
Stack-Aware Hyperproperties⋆

Ali Bajwa2(�), Minjian Zhang1, Rohit Chadha2(�), and Mahesh Viswanathan1

1 University of Illinois, Urbana-Champaign, USA
{minjian2,vmahesh}@illinois.edu

2 University of Missouri, Columbia, USA
{azb9q8,chadhar}@missouri.edu

Abstract. A hyperproperty relates executions of a program and is used
to formalize security objectives such as confidentiality, non-interference,
privacy, and anonymity. Formally, a hyperproperty is a collection of al-
lowable sets of executions. A program violates a hyperproperty if the set
of its executions is not in the collection specified by the hyperproperty.
The logic HyperCTL* has been proposed in the literature to formally
specify and verify hyperproperties. The problem of checking whether
a finite-state program satisfies a HyperCTL* formula is known to be
decidable. However, the problem turns out to be undecidable for proce-
dural (recursive) programs. Surprisingly, we show that decidability can
be restored if we consider restricted classes of hyperproperties, namely
those that relate only those executions of a program which have the same
call-stack access pattern. We call such hyperproperties, stack-aware hy-
perproperties. Our decision procedure can be used as a proof method for
establishing security objectives such as noninference for recursive pro-
grams, and also for refuting security objectives such as observational
determinism. Further, if the call stack size is observable to the attacker,
the decision procedure provides exact verification.

Keywords: Hyperproperties · Temporal Logic · Recursive Programs ·
Model Checking · Pushdown Systems · Visibly Pushdown Automata.

1 Introduction

Temporal logics HyperLTL and HyperCTL* [5] were designed to express
and reason about security guarantees that are hyperproperties [6]. A hyper-
property [6] is a security guarantee that does not depend solely on individual
executions. Instead, a hyperproperty relates multiple executions. For example,
non-interference, a confidentiality property, states that any two executions of a
program that differ only in high-level security inputs must have the same low -
security observations. As pointed out in [6], several security guarantees are hy-
perproperties. The logic HyperCTL* subsumes HyperLTL, and the problem
of checking a finite-state system against a HyperCTL* formula is decidable [5].
⋆ Ali Bajwa was partially supported by NSF CNS 1553548. Rohit Chadha was par-

tially supported by NSF CNS 1553548 and NSF SHF 1900924. Mahesh Viswanathan
and Minjian Zhang were partially supported by NSF SHF 1901069 and NSF SHF
2007428.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13993, pp. 308–325, 2023.
https://doi.org/10.1007/978-3-031-30823-9_16

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30823-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-30823-9_16

Stack-Aware Hyperproperties 309

In this paper, we consider the problem of model checking procedural (recur-
sive) programs against security hyperproperties. Recall recursive programs are
naturally modeled as a pushdown system. Unlike the case of finite-state tran-
sition systems, the problem of checking whether a pushdown system satisfies a
HyperCTL* formula is undecidable [16]. In contrast, CTL* model checking is
decidable for pushdown systems [3,18].

Our contributions. We consider restricted classes of hyperproperties for re-
cursive programs, namely those that relate only those executions that have the
same call-stack access pattern. Intuitively, two executions have the same stack
access pattern if they access the call stack in the same manner at each step, i.e.,
if in one execution there is a push (pop) at a point, then there is a push (pop)
at the same point in the other execution. Observe that if two executions have
the same stack access pattern, then their stack sizes are the same at all times.
We call such hyperproperties, stack-aware hyperproperties.

In order to specify stack-aware hyperproperties, we extend HyperCTL* to
sHCTL*. The logic sHCTL* has a two level syntax. At the first level, the
syntax is identical to HyperCTL* formulas, and is interpreted over executions
of the pushdown system with the same stack access pattern. At the top-level,
we quantify over different stack access patterns. The formula Eψ is true if for
some stack access pattern ρ of the system, the pushdown system restricted to
executions with stack access pattern ρ satisfies the HyperCTL* formula ψ. The
formula Aψ is true if for each stack access pattern ρ of the system, the pushdown
system restricted to executions with stack access pattern ρ satisfies the Hyper-
CTL* formula ψ. See Figure 1 on Page 8 for a side-by-side comparison of the
syntax for HyperCTL* and sHCTL*. HyperLTL is extended to sHLTL simi-
larly. Please note that sHCTL* subsumes sHLTL, and that sHCTL* (sHLTL)
coincides with HyperCTL* (HyperLTL) for finite state systems as all execu-
tions of finite state systems have the same stack access pattern.

We show that the model checking problem for sHCTL* is decidable. We
demonstrate three different ways this result can aid in verifying recursive pro-
grams. First, for security guarantees such as noninference [14], which are ex-
pressible in the ∀∃∗ fragment of HyperLTL, we can use the model checking
algorithm to establish that a recursive program satisfies the HyperLTL prop-
erty. Secondly, for the ∀∗ fragment of HyperLTL, the model checking algorithm
can be used to detect security flaws by establishing that a recursive program does
not satisfy security guarantees. Observational determinism [13,19] is an example
of such a property. Finally, when the attacker can observe stack access patterns
(or, equivalently, stack sizes), we can get exact verification for several proper-
ties. The assumption of the attacker observing stack access patterns holds, for
example, in the program counter security model [15] in which the attacker has
access to program counters at each step. As argued in [15], the program security
model is appropriate to capture control-flow side channels such as those arising
from timing behavior and/or disclosure of errors.

The decision procedure uses an automata-theoretic approach inspired by
the model checking algorithm for finite state systems and HyperCTL* given

310 A. Bajwa et al.

in [10]. Since stack-aware hyperproperties relate only executions with the same
stack access-pattern, a set of executions with the same stack access pattern
can be encoded as a word over a pushdown alphabet, 3 and the problem of
model checking a sHCTL* formula can be reduced to the problem of check-
ing emptiness of a non-deterministic visibly pushdown automaton (NVPA) over
infinite words [1]. The reduction of the model checking problem to the empti-
ness problem is based on a compositional construction of an automaton for each
sub-formula which accepts exactly the set of assignments to path variables that
satisfy the sub-formula. For this construction to be optimal, we carefully leverage
two equi-expressive classes of automata on infinite words, namely NVPAs and
1-way alternating jump automata (1-AJA) [4]. The model checking algorithm
for sHCTL* against procedural programs has a complexity that is very close to
the complexity of model checking finite state systems against HyperCTL*. If
g(k, n) denotes a tower of exponentials of height k, where the top most expo-
nent is poly(n), then for a formula with formula complexity r, 4 and a system
and formula whose size is bounded by n, our algorithm is in DTIME(g(⌈ r2⌉, n)).
In comparison, model checking finite state systems against HyperCTL* is in
NSPACE(g(⌈ r2⌉ − 1, n)). This slight difference in complexity is consistent with
checking other properties like invariants for finite state systems (NL) versus pro-
cedural programs (P).

