39e+00 1.46e+03 [1.31e+03 1.18e+03 5.72e+02 |5.76e+02
fiimean |2.81e+03 +2.62e4+03 +2.60e+03 — [2.60e+03 — 2.60e+03 —4.38e+03 +2.65e+03 +5.60e+03 +2.66e+03 +2.60e+03
std 3.13e+02 [3.11e+00 1.87e—03 5.26e—04 7.80e—04 1.51e+03 |3.25e+01 1.03e+02 1.34e+01 |3.96e+00

f..

a

f;

o

fiz/mean [2.96e+03 —2.96e+03 —2.94e403 —[2.94e+03 — [2.94e+03 — [3.11e+03 +3.03¢+03 +[3.45¢+03 -+ 2.96e-+03 —2.99¢+03
std  [4.04e+00 |7.64e+00 [8.96e—01  [2.43e+00  2.37e+00  |7.3le+01 |4.12e+01 [3.66e+01 9.32e+00 [3.43e+01

+/~/— |11jo/1 /11 417 5/0/7 5/0/7 11/1/0  [10/2/0  [12/0/0  [10/1/1

Ave. rank:[8.2 5.4 2.2 2.6 2.7 9.0 5.9 8.8 6.8 3.1

ignored, since the number of mutation operators is a constant. The compu-
tational complexity of rand/1, best/1, cur/1, cur2best/1, and cur2pbest/1 is
O(D). Although cur2pbest/1 computes the mean of the p-best individuals, this
operator increases the practical complexity but does not affect the theoretical
analysis. Subsequently, both the crossover operator and the boundary repair
operator exhibit computational complexities that are analogous to those of the
mutation module. In summary, the total computational complexity of HHDE is
expressed in Eq. (12).

O(N-D+T-(N-D+N-D+N-D))
—O(N-D+T (3N D)) (12)
.=O(T - N - D))

Performance Analysis on CEC2022 Benchmark Functions: From the
experimental and statistical results presented in Table3 and 4, our proposed
HHDE performs relative competitiveness when compared with other competitor
algorithm. Especially in most instances of unimodal, basic, and hybrid functions,
HHDE continuously outperforms the famous DE variants and state-of-the-art
optimization algorithms. This performance not only underscores the efficiency of
HHDE but also empirically validates the effectiveness of our proposed approach.

Moreover, the superior convergence speed of HHDE is evident from con-
vergence curves in Fig.4. However, the significant inferiority of HHDE can be
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Table 5. Experimental and statistical results on six engineering problems.

Prob. DE CMAES  |[JADE SHADE LSHADE [AO GJO CDO co HHDE
CBD |mean|1.361e+00 +1.342e+00 +1.340e+00 +1.340e+00 + 1.340e+00 +1.494e400 +|1.340e+00 + 1.358e+00 + |1.355e+-00 +|1.340e+00
std [6.157c—03 |1.283c—03 |1.173¢—05 8.604c—06  6.160e—06 5.540c—02 |3.264c—04 6.720c—03  7.175¢—03 |2.923¢—06
CBHD|mean 6.863¢-+00 + 6.844-+00 + 6.843¢+00 -+ 6.843¢-+00 + 6.843¢-+00 +9.026¢+00 +7.396e+00 + 5.928e+00 ~ 6.885¢+00 -+/6.843¢+00
std (9.405c—03 2.445c—04 1.086c—05 |3.720¢—07  3.085¢—07 |1.182¢4+00 [5.028¢—01 2.037¢+00  1.654c—02 |7.358¢—05
GTD |mean2.070e—11 +1.030e—11 + 1.677e—12 +1.237e—12 + 8.182e—13 +3.701e—05 -+ 7.404e—12 +2.336e—10 + 6.776e—11 -+/1.605¢—32
std 4.106e—11 |1.465e—11 2.864e—12 |1.969¢—12  1.189e—12 1.936c—04 (9.276c—12 2.907c—10  2.870c—10 [8.643c—32
RCB |mean|1.666e+02 + 1.666e-+02 + 1.666e+02 + 1.666e+02 + |1.666e-+02 + 1.715¢+02 + 1.610e+02 ~ 1.610e+02 ~ |1.629¢+02 + 1.605¢+02
std 6.055c—01 6.055c—01 6.161e—01 [6.055e—01  6.055c—01 3.910e4+00 |1.503¢4+00 [1.725¢+00  [1.796¢+00 |1.050¢+00
SRD |mean2.988¢+03 +2.987e-+03 + 2.987e+03 +2.987e+03 + 2.987e+03 + 2.906e+06 +3.019¢+03 +3.148¢+03 + 2.991e+03 + 2.987e+03
std [1.624e4+00  |4.9200—02  2.3250—05 3.950e—06  3.345c—06 | 1.967¢+06 |1.021e4+01 3.872e4+01  3.977e+00 [1.588¢—10
TBTD mean2.639¢+02 ~(2.639¢+02 —2.639¢+02 —[2.639e+02 —[2.639¢+02 — 2.649¢-+02 +2.647¢-+02 +2.641e-+02 + 2.639¢-+02 ~2.639¢-+02
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+/~/— 5/1/0 5/0/1 5/0/1 5/0/1 5/0/1 6/0/0 5/1/0 4/2/0 5/1/0
Ave. rank: [7.1 5.8 3.6 3.1 3.1 10.0 6.3 6.3 6.6 2.6
CBD CBHD
o
Chaes
w1 ane
Soace M
Conaoe
o
4x10° Gjo 9x10°
. oo .
g o fowr
20 e
...... e
Tz s 7 o0 12500 10 170 200
[
RCB SRD. TBTD
s R ———————— - =
...... Cones
1o 0 Saoe
- onane
1ns
o
g b 268100 o
£ H —— HHDE
s
1650 268w108
10¢
123
2600100
1600

]

2500 5000 7500 10000 12500 15000 17500 20000
=

2500 5000 7500 10000 12500 15000 17500 20000
FEs

0 2500 5000 7500 10000 12500 15000
FEs

Fig. 5. Convergence curves of ten EAs on six engineering problems.

17500 20000



276 R. Zhong et al.

observed in some instances, specifically in functions fy, fi0, f11, and fi2, when
compared with algorithms such as JADE, SHADE, and LSHADE. The common
feature of these test functions is their composite nature. Therefore, we reason-
ably infer that HHDE is not good at dealing with composite problems, which is
owing to the inner structure of HHDE, possibly.

Performance Analysis on Engineering Problems: Optimizing six engineer-
ing tasks provides insights into real-world applications. Through the experimen-
tal and statistical results summarized in Table 5, HHDE maintains competitive-
ness on these tasks, which proves the excellent scalability of HHDE. Furthermore,
the poor-performed Chernobyl disaster optimizer (CDO) in CEC2022 bench-
mark functions achieves the best in the corrugated bulkhead problem (CBHD),
and the No Free Lunch Theorem (NFLT) can be applied to explain this phe-
nomenon: NFLT states that for every pair of black-box optimization algorithms,
their average performance across all possible problems is identical. If an algo-
rithm excels in a specific category of problems, it must inevitably lag in others.
This trade-off is the only means to maintain an equivalent average performance
overall. Similarly, we can also utilize this theorem to explain the inferiority of
HHDE in composite functions of the CEC2022 suite.

6 Conclusion

In this paper, we propose a hyper-heuristic differential evolution (HHDE) for
numerical optimization. Inspired by the architecture of the HH algorithm,
our approach involves the creation of distinct archives for mutation operators,
crossover operators, and boundary repair operators. As a primary study, the
learning-free selection function with unbiased probability is employed to sam-
ple the search operator. Moreover, we focus on the boundary repair module,
which is usually ignored in the EA description. Based on the previous research
on boundary repair, we embed two strategies in our designed boundary repair
archive: optimum inheritance and iterative opposite-based mapping. Compre-
hensive numerical experiments confirm the competitiveness of our proposed
HHDE with state-of-the-art optimizers adequately.

In future research, we are committed to the ongoing development and refine-
ment of the proposed HHDE. A promising topic is to intelligently determine
the optimization sequence, where machine learning and reinforcement learning
techniques may further significantly enhance the performance of the HHDE.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
21A402 and 24K15098 and JST SPRING Grant Number JPMJSP2119.
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Abstract. Renewable energy generation forecasting plays crucial roles
in advanced smart grid and sustainable practices. Although many RNN
related methods have been utilized to predict power generation time
series data, they often struggle to capture very long-term correlations
efficiently due to the vanishing gradient issue. To address this challenge,
we have introduced the Ultra long term network model that incorporated
LSTM, SKIP LSTM and Dense components. This model effectively cap-
tures long-term patterns while mitigating the vanishing gradient prob-
lem associated with capturing very long term patterns. Our application
of this model to renewable power prediction has yielded better perfor-
mance when compared through metrics like MSE and MAE than previ-
ous models such as LSTM, GRU and Simple RNN models in time series
analysis within smart grids. The integration of this model holds promise
for enhancing the intelligence of renewable energy grids.

Keywords: Renewable energy + Smart grid - LSTM - Optimization -
Time series

1 Introduction

Energy sustainability and environmental preservation are global concerns that
have attracted increasing attention. The utilization of renewable energy sources,
which can be consistently harnessed without depletion, plays a crucial role in
mitigating the adverse effects on environmental conservation and promoting the
sustainable development of energy resources.

However, renewable energy is heavily influenced by environmental factors
and is subject to fluctuation, posing challenges to its stability.

To ensure the stability of the grid, smart grid, also called intelligent grid [1],
need to be deployed and applied. Smart gird forms an intelligent electricity net-
works working with all connected components to deliver stable and sustainable
electricity.

It includes management, optimization and control of power systems through
information and communication technology. Smart grid-related technologies
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H. R. Arabnia et al. (Eds.): CSCE 2024, CCIS 2256, pp. 278-290, 2025.
https://doi.org/10.1007/978-3-031-85638-9_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-85638-9_21&domain=pdf
http://orcid.org/0009-0007-3117-6083
http://orcid.org/0000-0002-6421-0192
https://doi.org/10.1007/978-3-031-85638-9_21

JLF: O of R-E Prediction in SG Based on ULTNet 279

include renewable energy integration, energy management [2] and optimization,
energy storage [3], electric vehicle interaction with the grid, data sharing and
interactive connection.

In energy management systems, it’s necessary to establish a prediction model
to forecast unstable renewable energy, and electric load forecasting is also impor-
tant [4].

In a smart grid, an accurate renewable energy forecasting model plays a
critical role in not only predicting the future electricity generation with precision,
but also integrating with the real-time complex data of the grid to forecast the
supply and demand situation.

The forecasted supply and demand scenarios serve as key inputs to intelligent
decision-making systems, assisting in making correct decisions such as procuring
energy in advance in the electricity market to prevent potential power outages,
activating backup energy sources to ensure stable power supply during peak
demand periods, or storing excess energy to minimize waste.

Therefore, a precise renewable energy forecasting model can maximize the
efficiency of smart grids, facilitating the transition from fossil fuels to renewable
energy sources, while ensuring the stability of grid and city operations.

In recent years, with the advancement in the field of deep learning, LSTM [5],
GRU [6] and related models have been increasingly applied to time series fore-
casting problems. Reference [7] applied GRU to wind power forecasting. Refer-
ence [8] applied LSTM to predict the stability of smart grid.

LSTM was also used in wind power short-term prediction in Reference [9].
Reference [10] proposed ConvLSTM and applied it to near-term precipitation
forecasting. Reference [11] utilized LSTM to predict hydrological time series data
such as flow, precipitation, and evaporation.

Historically, forecasting models developed using deep learning in the energy
sector have predominantly targeted the prediction of a singular energy source,
such as modeling and forecasting wind energy or solar energy.