We also prove that our model checking algorithm is optimal by proving a
matching lower bound. Our proof showing DTIME(g(⌈ r2⌉, n)-hardness of the
model checking problem for formulas with (formula) complexity r, relies on re-
ducing the membership problem for g(⌈ r2⌉ − 1, n) space bounded alternating
Turing machines (ATM) to the model checking problem. The reduction requires
identifying an encoding of computations of ATMs, which are trees, as strings
that can be guessed and generated by pushdown systems. The pushdown system
we construct for the model checking problem guesses potential computations
of the ATM, while the sHCTL* formula we construct checks if the guessed
computation is a valid accepting computation.

Related work. Clarkson and Schneider introduced hyperproperties [6] and
demonstrated their need to capture complex security properties. Temporal logics
HyperLTL and HyperCTL*, that describe hyperproperties, were introduced
by Clarkson et al. [5]. They also characterized the complexity of model checking
finite state transition systems against HyperCTL* specifications by a reduction
to the satisfiability problem of QPTL [17]. Subsequently, other model checking
algorithms for verifying finite state systems against HyperCTL* properties
have been proposed [10,7]. Tools that check satisfiability [8] and runtime verifi-
cation [9] for HyperLTL formulas have also been developed. Finkbeiner et al.
introduced the automata-theoretic approach to model checking HyperCTL*
for finite-state systems [10].

3 A pushdown alphabet is an alphabet that is partitioned into three sets: a set of call
symbols, a set of internal symbols, and a set of return symbols. See Section 4.1.

4 Our definition of formula complexity is roughly double the usual notion of quantifier
alternation. For a precise definition, see Definition 4.

Stack-Aware Hyperproperties 311

The model checking problem for HyperLTL, and consequently Hyper-
CTL*, was shown to be undecidable for pushdown systems in [16]. For re-
stricted fragments of HyperLTL, Pommellet and Tayssir [16] introduced over-
approximations and under-approximations to establish/refute that a pushdown
system satisfies a HyperLTL formula in those fragments. Gutsfeld et al. intro-
duced stuttering Hµ, a linear time logic for checking asynchronous hyperprop-
erties for recursive programs in [12]. The authors present complexity results for
the model checking problem under an assumption of fairness, and a restriction of
well-alignment. While the restriction to paths with the same stack access pattern
is similar to the well-alignment restriction, we do not assume any fairness con-
dition to establish decidability. However, as sHCTL* is a branching time logic
and only considers synchronous hyperproperties, the two logics are not directly
comparable. It is also worth mentioning that the branching nature of sHCTL*
requires us to “copy” a potentially unbounded stack, from the most recently
quantified path variable, when assigning a path to the “current” quantified path
variable. In contrast, all path assignments in [12] start with an empty stack.

For lack of space reasons, some proofs are omitted and can be located in [2].

2 Motivation

Clarkson and Schneider [6] argue that many important security guarantees are
expressible only as hyperproperties. We discuss two examples of security hyper-
properties, and the logics HyperLTL and HyperCTL* used to specify them.

Hyperproperties and temporal logics. We discuss two variants of non-
interference [11] that model confidentiality requirements. In non-interference,
the inputs of a system are partitioned into low -level input security variables and
high-level input security variables. The attacker is assumed to know the values of
low-level security inputs. During an execution, the attacker can observe parts of
the system configuration such as system outputs, or the memory usage. A system
satisfies non-interference if the attacker cannot deduce the values of high-level
inputs from the low-level observations. To formally specify the variants, we use
the logic HyperLTL [5], a fragment of the logic HyperCTL* [5]. The precise
syntax of HyperLTL and HyperCTL* is shown in Fig. 1. In the syntax, π is a
path variable and the formula aπ is true if the proposition a is true along the path
“π”. Intuitively, the formula ∃π. ψ is existential quantification over paths, and is
true if there is a path that can be assigned to π such that ψ is true. Universal
quantification (∀π. ψ), and other logical connectives such as conjunction (∧),
implication (→), equivalence (↔) and the temporal operators G and F can be
defined in the standard way. By having explicit path variables, HyperLTL and
HyperCTL* allow quantification over multiple paths simultaneously.

Example 1. The first variant, noninference [14], states that for each execution σ
of a program, there is another execution σ′ such that (a) σ′ is obtained from σ by
replacing the high-level security inputs by a dummy input, and (b) σ and σ′ have
the same low-level observations. Noninference is a hyperliveness property [5,6].

312 A. Bajwa et al.

Let us assume that the low-level observations of a configuration are deter-
mined by the values of the propositions in L = {ℓ1, · · · ℓm}. As shown in [5], non-
inference is expressible by the HyperLTL formula: NI def

= ∀π. ∃π′.(Gλπ′)∧π ≡L
π′. Here Gλπ′ expresses that Globally (or in each configuration of the execution)
the high input of π′ is the dummy input λ, and π ≡L π′ def

= G(∧ℓ∈L(ℓπ ↔ ℓπ′))
expresses that π and π′ have the same low-level observations.

Example 2. The second variant, observational determinism [13,19], states that
any two executions that have the same low-level initial inputs, must have the
same low-level output observations. Observational determinism is a hypersafety

property [5,6], and is also expressible in HyperLTL using the formula [5]: OD def
=

∀π. ∀π′.(π[0] ≡L,in π′[0])→π ≡L,out π′. Here ≡L,in and ≡L,out express the fact
that π and π′ have the same low-security inputs and outputs respectively.

Procedural (recursive) programs and Stack-aware hyperproperties.
Pushdown systems model procedural programs that do not dynamically allo-
cate memory, and whose program variables take values in finite domains. Unlike
finite-state transition systems, the problem of checking whether a pushdown sys-
tem satisfies a HyperCTL* formula is undecidable [16]. However, we identify a
natural class of hyperproperties for which the model checking problem becomes
decidable. As we shall shortly see, this class of hyperproperties not only enjoys
decidability, but is also useful in reasoning about security hyperproperies such
as noninference and observational determinism.

We consider a restricted class of hyperproperties for recursive programs,
which relate only executions that access the call stack in the same manner,
i.e., push or pop at the same time. An execution of a pushdown system P is a
sequence of configurations (control state + stack) σ = c1c2 · · · , such that the
stacks of consecutive configurations ci and ci+1 differ only due to the possible
presence of an additional element at the top of the stack of either ci or ci+1.
For such a sequence, we can associate a sequence pr(σ) = o1o2 · · · such that
oi ∈ {call, int, ret} such that oi = call (ret respectively) if and only if the stack
in ci+1 has one more (less respectively) element than ci. The sequence pr(σ) is
said to be the stack access pattern of σ. Observe that the stack sizes of two
executions with the same stack access pattern evolve in a similar fashion. Thus,
equivalently, we can consider this class of hyperproperties to be the hyperprop-
erties that relate executions with identical memory usage.

To specify these hyperproperties, we propose the logic sHCTL* which ex-
tends HyperCTL*. sHCTL* has a two level syntax. At the innermost level,
the syntax is identical to that of HyperCTL* formulas, but is interpreted over
executions of the pushdown system with the same stack access pattern. At the
outer level, we quantify over different stack access patterns. Intuitively, the for-
mula Eψ is true if there is a stack access pattern ρ exhibited by the system such
that the set of executions with access pattern ρ satisfy the hyperproperty ψ.
The dual formula Aψ, defined as ¬E¬ψ, is true if for each stack access pattern
ρ exhibited by the system, the set of all executions with stack access pattern ρ

Stack-Aware Hyperproperties 313

satisfy ψ. The syntax of sHLTL is obtained from HyperLTL in a similar fash-
ion. Please see Fig. 1 on Page 8 for a side-by-side comparison of the syntax of
HyperCTL* (HyperLTL) and sHCTL* (sHLTL). Unlike HyperCTL*, we
show that the problem of checking sHCTL* is decidable for pushdown systems
(Theorem 3). Formal definitions of stack access patterns, syntax and semantics
of sHCTL* are in Section 3.

For the rest of the paper, hyperproperties expressible in sHCTL* will be
called stack-aware hyperproperties. Restricting to stack-aware hyperproperties is
useful in verifying security guarantees of recursive programs as discussed below.

Proving ∀∃∗ hyperproperties. The noninference property (Example 1) can

be expressed in HyperLTL as NI
def
= ∀π. ∃π.′(Gλπ′)∧π ≡L π′. Consider the

sHLTL formula A(NI) obtained by putting an A in front NI. A pushdown sys-
tem satisfies A(NI) only if for each execution σ of the system, there is another
execution σ′ with the same stack access pattern as σ such that σ, σ′ together
satisfy (Gλσ′)∧σ ≡L σ′. Thus, if the pushdown system satisfies the sHLTL
formula A(NI), then it also satisfies noninference. Thus, a decision procedure for
sHLTL can be used to prove that a recursive program satisfies noninference.

The above observation generalizes to HyperLTL formulas of the form ψ =
∀π.∃π1. . . . ∃πk.ψ′ — if a system satisfies the sHLTL formula Aψ then it must
also satisfy the HyperLTL formula ψ. Though the model checking problem
is undecidable for pushdown systems even when restricted to such HyperLTL
formulas, we gain decidability by restricting the search space for π, π1, . . . , πk.

Refuting ∀∗ hyperproperties. Observational determinism (Example 2) can

be written in HyperLTL as OD
def
= ∀π. ∀π′.(π[0] ≡L,in π′[0])→π ≡L,out π′.

Consider the sHLTL formula A(OD). A pushdown system fails to satisfy the
sHLTL formula A(OD) only if there is a stack access pattern ρ and executions
σ1 and σ2 with stack access pattern ρ such that the pushdown system does not
satisfy (σ[0] ≡L,in σ′[0])→σ ≡L,out σ′.

This observation generalizes to HyperLTL formulas of the form ψ =
∀π1. . . . ∀πk.ψ′ — if a pushdown system fails to satisfy the sHLTL formula
Aψ then it does not satisfy ψ. Even though model checking pushdown systems
against such restricted specifications is undecidable, our decision procedure can
be used to show that a recursive program does not meet such properties.

Exact verification when stack access pattern is observable. Often, it is
reasonable to assume that the attacker can observe the stack access pattern. For
example, in the program counter security model [15], the attacker has access to
the program counter transcript, i.e., the sequence of program counters during an
execution. Access to the program counter transcript implies that the attacker can
observe stack access pattern. The assumption that the program counter tran-
script is observable helps model control flow side channel attacks which include
timing attacks and error disclosure attacks [15]. sHCTL* can be used to verify
security guarantees in this security model. For example, the sHCTL* formula
A(NI) models noninference faithfully by introducing a unique proposition for

314 A. Bajwa et al.

each control state. Observational determinism can also be verified in this model
by suitably transforming the pushdown automaton.

Another scenario in which stack access patterns are observable is when the
attacker can observe the memory usage of a program in terms of stack size.
As observing stack size may lead to information leakage, stack size should be
considered a low-level observation. Since the stack size can be unbounded, it
cannot be modeled as a proposition. sHCTL*, however, can still be used to verify
security guarantees in this case. For example, A(NI) = A(∀π. ∃π.′(Gλπ′)∧π ≡L
π′) faithfully models non-inference as semantics of sHCTL* forces π and π′ to
have the same call-stack size in addition to other low-level observations. Once
again, observational determinism can also be verified in this model by suitably
transforming the pushdown automaton.

3 Stack-aware Hyper Computation Tree Logic (sHCTL*)

Stack-aware Hyper Computation Tree Logic (sHCTL*), and its sub-logic Stack-
aware Hyper Linear Temporal Logic (sHLTL) are formally presented. We begin
by establishing some conventions over strings.

Strings. A string/word w over a finite alphabet Σ is a sequence w = a0a1 · · ·
of finite or infinitely many symbols from Σ, i.e., ai ∈ Σ for all i. The length
of a string w, denoted |w|, is the number of symbols appearing in it — if w =
a0a1 · · · an−1 is finite then |w| = n, and if w = a0a1 · · · is infinite then |w| = ω.
The unique string of length 0, the empty string, is denoted ε. For a string w =
a0a1 · · · ai · · · , w(i) = ai denotes the ith symbol, w[: i] = a0a1 · · · ai−1 denotes
the prefix of length i, w[i :] = aiai+1 · · · denotes the suffix of w starting at
position i, and w[i : j] = aiai+1 · · · aj−1 denotes the substring from position i
(included) to position j (not included). Thus w[0 :] = w. By convention, when
i ≤ 0, we take w[: i] = ε. Over Σ, the set of all finite strings is denoted Σ∗, and
the set of all infinite strings is denoted Σω. For a finite string u and a (finite or
infinite) string v, uv denotes the concatenation of u and v.