However, electricity generation within a specific region may come from a mix
of sources, including wind, hydropower, solar, fossil fuels, and nuclear energy.
Therefore, to implement these models in smart grid systems within a particular
region, it is essential to establish forecasting models for all renewable energy
sources in that area, such as wind power combined with hydropower, in order to
gradually replace fossil fuels with renewable energy and enhance grid stability.

The forecasting model we have designed focuses on predicting the electricity
generation from all renewable energy sources in a given region.

As the variability and patterns of different renewable energy sources differ,
we have refined existing models to strike a balance between forecasting accuracy
and efficiency, thereby improving the applicability and effectiveness of the model.

2 Methodology

LSTM, GRU and related models such as sample RNN can capture long-term
dependencies effectively but often fail to capture extremely long-term correla-
tions due to the vanishing gradient problem. The LSTNet model can effectively
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capture long term correlations, but its structure is relatively complex and com-
putation cost are high.

So based on upon various existing models, we designed the Ultra-Long-Term
network which contains several different components that allow it to jump like
a frog to capture super long term correlations in renewable energy data. The
structure of the model is shown in Fig. 1.

Time Series Data LSTM layer  LSTM-SKIP layer  Dense layer Output

Time jump —

M 1 Concatenate
.
*‘

Fig.1. Ultra-long-term network model. The LSTM component is responsible for
extracting long-term patterns while the SKIP-LSTM component utilizes historical peri-
odic data to capture extremely long time patterns. Finally we use the Dense layer to
concatenate the outputs of the LSTM and SKIP-LSTM components and output the
prediction results.

2.1 LSTM Component

In time series forecasting, the LSTM model with LSTM memory cells can indi-
cate when the network should forget historical information and when to update
the memory cells with new input information [12].

Therefore, through the forget gate and input gate in the gate units, LSTM is
well equipped to handle the issues of vanishing gradients and exploding gradients.
It exhibits greater stability and is more suitable for processing longer time series
data.

The calculation of the hidden layer node’s state at time t can be represented
as follows:

iy = o(Waray + Whihi—1 + Weici—1 + b;)

fi=0Wyszy + Whrhi—1 + Wepe—1 + by)
¢t = frei—1 + stanh(Wyexy + Wiehi—1 + be)
O = U(Wzoxt + Whohtfl + Wcoct + bo)
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he = ogtanh(cy) (5)

In Egs. (1) to (5), ¢ represent the input gate, f represent the forget gate, c¢
represent cell state while o represent the output gate respectively. And b represent
the corresponding bias term, W represents the weight matrix between the gates,
o represents the sigmoid activation function while tanh represents the hyperbolic
tangent function.

2.2 LSTM-SKIP Component

The LSTM structure, equipped with memory cells, excels in capturing long
term dependencies in data. Nevertheless, the vanishing gradient issue frequently
impedes LSTM from capturing exceedingly long term correlations effectively in
real-world scenarios.

It is widely acknowledged that the power generation from renewable sources
demonstrates a clear cyclic pattern [13].

Hence, besides utilizing the data preceding 16:00 on the current day to fore-
cast the renewable power generation at that specific time, it is apparent that we
can also utilize data from the same time on the preceding day or even 2 days
prior for predictive purposes.

Therefore in this component, we select multiple non-consecutive points with
fixes time intervals as input for prediction, much like a frog jump from one point
to another.

We have devised a LSTM-skip component in our model, featuring skip con-
nections. This component enables the model to effectively capture long term
patterns and correlations utilizing historical data from the corresponding period,
thereby circumventing the vanishing gradient problem and enhancing the pre-
diction model [14].

The calculation of this skip-LSTM component, integrating the jump connec-
tion, can be expressed as follows:

iy = o(Wasae + Whiki—p + Weici—p + b;) (6)
Jt =0(Wysaxe + Whshi—p + Wepcr—p + by) (7)
¢t = frci—p + itanh(Wyex, + Wichi—p + be) (8)
0r = 0(Waoty + Whohi—p + Weoct + bo) (9)
hy = ogtanh(cy) (10)

In Egs. (6) to (10), ¢ represents the input gate, f represents the forget gate,
c represents cell state while o represents the output gate respectively. And b
represents the corresponding bias term, W represents the weight matrix between
the gates, o represents the sigmoid activation function while tanh represents the
hyperbolic tangent function. P represents a specific and applicable time period
for real data.
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2.3 DENSE Component

We utilize a fully connected layer [15] to merge the output results of the LSTM
component and the SKIP-LSTM component. the output of this fully connected
layer is as follows:

p—1
he =WERE+> WERT, +b (11)
i=0
In Eq. (11), the input of this fully connected layer consists of two parts:
the hX represents the hidden state of the LSTM component at time t,
hffpﬂ,hffpﬁ,...,hf are the total of p hidden states from time t-p+1 to t from
the SKIP-LSTM layer.

2.4 Renewable Energy Forecasting Model

We establish and train the uni-variate time series prediction model for renewable
energy data which consist of fixed time interval observations. In this context, X,
represents the renewable energy data, with t denoting the time point.

To predict renewable power generation, the model utilizes consecutive n time
steps of renewable energy data as inputs to predict the power generation at time
step t+1. The size of the input layer steps, denoted by n, determines the number
of consecutive time steps used for prediction. Therefore, the expressions for the
renewable power is as follows:

Xr+1) = F(Xr—ns1)s o0 Xpe—1), Xrt) (12)

In Eq. (12), X, (4—n+1)5--Xr(t—1), and X,.; represent consecutive n time steps
of hydroelectric data, while X,.,;) is the prediction at time step t+1.

3 Experiment and Result Analysis

In this part we will introduce the data details, parameter settings, data prepos-
sessing steps, as well as the experimental results and analysis.

3.1 Data Preparation

For this experiment, publicly available data from Bonneville Power Adminis-
tration (BPA) was utilized. BPA, a branch of the U.S. government, oversees
electrical operations in the Pacific Northwest region, including Idaho, Oregon,
Washington, western Montana and small parts of eastern Montana, California,
Nevada, Utah and Wyoming.

In the territory of the Bonneville Power Administration (BPA), a diverse
range of energy sources is utilized for electricity generation, encompassing wind
power, hydropower, fossil fuel-based generation, and nuclear power. Among these
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sources, wind power and hydropower fall under the category of renewable energy
sources.

Therefore, the renewable power generation data, including wind power and
hydroelectric power of the BPA control area from January 1, 2020, to March 31,
2020, was analyzed.

The electricity generation, variability patterns, and forecasting model
requirements differ between wind power and hydropower. From Fig. 2 and Fig. 3,
several observations can be made:

3000
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WIND POWER
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TIME

Fig. 2. 3-day wind power generation data
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Fig. 3. 3-day hydro power generation data

— Wind power exhibits more frequent and unstable variations compared to
hydro power. This is attributed to the presence of a phenomenon known
as wind ramp events, where wind speeds sharply increase or decrease within
a short period.

These events significantly impact the stability of wind power generation, and
traditional LSTM or GRU models have shown effectiveness in predicting short
to medium-term wind power fluctuations.
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— Hydropower variations display a high level of regularity, with similar patterns

observed daily. Consequently, historical hydropower data from a specific time
of day can be utilized to forecast data for the same time period on the fol-
lowing day.
These forecasting and regularity patterns fall into the long-term and
extremely-long-term categories, where the LSTNet model demonstrates supe-
rior performance due to its suitability for handling data with long-term reg-
ularities

When establishing a forecasting model for a combined dataset of wind power
and hydropower, utilizing conventional LSTM or GRU models may lead to over-
looking the extremely-long-term regularity of hydropower.

On the other hand, employing the LSTNet model may not effectively predict
wind power variations and could lead to increased computational expenses due
to its complexity.

Therefore, leveraging our designed Ultra-Long-Term network model enables
more effective simultaneous forecasting of wind power and hydropower while
achieving a balance between forecasting accuracy and computational costs.

The recorded renewable power generation data is the sum of hydroelectric
and wind power values and it is captured every five minutes over a three-month
period. The dataset, exemplified in Table1 and depicted in Fig.4, was sorted
chronologically, with the first 80% of the data designated as the training set and
the remainder as the test set.

Table 1. 30-min renewable energy data

DateTime Renewable Energy
2020/01/01 00:00/6591
2020/01/01 00:05/6660
2020/01/01 00:10/6830
2020/01/01 00:15|6861
2020/01/01 00:20/6881
2020/01/01 00:25/6870
2020/01/01 00:30/6833

We select a consecutive sequence of 24 time points as the input datasets,
given that each time point is spaced at five-minute intervals. This translates to
using a two-hour data window as input for predicting the sub sequence time
point’s value.

In addition, determining a period P is crucial for the SKIP-LSTM component
to introduce data from the dame time point of the prior cycle as input. We have
opted for P to represent one day, enabling us to incorporate data from the same
time point one day earlier into the SKIP-LSTM component.
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Fig. 4. 3-day renewable power generation data

Prior to training, we normalize the input data to mitigate prediction errors
stemming from significant variances in the input data. The normalization range
is established as [0,1], with the transformation formula defined as:

X —min
Xr'=———— (13)
max — min
In Eq. (13), max is the maximum value and min is the minimum in the sample
data. X is the original data and X* is the normalized data. And we will use
inverse normalization to obtain meaningful prediction result data.

3.2 Experiment Environment
The hardware specifications for this experiment are as follows:

— CPU: Intel(R) Xeon(R) Sliver 4214R with a clock speed of 2.40 GHz and 90
GB of memory.

— GPU: 1*RTX 3080Ti with 12 GB of video memory.

— Platform: TensorFlow framework version 2.9.0.

— Programming language: Python 3.8.

3.3 Result and Analysis
We set the experimental parameters as follows and conducted the tests:

— Look back = 24, which means input time steps equals to 24

— Skip = 12, which means period P equals to 1day, because 24 * 12 * 5 min =
24h = 1day

— Training and testing datasets were divided in an 8:2 ratio

— Units = 32

— Activation function: tanh

— Initial learning rate = 0.01

— Minimum learning rate = 0.001



286 X. Du and E. Zhang

0.0035
0.003
0.0025

0.002

LOSs

0.0015

0.001

0.0005

Fig. 5. Loss during 100-epochs training process

— Number of epochs = 100
— Batch size = 32
— Objective function: Mean Squared Error (MSE)

MSE =13 - py? (14)

t=1

In Eq. (14), n represents the number of samples, Y; denotes the true value,
P; denotes the predicted value.
— We also use Mean Absolute Error (MAE) to evaluate the experimental result

1 n
MAE =~ |V, = P (15)

t=1

In Eq. (15), n represents the number of samples, Y; denotes the true value,
P, denotes the predicted value.

The loss of renewable power generation forecasting model during the 100-
epochs training process are shown in Fig. 5.

The predicted results of renewable power generation prediction is shown in
Fig. 6:

We used Mean Squared Error (MSE) and Mean Absolute Error (MAE) to
evaluate the experimental results. We can see their formulas in Eqgs. 14 and 15.
Table 2 compares the experimental results of the Ultra-long-Term network model
with other commonly used models (LSTM, GRU and Simple RNN).

The tests were carried out under identical parameters and using the same
datasets. ALL predicted values underwent reverse normalization and metric cal-
culation.