3.1 Pushdown Systems

Pushdown systems naturally model for sequential recursive programs. Formally,
an AP-labeled pushdown system is a tuple P = (S, Γ, sin, ∆, L), where S is a
finite set of control states, Γ is a finite set of stack symbols, sin ∈ S is the initial
control state, L : S → 2AP is the labeling function, and ∆ is the transition
relation. The transition relation ∆ = ∆int ∪· ∆call ∪· ∆ret is the disjoint union of
internal transitions ∆int ⊆ S × S where the stack is unchanged, call transitions
∆call ⊆ S × (S × Γ) where a single symbol is pushed onto the stack, and return
transitions ∆ret ⊆ (S × Γ)× S where a single symbol is popped from the stack.
When AP is clear from the context, we simply refer to them as pushdown systems.
Transition System Semantics. We recall the standard semantics of a push-
down system as a transition system. Let us fix a pushdown system P =
(S, Γ, sin, ∆, L). A configuration c of P is a pair (s, α) where s ∈ S and α ∈ Γ ∗.

Stack-Aware Hyperproperties 315

a ∈ AP, π ∈ V
ψ ::= aπ | ¬ψ | ψ ∨ψ | Xψ

| ψUψ | ∃π. ψ

(a) HyperCTL*

θ ::= Eψ | ¬θ | θ∨ θ
ψ ::= aπ | ¬ψ | ψ ∨ψ | Xψ | ψUψ | ∃π. ψ

(b) sHCTL*

Fig. 1: BNF for HyperCTL* and sHCTL*. Let ∀ denote ¬∃¬ and A denote ¬E¬ψ.
HyperLTL is the set of HyperCTL* formulas Q1π1. · · ·Qrπr.ψ where Qi ∈ {∃, ∀}
and ψ is quantifier-free. sHLTL is the set of sHCTL* formulas qφ, where q ∈ {A,E}
and φ is in HyperLTL.

The set of all configurations of P will be denoted ConfP = S × Γ ∗. The labeled
transition system associated with P is JPK := (ConfP , cin,−→,AP, L) where
cin = (sin, ε) is the initial configuration, −→⊆ ConfP × ({call, ret, int} × S ×
(Γ ∪{ε})×S)×ConfP is the transition relation, and L is the labeling function that
extends the labeling function of P to configurations as follows: L(s, α) = L(s).
The transition relation −→ is defined to capture the informal semantics of inter-

nal, call, and return transitions — for any α ∈ Γ ∗, (int) (s, α)
(int,s,ε,s′)−−−−−−→ (s′, α)

iff (s, s′) ∈ ∆int; (call) (s, α)
(call,s,a,s′)−−−−−−−→ (s′, aα) iff (s, (s′, a)) ∈ ∆call; and (ret)

(s, aα)
(ret,s,a,s′)−−−−−−→ (s′, α) iff ((s, a), s′) ∈ ∆ret.

A path of JPK is an infinite sequence of configurations σ = c0, c1, . . . such that

for each i, ci
(o,s,a,s′)−−−−−−→ ci+1 for some o ∈ {int, call, ret}, s, s′ ∈ S and a ∈ Γ ∪{ε}.

The path σ is said to start in configuration c0 (the first configuration in the
sequence). We will use Paths(JPK, c) to denote the set of paths of JPK starting
in the configuration c and Paths(JPK) to denote all paths of JPK.

We conclude this section by introducing some notation on configurations. For
c = (s, α), its stack height is |α|, its control state is state(c) = s, and its top of
stack symbol is top(c) = a ∈ Γ if α = aα′ and is undefined if α = ε.

3.2 Syntax of sHCTL*

Let us fix a set of atomic propositions AP, and a set of path variables, V. The BNF
grammar for sHCTL* formulas is given in Figure 1(b). In the BNF grammar,
a ∈ AP is an atomic proposition, π is a path variable, ψ is a cognate formula, and θ
is a sHCTL* formula. The syntax has two levels, with the inner level identical to
HyperCTL* formulas, while the outer level allows quantification over different
stack access patterns (see Section 3.3). Also, following [5,10], we assume that the
until operator U only occurs within the scope of a path quantifier.

Remark 1. We have chosen to not have A, the dual of E, and conjunction as
explicit logical operators to keep our exposition simple. This choice does makes
the automata constructions presented here less efficient for formulas involving

316 A. Bajwa et al.

conjunction. Adding them explicitly does not pose a technical challenge to our
setup and our automata constructions can be extended to handle them explicitly.
In addition, we will sometimes use other quantifiers and logical operators to write
formulas. Some standard examples include: θ1 ∧ θ2 = ¬(¬θ1 ∨¬θ2), where θi (i ∈
{1, 2}) is either a sHCTL* or cognate formula; ∀π.ψ = ¬∃π.¬ψ; Fψ = trueUψ,
where true = aπ ∨¬aπ; Gψ = ¬F¬ψ.

We call formulas of the form qψ (where q ∈ {A,E} and ψ is a cognate
formula) basic formulas. Observe that any sHCTL* formula is a Boolean com-
bination of basic formulas. A sHCTL* formula θ is a sentence if in each basic
sub-formula qψ, ψ is a sentence, i.e., every path variable appearing in ψ is
quantified. Without loss of generality, we assume that in any cognate formula ψ,
all bound variables in ψ are renamed to ensure that any path variable is quanti-
fied at most once. We will only consider sHCTL* sentences in this paper. The
logic sHLTL is the sub-logic of sHCTL* consisting of all formulas of the form
qQ1π1. · · ·Qrπr.ψ where q ∈ {A,E}, Qi ∈ {∃, ∀} and ψ is quantifier free.

3.3 Semantics of sHCTL*

The syntax of cognate formulas is identical to that HyperCTL* formulas. Their
semantics will be described in a similar manner, in a context where free path
variables in the formula are interpreted as executions of a system. However, we
will require that the interpretations of every path variable share a common stack
access pattern — hence the term cognate. Thus, before defining the semantics,
we will define what we mean by the stack access pattern of a path and a path
environment that assigns an interpretation to path variables.

For the rest of this section let us fix a pushdown system P = (S, Γ, sin, ∆, L).
A string w ∈ {call, int, ret}∗ is said to be well matched if either w = ε or w =
int or w = call u ret or w = uv, where u, v ∈ {call, int, ret}∗ are (recursively)
well matched. In a string ρ ∈ {call, int, ret}ω, ρ(i) is an unmatched return, if
ρ[: i + 1] = w ret, where w is well matched. We are now ready to present the
definition of a stack access pattern.

Definition 1 (Stack access pattern). A string ρ ∈ {call, int, ret}ω is a stack
access pattern if the set {i ∈ N | ρ(i) is an unmatched return} is finite.

A path σ = c0c1c2 · · · ∈ Paths(JPK) is said to have a stack access pattern ρ =
o0o1 · · · (denoted pr(σ) = ρ) if for every i: (a) oi = call if and only if stack(ci+1)
= top(ci+1) stack(ci), (b) oi = int if and only if stack(ci+1) = stack(ci), and
(c) oi = ret if and only if stack(ci) = top(ci) stack(ci+1).

We now present the definition of path environment that interprets the free
path variables in a cognate formula as paths of JPK such that they share a
common stack access pattern. This plays a key role in defining the semantics of
sHCTL*. For a set of path variables V, let V† be defined as the set V ∪· {†}.

Definition 2 (Path Environment). A path environment for pushdown sys-
tem P over variables V is function Π : V† → Paths(JPK)∪{call, int, ret}ω such

Stack-Aware Hyperproperties 317

that Π(†) is a stack access pattern , and for every π ∈ V, Π(π) ∈ Paths(JPK)
with pr(Π(π)) = Π(†). When the pushdown system is clear from the context, we
will simply refer to it as a path environment over V.

When V = ∅, we additionally require that there is a path σ ∈ Paths(JPK, cin)
(where cin is the initial configuration of JPK) such that pr(σ) = Π(†).

We introduce some notation related to path environments. Let us fix a path
environmentΠ over variables V. Given a path σ ∈ Paths(JPK),Π[π 7→ σ] denotes
the path environment over V ∪{π} such that Π[π 7→ σ](π) = σ, and Π[π 7→
σ](π′) = Π(π′), for any π′ ∈ V† with π′ ≠ π. Finally, for i ∈ N,Π[i :] denotes the
suffix path environment, where every variable is mapped to the suffix of the path
starting at position i. More formally, for every π′ ∈ V†, Π[i :](π′) = Π(π′)[i :].

We now define when a pushdown system P satisfies a sHCTL* sentence θ,
denoted P |= θ. The definition of satisfaction of θ relies on a definition of satis-
faction for cognate formulas. To inductively to define the semantics of cognate
formulas, we will interpret free path variables using a path environment. Fi-
nally, as in HyperCTL*, it is important to track the most recently quantified
path variable because that influences the semantics of ∃π(·). Thus satisfaction of
cognate formulas takes the form P, Π, π′ |=ψ, where π′ is the most recently quan-
tified path variable, and Π is a path environment over the free variables of ψ.
Finally, by convention, we will take Paths(JPK, Π(†)(0)) to mean Paths(JPK, cin),
where cin is the initial configuration of JPK 5. Below, θ, θ1, and θ2 are sHCTL*
sentences, while ψ,ψ1, ψ2 are cognate formulas.

P |=¬θ iff P ̸ |= θ
P |= θ1 ∨ θ2 iff P |= θ1 or P |= θ2
P |=Eψ iff for some path environment Π over ∅,P, Π, † |=ψ
P, Π, π′ |= aπ iff a ∈ L(Π(π)(0))
P, Π, π′ |=¬ψ iff P, Π, π′ ̸ |=ψ
P, Π, π′ |=ψ1 ∨ψ2 iff P, Π, π′ |=ψ1 or P, Π, π′ |=ψ2

P, Π, π′ |=Xψ iff P, Π[1 :], π′ |=ψ
P, Π, π′ |=ψ1 Uψ2 iff ∃i ≥ 0 : P, Π[i :], π′ |=ψ2 and ∀j, 0 ≤ j < i,

P, Π[j :], π′ |=ψ1

P, Π, π′ |= ∃π. ψ iff ∃σ ∈ Paths(JPK, Π(π′)(0)) with pr(σ) = Π(†),
such that P, Π[π 7→ σ], π |=ψ

4 A Decision Procedure for sHCTL*

Given a pushdown system P and a sHCTL* sentence θ, we present an algorithm
that determines if P |= θ. Our approach is similar to the one in [10]. Given a finite
state transition system K and a HyperCTL* formula φ, Finkbeiner et. al. [10],
construct an alternating (finite state) Büchi automaton AK,φ, by induction on
φ, such that an input word σ is accepted by AK,φ if and only if σ is the encoding

5 The convention is needed because Π(†)(0) is not a configuration but an element of
the set {call, int, ret}.

318 A. Bajwa et al.

of a path environment Π such that K, Π |=φ. Determining if K |=φ then reduces
to checking if AK,φ accepts any string.

Extending these ideas to sHCTL* and pushdown systems, requires one to
answer two questions: (a) What is an encoding of path environments for cog-
nate formulas where path variables are mapped to sequences of configurations
(control state + stack)?; (b) Which automata models can capture the collection
of path environments satisfying a cognate formula with respect to a pushdown
system? We encode path environments for cognate formulas using strings over
a pushdown alphabet — pushdown tags on symbols adds structure that helps
encode sequences of configurations. And for automata, we consider automata
that process such strings and accept visibly pushdown languages. A natural gen-
eralization of the approach outlined in [10] would suggest the use of alternating
visibly pushdown automata (AVPA) on infinite strings [4]. However, using AV-
PAs results in an inefficient algorithm. To get a more efficient algorithm, we
instead rely on a careful use of nondeterministic visibly pushdown automata
(NVPA) [1] and 1-way alternating jump automata (1-AJA) [4]. The advantage
of using NVPA and 1-AJA can be seen in the case of existential quantification
(∃π.) which requires converting an alternating automaton to a nondeterministic
one [10]: Converting from 1-AJA to NVPA leads to exponential blowup while
converting AVPA to NVPA leads to a doubly exponential blowup [4].

The rest of this section is organized as follows. We begin by introducing
the automata models on pushdown alphabets (Section 4.1). Next we present
our encoding of path environments, and finally our automata constructions that
establish the decidability result (Section 4.2).

4.1 Automata on Pushdown Alphabets

A pushdown alphabet is a finite set Σ that is partitioned into three sets
Σcall ∪· Σint ∪· Σret, where Σcall is the set of call symbols, Σint is the set of inter-
nal symbols, and Σret is the set of return symbols. Automata models processing
strings over a pushdown alphabet are restricted to perform certain types of tran-
sitions based on whether the read symbol is a call, internal, or return symbol.
We introduce, informally, two such automata models next. Precise definition and
its semantics can be found in the detailed version of this paper [2].