The test results indicate that compared to several commonly used models
in the past, the Ultra-long-Term network model employed in this study shows
enhancements in the MSE and MAE metrics for renewable (wind + hydroelec-
tric) power prediction.
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Fig. 6. 3-day Renewable Power Generation Prediction Result

Table 2. Comparison between Ultra-long-Term network model and other commonly

used models

Metrics|Ultra-long-term LSTM |Simple RNN|GRU
MSE |5384.89 5712.06/6559.34 5673.76
MAE |[53.55 53.98 |57.69 53.87

3.4 Application In Smart Grid

In a smart grid environment, upon the deployment of the model designed in
this paper, it is imperative to integrate it with other models to maximize the
efficiency of the smart grid system. In Fig. 7, we illustrate the power load in the
BPA territory, from which the following observations are evident:

8000
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7000

LOAD

6500

6000

5000

TIME

Fig. 7. 7-day Load data

deep learning-based model for accurate forecasting.

The power load exhibits continuous fluctuations, necessitating the use of a

The variation in power load follows a highly regular pattern, similar to

hydropower, enabling the utilization of data from a specific time of day to
predict data for the corresponding time on the following day.
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This forecasting and regularity fall into the long-term and ultra-long-term
categories, where the LSTNet model demonstrates superior performance due
to its aptness for handling long-term regular data.

Therefore, by establishing a power load forecasting model based on LSTNet
and integrating it with the Ultra-Long-Term network based renewable energy
forecasting model proposed in this paper, we can develop a dynamic and real-
time renewable energy supply-demand forecasting system, as shown in Fig. 8.
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Fig. 8. The operation mechanism of dynamic prediction system and intelligent
decision-making system in smart grid

When combined with other smart grid-related systems and technologies, this
integrated approach can facilitate continuous and stable power supply, gradual
reduction of pollution, and ultimately achieve sustainable development.

4 Conclusion

In this study, we have introduced the Ultra-long-Term network model, integrat-
ing components including LSTM, SKIP-LSTM and Dense layers.

This model effectively captures long term patterns in time series data while
mitigating the issue of vanishing gradients when capturing extremely long-term
patterns.
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Our application of this model to renewable power prediction has yielded
superior performance compared to previous models such as LSTM, GRU or
Simple RNN.

In future research, we plan to combine more renewable energy sources such as
solar power. Solar energy is one of the most important renewable energy sources,
but it is greatly affected by weather changes and cloud formation. Therefore, the
prediction of solar energy requires the design of different deep learning model,
covering both time series analysis and image recognition. This is our future
research direction, and we will combine models for solar energy and other renew-
able energy with the model in this paper to ultimately design a compound model
that covers all renewable energy sources.

Our goal is to enhance model performance and align with advancements in
intelligent grid management and decision-making systems, furthering the tran-
sition from fossil/nuclear energy sources to renewable power within the power
grid.
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Abstract. Detecting and mitigating overfitting in deep neural networks
remains a critical challenge in modern machine learning. This paper
investigates innovative approaches to address these challenges, particu-
larly focusing on vision transformer-based models. By leveraging meta-
learning techniques and reinforcement learning frameworks, we intro-
duce Transformer-based Loss Landscape Exploration (TLLE), which uti-
lizes the validation loss landscape to guide gradient descent optimiza-
tion. Unlike conventional methods, TLLE employs the Actor-Critic algo-
rithm to learn the mapping from model weights to future values, facilitat-
ing efficient sample collection and precise value predictions. Experimental
results demonstrate the superior performance of TLLE-enhanced trans-
former models in image classification and segmentation tasks, showcasing
the efficacy of our approach in optimizing deep learning models for image
analysis.

Keywords: Loss Landscape - Transformer - Overfitting -
Reinforcement Learning * Actor-Critic

1 Introduction

Detecting and mitigating overfitting in deep neural networks stands as a crucial
task. Experts have devised various strategies to tackle overfitting while enhancing
the training process through careful analysis of training methodologies, partic-
ularly observing validation trends during training. These methods encompass
a range of techniques such as learning rate scheduling [2,15,26], dropout reg-
ularization [31], adversarial training [10,27], data augmentation [30], and the
utilization of Adam optimizers [17]. Despite the experts’ understanding of the
intricate nature of deep models, characterized by their high dimensionality and
non-linearity (Shwartz-Ziv et al., 2017), a fundamental question emerges: “Can
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we empower the gradient descent optimizer to minimize validation loss, even
when zero training loss suggests learning has halted?”

In tackling this challenge, meta-learning [33] and particularly methods like
meta-HPO (Hyper Parameter Optimization) establish a bi-level objective frame-
work. Generally, two main approaches are employed for such bi-level optimiza-
tion. In the first approach, we focus on optimizing the outer target while let-
ting the controller explore the parameter space. Subsequently, we refine the
controller’s performance using meta-information derived from the inner opti-
mization process. Although this method, exemplified by techniques like grid
search, is straightforward to implement, it incurs significant computational costs
due to the intensive inner optimization [7,14]. Alternatively, the second app-
roach involves the direct updating of the outer objective: a meta-gradient-based
strategy computes high-order gradients with respect to the hyperparameters or
settings [5,25]. However, the impractical computational expense associated with
the high-order Hessian matrix, coupled with the serious degradation of the meta-
gradient, presents challenges.

This paper leverages the validation loss throughout the gradient descent
process to address the computational constraints and performance degradation,
particularly concerning vision transformer-based models. Our approach involves
treating gradient-based optimization akin to an RL (Reinforcement Learning)
task or MDP (Markov Decision Process), akin to prior work by [22,35]. In con-
trast to [22], where the training loss served as the reward, we consider the valida-
tion loss as the reward in our method. Furthermore, compared to [35], we extend
our task to encompass transformer-based classification/segmentation and sub-
stitute the Deep Q-Learning [28] method with the Actor-Critic algorithm [11,18§]
to mitigate value prediction variance. To maintain consistency with RL termi-
nology, we dub the gradient action provider “the controller” (trainer) while refer-
ring to the model trained on the target dataset for exploring the validation loss
landscape as “the worker(s)” (trainee). Evaluation metrics are derived from a dis-
tinct test dataset. We named our framework Transformer-based Loss Landscape
Exploration (TLLE), and an overview of TLLE is illustrated in Fig. 1.

The main contributions in this paper are listed as follows:

— Transformer-based Loss Landscape Exploration(TLLE): In compar-
ison to other meta-learning methods, TLLE applies the Actor-Critic Algo-
rithm to learn the mapping from weights, instead of hyper-parameters, to
the future value. As a result, this improves the sample collection speed and
makes precise predictions of the future value. Second, a fine-trained Actor
avoids calculating the Hessian matrix, making training a large model, like
Transformer-based, possible.

— Higher Performance: We show that compared with the baseline model,
the transformer model using the TLLE method has quality and numerical
improvements in both image classification and segmentation, which come from
the previous meta-learning process.

In summary, this study explores the application of transformer architectures
in the context of image classification and segmentation tasks. Experimental
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Fig. 1. (Transformer-based Loss Landscape Exploration (TLLE). Top: an overview of
how the workers, controller, and replay buffer interact Bottom: an overview of how the
controller provides action gradients to update the weights of workers.

evaluations were performed on the proposed model, demonstrating the efficacy
of the Actor-Critic algorithm in addressing inherent challenges such as computa-
tional complexity and gradient degradation. Serving as an optimizer, the Actor-
Critic algorithm effectively learns the dynamics of weight space changes and their
corresponding impact on validation loss. Leveraging this acquired knowledge, the
algorithm autonomously mitigates validation loss on the dataset, showcasing its
utility in optimizing deep learning models for image analysis tasks.

2 Related Work

TLLE utilizes training trajectories sampled from the validation loss landscape
to inform subsequent worker training. Prior work by Li et al. [21] visualized
loss landscapes of ResNet, elucidating the optimization advantages conferred by
skip connections. Other studies have analyzed loss landscape properties such as
sharpness [15], smoothness [21], and connectivity [8] to deepen understanding.
Some approaches accelerate training or seek generalized solutions via weight
ensembling [8,13], or by reducing sharpness-based targets to identify flatness
near minima [6,15].

Diverging from prior research, TLLE explores the validation loss landscape
instead of the training loss, akin to meta-learning methods [33]. TLLE enhances
workers by hyperparameter scheduling, resembling hyperparameter optimization
(HPO) or meta-HPO methods [25], particularly reinforcement learning-based
solutions [14]. Notably, TLLE treats the weights space as the state space and the
gradient space as the action space, aligning with meta-optimizer frameworks |1,
22,24], contrasting with direct outer target updates in meta-gradient methods,
prone to performance degradation and high computational costs [33].



294 E. Zhang et al.

Conv Conv. |
:

Multi-Head Atten

(c Conv —>»  Conv.

N
M

g
B B
.
| =3

Fig.2. UNETR model structure for the segmentation work. The encoder is a trans-
former stack of 12 blocks comprising multi-head self-attention (MSA) and multilayer
perceptron (MLP) sublayers. For the decoder, we apply a deconvolutional bottleneck
layer to the transformed feature map to increase its resolution by a factor of 2.

Conventional techniques such as decaying the learning rate [26] or Keskar et
al.’s linear scaling rule [15] address overfitting and accelerate training. You et al.’s
layer-wise learning rate adaptive optimizer (LARS) [34] further advances this.
In contrast, TLLE’s controller acts as an automated validation loss landscape-
aware learning rate scheduler, dynamically adjusting learning rates based on the
loss landscape.

Additionally, TLLE draws inspiration from recent Network Architecture
Search (NAS) advances [23,29], where reinforcement learning governs high-value
network structure generation. In contrast, TLLE treats neural network parame-
ter optimization as a reinforcement learning task, leveraging validation landscape
knowledge for subsequent worker training.

3 Methodology
3.1 Vision Transformers and Attention

ViTs [4] comprise an embedding layer, transformer encoder layers, and a classi-
fication head. The embedding layer linearly projects the image patches sequence
input into a sequence of flattened embeddings. Transformer encoder layers pro-
cess these embeddings, capturing local and global context through self-attention
mechanisms. The attention mechanism in transformers computes attention
scores between input tokens, forming the attention matrix. Let z € RN*F
denote a sequence of N feature vectors of dimensions F. A transformer is a
function T : RV*F — RNXF defined by the composition of L transformer layers
T1(-), ..., Tr(+) as follows,:

Ti(z) = filAi(z) + x). (1)
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where A;(-) is the self-attention function. The function fi(-) transforms each
feature independently of the others, and is usually implemented with a small
two-layer feedforward network. Formally, the input sequence x is projected by
three matrices Wg € RF™*P Wy € RF*P and Wy € RF*P | to corresponding
representations ¢, K and V. Thus, the attention scores are calculated as follows:

Q=2Wq (2)

K = a2Wg (3)

V =aWy (4)
(Q:K;)T

A;; = Softmax <W) (5)

where (); and K; are query and key vectors for tokens ¢ and j, and dy, is the
dimension of the key vectors. The complexity of the attention matrix is O(N?),
where N is the sequence length. The same is true for the memory requirements
because the full attention matrix must be stored to compute the gradients for
the weights of the queries, keys, and values.

We further assume that the input is the content of a square image = with
a resolution of Z, that is, let z € R?*%, and by assuming that patches arise
from the uniform grid patch method of patch size p. Thus the sequence N =
(%)2. Therefore, the total computation and memory cost of attention scores
according to resolution and patch size is O([£]*). This complexity demonstrates
the difficulties of increasing the resolution while decreasing patch size P with
the uniform grid patch strategy.

3.2 Actor-Critic Algorithm

In reinforcement learning, the agent interacts with an environment E, and a
series of actions reward this interaction. At the state s; here ¢ means time
step, the agent must select a corresponding action a; from the action space
A. For the state of this action (s¢,a:), the agent will receive a reward r;, and
the reward r; depends on the reward function R(s,a;). For a certain dataset,
we can obtain multiple complete state-action-rewards trajectories denoted as
T = (s1,a1,71...8¢, at, r¢ ), known as Markov Decision Process (MDP), in partic-
ular when the number of states and actions is finite. The state transitions are
deterministic, and MDP converges to a stable state.