Nondeterministic Visibly Pushdown Büchi Automata. A nondetermin-
istic visibly pushdown automaton (NVPA) [1] is like a pushdown system. It has
finitely many control states and uses an unbounded stack for storage. However,
unlike a pushdown system, it is an automaton that processes an infinite sequence
of input symbols from a pushdown alphabet Σ = Σcall ∪· Σint ∪· Σret. Transitions
are constrained to conform to pushdown alphabet — whenever a Σcall symbol
is read, a symbol onto the stack, whenever a Σret symbol is read, the top stack
symbol is popped, and whenever Σint symbol is read, the stack is unchanged.

1-way Alternating Jump Automata. Our second automaton model is 1-
way Alternating Parity Jump Automata (1-AJA) [4]. 1-AJA are computation-
ally equivalent to NVPAs (i.e., accept the same class of languages) but provide

Stack-Aware Hyperproperties 319

greater flexibility in describing algorithms. 1-AJAs are alternating automata,
which means that they can define acceptance based on multiple runs of the ma-
chine on an input word. Though they are finite state machines with no auxiliary
storage, their ability to spawn a computation thread that jumps to a future
portion of the input string on reading a symbol, allows them to have the same
computational power as a more conventional machine with storage (like NVPAs).

We present some useful properties of NVPA and 1-AJA. The two models are
equi-expressive with the size of automata constructed by the translation known.

Theorem 1 ([4]). For any NVPA N of size n, there is a 1-AJA AN of size
O(n2), such that L(AN) = L(N). Conversely, for any 1-AJA A of size n, there
is a NVPA NA of size 2O(n), such that L(NA) = L(A). Constructions can be
carried out in time proportional to the size of the resulting automaton.

Both 1-AJA and NVPAs are closed for language operations like complemen-
tation, union and prefixing. We also recall the following result.

Theorem 2 ([1]). For NVPAs, the emptiness problem is PTIME-complete.

4.2 Algorithm for sHCTL*

Let us fix a pushdown system P = (S, Γ, sin, ∆, L) and a sHCTL* sentence θ.
Our goal is to decide if P |= θ. We will reduce this problem to checking the empti-
ness of multiple NVPAs (Theorem 2). Our approach is similar to [10] — for each
cognate sub-formula ψ (not necessarily sentence) of θ, we will compositionally
construct an automaton that accepts the path environments satisfying ψ. Path
environments will be encoded by strings over pushdown alphabets as follows.

For a path σ = c0c1c2 · · · of JPK, the trace of σ, denoted tr(σ), is the
(unique) sequence (o0, q0, a0, q1)(o1, q1, a1, q2) · · · such that for every i ∈ N,

ci
(oi,qi,ai,qi+1)−−−−−−−−−→ ci+1 where oi ∈ {call, int, ret}, qi, qi+1 ∈ Q, and ai ∈ Γ ∪ {ε} 6.
While tr(σ) is uniquely determined by the path σ, the converse is not true

— different paths may have the same trace. To see this, consider the following
example. For configuration c and γ ∈ Γ ∗, let γ(c) denote the configuration
(state(c), stack(c)γ), i.e., the configuration with the same control state, but with
stack containing the symbols in γ at the bottom. Observe that, for any γ ∈ Γ ∗,
if σ = c0c1c2· is a path then so is γ(σ) = γ(c0)γ(c1)γ(c2) · · · . Additionally,
tr(σ) = tr(γ(σ)). Two paths σ1 and σ2 of JPK will be said to be equivalent if
tr(σ1) = tr(σ2) and will be denoted as σ1 ≃ σ2. Observe that equivalent paths
have the same stack access pattern , i.e. if σ1 ≃ σ2 then pr(σ1) = pr(σ2). The
semantics of sHCTL* doesn’t distinguish between equivalent paths.

6 Observe that even when σ is not a path in JPK (i.e., corresponds to an actual se-
quence of transitions of P), the trace of σ is uniquely defined as long as stacks of
successive configurations of σ can be obtained by leaving the stack unchanged, or
pushing/popping one symbol.

320 A. Bajwa et al.

Proposition 1. Let φ be a cognate formula with V as the set of free path vari-
ables. Let Π1 and Π2 be two path environments such that for every π ∈ V,
Π1(π) ≃ Π2(π). Then, P, Π1, π |=φ if and only if P, Π2, π |=φ.

The proof of Proposition 1 follows by induction on cognate formulas. Propo-
sition 1 establishes that the set of path environments satisfying a cognate for-
mula is a union of equivalence classes with respect to path equivalence. Thus,
instead of constructing automata that accept path environments, we will con-
struct automata that accept mappings from path variables to traces of paths.
For m ∈ N, let Σ[m] = Σ[m]call ∪· Σ[m]int ∪· Σ[m]ret be the pushdown alpha-
bet where Σ[m]call = {call} × Sm × Γm, Σ[m]int = {int} × Sm × {ε}m, and
Σ[m]ret = {ret} × Sm × Γm. Observe Σ[0] is (essentially) the set {int, call, ret}.

Definition 3 (Encoding Path Environments). Consider a set of m path
variables V = {π1, π2, . . . πm}. A string w ∈ Σ[m]ω where for any j ∈ N, w(j) =
(oj , (s

j
1, s

j
2, . . . s

j
m), (aj1, a

j
2, . . . a

j
m)) encodes all path environments Π such that

Π(†) = o0o1o2 · · · oj · · ·
tr(Π(πi)) = (o0, s

0
i , a

0
i , s

1
i)(o1, s

1
i , a

1
i , s

2
i) · · ·

for any i ∈ {1, 2, . . .m}. The string encoding a path environment Π is denoted
as enc(Π) (= w, in this case).

Based on the definitions, the following observation about traces and encod-
ings can be concluded.

Proposition 2. For any path σ ∈ Paths(JPK) and i ∈ N, tr(σ[i :]) = tr(σ)[i :].
For any path environment Π and i ∈ N, enc(Π[i :]) = enc(Π)[i :].

The encoding of path environments as strings over Σ[m] (for an appropriate
value of m) is used in our decision procedure, which compositionally constructs
automata that accept path environments satisfying each cognate formula. The
size of our constructed automata, like in [10], will be tower of exponentials that
depends on the formula complexity of the cognate formula φ.