Based on the above definitions, many reinforcement learning algorithms aim
to find an agent with the maximum expected reward function in a limited num-
ber of iterations. Here, we define the optimal action-value function Q*(s,a) as
follows:

Q*(s,a) = mng[Rﬂst,at,w]

where R; = ZtT/:t vt ~tr, is the discounted future rewards from time step ¢, 7 is
this discount factor, and 7 is the policy mapping sequences to actions. It is worth
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Fig. 3. Quality results among Baseline, LR-TLLE, and LRRE-TLLE.(LR: Learning
Rate, RE: Regularization) LRRE-TLLE segmentation has better details when applied
on the UNETR model.

mentioning that the optimal action-value function Q*(s,a) follows the Bellman
Equation which suggests that if the rewards of each action a are known at state
s, then the optimal policy is to select the action a¢* with a maximum expected
value of r +vQ*(a*, s). By using the Bellman Equation as the update iteration,
Q71+1(57 a) = Eq [T + 7 maxg Q*(Slv a/)‘sv a]v then Q;11 — Q" if i — oo [32]

Actor-critic algorithms are policy-based reinforcement learning algorithms
combining value-based (critic) and policy-based (actor) methods. The actor pro-
poses actions, while the critic evaluates these actions and provides feedback to
the actor. The critic learns the value function V (s), which estimates the expected
return from state s, and the actor learns the policy m(al|s), which specifies the
probability of taking each action in each state. The advantage function A(s,a)
measures how good it is to take an action a in state s compared to the average
action chosen under the current policy. It is defined as:
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Ala,s) = Qo,(a,5) = Vp,(s) (6)

The actor aims to maximize the expected return by adjusting its policy
parameters 6., while the critic evaluates the actor’s actions and updates the
value function parameters 6,,. The objective functions of the actor and critic are:

L(62) = ~ Eyr[Als,a) Vologn(als; 6 @
L(0,) = 5El(r + V() ~ V(s))] ®)

3.3 Image Classification and Segmentation

Although the TLLE framework is not restricted to a specific class of supervised
learning tasks, here we discuss TLLE in the context of training models for image
classification tasks. Consider an image dataset D consisting of input images
2z € R? and the one-shot label y € R¥ where K is the number of classes. We
denote the model as f : R — RX and parameterize it by the trainable weights
6. For each sample (z,y) € D, the output prediction is given by § = f(x;0). Let
l: RK x RE — R denote a loss function, then the optimization process can be
written as:

meln L(z,y) Zl (2456 9)

where N is the size of the training dataset D, and the loss L is the training
loss. For the classification task, we applied cross-entropy loss lp.., and for the
segmentation task, The loss function L is a combination of dice loss Lg;.. and
binary cross-entropy loss lpce:

L(9,y) = w - Lpce(9,y) + (1 = w) - Laice(9, y) (10)
N
——w Yollos(@) + (- w)log(1—5)) (1)

N . N
Zi:] Yi + Zi:1 Y; + €

where L(y, y) represents the combined loss function, composed of a weighted sum
of Binary Cross-Entropy (BCE) loss and dice loss. w is the weight parameter
controlling the contribution of BCE loss versus the dice loss:, we set it to 0.5
during the experiments. € is a smoothing term, and we keep it to 1.0 during the
experiments.

Many useful gradient-based optimization methods can be applied to optimize
this objective function Eq.9. Here, for simplicity, we consider the widely used
stochastic gradient descent (SGD) to update the trainable weights 6:
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0 — 60— aVeL(z,y;0) — A\Vol|0]|1, (13)

where « is the learning rate, A is the penalty factor of the regularization, Vy is
the differentiation operator w.r.t 6.

3.4 Transformer-Based Loss Landscape Exploration
with Actor-Critic Algorithm

Based on the above notation, if we replace the state space S with the weights
space @, the cost function C' with validation loss function V', and the action
space A with gradient space G, then we could transfer the context of supervised
learning to become reinforcement learning. Here we can rewrite the optimal
action-value function Q*(8, g) as follows:

Q*(eag7 ¢) = mTénE[VHetagtaﬂ]

where ¢ is the trainable weights of Q-network, V, = ZtT/:t ’yt/_tvt/ is the dis-
counted future costs, and 7 is the policy, they are the same notions as before. The
loss function of this actor-network is also the same as Eq.7, and the following
loss function update the actor and critic network:

L(0x) = —Eg~x[A(0, 9)Vologm(al; 0x)] (14)

LEol(r + V() - V(0))?] (15)

L) =

Therefore, we applied the above Eq.14 in the experiment. Here, we first
replace the validation loss with the validation accuracy. Then, replace the total
gradient space with a set of Action A expanded by a group of learning rates as
or regularization penalty factors As, where the number of the total actions is
[|Al| = ||| x ||Al]. The pair («, A) is selected at the beginning of the training
step to update the workers.

4 Experiments
4.1 Datasets

Classification. We conducted the classification work on the MNIST, CIFAR-10
and CIFAR-100 dataset. MNIST [3] is a dataset of handwritten digits containing
60, 000 training examples and 10,000 test examples. CIFAR-10 [19] and CIFAR-
100 [20] datasets contain 50,000 training images and 10, 000 testing images with
10 and 100 classes, respectively. These datasets are commonly used across many
classification tasks. When training the workers, we shuffled the training and test
dataset. We split the dataset into 20% for the validation set and 80% training
set. When training the workers, we also collect the validation metrics and weights
to train the controller.
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Segmentation. We conducted the segmentation work on the PAIP dataset
which [16] is a high-resolution liver cancer pathology (real-world) dataset. The
sample resolution size is close to 64K, far higher than the resolution of conven-
tional image datasets. PAIP includes 2,457 Whole-Slide Images (WSIs). When
needed to use smaller resolutions, we down-scale the images into uniform 512
square images. During the training process, we randomly select 0.7 samples for
training, 0.1 samples for validation, and 0.2 samples for testing. All data sets
are shuffled and normalized to [0.0,1.0] when used as model input.

4.2 Models for Classification and Segmentation

Classification. We applied the original ViT defined in [4] for the vision trans-
former model. Typically, it consists of 12 transformer layers. Each layer incorpo-
rates a multi-head self-attention mechanism and a feed-forward neural network.
The input image is divided into patches of size 4 x 4 pixels, which are linearly
projected into token embeddings. The model utilizes an embedding dimension
of 768 for the tokens. Positional embeddings are added to encode spatial infor-
mation. Pre-training on large-scale datasets like ImageNet with classification
objectives enables ViT to learn meaningful visual representations, contributing
to its remarkable performance in computer vision tasks. For ResNet-56, we used
the settings reported in [12]. All workers are initialized to the same weights by
using the glorot initializer [9]. The loss function is cross entropy loss and the
optimizer is the naive SGD optimizer with a learning rate of 0.1. For the exper-
iments with the Learning Rate Decaying (LRD), it starts at (50%, 75%) steps
of the total epochs with a factor of 0.1. The batch size is set to be 256 and
all the workers are trained for 120 epochs (MLP) and 200 epochs (ResNet-56).
For the experiments with Data Augmentation (DA), we process the images as
recommended in [12].

Segmentation. Overall, UNETR shown in Fig. 2 uses a contraction-expansion
pattern consisting of a bunch of transformers as an encoder. It is connected
to the decoder via a skip connection. UNETR/’s initial application was mainly
designed for 3D medical organs and related data. Their work also discussed
the impact of patch size on the model: the smaller the patch size, the better the
model performance will be. However, limited by memory capacity and computing
power, conducting experiments with a small patch size is difficult.

Our approach can be seen as a solution to this problem through data aug-
mentation. However, since our experimental data is not 2D medical image data,
we only replaced the 3D convolution and deconvolution blocks in UNETR with
the 2D version without additional changes to the model structure. Other than
that, we have no other improvements to UNETR.

The encoder is a transformer stack of 12 blocks comprising multi-head self-
attention (MSA) and multilayer perceptron (MLP) sublayers. The embedding
size K = 768, Norm denotes layer normalization, and MLP means two linear
layers with GELU activation functions. The MSA sublayer contains n parallel
self-attention (SA) heads. The attention matrix (A) is computed by measuring
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the similarity between two elements in a sequence and their key-value pairs
according to 2. After the encoder, UNETR extracts a sequence representation
from each transformer block z;,[i € 3,6,9,12] and reshapes it to a sequence
of patches. Then, similarly to the idea of UNet, we apply a deconvolutional
bottleneck layer to the transformed feature map to increase its resolution by a
factor of 2. Then, output concat with z;, [i € 3,6,9,12] sent to 3 x 3 convolutional
layer and upsampling deconvolution. This process continues until the output size
meets the mask size. The final layer is 1 x 1 convolutional layer to project the
class to the channel of mask.

4.3 Training of Actor and Critic Nets

Both actor and critic are mainly a four-layer MLP model with a downsampling
layer to reduce input size. For each layer in the controller, the number of units
is [128, 64,32, ||A||] where o = [0.01,0.1,1.0,2.5,5.0] or A = [0.0, 1.0, 2.0, 4.0, 8.0]
for learning rate or penalty factor for the discrete action space. For the continuous
action space, A = [—1e—4,0.0, 1e—4] plus the current factors. Worth mentioning
that, to avoid numerically unstable, the range of the continuous factors is limited
in [le — 4,4.0]. The activation functions are [ReLU, ReLU, ReLU, Linear]. The
weights are initialized by glorot initializer. The loss function we used is the M SFE
loss. The optimizer is an SGD optimizer with a learning rate of 0.01 and a batch
size of 128.

The e-greedy policy has been applied with an annealing strategy during the
iteration. Note that each iteration generates N new samples. To keep the balance
between the number of new and old samples, we train the controller with N,,
new samples and N, old samples randomly selected from the replay buffer B.

Training and Validation Loss Curves Training and Validation Loss Curves Training and Validation Loss Curves

1] — validation Loss 07 — Validation Loss

) “‘1.‘ ‘
MIHMLN‘M | | |

g e bl HL g

E 13 200 30 50 a0 1000 13 200 W0
Epoch Epoch Epoch

(a) Baseline Training (b) TLLE + LR (¢) TLLE-LR + RE

Fig. 4. TLLR-LR(Learning Rate) can accelerate the training process by tuning the
learning rate. At the same time, TLLR-LRRE(Learning Rate+REgularization) com-
bines the learning rate scheduler and regularization

4.4 Results

Training and Validation Curves of the Workers. We show the train-
ing loss and test loss UNETR workers baseline, tuning learning rate, and add
penalty factor in Fig. 4. The training curve converges at about 500 or 1000 epoch.
Comparing these three figs, TLLR-LR can accelerate the training process by tun-
ing the learning rate. At the same time, TLLR-LRRE combines the learning rate
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scheduler and regularization by choosing the actions with the max action value;
the training could be accelerated or stopped before overfitting by tuning the
learning rate or regularization factors. As a result, the TLLR-LRRE can con-
verge to the local minima better and faster. We further show the quantitative
differences of TLLE-LR, TLLE-LRRE and baseline in Tab. MNIST and CIFAR-
10/100 have been greatly improved [0.37%,0.66%,1.63%] in the classification
task. On the PAIP dataset, TLLE-LRRE, compared with baseline, improved
about [1.31%, 1.84%,0.79%] evaluated based on dice score for UNETR, UNET,
and TransUnet models.

Segmentation Result in Quality. In Fig. 3, we present a comparison between
the baseline model without TLLE, the TLLE-RE model with adjusted learn-
ing rate (LR), and the TLLE-LRRE variant incorporating both LR adjustment
and penalty term RE. It is evident that, compared to the ground truth version,
UNETR utilizing the TLLE method exhibits specific errors in image quality, man-
ifesting in discrepancies in both overall pattern and local details. UNETR with
TLLE-LR demonstrates enhanced Dice Score, indicative of superior performance,
particularly in local details. Moreover, the TLLE-LRRE variant, incorporating
the penalty term RE, further mitigates overfitting issues, yielding commendable
performance improvements across both global and local image aspects (Table 1).

Table 1. Comparisons using the MNIST, CIFAR-10, and CIFAR-100 datasets with
the Baseline (naive training without meta-method). Here, LR-TLLE and LRRE-TLLE
mean the action spaces for TLLE are Learning Rate (LR) and REgularization (RE),
respectively. LRD = Learning Rate Decay; DA = Data Augmentation

Dataset  |Model [Setup] Baseline RE-TLLELRRE-TLLE
MNIST ViT 98.16% (98.43%  |98.24%
ViT [LRD] 97.62% 98.85%  198.10%
ViT [DA+LRD] 98.77% (98.97%  199.17%
CIFAR-10 \ViT 52.45% [52.87%  153.52%
ViT [LRD] 53.45% [54.14%  |54.87%
ViT [DA+LRD] 59.32% [59.80% 61.78%
ResNet-56 81.71% |82.73%  |85.13%
ResNet-56 [LRD] 83.02% |83.55%  [84.72%
ResNet-56 [DA+LRD](83.73% 83.78% (84.39%
CIFAR-100 ViT 71.45% [73.21%  |74.81%
ViT [LRD] 72.39% (73.16%  |73.33%
ViT [DA+LRD] 72.43% 73.12%  73.78%
ResNet-56 60.07% 61.17% [62.72%
ResNet-56 [LRD] 61.43% |61.88% 63.81%
ResNet-56 [DA+LRD]|67.06% 68.44% (68.64%
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5 Discussions and Improvements
5.1 Comparison to the Meta-HPO Methods

Many Meta-HPO or learning-to-learning methods conduct a bi-level optimiza-
tion to fit their motivation. Here we refer to the same notation in [25] of the
bi-level objective function:

A* = argmin Ly (A, 6%) subject to 8* = argmin Ly (A", 0)
A 0

where Lt is the training loss, € is the model’s weights, Ly is the validation loss,
and A is the hyperparameters.
The gradient-based method solves the above problem by calculating the hyper

gradient aaL)\“ directly or indirectly through &= 9% The direct gradient is easy to

calculate but led to degradation in the predic(taf)on8 ;ccuracy, mainly due to the gra-
dient degradation problem. For the indirect hyper-gradient, the calculation of %
is difficult and needs approximation, for example, [25] applies Implicit Function
Theorem (IFT) and Neumann series for further approximate the inverse Hessian
matrix. However, first, in our proposed method TLLE the action is selected from
the prediction of Q-Net, and the Q-Net is trained online to save the high cost
for the inner optimization. Thus, training such Q-Net avoids the calculation of
both the aaLg“ and %. The former used the gradient from the validation samples,
and the latter involved an unacceptable calculation. Second, the prediction of
the Q-Net is dependent on the weights, and due to the transferability of weights,
unlike other meta-requires that need to be re-trained on the transfer dataset,
the Q-Net can be reused on the transfer dataset with fine-tuning (Table 2).

Table 2. Improvement in quantities of segmentation for the PAIP dataset against
different baselines.

Dataset|Model [Setup] Baseline TLLE-LR|TLLE-RE Dice Improvement
PAIP |UNTER 74.17  |74.83 75.66 1.31%

UNTER [LRD] 75.88 |76.17 77.89

UNTER [DA+LRD| |76.32 |77.32  |78.61

UNET 74.98 |75.48 76.80 1.84%

UNET [LRD] 75.23 |76.65  |77.58

UNET [DA+LRD|  [76.41 |77.85  [78.25

TransUNet 73.32  |74.33 74.65 0.79%

TransUNet [LRD] 75.72  |76.98 77.61

TransUNet [DA+LRD](76.82 |77.24 77.63

5.2 Consistency of the Controller

In the work of Li et al. [23], the validation accuracy estimator s has been shown
to learn the performance of different network structures sampled in the structure
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search space. On the other hand, TLLE is using s to learn the discounted vali-
dation rewards from weights. In other words, the estimators s of their method
can be represented as s : R% — R, while in our method the estimator can be
represented as s : R% — RA. Here d, is the dimension of structure space, d,,
is the dimension of the weight space, and R4 is the dimension of the actions’
space.

Lemma 1. Let S be a hypothesis class, Ly be the empirical reward, and L be
the expected reward. For any § > 0, with probability at least 1 — 0, Vs € S :

2(d+1n2)

Las) = L(s)| < || =

where d is Pollard’s pseudo-dimension of S, and N is the number of total sam-
ples.

Lemma 1 shows us the convergence of the error bound is decided by Pol-
lard’s pseudo-dimension d and the number of total samples N. With a fixed d
and infinite samples N, the gap between empirical reward and expected reward
asymptote is less than a constant. Although using an infinite number of sam-
ples is impossible in experiments, this lemma suggests that we can move faster
toward the error bound by reducing the input dimension of s and accelerating
the training of workers.

6 Conclusion and Future Work

In conclusion, this paper has delved into the crucial task of detecting and mit-
igating overfitting in deep neural networks, particularly focusing on the chal-
lenges posed by vision transformer-based models. Through an exploration of
meta-learning and reinforcement learning methodologies, we have introduced
the Transformer-based Loss Landscape Exploration (TLLE) framework. TLLE
leverages the validation loss landscape to guide gradient descent optimization,
employing the Actor-Critic algorithm to learn the mapping from model weights
to future values efficiently. Our experimental results have demonstrated the effi-
cacy of TLLE-enhanced transformer models in improving image classification
and segmentation tasks. Future research could further refine and extend TLLE
to tackle broader challenges in machine learning optimization.
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Abstract. In this paper, we propose a method for fast computation
of the stopping condition of the Range Restricted General Minimum
Residual (RRGMRES) method. The RRGMRES method is iterative.
As the number of iterations increases, the matrix size increases. The
stopping condition for the iterations requires a condition number. The
condition number is expressed as the ratio of the largest singular value to
the smallest singular value. The proposed method employs the Cholesky
LR method and inverse iteration. By comparing the experimental results
with the conventional method, the proposed method has been 10 times
faster than the conventional method.

Keywords: Condition number - Singular value decomposition -
Cholesky LR - inverse iteration

1 Introduction

The numerical approach to solving inverse problems has recently been used not
only in the mathematical sciences, but also in engineering fields such as physics,
chemistry, biology, astronomy, architectural engineering, and civil engineering.
As an inverse problem, there is the problem of computing input values from
observed data. In this problem, a linear system of equations with a large con-
dition number matrix on the left—side is solved. In this case, a small amount of
perturbation in the right—-hand side vector becomes noise.

To compute approximate solutions to linear equations with large—scale matri-
ces that have singular values of extremely different scales and many small sin-
gular values, the method of least residual iteration is applied. However, when
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the large-scale matrix is an extremely ill-conditioned problem and the deter-
minant of the square matrix is numerically zero, the solution is acutely sensi-
tive to the value of the vector on the right—-hand side. The Range Restricted
General Minimum Residual (RRGMRES) method [1] is a technique for solv-
ing many of the linear ill-conditioned equations in science and technology. The
RRGMRES method solves the equations by iterative computation. As the num-
ber of iterations increases, the computational complexity of the condition number
of the upper triangular matrix required by the RRGMRES method increases.
In this paper, we propose a high—-speed method for computing condition num-
ber of the upper triangular matrix, which is the bottleneck in the RRGMRES
method. Therefore, the Cholesky LR method and the inverse iteration method
are employed.

2 Iteration Stopping Rule by Condition Number

As an iteration stopping rule, the condition number of an upper triangular matrix
R/}, is discussed. The R’y will be shown in Sect. 4. The largest and smallest
singular values of matrix X are expressed as opax (X) and omin (X), respectively.

The condition number (R’ k) of the matrix R’ is defined as follows:

K (R’k) = Omax (R/k> /Omin (R/k) :

The threshold value of the condition number for the iteration stopping rule
needs to be adjusted according to the right—side vector of the simultaneous
linear equations. Machine learning has been validated for automatic setting of
the threshold [2]. However, the fast computation of the condition number in the
upper triangular matrix R’j, has been unsolved problem. Since machine learning
requires input with no or fewer rounding errors, the approximated method for
the condition number of R’j, is not sufficient.

3 GMRES Method

In this section, we introduce the general minimum residual (GMRES) [3], which
computes the same approximate result x; by generating an orthonormal basis
of the Krylov subspace K (A, ro).

Let vg,v1,v2, - - - be the orthonormal system obtained by the Gram—Schmidt
orthogonalization of the Krylov sequence g, Argy, A%rg, - - - determined from the
residuals 7o = b— Axg of an appropriate initial vector xq. For each k = 1,2, ---
Vg, V1, -+ ,Vg—2 and vg_1 is an orthonormal basis of the Krylov subspace:

)

Ki(A,70) = span{rg, Arg, A%rq,--- , AF" g}
Let n x k matrix Vi = [vg, v1,- -, Vx—1] be defined by arranging the bases.

Av; € span{vg,--- ,v;,v41} (1 =0,1,2,---)
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Algorithm 1. Arnoldi method

1: Initial vector is set to ro # 0 and vo := ro/||70][;
2: for k:=1,2,--- do
3w = Avg_y;

4: fori:=0 to k—1do

5: hi,k—l = ’UZT’U); w=w — hi’k_lvi
6: end for

70 hge—1 =l w ||;

8: if hgxx—1 =0 then

9: Terminated

10: else

11: Vg = w/hk,k_l

12: end if

13: end for

is satisfied. By using (k + 1) x k Hessenberg matrix Hy,

AV, = Vi1 Hy

is expressed. Here, in the case of H, = (hl(.f)|0 <i<k0<j<k-1)and
12> 7+ 2, hgf) = 0. In the case of k < [, hgf) can be abbreviated as h;; because
of Al = .

The orthonormal system vg, v1, V2, - - - and the coefficient (hxc) 0<i<j+1)
can computed using the Arnoldi method [4]. Algorithm 1 is the pseudo code.

Residuals are minimized in the affine subspace xg + Ki(A, o). A vector xy
is identified with x¢ + Kx(A,ro), which is equivalent to being represented as
x, = xo + Viyr by a vector yi € RF. Since vg is a normalized version of rg,
ro = Vir1€xr1. is satisfied. Here, ex1 = (|| 70 [|,0,---,0)T € RF¥*L. Thus, the
norm of the residual r, = b — Axy, is

| el =1l 7m0 — AViys ||
=|| Vis1(ens1 — Hoyr) |
= ens1 — Hyys | - (1)

Here, the last equality is caused by the orthogonality Vk+1TVk+1 = Ij41 of the
column vectors in Vj41. By Eq. (1), the minimization of the residuals is concluded
to be a minimization problem of || ex4+1 — fIkyk || for yi. Since the matrix Hy is
in Hessenberg form, the solution ¥y of the minimization problem can be obtained
by using the Givens transformation. The approximate solution xj is determined
from the yi as ¢ = xg + Viyi. This is called the GMRES method.