Definition 4 (Formula Complexity). The formula complexity of a sHCTL*
formula φ, denoted fc(φ), is inductively defined as follows. Let odd : N → N be the
function that maps a number n to the smallest odd number ≥ n, i.e., odd(n) = n
if n is odd and odd(n) = n + 1 if n is even. Similarly, even : N → N maps n
to the smallest even number ≥ n, i.e., even(n) = odd(n + 1) − 1. Below ψ1, ψ2

denote cognate formulas, and θ1, θ2 denote sHCTL* sentences.

fc(aπ) = 0 fc(¬ψ1) = even(fc(ψ1)) fc(Xψ1) = fc(ψ1)
fc(ψ1 ∨ψ2) = max(fc(ψ1), fc(ψ2)) fc(ψ1 Uψ2) = even(max(fc(ψ1), fc(ψ2)))
fc(∃π. ψ1) = odd(fc(ψ1)) fc(Eψ1) = odd(fc(ψ1))
fc(¬θ1) = fc(θ1) fc(θ1 ∨ θ2) = max(fc(θ1), fc(θ2))

Observe the difference in the definition of fc(¬θ1) and fc(¬ψ1); for ¬θ1 there is
no change in formula complexity, while for ¬ψ1 we move to the next even level.

Stack-Aware Hyperproperties 321

Our main technical lemma is a compositional construction of an automaton
for cognate formulas ψ. Depending on the parity of fc(ψ), the automaton we
construct will either be a 1-AJA or a NVPA. Before presenting this lemma, we
define a function that is a tower of exponentials. For c, k, n ∈ N, the value gc(k, n)
is defined inductively on k as follows: gc(0, n) = cn log n, and gc(k + 1, n) =
2gc(k,n). We use gO(1)(k, n) to denote the family of functions {gc(k, n) | c ∈ N}.

Lemma 1. Consider pushdown system P = (S, Γ, sin, ∆, L) and sHCTL* sen-
tence θ. Let ψ be a cognate subformula of θ with free path variables in the set
V = {π1, . . . πm} for m ∈ N. We assume, without loss of generality, that the vari-
ables π1, . . . πm are in the order in which they are quantified in θ with πm being
the first free variable of ψ that will be quantified in the context θ. In addition, we
assume that the size of both ψ and P is bounded by n. There is an automaton
Aψ over pushdown alphabet Σ[m] such that for any path environment Π over V,

P, Π, πm |=ψ if and only if enc(Π) ∈ L(Aψ).
7

The automaton Aψ is a NVPA if fc(ψ) is odd, and a 1-AJA if fc(ψ) is even.
The size of Aψ is at most gO(1)(⌈ fc(ψ)

2 ⌉, n)8.

Before presenting the proof of Lemma 1, we would like to highlight a subtlety
about its statement. The result guarantees that for valid path environments Π,
encoding enc(Π) is accepted by Aψ if and only if Π satisfies ψ. It says nothing
about path environments that are not valid. In particular, there may be functions
that map path variables to traces that do not correspond to actual paths of JPK,
but which are nonetheless accepted by Aψ. Notice, however, when ψ = ∃π. ψ1 is
a cognate sentence, a string over {call, int, ret} will, by conditions guaranteed in
Lemma 1, be accepted if and only if it corresponds to a stack access pattern of
a path from the initial state that satisfies ∃π. ψ1.

Proof (Sketch of Lemma 1). Our construction of Aψ will proceed inductively.
The type of automaton constructed will be consistent with the parity of fc(ψ),
i.e., an NVPA if fc(φ) is odd and a 1-AJA if fc(ψ) is even. We sketch the main
ideas here, with the full proof in [2].

For aπ, ¬ψ1, ψ1 ∨ψ2, and Xψ1, the construction essentially proceeds by con-
verting Aψi (i ∈ {1, 2}) if needed, into the type (NVPA or 1-AJA) of the target
automaton using Theorem 1, and then using standard closure properties to com-
bine them to get the desired automaton. In case of ψ = ψ1 Uψ2, we first convert
(if needed) Aψi

(i ∈ {1, 2}) into a 1-AJA. At each step, the automaton for ψ
will choose to either run Aψ2

, or run Aψ1
and restart itself. Correctness relies

on the fact that our encoding for path environments satisfies Proposition 2.
The most interesting case is that of ψ = ∃π. ψ1. We will first convert (if

needed) the automaton for ψ1 into a NVPA A1. The automaton for ψ will
essentially guess the encoding of a path that is consistent with the transitions of
7 When m = 0, we take πm to be †.
8 When the size of the specification ψ is considered constant, the size of Aψ is at most
gO(1)(⌈ fc(ψ)

2
⌉ − 1, n)

322 A. Bajwa et al.

P, and check if assigning the guessed path to variable π satisfies ψ1 by running
the automaton A1. The additional requirement we have is that the guessed path
start at the same configuration as the current configuration of the path assigned
to variable πm which introduces some subtle challenges. In order to be able to
guess a path, Aψ will keep track of P’s control state in its control state, and use
its stack to track P’s stack operations along the guessed path. Since the stacks
of all paths are synchronized, it makes it possible for Aψ to use its (single stack)
to track the stack of both P and the stack of A1. ⊓⊔

Using Lemma 1, we can establish the main result of this section.

Theorem 3. Given a P = (S, Γ, sin, ∆, L) and a sHCTL* sentence θ, the prob-
lem of determining if P |= θ is in ∪cDTIME(gc(⌈ fc(θ)

2 ⌉, n)), where n is a bound
on the size of P and θ.

Proof. Recall that a sHCTL* sentence is a Boolean combination of formulas of
the form Eψ, where ψ is a cognate sentence. Results on whether P |=Eψ for
each such subformula can be combined to determine whether P |= θ. Given this,
the time to determine if P |= θ is at most the time to decide if P satisfies each
subformula of the form Eψ plus O(n) (to compute the Boolean combination of
these results). Next, recall that the construction in Lemma 1 ensures that for
a cognate sentence of the form ∃π. ψ, L(A∃π. ψ) consists exactly of strings in
{call, int, ret}ω that encode a path environment over ∅ that satisfy ∃π. ψ.

Consider a sHCTL* sentence Eψ. Let π be a path variable that does not
appear in the sentence ψ. Based on the semantics of sHCTL* the following
observation holds: P |=Eψ if and only if for some path environment Π over
∅, P, Π, † |= ∃π. ψ. Which is equivalent to saying that P |=Eψ if and only if
L(A∃π. ψ) ̸= ∅. Since fc(Eψ) = fc(∃π. ψ), and the emptiness problem of NVPA
can be decided in polynomial time (Theorem 2), our theorem follows. ⊓⊔

5 Lower Bound

In this section, we establish a lower bound for the problem of model checking
sHCTL* sentences against pushdown systems. Our proof establishes a hardness
result for the sHLTL sub-fragment of sHCTL*. Before presenting this lower
bound, we introduce the function hc(·, ·), which is another tower of exponentials,
inductively defined as follows: hc(0, n) = n, and hc(k+1, n) = hc(k, n) · chc(k,n).