Algorithm 2 shows the pseudo code of the GMRES method.
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Algorithm 2. GMRES Method

1: Initial vector is set to xo and rg := b — Axg
2: if ro = 0 then

3: Terminated

4: end if

5: wo:==ro/ || 7o II;

6: for k:=1,2,--- do

7: w = Avg_1;

8: fori:=0 to k—1do

9: hik—1:= 'viT'w; w:i=w — hjk-17;
10: end for
11: hgg—1 :=||w|; R
12: Yk is computed to minimize || ex+1 — Hryr ||; Tk = o + Viys;
13: if hkykfl =0 then
14: Terminated
15: else
16: Vg = w/hk,k,1
17: end if
18: end for

4 Range Restricted GMRES Method

A linear ill-conditioned equation problem (2) with an asymmetric matrix A is
introduced.

Az =b, AeR™"™ =z, beR" (2)

The k" iteration x;, determined by the RRGMRES with the 15 iteration xy = 0
can solve the minimization problem min || Az — b ||, where || - || represents the
Euclidean vector norm and K (A, Ab) is the RANGE RESTRICTED Krylov
subspace [1].

Ky (A, Ab) = span{Ab, A%b, ..., A*b}. (3)

The minimization problem min || Az — b || can be solved using the Arnoldi
method.

When the Arnoldi method is adopted in k steps to A with an initial vector
v1 =0/ || b ||, the Arnoldi decomposition is obtained.

AVk = Vk+1Hk. (4)

Since Vi1 = [v1, v, ..., Vg, Vk11] € R™*(*+1) has an orthogonal matrix, Krylov
subspace is

Ki1(A,b) = span{b, Ab, ..., A*b}. (5)

The Krylov subspace is assumed to be k + 1 dimension.
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The matrix H € RF+D*F is an upper Hessenberg matrix. The decomposition
of Eq. (3) is the most general basis for the implementation of the standard
GMRES method. The QR decomposition is introduced.

Hy = Qp41Ry. (6)

The matrix Qpy1 € RFETDX(*+1) s an orthogonal upper Hessenberg matrix. Let
Ry be the leading k x k upper triangular submatrix of the matrix Rj, € R(k+1xk,
and the last row of the matrix Ry, is a 0—vector. The matrix W, € R™** consists
of the first k£ columns of Vi 41Qk+1. By Eq. (4) and Eq. (6),

AV}, = Wi,Ry,, (7)

where the range of Wy, is K; (A, Ab). Hence, the minimization problem min ||
Ax — b ||is expressed

in || AWy —b || = min || A(AVi)R; 'y — b
min | AWry — b || nia | A(AVi) R,y = b ||
= min || AVip1 By Ry 'y — b
yERF
= min_ I Vk+2Hk+1Qk+1I_ky -b H
yERF
= min || Hyp1Qrirlry —er | b - (®)
yERF
Here, I;, € RFTD** consists of the first k& columns of the k + 1 identity matrix
and ej represents the first axis vector. The last equality follows from Vi .e; =

b/ b
Since the matrices H, k+1 and Q41 are upper Hessenberg matrices, the matrix

Hy, = Hy1Qpi I € REFDXE, 9)

vanishes below the sub-subdiagonal. Therefore, ) R—decomposition can be com-
puted in only O(k?) arithmetic floating—point operations.

Hy, = Qo). (10)

Here, Q;e+2 e R(E+2)x(k+2) are orthogonal and R;C € R+2)%k i5 3 leading k x k
upper triangular submatrix whose the last two rows are 0—vectors. Hence, the
minimization problem min || Az — b || expressed by Eq. (8) can be transformed
into

min || AWy — b || = min | Hy1Qrr1lpy —er || b |l]]
yERF y€ERF

= min || Hyy —e1 || b
y Rk
!’ ~ 1
= mi Ry — b
iy | QrioRry —e1 || bl

., ;T
— min || Rovy — bl - 11
;Ielﬁgc | Rey — (Qry2) e[ bl (11)
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The RRGMRES method stores the matrix Vj4; when computing iteration
x). Therefore, as the number of iterations increases, the storage requirement
also increases, and the computation per iteration also increases. Consequently,
it is effective to restart the algorithm periodically. If A is a symmetric matrix,
the matrix Hj is a pentadiagonal matrix. Then, the above iterative method
can be implemented in a short iterative formulation. The number of terms in
the iteration formula is bounded independently of the number of iterations.
Therefore, the computation and storage requirements of the method can be
constrained independently of the number of iterations k.

The computational cost of the k*" iteration in the RRGMRES method is
shown by Table 1. Here, ¢ is the number of non-zero elements in each row of an
n-dimensional sparse matrix. Gram—Schmidt method can compute in parallel.
In the case of small iteration number k,

O(k®) < O(nk)

However, when the number of iterations increases, it is necessary to speed up the
computation since O(k®) > O(nk). The proposed method adopts the Cholesky
decomposition [5], which is known to be a computation method that can maxi-
mize the performance of parallel computers.

5 High—Speed Method for Computing Condition Number
of Upper Triangular Matrix

5.1 Concept
Let R;C
. - R . R
Rl = [al] ’R2 = |:01 gz:| s 7Rk = |: ké_l gl;;] )

be set to an upper triangular matrix. As the iterations proceed, the computa-
tional cost of the condition number computation becomes non—negligible.
An n—dimensional nonsingular matrix is decomposed as

XY
=)

X: p—dimensional nonsingular matrix,

W:n — p—dimensional square matrix.

Table 1. Computational cost

Multiplication of sparse matrix and vectors O(nft)
Gram—Schmidt method O(nk)
Upper Hessenberg matrix Hyq — R;g O(k?)
The condition number in upper triangular matrix Rj, O(k?)
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When T =W — ZX 'Y is nonsingular,

A1 X 14 x-lyr-izx-t - X-lyr-!
-T-lzXx-1 T-! ’

The matrix T is Schur’s complement [6]. In the upper trlangular matrix Rk,
Z = 0. Therefore, the inverse of an upper triangular matrix Rk that expands
sequentially is given by

pl_ (X XYW
kK — 0 W—l

Rk | R 15k0‘k .
0 oek

~ 1
R',,_, is computed in the previous iteration. Therefore, it can be computed fast.
n—dimensional matrices X and Y that expand sequentially are decomposed

as follows:
X11 X12 Yll Y12
X = 5 Y = )
(X21 Xzz) (Y21 Y22)
where X1 and Yi;; are p-dimensional square matrices, and Xoo and Yoo are

n — p—dimensional square matrices. In the multiplication XY can computed as
follows:

12
Xo1Y11 + X9V Xo1Yig + XooYos (12)

Xy — (X11Y11 + X12Y21 X11Y1i2 + X12Y22> .
When X1,Y7; have already be computed and p = n—1, Eq. (12) can be computed
with high—speed.

To compute the condition number of the upper triangular matrix f%;c, the
largest and smallest singular values are required. The smallest singular value can
be obtained with high—speed and high—accuracy by the inverse iteration method.
The largest singular value can be converted to the problem of computing the
smallest singular value by using the inverse of the upper triangular matrix R,C
However, the upper triangular matrix Rk in this study may have clusters of
singular values around the largest singular value. Therefore, it is necessary to
separate the largest singular values from the clusters. The procedure for this
separation is described in Sect. 5.2.

5.2 Separation of the Largest Singular Value in a Cluster

As the iterations proceed, the smallest singular value becomes rapidly smaller
and decreases exponentially. Therefore, in the singular value distribution on the
inverse of the upper triangular matrix Rk, the ratio of the smallest singular
value to the 2"¢ smallest singular value is sufficiently large. However, the largest
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singular value of the original matrix, the 2"? largest singular value, and the
singular values in the neighborhood are clustered, and the ratio of the largest
singular value to the 2"? largest singular value is extremely close to 1. Hence, the
largest singular values within a cluster need to be decomposed from the cluster.

o\ -1
Let py be set a lower bound of the smallest singular value of (Rk) , which

satisfies that 1/uy is extremely close to the largest singular value of (E;) An
iteration proceed of the Cholesky LR method is given as

0 1
F (sz}€)71 (R}C)fT F—y2I=LLT, F=|
1 0
The ratio of the largest singular value to the 2"? largest singular value in the
lower triangular matrix L~! satisfying the above equation is sufficiently large.
The computational cost of F (R;) B (]:Z;C) e p31 is O (k?). To decompose
Land LT, O (k3) is required.
When the lower bound of the smallest singular value of (R;) ' with high—

accuracy is given, it is possible to separate it from the cluster using a single
iteration of the Cholesky LR method. In practice, however, only the upper bound

-1
of the smallest singular value of (R;) with high-accuracy is determined.
Therefore, we use the properties of the Cholesky LR method to create a lower
bound from the upper bound of the smallest singular value. The details of this
method are described in Sect. 5.3. Thus, it is possible to separate the largest
singular value of the upper triangular matrix from the cluster using two iterations
of the Cholesky LR method.

5.3 Shift Value of Cholesky LR Method

Let A be a positive—definite symmetric matrix:

A A - Agy
Ay Aoy -+ Aoy
Anl An2 e Ann

A is decomposed into the lower triangular matrix L and its transposed matrix
LT.
Lqq 0
- Loy Lo
A=LL", = .

Lnl Ln2 T Lnn
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A single iteration of the Cholesky LR method can compute as follows:
=1 s \=T
A=F (Rk) (Rk) F— 21,

More precisely,

Ly =+Ay, Ly=

Ay Z L},

i1
L;; = (Aij - ZLkiij> /Lii, (L1j = Aw/L11).

k=1

If the underlined part is less than or equal to 0, then it fails. To avoid failure,
automatic updating of the shift value is performed [5].

1. In the case that the underlined part is 0
ur — (1 — &) pg, where € is a machine epsilon.
2. In the case that the underlined part is negative number

,U/[g<—\///6k _ i— 1L2>

A shift value py with high—accuracy must be satisfied following;:

The denominator of the right-hand side equation means the largest singular
value of R,,. The upper triangular matrix R, is satisfied following:

Omax (Rk_1> S Omax (Rk> S Omax (Rk+1) )

and the largest singular value increases with each iteration.
In the proposed method, uy is given as follows so that the Cholesky decom-
position fails.

-
o ()

The reason why we adopt this shift amount is that, in the RRGMRES method,

the condition o ax (R;Cfl) X Omax (f%;c) is satisfied as the iterations proceed.

M =

Failure of the Cholesky decomposition gives us a highly accurate lower bound of

the smallest singular value of (R;C)
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5.4 Inverse Iteration Method for Computation of the Smallest
Singular Value

A high—speed computational method for the condition number of R;C in an upper
triangular matrix employs the inverse iteration method.

The inverse iteration method is a power method for C' = A~!. Since the
power method is a method to compute the eigenvalue of the largest absolute
value of C', the inverse iteration method can be used to compute the eigenvalue
of the smallest absolute value of A.

The singular values of the k x k& matrix R;C are Omax > 09-++ > 0. The

oN—1 o \N-T
distribution of eigenvalues of A = F (Rk) (Rk) F — 121 is as follows:

1

1 1

2 2 2

5 HE S 5t S < =
o9 oy,

A(A) :

Umax

1 < 1 < < 1
T <7 S ST
el U e el

A (A_l) :

The largest singular value oy, of the upper triangular matrix R;C, of which
dimension size is k X k, is computed below. The power method is performed for
C = A~'. Let Z be the largest absolute eigenvalue of C.

1

7 = .
5 — k>

1

Omax

Z can be computed by using the 2 iterations in the Cholesky LR method and
the inverse iteration method. By using Z, the largest singular value omax of R,
can be computed:

1

Omax = 17
Vz o’

Thus, in the power method for C = A~', when z is a vector, it is sufficient to
compute z = A~ 'z. Using L, since A= LL",

z=L" "L 2. (13)

Equation (13) is equivalent to the following equation.

{ Ly== (14)

LTz=y"

Equation (14) can be regarded as a backward substitution in a linear equation.
Therefore, since the computation for L~! is not necessary, the computational
cost is O (k?).
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Fig. 1. Total Computation time.

6 Experiment

The experimental environment is shown by Table 2.

100 images of flowers (1000 x 563 pixels) are used in the experiment. The
conventional method is used for comparison. The conventional method computes
only the singular values using the dqds method. To adopt the dqds method,
an upper triangular matrix is transformed into the bi-diagonal matrix using
the Householder transformation. The QR method is well known as a method
for computing singular values. However, the QR method computes all singular
values and singular vectors simultaneously. Therefore, the dqds method is faster
for computing singular values only.

Figure 1 shows a comparison of the total computation time for the condition
number in the upper triangular matrix between the conventional method and the
proposed one using the inverse iterative method. The horizontal axis represents
the number of images, and the vertical axis indicates the total computation
time of the condition number in the upper triangular matrix. By Fig.1, the
proposed method is more than 10 times faster than the conventional method.
The two iterations of the Cholesky LR method have the same computational
cost as the conventional method in terms of order. However, the coefficient of
the computational cost is small, and the proposed method is compatible with
the performance of modern computers. Therefore, it is useful to compute the
condition number in the upper triangular matrix using the inverse iteration.

Table 2. Experimental Environment

CPU Intel Core i3-6100 CPU @ 3.70GHz 2Core
Memory size|16 GB
(O8] Rocky Linux 8.7

Compiler  |Intel oneapi, FORTRAN
Library Intel Math Kernel Library
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7 Conclusion

The largest singular value of the upper triangular matrix R;C and its neighboring
singular values constitutes a cluster. To separate the cluster, the Cholesky LR
method is adopted 2 times. The upper triangular matrix é; becomes larger com-
putational cost in terms of the condition number when the number of iterations
k is large. To solve the problem, we adopt the inverse iteration method.

By using the proposed method, we have confirmed that the computation is
10 times faster than the conventional method.

Acknowledgment. This work was supported by JST SPRING, Grant Number
JPMJSP2115.
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Abstract. In this paper, we propose a method for computing partial
singular values and the corresponding singular vectors. PCA (Principal
Component Analysis) requires only larger singular values and the cor-
responding singular vectors. Generally, it is obtained by combining the
bisection method and the inverse iteration method. However, there are
some input matrices, such as the glued Kimura matrix, for which the
inverse iteration method fails. Therefore, the OQDS (Orthogonal QD
with Shift) method is adopted in this paper. The OQDS method can
compute smaller singular values and the corresponding right singular
vectors from a bi-diagonal matrix with high accuracy, in the case that
the matrix is not split during the decomposition. However, usually, split
occurs. Under split, it is not clear which side of the split the smaller
singular values fall on. Therefore, to adopt the OQDS method to the
PCA, it is necessary to consider how to deal with split. Thus, in this
paper, we propose a new implementation of the OQDS method that is
not effected by split. Experiments have confirmed that the method is fast
while maintaining reliability.

Keywords: Principal Component Analysis *+ Singular Value
Decomposition - Orthogonal QD with Shift method

1 Introduction

Principal Component Analysis (PCA) [1] is useful in data science. By using the
PCA, it is possible to reduce the dimensionality of a given matrix and pro-
cess multivariate data. To adopt big—data analysis, PCA should be performed
with high-speed. The PCA is essentially equivalent to the partial singular value
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decomposition. In the PCA using the statistical computing software R [2], singu-
lar value decomposition is performed by the upper bi-diagonal diagonalization
and the QR method [3-7] for the upper bi-diagonal matrix. However, in the
case of the QR method, all singular values and singular vectors are always com-
puted. Therefore, when the dimension of the matrix is large, the computation
time becomes enormous. Hence, for the PCA, a partial singular value decompo-
sition should be adopted. As a partial singular value decomposition, the bisec-
tion method and the inverse iteration method [3| are combined. However, the
inverse iteration method cannot achieve high accuracy for some matrices, such
as the glued Kimura matrix [10]. Therefore, neither singular value decomposition
method is appropriate for data analysis.

In this paper, we adopt the OQDS (Orthogonal QD with Shift) method [8]
as a partial singular value decomposition. The OQDS method is as reliable as
the QR method. The OQDS method is also able to compute singular values
with high—accuracy and has high—orthogonality of the right singular vectors. In
the OQDS method, splits occur to speed up the process. Split divides a given
matrix into two parts. When split doesn’t occur, the sorting function of the
OQDS method guarantees that the smallest singular values can be obtained in
order. However, when a split occurs, the sort function fails to work between the
two split matrices. Therefore, we propose an implementation method to enable
a partial singular value decomposition without losing the sorting function in
the OQDS method. Numerical experiments are evaluated the implementation
method in terms of computational speed, accuracy, and orthogonality of left and
right singular vectors.

2 Principal Component Analysis

A given information is represented by the matrix A = (a;;) € R™*". Each
row represents one event. This section describes the PCA for the matrix A.
By decomposing the matrix A into singular values and the corresponding right
singular vectors, it is possible to cluster events according to differences in their
features. The given matrix A is normalized. Prepare a matrix M and a matrix S
that change the mean of matrix A to 0 and the variance to 1, respectively.

(e @in)
(>t ain)

33|
. £3| 3

kN

33|

%(221 i) %(27:1 i)

. 1 “ .. 1
S=diag | A e Vo (A2 } : (2)

The normalized matrix C = (A—M)S is obtained. Then, the normalized matrix
C' is decomposed using a partial singular value decomposition for the PCA.
In the PCA, only information on w major components, not all components, is



320 M. Chiyonobu et al.

required. In other words, only w larger singular values and the corresponding
right singular vectors are required.

A singular value decomposition of C' is described. The QR decomposition is
performed on C to obtain the upper triangular matrix R. Then, the upper bi-
diagonal matrix B is computed by using the Householder transformation [3,6].
By decomposing B, it is possible to obtain the singular value decomposition of
C. Since the PCA requires a partial singular value decomposition, only partial
singular value decomposition of the matrix B should be needed.

3 Partial Singular Value Decomposition in Larger Order
Using the OQDS Method

The details of the OQDS method are described in Sect. 4.

3.1 Singular Value Computation

In the case that splits do not occur, the OQDS method can compute the smaller
singular values. PCA requires the larger singular values. Therefore, a given
matrix with the larger singular values must be transformed into one with the
smaller singular values. The transformation procedure is as follows:

1. Preparation of F” for B.
2. Positive definitization of F”.
3. Modified Cholesky Decomposition.

In step 1), a 2n x 2n symmetric tri-diagonal matrix F’ is obtained for an
n X n upper bi—diagonal matrix B. B is shown in Eq. (3).

B = bidiag. [ﬂl "'5_’{—_1 N } : (3)

(e S IREE

The eigenvalues and eigenvectors of F' are corresponding to the singular values
and the singular vectors of B.

o --- --- 0 o ﬁl O 1
.'ﬂn—l
0 - 0 O o,
=) 00 ; @
B
_O ﬁnflan 0O «-vnn- 0 ]
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F’ is obtained by a symmetric substitution for F.

0 a1 O
o - B
B
F' = (5)
ﬂn—l

ﬁnfl Qp

L O an 0]
The singular value oy, -- ,0, of B is the eigenvalue +o1,--- ,+0, of F’. The

left and right singular vectors of B can be computed from the eigenvectors of
F.

In step 2), positive definitization of F’ is performed. Let p be the upper
bound for the largest singular value of B. In the case of v = /i,

M2 —ay O
—a1 - =
VI F' = —ho : (6)
. . _ﬁn—l
_ﬁnfl B —Qp
. O —a, v? ]
is obtained. Here, o; (i =1,...,n) and §; (i=1,...,n — 1) are real number.

Since Eq. (6) is a positive definite symmetric matrix, Cholesky decomposition
can performed. By using the Cholesky decomposition, the upper bi—diagonal
matrix is obtained. The OQDS method can compute the right singular vector of
a lower bi-diagonal matrix with high-orthogonality. Therefore, in step 3), from
the Eq. (7), we can obtain the 2n x 2n bi-diagonal matrix L.

S1
tl S92
PI-F =@)'L, L=| =~ . (7)

ton—1 Son
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Equation (7) is equivalent to the following recurrence formula:

Sop =V

Qp

top—1=——
Son

Son—1 = \/V — tan—1/V + tan—1
/87171

top—o = —
Soan—1

San—2 = \/V — tan—2\/V + tan_2
Qp—1

top—3 = —
S2n—2

Son—3 = \/V — tan_3\/V + tan_3
Bn—2
Son—3
Son—a = \/V — tan—a\/V + tan_a

top—4 = —

(®)

By —v <ty <v, k=1,...,2n — 1, t; does not diverge to +oo. Therefore, it
can be satisfied to be a numerically stable recurrence formula. If the singular
value of L is 61 > G2 > -+ > Gop,—1 > O2n, then the singular value of B :
O1>092> -2 0p1 20,180 =V —0onyi—r) ¥+ Tont1-¢), £=1,...,n.

3.2 Singular Vector Computation

This section describes a singular vector computation. Let (¢) denote the ¢ com-
ponent. Also, u and v are the left and right singular vectors of B, respectively.
The relationship between the right singular vector X of L and the left and right
singular vectors U,V of B is shown as follows:

B’UiZO',"LLi (i:l,...,w), BT’U/Z‘ZUZ"UZ‘ (i:l,...,w),
U= [u1,~-- ,uw] ER™Y, V= ['vl,--~ ,Uw] e R™*W,
[ vu(1) vi(1) ]
Uy (1) uy (1)
vy (2) v1(2)
Ui (2) u1(2)
X — . . (9)

The right singular vector of L contains elements of the left and right singular
vectors of B. Thus, the left singular vector of L is not necessary.
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4 The OQDS Method for Partial Singular Value
Decomposition

The OQDS method can compute smaller singular values and the corresponding
singular vectors, in the case of no split. The singular values can be computed
with high—accuracy in the relative error, and the right singular vector has high—
orthogonality. In the proposed implementation, smaller singular values and the
corresponding singular vectors are computed, even when splits occur. Let p = 2n.
In a n X n upper bi-diagonal matrix B, w smaller singular values and the
corresponding singular vectors are computed. The computational cost when no
splitting occurs is shown in Table 1.

Table 1. computational complexity.

Bisection method-+Inverse iteration method O (an)

proposal O (wn2)
QR method 0] (nB)

In the proposed implementation method, the dimensions of the matrix L is
p X p. Therefore, the computation space for computing the left and right singular
vectors by using the right eigenvectors X of the matrix L is two times larger than
that of the QR method. However, it is sufficiently faster than that of the QR
method. Hence, it is not a weakness for the proposed implementation method
to compute the partial singular value decomposition method.