Theorem 4. Let P be a pushdown system and θ be a sHLTL sentence such that
the sizes of both P and θ is bounded by n and fc(θ) = 2k − 1 for some k ∈ N.
The problem of checking if P |= θ is DTIME(hc(k, n))-hard, for every c ∈ N.

Proof (Sketch). We sketch the main intuitions behind the proof. To highlight the
novelties of this proof, it is useful to recall how NSPACE(hc(k−1, n))-hardness for
HyperLTL model checking is proved [5]. The idea is to reduce the language of
a nondeterministic hc(k−1, n) space bounded machine M to the model checking

Stack-Aware Hyperproperties 323

problem by constructing a finite state transition system that guesses a run of
M , and a HyperLTL formula that checks if the path is a valid accepting run.

To get the stricter bound of DTIME(hc(k, n)), we use the fact that we are
checking pushdown systems. The stack of the pushdown system can be used
to guess a tree, as opposed to a simple trace. Therefore, we reduce a hc(k −
1, n) space bounded alternating Turing machine, instead of a nondeterministic
machine. Since ASPACE(f(n)) = DTIME(2O(f(n))) for f(n) ≥ log n, the theorem
will follow if the reduction succeeds.

Recall that a run of an alternating Turing machine M is a rooted, labeled tree,
where vertices are labeled by configurations of M in a manner that is consistent
with the transition function of M . To faithfully encode a tree as a sequence
of symbols, we record the DFS traversal of the tree, making explicit the stack
operations performed during such a traversal. Consider a labeled, rooted tree T
with root r whose label is ℓ(r) with T1 as a the left sub-tree and T2 as the right
sub-tree. The DFS traversal of T will push ℓ(r), traverse T1 recursively, pop ℓ(r),
push ℓ(r), traverse T2, and then pop ℓ(r). We will use such a DFS traversal to
guess and encode runs of M . Popping and pushing ℓ(r) between the traversals
of T1 and T2 may seem redundant. Why not simply do nothing between the
traversals of T1 and T2? For T to be a valid run of M , the configuration labeling
of the root of T2 must be the result of taking one step from ℓ(r). Such checks
will be encoded in our sHLTL sentence, and for that to be possible, we need
successive configurations of M to be consecutive in the string encoding.

To highlight some additional consistency checks, let us continue with our
example tree T from the previous paragraph. For a string to be a correct encoding
of T , it is necessary that the string pushed before the traversal of Ti (i ∈ {1, 2})
be the same as the string popped after the traversal. This can be ensured by the
pushdown system by actually pushing and popping those symbols. In addition,
the string popped after T1’s traversal must be the same as the string pushed
before T2’s traversal. Neither the stack nor the finite control of the pushdown
system can be used to ensure this. Instead this must be checked by the sHLTL
sentence we construct. But the symbols while popping ℓ(r) will be in reverse
order of the symbols being pushed, and it is challenging to perform this check
in the formula. To overcome this, we push/pop the label and its reverse at the
same time. This ensures that if we want to check if a string pushed is the same
as a string that was just popped, then we can check for string equality, and this
check is easier to do using formulas in sHLTL. Additional checks to ensure that
the tree encodes a valid accepting run are performed by the sHLTL sentence
using ideas from [17]. Full details can be found in [2]. ⊓⊔

6 Conclusions

In this paper, we introduced a branching time temporal logic sHCTL* that can
be used to specify synchronous hyperproperties for recursive programs modeled
as pushdown systems. The primary difference from the standard branching time
logic HyperCTL* for synchronous hyperproperties is that sHCTL* considers

324 A. Bajwa et al.

a restricted class of hyperproperties, namely, those that relate only executions
that the same stack access pattern. We call such hyperproperties stack-aware
hyperproperties. We showed that the problem of model checking pushdown sys-
tems sHCTL* specifications is decidable, and characterized its complexity. We
also showed how this result can potentially be used to aid security verification.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th
Annual ACM Symposium on Theory of Computing. pp. 202–211. ACM (2004)

2. Bajwa, A., Zhang, M., Chadha, R., Viswanathan, M.: Stack-aware hyperproperties.
https://arxiv.org/abs/2301.11521 (2023)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Concurrency Theory, 8th International Confer-
ence. pp. 135–150. Springer (1997)

4. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In: Concurrency Theory, 18th International Conference. pp.
476–491. Springer (2007)

5. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Principles of Security and Trust - Third
International Conference. pp. 265–284. Springer (2014)

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium. pp. 51–65. IEEE Computer Society
(2008)

7. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Computer Aided Verification - 31st International Conference. pp. 121–139. Springer
(2019)

8. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: Satisfiability, implication, and
equivalence checking of hyperproperties. In: Computer Aided Verification - 29th
International Conference. pp. 564–570. Springer (2017)

9. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: A runtime verifi-
cation tool for temporal hyperproperties. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 24th International Conference. pp. 194–200.
Springer (2018)

10. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL*. In: Computer Aided Verification - 27th International Conference.
pp. 30–48. Springer (2015)

11. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20. IEEE Computer Society (1982)

12. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Deciding asynchronous hyperproper-
ties for recursive programs. CoRR abs/2201.12859 (2022)

13. McLean, J.: Proving noninterference and functional correctness using traces. Jour-
nal of Computer Security 1(1), 37–58 (1992)

14. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: IEEE Computer Society Symposium on Research in
Security and Privacy. pp. 79–93. IEEE Computer Society (1994)

15. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter secu-
rity model: Automatic detection and removal of control-flow side channel attacks.
In: Proceedings of the 8th international conference on Information Security and
Cryptology. p. 156–168. Springer-Verlag (2005)

https://arxiv.org/abs/2301.11521

Stack-Aware Hyperproperties 325

16. Pommellet, A., Touili, T.: Model-checking HyperLTL for pushdown systems. In:
Model Checking Software - 25th International Symposium. pp. 133–152. Springer
(2018)

17. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for büchi
automata with appplications to temporal logic. Theoretical Computer Science 49,
217–237 (1987)

18. Walukiewicz, I.: Pushdown processes: Games and model checking. In: Computer
Aided Verification, 8th International Conference. pp. 62–74. Springer (1996)

19. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop. p. 29. IEEE Computer Society (2003)

Open Access This chapter is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Stack-Aware Hyperproperties
	1 Introduction
	2 Motivation
	3 Stack-aware Hyper Computation Tree Logic (sHCTL*)
	3.1 Pushdown Systems
	3.2 Syntax of sHCTL*
	3.3 Semantics of sHCTL*

	4 A Decision Procedure for sHCTL*
	4.1 Automata on Pushdown Alphabets
	4.2 Algorithm for sHCTL*

	5 Lower Bound
	6 Conclusions
	References