4.1 Acceleration of Convergence

Let L = LiijLSingular values of LiijZa, > G4 > --- > 3,1 > 0,iijL and L
be the following:

R
=3
Q

o=t 7 . (10)
o b 6y

Here, the shift #(!) can be set any real number satisfying (9 < 5min(ﬁ(i)).
The closer (9 is to 6min(f1(i)), the faster the convergence is. Also, G is the
product of 2p x 2p generalized Givens rotations, G is the product of p X p
Givens rotations. To obtain the singular vector, repeat the operation of Eq. (11)
with G@ and G until L converges to a diagonal matrix, assuming z(®) =

0, 20D =/ (20)? 4 (r)?,



324 M. Chiyonobu et al.

i B
@ L7
(LU step) G [z(i)f} = L(i)l] )
r o 210 [ (i+1)
B Al L
T @ =" . 11
0 (aw) L«W] ¢ [zw} D
Equation (11) can be rearranged as following:

(@(i))T ((ﬁ(i))Tﬁ(i) _ (Tu))z’l) Gt _ (ﬁ(iﬂ))Tﬁ(iH). (12)

In the case of i — oo, L converges as follows.

and (UL step)

i—1 i—1
1O =D =diag. | (|62 =Y ()% a2 =Y (r©)*|.  (13)
£=0 £=0

By solving the above equations, the singular values can be obtained. The
right singular vector can be computed as the product of GO,

To accelerate the convergence of the OQDS method, a lower bound in the
smallest singular value is computed by using the Collatz’s inequality [11]. A pxp
lower bi—-diagonal matrix L is

L = bidiag. [gl a2 ﬂ %}.
L By

The all elements in L are positive number. L is defined as following:

ﬁ:bidiag.[aﬁl o %],
e

V-1
Since all elements of (LLT) are positive number, the lower bound of

Amin (LLT) is obtained by the Collatz’s inequality.
v (k)
-1

((ﬁﬁ) v) (k)

min

< Awin (LLT) = Awin (ELT).

Here,
Py 1
T = (LLT) (1,1,---, 17, v:a}/m]?x:c(k).

v is generated by the inverse iteration method. Since Collatz’s theorem satis-
fies for irreducible nonnegative matrices, the lower bound for the smallest sin-
gular value can be obtained high—accuracy, even if the subdiagonal elements
O (k=1,...,p—1)of LisO.
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Algorithm 1. LU step in the case of a shift 7 =0
1: Set pY) = ay)
2: if p!” < /22 then

30 Set p{ =0
4: end if
5 for k:=1,2,...,p—1do
) N2 N 2

6:  Set ’Yz(cz) = (p?) + ( 1(;))
7. if 'y,(f> =0 then
8 Set ¢ — 0. )@ = o®

: et G » Pri1 = Oy
9: else . . ' ’
10: Set ¢ = (57 /21") aflly
11: Set ng-l = (Pi(:)/%(ci)) agﬁ-l
12: if p,(;ll < /229 then
13: Set p'), =0
14: end if
15:  end if
16: end for

17: Set fyz(,“ = pz(f)

The following techniques can not be adopted when the shift amount r(® > 0.
Consequently, when a singular value that can be regarded as 0 in the middle of
the iteration is found beforehand by a hypothetical iteration, then, positively,
r() = 0 is assumed. In [9], split is adopted. The LU step with the value r(*) =
0 for shift under the condition that the subdiagonal elements of L is not 0
is shown in Algorithm 1. In the step of creating U from L, the elements of
U are 7,(;) and (,gl), respectively. In the case of split, the matrix is split into
two separate matrices. If the upper block matrix contains the value of 0 which
corresponds to the singular value, the value of 0 can not be moved to the lower
block matrix. Therefore, it is not suitable for computing smaller singular values
and the corresponding singular vectors in ascending order of 61 > g9 > -+ >
Top_1 > Gp.

To overcome this difficulty, our proposal is to redefine the Givens rotation to
realize the transfer of the value of 0 between blocks. The definition of the Givens
rotation is shown in the following equation.

T . .
cosf  sinf z Va? +y? cosf = —==Z
I | = : i +y? (14)
—sinf cosf ) : " sint = —=2

1
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Algorithm 2. Modified LU step in the case of a shift #(9) = 0

1: Set o = oY
2: if pl < \/Ez(” then
3: Set p1 =0
4: end if
5 for k:=1,2,...,p—1do
) N 2 N2
6:  Set ’Y;(@Z) = (p?) +( fﬂ”)
7. if '71(:) =0 then
8: Set Clgz) = I(c?—l’ Pk+1 =0
9: else .
10: Set ¢ = (g“)M ) ol
11: Set — (%) (%) (4)
: € Pk+1 ko /)
12: if p(z) < \/_z Z) then
13: Set pk+1 =0
14: end if
15:  end if
16: end for

17: Set fy(z) pz(f)

In the case of x+ = 0,y = 0, the conventional definition assumes cosf =
1,sin# = 0. On the other hand, in our proposal, cos@ = 0,sinf = 1. Therefore,
the value of 0 can be moved between blocks. The modified LU step is shown in
Algorithm 2.

The LU step with the value 7 > 0 for shift under the condition that the
subdiagonal elements of L is not 0 is shown in Algorithm 3. In the case of

agi) —r =0or ( (¢ )/7 > ak}r — 7)) = for k iteration in Algorithm 3, k + 1
iteration is collapsed, since the element of the square root is negative.

Hence, agi) — 7 =0 or (p,(:)/'y )a,(;}rl 7 = 0 in Algorithm 3 is not
acceptable. However, it is not possible to accelerate the computation by shifting
the target to the smallest singular value that appears in the middle of the matrix

when the recurrence formula moves from the upper left to the lower right of the
matrix. Therefore, the following conditions are granted.

1. For 69 =0, agi) — () =0 is acceptable.
2. If 6,(:4)_1 =0fork=1,...,p—2, (p,(f)/vl(:)) a,(fll — () =0 is acceptable.

It possible to adopt the smallest singular value that exists in the middle of the
matrix as the shift amount. With the above implementation method, each block
matrix can be treated as a single matrix even when splits occur. The modified
LU step with the value r(*) > 0 is shown in Algorithm 4.
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Algorithm 3. LU step in the case of a shift 7(*) >0
Set temp = a&i) —r®
if temp > 0 then
Set pgi) = /temp x agi) + ()
else .
Fail. In the next try, the value of r® is changed to a smaller value.
end if
for k:=1,2,....,p—1do

. . 2 . 2
set 710 = /(o) + (8)

Set 9 = (802") ally

Set temp = (pgj)/'yl(j)) a&)_l — 7@

if temp>0 or (k=p-—1 and temp=0) then

Set 2, = Vi x| () A7) Ly + 1)
else
Fail. In the next try, the value of 7 is changed to a smaller value.
end if
end for ‘
Set " = p}

4.2 Guaranteed Smallest Singular Value

When one of the following two conditions described in Eq. (15) and Eq. (16) is
satisfied, then it can be confirmed that the smallest singular value is in the lower
right corner of L.

B, < 1006 x 209,

\/(041()1)) + (Z(’))2 = 2() is numerically valid.
B, <1002 x 200,
ozz(f) < the lower bound for the smallest singular value (16)

of p— 1 x p — 1 the leading principal minor in L

Here, € denotes a computer epsilon.

5 Numerical Experiment

To evaluate the computational speed and accuracy of the OQDS method adopt-
ing the proposed implementation method, we have numerical experiments. The
input matrix is a bi-diagonal matrix B. The B is obtained by applying the House-
holder transformation to a square matrix with [0, 1] uniform random elements.
Adopting the proposed implementation, we evaluate the computational speed
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Algorithm 4. Modified LU step in the case of a shift #(!) > 0
Set 87 =0
Set temp = agl) —r®
if temp > 0 or (ﬂ1i> =0 and temp = O) then

Set p(li) = /temp x \/agi) + ()
else .
Fail. In the next try, the value of r® is changed to a smaller value.

end if
for k:=1,2,...,p—1do

set o =/ (7) "+ ()
if 'y,(f> =0 then
Set (lgi) =0, pgjll = agfll
else
set 60 = (50 4”) el
Set temp = (pf” /2" ) aflly — 7
if temp >0 or (ﬁffll =0 and temp= 0) then

Set pg_l = /temp x \/(pg)/%(:)) a,i?_l +r@
else
Fail. In the next try, the value of r® is changed to a smaller value.
end if
end if
end for

Set % =y

and accuracy of the OQDS method. The dimension of the matrix shall be the
following five types: 10000 x 10000, 15000 x 15000, 20000 x 20000, 25000 x 25000,
30000 x 30000. The first five singular values of the input matrix are listed in
Table 2. Because of the large dimension of the random matrices, the largest sin-
gular value is significantly larger than the other singular values. These matrices
are the worst for our proposed implementation that convert problems, which
are computed sequentially from larger singular values, to problems, which are
computed sequentially from smaller singular values.

The evaluation criteria of the experiment are described. Let w be the number
of singular values needed for PCA. Let o;(i = 1,...,w) be the singular value
of B, ¥, = diag.(01,...,04), U the left singular vector of B of n x w, and
V' the right singular vector of n x w. The evaluation is performed for the four
perspectives shown next.

1. The computation time of the partial singular value decomposition
2. HBV - UEwHF + ||BTU - VZwHF

3. |UTU ~1I|r

4. |VTV —I||p
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Table 2. Input matrices(I)

Dimension|10000 [15000 20000 [25000 |30000
largest 5000.13|7500.05/10000.30/12500.14(15000.27
second 57.71 |70.66 |81.60 [91.19  |99.96
third 57.59 |70.58 |81.55 |91.11  |99.82
forth 57.57 |70.52 |81.52  [91.08  |99.80
fifth 57.52 |70.49 |81.50 [91.01 [99.74

Table 3. Experimental environment.

CPU Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz
0S Rocky Linux 9.4

Compiler Intel oneAPI

LIB Intel Math Kernel Library

Number of cores|8

Memory 192 GB

The experimental environment is shown in Table 3. Table 4 shows the results
for w = 5. From (1) in the Table4, the proposed implementation method takes
more time to compute than the combined the bisection method and the inverse
iterative method. On the other hand, compared to the QR method, the proposed
method is by far the fastest. This is consistent with Table 1.

In (2) of the Table 4 shows that in terms of the accuracy of the singular value
decomposition, it is computed with almost same accuracy as the QR method.
It is also comparable to the combination of the bisection and inverse iteration
methods in accuracy.

From (3) and (4) in the Table 4, the orthogonality is inferior to the combi-
nation of the bisection and inverse iteration method. On the other hand, it is
better than the QR method in term of the orthogonality. Based on the above,
the proposed method in this study is one of the effective methods.
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Table 4. Result of Experiments

Input size‘QR method |Bisection method +Inverse iteration‘OQDS method

(1) Computation time(m)

10000 162.554 0.076 17.737
15000  470.091 0.082 49.943
20000  [988.255 0.116 83.726
25000  |1751.165  0.144 145.560
30000 2792195  0.170 237.845

(2) |BV —UXullr +||B"U = VEu|r

10000  [28.291E—12 [2.025E—12 14.357E—12
15000  [26.574E—12 [1.927E—12 20.170E—12
20000  |13.597E—12 [1.033E—12 20.241E—12
25000  [24.332E—12 |7.442E—12 27.875E—12
30000  |13.028E—12 |3.889E—12 26.614E—12
B3 IUTU - 1I|r

10000  81.598E—15 [1.063E—15 16.888E—15
15000  195.064E—15 (0.859E—15 18.821E—15
20000  87,819E—15 |0.416E—15 15.421E—15
25000  |357.768E—15/1.512E—15 9.075E—15
30000  [80.805E—15 |0.927E—15 9.732E—15
4) VTV —I||r

10000  (66.482E—15 (0.926E—15 15.682E—15
15000  |77.466E—15 [1.203E—15 18.519E—15
20000  |110.612E—15/0.953E—15 914.656E—15
25000  |183.189E—15/1.288E—15 8.641E—15
30000  |119.977E—15/0.267E—15 9.671E—15

6 Conclusion

In this paper, we have proposed a new implementation of the OQDS method
only for some singular values and singular vectors can be computed. Numerical
experiments confirm that the method is faster than the QR method and achieves
the same accuracy as the QR method while also meeting the computational goals.

The numerical experiments in this paper were not parallelized. However, since
the QR and the combination of the bisection and inverse iteration method are
parallelized, parallelization of the proposed method should also be implemented
for more precise numerical experiments.
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